]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/alpha/oprofile/op_model_ev5.c
Merge remote-tracking branch 'scsi/for-next'
[karo-tx-linux.git] / arch / alpha / oprofile / op_model_ev5.c
1 /**
2  * @file arch/alpha/oprofile/op_model_ev5.c
3  *
4  * @remark Copyright 2002 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author Richard Henderson <rth@twiddle.net>
8  */
9
10 #include <linux/oprofile.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
13 #include <asm/ptrace.h>
14
15 #include "op_impl.h"
16
17
18 /* Compute all of the registers in preparation for enabling profiling.
19
20    The 21164 (EV5) and 21164PC (PCA65) vary in the bit placement and
21    meaning of the "CBOX" events.  Given that we don't care about meaning
22    at this point, arrange for the difference in bit placement to be
23    handled by common code.  */
24
25 static void
26 common_reg_setup(struct op_register_config *reg,
27                  struct op_counter_config *ctr,
28                  struct op_system_config *sys,
29                  int cbox1_ofs, int cbox2_ofs)
30 {
31         int i, ctl, reset, need_reset;
32
33         /* Select desired events.  The event numbers are selected such
34            that they map directly into the event selection fields:
35
36                 PCSEL0: 0, 1
37                 PCSEL1: 24-39
38                  CBOX1: 40-47
39                 PCSEL2: 48-63
40                  CBOX2: 64-71
41
42            There are two special cases, in that CYCLES can be measured
43            on PCSEL[02], and SCACHE_WRITE can be measured on CBOX[12].
44            These event numbers are canonicalizes to their first appearance.  */
45
46         ctl = 0;
47         for (i = 0; i < 3; ++i) {
48                 unsigned long event = ctr[i].event;
49                 if (!ctr[i].enabled)
50                         continue;
51
52                 /* Remap the duplicate events, as described above.  */
53                 if (i == 2) {
54                         if (event == 0)
55                                 event = 12+48;
56                         else if (event == 2+41)
57                                 event = 4+65;
58                 }
59
60                 /* Convert the event numbers onto mux_select bit mask.  */
61                 if (event < 2)
62                         ctl |= event << 31;
63                 else if (event < 24)
64                         /* error */;
65                 else if (event < 40)
66                         ctl |= (event - 24) << 4;
67                 else if (event < 48)
68                         ctl |= (event - 40) << cbox1_ofs | 15 << 4;
69                 else if (event < 64)
70                         ctl |= event - 48;
71                 else if (event < 72)
72                         ctl |= (event - 64) << cbox2_ofs | 15;
73         }
74         reg->mux_select = ctl;
75
76         /* Select processor mode.  */
77         /* ??? Need to come up with some mechanism to trace only selected
78            processes.  For now select from pal, kernel and user mode.  */
79         ctl = 0;
80         ctl |= !sys->enable_pal << 9;
81         ctl |= !sys->enable_kernel << 8;
82         ctl |= !sys->enable_user << 30;
83         reg->proc_mode = ctl;
84
85         /* Select interrupt frequencies.  Take the interrupt count selected
86            by the user, and map it onto one of the possible counter widths.
87            If the user value is in between, compute a value to which the
88            counter is reset at each interrupt.  */
89
90         ctl = reset = need_reset = 0;
91         for (i = 0; i < 3; ++i) {
92                 unsigned long max, hilo, count = ctr[i].count;
93                 if (!ctr[i].enabled)
94                         continue;
95
96                 if (count <= 256)
97                         count = 256, hilo = 3, max = 256;
98                 else {
99                         max = (i == 2 ? 16384 : 65536);
100                         hilo = 2;
101                         if (count > max)
102                                 count = max;
103                 }
104                 ctr[i].count = count;
105
106                 ctl |= hilo << (8 - i*2);
107                 reset |= (max - count) << (48 - 16*i);
108                 if (count != max)
109                         need_reset |= 1 << i;
110         }
111         reg->freq = ctl;
112         reg->reset_values = reset;
113         reg->need_reset = need_reset;
114 }
115
116 static void
117 ev5_reg_setup(struct op_register_config *reg,
118               struct op_counter_config *ctr,
119               struct op_system_config *sys)
120 {
121         common_reg_setup(reg, ctr, sys, 19, 22);
122 }
123
124 static void
125 pca56_reg_setup(struct op_register_config *reg,
126                 struct op_counter_config *ctr,
127                 struct op_system_config *sys)
128 {
129         common_reg_setup(reg, ctr, sys, 8, 11);
130 }
131
132 /* Program all of the registers in preparation for enabling profiling.  */
133
134 static void
135 ev5_cpu_setup (void *x)
136 {
137         struct op_register_config *reg = x;
138
139         wrperfmon(2, reg->mux_select);
140         wrperfmon(3, reg->proc_mode);
141         wrperfmon(4, reg->freq);
142         wrperfmon(6, reg->reset_values);
143 }
144
145 /* CTR is a counter for which the user has requested an interrupt count
146    in between one of the widths selectable in hardware.  Reset the count
147    for CTR to the value stored in REG->RESET_VALUES.
148
149    For EV5, this means disabling profiling, reading the current values,
150    masking in the value for the desired register, writing, then turning
151    profiling back on.
152
153    This can be streamlined if profiling is only enabled for user mode.
154    In that case we know that the counters are not currently incrementing
155    (due to being in kernel mode).  */
156
157 static void
158 ev5_reset_ctr(struct op_register_config *reg, unsigned long ctr)
159 {
160         unsigned long values, mask, not_pk, reset_values;
161
162         mask = (ctr == 0 ? 0xfffful << 48
163                 : ctr == 1 ? 0xfffful << 32
164                 : 0x3fff << 16);
165
166         not_pk = 1 << 9 | 1 << 8;
167
168         reset_values = reg->reset_values;
169
170         if ((reg->proc_mode & not_pk) == not_pk) {
171                 values = wrperfmon(5, 0);
172                 values = (reset_values & mask) | (values & ~mask & -2);
173                 wrperfmon(6, values);
174         } else {
175                 wrperfmon(0, -1);
176                 values = wrperfmon(5, 0);
177                 values = (reset_values & mask) | (values & ~mask & -2);
178                 wrperfmon(6, values);
179                 wrperfmon(1, reg->enable);
180         }
181 }
182
183 static void
184 ev5_handle_interrupt(unsigned long which, struct pt_regs *regs,
185                      struct op_counter_config *ctr)
186 {
187         /* Record the sample.  */
188         oprofile_add_sample(regs, which);
189 }
190
191
192 struct op_axp_model op_model_ev5 = {
193         .reg_setup              = ev5_reg_setup,
194         .cpu_setup              = ev5_cpu_setup,
195         .reset_ctr              = ev5_reset_ctr,
196         .handle_interrupt       = ev5_handle_interrupt,
197         .cpu_type               = "alpha/ev5",
198         .num_counters           = 3,
199         .can_set_proc_mode      = 1,
200 };
201
202 struct op_axp_model op_model_pca56 = {
203         .reg_setup              = pca56_reg_setup,
204         .cpu_setup              = ev5_cpu_setup,
205         .reset_ctr              = ev5_reset_ctr,
206         .handle_interrupt       = ev5_handle_interrupt,
207         .cpu_type               = "alpha/pca56",
208         .num_counters           = 3,
209         .can_set_proc_mode      = 1,
210 };