]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/acpi/acpi_pad.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[karo-tx-linux.git] / drivers / acpi / acpi_pad.c
1 /*
2  * acpi_pad.c ACPI Processor Aggregator Driver
3  *
4  * Copyright (c) 2009, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/cpumask.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/kthread.h>
23 #include <uapi/linux/sched/types.h>
24 #include <linux/freezer.h>
25 #include <linux/cpu.h>
26 #include <linux/tick.h>
27 #include <linux/slab.h>
28 #include <linux/acpi.h>
29 #include <asm/mwait.h>
30 #include <xen/xen.h>
31
32 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
33 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
34 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
35 static DEFINE_MUTEX(isolated_cpus_lock);
36 static DEFINE_MUTEX(round_robin_lock);
37
38 static unsigned long power_saving_mwait_eax;
39
40 static unsigned char tsc_detected_unstable;
41 static unsigned char tsc_marked_unstable;
42
43 static void power_saving_mwait_init(void)
44 {
45         unsigned int eax, ebx, ecx, edx;
46         unsigned int highest_cstate = 0;
47         unsigned int highest_subcstate = 0;
48         int i;
49
50         if (!boot_cpu_has(X86_FEATURE_MWAIT))
51                 return;
52         if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
53                 return;
54
55         cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
56
57         if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
58             !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
59                 return;
60
61         edx >>= MWAIT_SUBSTATE_SIZE;
62         for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
63                 if (edx & MWAIT_SUBSTATE_MASK) {
64                         highest_cstate = i;
65                         highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
66                 }
67         }
68         power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
69                 (highest_subcstate - 1);
70
71 #if defined(CONFIG_X86)
72         switch (boot_cpu_data.x86_vendor) {
73         case X86_VENDOR_AMD:
74         case X86_VENDOR_INTEL:
75                 /*
76                  * AMD Fam10h TSC will tick in all
77                  * C/P/S0/S1 states when this bit is set.
78                  */
79                 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
80                         tsc_detected_unstable = 1;
81                 break;
82         default:
83                 /* TSC could halt in idle */
84                 tsc_detected_unstable = 1;
85         }
86 #endif
87 }
88
89 static unsigned long cpu_weight[NR_CPUS];
90 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
92 static void round_robin_cpu(unsigned int tsk_index)
93 {
94         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
95         cpumask_var_t tmp;
96         int cpu;
97         unsigned long min_weight = -1;
98         unsigned long uninitialized_var(preferred_cpu);
99
100         if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
101                 return;
102
103         mutex_lock(&round_robin_lock);
104         cpumask_clear(tmp);
105         for_each_cpu(cpu, pad_busy_cpus)
106                 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
107         cpumask_andnot(tmp, cpu_online_mask, tmp);
108         /* avoid HT sibilings if possible */
109         if (cpumask_empty(tmp))
110                 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
111         if (cpumask_empty(tmp)) {
112                 mutex_unlock(&round_robin_lock);
113                 return;
114         }
115         for_each_cpu(cpu, tmp) {
116                 if (cpu_weight[cpu] < min_weight) {
117                         min_weight = cpu_weight[cpu];
118                         preferred_cpu = cpu;
119                 }
120         }
121
122         if (tsk_in_cpu[tsk_index] != -1)
123                 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
124         tsk_in_cpu[tsk_index] = preferred_cpu;
125         cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
126         cpu_weight[preferred_cpu]++;
127         mutex_unlock(&round_robin_lock);
128
129         set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
130 }
131
132 static void exit_round_robin(unsigned int tsk_index)
133 {
134         struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
135         cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136         tsk_in_cpu[tsk_index] = -1;
137 }
138
139 static unsigned int idle_pct = 5; /* percentage */
140 static unsigned int round_robin_time = 1; /* second */
141 static int power_saving_thread(void *data)
142 {
143         struct sched_param param = {.sched_priority = 1};
144         int do_sleep;
145         unsigned int tsk_index = (unsigned long)data;
146         u64 last_jiffies = 0;
147
148         sched_setscheduler(current, SCHED_RR, &param);
149
150         while (!kthread_should_stop()) {
151                 unsigned long expire_time;
152
153                 /* round robin to cpus */
154                 expire_time = last_jiffies + round_robin_time * HZ;
155                 if (time_before(expire_time, jiffies)) {
156                         last_jiffies = jiffies;
157                         round_robin_cpu(tsk_index);
158                 }
159
160                 do_sleep = 0;
161
162                 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
163
164                 while (!need_resched()) {
165                         if (tsc_detected_unstable && !tsc_marked_unstable) {
166                                 /* TSC could halt in idle, so notify users */
167                                 mark_tsc_unstable("TSC halts in idle");
168                                 tsc_marked_unstable = 1;
169                         }
170                         local_irq_disable();
171                         tick_broadcast_enable();
172                         tick_broadcast_enter();
173                         stop_critical_timings();
174
175                         mwait_idle_with_hints(power_saving_mwait_eax, 1);
176
177                         start_critical_timings();
178                         tick_broadcast_exit();
179                         local_irq_enable();
180
181                         if (time_before(expire_time, jiffies)) {
182                                 do_sleep = 1;
183                                 break;
184                         }
185                 }
186
187                 /*
188                  * current sched_rt has threshold for rt task running time.
189                  * When a rt task uses 95% CPU time, the rt thread will be
190                  * scheduled out for 5% CPU time to not starve other tasks. But
191                  * the mechanism only works when all CPUs have RT task running,
192                  * as if one CPU hasn't RT task, RT task from other CPUs will
193                  * borrow CPU time from this CPU and cause RT task use > 95%
194                  * CPU time. To make 'avoid starvation' work, takes a nap here.
195                  */
196                 if (unlikely(do_sleep))
197                         schedule_timeout_killable(HZ * idle_pct / 100);
198
199                 /* If an external event has set the need_resched flag, then
200                  * we need to deal with it, or this loop will continue to
201                  * spin without calling __mwait().
202                  */
203                 if (unlikely(need_resched()))
204                         schedule();
205         }
206
207         exit_round_robin(tsk_index);
208         return 0;
209 }
210
211 static struct task_struct *ps_tsks[NR_CPUS];
212 static unsigned int ps_tsk_num;
213 static int create_power_saving_task(void)
214 {
215         int rc;
216
217         ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
218                 (void *)(unsigned long)ps_tsk_num,
219                 "acpi_pad/%d", ps_tsk_num);
220
221         if (IS_ERR(ps_tsks[ps_tsk_num])) {
222                 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
223                 ps_tsks[ps_tsk_num] = NULL;
224         } else {
225                 rc = 0;
226                 ps_tsk_num++;
227         }
228
229         return rc;
230 }
231
232 static void destroy_power_saving_task(void)
233 {
234         if (ps_tsk_num > 0) {
235                 ps_tsk_num--;
236                 kthread_stop(ps_tsks[ps_tsk_num]);
237                 ps_tsks[ps_tsk_num] = NULL;
238         }
239 }
240
241 static void set_power_saving_task_num(unsigned int num)
242 {
243         if (num > ps_tsk_num) {
244                 while (ps_tsk_num < num) {
245                         if (create_power_saving_task())
246                                 return;
247                 }
248         } else if (num < ps_tsk_num) {
249                 while (ps_tsk_num > num)
250                         destroy_power_saving_task();
251         }
252 }
253
254 static void acpi_pad_idle_cpus(unsigned int num_cpus)
255 {
256         get_online_cpus();
257
258         num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
259         set_power_saving_task_num(num_cpus);
260
261         put_online_cpus();
262 }
263
264 static uint32_t acpi_pad_idle_cpus_num(void)
265 {
266         return ps_tsk_num;
267 }
268
269 static ssize_t acpi_pad_rrtime_store(struct device *dev,
270         struct device_attribute *attr, const char *buf, size_t count)
271 {
272         unsigned long num;
273         if (kstrtoul(buf, 0, &num))
274                 return -EINVAL;
275         if (num < 1 || num >= 100)
276                 return -EINVAL;
277         mutex_lock(&isolated_cpus_lock);
278         round_robin_time = num;
279         mutex_unlock(&isolated_cpus_lock);
280         return count;
281 }
282
283 static ssize_t acpi_pad_rrtime_show(struct device *dev,
284         struct device_attribute *attr, char *buf)
285 {
286         return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
287 }
288 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
289         acpi_pad_rrtime_show,
290         acpi_pad_rrtime_store);
291
292 static ssize_t acpi_pad_idlepct_store(struct device *dev,
293         struct device_attribute *attr, const char *buf, size_t count)
294 {
295         unsigned long num;
296         if (kstrtoul(buf, 0, &num))
297                 return -EINVAL;
298         if (num < 1 || num >= 100)
299                 return -EINVAL;
300         mutex_lock(&isolated_cpus_lock);
301         idle_pct = num;
302         mutex_unlock(&isolated_cpus_lock);
303         return count;
304 }
305
306 static ssize_t acpi_pad_idlepct_show(struct device *dev,
307         struct device_attribute *attr, char *buf)
308 {
309         return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
310 }
311 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
312         acpi_pad_idlepct_show,
313         acpi_pad_idlepct_store);
314
315 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
316         struct device_attribute *attr, const char *buf, size_t count)
317 {
318         unsigned long num;
319         if (kstrtoul(buf, 0, &num))
320                 return -EINVAL;
321         mutex_lock(&isolated_cpus_lock);
322         acpi_pad_idle_cpus(num);
323         mutex_unlock(&isolated_cpus_lock);
324         return count;
325 }
326
327 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
328         struct device_attribute *attr, char *buf)
329 {
330         return cpumap_print_to_pagebuf(false, buf,
331                                        to_cpumask(pad_busy_cpus_bits));
332 }
333
334 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
335         acpi_pad_idlecpus_show,
336         acpi_pad_idlecpus_store);
337
338 static int acpi_pad_add_sysfs(struct acpi_device *device)
339 {
340         int result;
341
342         result = device_create_file(&device->dev, &dev_attr_idlecpus);
343         if (result)
344                 return -ENODEV;
345         result = device_create_file(&device->dev, &dev_attr_idlepct);
346         if (result) {
347                 device_remove_file(&device->dev, &dev_attr_idlecpus);
348                 return -ENODEV;
349         }
350         result = device_create_file(&device->dev, &dev_attr_rrtime);
351         if (result) {
352                 device_remove_file(&device->dev, &dev_attr_idlecpus);
353                 device_remove_file(&device->dev, &dev_attr_idlepct);
354                 return -ENODEV;
355         }
356         return 0;
357 }
358
359 static void acpi_pad_remove_sysfs(struct acpi_device *device)
360 {
361         device_remove_file(&device->dev, &dev_attr_idlecpus);
362         device_remove_file(&device->dev, &dev_attr_idlepct);
363         device_remove_file(&device->dev, &dev_attr_rrtime);
364 }
365
366 /*
367  * Query firmware how many CPUs should be idle
368  * return -1 on failure
369  */
370 static int acpi_pad_pur(acpi_handle handle)
371 {
372         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373         union acpi_object *package;
374         int num = -1;
375
376         if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377                 return num;
378
379         if (!buffer.length || !buffer.pointer)
380                 return num;
381
382         package = buffer.pointer;
383
384         if (package->type == ACPI_TYPE_PACKAGE &&
385                 package->package.count == 2 &&
386                 package->package.elements[0].integer.value == 1) /* rev 1 */
387
388                 num = package->package.elements[1].integer.value;
389
390         kfree(buffer.pointer);
391         return num;
392 }
393
394 static void acpi_pad_handle_notify(acpi_handle handle)
395 {
396         int num_cpus;
397         uint32_t idle_cpus;
398         struct acpi_buffer param = {
399                 .length = 4,
400                 .pointer = (void *)&idle_cpus,
401         };
402
403         mutex_lock(&isolated_cpus_lock);
404         num_cpus = acpi_pad_pur(handle);
405         if (num_cpus < 0) {
406                 mutex_unlock(&isolated_cpus_lock);
407                 return;
408         }
409         acpi_pad_idle_cpus(num_cpus);
410         idle_cpus = acpi_pad_idle_cpus_num();
411         acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
412         mutex_unlock(&isolated_cpus_lock);
413 }
414
415 static void acpi_pad_notify(acpi_handle handle, u32 event,
416         void *data)
417 {
418         struct acpi_device *device = data;
419
420         switch (event) {
421         case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422                 acpi_pad_handle_notify(handle);
423                 acpi_bus_generate_netlink_event(device->pnp.device_class,
424                         dev_name(&device->dev), event, 0);
425                 break;
426         default:
427                 pr_warn("Unsupported event [0x%x]\n", event);
428                 break;
429         }
430 }
431
432 static int acpi_pad_add(struct acpi_device *device)
433 {
434         acpi_status status;
435
436         strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437         strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438
439         if (acpi_pad_add_sysfs(device))
440                 return -ENODEV;
441
442         status = acpi_install_notify_handler(device->handle,
443                 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444         if (ACPI_FAILURE(status)) {
445                 acpi_pad_remove_sysfs(device);
446                 return -ENODEV;
447         }
448
449         return 0;
450 }
451
452 static int acpi_pad_remove(struct acpi_device *device)
453 {
454         mutex_lock(&isolated_cpus_lock);
455         acpi_pad_idle_cpus(0);
456         mutex_unlock(&isolated_cpus_lock);
457
458         acpi_remove_notify_handler(device->handle,
459                 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460         acpi_pad_remove_sysfs(device);
461         return 0;
462 }
463
464 static const struct acpi_device_id pad_device_ids[] = {
465         {"ACPI000C", 0},
466         {"", 0},
467 };
468 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469
470 static struct acpi_driver acpi_pad_driver = {
471         .name = "processor_aggregator",
472         .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473         .ids = pad_device_ids,
474         .ops = {
475                 .add = acpi_pad_add,
476                 .remove = acpi_pad_remove,
477         },
478 };
479
480 static int __init acpi_pad_init(void)
481 {
482         /* Xen ACPI PAD is used when running as Xen Dom0. */
483         if (xen_initial_domain())
484                 return -ENODEV;
485
486         power_saving_mwait_init();
487         if (power_saving_mwait_eax == 0)
488                 return -EINVAL;
489
490         return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492
493 static void __exit acpi_pad_exit(void)
494 {
495         acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");