]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/brd.c
ec00c01b8dc3dd75487353e28d180bf51d213469
[karo-tx-linux.git] / drivers / block / brd.c
1 /*
2  * Ram backed block device driver.
3  *
4  * Copyright (C) 2007 Nick Piggin
5  * Copyright (C) 2007 Novell Inc.
6  *
7  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8  * of their respective owners.
9  */
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/major.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/highmem.h>
18 #include <linux/mutex.h>
19 #include <linux/radix-tree.h>
20 #include <linux/fs.h>
21 #include <linux/slab.h>
22 #ifdef CONFIG_BLK_DEV_RAM_DAX
23 #include <linux/pfn_t.h>
24 #include <linux/dax.h>
25 #endif
26
27 #include <linux/uaccess.h>
28
29 #define SECTOR_SHIFT            9
30 #define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
31 #define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
32
33 /*
34  * Each block ramdisk device has a radix_tree brd_pages of pages that stores
35  * the pages containing the block device's contents. A brd page's ->index is
36  * its offset in PAGE_SIZE units. This is similar to, but in no way connected
37  * with, the kernel's pagecache or buffer cache (which sit above our block
38  * device).
39  */
40 struct brd_device {
41         int             brd_number;
42
43         struct request_queue    *brd_queue;
44         struct gendisk          *brd_disk;
45 #ifdef CONFIG_BLK_DEV_RAM_DAX
46         struct dax_device       *dax_dev;
47 #endif
48         struct list_head        brd_list;
49
50         /*
51          * Backing store of pages and lock to protect it. This is the contents
52          * of the block device.
53          */
54         spinlock_t              brd_lock;
55         struct radix_tree_root  brd_pages;
56 };
57
58 /*
59  * Look up and return a brd's page for a given sector.
60  */
61 static DEFINE_MUTEX(brd_mutex);
62 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
63 {
64         pgoff_t idx;
65         struct page *page;
66
67         /*
68          * The page lifetime is protected by the fact that we have opened the
69          * device node -- brd pages will never be deleted under us, so we
70          * don't need any further locking or refcounting.
71          *
72          * This is strictly true for the radix-tree nodes as well (ie. we
73          * don't actually need the rcu_read_lock()), however that is not a
74          * documented feature of the radix-tree API so it is better to be
75          * safe here (we don't have total exclusion from radix tree updates
76          * here, only deletes).
77          */
78         rcu_read_lock();
79         idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
80         page = radix_tree_lookup(&brd->brd_pages, idx);
81         rcu_read_unlock();
82
83         BUG_ON(page && page->index != idx);
84
85         return page;
86 }
87
88 /*
89  * Look up and return a brd's page for a given sector.
90  * If one does not exist, allocate an empty page, and insert that. Then
91  * return it.
92  */
93 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
94 {
95         pgoff_t idx;
96         struct page *page;
97         gfp_t gfp_flags;
98
99         page = brd_lookup_page(brd, sector);
100         if (page)
101                 return page;
102
103         /*
104          * Must use NOIO because we don't want to recurse back into the
105          * block or filesystem layers from page reclaim.
106          *
107          * Cannot support DAX and highmem, because our ->direct_access
108          * routine for DAX must return memory that is always addressable.
109          * If DAX was reworked to use pfns and kmap throughout, this
110          * restriction might be able to be lifted.
111          */
112         gfp_flags = GFP_NOIO | __GFP_ZERO;
113 #ifndef CONFIG_BLK_DEV_RAM_DAX
114         gfp_flags |= __GFP_HIGHMEM;
115 #endif
116         page = alloc_page(gfp_flags);
117         if (!page)
118                 return NULL;
119
120         if (radix_tree_preload(GFP_NOIO)) {
121                 __free_page(page);
122                 return NULL;
123         }
124
125         spin_lock(&brd->brd_lock);
126         idx = sector >> PAGE_SECTORS_SHIFT;
127         page->index = idx;
128         if (radix_tree_insert(&brd->brd_pages, idx, page)) {
129                 __free_page(page);
130                 page = radix_tree_lookup(&brd->brd_pages, idx);
131                 BUG_ON(!page);
132                 BUG_ON(page->index != idx);
133         }
134         spin_unlock(&brd->brd_lock);
135
136         radix_tree_preload_end();
137
138         return page;
139 }
140
141 static void brd_free_page(struct brd_device *brd, sector_t sector)
142 {
143         struct page *page;
144         pgoff_t idx;
145
146         spin_lock(&brd->brd_lock);
147         idx = sector >> PAGE_SECTORS_SHIFT;
148         page = radix_tree_delete(&brd->brd_pages, idx);
149         spin_unlock(&brd->brd_lock);
150         if (page)
151                 __free_page(page);
152 }
153
154 static void brd_zero_page(struct brd_device *brd, sector_t sector)
155 {
156         struct page *page;
157
158         page = brd_lookup_page(brd, sector);
159         if (page)
160                 clear_highpage(page);
161 }
162
163 /*
164  * Free all backing store pages and radix tree. This must only be called when
165  * there are no other users of the device.
166  */
167 #define FREE_BATCH 16
168 static void brd_free_pages(struct brd_device *brd)
169 {
170         unsigned long pos = 0;
171         struct page *pages[FREE_BATCH];
172         int nr_pages;
173
174         do {
175                 int i;
176
177                 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
178                                 (void **)pages, pos, FREE_BATCH);
179
180                 for (i = 0; i < nr_pages; i++) {
181                         void *ret;
182
183                         BUG_ON(pages[i]->index < pos);
184                         pos = pages[i]->index;
185                         ret = radix_tree_delete(&brd->brd_pages, pos);
186                         BUG_ON(!ret || ret != pages[i]);
187                         __free_page(pages[i]);
188                 }
189
190                 pos++;
191
192                 /*
193                  * This assumes radix_tree_gang_lookup always returns as
194                  * many pages as possible. If the radix-tree code changes,
195                  * so will this have to.
196                  */
197         } while (nr_pages == FREE_BATCH);
198 }
199
200 /*
201  * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
202  */
203 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
204 {
205         unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
206         size_t copy;
207
208         copy = min_t(size_t, n, PAGE_SIZE - offset);
209         if (!brd_insert_page(brd, sector))
210                 return -ENOSPC;
211         if (copy < n) {
212                 sector += copy >> SECTOR_SHIFT;
213                 if (!brd_insert_page(brd, sector))
214                         return -ENOSPC;
215         }
216         return 0;
217 }
218
219 static void discard_from_brd(struct brd_device *brd,
220                         sector_t sector, size_t n)
221 {
222         while (n >= PAGE_SIZE) {
223                 /*
224                  * Don't want to actually discard pages here because
225                  * re-allocating the pages can result in writeback
226                  * deadlocks under heavy load.
227                  */
228                 if (0)
229                         brd_free_page(brd, sector);
230                 else
231                         brd_zero_page(brd, sector);
232                 sector += PAGE_SIZE >> SECTOR_SHIFT;
233                 n -= PAGE_SIZE;
234         }
235 }
236
237 /*
238  * Copy n bytes from src to the brd starting at sector. Does not sleep.
239  */
240 static void copy_to_brd(struct brd_device *brd, const void *src,
241                         sector_t sector, size_t n)
242 {
243         struct page *page;
244         void *dst;
245         unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
246         size_t copy;
247
248         copy = min_t(size_t, n, PAGE_SIZE - offset);
249         page = brd_lookup_page(brd, sector);
250         BUG_ON(!page);
251
252         dst = kmap_atomic(page);
253         memcpy(dst + offset, src, copy);
254         kunmap_atomic(dst);
255
256         if (copy < n) {
257                 src += copy;
258                 sector += copy >> SECTOR_SHIFT;
259                 copy = n - copy;
260                 page = brd_lookup_page(brd, sector);
261                 BUG_ON(!page);
262
263                 dst = kmap_atomic(page);
264                 memcpy(dst, src, copy);
265                 kunmap_atomic(dst);
266         }
267 }
268
269 /*
270  * Copy n bytes to dst from the brd starting at sector. Does not sleep.
271  */
272 static void copy_from_brd(void *dst, struct brd_device *brd,
273                         sector_t sector, size_t n)
274 {
275         struct page *page;
276         void *src;
277         unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
278         size_t copy;
279
280         copy = min_t(size_t, n, PAGE_SIZE - offset);
281         page = brd_lookup_page(brd, sector);
282         if (page) {
283                 src = kmap_atomic(page);
284                 memcpy(dst, src + offset, copy);
285                 kunmap_atomic(src);
286         } else
287                 memset(dst, 0, copy);
288
289         if (copy < n) {
290                 dst += copy;
291                 sector += copy >> SECTOR_SHIFT;
292                 copy = n - copy;
293                 page = brd_lookup_page(brd, sector);
294                 if (page) {
295                         src = kmap_atomic(page);
296                         memcpy(dst, src, copy);
297                         kunmap_atomic(src);
298                 } else
299                         memset(dst, 0, copy);
300         }
301 }
302
303 /*
304  * Process a single bvec of a bio.
305  */
306 static int brd_do_bvec(struct brd_device *brd, struct page *page,
307                         unsigned int len, unsigned int off, bool is_write,
308                         sector_t sector)
309 {
310         void *mem;
311         int err = 0;
312
313         if (is_write) {
314                 err = copy_to_brd_setup(brd, sector, len);
315                 if (err)
316                         goto out;
317         }
318
319         mem = kmap_atomic(page);
320         if (!is_write) {
321                 copy_from_brd(mem + off, brd, sector, len);
322                 flush_dcache_page(page);
323         } else {
324                 flush_dcache_page(page);
325                 copy_to_brd(brd, mem + off, sector, len);
326         }
327         kunmap_atomic(mem);
328
329 out:
330         return err;
331 }
332
333 static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
334 {
335         struct block_device *bdev = bio->bi_bdev;
336         struct brd_device *brd = bdev->bd_disk->private_data;
337         struct bio_vec bvec;
338         sector_t sector;
339         struct bvec_iter iter;
340
341         sector = bio->bi_iter.bi_sector;
342         if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
343                 goto io_error;
344
345         if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
346                 if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) ||
347                     bio->bi_iter.bi_size & ~PAGE_MASK)
348                         goto io_error;
349                 discard_from_brd(brd, sector, bio->bi_iter.bi_size);
350                 goto out;
351         }
352
353         bio_for_each_segment(bvec, bio, iter) {
354                 unsigned int len = bvec.bv_len;
355                 int err;
356
357                 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
358                                         op_is_write(bio_op(bio)), sector);
359                 if (err)
360                         goto io_error;
361                 sector += len >> SECTOR_SHIFT;
362         }
363
364 out:
365         bio_endio(bio);
366         return BLK_QC_T_NONE;
367 io_error:
368         bio_io_error(bio);
369         return BLK_QC_T_NONE;
370 }
371
372 static int brd_rw_page(struct block_device *bdev, sector_t sector,
373                        struct page *page, bool is_write)
374 {
375         struct brd_device *brd = bdev->bd_disk->private_data;
376         int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, is_write, sector);
377         page_endio(page, is_write, err);
378         return err;
379 }
380
381 #ifdef CONFIG_BLK_DEV_RAM_DAX
382 static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
383                 long nr_pages, void **kaddr, pfn_t *pfn)
384 {
385         struct page *page;
386
387         if (!brd)
388                 return -ENODEV;
389         page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
390         if (!page)
391                 return -ENOSPC;
392         *kaddr = page_address(page);
393         *pfn = page_to_pfn_t(page);
394
395         return 1;
396 }
397
398 static long brd_dax_direct_access(struct dax_device *dax_dev,
399                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
400 {
401         struct brd_device *brd = dax_get_private(dax_dev);
402
403         return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
404 }
405
406 static const struct dax_operations brd_dax_ops = {
407         .direct_access = brd_dax_direct_access,
408 };
409 #endif
410
411 static const struct block_device_operations brd_fops = {
412         .owner =                THIS_MODULE,
413         .rw_page =              brd_rw_page,
414 };
415
416 /*
417  * And now the modules code and kernel interface.
418  */
419 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
420 module_param(rd_nr, int, S_IRUGO);
421 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
422
423 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
424 module_param(rd_size, ulong, S_IRUGO);
425 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
426
427 static int max_part = 1;
428 module_param(max_part, int, S_IRUGO);
429 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
430
431 MODULE_LICENSE("GPL");
432 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
433 MODULE_ALIAS("rd");
434
435 #ifndef MODULE
436 /* Legacy boot options - nonmodular */
437 static int __init ramdisk_size(char *str)
438 {
439         rd_size = simple_strtol(str, NULL, 0);
440         return 1;
441 }
442 __setup("ramdisk_size=", ramdisk_size);
443 #endif
444
445 /*
446  * The device scheme is derived from loop.c. Keep them in synch where possible
447  * (should share code eventually).
448  */
449 static LIST_HEAD(brd_devices);
450 static DEFINE_MUTEX(brd_devices_mutex);
451
452 static struct brd_device *brd_alloc(int i)
453 {
454         struct brd_device *brd;
455         struct gendisk *disk;
456
457         brd = kzalloc(sizeof(*brd), GFP_KERNEL);
458         if (!brd)
459                 goto out;
460         brd->brd_number         = i;
461         spin_lock_init(&brd->brd_lock);
462         INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
463
464         brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
465         if (!brd->brd_queue)
466                 goto out_free_dev;
467
468         blk_queue_make_request(brd->brd_queue, brd_make_request);
469         blk_queue_max_hw_sectors(brd->brd_queue, 1024);
470         blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
471
472         /* This is so fdisk will align partitions on 4k, because of
473          * direct_access API needing 4k alignment, returning a PFN
474          * (This is only a problem on very small devices <= 4M,
475          *  otherwise fdisk will align on 1M. Regardless this call
476          *  is harmless)
477          */
478         blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
479
480         brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
481         blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX);
482         brd->brd_queue->limits.discard_zeroes_data = 1;
483         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
484         disk = brd->brd_disk = alloc_disk(max_part);
485         if (!disk)
486                 goto out_free_queue;
487         disk->major             = RAMDISK_MAJOR;
488         disk->first_minor       = i * max_part;
489         disk->fops              = &brd_fops;
490         disk->private_data      = brd;
491         disk->queue             = brd->brd_queue;
492         disk->flags             = GENHD_FL_EXT_DEVT;
493         sprintf(disk->disk_name, "ram%d", i);
494         set_capacity(disk, rd_size * 2);
495
496 #ifdef CONFIG_BLK_DEV_RAM_DAX
497         queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
498         brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
499         if (!brd->dax_dev)
500                 goto out_free_inode;
501 #endif
502
503
504         return brd;
505
506 #ifdef CONFIG_BLK_DEV_RAM_DAX
507 out_free_inode:
508         kill_dax(brd->dax_dev);
509         put_dax(brd->dax_dev);
510 #endif
511 out_free_queue:
512         blk_cleanup_queue(brd->brd_queue);
513 out_free_dev:
514         kfree(brd);
515 out:
516         return NULL;
517 }
518
519 static void brd_free(struct brd_device *brd)
520 {
521         put_disk(brd->brd_disk);
522         blk_cleanup_queue(brd->brd_queue);
523         brd_free_pages(brd);
524         kfree(brd);
525 }
526
527 static struct brd_device *brd_init_one(int i, bool *new)
528 {
529         struct brd_device *brd;
530
531         *new = false;
532         list_for_each_entry(brd, &brd_devices, brd_list) {
533                 if (brd->brd_number == i)
534                         goto out;
535         }
536
537         brd = brd_alloc(i);
538         if (brd) {
539                 add_disk(brd->brd_disk);
540                 list_add_tail(&brd->brd_list, &brd_devices);
541         }
542         *new = true;
543 out:
544         return brd;
545 }
546
547 static void brd_del_one(struct brd_device *brd)
548 {
549         list_del(&brd->brd_list);
550 #ifdef CONFIG_BLK_DEV_RAM_DAX
551         kill_dax(brd->dax_dev);
552         put_dax(brd->dax_dev);
553 #endif
554         del_gendisk(brd->brd_disk);
555         brd_free(brd);
556 }
557
558 static struct kobject *brd_probe(dev_t dev, int *part, void *data)
559 {
560         struct brd_device *brd;
561         struct kobject *kobj;
562         bool new;
563
564         mutex_lock(&brd_devices_mutex);
565         brd = brd_init_one(MINOR(dev) / max_part, &new);
566         kobj = brd ? get_disk(brd->brd_disk) : NULL;
567         mutex_unlock(&brd_devices_mutex);
568
569         if (new)
570                 *part = 0;
571
572         return kobj;
573 }
574
575 static int __init brd_init(void)
576 {
577         struct brd_device *brd, *next;
578         int i;
579
580         /*
581          * brd module now has a feature to instantiate underlying device
582          * structure on-demand, provided that there is an access dev node.
583          *
584          * (1) if rd_nr is specified, create that many upfront. else
585          *     it defaults to CONFIG_BLK_DEV_RAM_COUNT
586          * (2) User can further extend brd devices by create dev node themselves
587          *     and have kernel automatically instantiate actual device
588          *     on-demand. Example:
589          *              mknod /path/devnod_name b 1 X   # 1 is the rd major
590          *              fdisk -l /path/devnod_name
591          *      If (X / max_part) was not already created it will be created
592          *      dynamically.
593          */
594
595         if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
596                 return -EIO;
597
598         if (unlikely(!max_part))
599                 max_part = 1;
600
601         for (i = 0; i < rd_nr; i++) {
602                 brd = brd_alloc(i);
603                 if (!brd)
604                         goto out_free;
605                 list_add_tail(&brd->brd_list, &brd_devices);
606         }
607
608         /* point of no return */
609
610         list_for_each_entry(brd, &brd_devices, brd_list)
611                 add_disk(brd->brd_disk);
612
613         blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
614                                   THIS_MODULE, brd_probe, NULL, NULL);
615
616         pr_info("brd: module loaded\n");
617         return 0;
618
619 out_free:
620         list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
621                 list_del(&brd->brd_list);
622                 brd_free(brd);
623         }
624         unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
625
626         pr_info("brd: module NOT loaded !!!\n");
627         return -ENOMEM;
628 }
629
630 static void __exit brd_exit(void)
631 {
632         struct brd_device *brd, *next;
633
634         list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
635                 brd_del_one(brd);
636
637         blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
638         unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
639
640         pr_info("brd: module unloaded\n");
641 }
642
643 module_init(brd_init);
644 module_exit(brd_exit);
645