]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: move blk_mq_sched_{get,put}_request to blk-mq.c
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186         struct blk_mq_hw_ctx *hctx;
187         unsigned int i;
188
189         queue_for_each_hw_ctx(q, hctx, i)
190                 if (blk_mq_hw_queue_mapped(hctx))
191                         blk_mq_tag_wakeup_all(hctx->tags, true);
192
193         /*
194          * If we are called because the queue has now been marked as
195          * dying, we need to ensure that processes currently waiting on
196          * the queue are notified as well.
197          */
198         wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203         return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208                 struct request *rq, unsigned int op)
209 {
210         INIT_LIST_HEAD(&rq->queuelist);
211         /* csd/requeue_work/fifo_time is initialized before use */
212         rq->q = q;
213         rq->mq_ctx = ctx;
214         rq->cmd_flags = op;
215         if (blk_queue_io_stat(q))
216                 rq->rq_flags |= RQF_IO_STAT;
217         /* do not touch atomic flags, it needs atomic ops against the timer */
218         rq->cpu = -1;
219         INIT_HLIST_NODE(&rq->hash);
220         RB_CLEAR_NODE(&rq->rb_node);
221         rq->rq_disk = NULL;
222         rq->part = NULL;
223         rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225         rq->rl = NULL;
226         set_start_time_ns(rq);
227         rq->io_start_time_ns = 0;
228 #endif
229         rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231         rq->nr_integrity_segments = 0;
232 #endif
233         rq->special = NULL;
234         /* tag was already set */
235         rq->extra_len = 0;
236
237         INIT_LIST_HEAD(&rq->timeout_list);
238         rq->timeout = 0;
239
240         rq->end_io = NULL;
241         rq->end_io_data = NULL;
242         rq->next_rq = NULL;
243
244         ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246
247 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
248                                        unsigned int op)
249 {
250         struct request *rq;
251         unsigned int tag;
252
253         tag = blk_mq_get_tag(data);
254         if (tag != BLK_MQ_TAG_FAIL) {
255                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
256
257                 rq = tags->static_rqs[tag];
258
259                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
260                         rq->tag = -1;
261                         rq->internal_tag = tag;
262                 } else {
263                         if (blk_mq_tag_busy(data->hctx)) {
264                                 rq->rq_flags = RQF_MQ_INFLIGHT;
265                                 atomic_inc(&data->hctx->nr_active);
266                         }
267                         rq->tag = tag;
268                         rq->internal_tag = -1;
269                         data->hctx->tags->rqs[rq->tag] = rq;
270                 }
271
272                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
273                 return rq;
274         }
275
276         return NULL;
277 }
278 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
279
280 static struct request *blk_mq_get_request(struct request_queue *q,
281                 struct bio *bio, unsigned int op,
282                 struct blk_mq_alloc_data *data)
283 {
284         struct elevator_queue *e = q->elevator;
285         struct request *rq;
286
287         blk_queue_enter_live(q);
288         data->q = q;
289         if (likely(!data->ctx))
290                 data->ctx = blk_mq_get_ctx(q);
291         if (likely(!data->hctx))
292                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
293
294         if (e) {
295                 data->flags |= BLK_MQ_REQ_INTERNAL;
296
297                 /*
298                  * Flush requests are special and go directly to the
299                  * dispatch list.
300                  */
301                 if (!op_is_flush(op) && e->type->ops.mq.get_request) {
302                         rq = e->type->ops.mq.get_request(q, op, data);
303                         if (rq)
304                                 rq->rq_flags |= RQF_QUEUED;
305                 } else
306                         rq = __blk_mq_alloc_request(data, op);
307         } else {
308                 rq = __blk_mq_alloc_request(data, op);
309         }
310
311         if (rq) {
312                 if (!op_is_flush(op)) {
313                         rq->elv.icq = NULL;
314                         if (e && e->type->icq_cache)
315                                 blk_mq_sched_assign_ioc(q, rq, bio);
316                 }
317                 data->hctx->queued++;
318                 return rq;
319         }
320
321         blk_queue_exit(q);
322         return NULL;
323 }
324
325 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
326                 unsigned int flags)
327 {
328         struct blk_mq_alloc_data alloc_data = { .flags = flags };
329         struct request *rq;
330         int ret;
331
332         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
333         if (ret)
334                 return ERR_PTR(ret);
335
336         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
337
338         blk_mq_put_ctx(alloc_data.ctx);
339         blk_queue_exit(q);
340
341         if (!rq)
342                 return ERR_PTR(-EWOULDBLOCK);
343
344         rq->__data_len = 0;
345         rq->__sector = (sector_t) -1;
346         rq->bio = rq->biotail = NULL;
347         return rq;
348 }
349 EXPORT_SYMBOL(blk_mq_alloc_request);
350
351 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
352                 unsigned int flags, unsigned int hctx_idx)
353 {
354         struct blk_mq_alloc_data alloc_data = { .flags = flags };
355         struct request *rq;
356         unsigned int cpu;
357         int ret;
358
359         /*
360          * If the tag allocator sleeps we could get an allocation for a
361          * different hardware context.  No need to complicate the low level
362          * allocator for this for the rare use case of a command tied to
363          * a specific queue.
364          */
365         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
366                 return ERR_PTR(-EINVAL);
367
368         if (hctx_idx >= q->nr_hw_queues)
369                 return ERR_PTR(-EIO);
370
371         ret = blk_queue_enter(q, true);
372         if (ret)
373                 return ERR_PTR(ret);
374
375         /*
376          * Check if the hardware context is actually mapped to anything.
377          * If not tell the caller that it should skip this queue.
378          */
379         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
380         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
381                 blk_queue_exit(q);
382                 return ERR_PTR(-EXDEV);
383         }
384         cpu = cpumask_first(alloc_data.hctx->cpumask);
385         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
386
387         rq = blk_mq_get_request(q, NULL, rw, &alloc_data);
388
389         blk_queue_exit(q);
390
391         if (!rq)
392                 return ERR_PTR(-EWOULDBLOCK);
393
394         return rq;
395 }
396 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
397
398 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
399                              struct request *rq)
400 {
401         const int sched_tag = rq->internal_tag;
402         struct request_queue *q = rq->q;
403
404         if (rq->rq_flags & RQF_MQ_INFLIGHT)
405                 atomic_dec(&hctx->nr_active);
406
407         wbt_done(q->rq_wb, &rq->issue_stat);
408         rq->rq_flags = 0;
409
410         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
412         if (rq->tag != -1)
413                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
414         if (sched_tag != -1)
415                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
416         blk_mq_sched_restart(hctx);
417         blk_queue_exit(q);
418 }
419
420 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
421                                      struct request *rq)
422 {
423         struct blk_mq_ctx *ctx = rq->mq_ctx;
424
425         ctx->rq_completed[rq_is_sync(rq)]++;
426         __blk_mq_finish_request(hctx, ctx, rq);
427 }
428
429 void blk_mq_finish_request(struct request *rq)
430 {
431         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
432 }
433 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
434
435 void blk_mq_free_request(struct request *rq)
436 {
437         struct request_queue *q = rq->q;
438         struct elevator_queue *e = q->elevator;
439
440         if (rq->rq_flags & RQF_ELVPRIV) {
441                 blk_mq_sched_put_rq_priv(rq->q, rq);
442                 if (rq->elv.icq) {
443                         put_io_context(rq->elv.icq->ioc);
444                         rq->elv.icq = NULL;
445                 }
446         }
447
448         if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
449                 e->type->ops.mq.put_request(rq);
450         else
451                 blk_mq_finish_request(rq);
452 }
453 EXPORT_SYMBOL_GPL(blk_mq_free_request);
454
455 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
456 {
457         blk_account_io_done(rq);
458
459         if (rq->end_io) {
460                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
461                 rq->end_io(rq, error);
462         } else {
463                 if (unlikely(blk_bidi_rq(rq)))
464                         blk_mq_free_request(rq->next_rq);
465                 blk_mq_free_request(rq);
466         }
467 }
468 EXPORT_SYMBOL(__blk_mq_end_request);
469
470 void blk_mq_end_request(struct request *rq, blk_status_t error)
471 {
472         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
473                 BUG();
474         __blk_mq_end_request(rq, error);
475 }
476 EXPORT_SYMBOL(blk_mq_end_request);
477
478 static void __blk_mq_complete_request_remote(void *data)
479 {
480         struct request *rq = data;
481
482         rq->q->softirq_done_fn(rq);
483 }
484
485 static void __blk_mq_complete_request(struct request *rq)
486 {
487         struct blk_mq_ctx *ctx = rq->mq_ctx;
488         bool shared = false;
489         int cpu;
490
491         if (rq->internal_tag != -1)
492                 blk_mq_sched_completed_request(rq);
493         if (rq->rq_flags & RQF_STATS) {
494                 blk_mq_poll_stats_start(rq->q);
495                 blk_stat_add(rq);
496         }
497
498         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
499                 rq->q->softirq_done_fn(rq);
500                 return;
501         }
502
503         cpu = get_cpu();
504         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
505                 shared = cpus_share_cache(cpu, ctx->cpu);
506
507         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
508                 rq->csd.func = __blk_mq_complete_request_remote;
509                 rq->csd.info = rq;
510                 rq->csd.flags = 0;
511                 smp_call_function_single_async(ctx->cpu, &rq->csd);
512         } else {
513                 rq->q->softirq_done_fn(rq);
514         }
515         put_cpu();
516 }
517
518 /**
519  * blk_mq_complete_request - end I/O on a request
520  * @rq:         the request being processed
521  *
522  * Description:
523  *      Ends all I/O on a request. It does not handle partial completions.
524  *      The actual completion happens out-of-order, through a IPI handler.
525  **/
526 void blk_mq_complete_request(struct request *rq)
527 {
528         struct request_queue *q = rq->q;
529
530         if (unlikely(blk_should_fake_timeout(q)))
531                 return;
532         if (!blk_mark_rq_complete(rq))
533                 __blk_mq_complete_request(rq);
534 }
535 EXPORT_SYMBOL(blk_mq_complete_request);
536
537 int blk_mq_request_started(struct request *rq)
538 {
539         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
540 }
541 EXPORT_SYMBOL_GPL(blk_mq_request_started);
542
543 void blk_mq_start_request(struct request *rq)
544 {
545         struct request_queue *q = rq->q;
546
547         blk_mq_sched_started_request(rq);
548
549         trace_block_rq_issue(q, rq);
550
551         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
552                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
553                 rq->rq_flags |= RQF_STATS;
554                 wbt_issue(q->rq_wb, &rq->issue_stat);
555         }
556
557         blk_add_timer(rq);
558
559         /*
560          * Ensure that ->deadline is visible before set the started
561          * flag and clear the completed flag.
562          */
563         smp_mb__before_atomic();
564
565         /*
566          * Mark us as started and clear complete. Complete might have been
567          * set if requeue raced with timeout, which then marked it as
568          * complete. So be sure to clear complete again when we start
569          * the request, otherwise we'll ignore the completion event.
570          */
571         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
572                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
573         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
574                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
575
576         if (q->dma_drain_size && blk_rq_bytes(rq)) {
577                 /*
578                  * Make sure space for the drain appears.  We know we can do
579                  * this because max_hw_segments has been adjusted to be one
580                  * fewer than the device can handle.
581                  */
582                 rq->nr_phys_segments++;
583         }
584 }
585 EXPORT_SYMBOL(blk_mq_start_request);
586
587 /*
588  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
589  * flag isn't set yet, so there may be race with timeout handler,
590  * but given rq->deadline is just set in .queue_rq() under
591  * this situation, the race won't be possible in reality because
592  * rq->timeout should be set as big enough to cover the window
593  * between blk_mq_start_request() called from .queue_rq() and
594  * clearing REQ_ATOM_STARTED here.
595  */
596 static void __blk_mq_requeue_request(struct request *rq)
597 {
598         struct request_queue *q = rq->q;
599
600         trace_block_rq_requeue(q, rq);
601         wbt_requeue(q->rq_wb, &rq->issue_stat);
602         blk_mq_sched_requeue_request(rq);
603
604         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
605                 if (q->dma_drain_size && blk_rq_bytes(rq))
606                         rq->nr_phys_segments--;
607         }
608 }
609
610 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
611 {
612         __blk_mq_requeue_request(rq);
613
614         BUG_ON(blk_queued_rq(rq));
615         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
616 }
617 EXPORT_SYMBOL(blk_mq_requeue_request);
618
619 static void blk_mq_requeue_work(struct work_struct *work)
620 {
621         struct request_queue *q =
622                 container_of(work, struct request_queue, requeue_work.work);
623         LIST_HEAD(rq_list);
624         struct request *rq, *next;
625         unsigned long flags;
626
627         spin_lock_irqsave(&q->requeue_lock, flags);
628         list_splice_init(&q->requeue_list, &rq_list);
629         spin_unlock_irqrestore(&q->requeue_lock, flags);
630
631         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
632                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
633                         continue;
634
635                 rq->rq_flags &= ~RQF_SOFTBARRIER;
636                 list_del_init(&rq->queuelist);
637                 blk_mq_sched_insert_request(rq, true, false, false, true);
638         }
639
640         while (!list_empty(&rq_list)) {
641                 rq = list_entry(rq_list.next, struct request, queuelist);
642                 list_del_init(&rq->queuelist);
643                 blk_mq_sched_insert_request(rq, false, false, false, true);
644         }
645
646         blk_mq_run_hw_queues(q, false);
647 }
648
649 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
650                                 bool kick_requeue_list)
651 {
652         struct request_queue *q = rq->q;
653         unsigned long flags;
654
655         /*
656          * We abuse this flag that is otherwise used by the I/O scheduler to
657          * request head insertation from the workqueue.
658          */
659         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
660
661         spin_lock_irqsave(&q->requeue_lock, flags);
662         if (at_head) {
663                 rq->rq_flags |= RQF_SOFTBARRIER;
664                 list_add(&rq->queuelist, &q->requeue_list);
665         } else {
666                 list_add_tail(&rq->queuelist, &q->requeue_list);
667         }
668         spin_unlock_irqrestore(&q->requeue_lock, flags);
669
670         if (kick_requeue_list)
671                 blk_mq_kick_requeue_list(q);
672 }
673 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
674
675 void blk_mq_kick_requeue_list(struct request_queue *q)
676 {
677         kblockd_schedule_delayed_work(&q->requeue_work, 0);
678 }
679 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
680
681 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
682                                     unsigned long msecs)
683 {
684         kblockd_schedule_delayed_work(&q->requeue_work,
685                                       msecs_to_jiffies(msecs));
686 }
687 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
688
689 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
690 {
691         if (tag < tags->nr_tags) {
692                 prefetch(tags->rqs[tag]);
693                 return tags->rqs[tag];
694         }
695
696         return NULL;
697 }
698 EXPORT_SYMBOL(blk_mq_tag_to_rq);
699
700 struct blk_mq_timeout_data {
701         unsigned long next;
702         unsigned int next_set;
703 };
704
705 void blk_mq_rq_timed_out(struct request *req, bool reserved)
706 {
707         const struct blk_mq_ops *ops = req->q->mq_ops;
708         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
709
710         /*
711          * We know that complete is set at this point. If STARTED isn't set
712          * anymore, then the request isn't active and the "timeout" should
713          * just be ignored. This can happen due to the bitflag ordering.
714          * Timeout first checks if STARTED is set, and if it is, assumes
715          * the request is active. But if we race with completion, then
716          * both flags will get cleared. So check here again, and ignore
717          * a timeout event with a request that isn't active.
718          */
719         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
720                 return;
721
722         if (ops->timeout)
723                 ret = ops->timeout(req, reserved);
724
725         switch (ret) {
726         case BLK_EH_HANDLED:
727                 __blk_mq_complete_request(req);
728                 break;
729         case BLK_EH_RESET_TIMER:
730                 blk_add_timer(req);
731                 blk_clear_rq_complete(req);
732                 break;
733         case BLK_EH_NOT_HANDLED:
734                 break;
735         default:
736                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
737                 break;
738         }
739 }
740
741 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
742                 struct request *rq, void *priv, bool reserved)
743 {
744         struct blk_mq_timeout_data *data = priv;
745
746         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
747                 return;
748
749         /*
750          * The rq being checked may have been freed and reallocated
751          * out already here, we avoid this race by checking rq->deadline
752          * and REQ_ATOM_COMPLETE flag together:
753          *
754          * - if rq->deadline is observed as new value because of
755          *   reusing, the rq won't be timed out because of timing.
756          * - if rq->deadline is observed as previous value,
757          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
758          *   because we put a barrier between setting rq->deadline
759          *   and clearing the flag in blk_mq_start_request(), so
760          *   this rq won't be timed out too.
761          */
762         if (time_after_eq(jiffies, rq->deadline)) {
763                 if (!blk_mark_rq_complete(rq))
764                         blk_mq_rq_timed_out(rq, reserved);
765         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
766                 data->next = rq->deadline;
767                 data->next_set = 1;
768         }
769 }
770
771 static void blk_mq_timeout_work(struct work_struct *work)
772 {
773         struct request_queue *q =
774                 container_of(work, struct request_queue, timeout_work);
775         struct blk_mq_timeout_data data = {
776                 .next           = 0,
777                 .next_set       = 0,
778         };
779         int i;
780
781         /* A deadlock might occur if a request is stuck requiring a
782          * timeout at the same time a queue freeze is waiting
783          * completion, since the timeout code would not be able to
784          * acquire the queue reference here.
785          *
786          * That's why we don't use blk_queue_enter here; instead, we use
787          * percpu_ref_tryget directly, because we need to be able to
788          * obtain a reference even in the short window between the queue
789          * starting to freeze, by dropping the first reference in
790          * blk_freeze_queue_start, and the moment the last request is
791          * consumed, marked by the instant q_usage_counter reaches
792          * zero.
793          */
794         if (!percpu_ref_tryget(&q->q_usage_counter))
795                 return;
796
797         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
798
799         if (data.next_set) {
800                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
801                 mod_timer(&q->timeout, data.next);
802         } else {
803                 struct blk_mq_hw_ctx *hctx;
804
805                 queue_for_each_hw_ctx(q, hctx, i) {
806                         /* the hctx may be unmapped, so check it here */
807                         if (blk_mq_hw_queue_mapped(hctx))
808                                 blk_mq_tag_idle(hctx);
809                 }
810         }
811         blk_queue_exit(q);
812 }
813
814 struct flush_busy_ctx_data {
815         struct blk_mq_hw_ctx *hctx;
816         struct list_head *list;
817 };
818
819 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
820 {
821         struct flush_busy_ctx_data *flush_data = data;
822         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
823         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
824
825         sbitmap_clear_bit(sb, bitnr);
826         spin_lock(&ctx->lock);
827         list_splice_tail_init(&ctx->rq_list, flush_data->list);
828         spin_unlock(&ctx->lock);
829         return true;
830 }
831
832 /*
833  * Process software queues that have been marked busy, splicing them
834  * to the for-dispatch
835  */
836 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
837 {
838         struct flush_busy_ctx_data data = {
839                 .hctx = hctx,
840                 .list = list,
841         };
842
843         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
844 }
845 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
846
847 static inline unsigned int queued_to_index(unsigned int queued)
848 {
849         if (!queued)
850                 return 0;
851
852         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
853 }
854
855 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
856                            bool wait)
857 {
858         struct blk_mq_alloc_data data = {
859                 .q = rq->q,
860                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
861                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
862         };
863
864         might_sleep_if(wait);
865
866         if (rq->tag != -1)
867                 goto done;
868
869         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
870                 data.flags |= BLK_MQ_REQ_RESERVED;
871
872         rq->tag = blk_mq_get_tag(&data);
873         if (rq->tag >= 0) {
874                 if (blk_mq_tag_busy(data.hctx)) {
875                         rq->rq_flags |= RQF_MQ_INFLIGHT;
876                         atomic_inc(&data.hctx->nr_active);
877                 }
878                 data.hctx->tags->rqs[rq->tag] = rq;
879         }
880
881 done:
882         if (hctx)
883                 *hctx = data.hctx;
884         return rq->tag != -1;
885 }
886
887 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
888                                     struct request *rq)
889 {
890         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
891         rq->tag = -1;
892
893         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
894                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
895                 atomic_dec(&hctx->nr_active);
896         }
897 }
898
899 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
900                                        struct request *rq)
901 {
902         if (rq->tag == -1 || rq->internal_tag == -1)
903                 return;
904
905         __blk_mq_put_driver_tag(hctx, rq);
906 }
907
908 static void blk_mq_put_driver_tag(struct request *rq)
909 {
910         struct blk_mq_hw_ctx *hctx;
911
912         if (rq->tag == -1 || rq->internal_tag == -1)
913                 return;
914
915         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
916         __blk_mq_put_driver_tag(hctx, rq);
917 }
918
919 /*
920  * If we fail getting a driver tag because all the driver tags are already
921  * assigned and on the dispatch list, BUT the first entry does not have a
922  * tag, then we could deadlock. For that case, move entries with assigned
923  * driver tags to the front, leaving the set of tagged requests in the
924  * same order, and the untagged set in the same order.
925  */
926 static bool reorder_tags_to_front(struct list_head *list)
927 {
928         struct request *rq, *tmp, *first = NULL;
929
930         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
931                 if (rq == first)
932                         break;
933                 if (rq->tag != -1) {
934                         list_move(&rq->queuelist, list);
935                         if (!first)
936                                 first = rq;
937                 }
938         }
939
940         return first != NULL;
941 }
942
943 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
944                                 void *key)
945 {
946         struct blk_mq_hw_ctx *hctx;
947
948         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
949
950         list_del(&wait->task_list);
951         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
952         blk_mq_run_hw_queue(hctx, true);
953         return 1;
954 }
955
956 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
957 {
958         struct sbq_wait_state *ws;
959
960         /*
961          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
962          * The thread which wins the race to grab this bit adds the hardware
963          * queue to the wait queue.
964          */
965         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
966             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
967                 return false;
968
969         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
970         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
971
972         /*
973          * As soon as this returns, it's no longer safe to fiddle with
974          * hctx->dispatch_wait, since a completion can wake up the wait queue
975          * and unlock the bit.
976          */
977         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
978         return true;
979 }
980
981 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
982 {
983         struct blk_mq_hw_ctx *hctx;
984         struct request *rq;
985         int errors, queued;
986
987         if (list_empty(list))
988                 return false;
989
990         /*
991          * Now process all the entries, sending them to the driver.
992          */
993         errors = queued = 0;
994         do {
995                 struct blk_mq_queue_data bd;
996                 blk_status_t ret;
997
998                 rq = list_first_entry(list, struct request, queuelist);
999                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1000                         if (!queued && reorder_tags_to_front(list))
1001                                 continue;
1002
1003                         /*
1004                          * The initial allocation attempt failed, so we need to
1005                          * rerun the hardware queue when a tag is freed.
1006                          */
1007                         if (!blk_mq_dispatch_wait_add(hctx))
1008                                 break;
1009
1010                         /*
1011                          * It's possible that a tag was freed in the window
1012                          * between the allocation failure and adding the
1013                          * hardware queue to the wait queue.
1014                          */
1015                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016                                 break;
1017                 }
1018
1019                 list_del_init(&rq->queuelist);
1020
1021                 bd.rq = rq;
1022
1023                 /*
1024                  * Flag last if we have no more requests, or if we have more
1025                  * but can't assign a driver tag to it.
1026                  */
1027                 if (list_empty(list))
1028                         bd.last = true;
1029                 else {
1030                         struct request *nxt;
1031
1032                         nxt = list_first_entry(list, struct request, queuelist);
1033                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034                 }
1035
1036                 ret = q->mq_ops->queue_rq(hctx, &bd);
1037                 if (ret == BLK_STS_RESOURCE) {
1038                         blk_mq_put_driver_tag_hctx(hctx, rq);
1039                         list_add(&rq->queuelist, list);
1040                         __blk_mq_requeue_request(rq);
1041                         break;
1042                 }
1043
1044                 if (unlikely(ret != BLK_STS_OK)) {
1045                         errors++;
1046                         blk_mq_end_request(rq, BLK_STS_IOERR);
1047                         continue;
1048                 }
1049
1050                 queued++;
1051         } while (!list_empty(list));
1052
1053         hctx->dispatched[queued_to_index(queued)]++;
1054
1055         /*
1056          * Any items that need requeuing? Stuff them into hctx->dispatch,
1057          * that is where we will continue on next queue run.
1058          */
1059         if (!list_empty(list)) {
1060                 /*
1061                  * If an I/O scheduler has been configured and we got a driver
1062                  * tag for the next request already, free it again.
1063                  */
1064                 rq = list_first_entry(list, struct request, queuelist);
1065                 blk_mq_put_driver_tag(rq);
1066
1067                 spin_lock(&hctx->lock);
1068                 list_splice_init(list, &hctx->dispatch);
1069                 spin_unlock(&hctx->lock);
1070
1071                 /*
1072                  * If SCHED_RESTART was set by the caller of this function and
1073                  * it is no longer set that means that it was cleared by another
1074                  * thread and hence that a queue rerun is needed.
1075                  *
1076                  * If TAG_WAITING is set that means that an I/O scheduler has
1077                  * been configured and another thread is waiting for a driver
1078                  * tag. To guarantee fairness, do not rerun this hardware queue
1079                  * but let the other thread grab the driver tag.
1080                  *
1081                  * If no I/O scheduler has been configured it is possible that
1082                  * the hardware queue got stopped and restarted before requests
1083                  * were pushed back onto the dispatch list. Rerun the queue to
1084                  * avoid starvation. Notes:
1085                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1086                  *   been stopped before rerunning a queue.
1087                  * - Some but not all block drivers stop a queue before
1088                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1089                  *   and dm-rq.
1090                  */
1091                 if (!blk_mq_sched_needs_restart(hctx) &&
1092                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093                         blk_mq_run_hw_queue(hctx, true);
1094         }
1095
1096         return (queued + errors) != 0;
1097 }
1098
1099 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100 {
1101         int srcu_idx;
1102
1103         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104                 cpu_online(hctx->next_cpu));
1105
1106         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107                 rcu_read_lock();
1108                 blk_mq_sched_dispatch_requests(hctx);
1109                 rcu_read_unlock();
1110         } else {
1111                 might_sleep();
1112
1113                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1114                 blk_mq_sched_dispatch_requests(hctx);
1115                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1116         }
1117 }
1118
1119 /*
1120  * It'd be great if the workqueue API had a way to pass
1121  * in a mask and had some smarts for more clever placement.
1122  * For now we just round-robin here, switching for every
1123  * BLK_MQ_CPU_WORK_BATCH queued items.
1124  */
1125 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1126 {
1127         if (hctx->queue->nr_hw_queues == 1)
1128                 return WORK_CPU_UNBOUND;
1129
1130         if (--hctx->next_cpu_batch <= 0) {
1131                 int next_cpu;
1132
1133                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1134                 if (next_cpu >= nr_cpu_ids)
1135                         next_cpu = cpumask_first(hctx->cpumask);
1136
1137                 hctx->next_cpu = next_cpu;
1138                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1139         }
1140
1141         return hctx->next_cpu;
1142 }
1143
1144 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1145                                         unsigned long msecs)
1146 {
1147         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1148                      !blk_mq_hw_queue_mapped(hctx)))
1149                 return;
1150
1151         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1152                 int cpu = get_cpu();
1153                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1154                         __blk_mq_run_hw_queue(hctx);
1155                         put_cpu();
1156                         return;
1157                 }
1158
1159                 put_cpu();
1160         }
1161
1162         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1163                                          &hctx->run_work,
1164                                          msecs_to_jiffies(msecs));
1165 }
1166
1167 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1168 {
1169         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1170 }
1171 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1172
1173 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1174 {
1175         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1176 }
1177 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1178
1179 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1180 {
1181         struct blk_mq_hw_ctx *hctx;
1182         int i;
1183
1184         queue_for_each_hw_ctx(q, hctx, i) {
1185                 if (!blk_mq_hctx_has_pending(hctx) ||
1186                     blk_mq_hctx_stopped(hctx))
1187                         continue;
1188
1189                 blk_mq_run_hw_queue(hctx, async);
1190         }
1191 }
1192 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1193
1194 /**
1195  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1196  * @q: request queue.
1197  *
1198  * The caller is responsible for serializing this function against
1199  * blk_mq_{start,stop}_hw_queue().
1200  */
1201 bool blk_mq_queue_stopped(struct request_queue *q)
1202 {
1203         struct blk_mq_hw_ctx *hctx;
1204         int i;
1205
1206         queue_for_each_hw_ctx(q, hctx, i)
1207                 if (blk_mq_hctx_stopped(hctx))
1208                         return true;
1209
1210         return false;
1211 }
1212 EXPORT_SYMBOL(blk_mq_queue_stopped);
1213
1214 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1215 {
1216         if (sync)
1217                 cancel_delayed_work_sync(&hctx->run_work);
1218         else
1219                 cancel_delayed_work(&hctx->run_work);
1220
1221         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1222 }
1223
1224 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1225 {
1226         __blk_mq_stop_hw_queue(hctx, false);
1227 }
1228 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1229
1230 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1231 {
1232         struct blk_mq_hw_ctx *hctx;
1233         int i;
1234
1235         queue_for_each_hw_ctx(q, hctx, i)
1236                 __blk_mq_stop_hw_queue(hctx, sync);
1237 }
1238
1239 void blk_mq_stop_hw_queues(struct request_queue *q)
1240 {
1241         __blk_mq_stop_hw_queues(q, false);
1242 }
1243 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1244
1245 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1246 {
1247         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1248
1249         blk_mq_run_hw_queue(hctx, false);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1252
1253 void blk_mq_start_hw_queues(struct request_queue *q)
1254 {
1255         struct blk_mq_hw_ctx *hctx;
1256         int i;
1257
1258         queue_for_each_hw_ctx(q, hctx, i)
1259                 blk_mq_start_hw_queue(hctx);
1260 }
1261 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1262
1263 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1264 {
1265         if (!blk_mq_hctx_stopped(hctx))
1266                 return;
1267
1268         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1269         blk_mq_run_hw_queue(hctx, async);
1270 }
1271 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1272
1273 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1274 {
1275         struct blk_mq_hw_ctx *hctx;
1276         int i;
1277
1278         queue_for_each_hw_ctx(q, hctx, i)
1279                 blk_mq_start_stopped_hw_queue(hctx, async);
1280 }
1281 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1282
1283 static void blk_mq_run_work_fn(struct work_struct *work)
1284 {
1285         struct blk_mq_hw_ctx *hctx;
1286
1287         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1288
1289         /*
1290          * If we are stopped, don't run the queue. The exception is if
1291          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1292          * the STOPPED bit and run it.
1293          */
1294         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1295                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1296                         return;
1297
1298                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1299                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1300         }
1301
1302         __blk_mq_run_hw_queue(hctx);
1303 }
1304
1305
1306 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1307 {
1308         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1309                 return;
1310
1311         /*
1312          * Stop the hw queue, then modify currently delayed work.
1313          * This should prevent us from running the queue prematurely.
1314          * Mark the queue as auto-clearing STOPPED when it runs.
1315          */
1316         blk_mq_stop_hw_queue(hctx);
1317         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1318         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1319                                         &hctx->run_work,
1320                                         msecs_to_jiffies(msecs));
1321 }
1322 EXPORT_SYMBOL(blk_mq_delay_queue);
1323
1324 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1325                                             struct request *rq,
1326                                             bool at_head)
1327 {
1328         struct blk_mq_ctx *ctx = rq->mq_ctx;
1329
1330         trace_block_rq_insert(hctx->queue, rq);
1331
1332         if (at_head)
1333                 list_add(&rq->queuelist, &ctx->rq_list);
1334         else
1335                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1336 }
1337
1338 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1339                              bool at_head)
1340 {
1341         struct blk_mq_ctx *ctx = rq->mq_ctx;
1342
1343         __blk_mq_insert_req_list(hctx, rq, at_head);
1344         blk_mq_hctx_mark_pending(hctx, ctx);
1345 }
1346
1347 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1348                             struct list_head *list)
1349
1350 {
1351         /*
1352          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1353          * offline now
1354          */
1355         spin_lock(&ctx->lock);
1356         while (!list_empty(list)) {
1357                 struct request *rq;
1358
1359                 rq = list_first_entry(list, struct request, queuelist);
1360                 BUG_ON(rq->mq_ctx != ctx);
1361                 list_del_init(&rq->queuelist);
1362                 __blk_mq_insert_req_list(hctx, rq, false);
1363         }
1364         blk_mq_hctx_mark_pending(hctx, ctx);
1365         spin_unlock(&ctx->lock);
1366 }
1367
1368 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1369 {
1370         struct request *rqa = container_of(a, struct request, queuelist);
1371         struct request *rqb = container_of(b, struct request, queuelist);
1372
1373         return !(rqa->mq_ctx < rqb->mq_ctx ||
1374                  (rqa->mq_ctx == rqb->mq_ctx &&
1375                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1376 }
1377
1378 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1379 {
1380         struct blk_mq_ctx *this_ctx;
1381         struct request_queue *this_q;
1382         struct request *rq;
1383         LIST_HEAD(list);
1384         LIST_HEAD(ctx_list);
1385         unsigned int depth;
1386
1387         list_splice_init(&plug->mq_list, &list);
1388
1389         list_sort(NULL, &list, plug_ctx_cmp);
1390
1391         this_q = NULL;
1392         this_ctx = NULL;
1393         depth = 0;
1394
1395         while (!list_empty(&list)) {
1396                 rq = list_entry_rq(list.next);
1397                 list_del_init(&rq->queuelist);
1398                 BUG_ON(!rq->q);
1399                 if (rq->mq_ctx != this_ctx) {
1400                         if (this_ctx) {
1401                                 trace_block_unplug(this_q, depth, from_schedule);
1402                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1403                                                                 &ctx_list,
1404                                                                 from_schedule);
1405                         }
1406
1407                         this_ctx = rq->mq_ctx;
1408                         this_q = rq->q;
1409                         depth = 0;
1410                 }
1411
1412                 depth++;
1413                 list_add_tail(&rq->queuelist, &ctx_list);
1414         }
1415
1416         /*
1417          * If 'this_ctx' is set, we know we have entries to complete
1418          * on 'ctx_list'. Do those.
1419          */
1420         if (this_ctx) {
1421                 trace_block_unplug(this_q, depth, from_schedule);
1422                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1423                                                 from_schedule);
1424         }
1425 }
1426
1427 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1428 {
1429         blk_init_request_from_bio(rq, bio);
1430
1431         blk_account_io_start(rq, true);
1432 }
1433
1434 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1435 {
1436         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1437                 !blk_queue_nomerges(hctx->queue);
1438 }
1439
1440 static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
1441                                    struct blk_mq_ctx *ctx,
1442                                    struct request *rq)
1443 {
1444         spin_lock(&ctx->lock);
1445         __blk_mq_insert_request(hctx, rq, false);
1446         spin_unlock(&ctx->lock);
1447 }
1448
1449 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1450 {
1451         if (rq->tag != -1)
1452                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1453
1454         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1455 }
1456
1457 static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1458                                         struct request *rq,
1459                                         blk_qc_t *cookie, bool may_sleep)
1460 {
1461         struct request_queue *q = rq->q;
1462         struct blk_mq_queue_data bd = {
1463                 .rq = rq,
1464                 .last = true,
1465         };
1466         blk_qc_t new_cookie;
1467         blk_status_t ret;
1468         bool run_queue = true;
1469
1470         if (blk_mq_hctx_stopped(hctx)) {
1471                 run_queue = false;
1472                 goto insert;
1473         }
1474
1475         if (q->elevator)
1476                 goto insert;
1477
1478         if (!blk_mq_get_driver_tag(rq, NULL, false))
1479                 goto insert;
1480
1481         new_cookie = request_to_qc_t(hctx, rq);
1482
1483         /*
1484          * For OK queue, we are done. For error, kill it. Any other
1485          * error (busy), just add it to our list as we previously
1486          * would have done
1487          */
1488         ret = q->mq_ops->queue_rq(hctx, &bd);
1489         switch (ret) {
1490         case BLK_STS_OK:
1491                 *cookie = new_cookie;
1492                 return;
1493         case BLK_STS_RESOURCE:
1494                 __blk_mq_requeue_request(rq);
1495                 goto insert;
1496         default:
1497                 *cookie = BLK_QC_T_NONE;
1498                 blk_mq_end_request(rq, ret);
1499                 return;
1500         }
1501
1502 insert:
1503         blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1504 }
1505
1506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1507                 struct request *rq, blk_qc_t *cookie)
1508 {
1509         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1510                 rcu_read_lock();
1511                 __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1512                 rcu_read_unlock();
1513         } else {
1514                 unsigned int srcu_idx;
1515
1516                 might_sleep();
1517
1518                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1519                 __blk_mq_try_issue_directly(hctx, rq, cookie, true);
1520                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1521         }
1522 }
1523
1524 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1525 {
1526         const int is_sync = op_is_sync(bio->bi_opf);
1527         const int is_flush_fua = op_is_flush(bio->bi_opf);
1528         struct blk_mq_alloc_data data = { .flags = 0 };
1529         struct request *rq;
1530         unsigned int request_count = 0;
1531         struct blk_plug *plug;
1532         struct request *same_queue_rq = NULL;
1533         blk_qc_t cookie;
1534         unsigned int wb_acct;
1535
1536         blk_queue_bounce(q, &bio);
1537
1538         blk_queue_split(q, &bio, q->bio_split);
1539
1540         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1541                 bio_io_error(bio);
1542                 return BLK_QC_T_NONE;
1543         }
1544
1545         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1546             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1547                 return BLK_QC_T_NONE;
1548
1549         if (blk_mq_sched_bio_merge(q, bio))
1550                 return BLK_QC_T_NONE;
1551
1552         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1553
1554         trace_block_getrq(q, bio, bio->bi_opf);
1555
1556         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1557         if (unlikely(!rq)) {
1558                 __wbt_done(q->rq_wb, wb_acct);
1559                 return BLK_QC_T_NONE;
1560         }
1561
1562         wbt_track(&rq->issue_stat, wb_acct);
1563
1564         cookie = request_to_qc_t(data.hctx, rq);
1565
1566         plug = current->plug;
1567         if (unlikely(is_flush_fua)) {
1568                 blk_mq_put_ctx(data.ctx);
1569                 blk_mq_bio_to_request(rq, bio);
1570                 if (q->elevator) {
1571                         blk_mq_sched_insert_request(rq, false, true, true,
1572                                         true);
1573                 } else {
1574                         blk_insert_flush(rq);
1575                         blk_mq_run_hw_queue(data.hctx, true);
1576                 }
1577         } else if (plug && q->nr_hw_queues == 1) {
1578                 struct request *last = NULL;
1579
1580                 blk_mq_put_ctx(data.ctx);
1581                 blk_mq_bio_to_request(rq, bio);
1582
1583                 /*
1584                  * @request_count may become stale because of schedule
1585                  * out, so check the list again.
1586                  */
1587                 if (list_empty(&plug->mq_list))
1588                         request_count = 0;
1589                 else if (blk_queue_nomerges(q))
1590                         request_count = blk_plug_queued_count(q);
1591
1592                 if (!request_count)
1593                         trace_block_plug(q);
1594                 else
1595                         last = list_entry_rq(plug->mq_list.prev);
1596
1597                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1598                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1599                         blk_flush_plug_list(plug, false);
1600                         trace_block_plug(q);
1601                 }
1602
1603                 list_add_tail(&rq->queuelist, &plug->mq_list);
1604         } else if (plug && !blk_queue_nomerges(q)) {
1605                 blk_mq_bio_to_request(rq, bio);
1606
1607                 /*
1608                  * We do limited plugging. If the bio can be merged, do that.
1609                  * Otherwise the existing request in the plug list will be
1610                  * issued. So the plug list will have one request at most
1611                  * The plug list might get flushed before this. If that happens,
1612                  * the plug list is empty, and same_queue_rq is invalid.
1613                  */
1614                 if (list_empty(&plug->mq_list))
1615                         same_queue_rq = NULL;
1616                 if (same_queue_rq)
1617                         list_del_init(&same_queue_rq->queuelist);
1618                 list_add_tail(&rq->queuelist, &plug->mq_list);
1619
1620                 blk_mq_put_ctx(data.ctx);
1621
1622                 if (same_queue_rq) {
1623                         data.hctx = blk_mq_map_queue(q,
1624                                         same_queue_rq->mq_ctx->cpu);
1625                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1626                                         &cookie);
1627                 }
1628         } else if (q->nr_hw_queues > 1 && is_sync) {
1629                 blk_mq_put_ctx(data.ctx);
1630                 blk_mq_bio_to_request(rq, bio);
1631                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1632         } else if (q->elevator) {
1633                 blk_mq_put_ctx(data.ctx);
1634                 blk_mq_bio_to_request(rq, bio);
1635                 blk_mq_sched_insert_request(rq, false, true, true, true);
1636         } else {
1637                 blk_mq_put_ctx(data.ctx);
1638                 blk_mq_bio_to_request(rq, bio);
1639                 blk_mq_queue_io(data.hctx, data.ctx, rq);
1640                 blk_mq_run_hw_queue(data.hctx, true);
1641         }
1642
1643         return cookie;
1644 }
1645
1646 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1647                      unsigned int hctx_idx)
1648 {
1649         struct page *page;
1650
1651         if (tags->rqs && set->ops->exit_request) {
1652                 int i;
1653
1654                 for (i = 0; i < tags->nr_tags; i++) {
1655                         struct request *rq = tags->static_rqs[i];
1656
1657                         if (!rq)
1658                                 continue;
1659                         set->ops->exit_request(set, rq, hctx_idx);
1660                         tags->static_rqs[i] = NULL;
1661                 }
1662         }
1663
1664         while (!list_empty(&tags->page_list)) {
1665                 page = list_first_entry(&tags->page_list, struct page, lru);
1666                 list_del_init(&page->lru);
1667                 /*
1668                  * Remove kmemleak object previously allocated in
1669                  * blk_mq_init_rq_map().
1670                  */
1671                 kmemleak_free(page_address(page));
1672                 __free_pages(page, page->private);
1673         }
1674 }
1675
1676 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1677 {
1678         kfree(tags->rqs);
1679         tags->rqs = NULL;
1680         kfree(tags->static_rqs);
1681         tags->static_rqs = NULL;
1682
1683         blk_mq_free_tags(tags);
1684 }
1685
1686 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1687                                         unsigned int hctx_idx,
1688                                         unsigned int nr_tags,
1689                                         unsigned int reserved_tags)
1690 {
1691         struct blk_mq_tags *tags;
1692         int node;
1693
1694         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1695         if (node == NUMA_NO_NODE)
1696                 node = set->numa_node;
1697
1698         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1699                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1700         if (!tags)
1701                 return NULL;
1702
1703         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705                                  node);
1706         if (!tags->rqs) {
1707                 blk_mq_free_tags(tags);
1708                 return NULL;
1709         }
1710
1711         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1712                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1713                                  node);
1714         if (!tags->static_rqs) {
1715                 kfree(tags->rqs);
1716                 blk_mq_free_tags(tags);
1717                 return NULL;
1718         }
1719
1720         return tags;
1721 }
1722
1723 static size_t order_to_size(unsigned int order)
1724 {
1725         return (size_t)PAGE_SIZE << order;
1726 }
1727
1728 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1729                      unsigned int hctx_idx, unsigned int depth)
1730 {
1731         unsigned int i, j, entries_per_page, max_order = 4;
1732         size_t rq_size, left;
1733         int node;
1734
1735         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1736         if (node == NUMA_NO_NODE)
1737                 node = set->numa_node;
1738
1739         INIT_LIST_HEAD(&tags->page_list);
1740
1741         /*
1742          * rq_size is the size of the request plus driver payload, rounded
1743          * to the cacheline size
1744          */
1745         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1746                                 cache_line_size());
1747         left = rq_size * depth;
1748
1749         for (i = 0; i < depth; ) {
1750                 int this_order = max_order;
1751                 struct page *page;
1752                 int to_do;
1753                 void *p;
1754
1755                 while (this_order && left < order_to_size(this_order - 1))
1756                         this_order--;
1757
1758                 do {
1759                         page = alloc_pages_node(node,
1760                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1761                                 this_order);
1762                         if (page)
1763                                 break;
1764                         if (!this_order--)
1765                                 break;
1766                         if (order_to_size(this_order) < rq_size)
1767                                 break;
1768                 } while (1);
1769
1770                 if (!page)
1771                         goto fail;
1772
1773                 page->private = this_order;
1774                 list_add_tail(&page->lru, &tags->page_list);
1775
1776                 p = page_address(page);
1777                 /*
1778                  * Allow kmemleak to scan these pages as they contain pointers
1779                  * to additional allocations like via ops->init_request().
1780                  */
1781                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1782                 entries_per_page = order_to_size(this_order) / rq_size;
1783                 to_do = min(entries_per_page, depth - i);
1784                 left -= to_do * rq_size;
1785                 for (j = 0; j < to_do; j++) {
1786                         struct request *rq = p;
1787
1788                         tags->static_rqs[i] = rq;
1789                         if (set->ops->init_request) {
1790                                 if (set->ops->init_request(set, rq, hctx_idx,
1791                                                 node)) {
1792                                         tags->static_rqs[i] = NULL;
1793                                         goto fail;
1794                                 }
1795                         }
1796
1797                         p += rq_size;
1798                         i++;
1799                 }
1800         }
1801         return 0;
1802
1803 fail:
1804         blk_mq_free_rqs(set, tags, hctx_idx);
1805         return -ENOMEM;
1806 }
1807
1808 /*
1809  * 'cpu' is going away. splice any existing rq_list entries from this
1810  * software queue to the hw queue dispatch list, and ensure that it
1811  * gets run.
1812  */
1813 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1814 {
1815         struct blk_mq_hw_ctx *hctx;
1816         struct blk_mq_ctx *ctx;
1817         LIST_HEAD(tmp);
1818
1819         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1820         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1821
1822         spin_lock(&ctx->lock);
1823         if (!list_empty(&ctx->rq_list)) {
1824                 list_splice_init(&ctx->rq_list, &tmp);
1825                 blk_mq_hctx_clear_pending(hctx, ctx);
1826         }
1827         spin_unlock(&ctx->lock);
1828
1829         if (list_empty(&tmp))
1830                 return 0;
1831
1832         spin_lock(&hctx->lock);
1833         list_splice_tail_init(&tmp, &hctx->dispatch);
1834         spin_unlock(&hctx->lock);
1835
1836         blk_mq_run_hw_queue(hctx, true);
1837         return 0;
1838 }
1839
1840 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1841 {
1842         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1843                                             &hctx->cpuhp_dead);
1844 }
1845
1846 /* hctx->ctxs will be freed in queue's release handler */
1847 static void blk_mq_exit_hctx(struct request_queue *q,
1848                 struct blk_mq_tag_set *set,
1849                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1850 {
1851         blk_mq_debugfs_unregister_hctx(hctx);
1852
1853         blk_mq_tag_idle(hctx);
1854
1855         if (set->ops->exit_request)
1856                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1857
1858         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1859
1860         if (set->ops->exit_hctx)
1861                 set->ops->exit_hctx(hctx, hctx_idx);
1862
1863         if (hctx->flags & BLK_MQ_F_BLOCKING)
1864                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1865
1866         blk_mq_remove_cpuhp(hctx);
1867         blk_free_flush_queue(hctx->fq);
1868         sbitmap_free(&hctx->ctx_map);
1869 }
1870
1871 static void blk_mq_exit_hw_queues(struct request_queue *q,
1872                 struct blk_mq_tag_set *set, int nr_queue)
1873 {
1874         struct blk_mq_hw_ctx *hctx;
1875         unsigned int i;
1876
1877         queue_for_each_hw_ctx(q, hctx, i) {
1878                 if (i == nr_queue)
1879                         break;
1880                 blk_mq_exit_hctx(q, set, hctx, i);
1881         }
1882 }
1883
1884 static int blk_mq_init_hctx(struct request_queue *q,
1885                 struct blk_mq_tag_set *set,
1886                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1887 {
1888         int node;
1889
1890         node = hctx->numa_node;
1891         if (node == NUMA_NO_NODE)
1892                 node = hctx->numa_node = set->numa_node;
1893
1894         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1895         spin_lock_init(&hctx->lock);
1896         INIT_LIST_HEAD(&hctx->dispatch);
1897         hctx->queue = q;
1898         hctx->queue_num = hctx_idx;
1899         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1900
1901         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1902
1903         hctx->tags = set->tags[hctx_idx];
1904
1905         /*
1906          * Allocate space for all possible cpus to avoid allocation at
1907          * runtime
1908          */
1909         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1910                                         GFP_KERNEL, node);
1911         if (!hctx->ctxs)
1912                 goto unregister_cpu_notifier;
1913
1914         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1915                               node))
1916                 goto free_ctxs;
1917
1918         hctx->nr_ctx = 0;
1919
1920         if (set->ops->init_hctx &&
1921             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1922                 goto free_bitmap;
1923
1924         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1925                 goto exit_hctx;
1926
1927         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1928         if (!hctx->fq)
1929                 goto sched_exit_hctx;
1930
1931         if (set->ops->init_request &&
1932             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1933                                    node))
1934                 goto free_fq;
1935
1936         if (hctx->flags & BLK_MQ_F_BLOCKING)
1937                 init_srcu_struct(&hctx->queue_rq_srcu);
1938
1939         blk_mq_debugfs_register_hctx(q, hctx);
1940
1941         return 0;
1942
1943  free_fq:
1944         kfree(hctx->fq);
1945  sched_exit_hctx:
1946         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1947  exit_hctx:
1948         if (set->ops->exit_hctx)
1949                 set->ops->exit_hctx(hctx, hctx_idx);
1950  free_bitmap:
1951         sbitmap_free(&hctx->ctx_map);
1952  free_ctxs:
1953         kfree(hctx->ctxs);
1954  unregister_cpu_notifier:
1955         blk_mq_remove_cpuhp(hctx);
1956         return -1;
1957 }
1958
1959 static void blk_mq_init_cpu_queues(struct request_queue *q,
1960                                    unsigned int nr_hw_queues)
1961 {
1962         unsigned int i;
1963
1964         for_each_possible_cpu(i) {
1965                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1966                 struct blk_mq_hw_ctx *hctx;
1967
1968                 __ctx->cpu = i;
1969                 spin_lock_init(&__ctx->lock);
1970                 INIT_LIST_HEAD(&__ctx->rq_list);
1971                 __ctx->queue = q;
1972
1973                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1974                 if (!cpu_online(i))
1975                         continue;
1976
1977                 hctx = blk_mq_map_queue(q, i);
1978
1979                 /*
1980                  * Set local node, IFF we have more than one hw queue. If
1981                  * not, we remain on the home node of the device
1982                  */
1983                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1984                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1985         }
1986 }
1987
1988 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1989 {
1990         int ret = 0;
1991
1992         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1993                                         set->queue_depth, set->reserved_tags);
1994         if (!set->tags[hctx_idx])
1995                 return false;
1996
1997         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1998                                 set->queue_depth);
1999         if (!ret)
2000                 return true;
2001
2002         blk_mq_free_rq_map(set->tags[hctx_idx]);
2003         set->tags[hctx_idx] = NULL;
2004         return false;
2005 }
2006
2007 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2008                                          unsigned int hctx_idx)
2009 {
2010         if (set->tags[hctx_idx]) {
2011                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2012                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2013                 set->tags[hctx_idx] = NULL;
2014         }
2015 }
2016
2017 static void blk_mq_map_swqueue(struct request_queue *q,
2018                                const struct cpumask *online_mask)
2019 {
2020         unsigned int i, hctx_idx;
2021         struct blk_mq_hw_ctx *hctx;
2022         struct blk_mq_ctx *ctx;
2023         struct blk_mq_tag_set *set = q->tag_set;
2024
2025         /*
2026          * Avoid others reading imcomplete hctx->cpumask through sysfs
2027          */
2028         mutex_lock(&q->sysfs_lock);
2029
2030         queue_for_each_hw_ctx(q, hctx, i) {
2031                 cpumask_clear(hctx->cpumask);
2032                 hctx->nr_ctx = 0;
2033         }
2034
2035         /*
2036          * Map software to hardware queues
2037          */
2038         for_each_possible_cpu(i) {
2039                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2040                 if (!cpumask_test_cpu(i, online_mask))
2041                         continue;
2042
2043                 hctx_idx = q->mq_map[i];
2044                 /* unmapped hw queue can be remapped after CPU topo changed */
2045                 if (!set->tags[hctx_idx] &&
2046                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2047                         /*
2048                          * If tags initialization fail for some hctx,
2049                          * that hctx won't be brought online.  In this
2050                          * case, remap the current ctx to hctx[0] which
2051                          * is guaranteed to always have tags allocated
2052                          */
2053                         q->mq_map[i] = 0;
2054                 }
2055
2056                 ctx = per_cpu_ptr(q->queue_ctx, i);
2057                 hctx = blk_mq_map_queue(q, i);
2058
2059                 cpumask_set_cpu(i, hctx->cpumask);
2060                 ctx->index_hw = hctx->nr_ctx;
2061                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2062         }
2063
2064         mutex_unlock(&q->sysfs_lock);
2065
2066         queue_for_each_hw_ctx(q, hctx, i) {
2067                 /*
2068                  * If no software queues are mapped to this hardware queue,
2069                  * disable it and free the request entries.
2070                  */
2071                 if (!hctx->nr_ctx) {
2072                         /* Never unmap queue 0.  We need it as a
2073                          * fallback in case of a new remap fails
2074                          * allocation
2075                          */
2076                         if (i && set->tags[i])
2077                                 blk_mq_free_map_and_requests(set, i);
2078
2079                         hctx->tags = NULL;
2080                         continue;
2081                 }
2082
2083                 hctx->tags = set->tags[i];
2084                 WARN_ON(!hctx->tags);
2085
2086                 /*
2087                  * Set the map size to the number of mapped software queues.
2088                  * This is more accurate and more efficient than looping
2089                  * over all possibly mapped software queues.
2090                  */
2091                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2092
2093                 /*
2094                  * Initialize batch roundrobin counts
2095                  */
2096                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2097                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2098         }
2099 }
2100
2101 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2102 {
2103         struct blk_mq_hw_ctx *hctx;
2104         int i;
2105
2106         queue_for_each_hw_ctx(q, hctx, i) {
2107                 if (shared)
2108                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2109                 else
2110                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2111         }
2112 }
2113
2114 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2115 {
2116         struct request_queue *q;
2117
2118         lockdep_assert_held(&set->tag_list_lock);
2119
2120         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2121                 blk_mq_freeze_queue(q);
2122                 queue_set_hctx_shared(q, shared);
2123                 blk_mq_unfreeze_queue(q);
2124         }
2125 }
2126
2127 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2128 {
2129         struct blk_mq_tag_set *set = q->tag_set;
2130
2131         mutex_lock(&set->tag_list_lock);
2132         list_del_rcu(&q->tag_set_list);
2133         INIT_LIST_HEAD(&q->tag_set_list);
2134         if (list_is_singular(&set->tag_list)) {
2135                 /* just transitioned to unshared */
2136                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2137                 /* update existing queue */
2138                 blk_mq_update_tag_set_depth(set, false);
2139         }
2140         mutex_unlock(&set->tag_list_lock);
2141
2142         synchronize_rcu();
2143 }
2144
2145 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2146                                      struct request_queue *q)
2147 {
2148         q->tag_set = set;
2149
2150         mutex_lock(&set->tag_list_lock);
2151
2152         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2153         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2154                 set->flags |= BLK_MQ_F_TAG_SHARED;
2155                 /* update existing queue */
2156                 blk_mq_update_tag_set_depth(set, true);
2157         }
2158         if (set->flags & BLK_MQ_F_TAG_SHARED)
2159                 queue_set_hctx_shared(q, true);
2160         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2161
2162         mutex_unlock(&set->tag_list_lock);
2163 }
2164
2165 /*
2166  * It is the actual release handler for mq, but we do it from
2167  * request queue's release handler for avoiding use-after-free
2168  * and headache because q->mq_kobj shouldn't have been introduced,
2169  * but we can't group ctx/kctx kobj without it.
2170  */
2171 void blk_mq_release(struct request_queue *q)
2172 {
2173         struct blk_mq_hw_ctx *hctx;
2174         unsigned int i;
2175
2176         /* hctx kobj stays in hctx */
2177         queue_for_each_hw_ctx(q, hctx, i) {
2178                 if (!hctx)
2179                         continue;
2180                 kobject_put(&hctx->kobj);
2181         }
2182
2183         q->mq_map = NULL;
2184
2185         kfree(q->queue_hw_ctx);
2186
2187         /*
2188          * release .mq_kobj and sw queue's kobject now because
2189          * both share lifetime with request queue.
2190          */
2191         blk_mq_sysfs_deinit(q);
2192
2193         free_percpu(q->queue_ctx);
2194 }
2195
2196 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2197 {
2198         struct request_queue *uninit_q, *q;
2199
2200         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2201         if (!uninit_q)
2202                 return ERR_PTR(-ENOMEM);
2203
2204         q = blk_mq_init_allocated_queue(set, uninit_q);
2205         if (IS_ERR(q))
2206                 blk_cleanup_queue(uninit_q);
2207
2208         return q;
2209 }
2210 EXPORT_SYMBOL(blk_mq_init_queue);
2211
2212 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2213                                                 struct request_queue *q)
2214 {
2215         int i, j;
2216         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2217
2218         blk_mq_sysfs_unregister(q);
2219         for (i = 0; i < set->nr_hw_queues; i++) {
2220                 int node;
2221
2222                 if (hctxs[i])
2223                         continue;
2224
2225                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2226                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2227                                         GFP_KERNEL, node);
2228                 if (!hctxs[i])
2229                         break;
2230
2231                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2232                                                 node)) {
2233                         kfree(hctxs[i]);
2234                         hctxs[i] = NULL;
2235                         break;
2236                 }
2237
2238                 atomic_set(&hctxs[i]->nr_active, 0);
2239                 hctxs[i]->numa_node = node;
2240                 hctxs[i]->queue_num = i;
2241
2242                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2243                         free_cpumask_var(hctxs[i]->cpumask);
2244                         kfree(hctxs[i]);
2245                         hctxs[i] = NULL;
2246                         break;
2247                 }
2248                 blk_mq_hctx_kobj_init(hctxs[i]);
2249         }
2250         for (j = i; j < q->nr_hw_queues; j++) {
2251                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2252
2253                 if (hctx) {
2254                         if (hctx->tags)
2255                                 blk_mq_free_map_and_requests(set, j);
2256                         blk_mq_exit_hctx(q, set, hctx, j);
2257                         kobject_put(&hctx->kobj);
2258                         hctxs[j] = NULL;
2259
2260                 }
2261         }
2262         q->nr_hw_queues = i;
2263         blk_mq_sysfs_register(q);
2264 }
2265
2266 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2267                                                   struct request_queue *q)
2268 {
2269         /* mark the queue as mq asap */
2270         q->mq_ops = set->ops;
2271
2272         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2273                                              blk_mq_poll_stats_bkt,
2274                                              BLK_MQ_POLL_STATS_BKTS, q);
2275         if (!q->poll_cb)
2276                 goto err_exit;
2277
2278         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2279         if (!q->queue_ctx)
2280                 goto err_exit;
2281
2282         /* init q->mq_kobj and sw queues' kobjects */
2283         blk_mq_sysfs_init(q);
2284
2285         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2286                                                 GFP_KERNEL, set->numa_node);
2287         if (!q->queue_hw_ctx)
2288                 goto err_percpu;
2289
2290         q->mq_map = set->mq_map;
2291
2292         blk_mq_realloc_hw_ctxs(set, q);
2293         if (!q->nr_hw_queues)
2294                 goto err_hctxs;
2295
2296         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2297         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2298
2299         q->nr_queues = nr_cpu_ids;
2300
2301         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2302
2303         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2304                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2305
2306         q->sg_reserved_size = INT_MAX;
2307
2308         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2309         INIT_LIST_HEAD(&q->requeue_list);
2310         spin_lock_init(&q->requeue_lock);
2311
2312         blk_queue_make_request(q, blk_mq_make_request);
2313
2314         /*
2315          * Do this after blk_queue_make_request() overrides it...
2316          */
2317         q->nr_requests = set->queue_depth;
2318
2319         /*
2320          * Default to classic polling
2321          */
2322         q->poll_nsec = -1;
2323
2324         if (set->ops->complete)
2325                 blk_queue_softirq_done(q, set->ops->complete);
2326
2327         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2328
2329         get_online_cpus();
2330         mutex_lock(&all_q_mutex);
2331
2332         list_add_tail(&q->all_q_node, &all_q_list);
2333         blk_mq_add_queue_tag_set(set, q);
2334         blk_mq_map_swqueue(q, cpu_online_mask);
2335
2336         mutex_unlock(&all_q_mutex);
2337         put_online_cpus();
2338
2339         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2340                 int ret;
2341
2342                 ret = blk_mq_sched_init(q);
2343                 if (ret)
2344                         return ERR_PTR(ret);
2345         }
2346
2347         return q;
2348
2349 err_hctxs:
2350         kfree(q->queue_hw_ctx);
2351 err_percpu:
2352         free_percpu(q->queue_ctx);
2353 err_exit:
2354         q->mq_ops = NULL;
2355         return ERR_PTR(-ENOMEM);
2356 }
2357 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2358
2359 void blk_mq_free_queue(struct request_queue *q)
2360 {
2361         struct blk_mq_tag_set   *set = q->tag_set;
2362
2363         mutex_lock(&all_q_mutex);
2364         list_del_init(&q->all_q_node);
2365         mutex_unlock(&all_q_mutex);
2366
2367         blk_mq_del_queue_tag_set(q);
2368
2369         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2370 }
2371
2372 /* Basically redo blk_mq_init_queue with queue frozen */
2373 static void blk_mq_queue_reinit(struct request_queue *q,
2374                                 const struct cpumask *online_mask)
2375 {
2376         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2377
2378         blk_mq_debugfs_unregister_hctxs(q);
2379         blk_mq_sysfs_unregister(q);
2380
2381         /*
2382          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2383          * we should change hctx numa_node according to new topology (this
2384          * involves free and re-allocate memory, worthy doing?)
2385          */
2386
2387         blk_mq_map_swqueue(q, online_mask);
2388
2389         blk_mq_sysfs_register(q);
2390         blk_mq_debugfs_register_hctxs(q);
2391 }
2392
2393 /*
2394  * New online cpumask which is going to be set in this hotplug event.
2395  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2396  * one-by-one and dynamically allocating this could result in a failure.
2397  */
2398 static struct cpumask cpuhp_online_new;
2399
2400 static void blk_mq_queue_reinit_work(void)
2401 {
2402         struct request_queue *q;
2403
2404         mutex_lock(&all_q_mutex);
2405         /*
2406          * We need to freeze and reinit all existing queues.  Freezing
2407          * involves synchronous wait for an RCU grace period and doing it
2408          * one by one may take a long time.  Start freezing all queues in
2409          * one swoop and then wait for the completions so that freezing can
2410          * take place in parallel.
2411          */
2412         list_for_each_entry(q, &all_q_list, all_q_node)
2413                 blk_freeze_queue_start(q);
2414         list_for_each_entry(q, &all_q_list, all_q_node)
2415                 blk_mq_freeze_queue_wait(q);
2416
2417         list_for_each_entry(q, &all_q_list, all_q_node)
2418                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2419
2420         list_for_each_entry(q, &all_q_list, all_q_node)
2421                 blk_mq_unfreeze_queue(q);
2422
2423         mutex_unlock(&all_q_mutex);
2424 }
2425
2426 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2427 {
2428         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2429         blk_mq_queue_reinit_work();
2430         return 0;
2431 }
2432
2433 /*
2434  * Before hotadded cpu starts handling requests, new mappings must be
2435  * established.  Otherwise, these requests in hw queue might never be
2436  * dispatched.
2437  *
2438  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2439  * for CPU0, and ctx1 for CPU1).
2440  *
2441  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2442  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2443  *
2444  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2445  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2446  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2447  * ignored.
2448  */
2449 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2450 {
2451         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2452         cpumask_set_cpu(cpu, &cpuhp_online_new);
2453         blk_mq_queue_reinit_work();
2454         return 0;
2455 }
2456
2457 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2458 {
2459         int i;
2460
2461         for (i = 0; i < set->nr_hw_queues; i++)
2462                 if (!__blk_mq_alloc_rq_map(set, i))
2463                         goto out_unwind;
2464
2465         return 0;
2466
2467 out_unwind:
2468         while (--i >= 0)
2469                 blk_mq_free_rq_map(set->tags[i]);
2470
2471         return -ENOMEM;
2472 }
2473
2474 /*
2475  * Allocate the request maps associated with this tag_set. Note that this
2476  * may reduce the depth asked for, if memory is tight. set->queue_depth
2477  * will be updated to reflect the allocated depth.
2478  */
2479 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2480 {
2481         unsigned int depth;
2482         int err;
2483
2484         depth = set->queue_depth;
2485         do {
2486                 err = __blk_mq_alloc_rq_maps(set);
2487                 if (!err)
2488                         break;
2489
2490                 set->queue_depth >>= 1;
2491                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2492                         err = -ENOMEM;
2493                         break;
2494                 }
2495         } while (set->queue_depth);
2496
2497         if (!set->queue_depth || err) {
2498                 pr_err("blk-mq: failed to allocate request map\n");
2499                 return -ENOMEM;
2500         }
2501
2502         if (depth != set->queue_depth)
2503                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2504                                                 depth, set->queue_depth);
2505
2506         return 0;
2507 }
2508
2509 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2510 {
2511         if (set->ops->map_queues)
2512                 return set->ops->map_queues(set);
2513         else
2514                 return blk_mq_map_queues(set);
2515 }
2516
2517 /*
2518  * Alloc a tag set to be associated with one or more request queues.
2519  * May fail with EINVAL for various error conditions. May adjust the
2520  * requested depth down, if if it too large. In that case, the set
2521  * value will be stored in set->queue_depth.
2522  */
2523 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2524 {
2525         int ret;
2526
2527         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2528
2529         if (!set->nr_hw_queues)
2530                 return -EINVAL;
2531         if (!set->queue_depth)
2532                 return -EINVAL;
2533         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2534                 return -EINVAL;
2535
2536         if (!set->ops->queue_rq)
2537                 return -EINVAL;
2538
2539         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2540                 pr_info("blk-mq: reduced tag depth to %u\n",
2541                         BLK_MQ_MAX_DEPTH);
2542                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2543         }
2544
2545         /*
2546          * If a crashdump is active, then we are potentially in a very
2547          * memory constrained environment. Limit us to 1 queue and
2548          * 64 tags to prevent using too much memory.
2549          */
2550         if (is_kdump_kernel()) {
2551                 set->nr_hw_queues = 1;
2552                 set->queue_depth = min(64U, set->queue_depth);
2553         }
2554         /*
2555          * There is no use for more h/w queues than cpus.
2556          */
2557         if (set->nr_hw_queues > nr_cpu_ids)
2558                 set->nr_hw_queues = nr_cpu_ids;
2559
2560         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2561                                  GFP_KERNEL, set->numa_node);
2562         if (!set->tags)
2563                 return -ENOMEM;
2564
2565         ret = -ENOMEM;
2566         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2567                         GFP_KERNEL, set->numa_node);
2568         if (!set->mq_map)
2569                 goto out_free_tags;
2570
2571         ret = blk_mq_update_queue_map(set);
2572         if (ret)
2573                 goto out_free_mq_map;
2574
2575         ret = blk_mq_alloc_rq_maps(set);
2576         if (ret)
2577                 goto out_free_mq_map;
2578
2579         mutex_init(&set->tag_list_lock);
2580         INIT_LIST_HEAD(&set->tag_list);
2581
2582         return 0;
2583
2584 out_free_mq_map:
2585         kfree(set->mq_map);
2586         set->mq_map = NULL;
2587 out_free_tags:
2588         kfree(set->tags);
2589         set->tags = NULL;
2590         return ret;
2591 }
2592 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2593
2594 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2595 {
2596         int i;
2597
2598         for (i = 0; i < nr_cpu_ids; i++)
2599                 blk_mq_free_map_and_requests(set, i);
2600
2601         kfree(set->mq_map);
2602         set->mq_map = NULL;
2603
2604         kfree(set->tags);
2605         set->tags = NULL;
2606 }
2607 EXPORT_SYMBOL(blk_mq_free_tag_set);
2608
2609 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2610 {
2611         struct blk_mq_tag_set *set = q->tag_set;
2612         struct blk_mq_hw_ctx *hctx;
2613         int i, ret;
2614
2615         if (!set)
2616                 return -EINVAL;
2617
2618         blk_mq_freeze_queue(q);
2619
2620         ret = 0;
2621         queue_for_each_hw_ctx(q, hctx, i) {
2622                 if (!hctx->tags)
2623                         continue;
2624                 /*
2625                  * If we're using an MQ scheduler, just update the scheduler
2626                  * queue depth. This is similar to what the old code would do.
2627                  */
2628                 if (!hctx->sched_tags) {
2629                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2630                                                         min(nr, set->queue_depth),
2631                                                         false);
2632                 } else {
2633                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2634                                                         nr, true);
2635                 }
2636                 if (ret)
2637                         break;
2638         }
2639
2640         if (!ret)
2641                 q->nr_requests = nr;
2642
2643         blk_mq_unfreeze_queue(q);
2644
2645         return ret;
2646 }
2647
2648 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2649                                                         int nr_hw_queues)
2650 {
2651         struct request_queue *q;
2652
2653         lockdep_assert_held(&set->tag_list_lock);
2654
2655         if (nr_hw_queues > nr_cpu_ids)
2656                 nr_hw_queues = nr_cpu_ids;
2657         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2658                 return;
2659
2660         list_for_each_entry(q, &set->tag_list, tag_set_list)
2661                 blk_mq_freeze_queue(q);
2662
2663         set->nr_hw_queues = nr_hw_queues;
2664         blk_mq_update_queue_map(set);
2665         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2666                 blk_mq_realloc_hw_ctxs(set, q);
2667                 blk_mq_queue_reinit(q, cpu_online_mask);
2668         }
2669
2670         list_for_each_entry(q, &set->tag_list, tag_set_list)
2671                 blk_mq_unfreeze_queue(q);
2672 }
2673
2674 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2675 {
2676         mutex_lock(&set->tag_list_lock);
2677         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
2678         mutex_unlock(&set->tag_list_lock);
2679 }
2680 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2681
2682 /* Enable polling stats and return whether they were already enabled. */
2683 static bool blk_poll_stats_enable(struct request_queue *q)
2684 {
2685         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2686             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2687                 return true;
2688         blk_stat_add_callback(q, q->poll_cb);
2689         return false;
2690 }
2691
2692 static void blk_mq_poll_stats_start(struct request_queue *q)
2693 {
2694         /*
2695          * We don't arm the callback if polling stats are not enabled or the
2696          * callback is already active.
2697          */
2698         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2699             blk_stat_is_active(q->poll_cb))
2700                 return;
2701
2702         blk_stat_activate_msecs(q->poll_cb, 100);
2703 }
2704
2705 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2706 {
2707         struct request_queue *q = cb->data;
2708         int bucket;
2709
2710         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2711                 if (cb->stat[bucket].nr_samples)
2712                         q->poll_stat[bucket] = cb->stat[bucket];
2713         }
2714 }
2715
2716 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2717                                        struct blk_mq_hw_ctx *hctx,
2718                                        struct request *rq)
2719 {
2720         unsigned long ret = 0;
2721         int bucket;
2722
2723         /*
2724          * If stats collection isn't on, don't sleep but turn it on for
2725          * future users
2726          */
2727         if (!blk_poll_stats_enable(q))
2728                 return 0;
2729
2730         /*
2731          * As an optimistic guess, use half of the mean service time
2732          * for this type of request. We can (and should) make this smarter.
2733          * For instance, if the completion latencies are tight, we can
2734          * get closer than just half the mean. This is especially
2735          * important on devices where the completion latencies are longer
2736          * than ~10 usec. We do use the stats for the relevant IO size
2737          * if available which does lead to better estimates.
2738          */
2739         bucket = blk_mq_poll_stats_bkt(rq);
2740         if (bucket < 0)
2741                 return ret;
2742
2743         if (q->poll_stat[bucket].nr_samples)
2744                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2745
2746         return ret;
2747 }
2748
2749 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2750                                      struct blk_mq_hw_ctx *hctx,
2751                                      struct request *rq)
2752 {
2753         struct hrtimer_sleeper hs;
2754         enum hrtimer_mode mode;
2755         unsigned int nsecs;
2756         ktime_t kt;
2757
2758         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2759                 return false;
2760
2761         /*
2762          * poll_nsec can be:
2763          *
2764          * -1:  don't ever hybrid sleep
2765          *  0:  use half of prev avg
2766          * >0:  use this specific value
2767          */
2768         if (q->poll_nsec == -1)
2769                 return false;
2770         else if (q->poll_nsec > 0)
2771                 nsecs = q->poll_nsec;
2772         else
2773                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2774
2775         if (!nsecs)
2776                 return false;
2777
2778         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2779
2780         /*
2781          * This will be replaced with the stats tracking code, using
2782          * 'avg_completion_time / 2' as the pre-sleep target.
2783          */
2784         kt = nsecs;
2785
2786         mode = HRTIMER_MODE_REL;
2787         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2788         hrtimer_set_expires(&hs.timer, kt);
2789
2790         hrtimer_init_sleeper(&hs, current);
2791         do {
2792                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2793                         break;
2794                 set_current_state(TASK_UNINTERRUPTIBLE);
2795                 hrtimer_start_expires(&hs.timer, mode);
2796                 if (hs.task)
2797                         io_schedule();
2798                 hrtimer_cancel(&hs.timer);
2799                 mode = HRTIMER_MODE_ABS;
2800         } while (hs.task && !signal_pending(current));
2801
2802         __set_current_state(TASK_RUNNING);
2803         destroy_hrtimer_on_stack(&hs.timer);
2804         return true;
2805 }
2806
2807 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2808 {
2809         struct request_queue *q = hctx->queue;
2810         long state;
2811
2812         /*
2813          * If we sleep, have the caller restart the poll loop to reset
2814          * the state. Like for the other success return cases, the
2815          * caller is responsible for checking if the IO completed. If
2816          * the IO isn't complete, we'll get called again and will go
2817          * straight to the busy poll loop.
2818          */
2819         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2820                 return true;
2821
2822         hctx->poll_considered++;
2823
2824         state = current->state;
2825         while (!need_resched()) {
2826                 int ret;
2827
2828                 hctx->poll_invoked++;
2829
2830                 ret = q->mq_ops->poll(hctx, rq->tag);
2831                 if (ret > 0) {
2832                         hctx->poll_success++;
2833                         set_current_state(TASK_RUNNING);
2834                         return true;
2835                 }
2836
2837                 if (signal_pending_state(state, current))
2838                         set_current_state(TASK_RUNNING);
2839
2840                 if (current->state == TASK_RUNNING)
2841                         return true;
2842                 if (ret < 0)
2843                         break;
2844                 cpu_relax();
2845         }
2846
2847         return false;
2848 }
2849
2850 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2851 {
2852         struct blk_mq_hw_ctx *hctx;
2853         struct blk_plug *plug;
2854         struct request *rq;
2855
2856         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2857             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2858                 return false;
2859
2860         plug = current->plug;
2861         if (plug)
2862                 blk_flush_plug_list(plug, false);
2863
2864         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2865         if (!blk_qc_t_is_internal(cookie))
2866                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2867         else {
2868                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2869                 /*
2870                  * With scheduling, if the request has completed, we'll
2871                  * get a NULL return here, as we clear the sched tag when
2872                  * that happens. The request still remains valid, like always,
2873                  * so we should be safe with just the NULL check.
2874                  */
2875                 if (!rq)
2876                         return false;
2877         }
2878
2879         return __blk_mq_poll(hctx, rq);
2880 }
2881 EXPORT_SYMBOL_GPL(blk_mq_poll);
2882
2883 void blk_mq_disable_hotplug(void)
2884 {
2885         mutex_lock(&all_q_mutex);
2886 }
2887
2888 void blk_mq_enable_hotplug(void)
2889 {
2890         mutex_unlock(&all_q_mutex);
2891 }
2892
2893 static int __init blk_mq_init(void)
2894 {
2895         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2896                                 blk_mq_hctx_notify_dead);
2897
2898         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2899                                   blk_mq_queue_reinit_prepare,
2900                                   blk_mq_queue_reinit_dead);
2901         return 0;
2902 }
2903 subsys_initcall(blk_mq_init);