]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
mtd: maps: rbtx4939-flash: remove unnecessary platform_set_drvdata()
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT   (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62  * An NVM Express queue.  Each device has at least two (one for admin
63  * commands and one for I/O commands).
64  */
65 struct nvme_queue {
66         struct device *q_dmadev;
67         struct nvme_dev *dev;
68         spinlock_t q_lock;
69         struct nvme_command *sq_cmds;
70         volatile struct nvme_completion *cqes;
71         dma_addr_t sq_dma_addr;
72         dma_addr_t cq_dma_addr;
73         wait_queue_head_t sq_full;
74         wait_queue_t sq_cong_wait;
75         struct bio_list sq_cong;
76         u32 __iomem *q_db;
77         u16 q_depth;
78         u16 cq_vector;
79         u16 sq_head;
80         u16 sq_tail;
81         u16 cq_head;
82         u16 cq_phase;
83         unsigned long cmdid_data[];
84 };
85
86 /*
87  * Check we didin't inadvertently grow the command struct
88  */
89 static inline void _nvme_check_size(void)
90 {
91         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102 }
103
104 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105                                                 struct nvme_completion *);
106
107 struct nvme_cmd_info {
108         nvme_completion_fn fn;
109         void *ctx;
110         unsigned long timeout;
111 };
112
113 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114 {
115         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116 }
117
118 /**
119  * alloc_cmdid() - Allocate a Command ID
120  * @nvmeq: The queue that will be used for this command
121  * @ctx: A pointer that will be passed to the handler
122  * @handler: The function to call on completion
123  *
124  * Allocate a Command ID for a queue.  The data passed in will
125  * be passed to the completion handler.  This is implemented by using
126  * the bottom two bits of the ctx pointer to store the handler ID.
127  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128  * We can change this if it becomes a problem.
129  *
130  * May be called with local interrupts disabled and the q_lock held,
131  * or with interrupts enabled and no locks held.
132  */
133 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134                                 nvme_completion_fn handler, unsigned timeout)
135 {
136         int depth = nvmeq->q_depth - 1;
137         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138         int cmdid;
139
140         do {
141                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142                 if (cmdid >= depth)
143                         return -EBUSY;
144         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146         info[cmdid].fn = handler;
147         info[cmdid].ctx = ctx;
148         info[cmdid].timeout = jiffies + timeout;
149         return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153                                 nvme_completion_fn handler, unsigned timeout)
154 {
155         int cmdid;
156         wait_event_killable(nvmeq->sq_full,
157                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158         return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* Special values must be less than 0x1000 */
162 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
163 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
164 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
165 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
166 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
167
168 static void special_completion(struct nvme_dev *dev, void *ctx,
169                                                 struct nvme_completion *cqe)
170 {
171         if (ctx == CMD_CTX_CANCELLED)
172                 return;
173         if (ctx == CMD_CTX_FLUSH)
174                 return;
175         if (ctx == CMD_CTX_COMPLETED) {
176                 dev_warn(&dev->pci_dev->dev,
177                                 "completed id %d twice on queue %d\n",
178                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179                 return;
180         }
181         if (ctx == CMD_CTX_INVALID) {
182                 dev_warn(&dev->pci_dev->dev,
183                                 "invalid id %d completed on queue %d\n",
184                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185                 return;
186         }
187
188         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189 }
190
191 /*
192  * Called with local interrupts disabled and the q_lock held.  May not sleep.
193  */
194 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195                                                 nvme_completion_fn *fn)
196 {
197         void *ctx;
198         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200         if (cmdid >= nvmeq->q_depth) {
201                 *fn = special_completion;
202                 return CMD_CTX_INVALID;
203         }
204         if (fn)
205                 *fn = info[cmdid].fn;
206         ctx = info[cmdid].ctx;
207         info[cmdid].fn = special_completion;
208         info[cmdid].ctx = CMD_CTX_COMPLETED;
209         clear_bit(cmdid, nvmeq->cmdid_data);
210         wake_up(&nvmeq->sq_full);
211         return ctx;
212 }
213
214 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215                                                 nvme_completion_fn *fn)
216 {
217         void *ctx;
218         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219         if (fn)
220                 *fn = info[cmdid].fn;
221         ctx = info[cmdid].ctx;
222         info[cmdid].fn = special_completion;
223         info[cmdid].ctx = CMD_CTX_CANCELLED;
224         return ctx;
225 }
226
227 struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228 {
229         return dev->queues[get_cpu() + 1];
230 }
231
232 void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234         put_cpu();
235 }
236
237 /**
238  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239  * @nvmeq: The queue to use
240  * @cmd: The command to send
241  *
242  * Safe to use from interrupt context
243  */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246         unsigned long flags;
247         u16 tail;
248         spin_lock_irqsave(&nvmeq->q_lock, flags);
249         tail = nvmeq->sq_tail;
250         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251         if (++tail == nvmeq->q_depth)
252                 tail = 0;
253         writel(tail, nvmeq->q_db);
254         nvmeq->sq_tail = tail;
255         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257         return 0;
258 }
259
260 static __le64 **iod_list(struct nvme_iod *iod)
261 {
262         return ((void *)iod) + iod->offset;
263 }
264
265 /*
266  * Will slightly overestimate the number of pages needed.  This is OK
267  * as it only leads to a small amount of wasted memory for the lifetime of
268  * the I/O.
269  */
270 static int nvme_npages(unsigned size)
271 {
272         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274 }
275
276 static struct nvme_iod *
277 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278 {
279         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280                                 sizeof(__le64 *) * nvme_npages(nbytes) +
281                                 sizeof(struct scatterlist) * nseg, gfp);
282
283         if (iod) {
284                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285                 iod->npages = -1;
286                 iod->length = nbytes;
287                 iod->nents = 0;
288         }
289
290         return iod;
291 }
292
293 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
294 {
295         const int last_prp = PAGE_SIZE / 8 - 1;
296         int i;
297         __le64 **list = iod_list(iod);
298         dma_addr_t prp_dma = iod->first_dma;
299
300         if (iod->npages == 0)
301                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
302         for (i = 0; i < iod->npages; i++) {
303                 __le64 *prp_list = list[i];
304                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
305                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
306                 prp_dma = next_prp_dma;
307         }
308         kfree(iod);
309 }
310
311 static void bio_completion(struct nvme_dev *dev, void *ctx,
312                                                 struct nvme_completion *cqe)
313 {
314         struct nvme_iod *iod = ctx;
315         struct bio *bio = iod->private;
316         u16 status = le16_to_cpup(&cqe->status) >> 1;
317
318         if (iod->nents)
319                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
320                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
321         nvme_free_iod(dev, iod);
322         if (status)
323                 bio_endio(bio, -EIO);
324         else
325                 bio_endio(bio, 0);
326 }
327
328 /* length is in bytes.  gfp flags indicates whether we may sleep. */
329 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
330                         struct nvme_iod *iod, int total_len, gfp_t gfp)
331 {
332         struct dma_pool *pool;
333         int length = total_len;
334         struct scatterlist *sg = iod->sg;
335         int dma_len = sg_dma_len(sg);
336         u64 dma_addr = sg_dma_address(sg);
337         int offset = offset_in_page(dma_addr);
338         __le64 *prp_list;
339         __le64 **list = iod_list(iod);
340         dma_addr_t prp_dma;
341         int nprps, i;
342
343         cmd->prp1 = cpu_to_le64(dma_addr);
344         length -= (PAGE_SIZE - offset);
345         if (length <= 0)
346                 return total_len;
347
348         dma_len -= (PAGE_SIZE - offset);
349         if (dma_len) {
350                 dma_addr += (PAGE_SIZE - offset);
351         } else {
352                 sg = sg_next(sg);
353                 dma_addr = sg_dma_address(sg);
354                 dma_len = sg_dma_len(sg);
355         }
356
357         if (length <= PAGE_SIZE) {
358                 cmd->prp2 = cpu_to_le64(dma_addr);
359                 return total_len;
360         }
361
362         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
363         if (nprps <= (256 / 8)) {
364                 pool = dev->prp_small_pool;
365                 iod->npages = 0;
366         } else {
367                 pool = dev->prp_page_pool;
368                 iod->npages = 1;
369         }
370
371         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
372         if (!prp_list) {
373                 cmd->prp2 = cpu_to_le64(dma_addr);
374                 iod->npages = -1;
375                 return (total_len - length) + PAGE_SIZE;
376         }
377         list[0] = prp_list;
378         iod->first_dma = prp_dma;
379         cmd->prp2 = cpu_to_le64(prp_dma);
380         i = 0;
381         for (;;) {
382                 if (i == PAGE_SIZE / 8) {
383                         __le64 *old_prp_list = prp_list;
384                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
385                         if (!prp_list)
386                                 return total_len - length;
387                         list[iod->npages++] = prp_list;
388                         prp_list[0] = old_prp_list[i - 1];
389                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
390                         i = 1;
391                 }
392                 prp_list[i++] = cpu_to_le64(dma_addr);
393                 dma_len -= PAGE_SIZE;
394                 dma_addr += PAGE_SIZE;
395                 length -= PAGE_SIZE;
396                 if (length <= 0)
397                         break;
398                 if (dma_len > 0)
399                         continue;
400                 BUG_ON(dma_len < 0);
401                 sg = sg_next(sg);
402                 dma_addr = sg_dma_address(sg);
403                 dma_len = sg_dma_len(sg);
404         }
405
406         return total_len;
407 }
408
409 struct nvme_bio_pair {
410         struct bio b1, b2, *parent;
411         struct bio_vec *bv1, *bv2;
412         int err;
413         atomic_t cnt;
414 };
415
416 static void nvme_bio_pair_endio(struct bio *bio, int err)
417 {
418         struct nvme_bio_pair *bp = bio->bi_private;
419
420         if (err)
421                 bp->err = err;
422
423         if (atomic_dec_and_test(&bp->cnt)) {
424                 bio_endio(bp->parent, bp->err);
425                 if (bp->bv1)
426                         kfree(bp->bv1);
427                 if (bp->bv2)
428                         kfree(bp->bv2);
429                 kfree(bp);
430         }
431 }
432
433 static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
434                                                         int len, int offset)
435 {
436         struct nvme_bio_pair *bp;
437
438         BUG_ON(len > bio->bi_size);
439         BUG_ON(idx > bio->bi_vcnt);
440
441         bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
442         if (!bp)
443                 return NULL;
444         bp->err = 0;
445
446         bp->b1 = *bio;
447         bp->b2 = *bio;
448
449         bp->b1.bi_size = len;
450         bp->b2.bi_size -= len;
451         bp->b1.bi_vcnt = idx;
452         bp->b2.bi_idx = idx;
453         bp->b2.bi_sector += len >> 9;
454
455         if (offset) {
456                 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
457                                                                 GFP_ATOMIC);
458                 if (!bp->bv1)
459                         goto split_fail_1;
460
461                 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
462                                                                 GFP_ATOMIC);
463                 if (!bp->bv2)
464                         goto split_fail_2;
465
466                 memcpy(bp->bv1, bio->bi_io_vec,
467                         bio->bi_max_vecs * sizeof(struct bio_vec));
468                 memcpy(bp->bv2, bio->bi_io_vec,
469                         bio->bi_max_vecs * sizeof(struct bio_vec));
470
471                 bp->b1.bi_io_vec = bp->bv1;
472                 bp->b2.bi_io_vec = bp->bv2;
473                 bp->b2.bi_io_vec[idx].bv_offset += offset;
474                 bp->b2.bi_io_vec[idx].bv_len -= offset;
475                 bp->b1.bi_io_vec[idx].bv_len = offset;
476                 bp->b1.bi_vcnt++;
477         } else
478                 bp->bv1 = bp->bv2 = NULL;
479
480         bp->b1.bi_private = bp;
481         bp->b2.bi_private = bp;
482
483         bp->b1.bi_end_io = nvme_bio_pair_endio;
484         bp->b2.bi_end_io = nvme_bio_pair_endio;
485
486         bp->parent = bio;
487         atomic_set(&bp->cnt, 2);
488
489         return bp;
490
491  split_fail_2:
492         kfree(bp->bv1);
493  split_fail_1:
494         kfree(bp);
495         return NULL;
496 }
497
498 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
499                                                 int idx, int len, int offset)
500 {
501         struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
502         if (!bp)
503                 return -ENOMEM;
504
505         if (bio_list_empty(&nvmeq->sq_cong))
506                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
507         bio_list_add(&nvmeq->sq_cong, &bp->b1);
508         bio_list_add(&nvmeq->sq_cong, &bp->b2);
509
510         return 0;
511 }
512
513 /* NVMe scatterlists require no holes in the virtual address */
514 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
515                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
516
517 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
518                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
519 {
520         struct bio_vec *bvec, *bvprv = NULL;
521         struct scatterlist *sg = NULL;
522         int i, length = 0, nsegs = 0, split_len = bio->bi_size;
523
524         if (nvmeq->dev->stripe_size)
525                 split_len = nvmeq->dev->stripe_size -
526                         ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
527
528         sg_init_table(iod->sg, psegs);
529         bio_for_each_segment(bvec, bio, i) {
530                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
531                         sg->length += bvec->bv_len;
532                 } else {
533                         if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
534                                 return nvme_split_and_submit(bio, nvmeq, i,
535                                                                 length, 0);
536
537                         sg = sg ? sg + 1 : iod->sg;
538                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
539                                                         bvec->bv_offset);
540                         nsegs++;
541                 }
542
543                 if (split_len - length < bvec->bv_len)
544                         return nvme_split_and_submit(bio, nvmeq, i, split_len,
545                                                         split_len - length);
546                 length += bvec->bv_len;
547                 bvprv = bvec;
548         }
549         iod->nents = nsegs;
550         sg_mark_end(sg);
551         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
552                 return -ENOMEM;
553
554         BUG_ON(length != bio->bi_size);
555         return length;
556 }
557
558 /*
559  * We reuse the small pool to allocate the 16-byte range here as it is not
560  * worth having a special pool for these or additional cases to handle freeing
561  * the iod.
562  */
563 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
564                 struct bio *bio, struct nvme_iod *iod, int cmdid)
565 {
566         struct nvme_dsm_range *range;
567         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
568
569         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
570                                                         &iod->first_dma);
571         if (!range)
572                 return -ENOMEM;
573
574         iod_list(iod)[0] = (__le64 *)range;
575         iod->npages = 0;
576
577         range->cattr = cpu_to_le32(0);
578         range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
579         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
580
581         memset(cmnd, 0, sizeof(*cmnd));
582         cmnd->dsm.opcode = nvme_cmd_dsm;
583         cmnd->dsm.command_id = cmdid;
584         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
585         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
586         cmnd->dsm.nr = 0;
587         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
588
589         if (++nvmeq->sq_tail == nvmeq->q_depth)
590                 nvmeq->sq_tail = 0;
591         writel(nvmeq->sq_tail, nvmeq->q_db);
592
593         return 0;
594 }
595
596 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
597                                                                 int cmdid)
598 {
599         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
600
601         memset(cmnd, 0, sizeof(*cmnd));
602         cmnd->common.opcode = nvme_cmd_flush;
603         cmnd->common.command_id = cmdid;
604         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
605
606         if (++nvmeq->sq_tail == nvmeq->q_depth)
607                 nvmeq->sq_tail = 0;
608         writel(nvmeq->sq_tail, nvmeq->q_db);
609
610         return 0;
611 }
612
613 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
614 {
615         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
616                                         special_completion, NVME_IO_TIMEOUT);
617         if (unlikely(cmdid < 0))
618                 return cmdid;
619
620         return nvme_submit_flush(nvmeq, ns, cmdid);
621 }
622
623 /*
624  * Called with local interrupts disabled and the q_lock held.  May not sleep.
625  */
626 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
627                                                                 struct bio *bio)
628 {
629         struct nvme_command *cmnd;
630         struct nvme_iod *iod;
631         enum dma_data_direction dma_dir;
632         int cmdid, length, result;
633         u16 control;
634         u32 dsmgmt;
635         int psegs = bio_phys_segments(ns->queue, bio);
636
637         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
638                 result = nvme_submit_flush_data(nvmeq, ns);
639                 if (result)
640                         return result;
641         }
642
643         result = -ENOMEM;
644         iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
645         if (!iod)
646                 goto nomem;
647         iod->private = bio;
648
649         result = -EBUSY;
650         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
651         if (unlikely(cmdid < 0))
652                 goto free_iod;
653
654         if (bio->bi_rw & REQ_DISCARD) {
655                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
656                 if (result)
657                         goto free_cmdid;
658                 return result;
659         }
660         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
661                 return nvme_submit_flush(nvmeq, ns, cmdid);
662
663         control = 0;
664         if (bio->bi_rw & REQ_FUA)
665                 control |= NVME_RW_FUA;
666         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
667                 control |= NVME_RW_LR;
668
669         dsmgmt = 0;
670         if (bio->bi_rw & REQ_RAHEAD)
671                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
672
673         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
674
675         memset(cmnd, 0, sizeof(*cmnd));
676         if (bio_data_dir(bio)) {
677                 cmnd->rw.opcode = nvme_cmd_write;
678                 dma_dir = DMA_TO_DEVICE;
679         } else {
680                 cmnd->rw.opcode = nvme_cmd_read;
681                 dma_dir = DMA_FROM_DEVICE;
682         }
683
684         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
685         if (result <= 0)
686                 goto free_cmdid;
687         length = result;
688
689         cmnd->rw.command_id = cmdid;
690         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
691         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
692                                                                 GFP_ATOMIC);
693         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
694         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
695         cmnd->rw.control = cpu_to_le16(control);
696         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
697
698         if (++nvmeq->sq_tail == nvmeq->q_depth)
699                 nvmeq->sq_tail = 0;
700         writel(nvmeq->sq_tail, nvmeq->q_db);
701
702         return 0;
703
704  free_cmdid:
705         free_cmdid(nvmeq, cmdid, NULL);
706  free_iod:
707         nvme_free_iod(nvmeq->dev, iod);
708  nomem:
709         return result;
710 }
711
712 static void nvme_make_request(struct request_queue *q, struct bio *bio)
713 {
714         struct nvme_ns *ns = q->queuedata;
715         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
716         int result = -EBUSY;
717
718         spin_lock_irq(&nvmeq->q_lock);
719         if (bio_list_empty(&nvmeq->sq_cong))
720                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
721         if (unlikely(result)) {
722                 if (bio_list_empty(&nvmeq->sq_cong))
723                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
724                 bio_list_add(&nvmeq->sq_cong, bio);
725         }
726
727         spin_unlock_irq(&nvmeq->q_lock);
728         put_nvmeq(nvmeq);
729 }
730
731 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
732 {
733         u16 head, phase;
734
735         head = nvmeq->cq_head;
736         phase = nvmeq->cq_phase;
737
738         for (;;) {
739                 void *ctx;
740                 nvme_completion_fn fn;
741                 struct nvme_completion cqe = nvmeq->cqes[head];
742                 if ((le16_to_cpu(cqe.status) & 1) != phase)
743                         break;
744                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
745                 if (++head == nvmeq->q_depth) {
746                         head = 0;
747                         phase = !phase;
748                 }
749
750                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
751                 fn(nvmeq->dev, ctx, &cqe);
752         }
753
754         /* If the controller ignores the cq head doorbell and continuously
755          * writes to the queue, it is theoretically possible to wrap around
756          * the queue twice and mistakenly return IRQ_NONE.  Linux only
757          * requires that 0.1% of your interrupts are handled, so this isn't
758          * a big problem.
759          */
760         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
761                 return IRQ_NONE;
762
763         writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
764         nvmeq->cq_head = head;
765         nvmeq->cq_phase = phase;
766
767         return IRQ_HANDLED;
768 }
769
770 static irqreturn_t nvme_irq(int irq, void *data)
771 {
772         irqreturn_t result;
773         struct nvme_queue *nvmeq = data;
774         spin_lock(&nvmeq->q_lock);
775         result = nvme_process_cq(nvmeq);
776         spin_unlock(&nvmeq->q_lock);
777         return result;
778 }
779
780 static irqreturn_t nvme_irq_check(int irq, void *data)
781 {
782         struct nvme_queue *nvmeq = data;
783         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
784         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
785                 return IRQ_NONE;
786         return IRQ_WAKE_THREAD;
787 }
788
789 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
790 {
791         spin_lock_irq(&nvmeq->q_lock);
792         cancel_cmdid(nvmeq, cmdid, NULL);
793         spin_unlock_irq(&nvmeq->q_lock);
794 }
795
796 struct sync_cmd_info {
797         struct task_struct *task;
798         u32 result;
799         int status;
800 };
801
802 static void sync_completion(struct nvme_dev *dev, void *ctx,
803                                                 struct nvme_completion *cqe)
804 {
805         struct sync_cmd_info *cmdinfo = ctx;
806         cmdinfo->result = le32_to_cpup(&cqe->result);
807         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
808         wake_up_process(cmdinfo->task);
809 }
810
811 /*
812  * Returns 0 on success.  If the result is negative, it's a Linux error code;
813  * if the result is positive, it's an NVM Express status code
814  */
815 int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
816                                                 u32 *result, unsigned timeout)
817 {
818         int cmdid;
819         struct sync_cmd_info cmdinfo;
820
821         cmdinfo.task = current;
822         cmdinfo.status = -EINTR;
823
824         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
825                                                                 timeout);
826         if (cmdid < 0)
827                 return cmdid;
828         cmd->common.command_id = cmdid;
829
830         set_current_state(TASK_KILLABLE);
831         nvme_submit_cmd(nvmeq, cmd);
832         schedule_timeout(timeout);
833
834         if (cmdinfo.status == -EINTR) {
835                 nvme_abort_command(nvmeq, cmdid);
836                 return -EINTR;
837         }
838
839         if (result)
840                 *result = cmdinfo.result;
841
842         return cmdinfo.status;
843 }
844
845 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
846                                                                 u32 *result)
847 {
848         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
849 }
850
851 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
852 {
853         int status;
854         struct nvme_command c;
855
856         memset(&c, 0, sizeof(c));
857         c.delete_queue.opcode = opcode;
858         c.delete_queue.qid = cpu_to_le16(id);
859
860         status = nvme_submit_admin_cmd(dev, &c, NULL);
861         if (status)
862                 return -EIO;
863         return 0;
864 }
865
866 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
867                                                 struct nvme_queue *nvmeq)
868 {
869         int status;
870         struct nvme_command c;
871         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
872
873         memset(&c, 0, sizeof(c));
874         c.create_cq.opcode = nvme_admin_create_cq;
875         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
876         c.create_cq.cqid = cpu_to_le16(qid);
877         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
878         c.create_cq.cq_flags = cpu_to_le16(flags);
879         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
880
881         status = nvme_submit_admin_cmd(dev, &c, NULL);
882         if (status)
883                 return -EIO;
884         return 0;
885 }
886
887 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
888                                                 struct nvme_queue *nvmeq)
889 {
890         int status;
891         struct nvme_command c;
892         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
893
894         memset(&c, 0, sizeof(c));
895         c.create_sq.opcode = nvme_admin_create_sq;
896         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
897         c.create_sq.sqid = cpu_to_le16(qid);
898         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
899         c.create_sq.sq_flags = cpu_to_le16(flags);
900         c.create_sq.cqid = cpu_to_le16(qid);
901
902         status = nvme_submit_admin_cmd(dev, &c, NULL);
903         if (status)
904                 return -EIO;
905         return 0;
906 }
907
908 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
909 {
910         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
911 }
912
913 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
914 {
915         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
916 }
917
918 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
919                                                         dma_addr_t dma_addr)
920 {
921         struct nvme_command c;
922
923         memset(&c, 0, sizeof(c));
924         c.identify.opcode = nvme_admin_identify;
925         c.identify.nsid = cpu_to_le32(nsid);
926         c.identify.prp1 = cpu_to_le64(dma_addr);
927         c.identify.cns = cpu_to_le32(cns);
928
929         return nvme_submit_admin_cmd(dev, &c, NULL);
930 }
931
932 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
933                                         dma_addr_t dma_addr, u32 *result)
934 {
935         struct nvme_command c;
936
937         memset(&c, 0, sizeof(c));
938         c.features.opcode = nvme_admin_get_features;
939         c.features.nsid = cpu_to_le32(nsid);
940         c.features.prp1 = cpu_to_le64(dma_addr);
941         c.features.fid = cpu_to_le32(fid);
942
943         return nvme_submit_admin_cmd(dev, &c, result);
944 }
945
946 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
947                                         dma_addr_t dma_addr, u32 *result)
948 {
949         struct nvme_command c;
950
951         memset(&c, 0, sizeof(c));
952         c.features.opcode = nvme_admin_set_features;
953         c.features.prp1 = cpu_to_le64(dma_addr);
954         c.features.fid = cpu_to_le32(fid);
955         c.features.dword11 = cpu_to_le32(dword11);
956
957         return nvme_submit_admin_cmd(dev, &c, result);
958 }
959
960 /**
961  * nvme_cancel_ios - Cancel outstanding I/Os
962  * @queue: The queue to cancel I/Os on
963  * @timeout: True to only cancel I/Os which have timed out
964  */
965 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
966 {
967         int depth = nvmeq->q_depth - 1;
968         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
969         unsigned long now = jiffies;
970         int cmdid;
971
972         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
973                 void *ctx;
974                 nvme_completion_fn fn;
975                 static struct nvme_completion cqe = {
976                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
977                 };
978
979                 if (timeout && !time_after(now, info[cmdid].timeout))
980                         continue;
981                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
982                         continue;
983                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
984                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
985                 fn(nvmeq->dev, ctx, &cqe);
986         }
987 }
988
989 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
990 {
991         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
992                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
993         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
994                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
995         kfree(nvmeq);
996 }
997
998 static void nvme_free_queue(struct nvme_dev *dev, int qid)
999 {
1000         struct nvme_queue *nvmeq = dev->queues[qid];
1001         int vector = dev->entry[nvmeq->cq_vector].vector;
1002
1003         spin_lock_irq(&nvmeq->q_lock);
1004         nvme_cancel_ios(nvmeq, false);
1005         while (bio_list_peek(&nvmeq->sq_cong)) {
1006                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1007                 bio_endio(bio, -EIO);
1008         }
1009         spin_unlock_irq(&nvmeq->q_lock);
1010
1011         irq_set_affinity_hint(vector, NULL);
1012         free_irq(vector, nvmeq);
1013
1014         /* Don't tell the adapter to delete the admin queue */
1015         if (qid) {
1016                 adapter_delete_sq(dev, qid);
1017                 adapter_delete_cq(dev, qid);
1018         }
1019
1020         nvme_free_queue_mem(nvmeq);
1021 }
1022
1023 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1024                                                         int depth, int vector)
1025 {
1026         struct device *dmadev = &dev->pci_dev->dev;
1027         unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1028                                                 sizeof(struct nvme_cmd_info));
1029         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1030         if (!nvmeq)
1031                 return NULL;
1032
1033         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1034                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1035         if (!nvmeq->cqes)
1036                 goto free_nvmeq;
1037         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1038
1039         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1040                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1041         if (!nvmeq->sq_cmds)
1042                 goto free_cqdma;
1043
1044         nvmeq->q_dmadev = dmadev;
1045         nvmeq->dev = dev;
1046         spin_lock_init(&nvmeq->q_lock);
1047         nvmeq->cq_head = 0;
1048         nvmeq->cq_phase = 1;
1049         init_waitqueue_head(&nvmeq->sq_full);
1050         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1051         bio_list_init(&nvmeq->sq_cong);
1052         nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1053         nvmeq->q_depth = depth;
1054         nvmeq->cq_vector = vector;
1055
1056         return nvmeq;
1057
1058  free_cqdma:
1059         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1060                                                         nvmeq->cq_dma_addr);
1061  free_nvmeq:
1062         kfree(nvmeq);
1063         return NULL;
1064 }
1065
1066 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1067                                                         const char *name)
1068 {
1069         if (use_threaded_interrupts)
1070                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1071                                         nvme_irq_check, nvme_irq,
1072                                         IRQF_DISABLED | IRQF_SHARED,
1073                                         name, nvmeq);
1074         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1075                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1076 }
1077
1078 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1079                                             int cq_size, int vector)
1080 {
1081         int result;
1082         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1083
1084         if (!nvmeq)
1085                 return ERR_PTR(-ENOMEM);
1086
1087         result = adapter_alloc_cq(dev, qid, nvmeq);
1088         if (result < 0)
1089                 goto free_nvmeq;
1090
1091         result = adapter_alloc_sq(dev, qid, nvmeq);
1092         if (result < 0)
1093                 goto release_cq;
1094
1095         result = queue_request_irq(dev, nvmeq, "nvme");
1096         if (result < 0)
1097                 goto release_sq;
1098
1099         return nvmeq;
1100
1101  release_sq:
1102         adapter_delete_sq(dev, qid);
1103  release_cq:
1104         adapter_delete_cq(dev, qid);
1105  free_nvmeq:
1106         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1107                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1108         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1109                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1110         kfree(nvmeq);
1111         return ERR_PTR(result);
1112 }
1113
1114 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1115 {
1116         unsigned long timeout;
1117         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1118
1119         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1120
1121         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1122                 msleep(100);
1123                 if (fatal_signal_pending(current))
1124                         return -EINTR;
1125                 if (time_after(jiffies, timeout)) {
1126                         dev_err(&dev->pci_dev->dev,
1127                                 "Device not ready; aborting initialisation\n");
1128                         return -ENODEV;
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 /*
1136  * If the device has been passed off to us in an enabled state, just clear
1137  * the enabled bit.  The spec says we should set the 'shutdown notification
1138  * bits', but doing so may cause the device to complete commands to the
1139  * admin queue ... and we don't know what memory that might be pointing at!
1140  */
1141 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1142 {
1143         u32 cc = readl(&dev->bar->cc);
1144
1145         if (cc & NVME_CC_ENABLE)
1146                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1147         return nvme_wait_ready(dev, cap, false);
1148 }
1149
1150 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1151 {
1152         return nvme_wait_ready(dev, cap, true);
1153 }
1154
1155 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1156 {
1157         int result;
1158         u32 aqa;
1159         u64 cap = readq(&dev->bar->cap);
1160         struct nvme_queue *nvmeq;
1161
1162         dev->dbs = ((void __iomem *)dev->bar) + 4096;
1163         dev->db_stride = NVME_CAP_STRIDE(cap);
1164
1165         result = nvme_disable_ctrl(dev, cap);
1166         if (result < 0)
1167                 return result;
1168
1169         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1170         if (!nvmeq)
1171                 return -ENOMEM;
1172
1173         aqa = nvmeq->q_depth - 1;
1174         aqa |= aqa << 16;
1175
1176         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1177         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1178         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1179         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1180
1181         writel(aqa, &dev->bar->aqa);
1182         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1183         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1184         writel(dev->ctrl_config, &dev->bar->cc);
1185
1186         result = nvme_enable_ctrl(dev, cap);
1187         if (result)
1188                 goto free_q;
1189
1190         result = queue_request_irq(dev, nvmeq, "nvme admin");
1191         if (result)
1192                 goto free_q;
1193
1194         dev->queues[0] = nvmeq;
1195         return result;
1196
1197  free_q:
1198         nvme_free_queue_mem(nvmeq);
1199         return result;
1200 }
1201
1202 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1203                                 unsigned long addr, unsigned length)
1204 {
1205         int i, err, count, nents, offset;
1206         struct scatterlist *sg;
1207         struct page **pages;
1208         struct nvme_iod *iod;
1209
1210         if (addr & 3)
1211                 return ERR_PTR(-EINVAL);
1212         if (!length || length > INT_MAX - PAGE_SIZE)
1213                 return ERR_PTR(-EINVAL);
1214
1215         offset = offset_in_page(addr);
1216         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1217         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1218         if (!pages)
1219                 return ERR_PTR(-ENOMEM);
1220
1221         err = get_user_pages_fast(addr, count, 1, pages);
1222         if (err < count) {
1223                 count = err;
1224                 err = -EFAULT;
1225                 goto put_pages;
1226         }
1227
1228         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1229         sg = iod->sg;
1230         sg_init_table(sg, count);
1231         for (i = 0; i < count; i++) {
1232                 sg_set_page(&sg[i], pages[i],
1233                             min_t(unsigned, length, PAGE_SIZE - offset),
1234                             offset);
1235                 length -= (PAGE_SIZE - offset);
1236                 offset = 0;
1237         }
1238         sg_mark_end(&sg[i - 1]);
1239         iod->nents = count;
1240
1241         err = -ENOMEM;
1242         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1243                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1244         if (!nents)
1245                 goto free_iod;
1246
1247         kfree(pages);
1248         return iod;
1249
1250  free_iod:
1251         kfree(iod);
1252  put_pages:
1253         for (i = 0; i < count; i++)
1254                 put_page(pages[i]);
1255         kfree(pages);
1256         return ERR_PTR(err);
1257 }
1258
1259 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1260                         struct nvme_iod *iod)
1261 {
1262         int i;
1263
1264         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1265                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1266
1267         for (i = 0; i < iod->nents; i++)
1268                 put_page(sg_page(&iod->sg[i]));
1269 }
1270
1271 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1272 {
1273         struct nvme_dev *dev = ns->dev;
1274         struct nvme_queue *nvmeq;
1275         struct nvme_user_io io;
1276         struct nvme_command c;
1277         unsigned length, meta_len;
1278         int status, i;
1279         struct nvme_iod *iod, *meta_iod = NULL;
1280         dma_addr_t meta_dma_addr;
1281         void *meta, *uninitialized_var(meta_mem);
1282
1283         if (copy_from_user(&io, uio, sizeof(io)))
1284                 return -EFAULT;
1285         length = (io.nblocks + 1) << ns->lba_shift;
1286         meta_len = (io.nblocks + 1) * ns->ms;
1287
1288         if (meta_len && ((io.metadata & 3) || !io.metadata))
1289                 return -EINVAL;
1290
1291         switch (io.opcode) {
1292         case nvme_cmd_write:
1293         case nvme_cmd_read:
1294         case nvme_cmd_compare:
1295                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1296                 break;
1297         default:
1298                 return -EINVAL;
1299         }
1300
1301         if (IS_ERR(iod))
1302                 return PTR_ERR(iod);
1303
1304         memset(&c, 0, sizeof(c));
1305         c.rw.opcode = io.opcode;
1306         c.rw.flags = io.flags;
1307         c.rw.nsid = cpu_to_le32(ns->ns_id);
1308         c.rw.slba = cpu_to_le64(io.slba);
1309         c.rw.length = cpu_to_le16(io.nblocks);
1310         c.rw.control = cpu_to_le16(io.control);
1311         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1312         c.rw.reftag = cpu_to_le32(io.reftag);
1313         c.rw.apptag = cpu_to_le16(io.apptag);
1314         c.rw.appmask = cpu_to_le16(io.appmask);
1315
1316         if (meta_len) {
1317                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1318                 if (IS_ERR(meta_iod)) {
1319                         status = PTR_ERR(meta_iod);
1320                         meta_iod = NULL;
1321                         goto unmap;
1322                 }
1323
1324                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1325                                                 &meta_dma_addr, GFP_KERNEL);
1326                 if (!meta_mem) {
1327                         status = -ENOMEM;
1328                         goto unmap;
1329                 }
1330
1331                 if (io.opcode & 1) {
1332                         int meta_offset = 0;
1333
1334                         for (i = 0; i < meta_iod->nents; i++) {
1335                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1336                                                 meta_iod->sg[i].offset;
1337                                 memcpy(meta_mem + meta_offset, meta,
1338                                                 meta_iod->sg[i].length);
1339                                 kunmap_atomic(meta);
1340                                 meta_offset += meta_iod->sg[i].length;
1341                         }
1342                 }
1343
1344                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1345         }
1346
1347         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1348
1349         nvmeq = get_nvmeq(dev);
1350         /*
1351          * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1352          * disabled.  We may be preempted at any point, and be rescheduled
1353          * to a different CPU.  That will cause cacheline bouncing, but no
1354          * additional races since q_lock already protects against other CPUs.
1355          */
1356         put_nvmeq(nvmeq);
1357         if (length != (io.nblocks + 1) << ns->lba_shift)
1358                 status = -ENOMEM;
1359         else
1360                 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1361
1362         if (meta_len) {
1363                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1364                         int meta_offset = 0;
1365
1366                         for (i = 0; i < meta_iod->nents; i++) {
1367                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1368                                                 meta_iod->sg[i].offset;
1369                                 memcpy(meta, meta_mem + meta_offset,
1370                                                 meta_iod->sg[i].length);
1371                                 kunmap_atomic(meta);
1372                                 meta_offset += meta_iod->sg[i].length;
1373                         }
1374                 }
1375
1376                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1377                                                                 meta_dma_addr);
1378         }
1379
1380  unmap:
1381         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1382         nvme_free_iod(dev, iod);
1383
1384         if (meta_iod) {
1385                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1386                 nvme_free_iod(dev, meta_iod);
1387         }
1388
1389         return status;
1390 }
1391
1392 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1393                                         struct nvme_admin_cmd __user *ucmd)
1394 {
1395         struct nvme_admin_cmd cmd;
1396         struct nvme_command c;
1397         int status, length;
1398         struct nvme_iod *uninitialized_var(iod);
1399         unsigned timeout;
1400
1401         if (!capable(CAP_SYS_ADMIN))
1402                 return -EACCES;
1403         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1404                 return -EFAULT;
1405
1406         memset(&c, 0, sizeof(c));
1407         c.common.opcode = cmd.opcode;
1408         c.common.flags = cmd.flags;
1409         c.common.nsid = cpu_to_le32(cmd.nsid);
1410         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1411         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1412         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1413         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1414         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1415         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1416         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1417         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1418
1419         length = cmd.data_len;
1420         if (cmd.data_len) {
1421                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1422                                                                 length);
1423                 if (IS_ERR(iod))
1424                         return PTR_ERR(iod);
1425                 length = nvme_setup_prps(dev, &c.common, iod, length,
1426                                                                 GFP_KERNEL);
1427         }
1428
1429         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1430                                                                 ADMIN_TIMEOUT;
1431         if (length != cmd.data_len)
1432                 status = -ENOMEM;
1433         else
1434                 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1435                                                                 timeout);
1436
1437         if (cmd.data_len) {
1438                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1439                 nvme_free_iod(dev, iod);
1440         }
1441
1442         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1443                                                         sizeof(cmd.result)))
1444                 status = -EFAULT;
1445
1446         return status;
1447 }
1448
1449 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1450                                                         unsigned long arg)
1451 {
1452         struct nvme_ns *ns = bdev->bd_disk->private_data;
1453
1454         switch (cmd) {
1455         case NVME_IOCTL_ID:
1456                 return ns->ns_id;
1457         case NVME_IOCTL_ADMIN_CMD:
1458                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1459         case NVME_IOCTL_SUBMIT_IO:
1460                 return nvme_submit_io(ns, (void __user *)arg);
1461         case SG_GET_VERSION_NUM:
1462                 return nvme_sg_get_version_num((void __user *)arg);
1463         case SG_IO:
1464                 return nvme_sg_io(ns, (void __user *)arg);
1465         default:
1466                 return -ENOTTY;
1467         }
1468 }
1469
1470 static const struct block_device_operations nvme_fops = {
1471         .owner          = THIS_MODULE,
1472         .ioctl          = nvme_ioctl,
1473         .compat_ioctl   = nvme_ioctl,
1474 };
1475
1476 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1477 {
1478         while (bio_list_peek(&nvmeq->sq_cong)) {
1479                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1480                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1481
1482                 if (bio_list_empty(&nvmeq->sq_cong))
1483                         remove_wait_queue(&nvmeq->sq_full,
1484                                                         &nvmeq->sq_cong_wait);
1485                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1486                         if (bio_list_empty(&nvmeq->sq_cong))
1487                                 add_wait_queue(&nvmeq->sq_full,
1488                                                         &nvmeq->sq_cong_wait);
1489                         bio_list_add_head(&nvmeq->sq_cong, bio);
1490                         break;
1491                 }
1492         }
1493 }
1494
1495 static int nvme_kthread(void *data)
1496 {
1497         struct nvme_dev *dev;
1498
1499         while (!kthread_should_stop()) {
1500                 set_current_state(TASK_INTERRUPTIBLE);
1501                 spin_lock(&dev_list_lock);
1502                 list_for_each_entry(dev, &dev_list, node) {
1503                         int i;
1504                         for (i = 0; i < dev->queue_count; i++) {
1505                                 struct nvme_queue *nvmeq = dev->queues[i];
1506                                 if (!nvmeq)
1507                                         continue;
1508                                 spin_lock_irq(&nvmeq->q_lock);
1509                                 if (nvme_process_cq(nvmeq))
1510                                         printk("process_cq did something\n");
1511                                 nvme_cancel_ios(nvmeq, true);
1512                                 nvme_resubmit_bios(nvmeq);
1513                                 spin_unlock_irq(&nvmeq->q_lock);
1514                         }
1515                 }
1516                 spin_unlock(&dev_list_lock);
1517                 schedule_timeout(round_jiffies_relative(HZ));
1518         }
1519         return 0;
1520 }
1521
1522 static DEFINE_IDA(nvme_index_ida);
1523
1524 static int nvme_get_ns_idx(void)
1525 {
1526         int index, error;
1527
1528         do {
1529                 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1530                         return -1;
1531
1532                 spin_lock(&dev_list_lock);
1533                 error = ida_get_new(&nvme_index_ida, &index);
1534                 spin_unlock(&dev_list_lock);
1535         } while (error == -EAGAIN);
1536
1537         if (error)
1538                 index = -1;
1539         return index;
1540 }
1541
1542 static void nvme_put_ns_idx(int index)
1543 {
1544         spin_lock(&dev_list_lock);
1545         ida_remove(&nvme_index_ida, index);
1546         spin_unlock(&dev_list_lock);
1547 }
1548
1549 static void nvme_config_discard(struct nvme_ns *ns)
1550 {
1551         u32 logical_block_size = queue_logical_block_size(ns->queue);
1552         ns->queue->limits.discard_zeroes_data = 0;
1553         ns->queue->limits.discard_alignment = logical_block_size;
1554         ns->queue->limits.discard_granularity = logical_block_size;
1555         ns->queue->limits.max_discard_sectors = 0xffffffff;
1556         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1557 }
1558
1559 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1560                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1561 {
1562         struct nvme_ns *ns;
1563         struct gendisk *disk;
1564         int lbaf;
1565
1566         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1567                 return NULL;
1568
1569         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1570         if (!ns)
1571                 return NULL;
1572         ns->queue = blk_alloc_queue(GFP_KERNEL);
1573         if (!ns->queue)
1574                 goto out_free_ns;
1575         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1576         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1577         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1578         blk_queue_make_request(ns->queue, nvme_make_request);
1579         ns->dev = dev;
1580         ns->queue->queuedata = ns;
1581
1582         disk = alloc_disk(NVME_MINORS);
1583         if (!disk)
1584                 goto out_free_queue;
1585         ns->ns_id = nsid;
1586         ns->disk = disk;
1587         lbaf = id->flbas & 0xf;
1588         ns->lba_shift = id->lbaf[lbaf].ds;
1589         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1590         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1591         if (dev->max_hw_sectors)
1592                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1593
1594         disk->major = nvme_major;
1595         disk->minors = NVME_MINORS;
1596         disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1597         disk->fops = &nvme_fops;
1598         disk->private_data = ns;
1599         disk->queue = ns->queue;
1600         disk->driverfs_dev = &dev->pci_dev->dev;
1601         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1602         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1603
1604         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1605                 nvme_config_discard(ns);
1606
1607         return ns;
1608
1609  out_free_queue:
1610         blk_cleanup_queue(ns->queue);
1611  out_free_ns:
1612         kfree(ns);
1613         return NULL;
1614 }
1615
1616 static void nvme_ns_free(struct nvme_ns *ns)
1617 {
1618         int index = ns->disk->first_minor / NVME_MINORS;
1619         put_disk(ns->disk);
1620         nvme_put_ns_idx(index);
1621         blk_cleanup_queue(ns->queue);
1622         kfree(ns);
1623 }
1624
1625 static int set_queue_count(struct nvme_dev *dev, int count)
1626 {
1627         int status;
1628         u32 result;
1629         u32 q_count = (count - 1) | ((count - 1) << 16);
1630
1631         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1632                                                                 &result);
1633         if (status)
1634                 return -EIO;
1635         return min(result & 0xffff, result >> 16) + 1;
1636 }
1637
1638 static int nvme_setup_io_queues(struct nvme_dev *dev)
1639 {
1640         struct pci_dev *pdev = dev->pci_dev;
1641         int result, cpu, i, nr_io_queues, db_bar_size, q_depth, q_count;
1642
1643         nr_io_queues = num_online_cpus();
1644         result = set_queue_count(dev, nr_io_queues);
1645         if (result < 0)
1646                 return result;
1647         if (result < nr_io_queues)
1648                 nr_io_queues = result;
1649
1650         q_count = nr_io_queues;
1651         /* Deregister the admin queue's interrupt */
1652         free_irq(dev->entry[0].vector, dev->queues[0]);
1653
1654         db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1655         if (db_bar_size > 8192) {
1656                 iounmap(dev->bar);
1657                 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1658                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1659                 dev->queues[0]->q_db = dev->dbs;
1660         }
1661
1662         for (i = 0; i < nr_io_queues; i++)
1663                 dev->entry[i].entry = i;
1664         for (;;) {
1665                 result = pci_enable_msix(pdev, dev->entry, nr_io_queues);
1666                 if (result == 0) {
1667                         break;
1668                 } else if (result > 0) {
1669                         nr_io_queues = result;
1670                         continue;
1671                 } else {
1672                         nr_io_queues = 0;
1673                         break;
1674                 }
1675         }
1676
1677         if (nr_io_queues == 0) {
1678                 nr_io_queues = q_count;
1679                 for (;;) {
1680                         result = pci_enable_msi_block(pdev, nr_io_queues);
1681                         if (result == 0) {
1682                                 for (i = 0; i < nr_io_queues; i++)
1683                                         dev->entry[i].vector = i + pdev->irq;
1684                                 break;
1685                         } else if (result > 0) {
1686                                 nr_io_queues = result;
1687                                 continue;
1688                         } else {
1689                                 nr_io_queues = 1;
1690                                 break;
1691                         }
1692                 }
1693         }
1694
1695         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1696         /* XXX: handle failure here */
1697
1698         cpu = cpumask_first(cpu_online_mask);
1699         for (i = 0; i < nr_io_queues; i++) {
1700                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1701                 cpu = cpumask_next(cpu, cpu_online_mask);
1702         }
1703
1704         q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1705                                                                 NVME_Q_DEPTH);
1706         for (i = 0; i < nr_io_queues; i++) {
1707                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1708                 if (IS_ERR(dev->queues[i + 1]))
1709                         return PTR_ERR(dev->queues[i + 1]);
1710                 dev->queue_count++;
1711         }
1712
1713         for (; i < num_possible_cpus(); i++) {
1714                 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1715                 dev->queues[i + 1] = dev->queues[target + 1];
1716         }
1717
1718         return 0;
1719 }
1720
1721 static void nvme_free_queues(struct nvme_dev *dev)
1722 {
1723         int i;
1724
1725         for (i = dev->queue_count - 1; i >= 0; i--)
1726                 nvme_free_queue(dev, i);
1727 }
1728
1729 /*
1730  * Return: error value if an error occurred setting up the queues or calling
1731  * Identify Device.  0 if these succeeded, even if adding some of the
1732  * namespaces failed.  At the moment, these failures are silent.  TBD which
1733  * failures should be reported.
1734  */
1735 static int nvme_dev_add(struct nvme_dev *dev)
1736 {
1737         int res, nn, i;
1738         struct nvme_ns *ns;
1739         struct nvme_id_ctrl *ctrl;
1740         struct nvme_id_ns *id_ns;
1741         void *mem;
1742         dma_addr_t dma_addr;
1743         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1744
1745         res = nvme_setup_io_queues(dev);
1746         if (res)
1747                 return res;
1748
1749         mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1750                                                                 GFP_KERNEL);
1751         if (!mem)
1752                 return -ENOMEM;
1753
1754         res = nvme_identify(dev, 0, 1, dma_addr);
1755         if (res) {
1756                 res = -EIO;
1757                 goto out;
1758         }
1759
1760         ctrl = mem;
1761         nn = le32_to_cpup(&ctrl->nn);
1762         dev->oncs = le16_to_cpup(&ctrl->oncs);
1763         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1764         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1765         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1766         if (ctrl->mdts)
1767                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1768         if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1769                         (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1770                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1771
1772         id_ns = mem;
1773         for (i = 1; i <= nn; i++) {
1774                 res = nvme_identify(dev, i, 0, dma_addr);
1775                 if (res)
1776                         continue;
1777
1778                 if (id_ns->ncap == 0)
1779                         continue;
1780
1781                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1782                                                         dma_addr + 4096, NULL);
1783                 if (res)
1784                         memset(mem + 4096, 0, 4096);
1785
1786                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1787                 if (ns)
1788                         list_add_tail(&ns->list, &dev->namespaces);
1789         }
1790         list_for_each_entry(ns, &dev->namespaces, list)
1791                 add_disk(ns->disk);
1792         res = 0;
1793
1794  out:
1795         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1796         return res;
1797 }
1798
1799 static int nvme_dev_remove(struct nvme_dev *dev)
1800 {
1801         struct nvme_ns *ns, *next;
1802
1803         spin_lock(&dev_list_lock);
1804         list_del(&dev->node);
1805         spin_unlock(&dev_list_lock);
1806
1807         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1808                 list_del(&ns->list);
1809                 del_gendisk(ns->disk);
1810                 nvme_ns_free(ns);
1811         }
1812
1813         nvme_free_queues(dev);
1814
1815         return 0;
1816 }
1817
1818 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1819 {
1820         struct device *dmadev = &dev->pci_dev->dev;
1821         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1822                                                 PAGE_SIZE, PAGE_SIZE, 0);
1823         if (!dev->prp_page_pool)
1824                 return -ENOMEM;
1825
1826         /* Optimisation for I/Os between 4k and 128k */
1827         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1828                                                 256, 256, 0);
1829         if (!dev->prp_small_pool) {
1830                 dma_pool_destroy(dev->prp_page_pool);
1831                 return -ENOMEM;
1832         }
1833         return 0;
1834 }
1835
1836 static void nvme_release_prp_pools(struct nvme_dev *dev)
1837 {
1838         dma_pool_destroy(dev->prp_page_pool);
1839         dma_pool_destroy(dev->prp_small_pool);
1840 }
1841
1842 static DEFINE_IDA(nvme_instance_ida);
1843
1844 static int nvme_set_instance(struct nvme_dev *dev)
1845 {
1846         int instance, error;
1847
1848         do {
1849                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1850                         return -ENODEV;
1851
1852                 spin_lock(&dev_list_lock);
1853                 error = ida_get_new(&nvme_instance_ida, &instance);
1854                 spin_unlock(&dev_list_lock);
1855         } while (error == -EAGAIN);
1856
1857         if (error)
1858                 return -ENODEV;
1859
1860         dev->instance = instance;
1861         return 0;
1862 }
1863
1864 static void nvme_release_instance(struct nvme_dev *dev)
1865 {
1866         spin_lock(&dev_list_lock);
1867         ida_remove(&nvme_instance_ida, dev->instance);
1868         spin_unlock(&dev_list_lock);
1869 }
1870
1871 static void nvme_free_dev(struct kref *kref)
1872 {
1873         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1874         nvme_dev_remove(dev);
1875         if (dev->pci_dev->msi_enabled)
1876                 pci_disable_msi(dev->pci_dev);
1877         else if (dev->pci_dev->msix_enabled)
1878                 pci_disable_msix(dev->pci_dev);
1879         iounmap(dev->bar);
1880         nvme_release_instance(dev);
1881         nvme_release_prp_pools(dev);
1882         pci_disable_device(dev->pci_dev);
1883         pci_release_regions(dev->pci_dev);
1884         kfree(dev->queues);
1885         kfree(dev->entry);
1886         kfree(dev);
1887 }
1888
1889 static int nvme_dev_open(struct inode *inode, struct file *f)
1890 {
1891         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1892                                                                 miscdev);
1893         kref_get(&dev->kref);
1894         f->private_data = dev;
1895         return 0;
1896 }
1897
1898 static int nvme_dev_release(struct inode *inode, struct file *f)
1899 {
1900         struct nvme_dev *dev = f->private_data;
1901         kref_put(&dev->kref, nvme_free_dev);
1902         return 0;
1903 }
1904
1905 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1906 {
1907         struct nvme_dev *dev = f->private_data;
1908         switch (cmd) {
1909         case NVME_IOCTL_ADMIN_CMD:
1910                 return nvme_user_admin_cmd(dev, (void __user *)arg);
1911         default:
1912                 return -ENOTTY;
1913         }
1914 }
1915
1916 static const struct file_operations nvme_dev_fops = {
1917         .owner          = THIS_MODULE,
1918         .open           = nvme_dev_open,
1919         .release        = nvme_dev_release,
1920         .unlocked_ioctl = nvme_dev_ioctl,
1921         .compat_ioctl   = nvme_dev_ioctl,
1922 };
1923
1924 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1925 {
1926         int bars, result = -ENOMEM;
1927         struct nvme_dev *dev;
1928
1929         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1930         if (!dev)
1931                 return -ENOMEM;
1932         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1933                                                                 GFP_KERNEL);
1934         if (!dev->entry)
1935                 goto free;
1936         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1937                                                                 GFP_KERNEL);
1938         if (!dev->queues)
1939                 goto free;
1940
1941         if (pci_enable_device_mem(pdev))
1942                 goto free;
1943         pci_set_master(pdev);
1944         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1945         if (pci_request_selected_regions(pdev, bars, "nvme"))
1946                 goto disable;
1947
1948         INIT_LIST_HEAD(&dev->namespaces);
1949         dev->pci_dev = pdev;
1950         pci_set_drvdata(pdev, dev);
1951
1952         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1953                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1954         else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1955                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1956         else
1957                 goto disable;
1958
1959         result = nvme_set_instance(dev);
1960         if (result)
1961                 goto disable;
1962
1963         dev->entry[0].vector = pdev->irq;
1964
1965         result = nvme_setup_prp_pools(dev);
1966         if (result)
1967                 goto disable_msix;
1968
1969         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1970         if (!dev->bar) {
1971                 result = -ENOMEM;
1972                 goto disable_msix;
1973         }
1974
1975         result = nvme_configure_admin_queue(dev);
1976         if (result)
1977                 goto unmap;
1978         dev->queue_count++;
1979
1980         spin_lock(&dev_list_lock);
1981         list_add(&dev->node, &dev_list);
1982         spin_unlock(&dev_list_lock);
1983
1984         result = nvme_dev_add(dev);
1985         if (result)
1986                 goto delete;
1987
1988         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
1989         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
1990         dev->miscdev.parent = &pdev->dev;
1991         dev->miscdev.name = dev->name;
1992         dev->miscdev.fops = &nvme_dev_fops;
1993         result = misc_register(&dev->miscdev);
1994         if (result)
1995                 goto remove;
1996
1997         kref_init(&dev->kref);
1998         return 0;
1999
2000  remove:
2001         nvme_dev_remove(dev);
2002  delete:
2003         spin_lock(&dev_list_lock);
2004         list_del(&dev->node);
2005         spin_unlock(&dev_list_lock);
2006
2007         nvme_free_queues(dev);
2008  unmap:
2009         iounmap(dev->bar);
2010  disable_msix:
2011         if (dev->pci_dev->msi_enabled)
2012                 pci_disable_msi(dev->pci_dev);
2013         else if (dev->pci_dev->msix_enabled)
2014                 pci_disable_msix(dev->pci_dev);
2015         nvme_release_instance(dev);
2016         nvme_release_prp_pools(dev);
2017  disable:
2018         pci_disable_device(pdev);
2019         pci_release_regions(pdev);
2020  free:
2021         kfree(dev->queues);
2022         kfree(dev->entry);
2023         kfree(dev);
2024         return result;
2025 }
2026
2027 static void nvme_remove(struct pci_dev *pdev)
2028 {
2029         struct nvme_dev *dev = pci_get_drvdata(pdev);
2030         misc_deregister(&dev->miscdev);
2031         kref_put(&dev->kref, nvme_free_dev);
2032 }
2033
2034 /* These functions are yet to be implemented */
2035 #define nvme_error_detected NULL
2036 #define nvme_dump_registers NULL
2037 #define nvme_link_reset NULL
2038 #define nvme_slot_reset NULL
2039 #define nvme_error_resume NULL
2040 #define nvme_suspend NULL
2041 #define nvme_resume NULL
2042
2043 static const struct pci_error_handlers nvme_err_handler = {
2044         .error_detected = nvme_error_detected,
2045         .mmio_enabled   = nvme_dump_registers,
2046         .link_reset     = nvme_link_reset,
2047         .slot_reset     = nvme_slot_reset,
2048         .resume         = nvme_error_resume,
2049 };
2050
2051 /* Move to pci_ids.h later */
2052 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2053
2054 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2055         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2056         { 0, }
2057 };
2058 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2059
2060 static struct pci_driver nvme_driver = {
2061         .name           = "nvme",
2062         .id_table       = nvme_id_table,
2063         .probe          = nvme_probe,
2064         .remove         = nvme_remove,
2065         .suspend        = nvme_suspend,
2066         .resume         = nvme_resume,
2067         .err_handler    = &nvme_err_handler,
2068 };
2069
2070 static int __init nvme_init(void)
2071 {
2072         int result;
2073
2074         nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2075         if (IS_ERR(nvme_thread))
2076                 return PTR_ERR(nvme_thread);
2077
2078         result = register_blkdev(nvme_major, "nvme");
2079         if (result < 0)
2080                 goto kill_kthread;
2081         else if (result > 0)
2082                 nvme_major = result;
2083
2084         result = pci_register_driver(&nvme_driver);
2085         if (result)
2086                 goto unregister_blkdev;
2087         return 0;
2088
2089  unregister_blkdev:
2090         unregister_blkdev(nvme_major, "nvme");
2091  kill_kthread:
2092         kthread_stop(nvme_thread);
2093         return result;
2094 }
2095
2096 static void __exit nvme_exit(void)
2097 {
2098         pci_unregister_driver(&nvme_driver);
2099         unregister_blkdev(nvme_major, "nvme");
2100         kthread_stop(nvme_thread);
2101 }
2102
2103 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2104 MODULE_LICENSE("GPL");
2105 MODULE_VERSION("0.8");
2106 module_init(nvme_init);
2107 module_exit(nvme_exit);