]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/kvm/x86.c
thermal: add the note for set_trip_temp
[karo-tx-linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
165         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
166         { "hypercalls", VCPU_STAT(hypercalls) },
167         { "request_irq", VCPU_STAT(request_irq_exits) },
168         { "irq_exits", VCPU_STAT(irq_exits) },
169         { "host_state_reload", VCPU_STAT(host_state_reload) },
170         { "efer_reload", VCPU_STAT(efer_reload) },
171         { "fpu_reload", VCPU_STAT(fpu_reload) },
172         { "insn_emulation", VCPU_STAT(insn_emulation) },
173         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
174         { "irq_injections", VCPU_STAT(irq_injections) },
175         { "nmi_injections", VCPU_STAT(nmi_injections) },
176         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
177         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
178         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
179         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
180         { "mmu_flooded", VM_STAT(mmu_flooded) },
181         { "mmu_recycled", VM_STAT(mmu_recycled) },
182         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
183         { "mmu_unsync", VM_STAT(mmu_unsync) },
184         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
185         { "largepages", VM_STAT(lpages) },
186         { NULL }
187 };
188
189 u64 __read_mostly host_xcr0;
190
191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
192
193 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
194 {
195         int i;
196         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
197                 vcpu->arch.apf.gfns[i] = ~0;
198 }
199
200 static void kvm_on_user_return(struct user_return_notifier *urn)
201 {
202         unsigned slot;
203         struct kvm_shared_msrs *locals
204                 = container_of(urn, struct kvm_shared_msrs, urn);
205         struct kvm_shared_msr_values *values;
206
207         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
208                 values = &locals->values[slot];
209                 if (values->host != values->curr) {
210                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
211                         values->curr = values->host;
212                 }
213         }
214         locals->registered = false;
215         user_return_notifier_unregister(urn);
216 }
217
218 static void shared_msr_update(unsigned slot, u32 msr)
219 {
220         u64 value;
221         unsigned int cpu = smp_processor_id();
222         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
223
224         /* only read, and nobody should modify it at this time,
225          * so don't need lock */
226         if (slot >= shared_msrs_global.nr) {
227                 printk(KERN_ERR "kvm: invalid MSR slot!");
228                 return;
229         }
230         rdmsrl_safe(msr, &value);
231         smsr->values[slot].host = value;
232         smsr->values[slot].curr = value;
233 }
234
235 void kvm_define_shared_msr(unsigned slot, u32 msr)
236 {
237         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
238         shared_msrs_global.msrs[slot] = msr;
239         if (slot >= shared_msrs_global.nr)
240                 shared_msrs_global.nr = slot + 1;
241 }
242 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
243
244 static void kvm_shared_msr_cpu_online(void)
245 {
246         unsigned i;
247
248         for (i = 0; i < shared_msrs_global.nr; ++i)
249                 shared_msr_update(i, shared_msrs_global.msrs[i]);
250 }
251
252 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
253 {
254         unsigned int cpu = smp_processor_id();
255         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256         int err;
257
258         if (((value ^ smsr->values[slot].curr) & mask) == 0)
259                 return 0;
260         smsr->values[slot].curr = value;
261         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
262         if (err)
263                 return 1;
264
265         if (!smsr->registered) {
266                 smsr->urn.on_user_return = kvm_on_user_return;
267                 user_return_notifier_register(&smsr->urn);
268                 smsr->registered = true;
269         }
270         return 0;
271 }
272 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
273
274 static void drop_user_return_notifiers(void)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278
279         if (smsr->registered)
280                 kvm_on_user_return(&smsr->urn);
281 }
282
283 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
284 {
285         return vcpu->arch.apic_base;
286 }
287 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
288
289 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
290 {
291         u64 old_state = vcpu->arch.apic_base &
292                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
293         u64 new_state = msr_info->data &
294                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
295         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
296                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
297
298         if (!msr_info->host_initiated &&
299             ((msr_info->data & reserved_bits) != 0 ||
300              new_state == X2APIC_ENABLE ||
301              (new_state == MSR_IA32_APICBASE_ENABLE &&
302               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
303              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
304               old_state == 0)))
305                 return 1;
306
307         kvm_lapic_set_base(vcpu, msr_info->data);
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
311
312 asmlinkage __visible void kvm_spurious_fault(void)
313 {
314         /* Fault while not rebooting.  We want the trace. */
315         BUG();
316 }
317 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
318
319 #define EXCPT_BENIGN            0
320 #define EXCPT_CONTRIBUTORY      1
321 #define EXCPT_PF                2
322
323 static int exception_class(int vector)
324 {
325         switch (vector) {
326         case PF_VECTOR:
327                 return EXCPT_PF;
328         case DE_VECTOR:
329         case TS_VECTOR:
330         case NP_VECTOR:
331         case SS_VECTOR:
332         case GP_VECTOR:
333                 return EXCPT_CONTRIBUTORY;
334         default:
335                 break;
336         }
337         return EXCPT_BENIGN;
338 }
339
340 #define EXCPT_FAULT             0
341 #define EXCPT_TRAP              1
342 #define EXCPT_ABORT             2
343 #define EXCPT_INTERRUPT         3
344
345 static int exception_type(int vector)
346 {
347         unsigned int mask;
348
349         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
350                 return EXCPT_INTERRUPT;
351
352         mask = 1 << vector;
353
354         /* #DB is trap, as instruction watchpoints are handled elsewhere */
355         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
356                 return EXCPT_TRAP;
357
358         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
359                 return EXCPT_ABORT;
360
361         /* Reserved exceptions will result in fault */
362         return EXCPT_FAULT;
363 }
364
365 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
366                 unsigned nr, bool has_error, u32 error_code,
367                 bool reinject)
368 {
369         u32 prev_nr;
370         int class1, class2;
371
372         kvm_make_request(KVM_REQ_EVENT, vcpu);
373
374         if (!vcpu->arch.exception.pending) {
375         queue:
376                 if (has_error && !is_protmode(vcpu))
377                         has_error = false;
378                 vcpu->arch.exception.pending = true;
379                 vcpu->arch.exception.has_error_code = has_error;
380                 vcpu->arch.exception.nr = nr;
381                 vcpu->arch.exception.error_code = error_code;
382                 vcpu->arch.exception.reinject = reinject;
383                 return;
384         }
385
386         /* to check exception */
387         prev_nr = vcpu->arch.exception.nr;
388         if (prev_nr == DF_VECTOR) {
389                 /* triple fault -> shutdown */
390                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
391                 return;
392         }
393         class1 = exception_class(prev_nr);
394         class2 = exception_class(nr);
395         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
396                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
397                 /* generate double fault per SDM Table 5-5 */
398                 vcpu->arch.exception.pending = true;
399                 vcpu->arch.exception.has_error_code = true;
400                 vcpu->arch.exception.nr = DF_VECTOR;
401                 vcpu->arch.exception.error_code = 0;
402         } else
403                 /* replace previous exception with a new one in a hope
404                    that instruction re-execution will regenerate lost
405                    exception */
406                 goto queue;
407 }
408
409 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
410 {
411         kvm_multiple_exception(vcpu, nr, false, 0, false);
412 }
413 EXPORT_SYMBOL_GPL(kvm_queue_exception);
414
415 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
416 {
417         kvm_multiple_exception(vcpu, nr, false, 0, true);
418 }
419 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
420
421 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
422 {
423         if (err)
424                 kvm_inject_gp(vcpu, 0);
425         else
426                 kvm_x86_ops->skip_emulated_instruction(vcpu);
427 }
428 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
429
430 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
431 {
432         ++vcpu->stat.pf_guest;
433         vcpu->arch.cr2 = fault->address;
434         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
435 }
436 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
437
438 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
439 {
440         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
441                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
442         else
443                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
444
445         return fault->nested_page_fault;
446 }
447
448 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
449 {
450         atomic_inc(&vcpu->arch.nmi_queued);
451         kvm_make_request(KVM_REQ_NMI, vcpu);
452 }
453 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
454
455 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
456 {
457         kvm_multiple_exception(vcpu, nr, true, error_code, false);
458 }
459 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
460
461 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
462 {
463         kvm_multiple_exception(vcpu, nr, true, error_code, true);
464 }
465 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
466
467 /*
468  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
469  * a #GP and return false.
470  */
471 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
472 {
473         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
474                 return true;
475         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
476         return false;
477 }
478 EXPORT_SYMBOL_GPL(kvm_require_cpl);
479
480 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
481 {
482         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
483                 return true;
484
485         kvm_queue_exception(vcpu, UD_VECTOR);
486         return false;
487 }
488 EXPORT_SYMBOL_GPL(kvm_require_dr);
489
490 /*
491  * This function will be used to read from the physical memory of the currently
492  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
493  * can read from guest physical or from the guest's guest physical memory.
494  */
495 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
496                             gfn_t ngfn, void *data, int offset, int len,
497                             u32 access)
498 {
499         struct x86_exception exception;
500         gfn_t real_gfn;
501         gpa_t ngpa;
502
503         ngpa     = gfn_to_gpa(ngfn);
504         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
505         if (real_gfn == UNMAPPED_GVA)
506                 return -EFAULT;
507
508         real_gfn = gpa_to_gfn(real_gfn);
509
510         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
511 }
512 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
513
514 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
515                                void *data, int offset, int len, u32 access)
516 {
517         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
518                                        data, offset, len, access);
519 }
520
521 /*
522  * Load the pae pdptrs.  Return true is they are all valid.
523  */
524 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
525 {
526         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
527         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
528         int i;
529         int ret;
530         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
531
532         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
533                                       offset * sizeof(u64), sizeof(pdpte),
534                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
535         if (ret < 0) {
536                 ret = 0;
537                 goto out;
538         }
539         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
540                 if (is_present_gpte(pdpte[i]) &&
541                     (pdpte[i] &
542                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
543                         ret = 0;
544                         goto out;
545                 }
546         }
547         ret = 1;
548
549         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
550         __set_bit(VCPU_EXREG_PDPTR,
551                   (unsigned long *)&vcpu->arch.regs_avail);
552         __set_bit(VCPU_EXREG_PDPTR,
553                   (unsigned long *)&vcpu->arch.regs_dirty);
554 out:
555
556         return ret;
557 }
558 EXPORT_SYMBOL_GPL(load_pdptrs);
559
560 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
561 {
562         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
563         bool changed = true;
564         int offset;
565         gfn_t gfn;
566         int r;
567
568         if (is_long_mode(vcpu) || !is_pae(vcpu))
569                 return false;
570
571         if (!test_bit(VCPU_EXREG_PDPTR,
572                       (unsigned long *)&vcpu->arch.regs_avail))
573                 return true;
574
575         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
576         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
577         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
578                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
579         if (r < 0)
580                 goto out;
581         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
582 out:
583
584         return changed;
585 }
586
587 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
588 {
589         unsigned long old_cr0 = kvm_read_cr0(vcpu);
590         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
591
592         cr0 |= X86_CR0_ET;
593
594 #ifdef CONFIG_X86_64
595         if (cr0 & 0xffffffff00000000UL)
596                 return 1;
597 #endif
598
599         cr0 &= ~CR0_RESERVED_BITS;
600
601         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
602                 return 1;
603
604         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
605                 return 1;
606
607         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
608 #ifdef CONFIG_X86_64
609                 if ((vcpu->arch.efer & EFER_LME)) {
610                         int cs_db, cs_l;
611
612                         if (!is_pae(vcpu))
613                                 return 1;
614                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
615                         if (cs_l)
616                                 return 1;
617                 } else
618 #endif
619                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
620                                                  kvm_read_cr3(vcpu)))
621                         return 1;
622         }
623
624         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
625                 return 1;
626
627         kvm_x86_ops->set_cr0(vcpu, cr0);
628
629         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
630                 kvm_clear_async_pf_completion_queue(vcpu);
631                 kvm_async_pf_hash_reset(vcpu);
632         }
633
634         if ((cr0 ^ old_cr0) & update_bits)
635                 kvm_mmu_reset_context(vcpu);
636
637         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
638             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
639             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
640                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
641
642         return 0;
643 }
644 EXPORT_SYMBOL_GPL(kvm_set_cr0);
645
646 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
647 {
648         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
649 }
650 EXPORT_SYMBOL_GPL(kvm_lmsw);
651
652 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
653 {
654         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
655                         !vcpu->guest_xcr0_loaded) {
656                 /* kvm_set_xcr() also depends on this */
657                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
658                 vcpu->guest_xcr0_loaded = 1;
659         }
660 }
661
662 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
663 {
664         if (vcpu->guest_xcr0_loaded) {
665                 if (vcpu->arch.xcr0 != host_xcr0)
666                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
667                 vcpu->guest_xcr0_loaded = 0;
668         }
669 }
670
671 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
672 {
673         u64 xcr0 = xcr;
674         u64 old_xcr0 = vcpu->arch.xcr0;
675         u64 valid_bits;
676
677         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
678         if (index != XCR_XFEATURE_ENABLED_MASK)
679                 return 1;
680         if (!(xcr0 & XFEATURE_MASK_FP))
681                 return 1;
682         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
683                 return 1;
684
685         /*
686          * Do not allow the guest to set bits that we do not support
687          * saving.  However, xcr0 bit 0 is always set, even if the
688          * emulated CPU does not support XSAVE (see fx_init).
689          */
690         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
691         if (xcr0 & ~valid_bits)
692                 return 1;
693
694         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
695             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
696                 return 1;
697
698         if (xcr0 & XFEATURE_MASK_AVX512) {
699                 if (!(xcr0 & XFEATURE_MASK_YMM))
700                         return 1;
701                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
702                         return 1;
703         }
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
744                 return 1;
745
746         if (is_long_mode(vcpu)) {
747                 if (!(cr4 & X86_CR4_PAE))
748                         return 1;
749         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
750                    && ((cr4 ^ old_cr4) & pdptr_bits)
751                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
752                                    kvm_read_cr3(vcpu)))
753                 return 1;
754
755         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
756                 if (!guest_cpuid_has_pcid(vcpu))
757                         return 1;
758
759                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
760                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
761                         return 1;
762         }
763
764         if (kvm_x86_ops->set_cr4(vcpu, cr4))
765                 return 1;
766
767         if (((cr4 ^ old_cr4) & pdptr_bits) ||
768             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
769                 kvm_mmu_reset_context(vcpu);
770
771         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
772                 kvm_update_cpuid(vcpu);
773
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(kvm_set_cr4);
777
778 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
779 {
780 #ifdef CONFIG_X86_64
781         cr3 &= ~CR3_PCID_INVD;
782 #endif
783
784         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
785                 kvm_mmu_sync_roots(vcpu);
786                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
787                 return 0;
788         }
789
790         if (is_long_mode(vcpu)) {
791                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
792                         return 1;
793         } else if (is_pae(vcpu) && is_paging(vcpu) &&
794                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
795                 return 1;
796
797         vcpu->arch.cr3 = cr3;
798         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
799         kvm_mmu_new_cr3(vcpu);
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr3);
803
804 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
805 {
806         if (cr8 & CR8_RESERVED_BITS)
807                 return 1;
808         if (lapic_in_kernel(vcpu))
809                 kvm_lapic_set_tpr(vcpu, cr8);
810         else
811                 vcpu->arch.cr8 = cr8;
812         return 0;
813 }
814 EXPORT_SYMBOL_GPL(kvm_set_cr8);
815
816 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
817 {
818         if (lapic_in_kernel(vcpu))
819                 return kvm_lapic_get_cr8(vcpu);
820         else
821                 return vcpu->arch.cr8;
822 }
823 EXPORT_SYMBOL_GPL(kvm_get_cr8);
824
825 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
826 {
827         int i;
828
829         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
830                 for (i = 0; i < KVM_NR_DB_REGS; i++)
831                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
833         }
834 }
835
836 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
837 {
838         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
839                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
840 }
841
842 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
843 {
844         unsigned long dr7;
845
846         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
847                 dr7 = vcpu->arch.guest_debug_dr7;
848         else
849                 dr7 = vcpu->arch.dr7;
850         kvm_x86_ops->set_dr7(vcpu, dr7);
851         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
852         if (dr7 & DR7_BP_EN_MASK)
853                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
854 }
855
856 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
857 {
858         u64 fixed = DR6_FIXED_1;
859
860         if (!guest_cpuid_has_rtm(vcpu))
861                 fixed |= DR6_RTM;
862         return fixed;
863 }
864
865 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
866 {
867         switch (dr) {
868         case 0 ... 3:
869                 vcpu->arch.db[dr] = val;
870                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
871                         vcpu->arch.eff_db[dr] = val;
872                 break;
873         case 4:
874                 /* fall through */
875         case 6:
876                 if (val & 0xffffffff00000000ULL)
877                         return -1; /* #GP */
878                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
879                 kvm_update_dr6(vcpu);
880                 break;
881         case 5:
882                 /* fall through */
883         default: /* 7 */
884                 if (val & 0xffffffff00000000ULL)
885                         return -1; /* #GP */
886                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
887                 kvm_update_dr7(vcpu);
888                 break;
889         }
890
891         return 0;
892 }
893
894 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
895 {
896         if (__kvm_set_dr(vcpu, dr, val)) {
897                 kvm_inject_gp(vcpu, 0);
898                 return 1;
899         }
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_dr);
903
904 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
905 {
906         switch (dr) {
907         case 0 ... 3:
908                 *val = vcpu->arch.db[dr];
909                 break;
910         case 4:
911                 /* fall through */
912         case 6:
913                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
914                         *val = vcpu->arch.dr6;
915                 else
916                         *val = kvm_x86_ops->get_dr6(vcpu);
917                 break;
918         case 5:
919                 /* fall through */
920         default: /* 7 */
921                 *val = vcpu->arch.dr7;
922                 break;
923         }
924         return 0;
925 }
926 EXPORT_SYMBOL_GPL(kvm_get_dr);
927
928 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
929 {
930         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
931         u64 data;
932         int err;
933
934         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
935         if (err)
936                 return err;
937         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
938         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
939         return err;
940 }
941 EXPORT_SYMBOL_GPL(kvm_rdpmc);
942
943 /*
944  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
945  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946  *
947  * This list is modified at module load time to reflect the
948  * capabilities of the host cpu. This capabilities test skips MSRs that are
949  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
950  * may depend on host virtualization features rather than host cpu features.
951  */
952
953 static u32 msrs_to_save[] = {
954         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
955         MSR_STAR,
956 #ifdef CONFIG_X86_64
957         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
958 #endif
959         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
960         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
961 };
962
963 static unsigned num_msrs_to_save;
964
965 static u32 emulated_msrs[] = {
966         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
967         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
968         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
969         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
970         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
971         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
972         HV_X64_MSR_RESET,
973         HV_X64_MSR_VP_INDEX,
974         HV_X64_MSR_VP_RUNTIME,
975         HV_X64_MSR_SCONTROL,
976         HV_X64_MSR_STIMER0_CONFIG,
977         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
978         MSR_KVM_PV_EOI_EN,
979
980         MSR_IA32_TSC_ADJUST,
981         MSR_IA32_TSCDEADLINE,
982         MSR_IA32_MISC_ENABLE,
983         MSR_IA32_MCG_STATUS,
984         MSR_IA32_MCG_CTL,
985         MSR_IA32_SMBASE,
986 };
987
988 static unsigned num_emulated_msrs;
989
990 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
991 {
992         if (efer & efer_reserved_bits)
993                 return false;
994
995         if (efer & EFER_FFXSR) {
996                 struct kvm_cpuid_entry2 *feat;
997
998                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
999                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1000                         return false;
1001         }
1002
1003         if (efer & EFER_SVME) {
1004                 struct kvm_cpuid_entry2 *feat;
1005
1006                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1008                         return false;
1009         }
1010
1011         return true;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1014
1015 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1016 {
1017         u64 old_efer = vcpu->arch.efer;
1018
1019         if (!kvm_valid_efer(vcpu, efer))
1020                 return 1;
1021
1022         if (is_paging(vcpu)
1023             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1024                 return 1;
1025
1026         efer &= ~EFER_LMA;
1027         efer |= vcpu->arch.efer & EFER_LMA;
1028
1029         kvm_x86_ops->set_efer(vcpu, efer);
1030
1031         /* Update reserved bits */
1032         if ((efer ^ old_efer) & EFER_NX)
1033                 kvm_mmu_reset_context(vcpu);
1034
1035         return 0;
1036 }
1037
1038 void kvm_enable_efer_bits(u64 mask)
1039 {
1040        efer_reserved_bits &= ~mask;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1043
1044 /*
1045  * Writes msr value into into the appropriate "register".
1046  * Returns 0 on success, non-0 otherwise.
1047  * Assumes vcpu_load() was already called.
1048  */
1049 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1050 {
1051         switch (msr->index) {
1052         case MSR_FS_BASE:
1053         case MSR_GS_BASE:
1054         case MSR_KERNEL_GS_BASE:
1055         case MSR_CSTAR:
1056         case MSR_LSTAR:
1057                 if (is_noncanonical_address(msr->data))
1058                         return 1;
1059                 break;
1060         case MSR_IA32_SYSENTER_EIP:
1061         case MSR_IA32_SYSENTER_ESP:
1062                 /*
1063                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1064                  * non-canonical address is written on Intel but not on
1065                  * AMD (which ignores the top 32-bits, because it does
1066                  * not implement 64-bit SYSENTER).
1067                  *
1068                  * 64-bit code should hence be able to write a non-canonical
1069                  * value on AMD.  Making the address canonical ensures that
1070                  * vmentry does not fail on Intel after writing a non-canonical
1071                  * value, and that something deterministic happens if the guest
1072                  * invokes 64-bit SYSENTER.
1073                  */
1074                 msr->data = get_canonical(msr->data);
1075         }
1076         return kvm_x86_ops->set_msr(vcpu, msr);
1077 }
1078 EXPORT_SYMBOL_GPL(kvm_set_msr);
1079
1080 /*
1081  * Adapt set_msr() to msr_io()'s calling convention
1082  */
1083 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1084 {
1085         struct msr_data msr;
1086         int r;
1087
1088         msr.index = index;
1089         msr.host_initiated = true;
1090         r = kvm_get_msr(vcpu, &msr);
1091         if (r)
1092                 return r;
1093
1094         *data = msr.data;
1095         return 0;
1096 }
1097
1098 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1099 {
1100         struct msr_data msr;
1101
1102         msr.data = *data;
1103         msr.index = index;
1104         msr.host_initiated = true;
1105         return kvm_set_msr(vcpu, &msr);
1106 }
1107
1108 #ifdef CONFIG_X86_64
1109 struct pvclock_gtod_data {
1110         seqcount_t      seq;
1111
1112         struct { /* extract of a clocksource struct */
1113                 int vclock_mode;
1114                 cycle_t cycle_last;
1115                 cycle_t mask;
1116                 u32     mult;
1117                 u32     shift;
1118         } clock;
1119
1120         u64             boot_ns;
1121         u64             nsec_base;
1122 };
1123
1124 static struct pvclock_gtod_data pvclock_gtod_data;
1125
1126 static void update_pvclock_gtod(struct timekeeper *tk)
1127 {
1128         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1129         u64 boot_ns;
1130
1131         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1132
1133         write_seqcount_begin(&vdata->seq);
1134
1135         /* copy pvclock gtod data */
1136         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1137         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1138         vdata->clock.mask               = tk->tkr_mono.mask;
1139         vdata->clock.mult               = tk->tkr_mono.mult;
1140         vdata->clock.shift              = tk->tkr_mono.shift;
1141
1142         vdata->boot_ns                  = boot_ns;
1143         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1144
1145         write_seqcount_end(&vdata->seq);
1146 }
1147 #endif
1148
1149 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1150 {
1151         /*
1152          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1153          * vcpu_enter_guest.  This function is only called from
1154          * the physical CPU that is running vcpu.
1155          */
1156         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1157 }
1158
1159 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1160 {
1161         int version;
1162         int r;
1163         struct pvclock_wall_clock wc;
1164         struct timespec boot;
1165
1166         if (!wall_clock)
1167                 return;
1168
1169         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1170         if (r)
1171                 return;
1172
1173         if (version & 1)
1174                 ++version;  /* first time write, random junk */
1175
1176         ++version;
1177
1178         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1179                 return;
1180
1181         /*
1182          * The guest calculates current wall clock time by adding
1183          * system time (updated by kvm_guest_time_update below) to the
1184          * wall clock specified here.  guest system time equals host
1185          * system time for us, thus we must fill in host boot time here.
1186          */
1187         getboottime(&boot);
1188
1189         if (kvm->arch.kvmclock_offset) {
1190                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1191                 boot = timespec_sub(boot, ts);
1192         }
1193         wc.sec = boot.tv_sec;
1194         wc.nsec = boot.tv_nsec;
1195         wc.version = version;
1196
1197         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1198
1199         version++;
1200         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1201 }
1202
1203 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1204 {
1205         do_shl32_div32(dividend, divisor);
1206         return dividend;
1207 }
1208
1209 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1210                                s8 *pshift, u32 *pmultiplier)
1211 {
1212         uint64_t scaled64;
1213         int32_t  shift = 0;
1214         uint64_t tps64;
1215         uint32_t tps32;
1216
1217         tps64 = base_hz;
1218         scaled64 = scaled_hz;
1219         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1220                 tps64 >>= 1;
1221                 shift--;
1222         }
1223
1224         tps32 = (uint32_t)tps64;
1225         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1226                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1227                         scaled64 >>= 1;
1228                 else
1229                         tps32 <<= 1;
1230                 shift++;
1231         }
1232
1233         *pshift = shift;
1234         *pmultiplier = div_frac(scaled64, tps32);
1235
1236         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1237                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1242 #endif
1243
1244 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1245 static unsigned long max_tsc_khz;
1246
1247 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1248 {
1249         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1250                                    vcpu->arch.virtual_tsc_shift);
1251 }
1252
1253 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1254 {
1255         u64 v = (u64)khz * (1000000 + ppm);
1256         do_div(v, 1000000);
1257         return v;
1258 }
1259
1260 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1261 {
1262         u64 ratio;
1263
1264         /* Guest TSC same frequency as host TSC? */
1265         if (!scale) {
1266                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1267                 return 0;
1268         }
1269
1270         /* TSC scaling supported? */
1271         if (!kvm_has_tsc_control) {
1272                 if (user_tsc_khz > tsc_khz) {
1273                         vcpu->arch.tsc_catchup = 1;
1274                         vcpu->arch.tsc_always_catchup = 1;
1275                         return 0;
1276                 } else {
1277                         WARN(1, "user requested TSC rate below hardware speed\n");
1278                         return -1;
1279                 }
1280         }
1281
1282         /* TSC scaling required  - calculate ratio */
1283         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1284                                 user_tsc_khz, tsc_khz);
1285
1286         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1287                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1288                           user_tsc_khz);
1289                 return -1;
1290         }
1291
1292         vcpu->arch.tsc_scaling_ratio = ratio;
1293         return 0;
1294 }
1295
1296 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1297 {
1298         u32 thresh_lo, thresh_hi;
1299         int use_scaling = 0;
1300
1301         /* tsc_khz can be zero if TSC calibration fails */
1302         if (user_tsc_khz == 0) {
1303                 /* set tsc_scaling_ratio to a safe value */
1304                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1305                 return -1;
1306         }
1307
1308         /* Compute a scale to convert nanoseconds in TSC cycles */
1309         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1310                            &vcpu->arch.virtual_tsc_shift,
1311                            &vcpu->arch.virtual_tsc_mult);
1312         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1313
1314         /*
1315          * Compute the variation in TSC rate which is acceptable
1316          * within the range of tolerance and decide if the
1317          * rate being applied is within that bounds of the hardware
1318          * rate.  If so, no scaling or compensation need be done.
1319          */
1320         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1321         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1322         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1323                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1324                 use_scaling = 1;
1325         }
1326         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1327 }
1328
1329 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1330 {
1331         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1332                                       vcpu->arch.virtual_tsc_mult,
1333                                       vcpu->arch.virtual_tsc_shift);
1334         tsc += vcpu->arch.this_tsc_write;
1335         return tsc;
1336 }
1337
1338 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1339 {
1340 #ifdef CONFIG_X86_64
1341         bool vcpus_matched;
1342         struct kvm_arch *ka = &vcpu->kvm->arch;
1343         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1344
1345         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1346                          atomic_read(&vcpu->kvm->online_vcpus));
1347
1348         /*
1349          * Once the masterclock is enabled, always perform request in
1350          * order to update it.
1351          *
1352          * In order to enable masterclock, the host clocksource must be TSC
1353          * and the vcpus need to have matched TSCs.  When that happens,
1354          * perform request to enable masterclock.
1355          */
1356         if (ka->use_master_clock ||
1357             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1358                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1359
1360         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1361                             atomic_read(&vcpu->kvm->online_vcpus),
1362                             ka->use_master_clock, gtod->clock.vclock_mode);
1363 #endif
1364 }
1365
1366 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1367 {
1368         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1369         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1370 }
1371
1372 /*
1373  * Multiply tsc by a fixed point number represented by ratio.
1374  *
1375  * The most significant 64-N bits (mult) of ratio represent the
1376  * integral part of the fixed point number; the remaining N bits
1377  * (frac) represent the fractional part, ie. ratio represents a fixed
1378  * point number (mult + frac * 2^(-N)).
1379  *
1380  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381  */
1382 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1383 {
1384         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1385 }
1386
1387 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1388 {
1389         u64 _tsc = tsc;
1390         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1391
1392         if (ratio != kvm_default_tsc_scaling_ratio)
1393                 _tsc = __scale_tsc(ratio, tsc);
1394
1395         return _tsc;
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1398
1399 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1400 {
1401         u64 tsc;
1402
1403         tsc = kvm_scale_tsc(vcpu, rdtsc());
1404
1405         return target_tsc - tsc;
1406 }
1407
1408 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1409 {
1410         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1413
1414 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1415 {
1416         struct kvm *kvm = vcpu->kvm;
1417         u64 offset, ns, elapsed;
1418         unsigned long flags;
1419         s64 usdiff;
1420         bool matched;
1421         bool already_matched;
1422         u64 data = msr->data;
1423
1424         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1425         offset = kvm_compute_tsc_offset(vcpu, data);
1426         ns = get_kernel_ns();
1427         elapsed = ns - kvm->arch.last_tsc_nsec;
1428
1429         if (vcpu->arch.virtual_tsc_khz) {
1430                 int faulted = 0;
1431
1432                 /* n.b - signed multiplication and division required */
1433                 usdiff = data - kvm->arch.last_tsc_write;
1434 #ifdef CONFIG_X86_64
1435                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1436 #else
1437                 /* do_div() only does unsigned */
1438                 asm("1: idivl %[divisor]\n"
1439                     "2: xor %%edx, %%edx\n"
1440                     "   movl $0, %[faulted]\n"
1441                     "3:\n"
1442                     ".section .fixup,\"ax\"\n"
1443                     "4: movl $1, %[faulted]\n"
1444                     "   jmp  3b\n"
1445                     ".previous\n"
1446
1447                 _ASM_EXTABLE(1b, 4b)
1448
1449                 : "=A"(usdiff), [faulted] "=r" (faulted)
1450                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1451
1452 #endif
1453                 do_div(elapsed, 1000);
1454                 usdiff -= elapsed;
1455                 if (usdiff < 0)
1456                         usdiff = -usdiff;
1457
1458                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1459                 if (faulted)
1460                         usdiff = USEC_PER_SEC;
1461         } else
1462                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1463
1464         /*
1465          * Special case: TSC write with a small delta (1 second) of virtual
1466          * cycle time against real time is interpreted as an attempt to
1467          * synchronize the CPU.
1468          *
1469          * For a reliable TSC, we can match TSC offsets, and for an unstable
1470          * TSC, we add elapsed time in this computation.  We could let the
1471          * compensation code attempt to catch up if we fall behind, but
1472          * it's better to try to match offsets from the beginning.
1473          */
1474         if (usdiff < USEC_PER_SEC &&
1475             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1476                 if (!check_tsc_unstable()) {
1477                         offset = kvm->arch.cur_tsc_offset;
1478                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1479                 } else {
1480                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1481                         data += delta;
1482                         offset = kvm_compute_tsc_offset(vcpu, data);
1483                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1484                 }
1485                 matched = true;
1486                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1487         } else {
1488                 /*
1489                  * We split periods of matched TSC writes into generations.
1490                  * For each generation, we track the original measured
1491                  * nanosecond time, offset, and write, so if TSCs are in
1492                  * sync, we can match exact offset, and if not, we can match
1493                  * exact software computation in compute_guest_tsc()
1494                  *
1495                  * These values are tracked in kvm->arch.cur_xxx variables.
1496                  */
1497                 kvm->arch.cur_tsc_generation++;
1498                 kvm->arch.cur_tsc_nsec = ns;
1499                 kvm->arch.cur_tsc_write = data;
1500                 kvm->arch.cur_tsc_offset = offset;
1501                 matched = false;
1502                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1503                          kvm->arch.cur_tsc_generation, data);
1504         }
1505
1506         /*
1507          * We also track th most recent recorded KHZ, write and time to
1508          * allow the matching interval to be extended at each write.
1509          */
1510         kvm->arch.last_tsc_nsec = ns;
1511         kvm->arch.last_tsc_write = data;
1512         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1513
1514         vcpu->arch.last_guest_tsc = data;
1515
1516         /* Keep track of which generation this VCPU has synchronized to */
1517         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1518         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1519         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1520
1521         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1522                 update_ia32_tsc_adjust_msr(vcpu, offset);
1523         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1524         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1525
1526         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1527         if (!matched) {
1528                 kvm->arch.nr_vcpus_matched_tsc = 0;
1529         } else if (!already_matched) {
1530                 kvm->arch.nr_vcpus_matched_tsc++;
1531         }
1532
1533         kvm_track_tsc_matching(vcpu);
1534         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1535 }
1536
1537 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1538
1539 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1540                                            s64 adjustment)
1541 {
1542         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1543 }
1544
1545 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1546 {
1547         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1548                 WARN_ON(adjustment < 0);
1549         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1550         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1551 }
1552
1553 #ifdef CONFIG_X86_64
1554
1555 static cycle_t read_tsc(void)
1556 {
1557         cycle_t ret = (cycle_t)rdtsc_ordered();
1558         u64 last = pvclock_gtod_data.clock.cycle_last;
1559
1560         if (likely(ret >= last))
1561                 return ret;
1562
1563         /*
1564          * GCC likes to generate cmov here, but this branch is extremely
1565          * predictable (it's just a function of time and the likely is
1566          * very likely) and there's a data dependence, so force GCC
1567          * to generate a branch instead.  I don't barrier() because
1568          * we don't actually need a barrier, and if this function
1569          * ever gets inlined it will generate worse code.
1570          */
1571         asm volatile ("");
1572         return last;
1573 }
1574
1575 static inline u64 vgettsc(cycle_t *cycle_now)
1576 {
1577         long v;
1578         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1579
1580         *cycle_now = read_tsc();
1581
1582         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1583         return v * gtod->clock.mult;
1584 }
1585
1586 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1587 {
1588         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1589         unsigned long seq;
1590         int mode;
1591         u64 ns;
1592
1593         do {
1594                 seq = read_seqcount_begin(&gtod->seq);
1595                 mode = gtod->clock.vclock_mode;
1596                 ns = gtod->nsec_base;
1597                 ns += vgettsc(cycle_now);
1598                 ns >>= gtod->clock.shift;
1599                 ns += gtod->boot_ns;
1600         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1601         *t = ns;
1602
1603         return mode;
1604 }
1605
1606 /* returns true if host is using tsc clocksource */
1607 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1608 {
1609         /* checked again under seqlock below */
1610         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1611                 return false;
1612
1613         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1614 }
1615 #endif
1616
1617 /*
1618  *
1619  * Assuming a stable TSC across physical CPUS, and a stable TSC
1620  * across virtual CPUs, the following condition is possible.
1621  * Each numbered line represents an event visible to both
1622  * CPUs at the next numbered event.
1623  *
1624  * "timespecX" represents host monotonic time. "tscX" represents
1625  * RDTSC value.
1626  *
1627  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1628  *
1629  * 1.  read timespec0,tsc0
1630  * 2.                                   | timespec1 = timespec0 + N
1631  *                                      | tsc1 = tsc0 + M
1632  * 3. transition to guest               | transition to guest
1633  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1634  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1635  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636  *
1637  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1638  *
1639  *      - ret0 < ret1
1640  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641  *              ...
1642  *      - 0 < N - M => M < N
1643  *
1644  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1645  * always the case (the difference between two distinct xtime instances
1646  * might be smaller then the difference between corresponding TSC reads,
1647  * when updating guest vcpus pvclock areas).
1648  *
1649  * To avoid that problem, do not allow visibility of distinct
1650  * system_timestamp/tsc_timestamp values simultaneously: use a master
1651  * copy of host monotonic time values. Update that master copy
1652  * in lockstep.
1653  *
1654  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1655  *
1656  */
1657
1658 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1659 {
1660 #ifdef CONFIG_X86_64
1661         struct kvm_arch *ka = &kvm->arch;
1662         int vclock_mode;
1663         bool host_tsc_clocksource, vcpus_matched;
1664
1665         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1666                         atomic_read(&kvm->online_vcpus));
1667
1668         /*
1669          * If the host uses TSC clock, then passthrough TSC as stable
1670          * to the guest.
1671          */
1672         host_tsc_clocksource = kvm_get_time_and_clockread(
1673                                         &ka->master_kernel_ns,
1674                                         &ka->master_cycle_now);
1675
1676         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1677                                 && !backwards_tsc_observed
1678                                 && !ka->boot_vcpu_runs_old_kvmclock;
1679
1680         if (ka->use_master_clock)
1681                 atomic_set(&kvm_guest_has_master_clock, 1);
1682
1683         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1684         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1685                                         vcpus_matched);
1686 #endif
1687 }
1688
1689 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1690 {
1691         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1692 }
1693
1694 static void kvm_gen_update_masterclock(struct kvm *kvm)
1695 {
1696 #ifdef CONFIG_X86_64
1697         int i;
1698         struct kvm_vcpu *vcpu;
1699         struct kvm_arch *ka = &kvm->arch;
1700
1701         spin_lock(&ka->pvclock_gtod_sync_lock);
1702         kvm_make_mclock_inprogress_request(kvm);
1703         /* no guest entries from this point */
1704         pvclock_update_vm_gtod_copy(kvm);
1705
1706         kvm_for_each_vcpu(i, vcpu, kvm)
1707                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1708
1709         /* guest entries allowed */
1710         kvm_for_each_vcpu(i, vcpu, kvm)
1711                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1712
1713         spin_unlock(&ka->pvclock_gtod_sync_lock);
1714 #endif
1715 }
1716
1717 static int kvm_guest_time_update(struct kvm_vcpu *v)
1718 {
1719         unsigned long flags, tgt_tsc_khz;
1720         struct kvm_vcpu_arch *vcpu = &v->arch;
1721         struct kvm_arch *ka = &v->kvm->arch;
1722         s64 kernel_ns;
1723         u64 tsc_timestamp, host_tsc;
1724         struct pvclock_vcpu_time_info guest_hv_clock;
1725         u8 pvclock_flags;
1726         bool use_master_clock;
1727
1728         kernel_ns = 0;
1729         host_tsc = 0;
1730
1731         /*
1732          * If the host uses TSC clock, then passthrough TSC as stable
1733          * to the guest.
1734          */
1735         spin_lock(&ka->pvclock_gtod_sync_lock);
1736         use_master_clock = ka->use_master_clock;
1737         if (use_master_clock) {
1738                 host_tsc = ka->master_cycle_now;
1739                 kernel_ns = ka->master_kernel_ns;
1740         }
1741         spin_unlock(&ka->pvclock_gtod_sync_lock);
1742
1743         /* Keep irq disabled to prevent changes to the clock */
1744         local_irq_save(flags);
1745         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1746         if (unlikely(tgt_tsc_khz == 0)) {
1747                 local_irq_restore(flags);
1748                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1749                 return 1;
1750         }
1751         if (!use_master_clock) {
1752                 host_tsc = rdtsc();
1753                 kernel_ns = get_kernel_ns();
1754         }
1755
1756         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1757
1758         /*
1759          * We may have to catch up the TSC to match elapsed wall clock
1760          * time for two reasons, even if kvmclock is used.
1761          *   1) CPU could have been running below the maximum TSC rate
1762          *   2) Broken TSC compensation resets the base at each VCPU
1763          *      entry to avoid unknown leaps of TSC even when running
1764          *      again on the same CPU.  This may cause apparent elapsed
1765          *      time to disappear, and the guest to stand still or run
1766          *      very slowly.
1767          */
1768         if (vcpu->tsc_catchup) {
1769                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1770                 if (tsc > tsc_timestamp) {
1771                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1772                         tsc_timestamp = tsc;
1773                 }
1774         }
1775
1776         local_irq_restore(flags);
1777
1778         if (!vcpu->pv_time_enabled)
1779                 return 0;
1780
1781         if (kvm_has_tsc_control)
1782                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1783
1784         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1785                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1786                                    &vcpu->hv_clock.tsc_shift,
1787                                    &vcpu->hv_clock.tsc_to_system_mul);
1788                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1789         }
1790
1791         /* With all the info we got, fill in the values */
1792         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1793         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1794         vcpu->last_guest_tsc = tsc_timestamp;
1795
1796         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1797                 &guest_hv_clock, sizeof(guest_hv_clock))))
1798                 return 0;
1799
1800         /* This VCPU is paused, but it's legal for a guest to read another
1801          * VCPU's kvmclock, so we really have to follow the specification where
1802          * it says that version is odd if data is being modified, and even after
1803          * it is consistent.
1804          *
1805          * Version field updates must be kept separate.  This is because
1806          * kvm_write_guest_cached might use a "rep movs" instruction, and
1807          * writes within a string instruction are weakly ordered.  So there
1808          * are three writes overall.
1809          *
1810          * As a small optimization, only write the version field in the first
1811          * and third write.  The vcpu->pv_time cache is still valid, because the
1812          * version field is the first in the struct.
1813          */
1814         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1815
1816         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1817         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1818                                 &vcpu->hv_clock,
1819                                 sizeof(vcpu->hv_clock.version));
1820
1821         smp_wmb();
1822
1823         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1824         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1825
1826         if (vcpu->pvclock_set_guest_stopped_request) {
1827                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1828                 vcpu->pvclock_set_guest_stopped_request = false;
1829         }
1830
1831         /* If the host uses TSC clocksource, then it is stable */
1832         if (use_master_clock)
1833                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1834
1835         vcpu->hv_clock.flags = pvclock_flags;
1836
1837         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1838
1839         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840                                 &vcpu->hv_clock,
1841                                 sizeof(vcpu->hv_clock));
1842
1843         smp_wmb();
1844
1845         vcpu->hv_clock.version++;
1846         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1847                                 &vcpu->hv_clock,
1848                                 sizeof(vcpu->hv_clock.version));
1849         return 0;
1850 }
1851
1852 /*
1853  * kvmclock updates which are isolated to a given vcpu, such as
1854  * vcpu->cpu migration, should not allow system_timestamp from
1855  * the rest of the vcpus to remain static. Otherwise ntp frequency
1856  * correction applies to one vcpu's system_timestamp but not
1857  * the others.
1858  *
1859  * So in those cases, request a kvmclock update for all vcpus.
1860  * We need to rate-limit these requests though, as they can
1861  * considerably slow guests that have a large number of vcpus.
1862  * The time for a remote vcpu to update its kvmclock is bound
1863  * by the delay we use to rate-limit the updates.
1864  */
1865
1866 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867
1868 static void kvmclock_update_fn(struct work_struct *work)
1869 {
1870         int i;
1871         struct delayed_work *dwork = to_delayed_work(work);
1872         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1873                                            kvmclock_update_work);
1874         struct kvm *kvm = container_of(ka, struct kvm, arch);
1875         struct kvm_vcpu *vcpu;
1876
1877         kvm_for_each_vcpu(i, vcpu, kvm) {
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1879                 kvm_vcpu_kick(vcpu);
1880         }
1881 }
1882
1883 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1884 {
1885         struct kvm *kvm = v->kvm;
1886
1887         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1888         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1889                                         KVMCLOCK_UPDATE_DELAY);
1890 }
1891
1892 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893
1894 static void kvmclock_sync_fn(struct work_struct *work)
1895 {
1896         struct delayed_work *dwork = to_delayed_work(work);
1897         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1898                                            kvmclock_sync_work);
1899         struct kvm *kvm = container_of(ka, struct kvm, arch);
1900
1901         if (!kvmclock_periodic_sync)
1902                 return;
1903
1904         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1905         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1906                                         KVMCLOCK_SYNC_PERIOD);
1907 }
1908
1909 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1910 {
1911         u64 mcg_cap = vcpu->arch.mcg_cap;
1912         unsigned bank_num = mcg_cap & 0xff;
1913
1914         switch (msr) {
1915         case MSR_IA32_MCG_STATUS:
1916                 vcpu->arch.mcg_status = data;
1917                 break;
1918         case MSR_IA32_MCG_CTL:
1919                 if (!(mcg_cap & MCG_CTL_P))
1920                         return 1;
1921                 if (data != 0 && data != ~(u64)0)
1922                         return -1;
1923                 vcpu->arch.mcg_ctl = data;
1924                 break;
1925         default:
1926                 if (msr >= MSR_IA32_MC0_CTL &&
1927                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1928                         u32 offset = msr - MSR_IA32_MC0_CTL;
1929                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1930                          * some Linux kernels though clear bit 10 in bank 4 to
1931                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1932                          * this to avoid an uncatched #GP in the guest
1933                          */
1934                         if ((offset & 0x3) == 0 &&
1935                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1936                                 return -1;
1937                         vcpu->arch.mce_banks[offset] = data;
1938                         break;
1939                 }
1940                 return 1;
1941         }
1942         return 0;
1943 }
1944
1945 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1946 {
1947         struct kvm *kvm = vcpu->kvm;
1948         int lm = is_long_mode(vcpu);
1949         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1950                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1951         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1952                 : kvm->arch.xen_hvm_config.blob_size_32;
1953         u32 page_num = data & ~PAGE_MASK;
1954         u64 page_addr = data & PAGE_MASK;
1955         u8 *page;
1956         int r;
1957
1958         r = -E2BIG;
1959         if (page_num >= blob_size)
1960                 goto out;
1961         r = -ENOMEM;
1962         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1963         if (IS_ERR(page)) {
1964                 r = PTR_ERR(page);
1965                 goto out;
1966         }
1967         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1968                 goto out_free;
1969         r = 0;
1970 out_free:
1971         kfree(page);
1972 out:
1973         return r;
1974 }
1975
1976 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1977 {
1978         gpa_t gpa = data & ~0x3f;
1979
1980         /* Bits 2:5 are reserved, Should be zero */
1981         if (data & 0x3c)
1982                 return 1;
1983
1984         vcpu->arch.apf.msr_val = data;
1985
1986         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1987                 kvm_clear_async_pf_completion_queue(vcpu);
1988                 kvm_async_pf_hash_reset(vcpu);
1989                 return 0;
1990         }
1991
1992         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1993                                         sizeof(u32)))
1994                 return 1;
1995
1996         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1997         kvm_async_pf_wakeup_all(vcpu);
1998         return 0;
1999 }
2000
2001 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2002 {
2003         vcpu->arch.pv_time_enabled = false;
2004 }
2005
2006 static void record_steal_time(struct kvm_vcpu *vcpu)
2007 {
2008         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2009                 return;
2010
2011         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2012                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2013                 return;
2014
2015         if (vcpu->arch.st.steal.version & 1)
2016                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2017
2018         vcpu->arch.st.steal.version += 1;
2019
2020         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2021                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2022
2023         smp_wmb();
2024
2025         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2026                 vcpu->arch.st.last_steal;
2027         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2028
2029         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2030                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2031
2032         smp_wmb();
2033
2034         vcpu->arch.st.steal.version += 1;
2035
2036         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2037                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2038 }
2039
2040 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2041 {
2042         bool pr = false;
2043         u32 msr = msr_info->index;
2044         u64 data = msr_info->data;
2045
2046         switch (msr) {
2047         case MSR_AMD64_NB_CFG:
2048         case MSR_IA32_UCODE_REV:
2049         case MSR_IA32_UCODE_WRITE:
2050         case MSR_VM_HSAVE_PA:
2051         case MSR_AMD64_PATCH_LOADER:
2052         case MSR_AMD64_BU_CFG2:
2053                 break;
2054
2055         case MSR_EFER:
2056                 return set_efer(vcpu, data);
2057         case MSR_K7_HWCR:
2058                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2059                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2060                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2061                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2062                 if (data != 0) {
2063                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2064                                     data);
2065                         return 1;
2066                 }
2067                 break;
2068         case MSR_FAM10H_MMIO_CONF_BASE:
2069                 if (data != 0) {
2070                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2071                                     "0x%llx\n", data);
2072                         return 1;
2073                 }
2074                 break;
2075         case MSR_IA32_DEBUGCTLMSR:
2076                 if (!data) {
2077                         /* We support the non-activated case already */
2078                         break;
2079                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2080                         /* Values other than LBR and BTF are vendor-specific,
2081                            thus reserved and should throw a #GP */
2082                         return 1;
2083                 }
2084                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2085                             __func__, data);
2086                 break;
2087         case 0x200 ... 0x2ff:
2088                 return kvm_mtrr_set_msr(vcpu, msr, data);
2089         case MSR_IA32_APICBASE:
2090                 return kvm_set_apic_base(vcpu, msr_info);
2091         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2092                 return kvm_x2apic_msr_write(vcpu, msr, data);
2093         case MSR_IA32_TSCDEADLINE:
2094                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2095                 break;
2096         case MSR_IA32_TSC_ADJUST:
2097                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2098                         if (!msr_info->host_initiated) {
2099                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2100                                 adjust_tsc_offset_guest(vcpu, adj);
2101                         }
2102                         vcpu->arch.ia32_tsc_adjust_msr = data;
2103                 }
2104                 break;
2105         case MSR_IA32_MISC_ENABLE:
2106                 vcpu->arch.ia32_misc_enable_msr = data;
2107                 break;
2108         case MSR_IA32_SMBASE:
2109                 if (!msr_info->host_initiated)
2110                         return 1;
2111                 vcpu->arch.smbase = data;
2112                 break;
2113         case MSR_KVM_WALL_CLOCK_NEW:
2114         case MSR_KVM_WALL_CLOCK:
2115                 vcpu->kvm->arch.wall_clock = data;
2116                 kvm_write_wall_clock(vcpu->kvm, data);
2117                 break;
2118         case MSR_KVM_SYSTEM_TIME_NEW:
2119         case MSR_KVM_SYSTEM_TIME: {
2120                 u64 gpa_offset;
2121                 struct kvm_arch *ka = &vcpu->kvm->arch;
2122
2123                 kvmclock_reset(vcpu);
2124
2125                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2126                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2127
2128                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2129                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2130                                         &vcpu->requests);
2131
2132                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2133                 }
2134
2135                 vcpu->arch.time = data;
2136                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2137
2138                 /* we verify if the enable bit is set... */
2139                 if (!(data & 1))
2140                         break;
2141
2142                 gpa_offset = data & ~(PAGE_MASK | 1);
2143
2144                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2145                      &vcpu->arch.pv_time, data & ~1ULL,
2146                      sizeof(struct pvclock_vcpu_time_info)))
2147                         vcpu->arch.pv_time_enabled = false;
2148                 else
2149                         vcpu->arch.pv_time_enabled = true;
2150
2151                 break;
2152         }
2153         case MSR_KVM_ASYNC_PF_EN:
2154                 if (kvm_pv_enable_async_pf(vcpu, data))
2155                         return 1;
2156                 break;
2157         case MSR_KVM_STEAL_TIME:
2158
2159                 if (unlikely(!sched_info_on()))
2160                         return 1;
2161
2162                 if (data & KVM_STEAL_RESERVED_MASK)
2163                         return 1;
2164
2165                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2166                                                 data & KVM_STEAL_VALID_BITS,
2167                                                 sizeof(struct kvm_steal_time)))
2168                         return 1;
2169
2170                 vcpu->arch.st.msr_val = data;
2171
2172                 if (!(data & KVM_MSR_ENABLED))
2173                         break;
2174
2175                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2176
2177                 break;
2178         case MSR_KVM_PV_EOI_EN:
2179                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2180                         return 1;
2181                 break;
2182
2183         case MSR_IA32_MCG_CTL:
2184         case MSR_IA32_MCG_STATUS:
2185         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2186                 return set_msr_mce(vcpu, msr, data);
2187
2188         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2189         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2190                 pr = true; /* fall through */
2191         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2192         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2193                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2194                         return kvm_pmu_set_msr(vcpu, msr_info);
2195
2196                 if (pr || data != 0)
2197                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2198                                     "0x%x data 0x%llx\n", msr, data);
2199                 break;
2200         case MSR_K7_CLK_CTL:
2201                 /*
2202                  * Ignore all writes to this no longer documented MSR.
2203                  * Writes are only relevant for old K7 processors,
2204                  * all pre-dating SVM, but a recommended workaround from
2205                  * AMD for these chips. It is possible to specify the
2206                  * affected processor models on the command line, hence
2207                  * the need to ignore the workaround.
2208                  */
2209                 break;
2210         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2211         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2212         case HV_X64_MSR_CRASH_CTL:
2213         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2214                 return kvm_hv_set_msr_common(vcpu, msr, data,
2215                                              msr_info->host_initiated);
2216         case MSR_IA32_BBL_CR_CTL3:
2217                 /* Drop writes to this legacy MSR -- see rdmsr
2218                  * counterpart for further detail.
2219                  */
2220                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2221                 break;
2222         case MSR_AMD64_OSVW_ID_LENGTH:
2223                 if (!guest_cpuid_has_osvw(vcpu))
2224                         return 1;
2225                 vcpu->arch.osvw.length = data;
2226                 break;
2227         case MSR_AMD64_OSVW_STATUS:
2228                 if (!guest_cpuid_has_osvw(vcpu))
2229                         return 1;
2230                 vcpu->arch.osvw.status = data;
2231                 break;
2232         default:
2233                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2234                         return xen_hvm_config(vcpu, data);
2235                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2236                         return kvm_pmu_set_msr(vcpu, msr_info);
2237                 if (!ignore_msrs) {
2238                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2239                                     msr, data);
2240                         return 1;
2241                 } else {
2242                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2243                                     msr, data);
2244                         break;
2245                 }
2246         }
2247         return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2250
2251
2252 /*
2253  * Reads an msr value (of 'msr_index') into 'pdata'.
2254  * Returns 0 on success, non-0 otherwise.
2255  * Assumes vcpu_load() was already called.
2256  */
2257 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2258 {
2259         return kvm_x86_ops->get_msr(vcpu, msr);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_get_msr);
2262
2263 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2264 {
2265         u64 data;
2266         u64 mcg_cap = vcpu->arch.mcg_cap;
2267         unsigned bank_num = mcg_cap & 0xff;
2268
2269         switch (msr) {
2270         case MSR_IA32_P5_MC_ADDR:
2271         case MSR_IA32_P5_MC_TYPE:
2272                 data = 0;
2273                 break;
2274         case MSR_IA32_MCG_CAP:
2275                 data = vcpu->arch.mcg_cap;
2276                 break;
2277         case MSR_IA32_MCG_CTL:
2278                 if (!(mcg_cap & MCG_CTL_P))
2279                         return 1;
2280                 data = vcpu->arch.mcg_ctl;
2281                 break;
2282         case MSR_IA32_MCG_STATUS:
2283                 data = vcpu->arch.mcg_status;
2284                 break;
2285         default:
2286                 if (msr >= MSR_IA32_MC0_CTL &&
2287                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2288                         u32 offset = msr - MSR_IA32_MC0_CTL;
2289                         data = vcpu->arch.mce_banks[offset];
2290                         break;
2291                 }
2292                 return 1;
2293         }
2294         *pdata = data;
2295         return 0;
2296 }
2297
2298 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2299 {
2300         switch (msr_info->index) {
2301         case MSR_IA32_PLATFORM_ID:
2302         case MSR_IA32_EBL_CR_POWERON:
2303         case MSR_IA32_DEBUGCTLMSR:
2304         case MSR_IA32_LASTBRANCHFROMIP:
2305         case MSR_IA32_LASTBRANCHTOIP:
2306         case MSR_IA32_LASTINTFROMIP:
2307         case MSR_IA32_LASTINTTOIP:
2308         case MSR_K8_SYSCFG:
2309         case MSR_K8_TSEG_ADDR:
2310         case MSR_K8_TSEG_MASK:
2311         case MSR_K7_HWCR:
2312         case MSR_VM_HSAVE_PA:
2313         case MSR_K8_INT_PENDING_MSG:
2314         case MSR_AMD64_NB_CFG:
2315         case MSR_FAM10H_MMIO_CONF_BASE:
2316         case MSR_AMD64_BU_CFG2:
2317                 msr_info->data = 0;
2318                 break;
2319         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2320         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2321         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2322         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2323                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2324                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2325                 msr_info->data = 0;
2326                 break;
2327         case MSR_IA32_UCODE_REV:
2328                 msr_info->data = 0x100000000ULL;
2329                 break;
2330         case MSR_MTRRcap:
2331         case 0x200 ... 0x2ff:
2332                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2333         case 0xcd: /* fsb frequency */
2334                 msr_info->data = 3;
2335                 break;
2336                 /*
2337                  * MSR_EBC_FREQUENCY_ID
2338                  * Conservative value valid for even the basic CPU models.
2339                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2340                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2341                  * and 266MHz for model 3, or 4. Set Core Clock
2342                  * Frequency to System Bus Frequency Ratio to 1 (bits
2343                  * 31:24) even though these are only valid for CPU
2344                  * models > 2, however guests may end up dividing or
2345                  * multiplying by zero otherwise.
2346                  */
2347         case MSR_EBC_FREQUENCY_ID:
2348                 msr_info->data = 1 << 24;
2349                 break;
2350         case MSR_IA32_APICBASE:
2351                 msr_info->data = kvm_get_apic_base(vcpu);
2352                 break;
2353         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2354                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2355                 break;
2356         case MSR_IA32_TSCDEADLINE:
2357                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2358                 break;
2359         case MSR_IA32_TSC_ADJUST:
2360                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2361                 break;
2362         case MSR_IA32_MISC_ENABLE:
2363                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2364                 break;
2365         case MSR_IA32_SMBASE:
2366                 if (!msr_info->host_initiated)
2367                         return 1;
2368                 msr_info->data = vcpu->arch.smbase;
2369                 break;
2370         case MSR_IA32_PERF_STATUS:
2371                 /* TSC increment by tick */
2372                 msr_info->data = 1000ULL;
2373                 /* CPU multiplier */
2374                 msr_info->data |= (((uint64_t)4ULL) << 40);
2375                 break;
2376         case MSR_EFER:
2377                 msr_info->data = vcpu->arch.efer;
2378                 break;
2379         case MSR_KVM_WALL_CLOCK:
2380         case MSR_KVM_WALL_CLOCK_NEW:
2381                 msr_info->data = vcpu->kvm->arch.wall_clock;
2382                 break;
2383         case MSR_KVM_SYSTEM_TIME:
2384         case MSR_KVM_SYSTEM_TIME_NEW:
2385                 msr_info->data = vcpu->arch.time;
2386                 break;
2387         case MSR_KVM_ASYNC_PF_EN:
2388                 msr_info->data = vcpu->arch.apf.msr_val;
2389                 break;
2390         case MSR_KVM_STEAL_TIME:
2391                 msr_info->data = vcpu->arch.st.msr_val;
2392                 break;
2393         case MSR_KVM_PV_EOI_EN:
2394                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2395                 break;
2396         case MSR_IA32_P5_MC_ADDR:
2397         case MSR_IA32_P5_MC_TYPE:
2398         case MSR_IA32_MCG_CAP:
2399         case MSR_IA32_MCG_CTL:
2400         case MSR_IA32_MCG_STATUS:
2401         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2402                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2403         case MSR_K7_CLK_CTL:
2404                 /*
2405                  * Provide expected ramp-up count for K7. All other
2406                  * are set to zero, indicating minimum divisors for
2407                  * every field.
2408                  *
2409                  * This prevents guest kernels on AMD host with CPU
2410                  * type 6, model 8 and higher from exploding due to
2411                  * the rdmsr failing.
2412                  */
2413                 msr_info->data = 0x20000000;
2414                 break;
2415         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2416         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2417         case HV_X64_MSR_CRASH_CTL:
2418         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2419                 return kvm_hv_get_msr_common(vcpu,
2420                                              msr_info->index, &msr_info->data);
2421                 break;
2422         case MSR_IA32_BBL_CR_CTL3:
2423                 /* This legacy MSR exists but isn't fully documented in current
2424                  * silicon.  It is however accessed by winxp in very narrow
2425                  * scenarios where it sets bit #19, itself documented as
2426                  * a "reserved" bit.  Best effort attempt to source coherent
2427                  * read data here should the balance of the register be
2428                  * interpreted by the guest:
2429                  *
2430                  * L2 cache control register 3: 64GB range, 256KB size,
2431                  * enabled, latency 0x1, configured
2432                  */
2433                 msr_info->data = 0xbe702111;
2434                 break;
2435         case MSR_AMD64_OSVW_ID_LENGTH:
2436                 if (!guest_cpuid_has_osvw(vcpu))
2437                         return 1;
2438                 msr_info->data = vcpu->arch.osvw.length;
2439                 break;
2440         case MSR_AMD64_OSVW_STATUS:
2441                 if (!guest_cpuid_has_osvw(vcpu))
2442                         return 1;
2443                 msr_info->data = vcpu->arch.osvw.status;
2444                 break;
2445         default:
2446                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2447                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2448                 if (!ignore_msrs) {
2449                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2450                         return 1;
2451                 } else {
2452                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2453                         msr_info->data = 0;
2454                 }
2455                 break;
2456         }
2457         return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2460
2461 /*
2462  * Read or write a bunch of msrs. All parameters are kernel addresses.
2463  *
2464  * @return number of msrs set successfully.
2465  */
2466 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2467                     struct kvm_msr_entry *entries,
2468                     int (*do_msr)(struct kvm_vcpu *vcpu,
2469                                   unsigned index, u64 *data))
2470 {
2471         int i, idx;
2472
2473         idx = srcu_read_lock(&vcpu->kvm->srcu);
2474         for (i = 0; i < msrs->nmsrs; ++i)
2475                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2476                         break;
2477         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2478
2479         return i;
2480 }
2481
2482 /*
2483  * Read or write a bunch of msrs. Parameters are user addresses.
2484  *
2485  * @return number of msrs set successfully.
2486  */
2487 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2488                   int (*do_msr)(struct kvm_vcpu *vcpu,
2489                                 unsigned index, u64 *data),
2490                   int writeback)
2491 {
2492         struct kvm_msrs msrs;
2493         struct kvm_msr_entry *entries;
2494         int r, n;
2495         unsigned size;
2496
2497         r = -EFAULT;
2498         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2499                 goto out;
2500
2501         r = -E2BIG;
2502         if (msrs.nmsrs >= MAX_IO_MSRS)
2503                 goto out;
2504
2505         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2506         entries = memdup_user(user_msrs->entries, size);
2507         if (IS_ERR(entries)) {
2508                 r = PTR_ERR(entries);
2509                 goto out;
2510         }
2511
2512         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2513         if (r < 0)
2514                 goto out_free;
2515
2516         r = -EFAULT;
2517         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2518                 goto out_free;
2519
2520         r = n;
2521
2522 out_free:
2523         kfree(entries);
2524 out:
2525         return r;
2526 }
2527
2528 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2529 {
2530         int r;
2531
2532         switch (ext) {
2533         case KVM_CAP_IRQCHIP:
2534         case KVM_CAP_HLT:
2535         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2536         case KVM_CAP_SET_TSS_ADDR:
2537         case KVM_CAP_EXT_CPUID:
2538         case KVM_CAP_EXT_EMUL_CPUID:
2539         case KVM_CAP_CLOCKSOURCE:
2540         case KVM_CAP_PIT:
2541         case KVM_CAP_NOP_IO_DELAY:
2542         case KVM_CAP_MP_STATE:
2543         case KVM_CAP_SYNC_MMU:
2544         case KVM_CAP_USER_NMI:
2545         case KVM_CAP_REINJECT_CONTROL:
2546         case KVM_CAP_IRQ_INJECT_STATUS:
2547         case KVM_CAP_IOEVENTFD:
2548         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2549         case KVM_CAP_PIT2:
2550         case KVM_CAP_PIT_STATE2:
2551         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2552         case KVM_CAP_XEN_HVM:
2553         case KVM_CAP_ADJUST_CLOCK:
2554         case KVM_CAP_VCPU_EVENTS:
2555         case KVM_CAP_HYPERV:
2556         case KVM_CAP_HYPERV_VAPIC:
2557         case KVM_CAP_HYPERV_SPIN:
2558         case KVM_CAP_HYPERV_SYNIC:
2559         case KVM_CAP_PCI_SEGMENT:
2560         case KVM_CAP_DEBUGREGS:
2561         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2562         case KVM_CAP_XSAVE:
2563         case KVM_CAP_ASYNC_PF:
2564         case KVM_CAP_GET_TSC_KHZ:
2565         case KVM_CAP_KVMCLOCK_CTRL:
2566         case KVM_CAP_READONLY_MEM:
2567         case KVM_CAP_HYPERV_TIME:
2568         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2569         case KVM_CAP_TSC_DEADLINE_TIMER:
2570         case KVM_CAP_ENABLE_CAP_VM:
2571         case KVM_CAP_DISABLE_QUIRKS:
2572         case KVM_CAP_SET_BOOT_CPU_ID:
2573         case KVM_CAP_SPLIT_IRQCHIP:
2574 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2575         case KVM_CAP_ASSIGN_DEV_IRQ:
2576         case KVM_CAP_PCI_2_3:
2577 #endif
2578                 r = 1;
2579                 break;
2580         case KVM_CAP_X86_SMM:
2581                 /* SMBASE is usually relocated above 1M on modern chipsets,
2582                  * and SMM handlers might indeed rely on 4G segment limits,
2583                  * so do not report SMM to be available if real mode is
2584                  * emulated via vm86 mode.  Still, do not go to great lengths
2585                  * to avoid userspace's usage of the feature, because it is a
2586                  * fringe case that is not enabled except via specific settings
2587                  * of the module parameters.
2588                  */
2589                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2590                 break;
2591         case KVM_CAP_COALESCED_MMIO:
2592                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2593                 break;
2594         case KVM_CAP_VAPIC:
2595                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2596                 break;
2597         case KVM_CAP_NR_VCPUS:
2598                 r = KVM_SOFT_MAX_VCPUS;
2599                 break;
2600         case KVM_CAP_MAX_VCPUS:
2601                 r = KVM_MAX_VCPUS;
2602                 break;
2603         case KVM_CAP_NR_MEMSLOTS:
2604                 r = KVM_USER_MEM_SLOTS;
2605                 break;
2606         case KVM_CAP_PV_MMU:    /* obsolete */
2607                 r = 0;
2608                 break;
2609 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2610         case KVM_CAP_IOMMU:
2611                 r = iommu_present(&pci_bus_type);
2612                 break;
2613 #endif
2614         case KVM_CAP_MCE:
2615                 r = KVM_MAX_MCE_BANKS;
2616                 break;
2617         case KVM_CAP_XCRS:
2618                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2619                 break;
2620         case KVM_CAP_TSC_CONTROL:
2621                 r = kvm_has_tsc_control;
2622                 break;
2623         default:
2624                 r = 0;
2625                 break;
2626         }
2627         return r;
2628
2629 }
2630
2631 long kvm_arch_dev_ioctl(struct file *filp,
2632                         unsigned int ioctl, unsigned long arg)
2633 {
2634         void __user *argp = (void __user *)arg;
2635         long r;
2636
2637         switch (ioctl) {
2638         case KVM_GET_MSR_INDEX_LIST: {
2639                 struct kvm_msr_list __user *user_msr_list = argp;
2640                 struct kvm_msr_list msr_list;
2641                 unsigned n;
2642
2643                 r = -EFAULT;
2644                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2645                         goto out;
2646                 n = msr_list.nmsrs;
2647                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2648                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2649                         goto out;
2650                 r = -E2BIG;
2651                 if (n < msr_list.nmsrs)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2655                                  num_msrs_to_save * sizeof(u32)))
2656                         goto out;
2657                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2658                                  &emulated_msrs,
2659                                  num_emulated_msrs * sizeof(u32)))
2660                         goto out;
2661                 r = 0;
2662                 break;
2663         }
2664         case KVM_GET_SUPPORTED_CPUID:
2665         case KVM_GET_EMULATED_CPUID: {
2666                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2667                 struct kvm_cpuid2 cpuid;
2668
2669                 r = -EFAULT;
2670                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2671                         goto out;
2672
2673                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2674                                             ioctl);
2675                 if (r)
2676                         goto out;
2677
2678                 r = -EFAULT;
2679                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2680                         goto out;
2681                 r = 0;
2682                 break;
2683         }
2684         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2685                 u64 mce_cap;
2686
2687                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2688                 r = -EFAULT;
2689                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2690                         goto out;
2691                 r = 0;
2692                 break;
2693         }
2694         default:
2695                 r = -EINVAL;
2696         }
2697 out:
2698         return r;
2699 }
2700
2701 static void wbinvd_ipi(void *garbage)
2702 {
2703         wbinvd();
2704 }
2705
2706 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2707 {
2708         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2709 }
2710
2711 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2712 {
2713         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2714 }
2715
2716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2717 {
2718         /* Address WBINVD may be executed by guest */
2719         if (need_emulate_wbinvd(vcpu)) {
2720                 if (kvm_x86_ops->has_wbinvd_exit())
2721                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2722                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2723                         smp_call_function_single(vcpu->cpu,
2724                                         wbinvd_ipi, NULL, 1);
2725         }
2726
2727         kvm_x86_ops->vcpu_load(vcpu, cpu);
2728
2729         /* Apply any externally detected TSC adjustments (due to suspend) */
2730         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2731                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2732                 vcpu->arch.tsc_offset_adjustment = 0;
2733                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2734         }
2735
2736         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2737                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2738                                 rdtsc() - vcpu->arch.last_host_tsc;
2739                 if (tsc_delta < 0)
2740                         mark_tsc_unstable("KVM discovered backwards TSC");
2741                 if (check_tsc_unstable()) {
2742                         u64 offset = kvm_compute_tsc_offset(vcpu,
2743                                                 vcpu->arch.last_guest_tsc);
2744                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2745                         vcpu->arch.tsc_catchup = 1;
2746                 }
2747                 /*
2748                  * On a host with synchronized TSC, there is no need to update
2749                  * kvmclock on vcpu->cpu migration
2750                  */
2751                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2752                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2753                 if (vcpu->cpu != cpu)
2754                         kvm_migrate_timers(vcpu);
2755                 vcpu->cpu = cpu;
2756         }
2757
2758         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2759 }
2760
2761 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2762 {
2763         kvm_x86_ops->vcpu_put(vcpu);
2764         kvm_put_guest_fpu(vcpu);
2765         vcpu->arch.last_host_tsc = rdtsc();
2766 }
2767
2768 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2769                                     struct kvm_lapic_state *s)
2770 {
2771         if (vcpu->arch.apicv_active)
2772                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2773
2774         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2775
2776         return 0;
2777 }
2778
2779 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2780                                     struct kvm_lapic_state *s)
2781 {
2782         kvm_apic_post_state_restore(vcpu, s);
2783         update_cr8_intercept(vcpu);
2784
2785         return 0;
2786 }
2787
2788 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2789 {
2790         return (!lapic_in_kernel(vcpu) ||
2791                 kvm_apic_accept_pic_intr(vcpu));
2792 }
2793
2794 /*
2795  * if userspace requested an interrupt window, check that the
2796  * interrupt window is open.
2797  *
2798  * No need to exit to userspace if we already have an interrupt queued.
2799  */
2800 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2801 {
2802         return kvm_arch_interrupt_allowed(vcpu) &&
2803                 !kvm_cpu_has_interrupt(vcpu) &&
2804                 !kvm_event_needs_reinjection(vcpu) &&
2805                 kvm_cpu_accept_dm_intr(vcpu);
2806 }
2807
2808 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2809                                     struct kvm_interrupt *irq)
2810 {
2811         if (irq->irq >= KVM_NR_INTERRUPTS)
2812                 return -EINVAL;
2813
2814         if (!irqchip_in_kernel(vcpu->kvm)) {
2815                 kvm_queue_interrupt(vcpu, irq->irq, false);
2816                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2817                 return 0;
2818         }
2819
2820         /*
2821          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2822          * fail for in-kernel 8259.
2823          */
2824         if (pic_in_kernel(vcpu->kvm))
2825                 return -ENXIO;
2826
2827         if (vcpu->arch.pending_external_vector != -1)
2828                 return -EEXIST;
2829
2830         vcpu->arch.pending_external_vector = irq->irq;
2831         kvm_make_request(KVM_REQ_EVENT, vcpu);
2832         return 0;
2833 }
2834
2835 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2836 {
2837         kvm_inject_nmi(vcpu);
2838
2839         return 0;
2840 }
2841
2842 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2843 {
2844         kvm_make_request(KVM_REQ_SMI, vcpu);
2845
2846         return 0;
2847 }
2848
2849 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2850                                            struct kvm_tpr_access_ctl *tac)
2851 {
2852         if (tac->flags)
2853                 return -EINVAL;
2854         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2855         return 0;
2856 }
2857
2858 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2859                                         u64 mcg_cap)
2860 {
2861         int r;
2862         unsigned bank_num = mcg_cap & 0xff, bank;
2863
2864         r = -EINVAL;
2865         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2866                 goto out;
2867         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2868                 goto out;
2869         r = 0;
2870         vcpu->arch.mcg_cap = mcg_cap;
2871         /* Init IA32_MCG_CTL to all 1s */
2872         if (mcg_cap & MCG_CTL_P)
2873                 vcpu->arch.mcg_ctl = ~(u64)0;
2874         /* Init IA32_MCi_CTL to all 1s */
2875         for (bank = 0; bank < bank_num; bank++)
2876                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2877 out:
2878         return r;
2879 }
2880
2881 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2882                                       struct kvm_x86_mce *mce)
2883 {
2884         u64 mcg_cap = vcpu->arch.mcg_cap;
2885         unsigned bank_num = mcg_cap & 0xff;
2886         u64 *banks = vcpu->arch.mce_banks;
2887
2888         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2889                 return -EINVAL;
2890         /*
2891          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2892          * reporting is disabled
2893          */
2894         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2895             vcpu->arch.mcg_ctl != ~(u64)0)
2896                 return 0;
2897         banks += 4 * mce->bank;
2898         /*
2899          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2900          * reporting is disabled for the bank
2901          */
2902         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2903                 return 0;
2904         if (mce->status & MCI_STATUS_UC) {
2905                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2906                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2907                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2908                         return 0;
2909                 }
2910                 if (banks[1] & MCI_STATUS_VAL)
2911                         mce->status |= MCI_STATUS_OVER;
2912                 banks[2] = mce->addr;
2913                 banks[3] = mce->misc;
2914                 vcpu->arch.mcg_status = mce->mcg_status;
2915                 banks[1] = mce->status;
2916                 kvm_queue_exception(vcpu, MC_VECTOR);
2917         } else if (!(banks[1] & MCI_STATUS_VAL)
2918                    || !(banks[1] & MCI_STATUS_UC)) {
2919                 if (banks[1] & MCI_STATUS_VAL)
2920                         mce->status |= MCI_STATUS_OVER;
2921                 banks[2] = mce->addr;
2922                 banks[3] = mce->misc;
2923                 banks[1] = mce->status;
2924         } else
2925                 banks[1] |= MCI_STATUS_OVER;
2926         return 0;
2927 }
2928
2929 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2930                                                struct kvm_vcpu_events *events)
2931 {
2932         process_nmi(vcpu);
2933         events->exception.injected =
2934                 vcpu->arch.exception.pending &&
2935                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2936         events->exception.nr = vcpu->arch.exception.nr;
2937         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2938         events->exception.pad = 0;
2939         events->exception.error_code = vcpu->arch.exception.error_code;
2940
2941         events->interrupt.injected =
2942                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2943         events->interrupt.nr = vcpu->arch.interrupt.nr;
2944         events->interrupt.soft = 0;
2945         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2946
2947         events->nmi.injected = vcpu->arch.nmi_injected;
2948         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2949         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2950         events->nmi.pad = 0;
2951
2952         events->sipi_vector = 0; /* never valid when reporting to user space */
2953
2954         events->smi.smm = is_smm(vcpu);
2955         events->smi.pending = vcpu->arch.smi_pending;
2956         events->smi.smm_inside_nmi =
2957                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2958         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2959
2960         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2961                          | KVM_VCPUEVENT_VALID_SHADOW
2962                          | KVM_VCPUEVENT_VALID_SMM);
2963         memset(&events->reserved, 0, sizeof(events->reserved));
2964 }
2965
2966 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2967                                               struct kvm_vcpu_events *events)
2968 {
2969         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2970                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2971                               | KVM_VCPUEVENT_VALID_SHADOW
2972                               | KVM_VCPUEVENT_VALID_SMM))
2973                 return -EINVAL;
2974
2975         process_nmi(vcpu);
2976         vcpu->arch.exception.pending = events->exception.injected;
2977         vcpu->arch.exception.nr = events->exception.nr;
2978         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2979         vcpu->arch.exception.error_code = events->exception.error_code;
2980
2981         vcpu->arch.interrupt.pending = events->interrupt.injected;
2982         vcpu->arch.interrupt.nr = events->interrupt.nr;
2983         vcpu->arch.interrupt.soft = events->interrupt.soft;
2984         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2985                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2986                                                   events->interrupt.shadow);
2987
2988         vcpu->arch.nmi_injected = events->nmi.injected;
2989         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2990                 vcpu->arch.nmi_pending = events->nmi.pending;
2991         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2992
2993         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2994             lapic_in_kernel(vcpu))
2995                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2996
2997         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2998                 if (events->smi.smm)
2999                         vcpu->arch.hflags |= HF_SMM_MASK;
3000                 else
3001                         vcpu->arch.hflags &= ~HF_SMM_MASK;
3002                 vcpu->arch.smi_pending = events->smi.pending;
3003                 if (events->smi.smm_inside_nmi)
3004                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3005                 else
3006                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3007                 if (lapic_in_kernel(vcpu)) {
3008                         if (events->smi.latched_init)
3009                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3010                         else
3011                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3012                 }
3013         }
3014
3015         kvm_make_request(KVM_REQ_EVENT, vcpu);
3016
3017         return 0;
3018 }
3019
3020 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3021                                              struct kvm_debugregs *dbgregs)
3022 {
3023         unsigned long val;
3024
3025         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3026         kvm_get_dr(vcpu, 6, &val);
3027         dbgregs->dr6 = val;
3028         dbgregs->dr7 = vcpu->arch.dr7;
3029         dbgregs->flags = 0;
3030         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3031 }
3032
3033 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3034                                             struct kvm_debugregs *dbgregs)
3035 {
3036         if (dbgregs->flags)
3037                 return -EINVAL;
3038
3039         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3040         kvm_update_dr0123(vcpu);
3041         vcpu->arch.dr6 = dbgregs->dr6;
3042         kvm_update_dr6(vcpu);
3043         vcpu->arch.dr7 = dbgregs->dr7;
3044         kvm_update_dr7(vcpu);
3045
3046         return 0;
3047 }
3048
3049 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3050
3051 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3052 {
3053         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3054         u64 xstate_bv = xsave->header.xfeatures;
3055         u64 valid;
3056
3057         /*
3058          * Copy legacy XSAVE area, to avoid complications with CPUID
3059          * leaves 0 and 1 in the loop below.
3060          */
3061         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3062
3063         /* Set XSTATE_BV */
3064         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3065
3066         /*
3067          * Copy each region from the possibly compacted offset to the
3068          * non-compacted offset.
3069          */
3070         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3071         while (valid) {
3072                 u64 feature = valid & -valid;
3073                 int index = fls64(feature) - 1;
3074                 void *src = get_xsave_addr(xsave, feature);
3075
3076                 if (src) {
3077                         u32 size, offset, ecx, edx;
3078                         cpuid_count(XSTATE_CPUID, index,
3079                                     &size, &offset, &ecx, &edx);
3080                         memcpy(dest + offset, src, size);
3081                 }
3082
3083                 valid -= feature;
3084         }
3085 }
3086
3087 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3088 {
3089         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3090         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3091         u64 valid;
3092
3093         /*
3094          * Copy legacy XSAVE area, to avoid complications with CPUID
3095          * leaves 0 and 1 in the loop below.
3096          */
3097         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3098
3099         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3100         xsave->header.xfeatures = xstate_bv;
3101         if (boot_cpu_has(X86_FEATURE_XSAVES))
3102                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3103
3104         /*
3105          * Copy each region from the non-compacted offset to the
3106          * possibly compacted offset.
3107          */
3108         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3109         while (valid) {
3110                 u64 feature = valid & -valid;
3111                 int index = fls64(feature) - 1;
3112                 void *dest = get_xsave_addr(xsave, feature);
3113
3114                 if (dest) {
3115                         u32 size, offset, ecx, edx;
3116                         cpuid_count(XSTATE_CPUID, index,
3117                                     &size, &offset, &ecx, &edx);
3118                         memcpy(dest, src + offset, size);
3119                 }
3120
3121                 valid -= feature;
3122         }
3123 }
3124
3125 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3126                                          struct kvm_xsave *guest_xsave)
3127 {
3128         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3129                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3130                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3131         } else {
3132                 memcpy(guest_xsave->region,
3133                         &vcpu->arch.guest_fpu.state.fxsave,
3134                         sizeof(struct fxregs_state));
3135                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3136                         XFEATURE_MASK_FPSSE;
3137         }
3138 }
3139
3140 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3141                                         struct kvm_xsave *guest_xsave)
3142 {
3143         u64 xstate_bv =
3144                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3145
3146         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3147                 /*
3148                  * Here we allow setting states that are not present in
3149                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3150                  * with old userspace.
3151                  */
3152                 if (xstate_bv & ~kvm_supported_xcr0())
3153                         return -EINVAL;
3154                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3155         } else {
3156                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3157                         return -EINVAL;
3158                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3159                         guest_xsave->region, sizeof(struct fxregs_state));
3160         }
3161         return 0;
3162 }
3163
3164 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3165                                         struct kvm_xcrs *guest_xcrs)
3166 {
3167         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3168                 guest_xcrs->nr_xcrs = 0;
3169                 return;
3170         }
3171
3172         guest_xcrs->nr_xcrs = 1;
3173         guest_xcrs->flags = 0;
3174         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3175         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3176 }
3177
3178 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3179                                        struct kvm_xcrs *guest_xcrs)
3180 {
3181         int i, r = 0;
3182
3183         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3184                 return -EINVAL;
3185
3186         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3187                 return -EINVAL;
3188
3189         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3190                 /* Only support XCR0 currently */
3191                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3192                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3193                                 guest_xcrs->xcrs[i].value);
3194                         break;
3195                 }
3196         if (r)
3197                 r = -EINVAL;
3198         return r;
3199 }
3200
3201 /*
3202  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3203  * stopped by the hypervisor.  This function will be called from the host only.
3204  * EINVAL is returned when the host attempts to set the flag for a guest that
3205  * does not support pv clocks.
3206  */
3207 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3208 {
3209         if (!vcpu->arch.pv_time_enabled)
3210                 return -EINVAL;
3211         vcpu->arch.pvclock_set_guest_stopped_request = true;
3212         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3213         return 0;
3214 }
3215
3216 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3217                                      struct kvm_enable_cap *cap)
3218 {
3219         if (cap->flags)
3220                 return -EINVAL;
3221
3222         switch (cap->cap) {
3223         case KVM_CAP_HYPERV_SYNIC:
3224                 return kvm_hv_activate_synic(vcpu);
3225         default:
3226                 return -EINVAL;
3227         }
3228 }
3229
3230 long kvm_arch_vcpu_ioctl(struct file *filp,
3231                          unsigned int ioctl, unsigned long arg)
3232 {
3233         struct kvm_vcpu *vcpu = filp->private_data;
3234         void __user *argp = (void __user *)arg;
3235         int r;
3236         union {
3237                 struct kvm_lapic_state *lapic;
3238                 struct kvm_xsave *xsave;
3239                 struct kvm_xcrs *xcrs;
3240                 void *buffer;
3241         } u;
3242
3243         u.buffer = NULL;
3244         switch (ioctl) {
3245         case KVM_GET_LAPIC: {
3246                 r = -EINVAL;
3247                 if (!lapic_in_kernel(vcpu))
3248                         goto out;
3249                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3250
3251                 r = -ENOMEM;
3252                 if (!u.lapic)
3253                         goto out;
3254                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3255                 if (r)
3256                         goto out;
3257                 r = -EFAULT;
3258                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3259                         goto out;
3260                 r = 0;
3261                 break;
3262         }
3263         case KVM_SET_LAPIC: {
3264                 r = -EINVAL;
3265                 if (!lapic_in_kernel(vcpu))
3266                         goto out;
3267                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3268                 if (IS_ERR(u.lapic))
3269                         return PTR_ERR(u.lapic);
3270
3271                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3272                 break;
3273         }
3274         case KVM_INTERRUPT: {
3275                 struct kvm_interrupt irq;
3276
3277                 r = -EFAULT;
3278                 if (copy_from_user(&irq, argp, sizeof irq))
3279                         goto out;
3280                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3281                 break;
3282         }
3283         case KVM_NMI: {
3284                 r = kvm_vcpu_ioctl_nmi(vcpu);
3285                 break;
3286         }
3287         case KVM_SMI: {
3288                 r = kvm_vcpu_ioctl_smi(vcpu);
3289                 break;
3290         }
3291         case KVM_SET_CPUID: {
3292                 struct kvm_cpuid __user *cpuid_arg = argp;
3293                 struct kvm_cpuid cpuid;
3294
3295                 r = -EFAULT;
3296                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3297                         goto out;
3298                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3299                 break;
3300         }
3301         case KVM_SET_CPUID2: {
3302                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3303                 struct kvm_cpuid2 cpuid;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3307                         goto out;
3308                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3309                                               cpuid_arg->entries);
3310                 break;
3311         }
3312         case KVM_GET_CPUID2: {
3313                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3314                 struct kvm_cpuid2 cpuid;
3315
3316                 r = -EFAULT;
3317                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3318                         goto out;
3319                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3320                                               cpuid_arg->entries);
3321                 if (r)
3322                         goto out;
3323                 r = -EFAULT;
3324                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3325                         goto out;
3326                 r = 0;
3327                 break;
3328         }
3329         case KVM_GET_MSRS:
3330                 r = msr_io(vcpu, argp, do_get_msr, 1);
3331                 break;
3332         case KVM_SET_MSRS:
3333                 r = msr_io(vcpu, argp, do_set_msr, 0);
3334                 break;
3335         case KVM_TPR_ACCESS_REPORTING: {
3336                 struct kvm_tpr_access_ctl tac;
3337
3338                 r = -EFAULT;
3339                 if (copy_from_user(&tac, argp, sizeof tac))
3340                         goto out;
3341                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3342                 if (r)
3343                         goto out;
3344                 r = -EFAULT;
3345                 if (copy_to_user(argp, &tac, sizeof tac))
3346                         goto out;
3347                 r = 0;
3348                 break;
3349         };
3350         case KVM_SET_VAPIC_ADDR: {
3351                 struct kvm_vapic_addr va;
3352
3353                 r = -EINVAL;
3354                 if (!lapic_in_kernel(vcpu))
3355                         goto out;
3356                 r = -EFAULT;
3357                 if (copy_from_user(&va, argp, sizeof va))
3358                         goto out;
3359                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3360                 break;
3361         }
3362         case KVM_X86_SETUP_MCE: {
3363                 u64 mcg_cap;
3364
3365                 r = -EFAULT;
3366                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3367                         goto out;
3368                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3369                 break;
3370         }
3371         case KVM_X86_SET_MCE: {
3372                 struct kvm_x86_mce mce;
3373
3374                 r = -EFAULT;
3375                 if (copy_from_user(&mce, argp, sizeof mce))
3376                         goto out;
3377                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3378                 break;
3379         }
3380         case KVM_GET_VCPU_EVENTS: {
3381                 struct kvm_vcpu_events events;
3382
3383                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3384
3385                 r = -EFAULT;
3386                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3387                         break;
3388                 r = 0;
3389                 break;
3390         }
3391         case KVM_SET_VCPU_EVENTS: {
3392                 struct kvm_vcpu_events events;
3393
3394                 r = -EFAULT;
3395                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3396                         break;
3397
3398                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3399                 break;
3400         }
3401         case KVM_GET_DEBUGREGS: {
3402                 struct kvm_debugregs dbgregs;
3403
3404                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3405
3406                 r = -EFAULT;
3407                 if (copy_to_user(argp, &dbgregs,
3408                                  sizeof(struct kvm_debugregs)))
3409                         break;
3410                 r = 0;
3411                 break;
3412         }
3413         case KVM_SET_DEBUGREGS: {
3414                 struct kvm_debugregs dbgregs;
3415
3416                 r = -EFAULT;
3417                 if (copy_from_user(&dbgregs, argp,
3418                                    sizeof(struct kvm_debugregs)))
3419                         break;
3420
3421                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3422                 break;
3423         }
3424         case KVM_GET_XSAVE: {
3425                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3426                 r = -ENOMEM;
3427                 if (!u.xsave)
3428                         break;
3429
3430                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3431
3432                 r = -EFAULT;
3433                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3434                         break;
3435                 r = 0;
3436                 break;
3437         }
3438         case KVM_SET_XSAVE: {
3439                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3440                 if (IS_ERR(u.xsave))
3441                         return PTR_ERR(u.xsave);
3442
3443                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3444                 break;
3445         }
3446         case KVM_GET_XCRS: {
3447                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3448                 r = -ENOMEM;
3449                 if (!u.xcrs)
3450                         break;
3451
3452                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3453
3454                 r = -EFAULT;
3455                 if (copy_to_user(argp, u.xcrs,
3456                                  sizeof(struct kvm_xcrs)))
3457                         break;
3458                 r = 0;
3459                 break;
3460         }
3461         case KVM_SET_XCRS: {
3462                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3463                 if (IS_ERR(u.xcrs))
3464                         return PTR_ERR(u.xcrs);
3465
3466                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3467                 break;
3468         }
3469         case KVM_SET_TSC_KHZ: {
3470                 u32 user_tsc_khz;
3471
3472                 r = -EINVAL;
3473                 user_tsc_khz = (u32)arg;
3474
3475                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3476                         goto out;
3477
3478                 if (user_tsc_khz == 0)
3479                         user_tsc_khz = tsc_khz;
3480
3481                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3482                         r = 0;
3483
3484                 goto out;
3485         }
3486         case KVM_GET_TSC_KHZ: {
3487                 r = vcpu->arch.virtual_tsc_khz;
3488                 goto out;
3489         }
3490         case KVM_KVMCLOCK_CTRL: {
3491                 r = kvm_set_guest_paused(vcpu);
3492                 goto out;
3493         }
3494         case KVM_ENABLE_CAP: {
3495                 struct kvm_enable_cap cap;
3496
3497                 r = -EFAULT;
3498                 if (copy_from_user(&cap, argp, sizeof(cap)))
3499                         goto out;
3500                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3501                 break;
3502         }
3503         default:
3504                 r = -EINVAL;
3505         }
3506 out:
3507         kfree(u.buffer);
3508         return r;
3509 }
3510
3511 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3512 {
3513         return VM_FAULT_SIGBUS;
3514 }
3515
3516 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3517 {
3518         int ret;
3519
3520         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3521                 return -EINVAL;
3522         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3523         return ret;
3524 }
3525
3526 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3527                                               u64 ident_addr)
3528 {
3529         kvm->arch.ept_identity_map_addr = ident_addr;
3530         return 0;
3531 }
3532
3533 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3534                                           u32 kvm_nr_mmu_pages)
3535 {
3536         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3537                 return -EINVAL;
3538
3539         mutex_lock(&kvm->slots_lock);
3540
3541         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3542         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3543
3544         mutex_unlock(&kvm->slots_lock);
3545         return 0;
3546 }
3547
3548 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3549 {
3550         return kvm->arch.n_max_mmu_pages;
3551 }
3552
3553 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3554 {
3555         int r;
3556
3557         r = 0;
3558         switch (chip->chip_id) {
3559         case KVM_IRQCHIP_PIC_MASTER:
3560                 memcpy(&chip->chip.pic,
3561                         &pic_irqchip(kvm)->pics[0],
3562                         sizeof(struct kvm_pic_state));
3563                 break;
3564         case KVM_IRQCHIP_PIC_SLAVE:
3565                 memcpy(&chip->chip.pic,
3566                         &pic_irqchip(kvm)->pics[1],
3567                         sizeof(struct kvm_pic_state));
3568                 break;
3569         case KVM_IRQCHIP_IOAPIC:
3570                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3571                 break;
3572         default:
3573                 r = -EINVAL;
3574                 break;
3575         }
3576         return r;
3577 }
3578
3579 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3580 {
3581         int r;
3582
3583         r = 0;
3584         switch (chip->chip_id) {
3585         case KVM_IRQCHIP_PIC_MASTER:
3586                 spin_lock(&pic_irqchip(kvm)->lock);
3587                 memcpy(&pic_irqchip(kvm)->pics[0],
3588                         &chip->chip.pic,
3589                         sizeof(struct kvm_pic_state));
3590                 spin_unlock(&pic_irqchip(kvm)->lock);
3591                 break;
3592         case KVM_IRQCHIP_PIC_SLAVE:
3593                 spin_lock(&pic_irqchip(kvm)->lock);
3594                 memcpy(&pic_irqchip(kvm)->pics[1],
3595                         &chip->chip.pic,
3596                         sizeof(struct kvm_pic_state));
3597                 spin_unlock(&pic_irqchip(kvm)->lock);
3598                 break;
3599         case KVM_IRQCHIP_IOAPIC:
3600                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3601                 break;
3602         default:
3603                 r = -EINVAL;
3604                 break;
3605         }
3606         kvm_pic_update_irq(pic_irqchip(kvm));
3607         return r;
3608 }
3609
3610 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3611 {
3612         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3613
3614         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3615
3616         mutex_lock(&kps->lock);
3617         memcpy(ps, &kps->channels, sizeof(*ps));
3618         mutex_unlock(&kps->lock);
3619         return 0;
3620 }
3621
3622 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3623 {
3624         int i;
3625         struct kvm_pit *pit = kvm->arch.vpit;
3626
3627         mutex_lock(&pit->pit_state.lock);
3628         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3629         for (i = 0; i < 3; i++)
3630                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3631         mutex_unlock(&pit->pit_state.lock);
3632         return 0;
3633 }
3634
3635 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3636 {
3637         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3638         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3639                 sizeof(ps->channels));
3640         ps->flags = kvm->arch.vpit->pit_state.flags;
3641         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3642         memset(&ps->reserved, 0, sizeof(ps->reserved));
3643         return 0;
3644 }
3645
3646 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3647 {
3648         int start = 0;
3649         int i;
3650         u32 prev_legacy, cur_legacy;
3651         struct kvm_pit *pit = kvm->arch.vpit;
3652
3653         mutex_lock(&pit->pit_state.lock);
3654         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3655         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3656         if (!prev_legacy && cur_legacy)
3657                 start = 1;
3658         memcpy(&pit->pit_state.channels, &ps->channels,
3659                sizeof(pit->pit_state.channels));
3660         pit->pit_state.flags = ps->flags;
3661         for (i = 0; i < 3; i++)
3662                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3663                                    start && i == 0);
3664         mutex_unlock(&pit->pit_state.lock);
3665         return 0;
3666 }
3667
3668 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3669                                  struct kvm_reinject_control *control)
3670 {
3671         struct kvm_pit *pit = kvm->arch.vpit;
3672
3673         if (!pit)
3674                 return -ENXIO;
3675
3676         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3677          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3678          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3679          */
3680         mutex_lock(&pit->pit_state.lock);
3681         kvm_pit_set_reinject(pit, control->pit_reinject);
3682         mutex_unlock(&pit->pit_state.lock);
3683
3684         return 0;
3685 }
3686
3687 /**
3688  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3689  * @kvm: kvm instance
3690  * @log: slot id and address to which we copy the log
3691  *
3692  * Steps 1-4 below provide general overview of dirty page logging. See
3693  * kvm_get_dirty_log_protect() function description for additional details.
3694  *
3695  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3696  * always flush the TLB (step 4) even if previous step failed  and the dirty
3697  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3698  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3699  * writes will be marked dirty for next log read.
3700  *
3701  *   1. Take a snapshot of the bit and clear it if needed.
3702  *   2. Write protect the corresponding page.
3703  *   3. Copy the snapshot to the userspace.
3704  *   4. Flush TLB's if needed.
3705  */
3706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3707 {
3708         bool is_dirty = false;
3709         int r;
3710
3711         mutex_lock(&kvm->slots_lock);
3712
3713         /*
3714          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3715          */
3716         if (kvm_x86_ops->flush_log_dirty)
3717                 kvm_x86_ops->flush_log_dirty(kvm);
3718
3719         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3720
3721         /*
3722          * All the TLBs can be flushed out of mmu lock, see the comments in
3723          * kvm_mmu_slot_remove_write_access().
3724          */
3725         lockdep_assert_held(&kvm->slots_lock);
3726         if (is_dirty)
3727                 kvm_flush_remote_tlbs(kvm);
3728
3729         mutex_unlock(&kvm->slots_lock);
3730         return r;
3731 }
3732
3733 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3734                         bool line_status)
3735 {
3736         if (!irqchip_in_kernel(kvm))
3737                 return -ENXIO;
3738
3739         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3740                                         irq_event->irq, irq_event->level,
3741                                         line_status);
3742         return 0;
3743 }
3744
3745 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3746                                    struct kvm_enable_cap *cap)
3747 {
3748         int r;
3749
3750         if (cap->flags)
3751                 return -EINVAL;
3752
3753         switch (cap->cap) {
3754         case KVM_CAP_DISABLE_QUIRKS:
3755                 kvm->arch.disabled_quirks = cap->args[0];
3756                 r = 0;
3757                 break;
3758         case KVM_CAP_SPLIT_IRQCHIP: {
3759                 mutex_lock(&kvm->lock);
3760                 r = -EINVAL;
3761                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3762                         goto split_irqchip_unlock;
3763                 r = -EEXIST;
3764                 if (irqchip_in_kernel(kvm))
3765                         goto split_irqchip_unlock;
3766                 if (atomic_read(&kvm->online_vcpus))
3767                         goto split_irqchip_unlock;
3768                 r = kvm_setup_empty_irq_routing(kvm);
3769                 if (r)
3770                         goto split_irqchip_unlock;
3771                 /* Pairs with irqchip_in_kernel. */
3772                 smp_wmb();
3773                 kvm->arch.irqchip_split = true;
3774                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3775                 r = 0;
3776 split_irqchip_unlock:
3777                 mutex_unlock(&kvm->lock);
3778                 break;
3779         }
3780         default:
3781                 r = -EINVAL;
3782                 break;
3783         }
3784         return r;
3785 }
3786
3787 long kvm_arch_vm_ioctl(struct file *filp,
3788                        unsigned int ioctl, unsigned long arg)
3789 {
3790         struct kvm *kvm = filp->private_data;
3791         void __user *argp = (void __user *)arg;
3792         int r = -ENOTTY;
3793         /*
3794          * This union makes it completely explicit to gcc-3.x
3795          * that these two variables' stack usage should be
3796          * combined, not added together.
3797          */
3798         union {
3799                 struct kvm_pit_state ps;
3800                 struct kvm_pit_state2 ps2;
3801                 struct kvm_pit_config pit_config;
3802         } u;
3803
3804         switch (ioctl) {
3805         case KVM_SET_TSS_ADDR:
3806                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3807                 break;
3808         case KVM_SET_IDENTITY_MAP_ADDR: {
3809                 u64 ident_addr;
3810
3811                 r = -EFAULT;
3812                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3813                         goto out;
3814                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3815                 break;
3816         }
3817         case KVM_SET_NR_MMU_PAGES:
3818                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3819                 break;
3820         case KVM_GET_NR_MMU_PAGES:
3821                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3822                 break;
3823         case KVM_CREATE_IRQCHIP: {
3824                 struct kvm_pic *vpic;
3825
3826                 mutex_lock(&kvm->lock);
3827                 r = -EEXIST;
3828                 if (kvm->arch.vpic)
3829                         goto create_irqchip_unlock;
3830                 r = -EINVAL;
3831                 if (atomic_read(&kvm->online_vcpus))
3832                         goto create_irqchip_unlock;
3833                 r = -ENOMEM;
3834                 vpic = kvm_create_pic(kvm);
3835                 if (vpic) {
3836                         r = kvm_ioapic_init(kvm);
3837                         if (r) {
3838                                 mutex_lock(&kvm->slots_lock);
3839                                 kvm_destroy_pic(vpic);
3840                                 mutex_unlock(&kvm->slots_lock);
3841                                 goto create_irqchip_unlock;
3842                         }
3843                 } else
3844                         goto create_irqchip_unlock;
3845                 r = kvm_setup_default_irq_routing(kvm);
3846                 if (r) {
3847                         mutex_lock(&kvm->slots_lock);
3848                         mutex_lock(&kvm->irq_lock);
3849                         kvm_ioapic_destroy(kvm);
3850                         kvm_destroy_pic(vpic);
3851                         mutex_unlock(&kvm->irq_lock);
3852                         mutex_unlock(&kvm->slots_lock);
3853                         goto create_irqchip_unlock;
3854                 }
3855                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3856                 smp_wmb();
3857                 kvm->arch.vpic = vpic;
3858         create_irqchip_unlock:
3859                 mutex_unlock(&kvm->lock);
3860                 break;
3861         }
3862         case KVM_CREATE_PIT:
3863                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3864                 goto create_pit;
3865         case KVM_CREATE_PIT2:
3866                 r = -EFAULT;
3867                 if (copy_from_user(&u.pit_config, argp,
3868                                    sizeof(struct kvm_pit_config)))
3869                         goto out;
3870         create_pit:
3871                 mutex_lock(&kvm->slots_lock);
3872                 r = -EEXIST;
3873                 if (kvm->arch.vpit)
3874                         goto create_pit_unlock;
3875                 r = -ENOMEM;
3876                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3877                 if (kvm->arch.vpit)
3878                         r = 0;
3879         create_pit_unlock:
3880                 mutex_unlock(&kvm->slots_lock);
3881                 break;
3882         case KVM_GET_IRQCHIP: {
3883                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3884                 struct kvm_irqchip *chip;
3885
3886                 chip = memdup_user(argp, sizeof(*chip));
3887                 if (IS_ERR(chip)) {
3888                         r = PTR_ERR(chip);
3889                         goto out;
3890                 }
3891
3892                 r = -ENXIO;
3893                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3894                         goto get_irqchip_out;
3895                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3896                 if (r)
3897                         goto get_irqchip_out;
3898                 r = -EFAULT;
3899                 if (copy_to_user(argp, chip, sizeof *chip))
3900                         goto get_irqchip_out;
3901                 r = 0;
3902         get_irqchip_out:
3903                 kfree(chip);
3904                 break;
3905         }
3906         case KVM_SET_IRQCHIP: {
3907                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3908                 struct kvm_irqchip *chip;
3909
3910                 chip = memdup_user(argp, sizeof(*chip));
3911                 if (IS_ERR(chip)) {
3912                         r = PTR_ERR(chip);
3913                         goto out;
3914                 }
3915
3916                 r = -ENXIO;
3917                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3918                         goto set_irqchip_out;
3919                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3920                 if (r)
3921                         goto set_irqchip_out;
3922                 r = 0;
3923         set_irqchip_out:
3924                 kfree(chip);
3925                 break;
3926         }
3927         case KVM_GET_PIT: {
3928                 r = -EFAULT;
3929                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3930                         goto out;
3931                 r = -ENXIO;
3932                 if (!kvm->arch.vpit)
3933                         goto out;
3934                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3935                 if (r)
3936                         goto out;
3937                 r = -EFAULT;
3938                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3939                         goto out;
3940                 r = 0;
3941                 break;
3942         }
3943         case KVM_SET_PIT: {
3944                 r = -EFAULT;
3945                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3946                         goto out;
3947                 r = -ENXIO;
3948                 if (!kvm->arch.vpit)
3949                         goto out;
3950                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3951                 break;
3952         }
3953         case KVM_GET_PIT2: {
3954                 r = -ENXIO;
3955                 if (!kvm->arch.vpit)
3956                         goto out;
3957                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3958                 if (r)
3959                         goto out;
3960                 r = -EFAULT;
3961                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3962                         goto out;
3963                 r = 0;
3964                 break;
3965         }
3966         case KVM_SET_PIT2: {
3967                 r = -EFAULT;
3968                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3969                         goto out;
3970                 r = -ENXIO;
3971                 if (!kvm->arch.vpit)
3972                         goto out;
3973                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3974                 break;
3975         }
3976         case KVM_REINJECT_CONTROL: {
3977                 struct kvm_reinject_control control;
3978                 r =  -EFAULT;
3979                 if (copy_from_user(&control, argp, sizeof(control)))
3980                         goto out;
3981                 r = kvm_vm_ioctl_reinject(kvm, &control);
3982                 break;
3983         }
3984         case KVM_SET_BOOT_CPU_ID:
3985                 r = 0;
3986                 mutex_lock(&kvm->lock);
3987                 if (atomic_read(&kvm->online_vcpus) != 0)
3988                         r = -EBUSY;
3989                 else
3990                         kvm->arch.bsp_vcpu_id = arg;
3991                 mutex_unlock(&kvm->lock);
3992                 break;
3993         case KVM_XEN_HVM_CONFIG: {
3994                 r = -EFAULT;
3995                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3996                                    sizeof(struct kvm_xen_hvm_config)))
3997                         goto out;
3998                 r = -EINVAL;
3999                 if (kvm->arch.xen_hvm_config.flags)
4000                         goto out;
4001                 r = 0;
4002                 break;
4003         }
4004         case KVM_SET_CLOCK: {
4005                 struct kvm_clock_data user_ns;
4006                 u64 now_ns;
4007                 s64 delta;
4008
4009                 r = -EFAULT;
4010                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4011                         goto out;
4012
4013                 r = -EINVAL;
4014                 if (user_ns.flags)
4015                         goto out;
4016
4017                 r = 0;
4018                 local_irq_disable();
4019                 now_ns = get_kernel_ns();
4020                 delta = user_ns.clock - now_ns;
4021                 local_irq_enable();
4022                 kvm->arch.kvmclock_offset = delta;
4023                 kvm_gen_update_masterclock(kvm);
4024                 break;
4025         }
4026         case KVM_GET_CLOCK: {
4027                 struct kvm_clock_data user_ns;
4028                 u64 now_ns;
4029
4030                 local_irq_disable();
4031                 now_ns = get_kernel_ns();
4032                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4033                 local_irq_enable();
4034                 user_ns.flags = 0;
4035                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4036
4037                 r = -EFAULT;
4038                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4039                         goto out;
4040                 r = 0;
4041                 break;
4042         }
4043         case KVM_ENABLE_CAP: {
4044                 struct kvm_enable_cap cap;
4045
4046                 r = -EFAULT;
4047                 if (copy_from_user(&cap, argp, sizeof(cap)))
4048                         goto out;
4049                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4050                 break;
4051         }
4052         default:
4053                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4054         }
4055 out:
4056         return r;
4057 }
4058
4059 static void kvm_init_msr_list(void)
4060 {
4061         u32 dummy[2];
4062         unsigned i, j;
4063
4064         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4065                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4066                         continue;
4067
4068                 /*
4069                  * Even MSRs that are valid in the host may not be exposed
4070                  * to the guests in some cases.
4071                  */
4072                 switch (msrs_to_save[i]) {
4073                 case MSR_IA32_BNDCFGS:
4074                         if (!kvm_x86_ops->mpx_supported())
4075                                 continue;
4076                         break;
4077                 case MSR_TSC_AUX:
4078                         if (!kvm_x86_ops->rdtscp_supported())
4079                                 continue;
4080                         break;
4081                 default:
4082                         break;
4083                 }
4084
4085                 if (j < i)
4086                         msrs_to_save[j] = msrs_to_save[i];
4087                 j++;
4088         }
4089         num_msrs_to_save = j;
4090
4091         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4092                 switch (emulated_msrs[i]) {
4093                 case MSR_IA32_SMBASE:
4094                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4095                                 continue;
4096                         break;
4097                 default:
4098                         break;
4099                 }
4100
4101                 if (j < i)
4102                         emulated_msrs[j] = emulated_msrs[i];
4103                 j++;
4104         }
4105         num_emulated_msrs = j;
4106 }
4107
4108 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4109                            const void *v)
4110 {
4111         int handled = 0;
4112         int n;
4113
4114         do {
4115                 n = min(len, 8);
4116                 if (!(lapic_in_kernel(vcpu) &&
4117                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4118                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4119                         break;
4120                 handled += n;
4121                 addr += n;
4122                 len -= n;
4123                 v += n;
4124         } while (len);
4125
4126         return handled;
4127 }
4128
4129 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4130 {
4131         int handled = 0;
4132         int n;
4133
4134         do {
4135                 n = min(len, 8);
4136                 if (!(lapic_in_kernel(vcpu) &&
4137                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4138                                          addr, n, v))
4139                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4140                         break;
4141                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4142                 handled += n;
4143                 addr += n;
4144                 len -= n;
4145                 v += n;
4146         } while (len);
4147
4148         return handled;
4149 }
4150
4151 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4152                         struct kvm_segment *var, int seg)
4153 {
4154         kvm_x86_ops->set_segment(vcpu, var, seg);
4155 }
4156
4157 void kvm_get_segment(struct kvm_vcpu *vcpu,
4158                      struct kvm_segment *var, int seg)
4159 {
4160         kvm_x86_ops->get_segment(vcpu, var, seg);
4161 }
4162
4163 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4164                            struct x86_exception *exception)
4165 {
4166         gpa_t t_gpa;
4167
4168         BUG_ON(!mmu_is_nested(vcpu));
4169
4170         /* NPT walks are always user-walks */
4171         access |= PFERR_USER_MASK;
4172         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4173
4174         return t_gpa;
4175 }
4176
4177 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4178                               struct x86_exception *exception)
4179 {
4180         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4181         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4182 }
4183
4184  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4185                                 struct x86_exception *exception)
4186 {
4187         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4188         access |= PFERR_FETCH_MASK;
4189         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4190 }
4191
4192 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4193                                struct x86_exception *exception)
4194 {
4195         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4196         access |= PFERR_WRITE_MASK;
4197         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4198 }
4199
4200 /* uses this to access any guest's mapped memory without checking CPL */
4201 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4202                                 struct x86_exception *exception)
4203 {
4204         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4205 }
4206
4207 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4208                                       struct kvm_vcpu *vcpu, u32 access,
4209                                       struct x86_exception *exception)
4210 {
4211         void *data = val;
4212         int r = X86EMUL_CONTINUE;
4213
4214         while (bytes) {
4215                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4216                                                             exception);
4217                 unsigned offset = addr & (PAGE_SIZE-1);
4218                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4219                 int ret;
4220
4221                 if (gpa == UNMAPPED_GVA)
4222                         return X86EMUL_PROPAGATE_FAULT;
4223                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4224                                                offset, toread);
4225                 if (ret < 0) {
4226                         r = X86EMUL_IO_NEEDED;
4227                         goto out;
4228                 }
4229
4230                 bytes -= toread;
4231                 data += toread;
4232                 addr += toread;
4233         }
4234 out:
4235         return r;
4236 }
4237
4238 /* used for instruction fetching */
4239 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4240                                 gva_t addr, void *val, unsigned int bytes,
4241                                 struct x86_exception *exception)
4242 {
4243         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4245         unsigned offset;
4246         int ret;
4247
4248         /* Inline kvm_read_guest_virt_helper for speed.  */
4249         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4250                                                     exception);
4251         if (unlikely(gpa == UNMAPPED_GVA))
4252                 return X86EMUL_PROPAGATE_FAULT;
4253
4254         offset = addr & (PAGE_SIZE-1);
4255         if (WARN_ON(offset + bytes > PAGE_SIZE))
4256                 bytes = (unsigned)PAGE_SIZE - offset;
4257         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4258                                        offset, bytes);
4259         if (unlikely(ret < 0))
4260                 return X86EMUL_IO_NEEDED;
4261
4262         return X86EMUL_CONTINUE;
4263 }
4264
4265 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4266                                gva_t addr, void *val, unsigned int bytes,
4267                                struct x86_exception *exception)
4268 {
4269         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4270         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4271
4272         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4273                                           exception);
4274 }
4275 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4276
4277 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4278                                       gva_t addr, void *val, unsigned int bytes,
4279                                       struct x86_exception *exception)
4280 {
4281         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4282         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4283 }
4284
4285 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4286                 unsigned long addr, void *val, unsigned int bytes)
4287 {
4288         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4289         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4290
4291         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4292 }
4293
4294 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4295                                        gva_t addr, void *val,
4296                                        unsigned int bytes,
4297                                        struct x86_exception *exception)
4298 {
4299         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4300         void *data = val;
4301         int r = X86EMUL_CONTINUE;
4302
4303         while (bytes) {
4304                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4305                                                              PFERR_WRITE_MASK,
4306                                                              exception);
4307                 unsigned offset = addr & (PAGE_SIZE-1);
4308                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4309                 int ret;
4310
4311                 if (gpa == UNMAPPED_GVA)
4312                         return X86EMUL_PROPAGATE_FAULT;
4313                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4314                 if (ret < 0) {
4315                         r = X86EMUL_IO_NEEDED;
4316                         goto out;
4317                 }
4318
4319                 bytes -= towrite;
4320                 data += towrite;
4321                 addr += towrite;
4322         }
4323 out:
4324         return r;
4325 }
4326 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4327
4328 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4329                                 gpa_t *gpa, struct x86_exception *exception,
4330                                 bool write)
4331 {
4332         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4333                 | (write ? PFERR_WRITE_MASK : 0);
4334
4335         /*
4336          * currently PKRU is only applied to ept enabled guest so
4337          * there is no pkey in EPT page table for L1 guest or EPT
4338          * shadow page table for L2 guest.
4339          */
4340         if (vcpu_match_mmio_gva(vcpu, gva)
4341             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4342                                  vcpu->arch.access, 0, access)) {
4343                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4344                                         (gva & (PAGE_SIZE - 1));
4345                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4346                 return 1;
4347         }
4348
4349         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4350
4351         if (*gpa == UNMAPPED_GVA)
4352                 return -1;
4353
4354         /* For APIC access vmexit */
4355         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4356                 return 1;
4357
4358         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4359                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4360                 return 1;
4361         }
4362
4363         return 0;
4364 }
4365
4366 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4367                         const void *val, int bytes)
4368 {
4369         int ret;
4370
4371         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4372         if (ret < 0)
4373                 return 0;
4374         kvm_page_track_write(vcpu, gpa, val, bytes);
4375         return 1;
4376 }
4377
4378 struct read_write_emulator_ops {
4379         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4380                                   int bytes);
4381         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382                                   void *val, int bytes);
4383         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4384                                int bytes, void *val);
4385         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4386                                     void *val, int bytes);
4387         bool write;
4388 };
4389
4390 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4391 {
4392         if (vcpu->mmio_read_completed) {
4393                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4394                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4395                 vcpu->mmio_read_completed = 0;
4396                 return 1;
4397         }
4398
4399         return 0;
4400 }
4401
4402 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4403                         void *val, int bytes)
4404 {
4405         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4406 }
4407
4408 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4409                          void *val, int bytes)
4410 {
4411         return emulator_write_phys(vcpu, gpa, val, bytes);
4412 }
4413
4414 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4415 {
4416         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4417         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4418 }
4419
4420 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4421                           void *val, int bytes)
4422 {
4423         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4424         return X86EMUL_IO_NEEDED;
4425 }
4426
4427 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4428                            void *val, int bytes)
4429 {
4430         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4431
4432         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4433         return X86EMUL_CONTINUE;
4434 }
4435
4436 static const struct read_write_emulator_ops read_emultor = {
4437         .read_write_prepare = read_prepare,
4438         .read_write_emulate = read_emulate,
4439         .read_write_mmio = vcpu_mmio_read,
4440         .read_write_exit_mmio = read_exit_mmio,
4441 };
4442
4443 static const struct read_write_emulator_ops write_emultor = {
4444         .read_write_emulate = write_emulate,
4445         .read_write_mmio = write_mmio,
4446         .read_write_exit_mmio = write_exit_mmio,
4447         .write = true,
4448 };
4449
4450 static int emulator_read_write_onepage(unsigned long addr, void *val,
4451                                        unsigned int bytes,
4452                                        struct x86_exception *exception,
4453                                        struct kvm_vcpu *vcpu,
4454                                        const struct read_write_emulator_ops *ops)
4455 {
4456         gpa_t gpa;
4457         int handled, ret;
4458         bool write = ops->write;
4459         struct kvm_mmio_fragment *frag;
4460
4461         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4462
4463         if (ret < 0)
4464                 return X86EMUL_PROPAGATE_FAULT;
4465
4466         /* For APIC access vmexit */
4467         if (ret)
4468                 goto mmio;
4469
4470         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4471                 return X86EMUL_CONTINUE;
4472
4473 mmio:
4474         /*
4475          * Is this MMIO handled locally?
4476          */
4477         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4478         if (handled == bytes)
4479                 return X86EMUL_CONTINUE;
4480
4481         gpa += handled;
4482         bytes -= handled;
4483         val += handled;
4484
4485         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4486         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4487         frag->gpa = gpa;
4488         frag->data = val;
4489         frag->len = bytes;
4490         return X86EMUL_CONTINUE;
4491 }
4492
4493 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4494                         unsigned long addr,
4495                         void *val, unsigned int bytes,
4496                         struct x86_exception *exception,
4497                         const struct read_write_emulator_ops *ops)
4498 {
4499         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4500         gpa_t gpa;
4501         int rc;
4502
4503         if (ops->read_write_prepare &&
4504                   ops->read_write_prepare(vcpu, val, bytes))
4505                 return X86EMUL_CONTINUE;
4506
4507         vcpu->mmio_nr_fragments = 0;
4508
4509         /* Crossing a page boundary? */
4510         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4511                 int now;
4512
4513                 now = -addr & ~PAGE_MASK;
4514                 rc = emulator_read_write_onepage(addr, val, now, exception,
4515                                                  vcpu, ops);
4516
4517                 if (rc != X86EMUL_CONTINUE)
4518                         return rc;
4519                 addr += now;
4520                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4521                         addr = (u32)addr;
4522                 val += now;
4523                 bytes -= now;
4524         }
4525
4526         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4527                                          vcpu, ops);
4528         if (rc != X86EMUL_CONTINUE)
4529                 return rc;
4530
4531         if (!vcpu->mmio_nr_fragments)
4532                 return rc;
4533
4534         gpa = vcpu->mmio_fragments[0].gpa;
4535
4536         vcpu->mmio_needed = 1;
4537         vcpu->mmio_cur_fragment = 0;
4538
4539         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4540         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4541         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4542         vcpu->run->mmio.phys_addr = gpa;
4543
4544         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4545 }
4546
4547 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4548                                   unsigned long addr,
4549                                   void *val,
4550                                   unsigned int bytes,
4551                                   struct x86_exception *exception)
4552 {
4553         return emulator_read_write(ctxt, addr, val, bytes,
4554                                    exception, &read_emultor);
4555 }
4556
4557 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4558                             unsigned long addr,
4559                             const void *val,
4560                             unsigned int bytes,
4561                             struct x86_exception *exception)
4562 {
4563         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4564                                    exception, &write_emultor);
4565 }
4566
4567 #define CMPXCHG_TYPE(t, ptr, old, new) \
4568         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4569
4570 #ifdef CONFIG_X86_64
4571 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4572 #else
4573 #  define CMPXCHG64(ptr, old, new) \
4574         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4575 #endif
4576
4577 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4578                                      unsigned long addr,
4579                                      const void *old,
4580                                      const void *new,
4581                                      unsigned int bytes,
4582                                      struct x86_exception *exception)
4583 {
4584         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4585         gpa_t gpa;
4586         struct page *page;
4587         char *kaddr;
4588         bool exchanged;
4589
4590         /* guests cmpxchg8b have to be emulated atomically */
4591         if (bytes > 8 || (bytes & (bytes - 1)))
4592                 goto emul_write;
4593
4594         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4595
4596         if (gpa == UNMAPPED_GVA ||
4597             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4598                 goto emul_write;
4599
4600         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4601                 goto emul_write;
4602
4603         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4604         if (is_error_page(page))
4605                 goto emul_write;
4606
4607         kaddr = kmap_atomic(page);
4608         kaddr += offset_in_page(gpa);
4609         switch (bytes) {
4610         case 1:
4611                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4612                 break;
4613         case 2:
4614                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4615                 break;
4616         case 4:
4617                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4618                 break;
4619         case 8:
4620                 exchanged = CMPXCHG64(kaddr, old, new);
4621                 break;
4622         default:
4623                 BUG();
4624         }
4625         kunmap_atomic(kaddr);
4626         kvm_release_page_dirty(page);
4627
4628         if (!exchanged)
4629                 return X86EMUL_CMPXCHG_FAILED;
4630
4631         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4632         kvm_page_track_write(vcpu, gpa, new, bytes);
4633
4634         return X86EMUL_CONTINUE;
4635
4636 emul_write:
4637         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4638
4639         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4640 }
4641
4642 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4643 {
4644         /* TODO: String I/O for in kernel device */
4645         int r;
4646
4647         if (vcpu->arch.pio.in)
4648                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4649                                     vcpu->arch.pio.size, pd);
4650         else
4651                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4652                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4653                                      pd);
4654         return r;
4655 }
4656
4657 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4658                                unsigned short port, void *val,
4659                                unsigned int count, bool in)
4660 {
4661         vcpu->arch.pio.port = port;
4662         vcpu->arch.pio.in = in;
4663         vcpu->arch.pio.count  = count;
4664         vcpu->arch.pio.size = size;
4665
4666         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4667                 vcpu->arch.pio.count = 0;
4668                 return 1;
4669         }
4670
4671         vcpu->run->exit_reason = KVM_EXIT_IO;
4672         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4673         vcpu->run->io.size = size;
4674         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4675         vcpu->run->io.count = count;
4676         vcpu->run->io.port = port;
4677
4678         return 0;
4679 }
4680
4681 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4682                                     int size, unsigned short port, void *val,
4683                                     unsigned int count)
4684 {
4685         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4686         int ret;
4687
4688         if (vcpu->arch.pio.count)
4689                 goto data_avail;
4690
4691         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4692         if (ret) {
4693 data_avail:
4694                 memcpy(val, vcpu->arch.pio_data, size * count);
4695                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4696                 vcpu->arch.pio.count = 0;
4697                 return 1;
4698         }
4699
4700         return 0;
4701 }
4702
4703 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4704                                      int size, unsigned short port,
4705                                      const void *val, unsigned int count)
4706 {
4707         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4708
4709         memcpy(vcpu->arch.pio_data, val, size * count);
4710         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4711         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4712 }
4713
4714 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4715 {
4716         return kvm_x86_ops->get_segment_base(vcpu, seg);
4717 }
4718
4719 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4720 {
4721         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4722 }
4723
4724 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4725 {
4726         if (!need_emulate_wbinvd(vcpu))
4727                 return X86EMUL_CONTINUE;
4728
4729         if (kvm_x86_ops->has_wbinvd_exit()) {
4730                 int cpu = get_cpu();
4731
4732                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4733                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4734                                 wbinvd_ipi, NULL, 1);
4735                 put_cpu();
4736                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4737         } else
4738                 wbinvd();
4739         return X86EMUL_CONTINUE;
4740 }
4741
4742 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4743 {
4744         kvm_x86_ops->skip_emulated_instruction(vcpu);
4745         return kvm_emulate_wbinvd_noskip(vcpu);
4746 }
4747 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4748
4749
4750
4751 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4752 {
4753         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4754 }
4755
4756 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4757                            unsigned long *dest)
4758 {
4759         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4760 }
4761
4762 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4763                            unsigned long value)
4764 {
4765
4766         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4767 }
4768
4769 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4770 {
4771         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4772 }
4773
4774 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4775 {
4776         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4777         unsigned long value;
4778
4779         switch (cr) {
4780         case 0:
4781                 value = kvm_read_cr0(vcpu);
4782                 break;
4783         case 2:
4784                 value = vcpu->arch.cr2;
4785                 break;
4786         case 3:
4787                 value = kvm_read_cr3(vcpu);
4788                 break;
4789         case 4:
4790                 value = kvm_read_cr4(vcpu);
4791                 break;
4792         case 8:
4793                 value = kvm_get_cr8(vcpu);
4794                 break;
4795         default:
4796                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4797                 return 0;
4798         }
4799
4800         return value;
4801 }
4802
4803 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4804 {
4805         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4806         int res = 0;
4807
4808         switch (cr) {
4809         case 0:
4810                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4811                 break;
4812         case 2:
4813                 vcpu->arch.cr2 = val;
4814                 break;
4815         case 3:
4816                 res = kvm_set_cr3(vcpu, val);
4817                 break;
4818         case 4:
4819                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4820                 break;
4821         case 8:
4822                 res = kvm_set_cr8(vcpu, val);
4823                 break;
4824         default:
4825                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4826                 res = -1;
4827         }
4828
4829         return res;
4830 }
4831
4832 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4833 {
4834         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4835 }
4836
4837 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4838 {
4839         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4840 }
4841
4842 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4845 }
4846
4847 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4848 {
4849         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4850 }
4851
4852 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4853 {
4854         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4855 }
4856
4857 static unsigned long emulator_get_cached_segment_base(
4858         struct x86_emulate_ctxt *ctxt, int seg)
4859 {
4860         return get_segment_base(emul_to_vcpu(ctxt), seg);
4861 }
4862
4863 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4864                                  struct desc_struct *desc, u32 *base3,
4865                                  int seg)
4866 {
4867         struct kvm_segment var;
4868
4869         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4870         *selector = var.selector;
4871
4872         if (var.unusable) {
4873                 memset(desc, 0, sizeof(*desc));
4874                 return false;
4875         }
4876
4877         if (var.g)
4878                 var.limit >>= 12;
4879         set_desc_limit(desc, var.limit);
4880         set_desc_base(desc, (unsigned long)var.base);
4881 #ifdef CONFIG_X86_64
4882         if (base3)
4883                 *base3 = var.base >> 32;
4884 #endif
4885         desc->type = var.type;
4886         desc->s = var.s;
4887         desc->dpl = var.dpl;
4888         desc->p = var.present;
4889         desc->avl = var.avl;
4890         desc->l = var.l;
4891         desc->d = var.db;
4892         desc->g = var.g;
4893
4894         return true;
4895 }
4896
4897 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4898                                  struct desc_struct *desc, u32 base3,
4899                                  int seg)
4900 {
4901         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4902         struct kvm_segment var;
4903
4904         var.selector = selector;
4905         var.base = get_desc_base(desc);
4906 #ifdef CONFIG_X86_64
4907         var.base |= ((u64)base3) << 32;
4908 #endif
4909         var.limit = get_desc_limit(desc);
4910         if (desc->g)
4911                 var.limit = (var.limit << 12) | 0xfff;
4912         var.type = desc->type;
4913         var.dpl = desc->dpl;
4914         var.db = desc->d;
4915         var.s = desc->s;
4916         var.l = desc->l;
4917         var.g = desc->g;
4918         var.avl = desc->avl;
4919         var.present = desc->p;
4920         var.unusable = !var.present;
4921         var.padding = 0;
4922
4923         kvm_set_segment(vcpu, &var, seg);
4924         return;
4925 }
4926
4927 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4928                             u32 msr_index, u64 *pdata)
4929 {
4930         struct msr_data msr;
4931         int r;
4932
4933         msr.index = msr_index;
4934         msr.host_initiated = false;
4935         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4936         if (r)
4937                 return r;
4938
4939         *pdata = msr.data;
4940         return 0;
4941 }
4942
4943 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4944                             u32 msr_index, u64 data)
4945 {
4946         struct msr_data msr;
4947
4948         msr.data = data;
4949         msr.index = msr_index;
4950         msr.host_initiated = false;
4951         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4952 }
4953
4954 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4955 {
4956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4957
4958         return vcpu->arch.smbase;
4959 }
4960
4961 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4962 {
4963         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4964
4965         vcpu->arch.smbase = smbase;
4966 }
4967
4968 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4969                               u32 pmc)
4970 {
4971         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4972 }
4973
4974 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4975                              u32 pmc, u64 *pdata)
4976 {
4977         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4978 }
4979
4980 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4981 {
4982         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4983 }
4984
4985 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4986 {
4987         preempt_disable();
4988         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4989         /*
4990          * CR0.TS may reference the host fpu state, not the guest fpu state,
4991          * so it may be clear at this point.
4992          */
4993         clts();
4994 }
4995
4996 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4997 {
4998         preempt_enable();
4999 }
5000
5001 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5002                               struct x86_instruction_info *info,
5003                               enum x86_intercept_stage stage)
5004 {
5005         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5006 }
5007
5008 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5009                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5010 {
5011         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5012 }
5013
5014 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5015 {
5016         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5017 }
5018
5019 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5020 {
5021         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5022 }
5023
5024 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5025 {
5026         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5027 }
5028
5029 static const struct x86_emulate_ops emulate_ops = {
5030         .read_gpr            = emulator_read_gpr,
5031         .write_gpr           = emulator_write_gpr,
5032         .read_std            = kvm_read_guest_virt_system,
5033         .write_std           = kvm_write_guest_virt_system,
5034         .read_phys           = kvm_read_guest_phys_system,
5035         .fetch               = kvm_fetch_guest_virt,
5036         .read_emulated       = emulator_read_emulated,
5037         .write_emulated      = emulator_write_emulated,
5038         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5039         .invlpg              = emulator_invlpg,
5040         .pio_in_emulated     = emulator_pio_in_emulated,
5041         .pio_out_emulated    = emulator_pio_out_emulated,
5042         .get_segment         = emulator_get_segment,
5043         .set_segment         = emulator_set_segment,
5044         .get_cached_segment_base = emulator_get_cached_segment_base,
5045         .get_gdt             = emulator_get_gdt,
5046         .get_idt             = emulator_get_idt,
5047         .set_gdt             = emulator_set_gdt,
5048         .set_idt             = emulator_set_idt,
5049         .get_cr              = emulator_get_cr,
5050         .set_cr              = emulator_set_cr,
5051         .cpl                 = emulator_get_cpl,
5052         .get_dr              = emulator_get_dr,
5053         .set_dr              = emulator_set_dr,
5054         .get_smbase          = emulator_get_smbase,
5055         .set_smbase          = emulator_set_smbase,
5056         .set_msr             = emulator_set_msr,
5057         .get_msr             = emulator_get_msr,
5058         .check_pmc           = emulator_check_pmc,
5059         .read_pmc            = emulator_read_pmc,
5060         .halt                = emulator_halt,
5061         .wbinvd              = emulator_wbinvd,
5062         .fix_hypercall       = emulator_fix_hypercall,
5063         .get_fpu             = emulator_get_fpu,
5064         .put_fpu             = emulator_put_fpu,
5065         .intercept           = emulator_intercept,
5066         .get_cpuid           = emulator_get_cpuid,
5067         .set_nmi_mask        = emulator_set_nmi_mask,
5068 };
5069
5070 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5071 {
5072         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5073         /*
5074          * an sti; sti; sequence only disable interrupts for the first
5075          * instruction. So, if the last instruction, be it emulated or
5076          * not, left the system with the INT_STI flag enabled, it
5077          * means that the last instruction is an sti. We should not
5078          * leave the flag on in this case. The same goes for mov ss
5079          */
5080         if (int_shadow & mask)
5081                 mask = 0;
5082         if (unlikely(int_shadow || mask)) {
5083                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5084                 if (!mask)
5085                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5086         }
5087 }
5088
5089 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5090 {
5091         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5092         if (ctxt->exception.vector == PF_VECTOR)
5093                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5094
5095         if (ctxt->exception.error_code_valid)
5096                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5097                                       ctxt->exception.error_code);
5098         else
5099                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5100         return false;
5101 }
5102
5103 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5104 {
5105         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5106         int cs_db, cs_l;
5107
5108         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5109
5110         ctxt->eflags = kvm_get_rflags(vcpu);
5111         ctxt->eip = kvm_rip_read(vcpu);
5112         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5113                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5114                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5115                      cs_db                              ? X86EMUL_MODE_PROT32 :
5116                                                           X86EMUL_MODE_PROT16;
5117         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5118         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5119         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5120         ctxt->emul_flags = vcpu->arch.hflags;
5121
5122         init_decode_cache(ctxt);
5123         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5124 }
5125
5126 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5127 {
5128         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5129         int ret;
5130
5131         init_emulate_ctxt(vcpu);
5132
5133         ctxt->op_bytes = 2;
5134         ctxt->ad_bytes = 2;
5135         ctxt->_eip = ctxt->eip + inc_eip;
5136         ret = emulate_int_real(ctxt, irq);
5137
5138         if (ret != X86EMUL_CONTINUE)
5139                 return EMULATE_FAIL;
5140
5141         ctxt->eip = ctxt->_eip;
5142         kvm_rip_write(vcpu, ctxt->eip);
5143         kvm_set_rflags(vcpu, ctxt->eflags);
5144
5145         if (irq == NMI_VECTOR)
5146                 vcpu->arch.nmi_pending = 0;
5147         else
5148                 vcpu->arch.interrupt.pending = false;
5149
5150         return EMULATE_DONE;
5151 }
5152 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5153
5154 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5155 {
5156         int r = EMULATE_DONE;
5157
5158         ++vcpu->stat.insn_emulation_fail;
5159         trace_kvm_emulate_insn_failed(vcpu);
5160         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5161                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5162                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5163                 vcpu->run->internal.ndata = 0;
5164                 r = EMULATE_FAIL;
5165         }
5166         kvm_queue_exception(vcpu, UD_VECTOR);
5167
5168         return r;
5169 }
5170
5171 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5172                                   bool write_fault_to_shadow_pgtable,
5173                                   int emulation_type)
5174 {
5175         gpa_t gpa = cr2;
5176         kvm_pfn_t pfn;
5177
5178         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5179                 return false;
5180
5181         if (!vcpu->arch.mmu.direct_map) {
5182                 /*
5183                  * Write permission should be allowed since only
5184                  * write access need to be emulated.
5185                  */
5186                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5187
5188                 /*
5189                  * If the mapping is invalid in guest, let cpu retry
5190                  * it to generate fault.
5191                  */
5192                 if (gpa == UNMAPPED_GVA)
5193                         return true;
5194         }
5195
5196         /*
5197          * Do not retry the unhandleable instruction if it faults on the
5198          * readonly host memory, otherwise it will goto a infinite loop:
5199          * retry instruction -> write #PF -> emulation fail -> retry
5200          * instruction -> ...
5201          */
5202         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5203
5204         /*
5205          * If the instruction failed on the error pfn, it can not be fixed,
5206          * report the error to userspace.
5207          */
5208         if (is_error_noslot_pfn(pfn))
5209                 return false;
5210
5211         kvm_release_pfn_clean(pfn);
5212
5213         /* The instructions are well-emulated on direct mmu. */
5214         if (vcpu->arch.mmu.direct_map) {
5215                 unsigned int indirect_shadow_pages;
5216
5217                 spin_lock(&vcpu->kvm->mmu_lock);
5218                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5219                 spin_unlock(&vcpu->kvm->mmu_lock);
5220
5221                 if (indirect_shadow_pages)
5222                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5223
5224                 return true;
5225         }
5226
5227         /*
5228          * if emulation was due to access to shadowed page table
5229          * and it failed try to unshadow page and re-enter the
5230          * guest to let CPU execute the instruction.
5231          */
5232         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5233
5234         /*
5235          * If the access faults on its page table, it can not
5236          * be fixed by unprotecting shadow page and it should
5237          * be reported to userspace.
5238          */
5239         return !write_fault_to_shadow_pgtable;
5240 }
5241
5242 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5243                               unsigned long cr2,  int emulation_type)
5244 {
5245         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5246         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5247
5248         last_retry_eip = vcpu->arch.last_retry_eip;
5249         last_retry_addr = vcpu->arch.last_retry_addr;
5250
5251         /*
5252          * If the emulation is caused by #PF and it is non-page_table
5253          * writing instruction, it means the VM-EXIT is caused by shadow
5254          * page protected, we can zap the shadow page and retry this
5255          * instruction directly.
5256          *
5257          * Note: if the guest uses a non-page-table modifying instruction
5258          * on the PDE that points to the instruction, then we will unmap
5259          * the instruction and go to an infinite loop. So, we cache the
5260          * last retried eip and the last fault address, if we meet the eip
5261          * and the address again, we can break out of the potential infinite
5262          * loop.
5263          */
5264         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5265
5266         if (!(emulation_type & EMULTYPE_RETRY))
5267                 return false;
5268
5269         if (x86_page_table_writing_insn(ctxt))
5270                 return false;
5271
5272         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5273                 return false;
5274
5275         vcpu->arch.last_retry_eip = ctxt->eip;
5276         vcpu->arch.last_retry_addr = cr2;
5277
5278         if (!vcpu->arch.mmu.direct_map)
5279                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5280
5281         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5282
5283         return true;
5284 }
5285
5286 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5287 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5288
5289 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5290 {
5291         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5292                 /* This is a good place to trace that we are exiting SMM.  */
5293                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5294
5295                 if (unlikely(vcpu->arch.smi_pending)) {
5296                         kvm_make_request(KVM_REQ_SMI, vcpu);
5297                         vcpu->arch.smi_pending = 0;
5298                 } else {
5299                         /* Process a latched INIT, if any.  */
5300                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5301                 }
5302         }
5303
5304         kvm_mmu_reset_context(vcpu);
5305 }
5306
5307 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5308 {
5309         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5310
5311         vcpu->arch.hflags = emul_flags;
5312
5313         if (changed & HF_SMM_MASK)
5314                 kvm_smm_changed(vcpu);
5315 }
5316
5317 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5318                                 unsigned long *db)
5319 {
5320         u32 dr6 = 0;
5321         int i;
5322         u32 enable, rwlen;
5323
5324         enable = dr7;
5325         rwlen = dr7 >> 16;
5326         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5327                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5328                         dr6 |= (1 << i);
5329         return dr6;
5330 }
5331
5332 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5333 {
5334         struct kvm_run *kvm_run = vcpu->run;
5335
5336         /*
5337          * rflags is the old, "raw" value of the flags.  The new value has
5338          * not been saved yet.
5339          *
5340          * This is correct even for TF set by the guest, because "the
5341          * processor will not generate this exception after the instruction
5342          * that sets the TF flag".
5343          */
5344         if (unlikely(rflags & X86_EFLAGS_TF)) {
5345                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5346                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5347                                                   DR6_RTM;
5348                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5349                         kvm_run->debug.arch.exception = DB_VECTOR;
5350                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5351                         *r = EMULATE_USER_EXIT;
5352                 } else {
5353                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5354                         /*
5355                          * "Certain debug exceptions may clear bit 0-3.  The
5356                          * remaining contents of the DR6 register are never
5357                          * cleared by the processor".
5358                          */
5359                         vcpu->arch.dr6 &= ~15;
5360                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5361                         kvm_queue_exception(vcpu, DB_VECTOR);
5362                 }
5363         }
5364 }
5365
5366 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5367 {
5368         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5369             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5370                 struct kvm_run *kvm_run = vcpu->run;
5371                 unsigned long eip = kvm_get_linear_rip(vcpu);
5372                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5373                                            vcpu->arch.guest_debug_dr7,
5374                                            vcpu->arch.eff_db);
5375
5376                 if (dr6 != 0) {
5377                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5378                         kvm_run->debug.arch.pc = eip;
5379                         kvm_run->debug.arch.exception = DB_VECTOR;
5380                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5381                         *r = EMULATE_USER_EXIT;
5382                         return true;
5383                 }
5384         }
5385
5386         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5387             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5388                 unsigned long eip = kvm_get_linear_rip(vcpu);
5389                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5390                                            vcpu->arch.dr7,
5391                                            vcpu->arch.db);
5392
5393                 if (dr6 != 0) {
5394                         vcpu->arch.dr6 &= ~15;
5395                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5396                         kvm_queue_exception(vcpu, DB_VECTOR);
5397                         *r = EMULATE_DONE;
5398                         return true;
5399                 }
5400         }
5401
5402         return false;
5403 }
5404
5405 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5406                             unsigned long cr2,
5407                             int emulation_type,
5408                             void *insn,
5409                             int insn_len)
5410 {
5411         int r;
5412         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5413         bool writeback = true;
5414         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5415
5416         /*
5417          * Clear write_fault_to_shadow_pgtable here to ensure it is
5418          * never reused.
5419          */
5420         vcpu->arch.write_fault_to_shadow_pgtable = false;
5421         kvm_clear_exception_queue(vcpu);
5422
5423         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5424                 init_emulate_ctxt(vcpu);
5425
5426                 /*
5427                  * We will reenter on the same instruction since
5428                  * we do not set complete_userspace_io.  This does not
5429                  * handle watchpoints yet, those would be handled in
5430                  * the emulate_ops.
5431                  */
5432                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5433                         return r;
5434
5435                 ctxt->interruptibility = 0;
5436                 ctxt->have_exception = false;
5437                 ctxt->exception.vector = -1;
5438                 ctxt->perm_ok = false;
5439
5440                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5441
5442                 r = x86_decode_insn(ctxt, insn, insn_len);
5443
5444                 trace_kvm_emulate_insn_start(vcpu);
5445                 ++vcpu->stat.insn_emulation;
5446                 if (r != EMULATION_OK)  {
5447                         if (emulation_type & EMULTYPE_TRAP_UD)
5448                                 return EMULATE_FAIL;
5449                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5450                                                 emulation_type))
5451                                 return EMULATE_DONE;
5452                         if (emulation_type & EMULTYPE_SKIP)
5453                                 return EMULATE_FAIL;
5454                         return handle_emulation_failure(vcpu);
5455                 }
5456         }
5457
5458         if (emulation_type & EMULTYPE_SKIP) {
5459                 kvm_rip_write(vcpu, ctxt->_eip);
5460                 if (ctxt->eflags & X86_EFLAGS_RF)
5461                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5462                 return EMULATE_DONE;
5463         }
5464
5465         if (retry_instruction(ctxt, cr2, emulation_type))
5466                 return EMULATE_DONE;
5467
5468         /* this is needed for vmware backdoor interface to work since it
5469            changes registers values  during IO operation */
5470         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5471                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5472                 emulator_invalidate_register_cache(ctxt);
5473         }
5474
5475 restart:
5476         r = x86_emulate_insn(ctxt);
5477
5478         if (r == EMULATION_INTERCEPTED)
5479                 return EMULATE_DONE;
5480
5481         if (r == EMULATION_FAILED) {
5482                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5483                                         emulation_type))
5484                         return EMULATE_DONE;
5485
5486                 return handle_emulation_failure(vcpu);
5487         }
5488
5489         if (ctxt->have_exception) {
5490                 r = EMULATE_DONE;
5491                 if (inject_emulated_exception(vcpu))
5492                         return r;
5493         } else if (vcpu->arch.pio.count) {
5494                 if (!vcpu->arch.pio.in) {
5495                         /* FIXME: return into emulator if single-stepping.  */
5496                         vcpu->arch.pio.count = 0;
5497                 } else {
5498                         writeback = false;
5499                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5500                 }
5501                 r = EMULATE_USER_EXIT;
5502         } else if (vcpu->mmio_needed) {
5503                 if (!vcpu->mmio_is_write)
5504                         writeback = false;
5505                 r = EMULATE_USER_EXIT;
5506                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5507         } else if (r == EMULATION_RESTART)
5508                 goto restart;
5509         else
5510                 r = EMULATE_DONE;
5511
5512         if (writeback) {
5513                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5514                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5515                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5516                 if (vcpu->arch.hflags != ctxt->emul_flags)
5517                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5518                 kvm_rip_write(vcpu, ctxt->eip);
5519                 if (r == EMULATE_DONE)
5520                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5521                 if (!ctxt->have_exception ||
5522                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5523                         __kvm_set_rflags(vcpu, ctxt->eflags);
5524
5525                 /*
5526                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5527                  * do nothing, and it will be requested again as soon as
5528                  * the shadow expires.  But we still need to check here,
5529                  * because POPF has no interrupt shadow.
5530                  */
5531                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5532                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5533         } else
5534                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5535
5536         return r;
5537 }
5538 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5539
5540 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5541 {
5542         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5543         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5544                                             size, port, &val, 1);
5545         /* do not return to emulator after return from userspace */
5546         vcpu->arch.pio.count = 0;
5547         return ret;
5548 }
5549 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5550
5551 static void tsc_bad(void *info)
5552 {
5553         __this_cpu_write(cpu_tsc_khz, 0);
5554 }
5555
5556 static void tsc_khz_changed(void *data)
5557 {
5558         struct cpufreq_freqs *freq = data;
5559         unsigned long khz = 0;
5560
5561         if (data)
5562                 khz = freq->new;
5563         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5564                 khz = cpufreq_quick_get(raw_smp_processor_id());
5565         if (!khz)
5566                 khz = tsc_khz;
5567         __this_cpu_write(cpu_tsc_khz, khz);
5568 }
5569
5570 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5571                                      void *data)
5572 {
5573         struct cpufreq_freqs *freq = data;
5574         struct kvm *kvm;
5575         struct kvm_vcpu *vcpu;
5576         int i, send_ipi = 0;
5577
5578         /*
5579          * We allow guests to temporarily run on slowing clocks,
5580          * provided we notify them after, or to run on accelerating
5581          * clocks, provided we notify them before.  Thus time never
5582          * goes backwards.
5583          *
5584          * However, we have a problem.  We can't atomically update
5585          * the frequency of a given CPU from this function; it is
5586          * merely a notifier, which can be called from any CPU.
5587          * Changing the TSC frequency at arbitrary points in time
5588          * requires a recomputation of local variables related to
5589          * the TSC for each VCPU.  We must flag these local variables
5590          * to be updated and be sure the update takes place with the
5591          * new frequency before any guests proceed.
5592          *
5593          * Unfortunately, the combination of hotplug CPU and frequency
5594          * change creates an intractable locking scenario; the order
5595          * of when these callouts happen is undefined with respect to
5596          * CPU hotplug, and they can race with each other.  As such,
5597          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5598          * undefined; you can actually have a CPU frequency change take
5599          * place in between the computation of X and the setting of the
5600          * variable.  To protect against this problem, all updates of
5601          * the per_cpu tsc_khz variable are done in an interrupt
5602          * protected IPI, and all callers wishing to update the value
5603          * must wait for a synchronous IPI to complete (which is trivial
5604          * if the caller is on the CPU already).  This establishes the
5605          * necessary total order on variable updates.
5606          *
5607          * Note that because a guest time update may take place
5608          * anytime after the setting of the VCPU's request bit, the
5609          * correct TSC value must be set before the request.  However,
5610          * to ensure the update actually makes it to any guest which
5611          * starts running in hardware virtualization between the set
5612          * and the acquisition of the spinlock, we must also ping the
5613          * CPU after setting the request bit.
5614          *
5615          */
5616
5617         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5618                 return 0;
5619         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5620                 return 0;
5621
5622         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5623
5624         spin_lock(&kvm_lock);
5625         list_for_each_entry(kvm, &vm_list, vm_list) {
5626                 kvm_for_each_vcpu(i, vcpu, kvm) {
5627                         if (vcpu->cpu != freq->cpu)
5628                                 continue;
5629                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5630                         if (vcpu->cpu != smp_processor_id())
5631                                 send_ipi = 1;
5632                 }
5633         }
5634         spin_unlock(&kvm_lock);
5635
5636         if (freq->old < freq->new && send_ipi) {
5637                 /*
5638                  * We upscale the frequency.  Must make the guest
5639                  * doesn't see old kvmclock values while running with
5640                  * the new frequency, otherwise we risk the guest sees
5641                  * time go backwards.
5642                  *
5643                  * In case we update the frequency for another cpu
5644                  * (which might be in guest context) send an interrupt
5645                  * to kick the cpu out of guest context.  Next time
5646                  * guest context is entered kvmclock will be updated,
5647                  * so the guest will not see stale values.
5648                  */
5649                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5650         }
5651         return 0;
5652 }
5653
5654 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5655         .notifier_call  = kvmclock_cpufreq_notifier
5656 };
5657
5658 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5659                                         unsigned long action, void *hcpu)
5660 {
5661         unsigned int cpu = (unsigned long)hcpu;
5662
5663         switch (action) {
5664                 case CPU_ONLINE:
5665                 case CPU_DOWN_FAILED:
5666                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5667                         break;
5668                 case CPU_DOWN_PREPARE:
5669                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5670                         break;
5671         }
5672         return NOTIFY_OK;
5673 }
5674
5675 static struct notifier_block kvmclock_cpu_notifier_block = {
5676         .notifier_call  = kvmclock_cpu_notifier,
5677         .priority = -INT_MAX
5678 };
5679
5680 static void kvm_timer_init(void)
5681 {
5682         int cpu;
5683
5684         max_tsc_khz = tsc_khz;
5685
5686         cpu_notifier_register_begin();
5687         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5688 #ifdef CONFIG_CPU_FREQ
5689                 struct cpufreq_policy policy;
5690                 memset(&policy, 0, sizeof(policy));
5691                 cpu = get_cpu();
5692                 cpufreq_get_policy(&policy, cpu);
5693                 if (policy.cpuinfo.max_freq)
5694                         max_tsc_khz = policy.cpuinfo.max_freq;
5695                 put_cpu();
5696 #endif
5697                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5698                                           CPUFREQ_TRANSITION_NOTIFIER);
5699         }
5700         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5701         for_each_online_cpu(cpu)
5702                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5703
5704         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5705         cpu_notifier_register_done();
5706
5707 }
5708
5709 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5710
5711 int kvm_is_in_guest(void)
5712 {
5713         return __this_cpu_read(current_vcpu) != NULL;
5714 }
5715
5716 static int kvm_is_user_mode(void)
5717 {
5718         int user_mode = 3;
5719
5720         if (__this_cpu_read(current_vcpu))
5721                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5722
5723         return user_mode != 0;
5724 }
5725
5726 static unsigned long kvm_get_guest_ip(void)
5727 {
5728         unsigned long ip = 0;
5729
5730         if (__this_cpu_read(current_vcpu))
5731                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5732
5733         return ip;
5734 }
5735
5736 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5737         .is_in_guest            = kvm_is_in_guest,
5738         .is_user_mode           = kvm_is_user_mode,
5739         .get_guest_ip           = kvm_get_guest_ip,
5740 };
5741
5742 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5743 {
5744         __this_cpu_write(current_vcpu, vcpu);
5745 }
5746 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5747
5748 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5749 {
5750         __this_cpu_write(current_vcpu, NULL);
5751 }
5752 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5753
5754 static void kvm_set_mmio_spte_mask(void)
5755 {
5756         u64 mask;
5757         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5758
5759         /*
5760          * Set the reserved bits and the present bit of an paging-structure
5761          * entry to generate page fault with PFER.RSV = 1.
5762          */
5763          /* Mask the reserved physical address bits. */
5764         mask = rsvd_bits(maxphyaddr, 51);
5765
5766         /* Bit 62 is always reserved for 32bit host. */
5767         mask |= 0x3ull << 62;
5768
5769         /* Set the present bit. */
5770         mask |= 1ull;
5771
5772 #ifdef CONFIG_X86_64
5773         /*
5774          * If reserved bit is not supported, clear the present bit to disable
5775          * mmio page fault.
5776          */
5777         if (maxphyaddr == 52)
5778                 mask &= ~1ull;
5779 #endif
5780
5781         kvm_mmu_set_mmio_spte_mask(mask);
5782 }
5783
5784 #ifdef CONFIG_X86_64
5785 static void pvclock_gtod_update_fn(struct work_struct *work)
5786 {
5787         struct kvm *kvm;
5788
5789         struct kvm_vcpu *vcpu;
5790         int i;
5791
5792         spin_lock(&kvm_lock);
5793         list_for_each_entry(kvm, &vm_list, vm_list)
5794                 kvm_for_each_vcpu(i, vcpu, kvm)
5795                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5796         atomic_set(&kvm_guest_has_master_clock, 0);
5797         spin_unlock(&kvm_lock);
5798 }
5799
5800 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5801
5802 /*
5803  * Notification about pvclock gtod data update.
5804  */
5805 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5806                                void *priv)
5807 {
5808         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5809         struct timekeeper *tk = priv;
5810
5811         update_pvclock_gtod(tk);
5812
5813         /* disable master clock if host does not trust, or does not
5814          * use, TSC clocksource
5815          */
5816         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5817             atomic_read(&kvm_guest_has_master_clock) != 0)
5818                 queue_work(system_long_wq, &pvclock_gtod_work);
5819
5820         return 0;
5821 }
5822
5823 static struct notifier_block pvclock_gtod_notifier = {
5824         .notifier_call = pvclock_gtod_notify,
5825 };
5826 #endif
5827
5828 int kvm_arch_init(void *opaque)
5829 {
5830         int r;
5831         struct kvm_x86_ops *ops = opaque;
5832
5833         if (kvm_x86_ops) {
5834                 printk(KERN_ERR "kvm: already loaded the other module\n");
5835                 r = -EEXIST;
5836                 goto out;
5837         }
5838
5839         if (!ops->cpu_has_kvm_support()) {
5840                 printk(KERN_ERR "kvm: no hardware support\n");
5841                 r = -EOPNOTSUPP;
5842                 goto out;
5843         }
5844         if (ops->disabled_by_bios()) {
5845                 printk(KERN_ERR "kvm: disabled by bios\n");
5846                 r = -EOPNOTSUPP;
5847                 goto out;
5848         }
5849
5850         r = -ENOMEM;
5851         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5852         if (!shared_msrs) {
5853                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5854                 goto out;
5855         }
5856
5857         r = kvm_mmu_module_init();
5858         if (r)
5859                 goto out_free_percpu;
5860
5861         kvm_set_mmio_spte_mask();
5862
5863         kvm_x86_ops = ops;
5864
5865         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5866                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5867
5868         kvm_timer_init();
5869
5870         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5871
5872         if (boot_cpu_has(X86_FEATURE_XSAVE))
5873                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5874
5875         kvm_lapic_init();
5876 #ifdef CONFIG_X86_64
5877         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5878 #endif
5879
5880         return 0;
5881
5882 out_free_percpu:
5883         free_percpu(shared_msrs);
5884 out:
5885         return r;
5886 }
5887
5888 void kvm_arch_exit(void)
5889 {
5890         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5891
5892         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5893                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5894                                             CPUFREQ_TRANSITION_NOTIFIER);
5895         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5896 #ifdef CONFIG_X86_64
5897         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5898 #endif
5899         kvm_x86_ops = NULL;
5900         kvm_mmu_module_exit();
5901         free_percpu(shared_msrs);
5902 }
5903
5904 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5905 {
5906         ++vcpu->stat.halt_exits;
5907         if (lapic_in_kernel(vcpu)) {
5908                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5909                 return 1;
5910         } else {
5911                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5912                 return 0;
5913         }
5914 }
5915 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5916
5917 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5918 {
5919         kvm_x86_ops->skip_emulated_instruction(vcpu);
5920         return kvm_vcpu_halt(vcpu);
5921 }
5922 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5923
5924 /*
5925  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5926  *
5927  * @apicid - apicid of vcpu to be kicked.
5928  */
5929 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5930 {
5931         struct kvm_lapic_irq lapic_irq;
5932
5933         lapic_irq.shorthand = 0;
5934         lapic_irq.dest_mode = 0;
5935         lapic_irq.dest_id = apicid;
5936         lapic_irq.msi_redir_hint = false;
5937
5938         lapic_irq.delivery_mode = APIC_DM_REMRD;
5939         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5940 }
5941
5942 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5943 {
5944         vcpu->arch.apicv_active = false;
5945         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5946 }
5947
5948 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5949 {
5950         unsigned long nr, a0, a1, a2, a3, ret;
5951         int op_64_bit, r = 1;
5952
5953         kvm_x86_ops->skip_emulated_instruction(vcpu);
5954
5955         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5956                 return kvm_hv_hypercall(vcpu);
5957
5958         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5959         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5960         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5961         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5962         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5963
5964         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5965
5966         op_64_bit = is_64_bit_mode(vcpu);
5967         if (!op_64_bit) {
5968                 nr &= 0xFFFFFFFF;
5969                 a0 &= 0xFFFFFFFF;
5970                 a1 &= 0xFFFFFFFF;
5971                 a2 &= 0xFFFFFFFF;
5972                 a3 &= 0xFFFFFFFF;
5973         }
5974
5975         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5976                 ret = -KVM_EPERM;
5977                 goto out;
5978         }
5979
5980         switch (nr) {
5981         case KVM_HC_VAPIC_POLL_IRQ:
5982                 ret = 0;
5983                 break;
5984         case KVM_HC_KICK_CPU:
5985                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5986                 ret = 0;
5987                 break;
5988         default:
5989                 ret = -KVM_ENOSYS;
5990                 break;
5991         }
5992 out:
5993         if (!op_64_bit)
5994                 ret = (u32)ret;
5995         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5996         ++vcpu->stat.hypercalls;
5997         return r;
5998 }
5999 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6000
6001 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6002 {
6003         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6004         char instruction[3];
6005         unsigned long rip = kvm_rip_read(vcpu);
6006
6007         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6008
6009         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6010 }
6011
6012 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6013 {
6014         return vcpu->run->request_interrupt_window &&
6015                 likely(!pic_in_kernel(vcpu->kvm));
6016 }
6017
6018 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6019 {
6020         struct kvm_run *kvm_run = vcpu->run;
6021
6022         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6023         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6024         kvm_run->cr8 = kvm_get_cr8(vcpu);
6025         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6026         kvm_run->ready_for_interrupt_injection =
6027                 pic_in_kernel(vcpu->kvm) ||
6028                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6029 }
6030
6031 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6032 {
6033         int max_irr, tpr;
6034
6035         if (!kvm_x86_ops->update_cr8_intercept)
6036                 return;
6037
6038         if (!lapic_in_kernel(vcpu))
6039                 return;
6040
6041         if (vcpu->arch.apicv_active)
6042                 return;
6043
6044         if (!vcpu->arch.apic->vapic_addr)
6045                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6046         else
6047                 max_irr = -1;
6048
6049         if (max_irr != -1)
6050                 max_irr >>= 4;
6051
6052         tpr = kvm_lapic_get_cr8(vcpu);
6053
6054         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6055 }
6056
6057 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6058 {
6059         int r;
6060
6061         /* try to reinject previous events if any */
6062         if (vcpu->arch.exception.pending) {
6063                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6064                                         vcpu->arch.exception.has_error_code,
6065                                         vcpu->arch.exception.error_code);
6066
6067                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6068                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6069                                              X86_EFLAGS_RF);
6070
6071                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6072                     (vcpu->arch.dr7 & DR7_GD)) {
6073                         vcpu->arch.dr7 &= ~DR7_GD;
6074                         kvm_update_dr7(vcpu);
6075                 }
6076
6077                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6078                                           vcpu->arch.exception.has_error_code,
6079                                           vcpu->arch.exception.error_code,
6080                                           vcpu->arch.exception.reinject);
6081                 return 0;
6082         }
6083
6084         if (vcpu->arch.nmi_injected) {
6085                 kvm_x86_ops->set_nmi(vcpu);
6086                 return 0;
6087         }
6088
6089         if (vcpu->arch.interrupt.pending) {
6090                 kvm_x86_ops->set_irq(vcpu);
6091                 return 0;
6092         }
6093
6094         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6095                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6096                 if (r != 0)
6097                         return r;
6098         }
6099
6100         /* try to inject new event if pending */
6101         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6102                 --vcpu->arch.nmi_pending;
6103                 vcpu->arch.nmi_injected = true;
6104                 kvm_x86_ops->set_nmi(vcpu);
6105         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6106                 /*
6107                  * Because interrupts can be injected asynchronously, we are
6108                  * calling check_nested_events again here to avoid a race condition.
6109                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6110                  * proposal and current concerns.  Perhaps we should be setting
6111                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6112                  */
6113                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6114                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6115                         if (r != 0)
6116                                 return r;
6117                 }
6118                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6119                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6120                                             false);
6121                         kvm_x86_ops->set_irq(vcpu);
6122                 }
6123         }
6124         return 0;
6125 }
6126
6127 static void process_nmi(struct kvm_vcpu *vcpu)
6128 {
6129         unsigned limit = 2;
6130
6131         /*
6132          * x86 is limited to one NMI running, and one NMI pending after it.
6133          * If an NMI is already in progress, limit further NMIs to just one.
6134          * Otherwise, allow two (and we'll inject the first one immediately).
6135          */
6136         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6137                 limit = 1;
6138
6139         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6140         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6141         kvm_make_request(KVM_REQ_EVENT, vcpu);
6142 }
6143
6144 #define put_smstate(type, buf, offset, val)                       \
6145         *(type *)((buf) + (offset) - 0x7e00) = val
6146
6147 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6148 {
6149         u32 flags = 0;
6150         flags |= seg->g       << 23;
6151         flags |= seg->db      << 22;
6152         flags |= seg->l       << 21;
6153         flags |= seg->avl     << 20;
6154         flags |= seg->present << 15;
6155         flags |= seg->dpl     << 13;
6156         flags |= seg->s       << 12;
6157         flags |= seg->type    << 8;
6158         return flags;
6159 }
6160
6161 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6162 {
6163         struct kvm_segment seg;
6164         int offset;
6165
6166         kvm_get_segment(vcpu, &seg, n);
6167         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6168
6169         if (n < 3)
6170                 offset = 0x7f84 + n * 12;
6171         else
6172                 offset = 0x7f2c + (n - 3) * 12;
6173
6174         put_smstate(u32, buf, offset + 8, seg.base);
6175         put_smstate(u32, buf, offset + 4, seg.limit);
6176         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6177 }
6178
6179 #ifdef CONFIG_X86_64
6180 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6181 {
6182         struct kvm_segment seg;
6183         int offset;
6184         u16 flags;
6185
6186         kvm_get_segment(vcpu, &seg, n);
6187         offset = 0x7e00 + n * 16;
6188
6189         flags = process_smi_get_segment_flags(&seg) >> 8;
6190         put_smstate(u16, buf, offset, seg.selector);
6191         put_smstate(u16, buf, offset + 2, flags);
6192         put_smstate(u32, buf, offset + 4, seg.limit);
6193         put_smstate(u64, buf, offset + 8, seg.base);
6194 }
6195 #endif
6196
6197 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6198 {
6199         struct desc_ptr dt;
6200         struct kvm_segment seg;
6201         unsigned long val;
6202         int i;
6203
6204         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6205         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6206         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6207         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6208
6209         for (i = 0; i < 8; i++)
6210                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6211
6212         kvm_get_dr(vcpu, 6, &val);
6213         put_smstate(u32, buf, 0x7fcc, (u32)val);
6214         kvm_get_dr(vcpu, 7, &val);
6215         put_smstate(u32, buf, 0x7fc8, (u32)val);
6216
6217         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6218         put_smstate(u32, buf, 0x7fc4, seg.selector);
6219         put_smstate(u32, buf, 0x7f64, seg.base);
6220         put_smstate(u32, buf, 0x7f60, seg.limit);
6221         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6222
6223         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6224         put_smstate(u32, buf, 0x7fc0, seg.selector);
6225         put_smstate(u32, buf, 0x7f80, seg.base);
6226         put_smstate(u32, buf, 0x7f7c, seg.limit);
6227         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6228
6229         kvm_x86_ops->get_gdt(vcpu, &dt);
6230         put_smstate(u32, buf, 0x7f74, dt.address);
6231         put_smstate(u32, buf, 0x7f70, dt.size);
6232
6233         kvm_x86_ops->get_idt(vcpu, &dt);
6234         put_smstate(u32, buf, 0x7f58, dt.address);
6235         put_smstate(u32, buf, 0x7f54, dt.size);
6236
6237         for (i = 0; i < 6; i++)
6238                 process_smi_save_seg_32(vcpu, buf, i);
6239
6240         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6241
6242         /* revision id */
6243         put_smstate(u32, buf, 0x7efc, 0x00020000);
6244         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6245 }
6246
6247 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6248 {
6249 #ifdef CONFIG_X86_64
6250         struct desc_ptr dt;
6251         struct kvm_segment seg;
6252         unsigned long val;
6253         int i;
6254
6255         for (i = 0; i < 16; i++)
6256                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6257
6258         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6259         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6260
6261         kvm_get_dr(vcpu, 6, &val);
6262         put_smstate(u64, buf, 0x7f68, val);
6263         kvm_get_dr(vcpu, 7, &val);
6264         put_smstate(u64, buf, 0x7f60, val);
6265
6266         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6267         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6268         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6269
6270         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6271
6272         /* revision id */
6273         put_smstate(u32, buf, 0x7efc, 0x00020064);
6274
6275         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6276
6277         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6278         put_smstate(u16, buf, 0x7e90, seg.selector);
6279         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6280         put_smstate(u32, buf, 0x7e94, seg.limit);
6281         put_smstate(u64, buf, 0x7e98, seg.base);
6282
6283         kvm_x86_ops->get_idt(vcpu, &dt);
6284         put_smstate(u32, buf, 0x7e84, dt.size);
6285         put_smstate(u64, buf, 0x7e88, dt.address);
6286
6287         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6288         put_smstate(u16, buf, 0x7e70, seg.selector);
6289         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6290         put_smstate(u32, buf, 0x7e74, seg.limit);
6291         put_smstate(u64, buf, 0x7e78, seg.base);
6292
6293         kvm_x86_ops->get_gdt(vcpu, &dt);
6294         put_smstate(u32, buf, 0x7e64, dt.size);
6295         put_smstate(u64, buf, 0x7e68, dt.address);
6296
6297         for (i = 0; i < 6; i++)
6298                 process_smi_save_seg_64(vcpu, buf, i);
6299 #else
6300         WARN_ON_ONCE(1);
6301 #endif
6302 }
6303
6304 static void process_smi(struct kvm_vcpu *vcpu)
6305 {
6306         struct kvm_segment cs, ds;
6307         struct desc_ptr dt;
6308         char buf[512];
6309         u32 cr0;
6310
6311         if (is_smm(vcpu)) {
6312                 vcpu->arch.smi_pending = true;
6313                 return;
6314         }
6315
6316         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6317         vcpu->arch.hflags |= HF_SMM_MASK;
6318         memset(buf, 0, 512);
6319         if (guest_cpuid_has_longmode(vcpu))
6320                 process_smi_save_state_64(vcpu, buf);
6321         else
6322                 process_smi_save_state_32(vcpu, buf);
6323
6324         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6325
6326         if (kvm_x86_ops->get_nmi_mask(vcpu))
6327                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6328         else
6329                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6330
6331         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6332         kvm_rip_write(vcpu, 0x8000);
6333
6334         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6335         kvm_x86_ops->set_cr0(vcpu, cr0);
6336         vcpu->arch.cr0 = cr0;
6337
6338         kvm_x86_ops->set_cr4(vcpu, 0);
6339
6340         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6341         dt.address = dt.size = 0;
6342         kvm_x86_ops->set_idt(vcpu, &dt);
6343
6344         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6345
6346         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6347         cs.base = vcpu->arch.smbase;
6348
6349         ds.selector = 0;
6350         ds.base = 0;
6351
6352         cs.limit    = ds.limit = 0xffffffff;
6353         cs.type     = ds.type = 0x3;
6354         cs.dpl      = ds.dpl = 0;
6355         cs.db       = ds.db = 0;
6356         cs.s        = ds.s = 1;
6357         cs.l        = ds.l = 0;
6358         cs.g        = ds.g = 1;
6359         cs.avl      = ds.avl = 0;
6360         cs.present  = ds.present = 1;
6361         cs.unusable = ds.unusable = 0;
6362         cs.padding  = ds.padding = 0;
6363
6364         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6365         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6366         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6367         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6368         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6369         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6370
6371         if (guest_cpuid_has_longmode(vcpu))
6372                 kvm_x86_ops->set_efer(vcpu, 0);
6373
6374         kvm_update_cpuid(vcpu);
6375         kvm_mmu_reset_context(vcpu);
6376 }
6377
6378 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6379 {
6380         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6381 }
6382
6383 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6384 {
6385         u64 eoi_exit_bitmap[4];
6386
6387         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6388                 return;
6389
6390         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6391
6392         if (irqchip_split(vcpu->kvm))
6393                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6394         else {
6395                 if (vcpu->arch.apicv_active)
6396                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6397                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6398         }
6399         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6400                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6401         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6402 }
6403
6404 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6405 {
6406         ++vcpu->stat.tlb_flush;
6407         kvm_x86_ops->tlb_flush(vcpu);
6408 }
6409
6410 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6411 {
6412         struct page *page = NULL;
6413
6414         if (!lapic_in_kernel(vcpu))
6415                 return;
6416
6417         if (!kvm_x86_ops->set_apic_access_page_addr)
6418                 return;
6419
6420         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6421         if (is_error_page(page))
6422                 return;
6423         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6424
6425         /*
6426          * Do not pin apic access page in memory, the MMU notifier
6427          * will call us again if it is migrated or swapped out.
6428          */
6429         put_page(page);
6430 }
6431 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6432
6433 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6434                                            unsigned long address)
6435 {
6436         /*
6437          * The physical address of apic access page is stored in the VMCS.
6438          * Update it when it becomes invalid.
6439          */
6440         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6441                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6442 }
6443
6444 /*
6445  * Returns 1 to let vcpu_run() continue the guest execution loop without
6446  * exiting to the userspace.  Otherwise, the value will be returned to the
6447  * userspace.
6448  */
6449 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6450 {
6451         int r;
6452         bool req_int_win =
6453                 dm_request_for_irq_injection(vcpu) &&
6454                 kvm_cpu_accept_dm_intr(vcpu);
6455
6456         bool req_immediate_exit = false;
6457
6458         if (vcpu->requests) {
6459                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6460                         kvm_mmu_unload(vcpu);
6461                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6462                         __kvm_migrate_timers(vcpu);
6463                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6464                         kvm_gen_update_masterclock(vcpu->kvm);
6465                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6466                         kvm_gen_kvmclock_update(vcpu);
6467                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6468                         r = kvm_guest_time_update(vcpu);
6469                         if (unlikely(r))
6470                                 goto out;
6471                 }
6472                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6473                         kvm_mmu_sync_roots(vcpu);
6474                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6475                         kvm_vcpu_flush_tlb(vcpu);
6476                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6477                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6478                         r = 0;
6479                         goto out;
6480                 }
6481                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6482                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6483                         r = 0;
6484                         goto out;
6485                 }
6486                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6487                         vcpu->fpu_active = 0;
6488                         kvm_x86_ops->fpu_deactivate(vcpu);
6489                 }
6490                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6491                         /* Page is swapped out. Do synthetic halt */
6492                         vcpu->arch.apf.halted = true;
6493                         r = 1;
6494                         goto out;
6495                 }
6496                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6497                         record_steal_time(vcpu);
6498                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6499                         process_smi(vcpu);
6500                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6501                         process_nmi(vcpu);
6502                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6503                         kvm_pmu_handle_event(vcpu);
6504                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6505                         kvm_pmu_deliver_pmi(vcpu);
6506                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6507                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6508                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6509                                      vcpu->arch.ioapic_handled_vectors)) {
6510                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6511                                 vcpu->run->eoi.vector =
6512                                                 vcpu->arch.pending_ioapic_eoi;
6513                                 r = 0;
6514                                 goto out;
6515                         }
6516                 }
6517                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6518                         vcpu_scan_ioapic(vcpu);
6519                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6520                         kvm_vcpu_reload_apic_access_page(vcpu);
6521                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6522                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6523                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6524                         r = 0;
6525                         goto out;
6526                 }
6527                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6528                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6529                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6530                         r = 0;
6531                         goto out;
6532                 }
6533                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6534                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6535                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6536                         r = 0;
6537                         goto out;
6538                 }
6539
6540                 /*
6541                  * KVM_REQ_HV_STIMER has to be processed after
6542                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6543                  * depend on the guest clock being up-to-date
6544                  */
6545                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6546                         kvm_hv_process_stimers(vcpu);
6547         }
6548
6549         /*
6550          * KVM_REQ_EVENT is not set when posted interrupts are set by
6551          * VT-d hardware, so we have to update RVI unconditionally.
6552          */
6553         if (kvm_lapic_enabled(vcpu)) {
6554                 /*
6555                  * Update architecture specific hints for APIC
6556                  * virtual interrupt delivery.
6557                  */
6558                 if (vcpu->arch.apicv_active)
6559                         kvm_x86_ops->hwapic_irr_update(vcpu,
6560                                 kvm_lapic_find_highest_irr(vcpu));
6561         }
6562
6563         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6564                 kvm_apic_accept_events(vcpu);
6565                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6566                         r = 1;
6567                         goto out;
6568                 }
6569
6570                 if (inject_pending_event(vcpu, req_int_win) != 0)
6571                         req_immediate_exit = true;
6572                 /* enable NMI/IRQ window open exits if needed */
6573                 else {
6574                         if (vcpu->arch.nmi_pending)
6575                                 kvm_x86_ops->enable_nmi_window(vcpu);
6576                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6577                                 kvm_x86_ops->enable_irq_window(vcpu);
6578                 }
6579
6580                 if (kvm_lapic_enabled(vcpu)) {
6581                         update_cr8_intercept(vcpu);
6582                         kvm_lapic_sync_to_vapic(vcpu);
6583                 }
6584         }
6585
6586         r = kvm_mmu_reload(vcpu);
6587         if (unlikely(r)) {
6588                 goto cancel_injection;
6589         }
6590
6591         preempt_disable();
6592
6593         kvm_x86_ops->prepare_guest_switch(vcpu);
6594         if (vcpu->fpu_active)
6595                 kvm_load_guest_fpu(vcpu);
6596         vcpu->mode = IN_GUEST_MODE;
6597
6598         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6599
6600         /*
6601          * We should set ->mode before check ->requests,
6602          * Please see the comment in kvm_make_all_cpus_request.
6603          * This also orders the write to mode from any reads
6604          * to the page tables done while the VCPU is running.
6605          * Please see the comment in kvm_flush_remote_tlbs.
6606          */
6607         smp_mb__after_srcu_read_unlock();
6608
6609         local_irq_disable();
6610
6611         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6612             || need_resched() || signal_pending(current)) {
6613                 vcpu->mode = OUTSIDE_GUEST_MODE;
6614                 smp_wmb();
6615                 local_irq_enable();
6616                 preempt_enable();
6617                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6618                 r = 1;
6619                 goto cancel_injection;
6620         }
6621
6622         kvm_load_guest_xcr0(vcpu);
6623
6624         if (req_immediate_exit)
6625                 smp_send_reschedule(vcpu->cpu);
6626
6627         trace_kvm_entry(vcpu->vcpu_id);
6628         wait_lapic_expire(vcpu);
6629         __kvm_guest_enter();
6630
6631         if (unlikely(vcpu->arch.switch_db_regs)) {
6632                 set_debugreg(0, 7);
6633                 set_debugreg(vcpu->arch.eff_db[0], 0);
6634                 set_debugreg(vcpu->arch.eff_db[1], 1);
6635                 set_debugreg(vcpu->arch.eff_db[2], 2);
6636                 set_debugreg(vcpu->arch.eff_db[3], 3);
6637                 set_debugreg(vcpu->arch.dr6, 6);
6638                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6639         }
6640
6641         kvm_x86_ops->run(vcpu);
6642
6643         /*
6644          * Do this here before restoring debug registers on the host.  And
6645          * since we do this before handling the vmexit, a DR access vmexit
6646          * can (a) read the correct value of the debug registers, (b) set
6647          * KVM_DEBUGREG_WONT_EXIT again.
6648          */
6649         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6650                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6651                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6652                 kvm_update_dr0123(vcpu);
6653                 kvm_update_dr6(vcpu);
6654                 kvm_update_dr7(vcpu);
6655                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6656         }
6657
6658         /*
6659          * If the guest has used debug registers, at least dr7
6660          * will be disabled while returning to the host.
6661          * If we don't have active breakpoints in the host, we don't
6662          * care about the messed up debug address registers. But if
6663          * we have some of them active, restore the old state.
6664          */
6665         if (hw_breakpoint_active())
6666                 hw_breakpoint_restore();
6667
6668         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6669
6670         vcpu->mode = OUTSIDE_GUEST_MODE;
6671         smp_wmb();
6672
6673         kvm_put_guest_xcr0(vcpu);
6674
6675         /* Interrupt is enabled by handle_external_intr() */
6676         kvm_x86_ops->handle_external_intr(vcpu);
6677
6678         ++vcpu->stat.exits;
6679
6680         /*
6681          * We must have an instruction between local_irq_enable() and
6682          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6683          * the interrupt shadow.  The stat.exits increment will do nicely.
6684          * But we need to prevent reordering, hence this barrier():
6685          */
6686         barrier();
6687
6688         kvm_guest_exit();
6689
6690         preempt_enable();
6691
6692         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6693
6694         /*
6695          * Profile KVM exit RIPs:
6696          */
6697         if (unlikely(prof_on == KVM_PROFILING)) {
6698                 unsigned long rip = kvm_rip_read(vcpu);
6699                 profile_hit(KVM_PROFILING, (void *)rip);
6700         }
6701
6702         if (unlikely(vcpu->arch.tsc_always_catchup))
6703                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6704
6705         if (vcpu->arch.apic_attention)
6706                 kvm_lapic_sync_from_vapic(vcpu);
6707
6708         r = kvm_x86_ops->handle_exit(vcpu);
6709         return r;
6710
6711 cancel_injection:
6712         kvm_x86_ops->cancel_injection(vcpu);
6713         if (unlikely(vcpu->arch.apic_attention))
6714                 kvm_lapic_sync_from_vapic(vcpu);
6715 out:
6716         return r;
6717 }
6718
6719 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6720 {
6721         if (!kvm_arch_vcpu_runnable(vcpu) &&
6722             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6723                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6724                 kvm_vcpu_block(vcpu);
6725                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6726
6727                 if (kvm_x86_ops->post_block)
6728                         kvm_x86_ops->post_block(vcpu);
6729
6730                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6731                         return 1;
6732         }
6733
6734         kvm_apic_accept_events(vcpu);
6735         switch(vcpu->arch.mp_state) {
6736         case KVM_MP_STATE_HALTED:
6737                 vcpu->arch.pv.pv_unhalted = false;
6738                 vcpu->arch.mp_state =
6739                         KVM_MP_STATE_RUNNABLE;
6740         case KVM_MP_STATE_RUNNABLE:
6741                 vcpu->arch.apf.halted = false;
6742                 break;
6743         case KVM_MP_STATE_INIT_RECEIVED:
6744                 break;
6745         default:
6746                 return -EINTR;
6747                 break;
6748         }
6749         return 1;
6750 }
6751
6752 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6753 {
6754         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6755                 !vcpu->arch.apf.halted);
6756 }
6757
6758 static int vcpu_run(struct kvm_vcpu *vcpu)
6759 {
6760         int r;
6761         struct kvm *kvm = vcpu->kvm;
6762
6763         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6764
6765         for (;;) {
6766                 if (kvm_vcpu_running(vcpu)) {
6767                         r = vcpu_enter_guest(vcpu);
6768                 } else {
6769                         r = vcpu_block(kvm, vcpu);
6770                 }
6771
6772                 if (r <= 0)
6773                         break;
6774
6775                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6776                 if (kvm_cpu_has_pending_timer(vcpu))
6777                         kvm_inject_pending_timer_irqs(vcpu);
6778
6779                 if (dm_request_for_irq_injection(vcpu) &&
6780                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6781                         r = 0;
6782                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6783                         ++vcpu->stat.request_irq_exits;
6784                         break;
6785                 }
6786
6787                 kvm_check_async_pf_completion(vcpu);
6788
6789                 if (signal_pending(current)) {
6790                         r = -EINTR;
6791                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6792                         ++vcpu->stat.signal_exits;
6793                         break;
6794                 }
6795                 if (need_resched()) {
6796                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6797                         cond_resched();
6798                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6799                 }
6800         }
6801
6802         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6803
6804         return r;
6805 }
6806
6807 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6808 {
6809         int r;
6810         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6811         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6812         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6813         if (r != EMULATE_DONE)
6814                 return 0;
6815         return 1;
6816 }
6817
6818 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6819 {
6820         BUG_ON(!vcpu->arch.pio.count);
6821
6822         return complete_emulated_io(vcpu);
6823 }
6824
6825 /*
6826  * Implements the following, as a state machine:
6827  *
6828  * read:
6829  *   for each fragment
6830  *     for each mmio piece in the fragment
6831  *       write gpa, len
6832  *       exit
6833  *       copy data
6834  *   execute insn
6835  *
6836  * write:
6837  *   for each fragment
6838  *     for each mmio piece in the fragment
6839  *       write gpa, len
6840  *       copy data
6841  *       exit
6842  */
6843 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6844 {
6845         struct kvm_run *run = vcpu->run;
6846         struct kvm_mmio_fragment *frag;
6847         unsigned len;
6848
6849         BUG_ON(!vcpu->mmio_needed);
6850
6851         /* Complete previous fragment */
6852         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6853         len = min(8u, frag->len);
6854         if (!vcpu->mmio_is_write)
6855                 memcpy(frag->data, run->mmio.data, len);
6856
6857         if (frag->len <= 8) {
6858                 /* Switch to the next fragment. */
6859                 frag++;
6860                 vcpu->mmio_cur_fragment++;
6861         } else {
6862                 /* Go forward to the next mmio piece. */
6863                 frag->data += len;
6864                 frag->gpa += len;
6865                 frag->len -= len;
6866         }
6867
6868         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6869                 vcpu->mmio_needed = 0;
6870
6871                 /* FIXME: return into emulator if single-stepping.  */
6872                 if (vcpu->mmio_is_write)
6873                         return 1;
6874                 vcpu->mmio_read_completed = 1;
6875                 return complete_emulated_io(vcpu);
6876         }
6877
6878         run->exit_reason = KVM_EXIT_MMIO;
6879         run->mmio.phys_addr = frag->gpa;
6880         if (vcpu->mmio_is_write)
6881                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6882         run->mmio.len = min(8u, frag->len);
6883         run->mmio.is_write = vcpu->mmio_is_write;
6884         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6885         return 0;
6886 }
6887
6888
6889 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6890 {
6891         struct fpu *fpu = &current->thread.fpu;
6892         int r;
6893         sigset_t sigsaved;
6894
6895         fpu__activate_curr(fpu);
6896
6897         if (vcpu->sigset_active)
6898                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6899
6900         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6901                 kvm_vcpu_block(vcpu);
6902                 kvm_apic_accept_events(vcpu);
6903                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6904                 r = -EAGAIN;
6905                 goto out;
6906         }
6907
6908         /* re-sync apic's tpr */
6909         if (!lapic_in_kernel(vcpu)) {
6910                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6911                         r = -EINVAL;
6912                         goto out;
6913                 }
6914         }
6915
6916         if (unlikely(vcpu->arch.complete_userspace_io)) {
6917                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6918                 vcpu->arch.complete_userspace_io = NULL;
6919                 r = cui(vcpu);
6920                 if (r <= 0)
6921                         goto out;
6922         } else
6923                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6924
6925         r = vcpu_run(vcpu);
6926
6927 out:
6928         post_kvm_run_save(vcpu);
6929         if (vcpu->sigset_active)
6930                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6931
6932         return r;
6933 }
6934
6935 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6936 {
6937         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6938                 /*
6939                  * We are here if userspace calls get_regs() in the middle of
6940                  * instruction emulation. Registers state needs to be copied
6941                  * back from emulation context to vcpu. Userspace shouldn't do
6942                  * that usually, but some bad designed PV devices (vmware
6943                  * backdoor interface) need this to work
6944                  */
6945                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6946                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6947         }
6948         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6949         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6950         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6951         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6952         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6953         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6954         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6955         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6956 #ifdef CONFIG_X86_64
6957         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6958         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6959         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6960         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6961         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6962         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6963         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6964         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6965 #endif
6966
6967         regs->rip = kvm_rip_read(vcpu);
6968         regs->rflags = kvm_get_rflags(vcpu);
6969
6970         return 0;
6971 }
6972
6973 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6974 {
6975         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6976         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6977
6978         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6979         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6980         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6981         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6982         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6983         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6984         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6985         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6986 #ifdef CONFIG_X86_64
6987         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6988         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6989         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6990         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6991         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6992         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6993         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6994         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6995 #endif
6996
6997         kvm_rip_write(vcpu, regs->rip);
6998         kvm_set_rflags(vcpu, regs->rflags);
6999
7000         vcpu->arch.exception.pending = false;
7001
7002         kvm_make_request(KVM_REQ_EVENT, vcpu);
7003
7004         return 0;
7005 }
7006
7007 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7008 {
7009         struct kvm_segment cs;
7010
7011         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7012         *db = cs.db;
7013         *l = cs.l;
7014 }
7015 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7016
7017 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7018                                   struct kvm_sregs *sregs)
7019 {
7020         struct desc_ptr dt;
7021
7022         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7023         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7024         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7025         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7026         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7027         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7028
7029         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7030         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7031
7032         kvm_x86_ops->get_idt(vcpu, &dt);
7033         sregs->idt.limit = dt.size;
7034         sregs->idt.base = dt.address;
7035         kvm_x86_ops->get_gdt(vcpu, &dt);
7036         sregs->gdt.limit = dt.size;
7037         sregs->gdt.base = dt.address;
7038
7039         sregs->cr0 = kvm_read_cr0(vcpu);
7040         sregs->cr2 = vcpu->arch.cr2;
7041         sregs->cr3 = kvm_read_cr3(vcpu);
7042         sregs->cr4 = kvm_read_cr4(vcpu);
7043         sregs->cr8 = kvm_get_cr8(vcpu);
7044         sregs->efer = vcpu->arch.efer;
7045         sregs->apic_base = kvm_get_apic_base(vcpu);
7046
7047         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7048
7049         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7050                 set_bit(vcpu->arch.interrupt.nr,
7051                         (unsigned long *)sregs->interrupt_bitmap);
7052
7053         return 0;
7054 }
7055
7056 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7057                                     struct kvm_mp_state *mp_state)
7058 {
7059         kvm_apic_accept_events(vcpu);
7060         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7061                                         vcpu->arch.pv.pv_unhalted)
7062                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7063         else
7064                 mp_state->mp_state = vcpu->arch.mp_state;
7065
7066         return 0;
7067 }
7068
7069 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7070                                     struct kvm_mp_state *mp_state)
7071 {
7072         if (!lapic_in_kernel(vcpu) &&
7073             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7074                 return -EINVAL;
7075
7076         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7077                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7078                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7079         } else
7080                 vcpu->arch.mp_state = mp_state->mp_state;
7081         kvm_make_request(KVM_REQ_EVENT, vcpu);
7082         return 0;
7083 }
7084
7085 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7086                     int reason, bool has_error_code, u32 error_code)
7087 {
7088         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7089         int ret;
7090
7091         init_emulate_ctxt(vcpu);
7092
7093         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7094                                    has_error_code, error_code);
7095
7096         if (ret)
7097                 return EMULATE_FAIL;
7098
7099         kvm_rip_write(vcpu, ctxt->eip);
7100         kvm_set_rflags(vcpu, ctxt->eflags);
7101         kvm_make_request(KVM_REQ_EVENT, vcpu);
7102         return EMULATE_DONE;
7103 }
7104 EXPORT_SYMBOL_GPL(kvm_task_switch);
7105
7106 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7107                                   struct kvm_sregs *sregs)
7108 {
7109         struct msr_data apic_base_msr;
7110         int mmu_reset_needed = 0;
7111         int pending_vec, max_bits, idx;
7112         struct desc_ptr dt;
7113
7114         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7115                 return -EINVAL;
7116
7117         dt.size = sregs->idt.limit;
7118         dt.address = sregs->idt.base;
7119         kvm_x86_ops->set_idt(vcpu, &dt);
7120         dt.size = sregs->gdt.limit;
7121         dt.address = sregs->gdt.base;
7122         kvm_x86_ops->set_gdt(vcpu, &dt);
7123
7124         vcpu->arch.cr2 = sregs->cr2;
7125         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7126         vcpu->arch.cr3 = sregs->cr3;
7127         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7128
7129         kvm_set_cr8(vcpu, sregs->cr8);
7130
7131         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7132         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7133         apic_base_msr.data = sregs->apic_base;
7134         apic_base_msr.host_initiated = true;
7135         kvm_set_apic_base(vcpu, &apic_base_msr);
7136
7137         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7138         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7139         vcpu->arch.cr0 = sregs->cr0;
7140
7141         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7142         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7143         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7144                 kvm_update_cpuid(vcpu);
7145
7146         idx = srcu_read_lock(&vcpu->kvm->srcu);
7147         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7148                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7149                 mmu_reset_needed = 1;
7150         }
7151         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7152
7153         if (mmu_reset_needed)
7154                 kvm_mmu_reset_context(vcpu);
7155
7156         max_bits = KVM_NR_INTERRUPTS;
7157         pending_vec = find_first_bit(
7158                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7159         if (pending_vec < max_bits) {
7160                 kvm_queue_interrupt(vcpu, pending_vec, false);
7161                 pr_debug("Set back pending irq %d\n", pending_vec);
7162         }
7163
7164         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7165         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7166         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7167         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7168         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7169         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7170
7171         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7172         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7173
7174         update_cr8_intercept(vcpu);
7175
7176         /* Older userspace won't unhalt the vcpu on reset. */
7177         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7178             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7179             !is_protmode(vcpu))
7180                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7181
7182         kvm_make_request(KVM_REQ_EVENT, vcpu);
7183
7184         return 0;
7185 }
7186
7187 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7188                                         struct kvm_guest_debug *dbg)
7189 {
7190         unsigned long rflags;
7191         int i, r;
7192
7193         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7194                 r = -EBUSY;
7195                 if (vcpu->arch.exception.pending)
7196                         goto out;
7197                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7198                         kvm_queue_exception(vcpu, DB_VECTOR);
7199                 else
7200                         kvm_queue_exception(vcpu, BP_VECTOR);
7201         }
7202
7203         /*
7204          * Read rflags as long as potentially injected trace flags are still
7205          * filtered out.
7206          */
7207         rflags = kvm_get_rflags(vcpu);
7208
7209         vcpu->guest_debug = dbg->control;
7210         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7211                 vcpu->guest_debug = 0;
7212
7213         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7214                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7215                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7216                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7217         } else {
7218                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7219                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7220         }
7221         kvm_update_dr7(vcpu);
7222
7223         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7224                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7225                         get_segment_base(vcpu, VCPU_SREG_CS);
7226
7227         /*
7228          * Trigger an rflags update that will inject or remove the trace
7229          * flags.
7230          */
7231         kvm_set_rflags(vcpu, rflags);
7232
7233         kvm_x86_ops->update_bp_intercept(vcpu);
7234
7235         r = 0;
7236
7237 out:
7238
7239         return r;
7240 }
7241
7242 /*
7243  * Translate a guest virtual address to a guest physical address.
7244  */
7245 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7246                                     struct kvm_translation *tr)
7247 {
7248         unsigned long vaddr = tr->linear_address;
7249         gpa_t gpa;
7250         int idx;
7251
7252         idx = srcu_read_lock(&vcpu->kvm->srcu);
7253         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7254         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7255         tr->physical_address = gpa;
7256         tr->valid = gpa != UNMAPPED_GVA;
7257         tr->writeable = 1;
7258         tr->usermode = 0;
7259
7260         return 0;
7261 }
7262
7263 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7264 {
7265         struct fxregs_state *fxsave =
7266                         &vcpu->arch.guest_fpu.state.fxsave;
7267
7268         memcpy(fpu->fpr, fxsave->st_space, 128);
7269         fpu->fcw = fxsave->cwd;
7270         fpu->fsw = fxsave->swd;
7271         fpu->ftwx = fxsave->twd;
7272         fpu->last_opcode = fxsave->fop;
7273         fpu->last_ip = fxsave->rip;
7274         fpu->last_dp = fxsave->rdp;
7275         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7276
7277         return 0;
7278 }
7279
7280 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7281 {
7282         struct fxregs_state *fxsave =
7283                         &vcpu->arch.guest_fpu.state.fxsave;
7284
7285         memcpy(fxsave->st_space, fpu->fpr, 128);
7286         fxsave->cwd = fpu->fcw;
7287         fxsave->swd = fpu->fsw;
7288         fxsave->twd = fpu->ftwx;
7289         fxsave->fop = fpu->last_opcode;
7290         fxsave->rip = fpu->last_ip;
7291         fxsave->rdp = fpu->last_dp;
7292         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7293
7294         return 0;
7295 }
7296
7297 static void fx_init(struct kvm_vcpu *vcpu)
7298 {
7299         fpstate_init(&vcpu->arch.guest_fpu.state);
7300         if (boot_cpu_has(X86_FEATURE_XSAVES))
7301                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7302                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7303
7304         /*
7305          * Ensure guest xcr0 is valid for loading
7306          */
7307         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7308
7309         vcpu->arch.cr0 |= X86_CR0_ET;
7310 }
7311
7312 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7313 {
7314         if (vcpu->guest_fpu_loaded)
7315                 return;
7316
7317         /*
7318          * Restore all possible states in the guest,
7319          * and assume host would use all available bits.
7320          * Guest xcr0 would be loaded later.
7321          */
7322         vcpu->guest_fpu_loaded = 1;
7323         __kernel_fpu_begin();
7324         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7325         trace_kvm_fpu(1);
7326 }
7327
7328 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7329 {
7330         if (!vcpu->guest_fpu_loaded) {
7331                 vcpu->fpu_counter = 0;
7332                 return;
7333         }
7334
7335         vcpu->guest_fpu_loaded = 0;
7336         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7337         __kernel_fpu_end();
7338         ++vcpu->stat.fpu_reload;
7339         /*
7340          * If using eager FPU mode, or if the guest is a frequent user
7341          * of the FPU, just leave the FPU active for next time.
7342          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7343          * the FPU in bursts will revert to loading it on demand.
7344          */
7345         if (!use_eager_fpu()) {
7346                 if (++vcpu->fpu_counter < 5)
7347                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7348         }
7349         trace_kvm_fpu(0);
7350 }
7351
7352 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7353 {
7354         kvmclock_reset(vcpu);
7355
7356         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7357         kvm_x86_ops->vcpu_free(vcpu);
7358 }
7359
7360 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7361                                                 unsigned int id)
7362 {
7363         struct kvm_vcpu *vcpu;
7364
7365         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7366                 printk_once(KERN_WARNING
7367                 "kvm: SMP vm created on host with unstable TSC; "
7368                 "guest TSC will not be reliable\n");
7369
7370         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7371
7372         return vcpu;
7373 }
7374
7375 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7376 {
7377         int r;
7378
7379         kvm_vcpu_mtrr_init(vcpu);
7380         r = vcpu_load(vcpu);
7381         if (r)
7382                 return r;
7383         kvm_vcpu_reset(vcpu, false);
7384         kvm_mmu_setup(vcpu);
7385         vcpu_put(vcpu);
7386         return r;
7387 }
7388
7389 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7390 {
7391         struct msr_data msr;
7392         struct kvm *kvm = vcpu->kvm;
7393
7394         if (vcpu_load(vcpu))
7395                 return;
7396         msr.data = 0x0;
7397         msr.index = MSR_IA32_TSC;
7398         msr.host_initiated = true;
7399         kvm_write_tsc(vcpu, &msr);
7400         vcpu_put(vcpu);
7401
7402         if (!kvmclock_periodic_sync)
7403                 return;
7404
7405         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7406                                         KVMCLOCK_SYNC_PERIOD);
7407 }
7408
7409 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7410 {
7411         int r;
7412         vcpu->arch.apf.msr_val = 0;
7413
7414         r = vcpu_load(vcpu);
7415         BUG_ON(r);
7416         kvm_mmu_unload(vcpu);
7417         vcpu_put(vcpu);
7418
7419         kvm_x86_ops->vcpu_free(vcpu);
7420 }
7421
7422 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7423 {
7424         vcpu->arch.hflags = 0;
7425
7426         atomic_set(&vcpu->arch.nmi_queued, 0);
7427         vcpu->arch.nmi_pending = 0;
7428         vcpu->arch.nmi_injected = false;
7429         kvm_clear_interrupt_queue(vcpu);
7430         kvm_clear_exception_queue(vcpu);
7431
7432         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7433         kvm_update_dr0123(vcpu);
7434         vcpu->arch.dr6 = DR6_INIT;
7435         kvm_update_dr6(vcpu);
7436         vcpu->arch.dr7 = DR7_FIXED_1;
7437         kvm_update_dr7(vcpu);
7438
7439         vcpu->arch.cr2 = 0;
7440
7441         kvm_make_request(KVM_REQ_EVENT, vcpu);
7442         vcpu->arch.apf.msr_val = 0;
7443         vcpu->arch.st.msr_val = 0;
7444
7445         kvmclock_reset(vcpu);
7446
7447         kvm_clear_async_pf_completion_queue(vcpu);
7448         kvm_async_pf_hash_reset(vcpu);
7449         vcpu->arch.apf.halted = false;
7450
7451         if (!init_event) {
7452                 kvm_pmu_reset(vcpu);
7453                 vcpu->arch.smbase = 0x30000;
7454         }
7455
7456         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7457         vcpu->arch.regs_avail = ~0;
7458         vcpu->arch.regs_dirty = ~0;
7459
7460         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7461 }
7462
7463 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7464 {
7465         struct kvm_segment cs;
7466
7467         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7468         cs.selector = vector << 8;
7469         cs.base = vector << 12;
7470         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7471         kvm_rip_write(vcpu, 0);
7472 }
7473
7474 int kvm_arch_hardware_enable(void)
7475 {
7476         struct kvm *kvm;
7477         struct kvm_vcpu *vcpu;
7478         int i;
7479         int ret;
7480         u64 local_tsc;
7481         u64 max_tsc = 0;
7482         bool stable, backwards_tsc = false;
7483
7484         kvm_shared_msr_cpu_online();
7485         ret = kvm_x86_ops->hardware_enable();
7486         if (ret != 0)
7487                 return ret;
7488
7489         local_tsc = rdtsc();
7490         stable = !check_tsc_unstable();
7491         list_for_each_entry(kvm, &vm_list, vm_list) {
7492                 kvm_for_each_vcpu(i, vcpu, kvm) {
7493                         if (!stable && vcpu->cpu == smp_processor_id())
7494                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7495                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7496                                 backwards_tsc = true;
7497                                 if (vcpu->arch.last_host_tsc > max_tsc)
7498                                         max_tsc = vcpu->arch.last_host_tsc;
7499                         }
7500                 }
7501         }
7502
7503         /*
7504          * Sometimes, even reliable TSCs go backwards.  This happens on
7505          * platforms that reset TSC during suspend or hibernate actions, but
7506          * maintain synchronization.  We must compensate.  Fortunately, we can
7507          * detect that condition here, which happens early in CPU bringup,
7508          * before any KVM threads can be running.  Unfortunately, we can't
7509          * bring the TSCs fully up to date with real time, as we aren't yet far
7510          * enough into CPU bringup that we know how much real time has actually
7511          * elapsed; our helper function, get_kernel_ns() will be using boot
7512          * variables that haven't been updated yet.
7513          *
7514          * So we simply find the maximum observed TSC above, then record the
7515          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7516          * the adjustment will be applied.  Note that we accumulate
7517          * adjustments, in case multiple suspend cycles happen before some VCPU
7518          * gets a chance to run again.  In the event that no KVM threads get a
7519          * chance to run, we will miss the entire elapsed period, as we'll have
7520          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7521          * loose cycle time.  This isn't too big a deal, since the loss will be
7522          * uniform across all VCPUs (not to mention the scenario is extremely
7523          * unlikely). It is possible that a second hibernate recovery happens
7524          * much faster than a first, causing the observed TSC here to be
7525          * smaller; this would require additional padding adjustment, which is
7526          * why we set last_host_tsc to the local tsc observed here.
7527          *
7528          * N.B. - this code below runs only on platforms with reliable TSC,
7529          * as that is the only way backwards_tsc is set above.  Also note
7530          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7531          * have the same delta_cyc adjustment applied if backwards_tsc
7532          * is detected.  Note further, this adjustment is only done once,
7533          * as we reset last_host_tsc on all VCPUs to stop this from being
7534          * called multiple times (one for each physical CPU bringup).
7535          *
7536          * Platforms with unreliable TSCs don't have to deal with this, they
7537          * will be compensated by the logic in vcpu_load, which sets the TSC to
7538          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7539          * guarantee that they stay in perfect synchronization.
7540          */
7541         if (backwards_tsc) {
7542                 u64 delta_cyc = max_tsc - local_tsc;
7543                 backwards_tsc_observed = true;
7544                 list_for_each_entry(kvm, &vm_list, vm_list) {
7545                         kvm_for_each_vcpu(i, vcpu, kvm) {
7546                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7547                                 vcpu->arch.last_host_tsc = local_tsc;
7548                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7549                         }
7550
7551                         /*
7552                          * We have to disable TSC offset matching.. if you were
7553                          * booting a VM while issuing an S4 host suspend....
7554                          * you may have some problem.  Solving this issue is
7555                          * left as an exercise to the reader.
7556                          */
7557                         kvm->arch.last_tsc_nsec = 0;
7558                         kvm->arch.last_tsc_write = 0;
7559                 }
7560
7561         }
7562         return 0;
7563 }
7564
7565 void kvm_arch_hardware_disable(void)
7566 {
7567         kvm_x86_ops->hardware_disable();
7568         drop_user_return_notifiers();
7569 }
7570
7571 int kvm_arch_hardware_setup(void)
7572 {
7573         int r;
7574
7575         r = kvm_x86_ops->hardware_setup();
7576         if (r != 0)
7577                 return r;
7578
7579         if (kvm_has_tsc_control) {
7580                 /*
7581                  * Make sure the user can only configure tsc_khz values that
7582                  * fit into a signed integer.
7583                  * A min value is not calculated needed because it will always
7584                  * be 1 on all machines.
7585                  */
7586                 u64 max = min(0x7fffffffULL,
7587                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7588                 kvm_max_guest_tsc_khz = max;
7589
7590                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7591         }
7592
7593         kvm_init_msr_list();
7594         return 0;
7595 }
7596
7597 void kvm_arch_hardware_unsetup(void)
7598 {
7599         kvm_x86_ops->hardware_unsetup();
7600 }
7601
7602 void kvm_arch_check_processor_compat(void *rtn)
7603 {
7604         kvm_x86_ops->check_processor_compatibility(rtn);
7605 }
7606
7607 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7608 {
7609         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7610 }
7611 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7612
7613 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7614 {
7615         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7616 }
7617
7618 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7619 {
7620         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7621 }
7622
7623 struct static_key kvm_no_apic_vcpu __read_mostly;
7624 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7625
7626 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7627 {
7628         struct page *page;
7629         struct kvm *kvm;
7630         int r;
7631
7632         BUG_ON(vcpu->kvm == NULL);
7633         kvm = vcpu->kvm;
7634
7635         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7636         vcpu->arch.pv.pv_unhalted = false;
7637         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7638         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7639                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7640         else
7641                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7642
7643         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7644         if (!page) {
7645                 r = -ENOMEM;
7646                 goto fail;
7647         }
7648         vcpu->arch.pio_data = page_address(page);
7649
7650         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7651
7652         r = kvm_mmu_create(vcpu);
7653         if (r < 0)
7654                 goto fail_free_pio_data;
7655
7656         if (irqchip_in_kernel(kvm)) {
7657                 r = kvm_create_lapic(vcpu);
7658                 if (r < 0)
7659                         goto fail_mmu_destroy;
7660         } else
7661                 static_key_slow_inc(&kvm_no_apic_vcpu);
7662
7663         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7664                                        GFP_KERNEL);
7665         if (!vcpu->arch.mce_banks) {
7666                 r = -ENOMEM;
7667                 goto fail_free_lapic;
7668         }
7669         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7670
7671         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7672                 r = -ENOMEM;
7673                 goto fail_free_mce_banks;
7674         }
7675
7676         fx_init(vcpu);
7677
7678         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7679         vcpu->arch.pv_time_enabled = false;
7680
7681         vcpu->arch.guest_supported_xcr0 = 0;
7682         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7683
7684         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7685
7686         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7687
7688         kvm_async_pf_hash_reset(vcpu);
7689         kvm_pmu_init(vcpu);
7690
7691         vcpu->arch.pending_external_vector = -1;
7692
7693         kvm_hv_vcpu_init(vcpu);
7694
7695         return 0;
7696
7697 fail_free_mce_banks:
7698         kfree(vcpu->arch.mce_banks);
7699 fail_free_lapic:
7700         kvm_free_lapic(vcpu);
7701 fail_mmu_destroy:
7702         kvm_mmu_destroy(vcpu);
7703 fail_free_pio_data:
7704         free_page((unsigned long)vcpu->arch.pio_data);
7705 fail:
7706         return r;
7707 }
7708
7709 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7710 {
7711         int idx;
7712
7713         kvm_hv_vcpu_uninit(vcpu);
7714         kvm_pmu_destroy(vcpu);
7715         kfree(vcpu->arch.mce_banks);
7716         kvm_free_lapic(vcpu);
7717         idx = srcu_read_lock(&vcpu->kvm->srcu);
7718         kvm_mmu_destroy(vcpu);
7719         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7720         free_page((unsigned long)vcpu->arch.pio_data);
7721         if (!lapic_in_kernel(vcpu))
7722                 static_key_slow_dec(&kvm_no_apic_vcpu);
7723 }
7724
7725 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7726 {
7727         kvm_x86_ops->sched_in(vcpu, cpu);
7728 }
7729
7730 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7731 {
7732         if (type)
7733                 return -EINVAL;
7734
7735         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7736         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7737         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7738         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7739         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7740
7741         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7742         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7743         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7744         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7745                 &kvm->arch.irq_sources_bitmap);
7746
7747         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7748         mutex_init(&kvm->arch.apic_map_lock);
7749         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7750
7751         pvclock_update_vm_gtod_copy(kvm);
7752
7753         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7754         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7755
7756         kvm_page_track_init(kvm);
7757         kvm_mmu_init_vm(kvm);
7758
7759         if (kvm_x86_ops->vm_init)
7760                 return kvm_x86_ops->vm_init(kvm);
7761
7762         return 0;
7763 }
7764
7765 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7766 {
7767         int r;
7768         r = vcpu_load(vcpu);
7769         BUG_ON(r);
7770         kvm_mmu_unload(vcpu);
7771         vcpu_put(vcpu);
7772 }
7773
7774 static void kvm_free_vcpus(struct kvm *kvm)
7775 {
7776         unsigned int i;
7777         struct kvm_vcpu *vcpu;
7778
7779         /*
7780          * Unpin any mmu pages first.
7781          */
7782         kvm_for_each_vcpu(i, vcpu, kvm) {
7783                 kvm_clear_async_pf_completion_queue(vcpu);
7784                 kvm_unload_vcpu_mmu(vcpu);
7785         }
7786         kvm_for_each_vcpu(i, vcpu, kvm)
7787                 kvm_arch_vcpu_free(vcpu);
7788
7789         mutex_lock(&kvm->lock);
7790         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7791                 kvm->vcpus[i] = NULL;
7792
7793         atomic_set(&kvm->online_vcpus, 0);
7794         mutex_unlock(&kvm->lock);
7795 }
7796
7797 void kvm_arch_sync_events(struct kvm *kvm)
7798 {
7799         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7800         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7801         kvm_free_all_assigned_devices(kvm);
7802         kvm_free_pit(kvm);
7803 }
7804
7805 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7806 {
7807         int i, r;
7808         unsigned long hva;
7809         struct kvm_memslots *slots = kvm_memslots(kvm);
7810         struct kvm_memory_slot *slot, old;
7811
7812         /* Called with kvm->slots_lock held.  */
7813         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7814                 return -EINVAL;
7815
7816         slot = id_to_memslot(slots, id);
7817         if (size) {
7818                 if (WARN_ON(slot->npages))
7819                         return -EEXIST;
7820
7821                 /*
7822                  * MAP_SHARED to prevent internal slot pages from being moved
7823                  * by fork()/COW.
7824                  */
7825                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7826                               MAP_SHARED | MAP_ANONYMOUS, 0);
7827                 if (IS_ERR((void *)hva))
7828                         return PTR_ERR((void *)hva);
7829         } else {
7830                 if (!slot->npages)
7831                         return 0;
7832
7833                 hva = 0;
7834         }
7835
7836         old = *slot;
7837         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7838                 struct kvm_userspace_memory_region m;
7839
7840                 m.slot = id | (i << 16);
7841                 m.flags = 0;
7842                 m.guest_phys_addr = gpa;
7843                 m.userspace_addr = hva;
7844                 m.memory_size = size;
7845                 r = __kvm_set_memory_region(kvm, &m);
7846                 if (r < 0)
7847                         return r;
7848         }
7849
7850         if (!size) {
7851                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7852                 WARN_ON(r < 0);
7853         }
7854
7855         return 0;
7856 }
7857 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7858
7859 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7860 {
7861         int r;
7862
7863         mutex_lock(&kvm->slots_lock);
7864         r = __x86_set_memory_region(kvm, id, gpa, size);
7865         mutex_unlock(&kvm->slots_lock);
7866
7867         return r;
7868 }
7869 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7870
7871 void kvm_arch_destroy_vm(struct kvm *kvm)
7872 {
7873         if (current->mm == kvm->mm) {
7874                 /*
7875                  * Free memory regions allocated on behalf of userspace,
7876                  * unless the the memory map has changed due to process exit
7877                  * or fd copying.
7878                  */
7879                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7880                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7881                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7882         }
7883         if (kvm_x86_ops->vm_destroy)
7884                 kvm_x86_ops->vm_destroy(kvm);
7885         kvm_iommu_unmap_guest(kvm);
7886         kfree(kvm->arch.vpic);
7887         kfree(kvm->arch.vioapic);
7888         kvm_free_vcpus(kvm);
7889         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7890         kvm_mmu_uninit_vm(kvm);
7891 }
7892
7893 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7894                            struct kvm_memory_slot *dont)
7895 {
7896         int i;
7897
7898         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7899                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7900                         kvfree(free->arch.rmap[i]);
7901                         free->arch.rmap[i] = NULL;
7902                 }
7903                 if (i == 0)
7904                         continue;
7905
7906                 if (!dont || free->arch.lpage_info[i - 1] !=
7907                              dont->arch.lpage_info[i - 1]) {
7908                         kvfree(free->arch.lpage_info[i - 1]);
7909                         free->arch.lpage_info[i - 1] = NULL;
7910                 }
7911         }
7912
7913         kvm_page_track_free_memslot(free, dont);
7914 }
7915
7916 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7917                             unsigned long npages)
7918 {
7919         int i;
7920
7921         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7922                 struct kvm_lpage_info *linfo;
7923                 unsigned long ugfn;
7924                 int lpages;
7925                 int level = i + 1;
7926
7927                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7928                                       slot->base_gfn, level) + 1;
7929
7930                 slot->arch.rmap[i] =
7931                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7932                 if (!slot->arch.rmap[i])
7933                         goto out_free;
7934                 if (i == 0)
7935                         continue;
7936
7937                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7938                 if (!linfo)
7939                         goto out_free;
7940
7941                 slot->arch.lpage_info[i - 1] = linfo;
7942
7943                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7944                         linfo[0].disallow_lpage = 1;
7945                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7946                         linfo[lpages - 1].disallow_lpage = 1;
7947                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7948                 /*
7949                  * If the gfn and userspace address are not aligned wrt each
7950                  * other, or if explicitly asked to, disable large page
7951                  * support for this slot
7952                  */
7953                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7954                     !kvm_largepages_enabled()) {
7955                         unsigned long j;
7956
7957                         for (j = 0; j < lpages; ++j)
7958                                 linfo[j].disallow_lpage = 1;
7959                 }
7960         }
7961
7962         if (kvm_page_track_create_memslot(slot, npages))
7963                 goto out_free;
7964
7965         return 0;
7966
7967 out_free:
7968         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7969                 kvfree(slot->arch.rmap[i]);
7970                 slot->arch.rmap[i] = NULL;
7971                 if (i == 0)
7972                         continue;
7973
7974                 kvfree(slot->arch.lpage_info[i - 1]);
7975                 slot->arch.lpage_info[i - 1] = NULL;
7976         }
7977         return -ENOMEM;
7978 }
7979
7980 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7981 {
7982         /*
7983          * memslots->generation has been incremented.
7984          * mmio generation may have reached its maximum value.
7985          */
7986         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7987 }
7988
7989 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7990                                 struct kvm_memory_slot *memslot,
7991                                 const struct kvm_userspace_memory_region *mem,
7992                                 enum kvm_mr_change change)
7993 {
7994         return 0;
7995 }
7996
7997 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7998                                      struct kvm_memory_slot *new)
7999 {
8000         /* Still write protect RO slot */
8001         if (new->flags & KVM_MEM_READONLY) {
8002                 kvm_mmu_slot_remove_write_access(kvm, new);
8003                 return;
8004         }
8005
8006         /*
8007          * Call kvm_x86_ops dirty logging hooks when they are valid.
8008          *
8009          * kvm_x86_ops->slot_disable_log_dirty is called when:
8010          *
8011          *  - KVM_MR_CREATE with dirty logging is disabled
8012          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8013          *
8014          * The reason is, in case of PML, we need to set D-bit for any slots
8015          * with dirty logging disabled in order to eliminate unnecessary GPA
8016          * logging in PML buffer (and potential PML buffer full VMEXT). This
8017          * guarantees leaving PML enabled during guest's lifetime won't have
8018          * any additonal overhead from PML when guest is running with dirty
8019          * logging disabled for memory slots.
8020          *
8021          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8022          * to dirty logging mode.
8023          *
8024          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8025          *
8026          * In case of write protect:
8027          *
8028          * Write protect all pages for dirty logging.
8029          *
8030          * All the sptes including the large sptes which point to this
8031          * slot are set to readonly. We can not create any new large
8032          * spte on this slot until the end of the logging.
8033          *
8034          * See the comments in fast_page_fault().
8035          */
8036         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8037                 if (kvm_x86_ops->slot_enable_log_dirty)
8038                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8039                 else
8040                         kvm_mmu_slot_remove_write_access(kvm, new);
8041         } else {
8042                 if (kvm_x86_ops->slot_disable_log_dirty)
8043                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8044         }
8045 }
8046
8047 void kvm_arch_commit_memory_region(struct kvm *kvm,
8048                                 const struct kvm_userspace_memory_region *mem,
8049                                 const struct kvm_memory_slot *old,
8050                                 const struct kvm_memory_slot *new,
8051                                 enum kvm_mr_change change)
8052 {
8053         int nr_mmu_pages = 0;
8054
8055         if (!kvm->arch.n_requested_mmu_pages)
8056                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8057
8058         if (nr_mmu_pages)
8059                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8060
8061         /*
8062          * Dirty logging tracks sptes in 4k granularity, meaning that large
8063          * sptes have to be split.  If live migration is successful, the guest
8064          * in the source machine will be destroyed and large sptes will be
8065          * created in the destination. However, if the guest continues to run
8066          * in the source machine (for example if live migration fails), small
8067          * sptes will remain around and cause bad performance.
8068          *
8069          * Scan sptes if dirty logging has been stopped, dropping those
8070          * which can be collapsed into a single large-page spte.  Later
8071          * page faults will create the large-page sptes.
8072          */
8073         if ((change != KVM_MR_DELETE) &&
8074                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8075                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8076                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8077
8078         /*
8079          * Set up write protection and/or dirty logging for the new slot.
8080          *
8081          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8082          * been zapped so no dirty logging staff is needed for old slot. For
8083          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8084          * new and it's also covered when dealing with the new slot.
8085          *
8086          * FIXME: const-ify all uses of struct kvm_memory_slot.
8087          */
8088         if (change != KVM_MR_DELETE)
8089                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8090 }
8091
8092 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8093 {
8094         kvm_mmu_invalidate_zap_all_pages(kvm);
8095 }
8096
8097 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8098                                    struct kvm_memory_slot *slot)
8099 {
8100         kvm_mmu_invalidate_zap_all_pages(kvm);
8101 }
8102
8103 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8104 {
8105         if (!list_empty_careful(&vcpu->async_pf.done))
8106                 return true;
8107
8108         if (kvm_apic_has_events(vcpu))
8109                 return true;
8110
8111         if (vcpu->arch.pv.pv_unhalted)
8112                 return true;
8113
8114         if (atomic_read(&vcpu->arch.nmi_queued))
8115                 return true;
8116
8117         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8118                 return true;
8119
8120         if (kvm_arch_interrupt_allowed(vcpu) &&
8121             kvm_cpu_has_interrupt(vcpu))
8122                 return true;
8123
8124         if (kvm_hv_has_stimer_pending(vcpu))
8125                 return true;
8126
8127         return false;
8128 }
8129
8130 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8131 {
8132         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8133                 kvm_x86_ops->check_nested_events(vcpu, false);
8134
8135         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8136 }
8137
8138 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8139 {
8140         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8141 }
8142
8143 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8144 {
8145         return kvm_x86_ops->interrupt_allowed(vcpu);
8146 }
8147
8148 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8149 {
8150         if (is_64_bit_mode(vcpu))
8151                 return kvm_rip_read(vcpu);
8152         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8153                      kvm_rip_read(vcpu));
8154 }
8155 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8156
8157 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8158 {
8159         return kvm_get_linear_rip(vcpu) == linear_rip;
8160 }
8161 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8162
8163 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8164 {
8165         unsigned long rflags;
8166
8167         rflags = kvm_x86_ops->get_rflags(vcpu);
8168         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8169                 rflags &= ~X86_EFLAGS_TF;
8170         return rflags;
8171 }
8172 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8173
8174 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8175 {
8176         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8177             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8178                 rflags |= X86_EFLAGS_TF;
8179         kvm_x86_ops->set_rflags(vcpu, rflags);
8180 }
8181
8182 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8183 {
8184         __kvm_set_rflags(vcpu, rflags);
8185         kvm_make_request(KVM_REQ_EVENT, vcpu);
8186 }
8187 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8188
8189 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8190 {
8191         int r;
8192
8193         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8194               work->wakeup_all)
8195                 return;
8196
8197         r = kvm_mmu_reload(vcpu);
8198         if (unlikely(r))
8199                 return;
8200
8201         if (!vcpu->arch.mmu.direct_map &&
8202               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8203                 return;
8204
8205         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8206 }
8207
8208 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8209 {
8210         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8211 }
8212
8213 static inline u32 kvm_async_pf_next_probe(u32 key)
8214 {
8215         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8216 }
8217
8218 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8219 {
8220         u32 key = kvm_async_pf_hash_fn(gfn);
8221
8222         while (vcpu->arch.apf.gfns[key] != ~0)
8223                 key = kvm_async_pf_next_probe(key);
8224
8225         vcpu->arch.apf.gfns[key] = gfn;
8226 }
8227
8228 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8229 {
8230         int i;
8231         u32 key = kvm_async_pf_hash_fn(gfn);
8232
8233         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8234                      (vcpu->arch.apf.gfns[key] != gfn &&
8235                       vcpu->arch.apf.gfns[key] != ~0); i++)
8236                 key = kvm_async_pf_next_probe(key);
8237
8238         return key;
8239 }
8240
8241 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8242 {
8243         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8244 }
8245
8246 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8247 {
8248         u32 i, j, k;
8249
8250         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8251         while (true) {
8252                 vcpu->arch.apf.gfns[i] = ~0;
8253                 do {
8254                         j = kvm_async_pf_next_probe(j);
8255                         if (vcpu->arch.apf.gfns[j] == ~0)
8256                                 return;
8257                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8258                         /*
8259                          * k lies cyclically in ]i,j]
8260                          * |    i.k.j |
8261                          * |....j i.k.| or  |.k..j i...|
8262                          */
8263                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8264                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8265                 i = j;
8266         }
8267 }
8268
8269 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8270 {
8271
8272         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8273                                       sizeof(val));
8274 }
8275
8276 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8277                                      struct kvm_async_pf *work)
8278 {
8279         struct x86_exception fault;
8280
8281         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8282         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8283
8284         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8285             (vcpu->arch.apf.send_user_only &&
8286              kvm_x86_ops->get_cpl(vcpu) == 0))
8287                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8288         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8289                 fault.vector = PF_VECTOR;
8290                 fault.error_code_valid = true;
8291                 fault.error_code = 0;
8292                 fault.nested_page_fault = false;
8293                 fault.address = work->arch.token;
8294                 kvm_inject_page_fault(vcpu, &fault);
8295         }
8296 }
8297
8298 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8299                                  struct kvm_async_pf *work)
8300 {
8301         struct x86_exception fault;
8302
8303         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8304         if (work->wakeup_all)
8305                 work->arch.token = ~0; /* broadcast wakeup */
8306         else
8307                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8308
8309         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8310             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8311                 fault.vector = PF_VECTOR;
8312                 fault.error_code_valid = true;
8313                 fault.error_code = 0;
8314                 fault.nested_page_fault = false;
8315                 fault.address = work->arch.token;
8316                 kvm_inject_page_fault(vcpu, &fault);
8317         }
8318         vcpu->arch.apf.halted = false;
8319         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8320 }
8321
8322 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8323 {
8324         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8325                 return true;
8326         else
8327                 return !kvm_event_needs_reinjection(vcpu) &&
8328                         kvm_x86_ops->interrupt_allowed(vcpu);
8329 }
8330
8331 void kvm_arch_start_assignment(struct kvm *kvm)
8332 {
8333         atomic_inc(&kvm->arch.assigned_device_count);
8334 }
8335 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8336
8337 void kvm_arch_end_assignment(struct kvm *kvm)
8338 {
8339         atomic_dec(&kvm->arch.assigned_device_count);
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8342
8343 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8344 {
8345         return atomic_read(&kvm->arch.assigned_device_count);
8346 }
8347 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8348
8349 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8350 {
8351         atomic_inc(&kvm->arch.noncoherent_dma_count);
8352 }
8353 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8354
8355 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8356 {
8357         atomic_dec(&kvm->arch.noncoherent_dma_count);
8358 }
8359 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8360
8361 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8362 {
8363         return atomic_read(&kvm->arch.noncoherent_dma_count);
8364 }
8365 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8366
8367 bool kvm_arch_has_irq_bypass(void)
8368 {
8369         return kvm_x86_ops->update_pi_irte != NULL;
8370 }
8371
8372 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8373                                       struct irq_bypass_producer *prod)
8374 {
8375         struct kvm_kernel_irqfd *irqfd =
8376                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8377
8378         irqfd->producer = prod;
8379
8380         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8381                                            prod->irq, irqfd->gsi, 1);
8382 }
8383
8384 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8385                                       struct irq_bypass_producer *prod)
8386 {
8387         int ret;
8388         struct kvm_kernel_irqfd *irqfd =
8389                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8390
8391         WARN_ON(irqfd->producer != prod);
8392         irqfd->producer = NULL;
8393
8394         /*
8395          * When producer of consumer is unregistered, we change back to
8396          * remapped mode, so we can re-use the current implementation
8397          * when the irq is masked/disabed or the consumer side (KVM
8398          * int this case doesn't want to receive the interrupts.
8399         */
8400         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8401         if (ret)
8402                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8403                        " fails: %d\n", irqfd->consumer.token, ret);
8404 }
8405
8406 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8407                                    uint32_t guest_irq, bool set)
8408 {
8409         if (!kvm_x86_ops->update_pi_irte)
8410                 return -EINVAL;
8411
8412         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8413 }
8414
8415 bool kvm_vector_hashing_enabled(void)
8416 {
8417         return vector_hashing;
8418 }
8419 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8420
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);