]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/clk/bcm/clk-kona.h
iommu/exynos: Fix checkpatch warning
[karo-tx-linux.git] / drivers / clk / bcm / clk-kona.h
1 /*
2  * Copyright (C) 2013 Broadcom Corporation
3  * Copyright 2013 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14
15 #ifndef _CLK_KONA_H
16 #define _CLK_KONA_H
17
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/slab.h>
22 #include <linux/device.h>
23 #include <linux/of.h>
24 #include <linux/clk-provider.h>
25
26 #define BILLION         1000000000
27
28 /* The common clock framework uses u8 to represent a parent index */
29 #define PARENT_COUNT_MAX        ((u32)U8_MAX)
30
31 #define BAD_CLK_INDEX           U8_MAX  /* Can't ever be valid */
32 #define BAD_CLK_NAME            ((const char *)-1)
33
34 #define BAD_SCALED_DIV_VALUE    U64_MAX
35
36 /*
37  * Utility macros for object flag management.  If possible, flags
38  * should be defined such that 0 is the desired default value.
39  */
40 #define FLAG(type, flag)                BCM_CLK_ ## type ## _FLAGS_ ## flag
41 #define FLAG_SET(obj, type, flag)       ((obj)->flags |= FLAG(type, flag))
42 #define FLAG_CLEAR(obj, type, flag)     ((obj)->flags &= ~(FLAG(type, flag)))
43 #define FLAG_FLIP(obj, type, flag)      ((obj)->flags ^= FLAG(type, flag))
44 #define FLAG_TEST(obj, type, flag)      (!!((obj)->flags & FLAG(type, flag)))
45
46 /* Clock field state tests */
47
48 #define gate_exists(gate)               FLAG_TEST(gate, GATE, EXISTS)
49 #define gate_is_enabled(gate)           FLAG_TEST(gate, GATE, ENABLED)
50 #define gate_is_hw_controllable(gate)   FLAG_TEST(gate, GATE, HW)
51 #define gate_is_sw_controllable(gate)   FLAG_TEST(gate, GATE, SW)
52 #define gate_is_sw_managed(gate)        FLAG_TEST(gate, GATE, SW_MANAGED)
53 #define gate_is_no_disable(gate)        FLAG_TEST(gate, GATE, NO_DISABLE)
54
55 #define gate_flip_enabled(gate)         FLAG_FLIP(gate, GATE, ENABLED)
56
57 #define divider_exists(div)             FLAG_TEST(div, DIV, EXISTS)
58 #define divider_is_fixed(div)           FLAG_TEST(div, DIV, FIXED)
59 #define divider_has_fraction(div)       (!divider_is_fixed(div) && \
60                                                 (div)->frac_width > 0)
61
62 #define selector_exists(sel)            ((sel)->width != 0)
63 #define trigger_exists(trig)            FLAG_TEST(trig, TRIG, EXISTS)
64
65 /* Clock type, used to tell common block what it's part of */
66 enum bcm_clk_type {
67         bcm_clk_none,           /* undefined clock type */
68         bcm_clk_bus,
69         bcm_clk_core,
70         bcm_clk_peri
71 };
72
73 /*
74  * Each CCU defines a mapped area of memory containing registers
75  * used to manage clocks implemented by the CCU.  Access to memory
76  * within the CCU's space is serialized by a spinlock.  Before any
77  * (other) address can be written, a special access "password" value
78  * must be written to its WR_ACCESS register (located at the base
79  * address of the range).  We keep track of the name of each CCU as
80  * it is set up, and maintain them in a list.
81  */
82 struct ccu_data {
83         void __iomem *base;     /* base of mapped address space */
84         spinlock_t lock;        /* serialization lock */
85         bool write_enabled;     /* write access is currently enabled */
86         struct list_head links; /* for ccu_list */
87         struct device_node *node;
88         struct clk_onecell_data data;
89         const char *name;
90         u32 range;              /* byte range of address space */
91 };
92
93 /*
94  * Gating control and status is managed by a 32-bit gate register.
95  *
96  * There are several types of gating available:
97  * - (no gate)
98  *     A clock with no gate is assumed to be always enabled.
99  * - hardware-only gating (auto-gating)
100  *     Enabling or disabling clocks with this type of gate is
101  *     managed automatically by the hardware.  Such clocks can be
102  *     considered by the software to be enabled.  The current status
103  *     of auto-gated clocks can be read from the gate status bit.
104  * - software-only gating
105  *     Auto-gating is not available for this type of clock.
106  *     Instead, software manages whether it's enabled by setting or
107  *     clearing the enable bit.  The current gate status of a gate
108  *     under software control can be read from the gate status bit.
109  *     To ensure a change to the gating status is complete, the
110  *     status bit can be polled to verify that the gate has entered
111  *     the desired state.
112  * - selectable hardware or software gating
113  *     Gating for this type of clock can be configured to be either
114  *     under software or hardware control.  Which type is in use is
115  *     determined by the hw_sw_sel bit of the gate register.
116  */
117 struct bcm_clk_gate {
118         u32 offset;             /* gate register offset */
119         u32 status_bit;         /* 0: gate is disabled; 0: gatge is enabled */
120         u32 en_bit;             /* 0: disable; 1: enable */
121         u32 hw_sw_sel_bit;      /* 0: hardware gating; 1: software gating */
122         u32 flags;              /* BCM_CLK_GATE_FLAGS_* below */
123 };
124
125 /*
126  * Gate flags:
127  *   HW         means this gate can be auto-gated
128  *   SW         means the state of this gate can be software controlled
129  *   NO_DISABLE means this gate is (only) enabled if under software control
130  *   SW_MANAGED means the status of this gate is under software control
131  *   ENABLED    means this software-managed gate is *supposed* to be enabled
132  */
133 #define BCM_CLK_GATE_FLAGS_EXISTS       ((u32)1 << 0)   /* Gate is valid */
134 #define BCM_CLK_GATE_FLAGS_HW           ((u32)1 << 1)   /* Can auto-gate */
135 #define BCM_CLK_GATE_FLAGS_SW           ((u32)1 << 2)   /* Software control */
136 #define BCM_CLK_GATE_FLAGS_NO_DISABLE   ((u32)1 << 3)   /* HW or enabled */
137 #define BCM_CLK_GATE_FLAGS_SW_MANAGED   ((u32)1 << 4)   /* SW now in control */
138 #define BCM_CLK_GATE_FLAGS_ENABLED      ((u32)1 << 5)   /* If SW_MANAGED */
139
140 /*
141  * Gate initialization macros.
142  *
143  * Any gate initially under software control will be enabled.
144  */
145
146 /* A hardware/software gate initially under software control */
147 #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)       \
148         {                                                               \
149                 .offset = (_offset),                                    \
150                 .status_bit = (_status_bit),                            \
151                 .en_bit = (_en_bit),                                    \
152                 .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
153                 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
154                         FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)|     \
155                         FLAG(GATE, EXISTS),                             \
156         }
157
158 /* A hardware/software gate initially under hardware control */
159 #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)  \
160         {                                                               \
161                 .offset = (_offset),                                    \
162                 .status_bit = (_status_bit),                            \
163                 .en_bit = (_en_bit),                                    \
164                 .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
165                 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
166                         FLAG(GATE, EXISTS),                             \
167         }
168
169 /* A hardware-or-enabled gate (enabled if not under hardware control) */
170 #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit)   \
171         {                                                               \
172                 .offset = (_offset),                                    \
173                 .status_bit = (_status_bit),                            \
174                 .en_bit = (_en_bit),                                    \
175                 .hw_sw_sel_bit = (_hw_sw_sel_bit),                      \
176                 .flags = FLAG(GATE, HW)|FLAG(GATE, SW)|                 \
177                         FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS),      \
178         }
179
180 /* A software-only gate */
181 #define SW_ONLY_GATE(_offset, _status_bit, _en_bit)                     \
182         {                                                               \
183                 .offset = (_offset),                                    \
184                 .status_bit = (_status_bit),                            \
185                 .en_bit = (_en_bit),                                    \
186                 .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)|         \
187                         FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS),         \
188         }
189
190 /* A hardware-only gate */
191 #define HW_ONLY_GATE(_offset, _status_bit)                              \
192         {                                                               \
193                 .offset = (_offset),                                    \
194                 .status_bit = (_status_bit),                            \
195                 .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS),             \
196         }
197
198 /*
199  * Each clock can have zero, one, or two dividers which change the
200  * output rate of the clock.  Each divider can be either fixed or
201  * variable.  If there are two dividers, they are the "pre-divider"
202  * and the "regular" or "downstream" divider.  If there is only one,
203  * there is no pre-divider.
204  *
205  * A fixed divider is any non-zero (positive) value, and it
206  * indicates how the input rate is affected by the divider.
207  *
208  * The value of a variable divider is maintained in a sub-field of a
209  * 32-bit divider register.  The position of the field in the
210  * register is defined by its offset and width.  The value recorded
211  * in this field is always 1 less than the value it represents.
212  *
213  * In addition, a variable divider can indicate that some subset
214  * of its bits represent a "fractional" part of the divider.  Such
215  * bits comprise the low-order portion of the divider field, and can
216  * be viewed as representing the portion of the divider that lies to
217  * the right of the decimal point.  Most variable dividers have zero
218  * fractional bits.  Variable dividers with non-zero fraction width
219  * still record a value 1 less than the value they represent; the
220  * added 1 does *not* affect the low-order bit in this case, it
221  * affects the bits above the fractional part only.  (Often in this
222  * code a divider field value is distinguished from the value it
223  * represents by referring to the latter as a "divisor".)
224  *
225  * In order to avoid dealing with fractions, divider arithmetic is
226  * performed using "scaled" values.  A scaled value is one that's
227  * been left-shifted by the fractional width of a divider.  Dividing
228  * a scaled value by a scaled divisor produces the desired quotient
229  * without loss of precision and without any other special handling
230  * for fractions.
231  *
232  * The recorded value of a variable divider can be modified.  To
233  * modify either divider (or both), a clock must be enabled (i.e.,
234  * using its gate).  In addition, a trigger register (described
235  * below) must be used to commit the change, and polled to verify
236  * the change is complete.
237  */
238 struct bcm_clk_div {
239         union {
240                 struct {        /* variable divider */
241                         u32 offset;     /* divider register offset */
242                         u32 shift;      /* field shift */
243                         u32 width;      /* field width */
244                         u32 frac_width; /* field fraction width */
245
246                         u64 scaled_div; /* scaled divider value */
247                 };
248                 u32 fixed;      /* non-zero fixed divider value */
249         };
250         u32 flags;              /* BCM_CLK_DIV_FLAGS_* below */
251 };
252
253 /*
254  * Divider flags:
255  *   EXISTS means this divider exists
256  *   FIXED means it is a fixed-rate divider
257  */
258 #define BCM_CLK_DIV_FLAGS_EXISTS        ((u32)1 << 0)   /* Divider is valid */
259 #define BCM_CLK_DIV_FLAGS_FIXED         ((u32)1 << 1)   /* Fixed-value */
260
261 /* Divider initialization macros */
262
263 /* A fixed (non-zero) divider */
264 #define FIXED_DIVIDER(_value)                                           \
265         {                                                               \
266                 .fixed = (_value),                                      \
267                 .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED),            \
268         }
269
270 /* A divider with an integral divisor */
271 #define DIVIDER(_offset, _shift, _width)                                \
272         {                                                               \
273                 .offset = (_offset),                                    \
274                 .shift = (_shift),                                      \
275                 .width = (_width),                                      \
276                 .scaled_div = BAD_SCALED_DIV_VALUE,                     \
277                 .flags = FLAG(DIV, EXISTS),                             \
278         }
279
280 /* A divider whose divisor has an integer and fractional part */
281 #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width)              \
282         {                                                               \
283                 .offset = (_offset),                                    \
284                 .shift = (_shift),                                      \
285                 .width = (_width),                                      \
286                 .frac_width = (_frac_width),                            \
287                 .scaled_div = BAD_SCALED_DIV_VALUE,                     \
288                 .flags = FLAG(DIV, EXISTS),                             \
289         }
290
291 /*
292  * Clocks may have multiple "parent" clocks.  If there is more than
293  * one, a selector must be specified to define which of the parent
294  * clocks is currently in use.  The selected clock is indicated in a
295  * sub-field of a 32-bit selector register.  The range of
296  * representable selector values typically exceeds the number of
297  * available parent clocks.  Occasionally the reset value of a
298  * selector field is explicitly set to a (specific) value that does
299  * not correspond to a defined input clock.
300  *
301  * We register all known parent clocks with the common clock code
302  * using a packed array (i.e., no empty slots) of (parent) clock
303  * names, and refer to them later using indexes into that array.
304  * We maintain an array of selector values indexed by common clock
305  * index values in order to map between these common clock indexes
306  * and the selector values used by the hardware.
307  *
308  * Like dividers, a selector can be modified, but to do so a clock
309  * must be enabled, and a trigger must be used to commit the change.
310  */
311 struct bcm_clk_sel {
312         u32 offset;             /* selector register offset */
313         u32 shift;              /* field shift */
314         u32 width;              /* field width */
315
316         u32 parent_count;       /* number of entries in parent_sel[] */
317         u32 *parent_sel;        /* array of parent selector values */
318         u8 clk_index;           /* current selected index in parent_sel[] */
319 };
320
321 /* Selector initialization macro */
322 #define SELECTOR(_offset, _shift, _width)                               \
323         {                                                               \
324                 .offset = (_offset),                                    \
325                 .shift = (_shift),                                      \
326                 .width = (_width),                                      \
327                 .clk_index = BAD_CLK_INDEX,                             \
328         }
329
330 /*
331  * Making changes to a variable divider or a selector for a clock
332  * requires the use of a trigger.  A trigger is defined by a single
333  * bit within a register.  To signal a change, a 1 is written into
334  * that bit.  To determine when the change has been completed, that
335  * trigger bit is polled; the read value will be 1 while the change
336  * is in progress, and 0 when it is complete.
337  *
338  * Occasionally a clock will have more than one trigger.  In this
339  * case, the "pre-trigger" will be used when changing a clock's
340  * selector and/or its pre-divider.
341  */
342 struct bcm_clk_trig {
343         u32 offset;             /* trigger register offset */
344         u32 bit;                /* trigger bit */
345         u32 flags;              /* BCM_CLK_TRIG_FLAGS_* below */
346 };
347
348 /*
349  * Trigger flags:
350  *   EXISTS means this trigger exists
351  */
352 #define BCM_CLK_TRIG_FLAGS_EXISTS       ((u32)1 << 0)   /* Trigger is valid */
353
354 /* Trigger initialization macro */
355 #define TRIGGER(_offset, _bit)                                          \
356         {                                                               \
357                 .offset = (_offset),                                    \
358                 .bit = (_bit),                                          \
359                 .flags = FLAG(TRIG, EXISTS),                            \
360         }
361
362 struct peri_clk_data {
363         struct bcm_clk_gate gate;
364         struct bcm_clk_trig pre_trig;
365         struct bcm_clk_div pre_div;
366         struct bcm_clk_trig trig;
367         struct bcm_clk_div div;
368         struct bcm_clk_sel sel;
369         const char *clocks[];   /* must be last; use CLOCKS() to declare */
370 };
371 #define CLOCKS(...)     { __VA_ARGS__, NULL, }
372 #define NO_CLOCKS       { NULL, }       /* Must use of no parent clocks */
373
374 struct kona_clk {
375         struct clk_hw hw;
376         struct clk_init_data init_data;
377         const char *name;       /* name of this clock */
378         struct ccu_data *ccu;   /* ccu this clock is associated with */
379         enum bcm_clk_type type;
380         union {
381                 void *data;
382                 struct peri_clk_data *peri;
383         };
384 };
385 #define to_kona_clk(_hw) \
386         container_of(_hw, struct kona_clk, hw)
387
388 /* Exported globals */
389
390 extern struct clk_ops kona_peri_clk_ops;
391
392 /* Help functions */
393
394 #define PERI_CLK_SETUP(clks, ccu, id, name) \
395         clks[id] = kona_clk_setup(ccu, #name, bcm_clk_peri, &name ## _data)
396
397 /* Externally visible functions */
398
399 extern u64 do_div_round_closest(u64 dividend, unsigned long divisor);
400 extern u64 scaled_div_max(struct bcm_clk_div *div);
401 extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value,
402                                 u32 billionths);
403
404 extern struct clk *kona_clk_setup(struct ccu_data *ccu, const char *name,
405                         enum bcm_clk_type type, void *data);
406 extern void __init kona_dt_ccu_setup(struct device_node *node,
407                         int (*ccu_clks_setup)(struct ccu_data *));
408 extern bool __init kona_ccu_init(struct ccu_data *ccu);
409
410 #endif /* _CLK_KONA_H */