]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/exynos5440-cpufreq.c
cpufreq: exynos: don't initialize part of policy set by core
[karo-tx-linux.git] / drivers / cpufreq / exynos5440-cpufreq.c
1 /*
2  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
3  *              http://www.samsung.com
4  *
5  * Amit Daniel Kachhap <amit.daniel@samsung.com>
6  *
7  * EXYNOS5440 - CPU frequency scaling support
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/cpufreq.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/opp.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26
27 /* Register definitions */
28 #define XMU_DVFS_CTRL           0x0060
29 #define XMU_PMU_P0_7            0x0064
30 #define XMU_C0_3_PSTATE         0x0090
31 #define XMU_P_LIMIT             0x00a0
32 #define XMU_P_STATUS            0x00a4
33 #define XMU_PMUEVTEN            0x00d0
34 #define XMU_PMUIRQEN            0x00d4
35 #define XMU_PMUIRQ              0x00d8
36
37 /* PMU mask and shift definations */
38 #define P_VALUE_MASK            0x7
39
40 #define XMU_DVFS_CTRL_EN_SHIFT  0
41
42 #define P0_7_CPUCLKDEV_SHIFT    21
43 #define P0_7_CPUCLKDEV_MASK     0x7
44 #define P0_7_ATBCLKDEV_SHIFT    18
45 #define P0_7_ATBCLKDEV_MASK     0x7
46 #define P0_7_CSCLKDEV_SHIFT     15
47 #define P0_7_CSCLKDEV_MASK      0x7
48 #define P0_7_CPUEMA_SHIFT       28
49 #define P0_7_CPUEMA_MASK        0xf
50 #define P0_7_L2EMA_SHIFT        24
51 #define P0_7_L2EMA_MASK         0xf
52 #define P0_7_VDD_SHIFT          8
53 #define P0_7_VDD_MASK           0x7f
54 #define P0_7_FREQ_SHIFT         0
55 #define P0_7_FREQ_MASK          0xff
56
57 #define C0_3_PSTATE_VALID_SHIFT 8
58 #define C0_3_PSTATE_CURR_SHIFT  4
59 #define C0_3_PSTATE_NEW_SHIFT   0
60
61 #define PSTATE_CHANGED_EVTEN_SHIFT      0
62
63 #define PSTATE_CHANGED_IRQEN_SHIFT      0
64
65 #define PSTATE_CHANGED_SHIFT            0
66
67 /* some constant values for clock divider calculation */
68 #define CPU_DIV_FREQ_MAX        500
69 #define CPU_DBG_FREQ_MAX        375
70 #define CPU_ATB_FREQ_MAX        500
71
72 #define PMIC_LOW_VOLT           0x30
73 #define PMIC_HIGH_VOLT          0x28
74
75 #define CPUEMA_HIGH             0x2
76 #define CPUEMA_MID              0x4
77 #define CPUEMA_LOW              0x7
78
79 #define L2EMA_HIGH              0x1
80 #define L2EMA_MID               0x3
81 #define L2EMA_LOW               0x4
82
83 #define DIV_TAB_MAX     2
84 /* frequency unit is 20MHZ */
85 #define FREQ_UNIT       20
86 #define MAX_VOLTAGE     1550000 /* In microvolt */
87 #define VOLTAGE_STEP    12500   /* In microvolt */
88
89 #define CPUFREQ_NAME            "exynos5440_dvfs"
90 #define DEF_TRANS_LATENCY       100000
91
92 enum cpufreq_level_index {
93         L0, L1, L2, L3, L4,
94         L5, L6, L7, L8, L9,
95 };
96 #define CPUFREQ_LEVEL_END       (L7 + 1)
97
98 struct exynos_dvfs_data {
99         void __iomem *base;
100         struct resource *mem;
101         int irq;
102         struct clk *cpu_clk;
103         unsigned int cur_frequency;
104         unsigned int latency;
105         struct cpufreq_frequency_table *freq_table;
106         unsigned int freq_count;
107         struct device *dev;
108         bool dvfs_enabled;
109         struct work_struct irq_work;
110 };
111
112 static struct exynos_dvfs_data *dvfs_info;
113 static DEFINE_MUTEX(cpufreq_lock);
114 static struct cpufreq_freqs freqs;
115
116 static int init_div_table(void)
117 {
118         struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
119         unsigned int tmp, clk_div, ema_div, freq, volt_id;
120         int i = 0;
121         struct opp *opp;
122
123         rcu_read_lock();
124         for (i = 0; freq_tbl[i].frequency != CPUFREQ_TABLE_END; i++) {
125
126                 opp = opp_find_freq_exact(dvfs_info->dev,
127                                         freq_tbl[i].frequency * 1000, true);
128                 if (IS_ERR(opp)) {
129                         rcu_read_unlock();
130                         dev_err(dvfs_info->dev,
131                                 "failed to find valid OPP for %u KHZ\n",
132                                 freq_tbl[i].frequency);
133                         return PTR_ERR(opp);
134                 }
135
136                 freq = freq_tbl[i].frequency / 1000; /* In MHZ */
137                 clk_div = ((freq / CPU_DIV_FREQ_MAX) & P0_7_CPUCLKDEV_MASK)
138                                         << P0_7_CPUCLKDEV_SHIFT;
139                 clk_div |= ((freq / CPU_ATB_FREQ_MAX) & P0_7_ATBCLKDEV_MASK)
140                                         << P0_7_ATBCLKDEV_SHIFT;
141                 clk_div |= ((freq / CPU_DBG_FREQ_MAX) & P0_7_CSCLKDEV_MASK)
142                                         << P0_7_CSCLKDEV_SHIFT;
143
144                 /* Calculate EMA */
145                 volt_id = opp_get_voltage(opp);
146                 volt_id = (MAX_VOLTAGE - volt_id) / VOLTAGE_STEP;
147                 if (volt_id < PMIC_HIGH_VOLT) {
148                         ema_div = (CPUEMA_HIGH << P0_7_CPUEMA_SHIFT) |
149                                 (L2EMA_HIGH << P0_7_L2EMA_SHIFT);
150                 } else if (volt_id > PMIC_LOW_VOLT) {
151                         ema_div = (CPUEMA_LOW << P0_7_CPUEMA_SHIFT) |
152                                 (L2EMA_LOW << P0_7_L2EMA_SHIFT);
153                 } else {
154                         ema_div = (CPUEMA_MID << P0_7_CPUEMA_SHIFT) |
155                                 (L2EMA_MID << P0_7_L2EMA_SHIFT);
156                 }
157
158                 tmp = (clk_div | ema_div | (volt_id << P0_7_VDD_SHIFT)
159                         | ((freq / FREQ_UNIT) << P0_7_FREQ_SHIFT));
160
161                 __raw_writel(tmp, dvfs_info->base + XMU_PMU_P0_7 + 4 * i);
162         }
163
164         rcu_read_unlock();
165         return 0;
166 }
167
168 static void exynos_enable_dvfs(void)
169 {
170         unsigned int tmp, i, cpu;
171         struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
172         /* Disable DVFS */
173         __raw_writel(0, dvfs_info->base + XMU_DVFS_CTRL);
174
175         /* Enable PSTATE Change Event */
176         tmp = __raw_readl(dvfs_info->base + XMU_PMUEVTEN);
177         tmp |= (1 << PSTATE_CHANGED_EVTEN_SHIFT);
178          __raw_writel(tmp, dvfs_info->base + XMU_PMUEVTEN);
179
180         /* Enable PSTATE Change IRQ */
181         tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQEN);
182         tmp |= (1 << PSTATE_CHANGED_IRQEN_SHIFT);
183          __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQEN);
184
185         /* Set initial performance index */
186         for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
187                 if (freq_table[i].frequency == dvfs_info->cur_frequency)
188                         break;
189
190         if (freq_table[i].frequency == CPUFREQ_TABLE_END) {
191                 dev_crit(dvfs_info->dev, "Boot up frequency not supported\n");
192                 /* Assign the highest frequency */
193                 i = 0;
194                 dvfs_info->cur_frequency = freq_table[i].frequency;
195         }
196
197         dev_info(dvfs_info->dev, "Setting dvfs initial frequency = %uKHZ",
198                                                 dvfs_info->cur_frequency);
199
200         for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) {
201                 tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
202                 tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
203                 tmp |= (i << C0_3_PSTATE_NEW_SHIFT);
204                 __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + cpu * 4);
205         }
206
207         /* Enable DVFS */
208         __raw_writel(1 << XMU_DVFS_CTRL_EN_SHIFT,
209                                 dvfs_info->base + XMU_DVFS_CTRL);
210 }
211
212 static unsigned int exynos_getspeed(unsigned int cpu)
213 {
214         return dvfs_info->cur_frequency;
215 }
216
217 static int exynos_target(struct cpufreq_policy *policy,
218                           unsigned int target_freq,
219                           unsigned int relation)
220 {
221         unsigned int index, tmp;
222         int ret = 0, i;
223         struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
224
225         mutex_lock(&cpufreq_lock);
226
227         ret = cpufreq_frequency_table_target(policy, freq_table,
228                                            target_freq, relation, &index);
229         if (ret)
230                 goto out;
231
232         freqs.old = dvfs_info->cur_frequency;
233         freqs.new = freq_table[index].frequency;
234
235         if (freqs.old == freqs.new)
236                 goto out;
237
238         cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
239
240         /* Set the target frequency in all C0_3_PSTATE register */
241         for_each_cpu(i, policy->cpus) {
242                 tmp = __raw_readl(dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
243                 tmp &= ~(P_VALUE_MASK << C0_3_PSTATE_NEW_SHIFT);
244                 tmp |= (index << C0_3_PSTATE_NEW_SHIFT);
245
246                 __raw_writel(tmp, dvfs_info->base + XMU_C0_3_PSTATE + i * 4);
247         }
248 out:
249         mutex_unlock(&cpufreq_lock);
250         return ret;
251 }
252
253 static void exynos_cpufreq_work(struct work_struct *work)
254 {
255         unsigned int cur_pstate, index;
256         struct cpufreq_policy *policy = cpufreq_cpu_get(0); /* boot CPU */
257         struct cpufreq_frequency_table *freq_table = dvfs_info->freq_table;
258
259         /* Ensure we can access cpufreq structures */
260         if (unlikely(dvfs_info->dvfs_enabled == false))
261                 goto skip_work;
262
263         mutex_lock(&cpufreq_lock);
264         freqs.old = dvfs_info->cur_frequency;
265
266         cur_pstate = __raw_readl(dvfs_info->base + XMU_P_STATUS);
267         if (cur_pstate >> C0_3_PSTATE_VALID_SHIFT & 0x1)
268                 index = (cur_pstate >> C0_3_PSTATE_CURR_SHIFT) & P_VALUE_MASK;
269         else
270                 index = (cur_pstate >> C0_3_PSTATE_NEW_SHIFT) & P_VALUE_MASK;
271
272         if (likely(index < dvfs_info->freq_count)) {
273                 freqs.new = freq_table[index].frequency;
274                 dvfs_info->cur_frequency = freqs.new;
275         } else {
276                 dev_crit(dvfs_info->dev, "New frequency out of range\n");
277                 freqs.new = dvfs_info->cur_frequency;
278         }
279         cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
280
281         cpufreq_cpu_put(policy);
282         mutex_unlock(&cpufreq_lock);
283 skip_work:
284         enable_irq(dvfs_info->irq);
285 }
286
287 static irqreturn_t exynos_cpufreq_irq(int irq, void *id)
288 {
289         unsigned int tmp;
290
291         tmp = __raw_readl(dvfs_info->base + XMU_PMUIRQ);
292         if (tmp >> PSTATE_CHANGED_SHIFT & 0x1) {
293                 __raw_writel(tmp, dvfs_info->base + XMU_PMUIRQ);
294                 disable_irq_nosync(irq);
295                 schedule_work(&dvfs_info->irq_work);
296         }
297         return IRQ_HANDLED;
298 }
299
300 static void exynos_sort_descend_freq_table(void)
301 {
302         struct cpufreq_frequency_table *freq_tbl = dvfs_info->freq_table;
303         int i = 0, index;
304         unsigned int tmp_freq;
305         /*
306          * Exynos5440 clock controller state logic expects the cpufreq table to
307          * be in descending order. But the OPP library constructs the table in
308          * ascending order. So to make the table descending we just need to
309          * swap the i element with the N - i element.
310          */
311         for (i = 0; i < dvfs_info->freq_count / 2; i++) {
312                 index = dvfs_info->freq_count - i - 1;
313                 tmp_freq = freq_tbl[i].frequency;
314                 freq_tbl[i].frequency = freq_tbl[index].frequency;
315                 freq_tbl[index].frequency = tmp_freq;
316         }
317 }
318
319 static int exynos_cpufreq_cpu_init(struct cpufreq_policy *policy)
320 {
321         int ret;
322
323         ret = cpufreq_table_validate_and_show(policy, dvfs_info->freq_table);
324         if (ret) {
325                 dev_err(dvfs_info->dev, "Invalid frequency table: %d\n", ret);
326                 return ret;
327         }
328
329         policy->cpuinfo.transition_latency = dvfs_info->latency;
330         cpumask_setall(policy->cpus);
331
332         return 0;
333 }
334
335 static struct cpufreq_driver exynos_driver = {
336         .flags          = CPUFREQ_STICKY,
337         .verify         = cpufreq_generic_frequency_table_verify,
338         .target         = exynos_target,
339         .get            = exynos_getspeed,
340         .init           = exynos_cpufreq_cpu_init,
341         .exit           = cpufreq_generic_exit,
342         .name           = CPUFREQ_NAME,
343 };
344
345 static const struct of_device_id exynos_cpufreq_match[] = {
346         {
347                 .compatible = "samsung,exynos5440-cpufreq",
348         },
349         {},
350 };
351 MODULE_DEVICE_TABLE(of, exynos_cpufreq_match);
352
353 static int exynos_cpufreq_probe(struct platform_device *pdev)
354 {
355         int ret = -EINVAL;
356         struct device_node *np;
357         struct resource res;
358
359         np =  pdev->dev.of_node;
360         if (!np)
361                 return -ENODEV;
362
363         dvfs_info = devm_kzalloc(&pdev->dev, sizeof(*dvfs_info), GFP_KERNEL);
364         if (!dvfs_info) {
365                 ret = -ENOMEM;
366                 goto err_put_node;
367         }
368
369         dvfs_info->dev = &pdev->dev;
370
371         ret = of_address_to_resource(np, 0, &res);
372         if (ret)
373                 goto err_put_node;
374
375         dvfs_info->base = devm_ioremap_resource(dvfs_info->dev, &res);
376         if (IS_ERR(dvfs_info->base)) {
377                 ret = PTR_ERR(dvfs_info->base);
378                 goto err_put_node;
379         }
380
381         dvfs_info->irq = irq_of_parse_and_map(np, 0);
382         if (!dvfs_info->irq) {
383                 dev_err(dvfs_info->dev, "No cpufreq irq found\n");
384                 ret = -ENODEV;
385                 goto err_put_node;
386         }
387
388         ret = of_init_opp_table(dvfs_info->dev);
389         if (ret) {
390                 dev_err(dvfs_info->dev, "failed to init OPP table: %d\n", ret);
391                 goto err_put_node;
392         }
393
394         ret = opp_init_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
395         if (ret) {
396                 dev_err(dvfs_info->dev,
397                         "failed to init cpufreq table: %d\n", ret);
398                 goto err_put_node;
399         }
400         dvfs_info->freq_count = opp_get_opp_count(dvfs_info->dev);
401         exynos_sort_descend_freq_table();
402
403         if (of_property_read_u32(np, "clock-latency", &dvfs_info->latency))
404                 dvfs_info->latency = DEF_TRANS_LATENCY;
405
406         dvfs_info->cpu_clk = devm_clk_get(dvfs_info->dev, "armclk");
407         if (IS_ERR(dvfs_info->cpu_clk)) {
408                 dev_err(dvfs_info->dev, "Failed to get cpu clock\n");
409                 ret = PTR_ERR(dvfs_info->cpu_clk);
410                 goto err_free_table;
411         }
412
413         dvfs_info->cur_frequency = clk_get_rate(dvfs_info->cpu_clk);
414         if (!dvfs_info->cur_frequency) {
415                 dev_err(dvfs_info->dev, "Failed to get clock rate\n");
416                 ret = -EINVAL;
417                 goto err_free_table;
418         }
419         dvfs_info->cur_frequency /= 1000;
420
421         INIT_WORK(&dvfs_info->irq_work, exynos_cpufreq_work);
422         ret = devm_request_irq(dvfs_info->dev, dvfs_info->irq,
423                                 exynos_cpufreq_irq, IRQF_TRIGGER_NONE,
424                                 CPUFREQ_NAME, dvfs_info);
425         if (ret) {
426                 dev_err(dvfs_info->dev, "Failed to register IRQ\n");
427                 goto err_free_table;
428         }
429
430         ret = init_div_table();
431         if (ret) {
432                 dev_err(dvfs_info->dev, "Failed to initialise div table\n");
433                 goto err_free_table;
434         }
435
436         exynos_enable_dvfs();
437         ret = cpufreq_register_driver(&exynos_driver);
438         if (ret) {
439                 dev_err(dvfs_info->dev,
440                         "%s: failed to register cpufreq driver\n", __func__);
441                 goto err_free_table;
442         }
443
444         of_node_put(np);
445         dvfs_info->dvfs_enabled = true;
446         return 0;
447
448 err_free_table:
449         opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
450 err_put_node:
451         of_node_put(np);
452         dev_err(&pdev->dev, "%s: failed initialization\n", __func__);
453         return ret;
454 }
455
456 static int exynos_cpufreq_remove(struct platform_device *pdev)
457 {
458         cpufreq_unregister_driver(&exynos_driver);
459         opp_free_cpufreq_table(dvfs_info->dev, &dvfs_info->freq_table);
460         return 0;
461 }
462
463 static struct platform_driver exynos_cpufreq_platdrv = {
464         .driver = {
465                 .name   = "exynos5440-cpufreq",
466                 .owner  = THIS_MODULE,
467                 .of_match_table = exynos_cpufreq_match,
468         },
469         .probe          = exynos_cpufreq_probe,
470         .remove         = exynos_cpufreq_remove,
471 };
472 module_platform_driver(exynos_cpufreq_platdrv);
473
474 MODULE_AUTHOR("Amit Daniel Kachhap <amit.daniel@samsung.com>");
475 MODULE_DESCRIPTION("Exynos5440 cpufreq driver");
476 MODULE_LICENSE("GPL");