]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: merge mq and sq make_request instances
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_mq_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_mq_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_mq_put_ctx(alloc_data.ctx);
328         blk_queue_exit(q);
329
330         if (!rq)
331                 return ERR_PTR(-EWOULDBLOCK);
332
333         return rq;
334 }
335 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
336
337 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
338                              struct request *rq)
339 {
340         const int sched_tag = rq->internal_tag;
341         struct request_queue *q = rq->q;
342
343         if (rq->rq_flags & RQF_MQ_INFLIGHT)
344                 atomic_dec(&hctx->nr_active);
345
346         wbt_done(q->rq_wb, &rq->issue_stat);
347         rq->rq_flags = 0;
348
349         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
350         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
351         if (rq->tag != -1)
352                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
353         if (sched_tag != -1)
354                 blk_mq_sched_completed_request(hctx, rq);
355         blk_mq_sched_restart_queues(hctx);
356         blk_queue_exit(q);
357 }
358
359 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
360                                      struct request *rq)
361 {
362         struct blk_mq_ctx *ctx = rq->mq_ctx;
363
364         ctx->rq_completed[rq_is_sync(rq)]++;
365         __blk_mq_finish_request(hctx, ctx, rq);
366 }
367
368 void blk_mq_finish_request(struct request *rq)
369 {
370         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
371 }
372
373 void blk_mq_free_request(struct request *rq)
374 {
375         blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381         blk_account_io_done(rq);
382
383         if (rq->end_io) {
384                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385                 rq->end_io(rq, error);
386         } else {
387                 if (unlikely(blk_bidi_rq(rq)))
388                         blk_mq_free_request(rq->next_rq);
389                 blk_mq_free_request(rq);
390         }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397                 BUG();
398         __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404         struct request *rq = data;
405
406         rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411         struct blk_mq_ctx *ctx = rq->mq_ctx;
412         bool shared = false;
413         int cpu;
414
415         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416                 rq->q->softirq_done_fn(rq);
417                 return;
418         }
419
420         cpu = get_cpu();
421         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422                 shared = cpus_share_cache(cpu, ctx->cpu);
423
424         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425                 rq->csd.func = __blk_mq_complete_request_remote;
426                 rq->csd.info = rq;
427                 rq->csd.flags = 0;
428                 smp_call_function_single_async(ctx->cpu, &rq->csd);
429         } else {
430                 rq->q->softirq_done_fn(rq);
431         }
432         put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437         if (rq->rq_flags & RQF_STATS) {
438                 blk_mq_poll_stats_start(rq->q);
439                 blk_stat_add(rq);
440         }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445         struct request_queue *q = rq->q;
446
447         blk_mq_stat_add(rq);
448
449         if (!q->softirq_done_fn)
450                 blk_mq_end_request(rq, rq->errors);
451         else
452                 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456  * blk_mq_complete_request - end I/O on a request
457  * @rq:         the request being processed
458  *
459  * Description:
460  *      Ends all I/O on a request. It does not handle partial completions.
461  *      The actual completion happens out-of-order, through a IPI handler.
462  **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465         struct request_queue *q = rq->q;
466
467         if (unlikely(blk_should_fake_timeout(q)))
468                 return;
469         if (!blk_mark_rq_complete(rq)) {
470                 rq->errors = error;
471                 __blk_mq_complete_request(rq);
472         }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485
486         blk_mq_sched_started_request(rq);
487
488         trace_block_rq_issue(q, rq);
489
490         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491                 blk_stat_set_issue_time(&rq->issue_stat);
492                 rq->rq_flags |= RQF_STATS;
493                 wbt_issue(q->rq_wb, &rq->issue_stat);
494         }
495
496         blk_add_timer(rq);
497
498         /*
499          * Ensure that ->deadline is visible before set the started
500          * flag and clear the completed flag.
501          */
502         smp_mb__before_atomic();
503
504         /*
505          * Mark us as started and clear complete. Complete might have been
506          * set if requeue raced with timeout, which then marked it as
507          * complete. So be sure to clear complete again when we start
508          * the request, otherwise we'll ignore the completion event.
509          */
510         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515         if (q->dma_drain_size && blk_rq_bytes(rq)) {
516                 /*
517                  * Make sure space for the drain appears.  We know we can do
518                  * this because max_hw_segments has been adjusted to be one
519                  * fewer than the device can handle.
520                  */
521                 rq->nr_phys_segments++;
522         }
523 }
524 EXPORT_SYMBOL(blk_mq_start_request);
525
526 static void __blk_mq_requeue_request(struct request *rq)
527 {
528         struct request_queue *q = rq->q;
529
530         trace_block_rq_requeue(q, rq);
531         wbt_requeue(q->rq_wb, &rq->issue_stat);
532         blk_mq_sched_requeue_request(rq);
533
534         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
535                 if (q->dma_drain_size && blk_rq_bytes(rq))
536                         rq->nr_phys_segments--;
537         }
538 }
539
540 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
541 {
542         __blk_mq_requeue_request(rq);
543
544         BUG_ON(blk_queued_rq(rq));
545         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
546 }
547 EXPORT_SYMBOL(blk_mq_requeue_request);
548
549 static void blk_mq_requeue_work(struct work_struct *work)
550 {
551         struct request_queue *q =
552                 container_of(work, struct request_queue, requeue_work.work);
553         LIST_HEAD(rq_list);
554         struct request *rq, *next;
555         unsigned long flags;
556
557         spin_lock_irqsave(&q->requeue_lock, flags);
558         list_splice_init(&q->requeue_list, &rq_list);
559         spin_unlock_irqrestore(&q->requeue_lock, flags);
560
561         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
562                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
563                         continue;
564
565                 rq->rq_flags &= ~RQF_SOFTBARRIER;
566                 list_del_init(&rq->queuelist);
567                 blk_mq_sched_insert_request(rq, true, false, false, true);
568         }
569
570         while (!list_empty(&rq_list)) {
571                 rq = list_entry(rq_list.next, struct request, queuelist);
572                 list_del_init(&rq->queuelist);
573                 blk_mq_sched_insert_request(rq, false, false, false, true);
574         }
575
576         blk_mq_run_hw_queues(q, false);
577 }
578
579 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
580                                 bool kick_requeue_list)
581 {
582         struct request_queue *q = rq->q;
583         unsigned long flags;
584
585         /*
586          * We abuse this flag that is otherwise used by the I/O scheduler to
587          * request head insertation from the workqueue.
588          */
589         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
590
591         spin_lock_irqsave(&q->requeue_lock, flags);
592         if (at_head) {
593                 rq->rq_flags |= RQF_SOFTBARRIER;
594                 list_add(&rq->queuelist, &q->requeue_list);
595         } else {
596                 list_add_tail(&rq->queuelist, &q->requeue_list);
597         }
598         spin_unlock_irqrestore(&q->requeue_lock, flags);
599
600         if (kick_requeue_list)
601                 blk_mq_kick_requeue_list(q);
602 }
603 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
604
605 void blk_mq_kick_requeue_list(struct request_queue *q)
606 {
607         kblockd_schedule_delayed_work(&q->requeue_work, 0);
608 }
609 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
610
611 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
612                                     unsigned long msecs)
613 {
614         kblockd_schedule_delayed_work(&q->requeue_work,
615                                       msecs_to_jiffies(msecs));
616 }
617 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
618
619 void blk_mq_abort_requeue_list(struct request_queue *q)
620 {
621         unsigned long flags;
622         LIST_HEAD(rq_list);
623
624         spin_lock_irqsave(&q->requeue_lock, flags);
625         list_splice_init(&q->requeue_list, &rq_list);
626         spin_unlock_irqrestore(&q->requeue_lock, flags);
627
628         while (!list_empty(&rq_list)) {
629                 struct request *rq;
630
631                 rq = list_first_entry(&rq_list, struct request, queuelist);
632                 list_del_init(&rq->queuelist);
633                 rq->errors = -EIO;
634                 blk_mq_end_request(rq, rq->errors);
635         }
636 }
637 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
638
639 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
640 {
641         if (tag < tags->nr_tags) {
642                 prefetch(tags->rqs[tag]);
643                 return tags->rqs[tag];
644         }
645
646         return NULL;
647 }
648 EXPORT_SYMBOL(blk_mq_tag_to_rq);
649
650 struct blk_mq_timeout_data {
651         unsigned long next;
652         unsigned int next_set;
653 };
654
655 void blk_mq_rq_timed_out(struct request *req, bool reserved)
656 {
657         const struct blk_mq_ops *ops = req->q->mq_ops;
658         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
659
660         /*
661          * We know that complete is set at this point. If STARTED isn't set
662          * anymore, then the request isn't active and the "timeout" should
663          * just be ignored. This can happen due to the bitflag ordering.
664          * Timeout first checks if STARTED is set, and if it is, assumes
665          * the request is active. But if we race with completion, then
666          * we both flags will get cleared. So check here again, and ignore
667          * a timeout event with a request that isn't active.
668          */
669         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
670                 return;
671
672         if (ops->timeout)
673                 ret = ops->timeout(req, reserved);
674
675         switch (ret) {
676         case BLK_EH_HANDLED:
677                 __blk_mq_complete_request(req);
678                 break;
679         case BLK_EH_RESET_TIMER:
680                 blk_add_timer(req);
681                 blk_clear_rq_complete(req);
682                 break;
683         case BLK_EH_NOT_HANDLED:
684                 break;
685         default:
686                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
687                 break;
688         }
689 }
690
691 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
692                 struct request *rq, void *priv, bool reserved)
693 {
694         struct blk_mq_timeout_data *data = priv;
695
696         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
697                 /*
698                  * If a request wasn't started before the queue was
699                  * marked dying, kill it here or it'll go unnoticed.
700                  */
701                 if (unlikely(blk_queue_dying(rq->q))) {
702                         rq->errors = -EIO;
703                         blk_mq_end_request(rq, rq->errors);
704                 }
705                 return;
706         }
707
708         if (time_after_eq(jiffies, rq->deadline)) {
709                 if (!blk_mark_rq_complete(rq))
710                         blk_mq_rq_timed_out(rq, reserved);
711         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
712                 data->next = rq->deadline;
713                 data->next_set = 1;
714         }
715 }
716
717 static void blk_mq_timeout_work(struct work_struct *work)
718 {
719         struct request_queue *q =
720                 container_of(work, struct request_queue, timeout_work);
721         struct blk_mq_timeout_data data = {
722                 .next           = 0,
723                 .next_set       = 0,
724         };
725         int i;
726
727         /* A deadlock might occur if a request is stuck requiring a
728          * timeout at the same time a queue freeze is waiting
729          * completion, since the timeout code would not be able to
730          * acquire the queue reference here.
731          *
732          * That's why we don't use blk_queue_enter here; instead, we use
733          * percpu_ref_tryget directly, because we need to be able to
734          * obtain a reference even in the short window between the queue
735          * starting to freeze, by dropping the first reference in
736          * blk_mq_freeze_queue_start, and the moment the last request is
737          * consumed, marked by the instant q_usage_counter reaches
738          * zero.
739          */
740         if (!percpu_ref_tryget(&q->q_usage_counter))
741                 return;
742
743         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
744
745         if (data.next_set) {
746                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
747                 mod_timer(&q->timeout, data.next);
748         } else {
749                 struct blk_mq_hw_ctx *hctx;
750
751                 queue_for_each_hw_ctx(q, hctx, i) {
752                         /* the hctx may be unmapped, so check it here */
753                         if (blk_mq_hw_queue_mapped(hctx))
754                                 blk_mq_tag_idle(hctx);
755                 }
756         }
757         blk_queue_exit(q);
758 }
759
760 /*
761  * Reverse check our software queue for entries that we could potentially
762  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
763  * too much time checking for merges.
764  */
765 static bool blk_mq_attempt_merge(struct request_queue *q,
766                                  struct blk_mq_ctx *ctx, struct bio *bio)
767 {
768         struct request *rq;
769         int checked = 8;
770
771         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
772                 bool merged = false;
773
774                 if (!checked--)
775                         break;
776
777                 if (!blk_rq_merge_ok(rq, bio))
778                         continue;
779
780                 switch (blk_try_merge(rq, bio)) {
781                 case ELEVATOR_BACK_MERGE:
782                         if (blk_mq_sched_allow_merge(q, rq, bio))
783                                 merged = bio_attempt_back_merge(q, rq, bio);
784                         break;
785                 case ELEVATOR_FRONT_MERGE:
786                         if (blk_mq_sched_allow_merge(q, rq, bio))
787                                 merged = bio_attempt_front_merge(q, rq, bio);
788                         break;
789                 case ELEVATOR_DISCARD_MERGE:
790                         merged = bio_attempt_discard_merge(q, rq, bio);
791                         break;
792                 default:
793                         continue;
794                 }
795
796                 if (merged)
797                         ctx->rq_merged++;
798                 return merged;
799         }
800
801         return false;
802 }
803
804 struct flush_busy_ctx_data {
805         struct blk_mq_hw_ctx *hctx;
806         struct list_head *list;
807 };
808
809 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
810 {
811         struct flush_busy_ctx_data *flush_data = data;
812         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
813         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
814
815         sbitmap_clear_bit(sb, bitnr);
816         spin_lock(&ctx->lock);
817         list_splice_tail_init(&ctx->rq_list, flush_data->list);
818         spin_unlock(&ctx->lock);
819         return true;
820 }
821
822 /*
823  * Process software queues that have been marked busy, splicing them
824  * to the for-dispatch
825  */
826 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
827 {
828         struct flush_busy_ctx_data data = {
829                 .hctx = hctx,
830                 .list = list,
831         };
832
833         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
834 }
835 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
836
837 static inline unsigned int queued_to_index(unsigned int queued)
838 {
839         if (!queued)
840                 return 0;
841
842         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
843 }
844
845 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
846                            bool wait)
847 {
848         struct blk_mq_alloc_data data = {
849                 .q = rq->q,
850                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
851                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
852         };
853
854         if (rq->tag != -1) {
855 done:
856                 if (hctx)
857                         *hctx = data.hctx;
858                 return true;
859         }
860
861         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
862                 data.flags |= BLK_MQ_REQ_RESERVED;
863
864         rq->tag = blk_mq_get_tag(&data);
865         if (rq->tag >= 0) {
866                 if (blk_mq_tag_busy(data.hctx)) {
867                         rq->rq_flags |= RQF_MQ_INFLIGHT;
868                         atomic_inc(&data.hctx->nr_active);
869                 }
870                 data.hctx->tags->rqs[rq->tag] = rq;
871                 goto done;
872         }
873
874         return false;
875 }
876
877 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
878                                     struct request *rq)
879 {
880         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
881         rq->tag = -1;
882
883         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
884                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
885                 atomic_dec(&hctx->nr_active);
886         }
887 }
888
889 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
890                                        struct request *rq)
891 {
892         if (rq->tag == -1 || rq->internal_tag == -1)
893                 return;
894
895         __blk_mq_put_driver_tag(hctx, rq);
896 }
897
898 static void blk_mq_put_driver_tag(struct request *rq)
899 {
900         struct blk_mq_hw_ctx *hctx;
901
902         if (rq->tag == -1 || rq->internal_tag == -1)
903                 return;
904
905         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
906         __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 /*
910  * If we fail getting a driver tag because all the driver tags are already
911  * assigned and on the dispatch list, BUT the first entry does not have a
912  * tag, then we could deadlock. For that case, move entries with assigned
913  * driver tags to the front, leaving the set of tagged requests in the
914  * same order, and the untagged set in the same order.
915  */
916 static bool reorder_tags_to_front(struct list_head *list)
917 {
918         struct request *rq, *tmp, *first = NULL;
919
920         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
921                 if (rq == first)
922                         break;
923                 if (rq->tag != -1) {
924                         list_move(&rq->queuelist, list);
925                         if (!first)
926                                 first = rq;
927                 }
928         }
929
930         return first != NULL;
931 }
932
933 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
934                                 void *key)
935 {
936         struct blk_mq_hw_ctx *hctx;
937
938         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
939
940         list_del(&wait->task_list);
941         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
942         blk_mq_run_hw_queue(hctx, true);
943         return 1;
944 }
945
946 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
947 {
948         struct sbq_wait_state *ws;
949
950         /*
951          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
952          * The thread which wins the race to grab this bit adds the hardware
953          * queue to the wait queue.
954          */
955         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
956             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
957                 return false;
958
959         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
960         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
961
962         /*
963          * As soon as this returns, it's no longer safe to fiddle with
964          * hctx->dispatch_wait, since a completion can wake up the wait queue
965          * and unlock the bit.
966          */
967         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
968         return true;
969 }
970
971 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
972 {
973         struct request_queue *q = hctx->queue;
974         struct request *rq;
975         LIST_HEAD(driver_list);
976         struct list_head *dptr;
977         int queued, ret = BLK_MQ_RQ_QUEUE_OK;
978
979         /*
980          * Start off with dptr being NULL, so we start the first request
981          * immediately, even if we have more pending.
982          */
983         dptr = NULL;
984
985         /*
986          * Now process all the entries, sending them to the driver.
987          */
988         queued = 0;
989         while (!list_empty(list)) {
990                 struct blk_mq_queue_data bd;
991
992                 rq = list_first_entry(list, struct request, queuelist);
993                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
994                         if (!queued && reorder_tags_to_front(list))
995                                 continue;
996
997                         /*
998                          * The initial allocation attempt failed, so we need to
999                          * rerun the hardware queue when a tag is freed.
1000                          */
1001                         if (blk_mq_dispatch_wait_add(hctx)) {
1002                                 /*
1003                                  * It's possible that a tag was freed in the
1004                                  * window between the allocation failure and
1005                                  * adding the hardware queue to the wait queue.
1006                                  */
1007                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1008                                         break;
1009                         } else {
1010                                 break;
1011                         }
1012                 }
1013
1014                 list_del_init(&rq->queuelist);
1015
1016                 bd.rq = rq;
1017                 bd.list = dptr;
1018
1019                 /*
1020                  * Flag last if we have no more requests, or if we have more
1021                  * but can't assign a driver tag to it.
1022                  */
1023                 if (list_empty(list))
1024                         bd.last = true;
1025                 else {
1026                         struct request *nxt;
1027
1028                         nxt = list_first_entry(list, struct request, queuelist);
1029                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1030                 }
1031
1032                 ret = q->mq_ops->queue_rq(hctx, &bd);
1033                 switch (ret) {
1034                 case BLK_MQ_RQ_QUEUE_OK:
1035                         queued++;
1036                         break;
1037                 case BLK_MQ_RQ_QUEUE_BUSY:
1038                         blk_mq_put_driver_tag_hctx(hctx, rq);
1039                         list_add(&rq->queuelist, list);
1040                         __blk_mq_requeue_request(rq);
1041                         break;
1042                 default:
1043                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1044                 case BLK_MQ_RQ_QUEUE_ERROR:
1045                         rq->errors = -EIO;
1046                         blk_mq_end_request(rq, rq->errors);
1047                         break;
1048                 }
1049
1050                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1051                         break;
1052
1053                 /*
1054                  * We've done the first request. If we have more than 1
1055                  * left in the list, set dptr to defer issue.
1056                  */
1057                 if (!dptr && list->next != list->prev)
1058                         dptr = &driver_list;
1059         }
1060
1061         hctx->dispatched[queued_to_index(queued)]++;
1062
1063         /*
1064          * Any items that need requeuing? Stuff them into hctx->dispatch,
1065          * that is where we will continue on next queue run.
1066          */
1067         if (!list_empty(list)) {
1068                 /*
1069                  * If we got a driver tag for the next request already,
1070                  * free it again.
1071                  */
1072                 rq = list_first_entry(list, struct request, queuelist);
1073                 blk_mq_put_driver_tag(rq);
1074
1075                 spin_lock(&hctx->lock);
1076                 list_splice_init(list, &hctx->dispatch);
1077                 spin_unlock(&hctx->lock);
1078
1079                 /*
1080                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1081                  * it's possible the queue is stopped and restarted again
1082                  * before this. Queue restart will dispatch requests. And since
1083                  * requests in rq_list aren't added into hctx->dispatch yet,
1084                  * the requests in rq_list might get lost.
1085                  *
1086                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1087                  *
1088                  * If RESTART or TAG_WAITING is set, then let completion restart
1089                  * the queue instead of potentially looping here.
1090                  */
1091                 if (!blk_mq_sched_needs_restart(hctx) &&
1092                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1093                         blk_mq_run_hw_queue(hctx, true);
1094         }
1095
1096         return queued != 0;
1097 }
1098
1099 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1100 {
1101         int srcu_idx;
1102
1103         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1104                 cpu_online(hctx->next_cpu));
1105
1106         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1107                 rcu_read_lock();
1108                 blk_mq_sched_dispatch_requests(hctx);
1109                 rcu_read_unlock();
1110         } else {
1111                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112                 blk_mq_sched_dispatch_requests(hctx);
1113                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114         }
1115 }
1116
1117 /*
1118  * It'd be great if the workqueue API had a way to pass
1119  * in a mask and had some smarts for more clever placement.
1120  * For now we just round-robin here, switching for every
1121  * BLK_MQ_CPU_WORK_BATCH queued items.
1122  */
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124 {
1125         if (hctx->queue->nr_hw_queues == 1)
1126                 return WORK_CPU_UNBOUND;
1127
1128         if (--hctx->next_cpu_batch <= 0) {
1129                 int next_cpu;
1130
1131                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132                 if (next_cpu >= nr_cpu_ids)
1133                         next_cpu = cpumask_first(hctx->cpumask);
1134
1135                 hctx->next_cpu = next_cpu;
1136                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137         }
1138
1139         return hctx->next_cpu;
1140 }
1141
1142 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1143 {
1144         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1145                      !blk_mq_hw_queue_mapped(hctx)))
1146                 return;
1147
1148         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1149                 int cpu = get_cpu();
1150                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1151                         __blk_mq_run_hw_queue(hctx);
1152                         put_cpu();
1153                         return;
1154                 }
1155
1156                 put_cpu();
1157         }
1158
1159         kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1160 }
1161
1162 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1163 {
1164         struct blk_mq_hw_ctx *hctx;
1165         int i;
1166
1167         queue_for_each_hw_ctx(q, hctx, i) {
1168                 if (!blk_mq_hctx_has_pending(hctx) ||
1169                     blk_mq_hctx_stopped(hctx))
1170                         continue;
1171
1172                 blk_mq_run_hw_queue(hctx, async);
1173         }
1174 }
1175 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1176
1177 /**
1178  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1179  * @q: request queue.
1180  *
1181  * The caller is responsible for serializing this function against
1182  * blk_mq_{start,stop}_hw_queue().
1183  */
1184 bool blk_mq_queue_stopped(struct request_queue *q)
1185 {
1186         struct blk_mq_hw_ctx *hctx;
1187         int i;
1188
1189         queue_for_each_hw_ctx(q, hctx, i)
1190                 if (blk_mq_hctx_stopped(hctx))
1191                         return true;
1192
1193         return false;
1194 }
1195 EXPORT_SYMBOL(blk_mq_queue_stopped);
1196
1197 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1198 {
1199         cancel_work(&hctx->run_work);
1200         cancel_delayed_work(&hctx->delay_work);
1201         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1202 }
1203 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1204
1205 void blk_mq_stop_hw_queues(struct request_queue *q)
1206 {
1207         struct blk_mq_hw_ctx *hctx;
1208         int i;
1209
1210         queue_for_each_hw_ctx(q, hctx, i)
1211                 blk_mq_stop_hw_queue(hctx);
1212 }
1213 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1214
1215 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1216 {
1217         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1218
1219         blk_mq_run_hw_queue(hctx, false);
1220 }
1221 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1222
1223 void blk_mq_start_hw_queues(struct request_queue *q)
1224 {
1225         struct blk_mq_hw_ctx *hctx;
1226         int i;
1227
1228         queue_for_each_hw_ctx(q, hctx, i)
1229                 blk_mq_start_hw_queue(hctx);
1230 }
1231 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1232
1233 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1234 {
1235         if (!blk_mq_hctx_stopped(hctx))
1236                 return;
1237
1238         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1239         blk_mq_run_hw_queue(hctx, async);
1240 }
1241 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1242
1243 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1244 {
1245         struct blk_mq_hw_ctx *hctx;
1246         int i;
1247
1248         queue_for_each_hw_ctx(q, hctx, i)
1249                 blk_mq_start_stopped_hw_queue(hctx, async);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1252
1253 static void blk_mq_run_work_fn(struct work_struct *work)
1254 {
1255         struct blk_mq_hw_ctx *hctx;
1256
1257         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1258
1259         __blk_mq_run_hw_queue(hctx);
1260 }
1261
1262 static void blk_mq_delay_work_fn(struct work_struct *work)
1263 {
1264         struct blk_mq_hw_ctx *hctx;
1265
1266         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1267
1268         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1269                 __blk_mq_run_hw_queue(hctx);
1270 }
1271
1272 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1273 {
1274         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1275                 return;
1276
1277         blk_mq_stop_hw_queue(hctx);
1278         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1279                         &hctx->delay_work, msecs_to_jiffies(msecs));
1280 }
1281 EXPORT_SYMBOL(blk_mq_delay_queue);
1282
1283 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1284                                             struct request *rq,
1285                                             bool at_head)
1286 {
1287         struct blk_mq_ctx *ctx = rq->mq_ctx;
1288
1289         trace_block_rq_insert(hctx->queue, rq);
1290
1291         if (at_head)
1292                 list_add(&rq->queuelist, &ctx->rq_list);
1293         else
1294                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1295 }
1296
1297 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1298                              bool at_head)
1299 {
1300         struct blk_mq_ctx *ctx = rq->mq_ctx;
1301
1302         __blk_mq_insert_req_list(hctx, rq, at_head);
1303         blk_mq_hctx_mark_pending(hctx, ctx);
1304 }
1305
1306 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1307                             struct list_head *list)
1308
1309 {
1310         /*
1311          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1312          * offline now
1313          */
1314         spin_lock(&ctx->lock);
1315         while (!list_empty(list)) {
1316                 struct request *rq;
1317
1318                 rq = list_first_entry(list, struct request, queuelist);
1319                 BUG_ON(rq->mq_ctx != ctx);
1320                 list_del_init(&rq->queuelist);
1321                 __blk_mq_insert_req_list(hctx, rq, false);
1322         }
1323         blk_mq_hctx_mark_pending(hctx, ctx);
1324         spin_unlock(&ctx->lock);
1325 }
1326
1327 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1328 {
1329         struct request *rqa = container_of(a, struct request, queuelist);
1330         struct request *rqb = container_of(b, struct request, queuelist);
1331
1332         return !(rqa->mq_ctx < rqb->mq_ctx ||
1333                  (rqa->mq_ctx == rqb->mq_ctx &&
1334                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1335 }
1336
1337 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1338 {
1339         struct blk_mq_ctx *this_ctx;
1340         struct request_queue *this_q;
1341         struct request *rq;
1342         LIST_HEAD(list);
1343         LIST_HEAD(ctx_list);
1344         unsigned int depth;
1345
1346         list_splice_init(&plug->mq_list, &list);
1347
1348         list_sort(NULL, &list, plug_ctx_cmp);
1349
1350         this_q = NULL;
1351         this_ctx = NULL;
1352         depth = 0;
1353
1354         while (!list_empty(&list)) {
1355                 rq = list_entry_rq(list.next);
1356                 list_del_init(&rq->queuelist);
1357                 BUG_ON(!rq->q);
1358                 if (rq->mq_ctx != this_ctx) {
1359                         if (this_ctx) {
1360                                 trace_block_unplug(this_q, depth, from_schedule);
1361                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1362                                                                 &ctx_list,
1363                                                                 from_schedule);
1364                         }
1365
1366                         this_ctx = rq->mq_ctx;
1367                         this_q = rq->q;
1368                         depth = 0;
1369                 }
1370
1371                 depth++;
1372                 list_add_tail(&rq->queuelist, &ctx_list);
1373         }
1374
1375         /*
1376          * If 'this_ctx' is set, we know we have entries to complete
1377          * on 'ctx_list'. Do those.
1378          */
1379         if (this_ctx) {
1380                 trace_block_unplug(this_q, depth, from_schedule);
1381                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1382                                                 from_schedule);
1383         }
1384 }
1385
1386 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1387 {
1388         init_request_from_bio(rq, bio);
1389
1390         blk_account_io_start(rq, true);
1391 }
1392
1393 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1394 {
1395         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1396                 !blk_queue_nomerges(hctx->queue);
1397 }
1398
1399 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1400                                          struct blk_mq_ctx *ctx,
1401                                          struct request *rq, struct bio *bio)
1402 {
1403         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1404                 blk_mq_bio_to_request(rq, bio);
1405                 spin_lock(&ctx->lock);
1406 insert_rq:
1407                 __blk_mq_insert_request(hctx, rq, false);
1408                 spin_unlock(&ctx->lock);
1409                 return false;
1410         } else {
1411                 struct request_queue *q = hctx->queue;
1412
1413                 spin_lock(&ctx->lock);
1414                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1415                         blk_mq_bio_to_request(rq, bio);
1416                         goto insert_rq;
1417                 }
1418
1419                 spin_unlock(&ctx->lock);
1420                 __blk_mq_finish_request(hctx, ctx, rq);
1421                 return true;
1422         }
1423 }
1424
1425 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1426 {
1427         if (rq->tag != -1)
1428                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1429
1430         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1431 }
1432
1433 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1434                                       bool may_sleep)
1435 {
1436         struct request_queue *q = rq->q;
1437         struct blk_mq_queue_data bd = {
1438                 .rq = rq,
1439                 .list = NULL,
1440                 .last = 1
1441         };
1442         struct blk_mq_hw_ctx *hctx;
1443         blk_qc_t new_cookie;
1444         int ret;
1445
1446         if (q->elevator)
1447                 goto insert;
1448
1449         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1450                 goto insert;
1451
1452         new_cookie = request_to_qc_t(hctx, rq);
1453
1454         /*
1455          * For OK queue, we are done. For error, kill it. Any other
1456          * error (busy), just add it to our list as we previously
1457          * would have done
1458          */
1459         ret = q->mq_ops->queue_rq(hctx, &bd);
1460         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1461                 *cookie = new_cookie;
1462                 return;
1463         }
1464
1465         __blk_mq_requeue_request(rq);
1466
1467         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1468                 *cookie = BLK_QC_T_NONE;
1469                 rq->errors = -EIO;
1470                 blk_mq_end_request(rq, rq->errors);
1471                 return;
1472         }
1473
1474 insert:
1475         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1476 }
1477
1478 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1479 {
1480         const int is_sync = op_is_sync(bio->bi_opf);
1481         const int is_flush_fua = op_is_flush(bio->bi_opf);
1482         struct blk_mq_alloc_data data = { .flags = 0 };
1483         struct request *rq;
1484         unsigned int request_count = 0, srcu_idx;
1485         struct blk_plug *plug;
1486         struct request *same_queue_rq = NULL;
1487         blk_qc_t cookie;
1488         unsigned int wb_acct;
1489
1490         blk_queue_bounce(q, &bio);
1491
1492         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1493                 bio_io_error(bio);
1494                 return BLK_QC_T_NONE;
1495         }
1496
1497         blk_queue_split(q, &bio, q->bio_split);
1498
1499         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1500             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1501                 return BLK_QC_T_NONE;
1502
1503         if (blk_mq_sched_bio_merge(q, bio))
1504                 return BLK_QC_T_NONE;
1505
1506         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1507
1508         trace_block_getrq(q, bio, bio->bi_opf);
1509
1510         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1511         if (unlikely(!rq)) {
1512                 __wbt_done(q->rq_wb, wb_acct);
1513                 return BLK_QC_T_NONE;
1514         }
1515
1516         wbt_track(&rq->issue_stat, wb_acct);
1517
1518         cookie = request_to_qc_t(data.hctx, rq);
1519
1520         if (unlikely(is_flush_fua)) {
1521                 if (q->elevator)
1522                         goto elv_insert;
1523                 blk_mq_bio_to_request(rq, bio);
1524                 blk_insert_flush(rq);
1525                 goto run_queue;
1526         }
1527
1528         plug = current->plug;
1529         if (plug && q->nr_hw_queues == 1) {
1530                 struct request *last = NULL;
1531
1532                 blk_mq_bio_to_request(rq, bio);
1533
1534                 /*
1535                  * @request_count may become stale because of schedule
1536                  * out, so check the list again.
1537                  */
1538                 if (list_empty(&plug->mq_list))
1539                         request_count = 0;
1540                 else if (blk_queue_nomerges(q))
1541                         request_count = blk_plug_queued_count(q);
1542
1543                 if (!request_count)
1544                         trace_block_plug(q);
1545                 else
1546                         last = list_entry_rq(plug->mq_list.prev);
1547
1548                 blk_mq_put_ctx(data.ctx);
1549
1550                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1551                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1552                         blk_flush_plug_list(plug, false);
1553                         trace_block_plug(q);
1554                 }
1555
1556                 list_add_tail(&rq->queuelist, &plug->mq_list);
1557                 goto done;
1558         } else if (((plug && !blk_queue_nomerges(q)) || is_sync)) {
1559                 struct request *old_rq = NULL;
1560
1561                 blk_mq_bio_to_request(rq, bio);
1562
1563                 /*
1564                  * We do limited plugging. If the bio can be merged, do that.
1565                  * Otherwise the existing request in the plug list will be
1566                  * issued. So the plug list will have one request at most
1567                  */
1568                 if (plug) {
1569                         /*
1570                          * The plug list might get flushed before this. If that
1571                          * happens, same_queue_rq is invalid and plug list is
1572                          * empty
1573                          */
1574                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1575                                 old_rq = same_queue_rq;
1576                                 list_del_init(&old_rq->queuelist);
1577                         }
1578                         list_add_tail(&rq->queuelist, &plug->mq_list);
1579                 } else /* is_sync */
1580                         old_rq = rq;
1581                 blk_mq_put_ctx(data.ctx);
1582                 if (!old_rq)
1583                         goto done;
1584
1585                 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1586                         rcu_read_lock();
1587                         blk_mq_try_issue_directly(old_rq, &cookie, false);
1588                         rcu_read_unlock();
1589                 } else {
1590                         srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1591                         blk_mq_try_issue_directly(old_rq, &cookie, true);
1592                         srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1593                 }
1594                 goto done;
1595         }
1596
1597         if (q->elevator) {
1598 elv_insert:
1599                 blk_mq_put_ctx(data.ctx);
1600                 blk_mq_bio_to_request(rq, bio);
1601                 blk_mq_sched_insert_request(rq, false, true,
1602                                                 !is_sync || is_flush_fua, true);
1603                 goto done;
1604         }
1605         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1606                 /*
1607                  * For a SYNC request, send it to the hardware immediately. For
1608                  * an ASYNC request, just ensure that we run it later on. The
1609                  * latter allows for merging opportunities and more efficient
1610                  * dispatching.
1611                  */
1612 run_queue:
1613                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1614         }
1615         blk_mq_put_ctx(data.ctx);
1616 done:
1617         return cookie;
1618 }
1619
1620 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1621                      unsigned int hctx_idx)
1622 {
1623         struct page *page;
1624
1625         if (tags->rqs && set->ops->exit_request) {
1626                 int i;
1627
1628                 for (i = 0; i < tags->nr_tags; i++) {
1629                         struct request *rq = tags->static_rqs[i];
1630
1631                         if (!rq)
1632                                 continue;
1633                         set->ops->exit_request(set->driver_data, rq,
1634                                                 hctx_idx, i);
1635                         tags->static_rqs[i] = NULL;
1636                 }
1637         }
1638
1639         while (!list_empty(&tags->page_list)) {
1640                 page = list_first_entry(&tags->page_list, struct page, lru);
1641                 list_del_init(&page->lru);
1642                 /*
1643                  * Remove kmemleak object previously allocated in
1644                  * blk_mq_init_rq_map().
1645                  */
1646                 kmemleak_free(page_address(page));
1647                 __free_pages(page, page->private);
1648         }
1649 }
1650
1651 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1652 {
1653         kfree(tags->rqs);
1654         tags->rqs = NULL;
1655         kfree(tags->static_rqs);
1656         tags->static_rqs = NULL;
1657
1658         blk_mq_free_tags(tags);
1659 }
1660
1661 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1662                                         unsigned int hctx_idx,
1663                                         unsigned int nr_tags,
1664                                         unsigned int reserved_tags)
1665 {
1666         struct blk_mq_tags *tags;
1667         int node;
1668
1669         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1670         if (node == NUMA_NO_NODE)
1671                 node = set->numa_node;
1672
1673         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1674                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1675         if (!tags)
1676                 return NULL;
1677
1678         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1679                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1680                                  node);
1681         if (!tags->rqs) {
1682                 blk_mq_free_tags(tags);
1683                 return NULL;
1684         }
1685
1686         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1687                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1688                                  node);
1689         if (!tags->static_rqs) {
1690                 kfree(tags->rqs);
1691                 blk_mq_free_tags(tags);
1692                 return NULL;
1693         }
1694
1695         return tags;
1696 }
1697
1698 static size_t order_to_size(unsigned int order)
1699 {
1700         return (size_t)PAGE_SIZE << order;
1701 }
1702
1703 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1704                      unsigned int hctx_idx, unsigned int depth)
1705 {
1706         unsigned int i, j, entries_per_page, max_order = 4;
1707         size_t rq_size, left;
1708         int node;
1709
1710         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1711         if (node == NUMA_NO_NODE)
1712                 node = set->numa_node;
1713
1714         INIT_LIST_HEAD(&tags->page_list);
1715
1716         /*
1717          * rq_size is the size of the request plus driver payload, rounded
1718          * to the cacheline size
1719          */
1720         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1721                                 cache_line_size());
1722         left = rq_size * depth;
1723
1724         for (i = 0; i < depth; ) {
1725                 int this_order = max_order;
1726                 struct page *page;
1727                 int to_do;
1728                 void *p;
1729
1730                 while (this_order && left < order_to_size(this_order - 1))
1731                         this_order--;
1732
1733                 do {
1734                         page = alloc_pages_node(node,
1735                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1736                                 this_order);
1737                         if (page)
1738                                 break;
1739                         if (!this_order--)
1740                                 break;
1741                         if (order_to_size(this_order) < rq_size)
1742                                 break;
1743                 } while (1);
1744
1745                 if (!page)
1746                         goto fail;
1747
1748                 page->private = this_order;
1749                 list_add_tail(&page->lru, &tags->page_list);
1750
1751                 p = page_address(page);
1752                 /*
1753                  * Allow kmemleak to scan these pages as they contain pointers
1754                  * to additional allocations like via ops->init_request().
1755                  */
1756                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1757                 entries_per_page = order_to_size(this_order) / rq_size;
1758                 to_do = min(entries_per_page, depth - i);
1759                 left -= to_do * rq_size;
1760                 for (j = 0; j < to_do; j++) {
1761                         struct request *rq = p;
1762
1763                         tags->static_rqs[i] = rq;
1764                         if (set->ops->init_request) {
1765                                 if (set->ops->init_request(set->driver_data,
1766                                                 rq, hctx_idx, i,
1767                                                 node)) {
1768                                         tags->static_rqs[i] = NULL;
1769                                         goto fail;
1770                                 }
1771                         }
1772
1773                         p += rq_size;
1774                         i++;
1775                 }
1776         }
1777         return 0;
1778
1779 fail:
1780         blk_mq_free_rqs(set, tags, hctx_idx);
1781         return -ENOMEM;
1782 }
1783
1784 /*
1785  * 'cpu' is going away. splice any existing rq_list entries from this
1786  * software queue to the hw queue dispatch list, and ensure that it
1787  * gets run.
1788  */
1789 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1790 {
1791         struct blk_mq_hw_ctx *hctx;
1792         struct blk_mq_ctx *ctx;
1793         LIST_HEAD(tmp);
1794
1795         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1796         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1797
1798         spin_lock(&ctx->lock);
1799         if (!list_empty(&ctx->rq_list)) {
1800                 list_splice_init(&ctx->rq_list, &tmp);
1801                 blk_mq_hctx_clear_pending(hctx, ctx);
1802         }
1803         spin_unlock(&ctx->lock);
1804
1805         if (list_empty(&tmp))
1806                 return 0;
1807
1808         spin_lock(&hctx->lock);
1809         list_splice_tail_init(&tmp, &hctx->dispatch);
1810         spin_unlock(&hctx->lock);
1811
1812         blk_mq_run_hw_queue(hctx, true);
1813         return 0;
1814 }
1815
1816 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1817 {
1818         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1819                                             &hctx->cpuhp_dead);
1820 }
1821
1822 /* hctx->ctxs will be freed in queue's release handler */
1823 static void blk_mq_exit_hctx(struct request_queue *q,
1824                 struct blk_mq_tag_set *set,
1825                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1826 {
1827         unsigned flush_start_tag = set->queue_depth;
1828
1829         blk_mq_tag_idle(hctx);
1830
1831         if (set->ops->exit_request)
1832                 set->ops->exit_request(set->driver_data,
1833                                        hctx->fq->flush_rq, hctx_idx,
1834                                        flush_start_tag + hctx_idx);
1835
1836         if (set->ops->exit_hctx)
1837                 set->ops->exit_hctx(hctx, hctx_idx);
1838
1839         if (hctx->flags & BLK_MQ_F_BLOCKING)
1840                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1841
1842         blk_mq_remove_cpuhp(hctx);
1843         blk_free_flush_queue(hctx->fq);
1844         sbitmap_free(&hctx->ctx_map);
1845 }
1846
1847 static void blk_mq_exit_hw_queues(struct request_queue *q,
1848                 struct blk_mq_tag_set *set, int nr_queue)
1849 {
1850         struct blk_mq_hw_ctx *hctx;
1851         unsigned int i;
1852
1853         queue_for_each_hw_ctx(q, hctx, i) {
1854                 if (i == nr_queue)
1855                         break;
1856                 blk_mq_exit_hctx(q, set, hctx, i);
1857         }
1858 }
1859
1860 static int blk_mq_init_hctx(struct request_queue *q,
1861                 struct blk_mq_tag_set *set,
1862                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1863 {
1864         int node;
1865         unsigned flush_start_tag = set->queue_depth;
1866
1867         node = hctx->numa_node;
1868         if (node == NUMA_NO_NODE)
1869                 node = hctx->numa_node = set->numa_node;
1870
1871         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1872         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1873         spin_lock_init(&hctx->lock);
1874         INIT_LIST_HEAD(&hctx->dispatch);
1875         hctx->queue = q;
1876         hctx->queue_num = hctx_idx;
1877         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1878
1879         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1880
1881         hctx->tags = set->tags[hctx_idx];
1882
1883         /*
1884          * Allocate space for all possible cpus to avoid allocation at
1885          * runtime
1886          */
1887         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1888                                         GFP_KERNEL, node);
1889         if (!hctx->ctxs)
1890                 goto unregister_cpu_notifier;
1891
1892         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1893                               node))
1894                 goto free_ctxs;
1895
1896         hctx->nr_ctx = 0;
1897
1898         if (set->ops->init_hctx &&
1899             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1900                 goto free_bitmap;
1901
1902         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1903         if (!hctx->fq)
1904                 goto exit_hctx;
1905
1906         if (set->ops->init_request &&
1907             set->ops->init_request(set->driver_data,
1908                                    hctx->fq->flush_rq, hctx_idx,
1909                                    flush_start_tag + hctx_idx, node))
1910                 goto free_fq;
1911
1912         if (hctx->flags & BLK_MQ_F_BLOCKING)
1913                 init_srcu_struct(&hctx->queue_rq_srcu);
1914
1915         return 0;
1916
1917  free_fq:
1918         kfree(hctx->fq);
1919  exit_hctx:
1920         if (set->ops->exit_hctx)
1921                 set->ops->exit_hctx(hctx, hctx_idx);
1922  free_bitmap:
1923         sbitmap_free(&hctx->ctx_map);
1924  free_ctxs:
1925         kfree(hctx->ctxs);
1926  unregister_cpu_notifier:
1927         blk_mq_remove_cpuhp(hctx);
1928         return -1;
1929 }
1930
1931 static void blk_mq_init_cpu_queues(struct request_queue *q,
1932                                    unsigned int nr_hw_queues)
1933 {
1934         unsigned int i;
1935
1936         for_each_possible_cpu(i) {
1937                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1938                 struct blk_mq_hw_ctx *hctx;
1939
1940                 __ctx->cpu = i;
1941                 spin_lock_init(&__ctx->lock);
1942                 INIT_LIST_HEAD(&__ctx->rq_list);
1943                 __ctx->queue = q;
1944
1945                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1946                 if (!cpu_online(i))
1947                         continue;
1948
1949                 hctx = blk_mq_map_queue(q, i);
1950
1951                 /*
1952                  * Set local node, IFF we have more than one hw queue. If
1953                  * not, we remain on the home node of the device
1954                  */
1955                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1956                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1957         }
1958 }
1959
1960 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1961 {
1962         int ret = 0;
1963
1964         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1965                                         set->queue_depth, set->reserved_tags);
1966         if (!set->tags[hctx_idx])
1967                 return false;
1968
1969         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1970                                 set->queue_depth);
1971         if (!ret)
1972                 return true;
1973
1974         blk_mq_free_rq_map(set->tags[hctx_idx]);
1975         set->tags[hctx_idx] = NULL;
1976         return false;
1977 }
1978
1979 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1980                                          unsigned int hctx_idx)
1981 {
1982         if (set->tags[hctx_idx]) {
1983                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1984                 blk_mq_free_rq_map(set->tags[hctx_idx]);
1985                 set->tags[hctx_idx] = NULL;
1986         }
1987 }
1988
1989 static void blk_mq_map_swqueue(struct request_queue *q,
1990                                const struct cpumask *online_mask)
1991 {
1992         unsigned int i, hctx_idx;
1993         struct blk_mq_hw_ctx *hctx;
1994         struct blk_mq_ctx *ctx;
1995         struct blk_mq_tag_set *set = q->tag_set;
1996
1997         /*
1998          * Avoid others reading imcomplete hctx->cpumask through sysfs
1999          */
2000         mutex_lock(&q->sysfs_lock);
2001
2002         queue_for_each_hw_ctx(q, hctx, i) {
2003                 cpumask_clear(hctx->cpumask);
2004                 hctx->nr_ctx = 0;
2005         }
2006
2007         /*
2008          * Map software to hardware queues
2009          */
2010         for_each_possible_cpu(i) {
2011                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2012                 if (!cpumask_test_cpu(i, online_mask))
2013                         continue;
2014
2015                 hctx_idx = q->mq_map[i];
2016                 /* unmapped hw queue can be remapped after CPU topo changed */
2017                 if (!set->tags[hctx_idx] &&
2018                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2019                         /*
2020                          * If tags initialization fail for some hctx,
2021                          * that hctx won't be brought online.  In this
2022                          * case, remap the current ctx to hctx[0] which
2023                          * is guaranteed to always have tags allocated
2024                          */
2025                         q->mq_map[i] = 0;
2026                 }
2027
2028                 ctx = per_cpu_ptr(q->queue_ctx, i);
2029                 hctx = blk_mq_map_queue(q, i);
2030
2031                 cpumask_set_cpu(i, hctx->cpumask);
2032                 ctx->index_hw = hctx->nr_ctx;
2033                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2034         }
2035
2036         mutex_unlock(&q->sysfs_lock);
2037
2038         queue_for_each_hw_ctx(q, hctx, i) {
2039                 /*
2040                  * If no software queues are mapped to this hardware queue,
2041                  * disable it and free the request entries.
2042                  */
2043                 if (!hctx->nr_ctx) {
2044                         /* Never unmap queue 0.  We need it as a
2045                          * fallback in case of a new remap fails
2046                          * allocation
2047                          */
2048                         if (i && set->tags[i])
2049                                 blk_mq_free_map_and_requests(set, i);
2050
2051                         hctx->tags = NULL;
2052                         continue;
2053                 }
2054
2055                 hctx->tags = set->tags[i];
2056                 WARN_ON(!hctx->tags);
2057
2058                 /*
2059                  * Set the map size to the number of mapped software queues.
2060                  * This is more accurate and more efficient than looping
2061                  * over all possibly mapped software queues.
2062                  */
2063                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2064
2065                 /*
2066                  * Initialize batch roundrobin counts
2067                  */
2068                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2069                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2070         }
2071 }
2072
2073 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2074 {
2075         struct blk_mq_hw_ctx *hctx;
2076         int i;
2077
2078         queue_for_each_hw_ctx(q, hctx, i) {
2079                 if (shared)
2080                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2081                 else
2082                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2083         }
2084 }
2085
2086 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2087 {
2088         struct request_queue *q;
2089
2090         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2091                 blk_mq_freeze_queue(q);
2092                 queue_set_hctx_shared(q, shared);
2093                 blk_mq_unfreeze_queue(q);
2094         }
2095 }
2096
2097 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2098 {
2099         struct blk_mq_tag_set *set = q->tag_set;
2100
2101         mutex_lock(&set->tag_list_lock);
2102         list_del_init(&q->tag_set_list);
2103         if (list_is_singular(&set->tag_list)) {
2104                 /* just transitioned to unshared */
2105                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2106                 /* update existing queue */
2107                 blk_mq_update_tag_set_depth(set, false);
2108         }
2109         mutex_unlock(&set->tag_list_lock);
2110 }
2111
2112 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2113                                      struct request_queue *q)
2114 {
2115         q->tag_set = set;
2116
2117         mutex_lock(&set->tag_list_lock);
2118
2119         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2120         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2121                 set->flags |= BLK_MQ_F_TAG_SHARED;
2122                 /* update existing queue */
2123                 blk_mq_update_tag_set_depth(set, true);
2124         }
2125         if (set->flags & BLK_MQ_F_TAG_SHARED)
2126                 queue_set_hctx_shared(q, true);
2127         list_add_tail(&q->tag_set_list, &set->tag_list);
2128
2129         mutex_unlock(&set->tag_list_lock);
2130 }
2131
2132 /*
2133  * It is the actual release handler for mq, but we do it from
2134  * request queue's release handler for avoiding use-after-free
2135  * and headache because q->mq_kobj shouldn't have been introduced,
2136  * but we can't group ctx/kctx kobj without it.
2137  */
2138 void blk_mq_release(struct request_queue *q)
2139 {
2140         struct blk_mq_hw_ctx *hctx;
2141         unsigned int i;
2142
2143         blk_mq_sched_teardown(q);
2144
2145         /* hctx kobj stays in hctx */
2146         queue_for_each_hw_ctx(q, hctx, i) {
2147                 if (!hctx)
2148                         continue;
2149                 kobject_put(&hctx->kobj);
2150         }
2151
2152         q->mq_map = NULL;
2153
2154         kfree(q->queue_hw_ctx);
2155
2156         /*
2157          * release .mq_kobj and sw queue's kobject now because
2158          * both share lifetime with request queue.
2159          */
2160         blk_mq_sysfs_deinit(q);
2161
2162         free_percpu(q->queue_ctx);
2163 }
2164
2165 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2166 {
2167         struct request_queue *uninit_q, *q;
2168
2169         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2170         if (!uninit_q)
2171                 return ERR_PTR(-ENOMEM);
2172
2173         q = blk_mq_init_allocated_queue(set, uninit_q);
2174         if (IS_ERR(q))
2175                 blk_cleanup_queue(uninit_q);
2176
2177         return q;
2178 }
2179 EXPORT_SYMBOL(blk_mq_init_queue);
2180
2181 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2182                                                 struct request_queue *q)
2183 {
2184         int i, j;
2185         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2186
2187         blk_mq_sysfs_unregister(q);
2188         for (i = 0; i < set->nr_hw_queues; i++) {
2189                 int node;
2190
2191                 if (hctxs[i])
2192                         continue;
2193
2194                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2195                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2196                                         GFP_KERNEL, node);
2197                 if (!hctxs[i])
2198                         break;
2199
2200                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2201                                                 node)) {
2202                         kfree(hctxs[i]);
2203                         hctxs[i] = NULL;
2204                         break;
2205                 }
2206
2207                 atomic_set(&hctxs[i]->nr_active, 0);
2208                 hctxs[i]->numa_node = node;
2209                 hctxs[i]->queue_num = i;
2210
2211                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2212                         free_cpumask_var(hctxs[i]->cpumask);
2213                         kfree(hctxs[i]);
2214                         hctxs[i] = NULL;
2215                         break;
2216                 }
2217                 blk_mq_hctx_kobj_init(hctxs[i]);
2218         }
2219         for (j = i; j < q->nr_hw_queues; j++) {
2220                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2221
2222                 if (hctx) {
2223                         if (hctx->tags)
2224                                 blk_mq_free_map_and_requests(set, j);
2225                         blk_mq_exit_hctx(q, set, hctx, j);
2226                         kobject_put(&hctx->kobj);
2227                         hctxs[j] = NULL;
2228
2229                 }
2230         }
2231         q->nr_hw_queues = i;
2232         blk_mq_sysfs_register(q);
2233 }
2234
2235 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2236                                                   struct request_queue *q)
2237 {
2238         /* mark the queue as mq asap */
2239         q->mq_ops = set->ops;
2240
2241         q->stats = blk_alloc_queue_stats();
2242         if (!q->stats)
2243                 goto err_exit;
2244
2245         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2246                                              blk_stat_rq_ddir, 2, q);
2247         if (!q->poll_cb)
2248                 goto err_exit;
2249
2250         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2251         if (!q->queue_ctx)
2252                 goto err_exit;
2253
2254         /* init q->mq_kobj and sw queues' kobjects */
2255         blk_mq_sysfs_init(q);
2256
2257         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2258                                                 GFP_KERNEL, set->numa_node);
2259         if (!q->queue_hw_ctx)
2260                 goto err_percpu;
2261
2262         q->mq_map = set->mq_map;
2263
2264         blk_mq_realloc_hw_ctxs(set, q);
2265         if (!q->nr_hw_queues)
2266                 goto err_hctxs;
2267
2268         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2269         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2270
2271         q->nr_queues = nr_cpu_ids;
2272
2273         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2274
2275         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2276                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2277
2278         q->sg_reserved_size = INT_MAX;
2279
2280         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2281         INIT_LIST_HEAD(&q->requeue_list);
2282         spin_lock_init(&q->requeue_lock);
2283
2284         blk_queue_make_request(q, blk_mq_make_request);
2285
2286         /*
2287          * Do this after blk_queue_make_request() overrides it...
2288          */
2289         q->nr_requests = set->queue_depth;
2290
2291         /*
2292          * Default to classic polling
2293          */
2294         q->poll_nsec = -1;
2295
2296         if (set->ops->complete)
2297                 blk_queue_softirq_done(q, set->ops->complete);
2298
2299         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2300
2301         get_online_cpus();
2302         mutex_lock(&all_q_mutex);
2303
2304         list_add_tail(&q->all_q_node, &all_q_list);
2305         blk_mq_add_queue_tag_set(set, q);
2306         blk_mq_map_swqueue(q, cpu_online_mask);
2307
2308         mutex_unlock(&all_q_mutex);
2309         put_online_cpus();
2310
2311         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2312                 int ret;
2313
2314                 ret = blk_mq_sched_init(q);
2315                 if (ret)
2316                         return ERR_PTR(ret);
2317         }
2318
2319         return q;
2320
2321 err_hctxs:
2322         kfree(q->queue_hw_ctx);
2323 err_percpu:
2324         free_percpu(q->queue_ctx);
2325 err_exit:
2326         q->mq_ops = NULL;
2327         return ERR_PTR(-ENOMEM);
2328 }
2329 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2330
2331 void blk_mq_free_queue(struct request_queue *q)
2332 {
2333         struct blk_mq_tag_set   *set = q->tag_set;
2334
2335         mutex_lock(&all_q_mutex);
2336         list_del_init(&q->all_q_node);
2337         mutex_unlock(&all_q_mutex);
2338
2339         blk_mq_del_queue_tag_set(q);
2340
2341         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2342 }
2343
2344 /* Basically redo blk_mq_init_queue with queue frozen */
2345 static void blk_mq_queue_reinit(struct request_queue *q,
2346                                 const struct cpumask *online_mask)
2347 {
2348         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2349
2350         blk_mq_sysfs_unregister(q);
2351
2352         /*
2353          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2354          * we should change hctx numa_node according to new topology (this
2355          * involves free and re-allocate memory, worthy doing?)
2356          */
2357
2358         blk_mq_map_swqueue(q, online_mask);
2359
2360         blk_mq_sysfs_register(q);
2361 }
2362
2363 /*
2364  * New online cpumask which is going to be set in this hotplug event.
2365  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2366  * one-by-one and dynamically allocating this could result in a failure.
2367  */
2368 static struct cpumask cpuhp_online_new;
2369
2370 static void blk_mq_queue_reinit_work(void)
2371 {
2372         struct request_queue *q;
2373
2374         mutex_lock(&all_q_mutex);
2375         /*
2376          * We need to freeze and reinit all existing queues.  Freezing
2377          * involves synchronous wait for an RCU grace period and doing it
2378          * one by one may take a long time.  Start freezing all queues in
2379          * one swoop and then wait for the completions so that freezing can
2380          * take place in parallel.
2381          */
2382         list_for_each_entry(q, &all_q_list, all_q_node)
2383                 blk_mq_freeze_queue_start(q);
2384         list_for_each_entry(q, &all_q_list, all_q_node)
2385                 blk_mq_freeze_queue_wait(q);
2386
2387         list_for_each_entry(q, &all_q_list, all_q_node)
2388                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2389
2390         list_for_each_entry(q, &all_q_list, all_q_node)
2391                 blk_mq_unfreeze_queue(q);
2392
2393         mutex_unlock(&all_q_mutex);
2394 }
2395
2396 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2397 {
2398         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2399         blk_mq_queue_reinit_work();
2400         return 0;
2401 }
2402
2403 /*
2404  * Before hotadded cpu starts handling requests, new mappings must be
2405  * established.  Otherwise, these requests in hw queue might never be
2406  * dispatched.
2407  *
2408  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2409  * for CPU0, and ctx1 for CPU1).
2410  *
2411  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2412  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2413  *
2414  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2415  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2416  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2417  * ignored.
2418  */
2419 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2420 {
2421         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2422         cpumask_set_cpu(cpu, &cpuhp_online_new);
2423         blk_mq_queue_reinit_work();
2424         return 0;
2425 }
2426
2427 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2428 {
2429         int i;
2430
2431         for (i = 0; i < set->nr_hw_queues; i++)
2432                 if (!__blk_mq_alloc_rq_map(set, i))
2433                         goto out_unwind;
2434
2435         return 0;
2436
2437 out_unwind:
2438         while (--i >= 0)
2439                 blk_mq_free_rq_map(set->tags[i]);
2440
2441         return -ENOMEM;
2442 }
2443
2444 /*
2445  * Allocate the request maps associated with this tag_set. Note that this
2446  * may reduce the depth asked for, if memory is tight. set->queue_depth
2447  * will be updated to reflect the allocated depth.
2448  */
2449 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2450 {
2451         unsigned int depth;
2452         int err;
2453
2454         depth = set->queue_depth;
2455         do {
2456                 err = __blk_mq_alloc_rq_maps(set);
2457                 if (!err)
2458                         break;
2459
2460                 set->queue_depth >>= 1;
2461                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2462                         err = -ENOMEM;
2463                         break;
2464                 }
2465         } while (set->queue_depth);
2466
2467         if (!set->queue_depth || err) {
2468                 pr_err("blk-mq: failed to allocate request map\n");
2469                 return -ENOMEM;
2470         }
2471
2472         if (depth != set->queue_depth)
2473                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2474                                                 depth, set->queue_depth);
2475
2476         return 0;
2477 }
2478
2479 /*
2480  * Alloc a tag set to be associated with one or more request queues.
2481  * May fail with EINVAL for various error conditions. May adjust the
2482  * requested depth down, if if it too large. In that case, the set
2483  * value will be stored in set->queue_depth.
2484  */
2485 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2486 {
2487         int ret;
2488
2489         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2490
2491         if (!set->nr_hw_queues)
2492                 return -EINVAL;
2493         if (!set->queue_depth)
2494                 return -EINVAL;
2495         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2496                 return -EINVAL;
2497
2498         if (!set->ops->queue_rq)
2499                 return -EINVAL;
2500
2501         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2502                 pr_info("blk-mq: reduced tag depth to %u\n",
2503                         BLK_MQ_MAX_DEPTH);
2504                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2505         }
2506
2507         /*
2508          * If a crashdump is active, then we are potentially in a very
2509          * memory constrained environment. Limit us to 1 queue and
2510          * 64 tags to prevent using too much memory.
2511          */
2512         if (is_kdump_kernel()) {
2513                 set->nr_hw_queues = 1;
2514                 set->queue_depth = min(64U, set->queue_depth);
2515         }
2516         /*
2517          * There is no use for more h/w queues than cpus.
2518          */
2519         if (set->nr_hw_queues > nr_cpu_ids)
2520                 set->nr_hw_queues = nr_cpu_ids;
2521
2522         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2523                                  GFP_KERNEL, set->numa_node);
2524         if (!set->tags)
2525                 return -ENOMEM;
2526
2527         ret = -ENOMEM;
2528         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2529                         GFP_KERNEL, set->numa_node);
2530         if (!set->mq_map)
2531                 goto out_free_tags;
2532
2533         if (set->ops->map_queues)
2534                 ret = set->ops->map_queues(set);
2535         else
2536                 ret = blk_mq_map_queues(set);
2537         if (ret)
2538                 goto out_free_mq_map;
2539
2540         ret = blk_mq_alloc_rq_maps(set);
2541         if (ret)
2542                 goto out_free_mq_map;
2543
2544         mutex_init(&set->tag_list_lock);
2545         INIT_LIST_HEAD(&set->tag_list);
2546
2547         return 0;
2548
2549 out_free_mq_map:
2550         kfree(set->mq_map);
2551         set->mq_map = NULL;
2552 out_free_tags:
2553         kfree(set->tags);
2554         set->tags = NULL;
2555         return ret;
2556 }
2557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2558
2559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2560 {
2561         int i;
2562
2563         for (i = 0; i < nr_cpu_ids; i++)
2564                 blk_mq_free_map_and_requests(set, i);
2565
2566         kfree(set->mq_map);
2567         set->mq_map = NULL;
2568
2569         kfree(set->tags);
2570         set->tags = NULL;
2571 }
2572 EXPORT_SYMBOL(blk_mq_free_tag_set);
2573
2574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2575 {
2576         struct blk_mq_tag_set *set = q->tag_set;
2577         struct blk_mq_hw_ctx *hctx;
2578         int i, ret;
2579
2580         if (!set)
2581                 return -EINVAL;
2582
2583         blk_mq_freeze_queue(q);
2584         blk_mq_quiesce_queue(q);
2585
2586         ret = 0;
2587         queue_for_each_hw_ctx(q, hctx, i) {
2588                 if (!hctx->tags)
2589                         continue;
2590                 /*
2591                  * If we're using an MQ scheduler, just update the scheduler
2592                  * queue depth. This is similar to what the old code would do.
2593                  */
2594                 if (!hctx->sched_tags) {
2595                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2596                                                         min(nr, set->queue_depth),
2597                                                         false);
2598                 } else {
2599                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2600                                                         nr, true);
2601                 }
2602                 if (ret)
2603                         break;
2604         }
2605
2606         if (!ret)
2607                 q->nr_requests = nr;
2608
2609         blk_mq_unfreeze_queue(q);
2610         blk_mq_start_stopped_hw_queues(q, true);
2611
2612         return ret;
2613 }
2614
2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2616 {
2617         struct request_queue *q;
2618
2619         if (nr_hw_queues > nr_cpu_ids)
2620                 nr_hw_queues = nr_cpu_ids;
2621         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2622                 return;
2623
2624         list_for_each_entry(q, &set->tag_list, tag_set_list)
2625                 blk_mq_freeze_queue(q);
2626
2627         set->nr_hw_queues = nr_hw_queues;
2628         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2629                 blk_mq_realloc_hw_ctxs(set, q);
2630                 blk_mq_queue_reinit(q, cpu_online_mask);
2631         }
2632
2633         list_for_each_entry(q, &set->tag_list, tag_set_list)
2634                 blk_mq_unfreeze_queue(q);
2635 }
2636 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2637
2638 /* Enable polling stats and return whether they were already enabled. */
2639 static bool blk_poll_stats_enable(struct request_queue *q)
2640 {
2641         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2642             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2643                 return true;
2644         blk_stat_add_callback(q, q->poll_cb);
2645         return false;
2646 }
2647
2648 static void blk_mq_poll_stats_start(struct request_queue *q)
2649 {
2650         /*
2651          * We don't arm the callback if polling stats are not enabled or the
2652          * callback is already active.
2653          */
2654         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2655             blk_stat_is_active(q->poll_cb))
2656                 return;
2657
2658         blk_stat_activate_msecs(q->poll_cb, 100);
2659 }
2660
2661 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2662 {
2663         struct request_queue *q = cb->data;
2664
2665         if (cb->stat[READ].nr_samples)
2666                 q->poll_stat[READ] = cb->stat[READ];
2667         if (cb->stat[WRITE].nr_samples)
2668                 q->poll_stat[WRITE] = cb->stat[WRITE];
2669 }
2670
2671 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2672                                        struct blk_mq_hw_ctx *hctx,
2673                                        struct request *rq)
2674 {
2675         unsigned long ret = 0;
2676
2677         /*
2678          * If stats collection isn't on, don't sleep but turn it on for
2679          * future users
2680          */
2681         if (!blk_poll_stats_enable(q))
2682                 return 0;
2683
2684         /*
2685          * As an optimistic guess, use half of the mean service time
2686          * for this type of request. We can (and should) make this smarter.
2687          * For instance, if the completion latencies are tight, we can
2688          * get closer than just half the mean. This is especially
2689          * important on devices where the completion latencies are longer
2690          * than ~10 usec.
2691          */
2692         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2693                 ret = (q->poll_stat[READ].mean + 1) / 2;
2694         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2695                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2696
2697         return ret;
2698 }
2699
2700 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2701                                      struct blk_mq_hw_ctx *hctx,
2702                                      struct request *rq)
2703 {
2704         struct hrtimer_sleeper hs;
2705         enum hrtimer_mode mode;
2706         unsigned int nsecs;
2707         ktime_t kt;
2708
2709         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2710                 return false;
2711
2712         /*
2713          * poll_nsec can be:
2714          *
2715          * -1:  don't ever hybrid sleep
2716          *  0:  use half of prev avg
2717          * >0:  use this specific value
2718          */
2719         if (q->poll_nsec == -1)
2720                 return false;
2721         else if (q->poll_nsec > 0)
2722                 nsecs = q->poll_nsec;
2723         else
2724                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2725
2726         if (!nsecs)
2727                 return false;
2728
2729         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2730
2731         /*
2732          * This will be replaced with the stats tracking code, using
2733          * 'avg_completion_time / 2' as the pre-sleep target.
2734          */
2735         kt = nsecs;
2736
2737         mode = HRTIMER_MODE_REL;
2738         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2739         hrtimer_set_expires(&hs.timer, kt);
2740
2741         hrtimer_init_sleeper(&hs, current);
2742         do {
2743                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2744                         break;
2745                 set_current_state(TASK_UNINTERRUPTIBLE);
2746                 hrtimer_start_expires(&hs.timer, mode);
2747                 if (hs.task)
2748                         io_schedule();
2749                 hrtimer_cancel(&hs.timer);
2750                 mode = HRTIMER_MODE_ABS;
2751         } while (hs.task && !signal_pending(current));
2752
2753         __set_current_state(TASK_RUNNING);
2754         destroy_hrtimer_on_stack(&hs.timer);
2755         return true;
2756 }
2757
2758 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2759 {
2760         struct request_queue *q = hctx->queue;
2761         long state;
2762
2763         /*
2764          * If we sleep, have the caller restart the poll loop to reset
2765          * the state. Like for the other success return cases, the
2766          * caller is responsible for checking if the IO completed. If
2767          * the IO isn't complete, we'll get called again and will go
2768          * straight to the busy poll loop.
2769          */
2770         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2771                 return true;
2772
2773         hctx->poll_considered++;
2774
2775         state = current->state;
2776         while (!need_resched()) {
2777                 int ret;
2778
2779                 hctx->poll_invoked++;
2780
2781                 ret = q->mq_ops->poll(hctx, rq->tag);
2782                 if (ret > 0) {
2783                         hctx->poll_success++;
2784                         set_current_state(TASK_RUNNING);
2785                         return true;
2786                 }
2787
2788                 if (signal_pending_state(state, current))
2789                         set_current_state(TASK_RUNNING);
2790
2791                 if (current->state == TASK_RUNNING)
2792                         return true;
2793                 if (ret < 0)
2794                         break;
2795                 cpu_relax();
2796         }
2797
2798         return false;
2799 }
2800
2801 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2802 {
2803         struct blk_mq_hw_ctx *hctx;
2804         struct blk_plug *plug;
2805         struct request *rq;
2806
2807         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2808             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2809                 return false;
2810
2811         plug = current->plug;
2812         if (plug)
2813                 blk_flush_plug_list(plug, false);
2814
2815         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2816         if (!blk_qc_t_is_internal(cookie))
2817                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2818         else
2819                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2820
2821         return __blk_mq_poll(hctx, rq);
2822 }
2823 EXPORT_SYMBOL_GPL(blk_mq_poll);
2824
2825 void blk_mq_disable_hotplug(void)
2826 {
2827         mutex_lock(&all_q_mutex);
2828 }
2829
2830 void blk_mq_enable_hotplug(void)
2831 {
2832         mutex_unlock(&all_q_mutex);
2833 }
2834
2835 static int __init blk_mq_init(void)
2836 {
2837         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2838                                 blk_mq_hctx_notify_dead);
2839
2840         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2841                                   blk_mq_queue_reinit_prepare,
2842                                   blk_mq_queue_reinit_dead);
2843         return 0;
2844 }
2845 subsys_initcall(blk_mq_init);