]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - Documentation/remoteproc.txt
vfs: cache request_queue in struct block_device
[karo-tx-linux.git] / Documentation / remoteproc.txt
1 Remote Processor Framework
2
3 1. Introduction
4
5 Modern SoCs typically have heterogeneous remote processor devices in asymmetric
6 multiprocessing (AMP) configurations, which may be running different instances
7 of operating system, whether it's Linux or any other flavor of real-time OS.
8
9 OMAP4, for example, has dual Cortex-A9, dual Cortex-M3 and a C64x+ DSP.
10 In a typical configuration, the dual cortex-A9 is running Linux in a SMP
11 configuration, and each of the other three cores (two M3 cores and a DSP)
12 is running its own instance of RTOS in an AMP configuration.
13
14 The remoteproc framework allows different platforms/architectures to
15 control (power on, load firmware, power off) those remote processors while
16 abstracting the hardware differences, so the entire driver doesn't need to be
17 duplicated. In addition, this framework also adds rpmsg virtio devices
18 for remote processors that supports this kind of communication. This way,
19 platform-specific remoteproc drivers only need to provide a few low-level
20 handlers, and then all rpmsg drivers will then just work
21 (for more information about the virtio-based rpmsg bus and its drivers,
22 please read Documentation/rpmsg.txt).
23
24 2. User API
25
26   int rproc_boot(struct rproc *rproc)
27     - Boot a remote processor (i.e. load its firmware, power it on, ...).
28       If the remote processor is already powered on, this function immediately
29       returns (successfully).
30       Returns 0 on success, and an appropriate error value otherwise.
31       Note: to use this function you should already have a valid rproc
32       handle. There are several ways to achieve that cleanly (devres, pdata,
33       the way remoteproc_rpmsg.c does this, or, if this becomes prevalent, we
34       might also consider using dev_archdata for this). See also
35       rproc_get_by_name() below.
36
37   void rproc_shutdown(struct rproc *rproc)
38     - Power off a remote processor (previously booted with rproc_boot()).
39       In case @rproc is still being used by an additional user(s), then
40       this function will just decrement the power refcount and exit,
41       without really powering off the device.
42       Every call to rproc_boot() must (eventually) be accompanied by a call
43       to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
44       Notes:
45       - we're not decrementing the rproc's refcount, only the power refcount.
46         which means that the @rproc handle stays valid even after
47         rproc_shutdown() returns, and users can still use it with a subsequent
48         rproc_boot(), if needed.
49       - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
50         because rproc_shutdown() _does not_ decrement the refcount of @rproc.
51         To decrement the refcount of @rproc, use rproc_put() (but _only_ if
52         you acquired @rproc using rproc_get_by_name()).
53
54   struct rproc *rproc_get_by_name(const char *name)
55     - Find an rproc handle using the remote processor's name, and then
56       boot it. If it's already powered on, then just immediately return
57       (successfully). Returns the rproc handle on success, and NULL on failure.
58       This function increments the remote processor's refcount, so always
59       use rproc_put() to decrement it back once rproc isn't needed anymore.
60       Note: currently rproc_get_by_name() and rproc_put() are not used anymore
61       by the rpmsg bus and its drivers. We need to scrutinize the use cases
62       that still need them, and see if we can migrate them to use the non
63       name-based boot/shutdown interface.
64
65   void rproc_put(struct rproc *rproc)
66     - Decrement @rproc's power refcount and shut it down if it reaches zero
67       (essentially by just calling rproc_shutdown), and then decrement @rproc's
68       validity refcount too.
69       After this function returns, @rproc may _not_ be used anymore, and its
70       handle should be considered invalid.
71       This function should be called _iff_ the @rproc handle was grabbed by
72       calling rproc_get_by_name().
73
74 3. Typical usage
75
76 #include <linux/remoteproc.h>
77
78 /* in case we were given a valid 'rproc' handle */
79 int dummy_rproc_example(struct rproc *my_rproc)
80 {
81         int ret;
82
83         /* let's power on and boot our remote processor */
84         ret = rproc_boot(my_rproc);
85         if (ret) {
86                 /*
87                  * something went wrong. handle it and leave.
88                  */
89         }
90
91         /*
92          * our remote processor is now powered on... give it some work
93          */
94
95         /* let's shut it down now */
96         rproc_shutdown(my_rproc);
97 }
98
99 4. API for implementors
100
101   struct rproc *rproc_alloc(struct device *dev, const char *name,
102                                 const struct rproc_ops *ops,
103                                 const char *firmware, int len)
104     - Allocate a new remote processor handle, but don't register
105       it yet. Required parameters are the underlying device, the
106       name of this remote processor, platform-specific ops handlers,
107       the name of the firmware to boot this rproc with, and the
108       length of private data needed by the allocating rproc driver (in bytes).
109
110       This function should be used by rproc implementations during
111       initialization of the remote processor.
112       After creating an rproc handle using this function, and when ready,
113       implementations should then call rproc_register() to complete
114       the registration of the remote processor.
115       On success, the new rproc is returned, and on failure, NULL.
116
117       Note: _never_ directly deallocate @rproc, even if it was not registered
118       yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
119
120   void rproc_free(struct rproc *rproc)
121     - Free an rproc handle that was allocated by rproc_alloc.
122       This function should _only_ be used if @rproc was only allocated,
123       but not registered yet.
124       If @rproc was already successfully registered (by calling
125       rproc_register()), then use rproc_unregister() instead.
126
127   int rproc_register(struct rproc *rproc)
128     - Register @rproc with the remoteproc framework, after it has been
129       allocated with rproc_alloc().
130       This is called by the platform-specific rproc implementation, whenever
131       a new remote processor device is probed.
132       Returns 0 on success and an appropriate error code otherwise.
133       Note: this function initiates an asynchronous firmware loading
134       context, which will look for virtio devices supported by the rproc's
135       firmware.
136       If found, those virtio devices will be created and added, so as a result
137       of registering this remote processor, additional virtio drivers might get
138       probed.
139       Currently, though, we only support a single RPMSG virtio vdev per remote
140       processor.
141
142   int rproc_unregister(struct rproc *rproc)
143     - Unregister a remote processor, and decrement its refcount.
144       If its refcount drops to zero, then @rproc will be freed. If not,
145       it will be freed later once the last reference is dropped.
146
147       This function should be called when the platform specific rproc
148       implementation decides to remove the rproc device. it should
149       _only_ be called if a previous invocation of rproc_register()
150       has completed successfully.
151
152       After rproc_unregister() returns, @rproc is _not_ valid anymore and
153       it shouldn't be used. More specifically, don't call rproc_free()
154       or try to directly free @rproc after rproc_unregister() returns;
155       none of these are needed, and calling them is a bug.
156
157       Returns 0 on success and -EINVAL if @rproc isn't valid.
158
159 5. Implementation callbacks
160
161 These callbacks should be provided by platform-specific remoteproc
162 drivers:
163
164 /**
165  * struct rproc_ops - platform-specific device handlers
166  * @start:      power on the device and boot it
167  * @stop:       power off the device
168  * @kick:       kick a virtqueue (virtqueue id given as a parameter)
169  */
170 struct rproc_ops {
171         int (*start)(struct rproc *rproc);
172         int (*stop)(struct rproc *rproc);
173         void (*kick)(struct rproc *rproc, int vqid);
174 };
175
176 Every remoteproc implementation should at least provide the ->start and ->stop
177 handlers. If rpmsg functionality is also desired, then the ->kick handler
178 should be provided as well.
179
180 The ->start() handler takes an rproc handle and should then power on the
181 device and boot it (use rproc->priv to access platform-specific private data).
182 The boot address, in case needed, can be found in rproc->bootaddr (remoteproc
183 core puts there the ELF entry point).
184 On success, 0 should be returned, and on failure, an appropriate error code.
185
186 The ->stop() handler takes an rproc handle and powers the device down.
187 On success, 0 is returned, and on failure, an appropriate error code.
188
189 The ->kick() handler takes an rproc handle, and an index of a virtqueue
190 where new message was placed in. Implementations should interrupt the remote
191 processor and let it know it has pending messages. Notifying remote processors
192 the exact virtqueue index to look in is optional: it is easy (and not
193 too expensive) to go through the existing virtqueues and look for new buffers
194 in the used rings.
195
196 6. Binary Firmware Structure
197
198 At this point remoteproc only supports ELF32 firmware binaries. However,
199 it is quite expected that other platforms/devices which we'd want to
200 support with this framework will be based on different binary formats.
201
202 When those use cases show up, we will have to decouple the binary format
203 from the framework core, so we can support several binary formats without
204 duplicating common code.
205
206 When the firmware is parsed, its various segments are loaded to memory
207 according to the specified device address (might be a physical address
208 if the remote processor is accessing memory directly).
209
210 In addition to the standard ELF segments, most remote processors would
211 also include a special section which we call "the resource table".
212
213 The resource table contains system resources that the remote processor
214 requires before it should be powered on, such as allocation of physically
215 contiguous memory, or iommu mapping of certain on-chip peripherals.
216 Remotecore will only power up the device after all the resource table's
217 requirement are met.
218
219 In addition to system resources, the resource table may also contain
220 resource entries that publish the existence of supported features
221 or configurations by the remote processor, such as trace buffers and
222 supported virtio devices (and their configurations).
223
224 Currently the resource table is just an array of:
225
226 /**
227  * struct fw_resource - describes an entry from the resource section
228  * @type: resource type
229  * @id: index number of the resource
230  * @da: device address of the resource
231  * @pa: physical address of the resource
232  * @len: size, in bytes, of the resource
233  * @flags: properties of the resource, e.g. iommu protection required
234  * @reserved: must be 0 atm
235  * @name: name of resource
236  */
237 struct fw_resource {
238         u32 type;
239         u32 id;
240         u64 da;
241         u64 pa;
242         u32 len;
243         u32 flags;
244         u8 reserved[16];
245         u8 name[48];
246 } __packed;
247
248 Some resources entries are mere announcements, where the host is informed
249 of specific remoteproc configuration. Other entries require the host to
250 do something (e.g. reserve a requested resource) and possibly also reply
251 by overwriting a member inside 'struct fw_resource' with info about the
252 allocated resource.
253
254 Different resource entries use different members of this struct,
255 with different meanings. This is pretty limiting and error-prone,
256 so the plan is to move to variable-length TLV-based resource entries,
257 where each resource will begin with a type and length fields, followed by
258 its own specific structure.
259
260 Here are the resource types that are currently being used:
261
262 /**
263  * enum fw_resource_type - types of resource entries
264  *
265  * @RSC_CARVEOUT:   request for allocation of a physically contiguous
266  *                  memory region.
267  * @RSC_DEVMEM:     request to iommu_map a memory-based peripheral.
268  * @RSC_TRACE:      announces the availability of a trace buffer into which
269  *                  the remote processor will be writing logs. In this case,
270  *                  'da' indicates the device address where logs are written to,
271  *                  and 'len' is the size of the trace buffer.
272  * @RSC_VRING:      request for allocation of a virtio vring (address should
273  *                  be indicated in 'da', and 'len' should contain the number
274  *                  of buffers supported by the vring).
275  * @RSC_VIRTIO_DEV: announces support for a virtio device, and serves as
276  *                  the virtio header. 'da' contains the virtio device
277  *                  features, 'pa' holds the virtio guest features (host
278  *                  will write them here after they're negotiated), 'len'
279  *                  holds the virtio status, and 'flags' holds the virtio
280  *                  device id (currently only VIRTIO_ID_RPMSG is supported).
281  */
282 enum fw_resource_type {
283         RSC_CARVEOUT    = 0,
284         RSC_DEVMEM      = 1,
285         RSC_TRACE       = 2,
286         RSC_VRING       = 3,
287         RSC_VIRTIO_DEV  = 4,
288         RSC_VIRTIO_CFG  = 5,
289 };
290
291 Most of the resource entries share the basic idea of address/length
292 negotiation with the host: the firmware usually asks for memory
293 of size 'len' bytes, and the host needs to allocate it and provide
294 the device/physical address (when relevant) in 'da'/'pa' respectively.
295
296 If the firmware is compiled with hard coded device addresses, and
297 can't handle dynamically allocated 'da' values, then the 'da' field
298 will contain the expected device addresses (today we actually only support
299 this scheme, as there aren't yet any use cases for dynamically allocated
300 device addresses).
301
302 We also expect that platform-specific resource entries will show up
303 at some point. When that happens, we could easily add a new RSC_PLAFORM
304 type, and hand those resources to the platform-specific rproc driver to handle.
305
306 7. Virtio and remoteproc
307
308 The firmware should provide remoteproc information about virtio devices
309 that it supports, and their configurations: a RSC_VIRTIO_DEV resource entry
310 should specify the virtio device id, and subsequent RSC_VRING resource entries
311 should indicate the vring size (i.e. how many buffers do they support) and
312 where should they be mapped (i.e. which device address). Note: the alignment
313 between the consumer and producer parts of the vring is assumed to be 4096.
314
315 At this point we only support a single virtio rpmsg device per remote
316 processor, but the plan is to remove this limitation. In addition, once we
317 move to TLV-based resource table, the plan is to have a single RSC_VIRTIO
318 entry per supported virtio device, which will include the virtio header,
319 the vrings information and the virtio config space.
320
321 Of course, RSC_VIRTIO resource entries are only good enough for static
322 allocation of virtio devices. Dynamic allocations will also be made possible
323 using the rpmsg bus (similar to how we already do dynamic allocations of
324 rpmsg channels; read more about it in rpmsg.txt).