]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/ia64-acpi-cpufreq.c
Merge remote-tracking branch 'net-next/master'
[karo-tx-linux.git] / drivers / cpufreq / ia64-acpi-cpufreq.c
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/cpufreq.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <asm/io.h>
19 #include <asm/uaccess.h>
20 #include <asm/pal.h>
21
22 #include <linux/acpi.h>
23 #include <acpi/processor.h>
24
25 MODULE_AUTHOR("Venkatesh Pallipadi");
26 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
27 MODULE_LICENSE("GPL");
28
29
30 struct cpufreq_acpi_io {
31         struct acpi_processor_performance       acpi_data;
32         struct cpufreq_frequency_table          *freq_table;
33         unsigned int                            resume;
34 };
35
36 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
37
38 static struct cpufreq_driver acpi_cpufreq_driver;
39
40
41 static int
42 processor_set_pstate (
43         u32     value)
44 {
45         s64 retval;
46
47         pr_debug("processor_set_pstate\n");
48
49         retval = ia64_pal_set_pstate((u64)value);
50
51         if (retval) {
52                 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
53                         value, retval);
54                 return -ENODEV;
55         }
56         return (int)retval;
57 }
58
59
60 static int
61 processor_get_pstate (
62         u32     *value)
63 {
64         u64     pstate_index = 0;
65         s64     retval;
66
67         pr_debug("processor_get_pstate\n");
68
69         retval = ia64_pal_get_pstate(&pstate_index,
70                                      PAL_GET_PSTATE_TYPE_INSTANT);
71         *value = (u32) pstate_index;
72
73         if (retval)
74                 pr_debug("Failed to get current freq with "
75                         "error 0x%lx, idx 0x%x\n", retval, *value);
76
77         return (int)retval;
78 }
79
80
81 /* To be used only after data->acpi_data is initialized */
82 static unsigned
83 extract_clock (
84         struct cpufreq_acpi_io *data,
85         unsigned value,
86         unsigned int cpu)
87 {
88         unsigned long i;
89
90         pr_debug("extract_clock\n");
91
92         for (i = 0; i < data->acpi_data.state_count; i++) {
93                 if (value == data->acpi_data.states[i].status)
94                         return data->acpi_data.states[i].core_frequency;
95         }
96         return data->acpi_data.states[i-1].core_frequency;
97 }
98
99
100 static unsigned int
101 processor_get_freq (
102         struct cpufreq_acpi_io  *data,
103         unsigned int            cpu)
104 {
105         int                     ret = 0;
106         u32                     value = 0;
107         cpumask_t               saved_mask;
108         unsigned long           clock_freq;
109
110         pr_debug("processor_get_freq\n");
111
112         saved_mask = current->cpus_allowed;
113         set_cpus_allowed_ptr(current, cpumask_of(cpu));
114         if (smp_processor_id() != cpu)
115                 goto migrate_end;
116
117         /* processor_get_pstate gets the instantaneous frequency */
118         ret = processor_get_pstate(&value);
119
120         if (ret) {
121                 set_cpus_allowed_ptr(current, &saved_mask);
122                 printk(KERN_WARNING "get performance failed with error %d\n",
123                        ret);
124                 ret = 0;
125                 goto migrate_end;
126         }
127         clock_freq = extract_clock(data, value, cpu);
128         ret = (clock_freq*1000);
129
130 migrate_end:
131         set_cpus_allowed_ptr(current, &saved_mask);
132         return ret;
133 }
134
135
136 static int
137 processor_set_freq (
138         struct cpufreq_acpi_io  *data,
139         struct cpufreq_policy   *policy,
140         int                     state)
141 {
142         int                     ret = 0;
143         u32                     value = 0;
144         struct cpufreq_freqs    cpufreq_freqs;
145         cpumask_t               saved_mask;
146         int                     retval;
147
148         pr_debug("processor_set_freq\n");
149
150         saved_mask = current->cpus_allowed;
151         set_cpus_allowed_ptr(current, cpumask_of(policy->cpu));
152         if (smp_processor_id() != policy->cpu) {
153                 retval = -EAGAIN;
154                 goto migrate_end;
155         }
156
157         if (state == data->acpi_data.state) {
158                 if (unlikely(data->resume)) {
159                         pr_debug("Called after resume, resetting to P%d\n", state);
160                         data->resume = 0;
161                 } else {
162                         pr_debug("Already at target state (P%d)\n", state);
163                         retval = 0;
164                         goto migrate_end;
165                 }
166         }
167
168         pr_debug("Transitioning from P%d to P%d\n",
169                 data->acpi_data.state, state);
170
171         /* cpufreq frequency struct */
172         cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
173         cpufreq_freqs.new = data->freq_table[state].frequency;
174
175         /* notify cpufreq */
176         cpufreq_notify_transition(policy, &cpufreq_freqs, CPUFREQ_PRECHANGE);
177
178         /*
179          * First we write the target state's 'control' value to the
180          * control_register.
181          */
182
183         value = (u32) data->acpi_data.states[state].control;
184
185         pr_debug("Transitioning to state: 0x%08x\n", value);
186
187         ret = processor_set_pstate(value);
188         if (ret) {
189                 unsigned int tmp = cpufreq_freqs.new;
190                 cpufreq_notify_transition(policy, &cpufreq_freqs,
191                                 CPUFREQ_POSTCHANGE);
192                 cpufreq_freqs.new = cpufreq_freqs.old;
193                 cpufreq_freqs.old = tmp;
194                 cpufreq_notify_transition(policy, &cpufreq_freqs,
195                                 CPUFREQ_PRECHANGE);
196                 cpufreq_notify_transition(policy, &cpufreq_freqs,
197                                 CPUFREQ_POSTCHANGE);
198                 printk(KERN_WARNING "Transition failed with error %d\n", ret);
199                 retval = -ENODEV;
200                 goto migrate_end;
201         }
202
203         cpufreq_notify_transition(policy, &cpufreq_freqs, CPUFREQ_POSTCHANGE);
204
205         data->acpi_data.state = state;
206
207         retval = 0;
208
209 migrate_end:
210         set_cpus_allowed_ptr(current, &saved_mask);
211         return (retval);
212 }
213
214
215 static unsigned int
216 acpi_cpufreq_get (
217         unsigned int            cpu)
218 {
219         struct cpufreq_acpi_io *data = acpi_io_data[cpu];
220
221         pr_debug("acpi_cpufreq_get\n");
222
223         return processor_get_freq(data, cpu);
224 }
225
226
227 static int
228 acpi_cpufreq_target (
229         struct cpufreq_policy   *policy,
230         unsigned int target_freq,
231         unsigned int relation)
232 {
233         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
234         unsigned int next_state = 0;
235         unsigned int result = 0;
236
237         pr_debug("acpi_cpufreq_setpolicy\n");
238
239         result = cpufreq_frequency_table_target(policy,
240                         data->freq_table, target_freq, relation, &next_state);
241         if (result)
242                 return (result);
243
244         result = processor_set_freq(data, policy, next_state);
245
246         return (result);
247 }
248
249
250 static int
251 acpi_cpufreq_cpu_init (
252         struct cpufreq_policy   *policy)
253 {
254         unsigned int            i;
255         unsigned int            cpu = policy->cpu;
256         struct cpufreq_acpi_io  *data;
257         unsigned int            result = 0;
258
259         pr_debug("acpi_cpufreq_cpu_init\n");
260
261         data = kzalloc(sizeof(*data), GFP_KERNEL);
262         if (!data)
263                 return (-ENOMEM);
264
265         acpi_io_data[cpu] = data;
266
267         result = acpi_processor_register_performance(&data->acpi_data, cpu);
268
269         if (result)
270                 goto err_free;
271
272         /* capability check */
273         if (data->acpi_data.state_count <= 1) {
274                 pr_debug("No P-States\n");
275                 result = -ENODEV;
276                 goto err_unreg;
277         }
278
279         if ((data->acpi_data.control_register.space_id !=
280                                         ACPI_ADR_SPACE_FIXED_HARDWARE) ||
281             (data->acpi_data.status_register.space_id !=
282                                         ACPI_ADR_SPACE_FIXED_HARDWARE)) {
283                 pr_debug("Unsupported address space [%d, %d]\n",
284                         (u32) (data->acpi_data.control_register.space_id),
285                         (u32) (data->acpi_data.status_register.space_id));
286                 result = -ENODEV;
287                 goto err_unreg;
288         }
289
290         /* alloc freq_table */
291         data->freq_table = kmalloc(sizeof(*data->freq_table) *
292                                    (data->acpi_data.state_count + 1),
293                                    GFP_KERNEL);
294         if (!data->freq_table) {
295                 result = -ENOMEM;
296                 goto err_unreg;
297         }
298
299         /* detect transition latency */
300         policy->cpuinfo.transition_latency = 0;
301         for (i=0; i<data->acpi_data.state_count; i++) {
302                 if ((data->acpi_data.states[i].transition_latency * 1000) >
303                     policy->cpuinfo.transition_latency) {
304                         policy->cpuinfo.transition_latency =
305                             data->acpi_data.states[i].transition_latency * 1000;
306                 }
307         }
308
309         /* table init */
310         for (i = 0; i <= data->acpi_data.state_count; i++)
311         {
312                 data->freq_table[i].driver_data = i;
313                 if (i < data->acpi_data.state_count) {
314                         data->freq_table[i].frequency =
315                               data->acpi_data.states[i].core_frequency * 1000;
316                 } else {
317                         data->freq_table[i].frequency = CPUFREQ_TABLE_END;
318                 }
319         }
320
321         result = cpufreq_table_validate_and_show(policy, data->freq_table);
322         if (result) {
323                 goto err_freqfree;
324         }
325
326         /* notify BIOS that we exist */
327         acpi_processor_notify_smm(THIS_MODULE);
328
329         printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
330                "activated.\n", cpu);
331
332         for (i = 0; i < data->acpi_data.state_count; i++)
333                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
334                         (i == data->acpi_data.state?'*':' '), i,
335                         (u32) data->acpi_data.states[i].core_frequency,
336                         (u32) data->acpi_data.states[i].power,
337                         (u32) data->acpi_data.states[i].transition_latency,
338                         (u32) data->acpi_data.states[i].bus_master_latency,
339                         (u32) data->acpi_data.states[i].status,
340                         (u32) data->acpi_data.states[i].control);
341
342         /* the first call to ->target() should result in us actually
343          * writing something to the appropriate registers. */
344         data->resume = 1;
345
346         return (result);
347
348  err_freqfree:
349         kfree(data->freq_table);
350  err_unreg:
351         acpi_processor_unregister_performance(&data->acpi_data, cpu);
352  err_free:
353         kfree(data);
354         acpi_io_data[cpu] = NULL;
355
356         return (result);
357 }
358
359
360 static int
361 acpi_cpufreq_cpu_exit (
362         struct cpufreq_policy   *policy)
363 {
364         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
365
366         pr_debug("acpi_cpufreq_cpu_exit\n");
367
368         if (data) {
369                 cpufreq_frequency_table_put_attr(policy->cpu);
370                 acpi_io_data[policy->cpu] = NULL;
371                 acpi_processor_unregister_performance(&data->acpi_data,
372                                                       policy->cpu);
373                 kfree(data);
374         }
375
376         return (0);
377 }
378
379
380 static struct cpufreq_driver acpi_cpufreq_driver = {
381         .verify         = cpufreq_generic_frequency_table_verify,
382         .target         = acpi_cpufreq_target,
383         .get            = acpi_cpufreq_get,
384         .init           = acpi_cpufreq_cpu_init,
385         .exit           = acpi_cpufreq_cpu_exit,
386         .name           = "acpi-cpufreq",
387         .attr           = cpufreq_generic_attr,
388 };
389
390
391 static int __init
392 acpi_cpufreq_init (void)
393 {
394         pr_debug("acpi_cpufreq_init\n");
395
396         return cpufreq_register_driver(&acpi_cpufreq_driver);
397 }
398
399
400 static void __exit
401 acpi_cpufreq_exit (void)
402 {
403         pr_debug("acpi_cpufreq_exit\n");
404
405         cpufreq_unregister_driver(&acpi_cpufreq_driver);
406         return;
407 }
408
409
410 late_initcall(acpi_cpufreq_init);
411 module_exit(acpi_cpufreq_exit);
412