]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - arch/x86/platform/efi/efi.c
Merge commit '6bb27d7349db51b50c40534710fe164ca0d58902' into omap-timer-for-v3.10
[karo-tx-linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/efi.h>
34 #include <linux/efi-bgrt.h>
35 #include <linux/export.h>
36 #include <linux/bootmem.h>
37 #include <linux/memblock.h>
38 #include <linux/spinlock.h>
39 #include <linux/uaccess.h>
40 #include <linux/time.h>
41 #include <linux/io.h>
42 #include <linux/reboot.h>
43 #include <linux/bcd.h>
44
45 #include <asm/setup.h>
46 #include <asm/efi.h>
47 #include <asm/time.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlbflush.h>
50 #include <asm/x86_init.h>
51
52 #define EFI_DEBUG       1
53
54 struct efi __read_mostly efi = {
55         .mps        = EFI_INVALID_TABLE_ADDR,
56         .acpi       = EFI_INVALID_TABLE_ADDR,
57         .acpi20     = EFI_INVALID_TABLE_ADDR,
58         .smbios     = EFI_INVALID_TABLE_ADDR,
59         .sal_systab = EFI_INVALID_TABLE_ADDR,
60         .boot_info  = EFI_INVALID_TABLE_ADDR,
61         .hcdp       = EFI_INVALID_TABLE_ADDR,
62         .uga        = EFI_INVALID_TABLE_ADDR,
63         .uv_systab  = EFI_INVALID_TABLE_ADDR,
64 };
65 EXPORT_SYMBOL(efi);
66
67 struct efi_memory_map memmap;
68
69 static struct efi efi_phys __initdata;
70 static efi_system_table_t efi_systab __initdata;
71
72 static inline bool efi_is_native(void)
73 {
74         return IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT);
75 }
76
77 unsigned long x86_efi_facility;
78
79 /*
80  * Returns 1 if 'facility' is enabled, 0 otherwise.
81  */
82 int efi_enabled(int facility)
83 {
84         return test_bit(facility, &x86_efi_facility) != 0;
85 }
86 EXPORT_SYMBOL(efi_enabled);
87
88 static int __init setup_noefi(char *arg)
89 {
90         clear_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
91         return 0;
92 }
93 early_param("noefi", setup_noefi);
94
95 int add_efi_memmap;
96 EXPORT_SYMBOL(add_efi_memmap);
97
98 static int __init setup_add_efi_memmap(char *arg)
99 {
100         add_efi_memmap = 1;
101         return 0;
102 }
103 early_param("add_efi_memmap", setup_add_efi_memmap);
104
105
106 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
107 {
108         unsigned long flags;
109         efi_status_t status;
110
111         spin_lock_irqsave(&rtc_lock, flags);
112         status = efi_call_virt2(get_time, tm, tc);
113         spin_unlock_irqrestore(&rtc_lock, flags);
114         return status;
115 }
116
117 static efi_status_t virt_efi_set_time(efi_time_t *tm)
118 {
119         unsigned long flags;
120         efi_status_t status;
121
122         spin_lock_irqsave(&rtc_lock, flags);
123         status = efi_call_virt1(set_time, tm);
124         spin_unlock_irqrestore(&rtc_lock, flags);
125         return status;
126 }
127
128 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
129                                              efi_bool_t *pending,
130                                              efi_time_t *tm)
131 {
132         unsigned long flags;
133         efi_status_t status;
134
135         spin_lock_irqsave(&rtc_lock, flags);
136         status = efi_call_virt3(get_wakeup_time,
137                                 enabled, pending, tm);
138         spin_unlock_irqrestore(&rtc_lock, flags);
139         return status;
140 }
141
142 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
143 {
144         unsigned long flags;
145         efi_status_t status;
146
147         spin_lock_irqsave(&rtc_lock, flags);
148         status = efi_call_virt2(set_wakeup_time,
149                                 enabled, tm);
150         spin_unlock_irqrestore(&rtc_lock, flags);
151         return status;
152 }
153
154 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
155                                           efi_guid_t *vendor,
156                                           u32 *attr,
157                                           unsigned long *data_size,
158                                           void *data)
159 {
160         return efi_call_virt5(get_variable,
161                               name, vendor, attr,
162                               data_size, data);
163 }
164
165 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
166                                                efi_char16_t *name,
167                                                efi_guid_t *vendor)
168 {
169         return efi_call_virt3(get_next_variable,
170                               name_size, name, vendor);
171 }
172
173 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
174                                           efi_guid_t *vendor,
175                                           u32 attr,
176                                           unsigned long data_size,
177                                           void *data)
178 {
179         return efi_call_virt5(set_variable,
180                               name, vendor, attr,
181                               data_size, data);
182 }
183
184 static efi_status_t virt_efi_query_variable_info(u32 attr,
185                                                  u64 *storage_space,
186                                                  u64 *remaining_space,
187                                                  u64 *max_variable_size)
188 {
189         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
190                 return EFI_UNSUPPORTED;
191
192         return efi_call_virt4(query_variable_info, attr, storage_space,
193                               remaining_space, max_variable_size);
194 }
195
196 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
197 {
198         return efi_call_virt1(get_next_high_mono_count, count);
199 }
200
201 static void virt_efi_reset_system(int reset_type,
202                                   efi_status_t status,
203                                   unsigned long data_size,
204                                   efi_char16_t *data)
205 {
206         efi_call_virt4(reset_system, reset_type, status,
207                        data_size, data);
208 }
209
210 static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules,
211                                             unsigned long count,
212                                             unsigned long sg_list)
213 {
214         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
215                 return EFI_UNSUPPORTED;
216
217         return efi_call_virt3(update_capsule, capsules, count, sg_list);
218 }
219
220 static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules,
221                                                 unsigned long count,
222                                                 u64 *max_size,
223                                                 int *reset_type)
224 {
225         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
226                 return EFI_UNSUPPORTED;
227
228         return efi_call_virt4(query_capsule_caps, capsules, count, max_size,
229                               reset_type);
230 }
231
232 static efi_status_t __init phys_efi_set_virtual_address_map(
233         unsigned long memory_map_size,
234         unsigned long descriptor_size,
235         u32 descriptor_version,
236         efi_memory_desc_t *virtual_map)
237 {
238         efi_status_t status;
239
240         efi_call_phys_prelog();
241         status = efi_call_phys4(efi_phys.set_virtual_address_map,
242                                 memory_map_size, descriptor_size,
243                                 descriptor_version, virtual_map);
244         efi_call_phys_epilog();
245         return status;
246 }
247
248 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
249                                              efi_time_cap_t *tc)
250 {
251         unsigned long flags;
252         efi_status_t status;
253
254         spin_lock_irqsave(&rtc_lock, flags);
255         efi_call_phys_prelog();
256         status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm),
257                                 virt_to_phys(tc));
258         efi_call_phys_epilog();
259         spin_unlock_irqrestore(&rtc_lock, flags);
260         return status;
261 }
262
263 int efi_set_rtc_mmss(unsigned long nowtime)
264 {
265         int real_seconds, real_minutes;
266         efi_status_t    status;
267         efi_time_t      eft;
268         efi_time_cap_t  cap;
269
270         status = efi.get_time(&eft, &cap);
271         if (status != EFI_SUCCESS) {
272                 pr_err("Oops: efitime: can't read time!\n");
273                 return -1;
274         }
275
276         real_seconds = nowtime % 60;
277         real_minutes = nowtime / 60;
278         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
279                 real_minutes += 30;
280         real_minutes %= 60;
281         eft.minute = real_minutes;
282         eft.second = real_seconds;
283
284         status = efi.set_time(&eft);
285         if (status != EFI_SUCCESS) {
286                 pr_err("Oops: efitime: can't write time!\n");
287                 return -1;
288         }
289         return 0;
290 }
291
292 unsigned long efi_get_time(void)
293 {
294         efi_status_t status;
295         efi_time_t eft;
296         efi_time_cap_t cap;
297
298         status = efi.get_time(&eft, &cap);
299         if (status != EFI_SUCCESS)
300                 pr_err("Oops: efitime: can't read time!\n");
301
302         return mktime(eft.year, eft.month, eft.day, eft.hour,
303                       eft.minute, eft.second);
304 }
305
306 /*
307  * Tell the kernel about the EFI memory map.  This might include
308  * more than the max 128 entries that can fit in the e820 legacy
309  * (zeropage) memory map.
310  */
311
312 static void __init do_add_efi_memmap(void)
313 {
314         void *p;
315
316         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
317                 efi_memory_desc_t *md = p;
318                 unsigned long long start = md->phys_addr;
319                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
320                 int e820_type;
321
322                 switch (md->type) {
323                 case EFI_LOADER_CODE:
324                 case EFI_LOADER_DATA:
325                 case EFI_BOOT_SERVICES_CODE:
326                 case EFI_BOOT_SERVICES_DATA:
327                 case EFI_CONVENTIONAL_MEMORY:
328                         if (md->attribute & EFI_MEMORY_WB)
329                                 e820_type = E820_RAM;
330                         else
331                                 e820_type = E820_RESERVED;
332                         break;
333                 case EFI_ACPI_RECLAIM_MEMORY:
334                         e820_type = E820_ACPI;
335                         break;
336                 case EFI_ACPI_MEMORY_NVS:
337                         e820_type = E820_NVS;
338                         break;
339                 case EFI_UNUSABLE_MEMORY:
340                         e820_type = E820_UNUSABLE;
341                         break;
342                 default:
343                         /*
344                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
345                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
346                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
347                          */
348                         e820_type = E820_RESERVED;
349                         break;
350                 }
351                 e820_add_region(start, size, e820_type);
352         }
353         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
354 }
355
356 int __init efi_memblock_x86_reserve_range(void)
357 {
358         unsigned long pmap;
359
360 #ifdef CONFIG_X86_32
361         /* Can't handle data above 4GB at this time */
362         if (boot_params.efi_info.efi_memmap_hi) {
363                 pr_err("Memory map is above 4GB, disabling EFI.\n");
364                 return -EINVAL;
365         }
366         pmap = boot_params.efi_info.efi_memmap;
367 #else
368         pmap = (boot_params.efi_info.efi_memmap |
369                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
370 #endif
371         memmap.phys_map = (void *)pmap;
372         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
373                 boot_params.efi_info.efi_memdesc_size;
374         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
375         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
376         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
377
378         return 0;
379 }
380
381 #if EFI_DEBUG
382 static void __init print_efi_memmap(void)
383 {
384         efi_memory_desc_t *md;
385         void *p;
386         int i;
387
388         for (p = memmap.map, i = 0;
389              p < memmap.map_end;
390              p += memmap.desc_size, i++) {
391                 md = p;
392                 pr_info("mem%02u: type=%u, attr=0x%llx, "
393                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
394                         i, md->type, md->attribute, md->phys_addr,
395                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
396                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
397         }
398 }
399 #endif  /*  EFI_DEBUG  */
400
401 void __init efi_reserve_boot_services(void)
402 {
403         void *p;
404
405         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
406                 efi_memory_desc_t *md = p;
407                 u64 start = md->phys_addr;
408                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
409
410                 if (md->type != EFI_BOOT_SERVICES_CODE &&
411                     md->type != EFI_BOOT_SERVICES_DATA)
412                         continue;
413                 /* Only reserve where possible:
414                  * - Not within any already allocated areas
415                  * - Not over any memory area (really needed, if above?)
416                  * - Not within any part of the kernel
417                  * - Not the bios reserved area
418                 */
419                 if ((start+size >= virt_to_phys(_text)
420                                 && start <= virt_to_phys(_end)) ||
421                         !e820_all_mapped(start, start+size, E820_RAM) ||
422                         memblock_is_region_reserved(start, size)) {
423                         /* Could not reserve, skip it */
424                         md->num_pages = 0;
425                         memblock_dbg("Could not reserve boot range "
426                                         "[0x%010llx-0x%010llx]\n",
427                                                 start, start+size-1);
428                 } else
429                         memblock_reserve(start, size);
430         }
431 }
432
433 void __init efi_unmap_memmap(void)
434 {
435         clear_bit(EFI_MEMMAP, &x86_efi_facility);
436         if (memmap.map) {
437                 early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
438                 memmap.map = NULL;
439         }
440 }
441
442 void __init efi_free_boot_services(void)
443 {
444         void *p;
445
446         if (!efi_is_native())
447                 return;
448
449         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
450                 efi_memory_desc_t *md = p;
451                 unsigned long long start = md->phys_addr;
452                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
453
454                 if (md->type != EFI_BOOT_SERVICES_CODE &&
455                     md->type != EFI_BOOT_SERVICES_DATA)
456                         continue;
457
458                 /* Could not reserve boot area */
459                 if (!size)
460                         continue;
461
462                 free_bootmem_late(start, size);
463         }
464
465         efi_unmap_memmap();
466 }
467
468 static int __init efi_systab_init(void *phys)
469 {
470         if (efi_enabled(EFI_64BIT)) {
471                 efi_system_table_64_t *systab64;
472                 u64 tmp = 0;
473
474                 systab64 = early_ioremap((unsigned long)phys,
475                                          sizeof(*systab64));
476                 if (systab64 == NULL) {
477                         pr_err("Couldn't map the system table!\n");
478                         return -ENOMEM;
479                 }
480
481                 efi_systab.hdr = systab64->hdr;
482                 efi_systab.fw_vendor = systab64->fw_vendor;
483                 tmp |= systab64->fw_vendor;
484                 efi_systab.fw_revision = systab64->fw_revision;
485                 efi_systab.con_in_handle = systab64->con_in_handle;
486                 tmp |= systab64->con_in_handle;
487                 efi_systab.con_in = systab64->con_in;
488                 tmp |= systab64->con_in;
489                 efi_systab.con_out_handle = systab64->con_out_handle;
490                 tmp |= systab64->con_out_handle;
491                 efi_systab.con_out = systab64->con_out;
492                 tmp |= systab64->con_out;
493                 efi_systab.stderr_handle = systab64->stderr_handle;
494                 tmp |= systab64->stderr_handle;
495                 efi_systab.stderr = systab64->stderr;
496                 tmp |= systab64->stderr;
497                 efi_systab.runtime = (void *)(unsigned long)systab64->runtime;
498                 tmp |= systab64->runtime;
499                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
500                 tmp |= systab64->boottime;
501                 efi_systab.nr_tables = systab64->nr_tables;
502                 efi_systab.tables = systab64->tables;
503                 tmp |= systab64->tables;
504
505                 early_iounmap(systab64, sizeof(*systab64));
506 #ifdef CONFIG_X86_32
507                 if (tmp >> 32) {
508                         pr_err("EFI data located above 4GB, disabling EFI.\n");
509                         return -EINVAL;
510                 }
511 #endif
512         } else {
513                 efi_system_table_32_t *systab32;
514
515                 systab32 = early_ioremap((unsigned long)phys,
516                                          sizeof(*systab32));
517                 if (systab32 == NULL) {
518                         pr_err("Couldn't map the system table!\n");
519                         return -ENOMEM;
520                 }
521
522                 efi_systab.hdr = systab32->hdr;
523                 efi_systab.fw_vendor = systab32->fw_vendor;
524                 efi_systab.fw_revision = systab32->fw_revision;
525                 efi_systab.con_in_handle = systab32->con_in_handle;
526                 efi_systab.con_in = systab32->con_in;
527                 efi_systab.con_out_handle = systab32->con_out_handle;
528                 efi_systab.con_out = systab32->con_out;
529                 efi_systab.stderr_handle = systab32->stderr_handle;
530                 efi_systab.stderr = systab32->stderr;
531                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
532                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
533                 efi_systab.nr_tables = systab32->nr_tables;
534                 efi_systab.tables = systab32->tables;
535
536                 early_iounmap(systab32, sizeof(*systab32));
537         }
538
539         efi.systab = &efi_systab;
540
541         /*
542          * Verify the EFI Table
543          */
544         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
545                 pr_err("System table signature incorrect!\n");
546                 return -EINVAL;
547         }
548         if ((efi.systab->hdr.revision >> 16) == 0)
549                 pr_err("Warning: System table version "
550                        "%d.%02d, expected 1.00 or greater!\n",
551                        efi.systab->hdr.revision >> 16,
552                        efi.systab->hdr.revision & 0xffff);
553
554         return 0;
555 }
556
557 static int __init efi_config_init(u64 tables, int nr_tables)
558 {
559         void *config_tables, *tablep;
560         int i, sz;
561
562         if (efi_enabled(EFI_64BIT))
563                 sz = sizeof(efi_config_table_64_t);
564         else
565                 sz = sizeof(efi_config_table_32_t);
566
567         /*
568          * Let's see what config tables the firmware passed to us.
569          */
570         config_tables = early_ioremap(tables, nr_tables * sz);
571         if (config_tables == NULL) {
572                 pr_err("Could not map Configuration table!\n");
573                 return -ENOMEM;
574         }
575
576         tablep = config_tables;
577         pr_info("");
578         for (i = 0; i < efi.systab->nr_tables; i++) {
579                 efi_guid_t guid;
580                 unsigned long table;
581
582                 if (efi_enabled(EFI_64BIT)) {
583                         u64 table64;
584                         guid = ((efi_config_table_64_t *)tablep)->guid;
585                         table64 = ((efi_config_table_64_t *)tablep)->table;
586                         table = table64;
587 #ifdef CONFIG_X86_32
588                         if (table64 >> 32) {
589                                 pr_cont("\n");
590                                 pr_err("Table located above 4GB, disabling EFI.\n");
591                                 early_iounmap(config_tables,
592                                               efi.systab->nr_tables * sz);
593                                 return -EINVAL;
594                         }
595 #endif
596                 } else {
597                         guid = ((efi_config_table_32_t *)tablep)->guid;
598                         table = ((efi_config_table_32_t *)tablep)->table;
599                 }
600                 if (!efi_guidcmp(guid, MPS_TABLE_GUID)) {
601                         efi.mps = table;
602                         pr_cont(" MPS=0x%lx ", table);
603                 } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) {
604                         efi.acpi20 = table;
605                         pr_cont(" ACPI 2.0=0x%lx ", table);
606                 } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) {
607                         efi.acpi = table;
608                         pr_cont(" ACPI=0x%lx ", table);
609                 } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) {
610                         efi.smbios = table;
611                         pr_cont(" SMBIOS=0x%lx ", table);
612 #ifdef CONFIG_X86_UV
613                 } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) {
614                         efi.uv_systab = table;
615                         pr_cont(" UVsystab=0x%lx ", table);
616 #endif
617                 } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) {
618                         efi.hcdp = table;
619                         pr_cont(" HCDP=0x%lx ", table);
620                 } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) {
621                         efi.uga = table;
622                         pr_cont(" UGA=0x%lx ", table);
623                 }
624                 tablep += sz;
625         }
626         pr_cont("\n");
627         early_iounmap(config_tables, efi.systab->nr_tables * sz);
628         return 0;
629 }
630
631 static int __init efi_runtime_init(void)
632 {
633         efi_runtime_services_t *runtime;
634
635         /*
636          * Check out the runtime services table. We need to map
637          * the runtime services table so that we can grab the physical
638          * address of several of the EFI runtime functions, needed to
639          * set the firmware into virtual mode.
640          */
641         runtime = early_ioremap((unsigned long)efi.systab->runtime,
642                                 sizeof(efi_runtime_services_t));
643         if (!runtime) {
644                 pr_err("Could not map the runtime service table!\n");
645                 return -ENOMEM;
646         }
647         /*
648          * We will only need *early* access to the following
649          * two EFI runtime services before set_virtual_address_map
650          * is invoked.
651          */
652         efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
653         efi_phys.set_virtual_address_map =
654                 (efi_set_virtual_address_map_t *)
655                 runtime->set_virtual_address_map;
656         /*
657          * Make efi_get_time can be called before entering
658          * virtual mode.
659          */
660         efi.get_time = phys_efi_get_time;
661         early_iounmap(runtime, sizeof(efi_runtime_services_t));
662
663         return 0;
664 }
665
666 static int __init efi_memmap_init(void)
667 {
668         /* Map the EFI memory map */
669         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
670                                    memmap.nr_map * memmap.desc_size);
671         if (memmap.map == NULL) {
672                 pr_err("Could not map the memory map!\n");
673                 return -ENOMEM;
674         }
675         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
676
677         if (add_efi_memmap)
678                 do_add_efi_memmap();
679
680         return 0;
681 }
682
683 void __init efi_init(void)
684 {
685         efi_char16_t *c16;
686         char vendor[100] = "unknown";
687         int i = 0;
688         void *tmp;
689
690 #ifdef CONFIG_X86_32
691         if (boot_params.efi_info.efi_systab_hi ||
692             boot_params.efi_info.efi_memmap_hi) {
693                 pr_info("Table located above 4GB, disabling EFI.\n");
694                 return;
695         }
696         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
697 #else
698         efi_phys.systab = (efi_system_table_t *)
699                           (boot_params.efi_info.efi_systab |
700                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
701 #endif
702
703         if (efi_systab_init(efi_phys.systab))
704                 return;
705
706         set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
707
708         /*
709          * Show what we know for posterity
710          */
711         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
712         if (c16) {
713                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
714                         vendor[i] = *c16++;
715                 vendor[i] = '\0';
716         } else
717                 pr_err("Could not map the firmware vendor!\n");
718         early_iounmap(tmp, 2);
719
720         pr_info("EFI v%u.%.02u by %s\n",
721                 efi.systab->hdr.revision >> 16,
722                 efi.systab->hdr.revision & 0xffff, vendor);
723
724         if (efi_config_init(efi.systab->tables, efi.systab->nr_tables))
725                 return;
726
727         set_bit(EFI_CONFIG_TABLES, &x86_efi_facility);
728
729         /*
730          * Note: We currently don't support runtime services on an EFI
731          * that doesn't match the kernel 32/64-bit mode.
732          */
733
734         if (!efi_is_native())
735                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
736         else {
737                 if (efi_runtime_init())
738                         return;
739                 set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility);
740         }
741
742         if (efi_memmap_init())
743                 return;
744
745         set_bit(EFI_MEMMAP, &x86_efi_facility);
746
747 #ifdef CONFIG_X86_32
748         if (efi_is_native()) {
749                 x86_platform.get_wallclock = efi_get_time;
750                 x86_platform.set_wallclock = efi_set_rtc_mmss;
751         }
752 #endif
753
754 #if EFI_DEBUG
755         print_efi_memmap();
756 #endif
757 }
758
759 void __init efi_late_init(void)
760 {
761         efi_bgrt_init();
762 }
763
764 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
765 {
766         u64 addr, npages;
767
768         addr = md->virt_addr;
769         npages = md->num_pages;
770
771         memrange_efi_to_native(&addr, &npages);
772
773         if (executable)
774                 set_memory_x(addr, npages);
775         else
776                 set_memory_nx(addr, npages);
777 }
778
779 static void __init runtime_code_page_mkexec(void)
780 {
781         efi_memory_desc_t *md;
782         void *p;
783
784         /* Make EFI runtime service code area executable */
785         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
786                 md = p;
787
788                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
789                         continue;
790
791                 efi_set_executable(md, true);
792         }
793 }
794
795 /*
796  * We can't ioremap data in EFI boot services RAM, because we've already mapped
797  * it as RAM.  So, look it up in the existing EFI memory map instead.  Only
798  * callable after efi_enter_virtual_mode and before efi_free_boot_services.
799  */
800 void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
801 {
802         void *p;
803         if (WARN_ON(!memmap.map))
804                 return NULL;
805         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
806                 efi_memory_desc_t *md = p;
807                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
808                 u64 end = md->phys_addr + size;
809                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
810                     md->type != EFI_BOOT_SERVICES_CODE &&
811                     md->type != EFI_BOOT_SERVICES_DATA)
812                         continue;
813                 if (!md->virt_addr)
814                         continue;
815                 if (phys_addr >= md->phys_addr && phys_addr < end) {
816                         phys_addr += md->virt_addr - md->phys_addr;
817                         return (__force void __iomem *)(unsigned long)phys_addr;
818                 }
819         }
820         return NULL;
821 }
822
823 void efi_memory_uc(u64 addr, unsigned long size)
824 {
825         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
826         u64 npages;
827
828         npages = round_up(size, page_shift) / page_shift;
829         memrange_efi_to_native(&addr, &npages);
830         set_memory_uc(addr, npages);
831 }
832
833 /*
834  * This function will switch the EFI runtime services to virtual mode.
835  * Essentially, look through the EFI memmap and map every region that
836  * has the runtime attribute bit set in its memory descriptor and update
837  * that memory descriptor with the virtual address obtained from ioremap().
838  * This enables the runtime services to be called without having to
839  * thunk back into physical mode for every invocation.
840  */
841 void __init efi_enter_virtual_mode(void)
842 {
843         efi_memory_desc_t *md, *prev_md = NULL;
844         efi_status_t status;
845         unsigned long size;
846         u64 end, systab, end_pfn;
847         void *p, *va, *new_memmap = NULL;
848         int count = 0;
849
850         efi.systab = NULL;
851
852         /*
853          * We don't do virtual mode, since we don't do runtime services, on
854          * non-native EFI
855          */
856
857         if (!efi_is_native()) {
858                 efi_unmap_memmap();
859                 return;
860         }
861
862         /* Merge contiguous regions of the same type and attribute */
863         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
864                 u64 prev_size;
865                 md = p;
866
867                 if (!prev_md) {
868                         prev_md = md;
869                         continue;
870                 }
871
872                 if (prev_md->type != md->type ||
873                     prev_md->attribute != md->attribute) {
874                         prev_md = md;
875                         continue;
876                 }
877
878                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
879
880                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
881                         prev_md->num_pages += md->num_pages;
882                         md->type = EFI_RESERVED_TYPE;
883                         md->attribute = 0;
884                         continue;
885                 }
886                 prev_md = md;
887         }
888
889         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
890                 md = p;
891                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
892                     md->type != EFI_BOOT_SERVICES_CODE &&
893                     md->type != EFI_BOOT_SERVICES_DATA)
894                         continue;
895
896                 size = md->num_pages << EFI_PAGE_SHIFT;
897                 end = md->phys_addr + size;
898
899                 end_pfn = PFN_UP(end);
900                 if (end_pfn <= max_low_pfn_mapped
901                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
902                         && end_pfn <= max_pfn_mapped)) {
903                         va = __va(md->phys_addr);
904
905                         if (!(md->attribute & EFI_MEMORY_WB))
906                                 efi_memory_uc((u64)(unsigned long)va, size);
907                 } else
908                         va = efi_ioremap(md->phys_addr, size,
909                                          md->type, md->attribute);
910
911                 md->virt_addr = (u64) (unsigned long) va;
912
913                 if (!va) {
914                         pr_err("ioremap of 0x%llX failed!\n",
915                                (unsigned long long)md->phys_addr);
916                         continue;
917                 }
918
919                 systab = (u64) (unsigned long) efi_phys.systab;
920                 if (md->phys_addr <= systab && systab < end) {
921                         systab += md->virt_addr - md->phys_addr;
922                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
923                 }
924                 new_memmap = krealloc(new_memmap,
925                                       (count + 1) * memmap.desc_size,
926                                       GFP_KERNEL);
927                 memcpy(new_memmap + (count * memmap.desc_size), md,
928                        memmap.desc_size);
929                 count++;
930         }
931
932         BUG_ON(!efi.systab);
933
934         status = phys_efi_set_virtual_address_map(
935                 memmap.desc_size * count,
936                 memmap.desc_size,
937                 memmap.desc_version,
938                 (efi_memory_desc_t *)__pa(new_memmap));
939
940         if (status != EFI_SUCCESS) {
941                 pr_alert("Unable to switch EFI into virtual mode "
942                          "(status=%lx)!\n", status);
943                 panic("EFI call to SetVirtualAddressMap() failed!");
944         }
945
946         /*
947          * Now that EFI is in virtual mode, update the function
948          * pointers in the runtime service table to the new virtual addresses.
949          *
950          * Call EFI services through wrapper functions.
951          */
952         efi.runtime_version = efi_systab.hdr.revision;
953         efi.get_time = virt_efi_get_time;
954         efi.set_time = virt_efi_set_time;
955         efi.get_wakeup_time = virt_efi_get_wakeup_time;
956         efi.set_wakeup_time = virt_efi_set_wakeup_time;
957         efi.get_variable = virt_efi_get_variable;
958         efi.get_next_variable = virt_efi_get_next_variable;
959         efi.set_variable = virt_efi_set_variable;
960         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
961         efi.reset_system = virt_efi_reset_system;
962         efi.set_virtual_address_map = NULL;
963         efi.query_variable_info = virt_efi_query_variable_info;
964         efi.update_capsule = virt_efi_update_capsule;
965         efi.query_capsule_caps = virt_efi_query_capsule_caps;
966         if (__supported_pte_mask & _PAGE_NX)
967                 runtime_code_page_mkexec();
968
969         kfree(new_memmap);
970 }
971
972 /*
973  * Convenience functions to obtain memory types and attributes
974  */
975 u32 efi_mem_type(unsigned long phys_addr)
976 {
977         efi_memory_desc_t *md;
978         void *p;
979
980         if (!efi_enabled(EFI_MEMMAP))
981                 return 0;
982
983         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
984                 md = p;
985                 if ((md->phys_addr <= phys_addr) &&
986                     (phys_addr < (md->phys_addr +
987                                   (md->num_pages << EFI_PAGE_SHIFT))))
988                         return md->type;
989         }
990         return 0;
991 }
992
993 u64 efi_mem_attributes(unsigned long phys_addr)
994 {
995         efi_memory_desc_t *md;
996         void *p;
997
998         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
999                 md = p;
1000                 if ((md->phys_addr <= phys_addr) &&
1001                     (phys_addr < (md->phys_addr +
1002                                   (md->num_pages << EFI_PAGE_SHIFT))))
1003                         return md->attribute;
1004         }
1005         return 0;
1006 }