]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/cpufreq_governor.c
drm/mst: Avoid dereferencing a NULL mstb in drm_dp_mst_handle_up_req()
[karo-tx-linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
26
27 static DEFINE_MUTEX(gov_dbs_data_mutex);
28
29 /* Common sysfs tunables */
30 /**
31  * store_sampling_rate - update sampling rate effective immediately if needed.
32  *
33  * If new rate is smaller than the old, simply updating
34  * dbs.sampling_rate might not be appropriate. For example, if the
35  * original sampling_rate was 1 second and the requested new sampling rate is 10
36  * ms because the user needs immediate reaction from ondemand governor, but not
37  * sure if higher frequency will be required or not, then, the governor may
38  * change the sampling rate too late; up to 1 second later. Thus, if we are
39  * reducing the sampling rate, we need to make the new value effective
40  * immediately.
41  *
42  * This must be called with dbs_data->mutex held, otherwise traversing
43  * policy_dbs_list isn't safe.
44  */
45 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
46                             size_t count)
47 {
48         struct dbs_data *dbs_data = to_dbs_data(attr_set);
49         struct policy_dbs_info *policy_dbs;
50         unsigned int rate;
51         int ret;
52         ret = sscanf(buf, "%u", &rate);
53         if (ret != 1)
54                 return -EINVAL;
55
56         dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
57
58         /*
59          * We are operating under dbs_data->mutex and so the list and its
60          * entries can't be freed concurrently.
61          */
62         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63                 mutex_lock(&policy_dbs->update_mutex);
64                 /*
65                  * On 32-bit architectures this may race with the
66                  * sample_delay_ns read in dbs_update_util_handler(), but that
67                  * really doesn't matter.  If the read returns a value that's
68                  * too big, the sample will be skipped, but the next invocation
69                  * of dbs_update_util_handler() (when the update has been
70                  * completed) will take a sample.
71                  *
72                  * If this runs in parallel with dbs_work_handler(), we may end
73                  * up overwriting the sample_delay_ns value that it has just
74                  * written, but it will be corrected next time a sample is
75                  * taken, so it shouldn't be significant.
76                  */
77                 gov_update_sample_delay(policy_dbs, 0);
78                 mutex_unlock(&policy_dbs->update_mutex);
79         }
80
81         return count;
82 }
83 EXPORT_SYMBOL_GPL(store_sampling_rate);
84
85 /**
86  * gov_update_cpu_data - Update CPU load data.
87  * @dbs_data: Top-level governor data pointer.
88  *
89  * Update CPU load data for all CPUs in the domain governed by @dbs_data
90  * (that may be a single policy or a bunch of them if governor tunables are
91  * system-wide).
92  *
93  * Call under the @dbs_data mutex.
94  */
95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97         struct policy_dbs_info *policy_dbs;
98
99         list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100                 unsigned int j;
101
102                 for_each_cpu(j, policy_dbs->policy->cpus) {
103                         struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106                                                                   dbs_data->io_is_busy);
107                         if (dbs_data->ignore_nice_load)
108                                 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109                 }
110         }
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114 unsigned int dbs_update(struct cpufreq_policy *policy)
115 {
116         struct policy_dbs_info *policy_dbs = policy->governor_data;
117         struct dbs_data *dbs_data = policy_dbs->dbs_data;
118         unsigned int ignore_nice = dbs_data->ignore_nice_load;
119         unsigned int max_load = 0, idle_periods = UINT_MAX;
120         unsigned int sampling_rate, io_busy, j;
121
122         /*
123          * Sometimes governors may use an additional multiplier to increase
124          * sample delays temporarily.  Apply that multiplier to sampling_rate
125          * so as to keep the wake-up-from-idle detection logic a bit
126          * conservative.
127          */
128         sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129         /*
130          * For the purpose of ondemand, waiting for disk IO is an indication
131          * that you're performance critical, and not that the system is actually
132          * idle, so do not add the iowait time to the CPU idle time then.
133          */
134         io_busy = dbs_data->io_is_busy;
135
136         /* Get Absolute Load */
137         for_each_cpu(j, policy->cpus) {
138                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139                 u64 update_time, cur_idle_time;
140                 unsigned int idle_time, time_elapsed;
141                 unsigned int load;
142
143                 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144
145                 time_elapsed = update_time - j_cdbs->prev_update_time;
146                 j_cdbs->prev_update_time = update_time;
147
148                 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
149                 j_cdbs->prev_cpu_idle = cur_idle_time;
150
151                 if (ignore_nice) {
152                         u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
153
154                         idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
155                         j_cdbs->prev_cpu_nice = cur_nice;
156                 }
157
158                 if (unlikely(!time_elapsed)) {
159                         /*
160                          * That can only happen when this function is called
161                          * twice in a row with a very short interval between the
162                          * calls, so the previous load value can be used then.
163                          */
164                         load = j_cdbs->prev_load;
165                 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
166                                     j_cdbs->prev_load)) {
167                         /*
168                          * If the CPU had gone completely idle and a task has
169                          * just woken up on this CPU now, it would be unfair to
170                          * calculate 'load' the usual way for this elapsed
171                          * time-window, because it would show near-zero load,
172                          * irrespective of how CPU intensive that task actually
173                          * was. This is undesirable for latency-sensitive bursty
174                          * workloads.
175                          *
176                          * To avoid this, reuse the 'load' from the previous
177                          * time-window and give this task a chance to start with
178                          * a reasonably high CPU frequency. However, that
179                          * shouldn't be over-done, lest we get stuck at a high
180                          * load (high frequency) for too long, even when the
181                          * current system load has actually dropped down, so
182                          * clear prev_load to guarantee that the load will be
183                          * computed again next time.
184                          *
185                          * Detecting this situation is easy: the governor's
186                          * utilization update handler would not have run during
187                          * CPU-idle periods.  Hence, an unusually large
188                          * 'time_elapsed' (as compared to the sampling rate)
189                          * indicates this scenario.
190                          */
191                         load = j_cdbs->prev_load;
192                         j_cdbs->prev_load = 0;
193                 } else {
194                         if (time_elapsed >= idle_time) {
195                                 load = 100 * (time_elapsed - idle_time) / time_elapsed;
196                         } else {
197                                 /*
198                                  * That can happen if idle_time is returned by
199                                  * get_cpu_idle_time_jiffy().  In that case
200                                  * idle_time is roughly equal to the difference
201                                  * between time_elapsed and "busy time" obtained
202                                  * from CPU statistics.  Then, the "busy time"
203                                  * can end up being greater than time_elapsed
204                                  * (for example, if jiffies_64 and the CPU
205                                  * statistics are updated by different CPUs),
206                                  * so idle_time may in fact be negative.  That
207                                  * means, though, that the CPU was busy all
208                                  * the time (on the rough average) during the
209                                  * last sampling interval and 100 can be
210                                  * returned as the load.
211                                  */
212                                 load = (int)idle_time < 0 ? 100 : 0;
213                         }
214                         j_cdbs->prev_load = load;
215                 }
216
217                 if (time_elapsed > 2 * sampling_rate) {
218                         unsigned int periods = time_elapsed / sampling_rate;
219
220                         if (periods < idle_periods)
221                                 idle_periods = periods;
222                 }
223
224                 if (load > max_load)
225                         max_load = load;
226         }
227
228         policy_dbs->idle_periods = idle_periods;
229
230         return max_load;
231 }
232 EXPORT_SYMBOL_GPL(dbs_update);
233
234 static void dbs_work_handler(struct work_struct *work)
235 {
236         struct policy_dbs_info *policy_dbs;
237         struct cpufreq_policy *policy;
238         struct dbs_governor *gov;
239
240         policy_dbs = container_of(work, struct policy_dbs_info, work);
241         policy = policy_dbs->policy;
242         gov = dbs_governor_of(policy);
243
244         /*
245          * Make sure cpufreq_governor_limits() isn't evaluating load or the
246          * ondemand governor isn't updating the sampling rate in parallel.
247          */
248         mutex_lock(&policy_dbs->update_mutex);
249         gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
250         mutex_unlock(&policy_dbs->update_mutex);
251
252         /* Allow the utilization update handler to queue up more work. */
253         atomic_set(&policy_dbs->work_count, 0);
254         /*
255          * If the update below is reordered with respect to the sample delay
256          * modification, the utilization update handler may end up using a stale
257          * sample delay value.
258          */
259         smp_wmb();
260         policy_dbs->work_in_progress = false;
261 }
262
263 static void dbs_irq_work(struct irq_work *irq_work)
264 {
265         struct policy_dbs_info *policy_dbs;
266
267         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
268         schedule_work_on(smp_processor_id(), &policy_dbs->work);
269 }
270
271 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
272                                     unsigned int flags)
273 {
274         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
275         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
276         u64 delta_ns, lst;
277
278         /*
279          * The work may not be allowed to be queued up right now.
280          * Possible reasons:
281          * - Work has already been queued up or is in progress.
282          * - It is too early (too little time from the previous sample).
283          */
284         if (policy_dbs->work_in_progress)
285                 return;
286
287         /*
288          * If the reads below are reordered before the check above, the value
289          * of sample_delay_ns used in the computation may be stale.
290          */
291         smp_rmb();
292         lst = READ_ONCE(policy_dbs->last_sample_time);
293         delta_ns = time - lst;
294         if ((s64)delta_ns < policy_dbs->sample_delay_ns)
295                 return;
296
297         /*
298          * If the policy is not shared, the irq_work may be queued up right away
299          * at this point.  Otherwise, we need to ensure that only one of the
300          * CPUs sharing the policy will do that.
301          */
302         if (policy_dbs->is_shared) {
303                 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
304                         return;
305
306                 /*
307                  * If another CPU updated last_sample_time in the meantime, we
308                  * shouldn't be here, so clear the work counter and bail out.
309                  */
310                 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
311                         atomic_set(&policy_dbs->work_count, 0);
312                         return;
313                 }
314         }
315
316         policy_dbs->last_sample_time = time;
317         policy_dbs->work_in_progress = true;
318         irq_work_queue(&policy_dbs->irq_work);
319 }
320
321 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
322                                 unsigned int delay_us)
323 {
324         struct cpufreq_policy *policy = policy_dbs->policy;
325         int cpu;
326
327         gov_update_sample_delay(policy_dbs, delay_us);
328         policy_dbs->last_sample_time = 0;
329
330         for_each_cpu(cpu, policy->cpus) {
331                 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
332
333                 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
334                                              dbs_update_util_handler);
335         }
336 }
337
338 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
339 {
340         int i;
341
342         for_each_cpu(i, policy->cpus)
343                 cpufreq_remove_update_util_hook(i);
344
345         synchronize_sched();
346 }
347
348 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
349                                                      struct dbs_governor *gov)
350 {
351         struct policy_dbs_info *policy_dbs;
352         int j;
353
354         /* Allocate memory for per-policy governor data. */
355         policy_dbs = gov->alloc();
356         if (!policy_dbs)
357                 return NULL;
358
359         policy_dbs->policy = policy;
360         mutex_init(&policy_dbs->update_mutex);
361         atomic_set(&policy_dbs->work_count, 0);
362         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
363         INIT_WORK(&policy_dbs->work, dbs_work_handler);
364
365         /* Set policy_dbs for all CPUs, online+offline */
366         for_each_cpu(j, policy->related_cpus) {
367                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
368
369                 j_cdbs->policy_dbs = policy_dbs;
370         }
371         return policy_dbs;
372 }
373
374 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
375                                  struct dbs_governor *gov)
376 {
377         int j;
378
379         mutex_destroy(&policy_dbs->update_mutex);
380
381         for_each_cpu(j, policy_dbs->policy->related_cpus) {
382                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
383
384                 j_cdbs->policy_dbs = NULL;
385                 j_cdbs->update_util.func = NULL;
386         }
387         gov->free(policy_dbs);
388 }
389
390 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
391 {
392         struct dbs_governor *gov = dbs_governor_of(policy);
393         struct dbs_data *dbs_data;
394         struct policy_dbs_info *policy_dbs;
395         unsigned int latency;
396         int ret = 0;
397
398         /* State should be equivalent to EXIT */
399         if (policy->governor_data)
400                 return -EBUSY;
401
402         policy_dbs = alloc_policy_dbs_info(policy, gov);
403         if (!policy_dbs)
404                 return -ENOMEM;
405
406         /* Protect gov->gdbs_data against concurrent updates. */
407         mutex_lock(&gov_dbs_data_mutex);
408
409         dbs_data = gov->gdbs_data;
410         if (dbs_data) {
411                 if (WARN_ON(have_governor_per_policy())) {
412                         ret = -EINVAL;
413                         goto free_policy_dbs_info;
414                 }
415                 policy_dbs->dbs_data = dbs_data;
416                 policy->governor_data = policy_dbs;
417
418                 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
419                 goto out;
420         }
421
422         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
423         if (!dbs_data) {
424                 ret = -ENOMEM;
425                 goto free_policy_dbs_info;
426         }
427
428         gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
429
430         ret = gov->init(dbs_data);
431         if (ret)
432                 goto free_policy_dbs_info;
433
434         /* policy latency is in ns. Convert it to us first */
435         latency = policy->cpuinfo.transition_latency / 1000;
436         if (latency == 0)
437                 latency = 1;
438
439         /* Bring kernel and HW constraints together */
440         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
441                                           MIN_LATENCY_MULTIPLIER * latency);
442         dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
443                                       LATENCY_MULTIPLIER * latency);
444
445         if (!have_governor_per_policy())
446                 gov->gdbs_data = dbs_data;
447
448         policy_dbs->dbs_data = dbs_data;
449         policy->governor_data = policy_dbs;
450
451         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
452         ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
453                                    get_governor_parent_kobj(policy),
454                                    "%s", gov->gov.name);
455         if (!ret)
456                 goto out;
457
458         /* Failure, so roll back. */
459         pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
460
461         policy->governor_data = NULL;
462
463         if (!have_governor_per_policy())
464                 gov->gdbs_data = NULL;
465         gov->exit(dbs_data);
466         kfree(dbs_data);
467
468 free_policy_dbs_info:
469         free_policy_dbs_info(policy_dbs, gov);
470
471 out:
472         mutex_unlock(&gov_dbs_data_mutex);
473         return ret;
474 }
475 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
476
477 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
478 {
479         struct dbs_governor *gov = dbs_governor_of(policy);
480         struct policy_dbs_info *policy_dbs = policy->governor_data;
481         struct dbs_data *dbs_data = policy_dbs->dbs_data;
482         unsigned int count;
483
484         /* Protect gov->gdbs_data against concurrent updates. */
485         mutex_lock(&gov_dbs_data_mutex);
486
487         count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
488
489         policy->governor_data = NULL;
490
491         if (!count) {
492                 if (!have_governor_per_policy())
493                         gov->gdbs_data = NULL;
494
495                 gov->exit(dbs_data);
496                 kfree(dbs_data);
497         }
498
499         free_policy_dbs_info(policy_dbs, gov);
500
501         mutex_unlock(&gov_dbs_data_mutex);
502 }
503 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
504
505 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
506 {
507         struct dbs_governor *gov = dbs_governor_of(policy);
508         struct policy_dbs_info *policy_dbs = policy->governor_data;
509         struct dbs_data *dbs_data = policy_dbs->dbs_data;
510         unsigned int sampling_rate, ignore_nice, j;
511         unsigned int io_busy;
512
513         if (!policy->cur)
514                 return -EINVAL;
515
516         policy_dbs->is_shared = policy_is_shared(policy);
517         policy_dbs->rate_mult = 1;
518
519         sampling_rate = dbs_data->sampling_rate;
520         ignore_nice = dbs_data->ignore_nice_load;
521         io_busy = dbs_data->io_is_busy;
522
523         for_each_cpu(j, policy->cpus) {
524                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
525
526                 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
527                 /*
528                  * Make the first invocation of dbs_update() compute the load.
529                  */
530                 j_cdbs->prev_load = 0;
531
532                 if (ignore_nice)
533                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
534         }
535
536         gov->start(policy);
537
538         gov_set_update_util(policy_dbs, sampling_rate);
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
542
543 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
544 {
545         struct policy_dbs_info *policy_dbs = policy->governor_data;
546
547         gov_clear_update_util(policy_dbs->policy);
548         irq_work_sync(&policy_dbs->irq_work);
549         cancel_work_sync(&policy_dbs->work);
550         atomic_set(&policy_dbs->work_count, 0);
551         policy_dbs->work_in_progress = false;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
554
555 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
556 {
557         struct policy_dbs_info *policy_dbs = policy->governor_data;
558
559         mutex_lock(&policy_dbs->update_mutex);
560         cpufreq_policy_apply_limits(policy);
561         gov_update_sample_delay(policy_dbs, 0);
562
563         mutex_unlock(&policy_dbs->update_mutex);
564 }
565 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);