]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge tag 'for-linus-4.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41
42 #define ATOM_RATIOS             0x66a
43 #define ATOM_VIDS               0x66b
44 #define ATOM_TURBO_RATIOS       0x66c
45 #define ATOM_TURBO_VIDS         0x66d
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68         return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73         int mask, ret;
74
75         ret = fp_toint(x);
76         mask = (1 << FRAC_BITS) - 1;
77         if (x & mask)
78                 ret += 1;
79         return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @scaling:            Scaling factor to  convert frequency to cpufreq
128  *                      frequency units
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     scaling;
141         int     turbo_pstate;
142         unsigned int max_freq;
143         unsigned int turbo_freq;
144 };
145
146 /**
147  * struct vid_data -    Stores voltage information data
148  * @min:                VID data for this platform corresponding to
149  *                      the lowest P state
150  * @max:                VID data corresponding to the highest P State.
151  * @turbo:              VID data for turbo P state
152  * @ratio:              Ratio of (vid max - vid min) /
153  *                      (max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160         int min;
161         int max;
162         int turbo;
163         int32_t ratio;
164 };
165
166 /**
167  * struct _pid -        Stores PID data
168  * @setpoint:           Target set point for busyness or performance
169  * @integral:           Storage for accumulated error values
170  * @p_gain:             PID proportional gain
171  * @i_gain:             PID integral gain
172  * @d_gain:             PID derivative gain
173  * @deadband:           PID deadband
174  * @last_err:           Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179         int setpoint;
180         int32_t integral;
181         int32_t p_gain;
182         int32_t i_gain;
183         int32_t d_gain;
184         int deadband;
185         int32_t last_err;
186 };
187
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @no_turbo:           User requested turbo state from intel_pstate sysfs
191  * @turbo_disabled:     Platform turbo status either from msr
192  *                      MSR_IA32_MISC_ENABLE or when maximum available pstate
193  *                      matches the maximum turbo pstate
194  * @max_perf_pct:       Effective maximum performance limit in percentage, this
195  *                      is minimum of either limits enforced by cpufreq policy
196  *                      or limits from user set limits via intel_pstate sysfs
197  * @min_perf_pct:       Effective minimum performance limit in percentage, this
198  *                      is maximum of either limits enforced by cpufreq policy
199  *                      or limits from user set limits via intel_pstate sysfs
200  * @max_perf:           This is a scaled value between 0 to 255 for max_perf_pct
201  *                      This value is used to limit max pstate
202  * @min_perf:           This is a scaled value between 0 to 255 for min_perf_pct
203  *                      This value is used to limit min pstate
204  * @max_policy_pct:     The maximum performance in percentage enforced by
205  *                      cpufreq setpolicy interface
206  * @max_sysfs_pct:      The maximum performance in percentage enforced by
207  *                      intel pstate sysfs interface, unused when per cpu
208  *                      controls are enforced
209  * @min_policy_pct:     The minimum performance in percentage enforced by
210  *                      cpufreq setpolicy interface
211  * @min_sysfs_pct:      The minimum performance in percentage enforced by
212  *                      intel pstate sysfs interface, unused when per cpu
213  *                      controls are enforced
214  *
215  * Storage for user and policy defined limits.
216  */
217 struct perf_limits {
218         int no_turbo;
219         int turbo_disabled;
220         int max_perf_pct;
221         int min_perf_pct;
222         int32_t max_perf;
223         int32_t min_perf;
224         int max_policy_pct;
225         int max_sysfs_pct;
226         int min_policy_pct;
227         int min_sysfs_pct;
228 };
229
230 /**
231  * struct cpudata -     Per CPU instance data storage
232  * @cpu:                CPU number for this instance data
233  * @policy:             CPUFreq policy value
234  * @update_util:        CPUFreq utility callback information
235  * @update_util_set:    CPUFreq utility callback is set
236  * @iowait_boost:       iowait-related boost fraction
237  * @last_update:        Time of the last update.
238  * @pstate:             Stores P state limits for this CPU
239  * @vid:                Stores VID limits for this CPU
240  * @pid:                Stores PID parameters for this CPU
241  * @last_sample_time:   Last Sample time
242  * @prev_aperf:         Last APERF value read from APERF MSR
243  * @prev_mperf:         Last MPERF value read from MPERF MSR
244  * @prev_tsc:           Last timestamp counter (TSC) value
245  * @prev_cummulative_iowait: IO Wait time difference from last and
246  *                      current sample
247  * @sample:             Storage for storing last Sample data
248  * @perf_limits:        Pointer to perf_limit unique to this CPU
249  *                      Not all field in the structure are applicable
250  *                      when per cpu controls are enforced
251  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
252  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
253  * @epp_powersave:      Last saved HWP energy performance preference
254  *                      (EPP) or energy performance bias (EPB),
255  *                      when policy switched to performance
256  * @epp_policy:         Last saved policy used to set EPP/EPB
257  * @epp_default:        Power on default HWP energy performance
258  *                      preference/bias
259  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
260  *                      operation
261  *
262  * This structure stores per CPU instance data for all CPUs.
263  */
264 struct cpudata {
265         int cpu;
266
267         unsigned int policy;
268         struct update_util_data update_util;
269         bool   update_util_set;
270
271         struct pstate_data pstate;
272         struct vid_data vid;
273         struct _pid pid;
274
275         u64     last_update;
276         u64     last_sample_time;
277         u64     prev_aperf;
278         u64     prev_mperf;
279         u64     prev_tsc;
280         u64     prev_cummulative_iowait;
281         struct sample sample;
282         struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284         struct acpi_processor_performance acpi_perf_data;
285         bool valid_pss_table;
286 #endif
287         unsigned int iowait_boost;
288         s16 epp_powersave;
289         s16 epp_policy;
290         s16 epp_default;
291         s16 epp_saved;
292 };
293
294 static struct cpudata **all_cpu_data;
295
296 /**
297  * struct pstate_adjust_policy - Stores static PID configuration data
298  * @sample_rate_ms:     PID calculation sample rate in ms
299  * @sample_rate_ns:     Sample rate calculation in ns
300  * @deadband:           PID deadband
301  * @setpoint:           PID Setpoint
302  * @p_gain_pct:         PID proportional gain
303  * @i_gain_pct:         PID integral gain
304  * @d_gain_pct:         PID derivative gain
305  *
306  * Stores per CPU model static PID configuration data.
307  */
308 struct pstate_adjust_policy {
309         int sample_rate_ms;
310         s64 sample_rate_ns;
311         int deadband;
312         int setpoint;
313         int p_gain_pct;
314         int d_gain_pct;
315         int i_gain_pct;
316 };
317
318 /**
319  * struct pstate_funcs - Per CPU model specific callbacks
320  * @get_max:            Callback to get maximum non turbo effective P state
321  * @get_max_physical:   Callback to get maximum non turbo physical P state
322  * @get_min:            Callback to get minimum P state
323  * @get_turbo:          Callback to get turbo P state
324  * @get_scaling:        Callback to get frequency scaling factor
325  * @get_val:            Callback to convert P state to actual MSR write value
326  * @get_vid:            Callback to get VID data for Atom platforms
327  * @get_target_pstate:  Callback to a function to calculate next P state to use
328  *
329  * Core and Atom CPU models have different way to get P State limits. This
330  * structure is used to store those callbacks.
331  */
332 struct pstate_funcs {
333         int (*get_max)(void);
334         int (*get_max_physical)(void);
335         int (*get_min)(void);
336         int (*get_turbo)(void);
337         int (*get_scaling)(void);
338         u64 (*get_val)(struct cpudata*, int pstate);
339         void (*get_vid)(struct cpudata *);
340         int32_t (*get_target_pstate)(struct cpudata *);
341 };
342
343 /**
344  * struct cpu_defaults- Per CPU model default config data
345  * @pid_policy: PID config data
346  * @funcs:              Callback function data
347  */
348 struct cpu_defaults {
349         struct pstate_adjust_policy pid_policy;
350         struct pstate_funcs funcs;
351 };
352
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360
361 #ifdef CONFIG_ACPI
362 static bool acpi_ppc;
363 #endif
364
365 static struct perf_limits performance_limits = {
366         .no_turbo = 0,
367         .turbo_disabled = 0,
368         .max_perf_pct = 100,
369         .max_perf = int_ext_tofp(1),
370         .min_perf_pct = 100,
371         .min_perf = int_ext_tofp(1),
372         .max_policy_pct = 100,
373         .max_sysfs_pct = 100,
374         .min_policy_pct = 0,
375         .min_sysfs_pct = 0,
376 };
377
378 static struct perf_limits powersave_limits = {
379         .no_turbo = 0,
380         .turbo_disabled = 0,
381         .max_perf_pct = 100,
382         .max_perf = int_ext_tofp(1),
383         .min_perf_pct = 0,
384         .min_perf = 0,
385         .max_policy_pct = 100,
386         .max_sysfs_pct = 100,
387         .min_policy_pct = 0,
388         .min_sysfs_pct = 0,
389 };
390
391 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392 static struct perf_limits *limits = &performance_limits;
393 #else
394 static struct perf_limits *limits = &powersave_limits;
395 #endif
396
397 static DEFINE_MUTEX(intel_pstate_limits_lock);
398
399 #ifdef CONFIG_ACPI
400
401 static bool intel_pstate_get_ppc_enable_status(void)
402 {
403         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
404             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
405                 return true;
406
407         return acpi_ppc;
408 }
409
410 #ifdef CONFIG_ACPI_CPPC_LIB
411
412 /* The work item is needed to avoid CPU hotplug locking issues */
413 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
414 {
415         sched_set_itmt_support();
416 }
417
418 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
419
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422         struct cppc_perf_caps cppc_perf;
423         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
424         int ret;
425
426         ret = cppc_get_perf_caps(cpu, &cppc_perf);
427         if (ret)
428                 return;
429
430         /*
431          * The priorities can be set regardless of whether or not
432          * sched_set_itmt_support(true) has been called and it is valid to
433          * update them at any time after it has been called.
434          */
435         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
436
437         if (max_highest_perf <= min_highest_perf) {
438                 if (cppc_perf.highest_perf > max_highest_perf)
439                         max_highest_perf = cppc_perf.highest_perf;
440
441                 if (cppc_perf.highest_perf < min_highest_perf)
442                         min_highest_perf = cppc_perf.highest_perf;
443
444                 if (max_highest_perf > min_highest_perf) {
445                         /*
446                          * This code can be run during CPU online under the
447                          * CPU hotplug locks, so sched_set_itmt_support()
448                          * cannot be called from here.  Queue up a work item
449                          * to invoke it.
450                          */
451                         schedule_work(&sched_itmt_work);
452                 }
453         }
454 }
455 #else
456 static void intel_pstate_set_itmt_prio(int cpu)
457 {
458 }
459 #endif
460
461 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
462 {
463         struct cpudata *cpu;
464         int ret;
465         int i;
466
467         if (hwp_active) {
468                 intel_pstate_set_itmt_prio(policy->cpu);
469                 return;
470         }
471
472         if (!intel_pstate_get_ppc_enable_status())
473                 return;
474
475         cpu = all_cpu_data[policy->cpu];
476
477         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
478                                                   policy->cpu);
479         if (ret)
480                 return;
481
482         /*
483          * Check if the control value in _PSS is for PERF_CTL MSR, which should
484          * guarantee that the states returned by it map to the states in our
485          * list directly.
486          */
487         if (cpu->acpi_perf_data.control_register.space_id !=
488                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
489                 goto err;
490
491         /*
492          * If there is only one entry _PSS, simply ignore _PSS and continue as
493          * usual without taking _PSS into account
494          */
495         if (cpu->acpi_perf_data.state_count < 2)
496                 goto err;
497
498         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
499         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
500                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
501                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
502                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
503                          (u32) cpu->acpi_perf_data.states[i].power,
504                          (u32) cpu->acpi_perf_data.states[i].control);
505         }
506
507         /*
508          * The _PSS table doesn't contain whole turbo frequency range.
509          * This just contains +1 MHZ above the max non turbo frequency,
510          * with control value corresponding to max turbo ratio. But
511          * when cpufreq set policy is called, it will call with this
512          * max frequency, which will cause a reduced performance as
513          * this driver uses real max turbo frequency as the max
514          * frequency. So correct this frequency in _PSS table to
515          * correct max turbo frequency based on the turbo state.
516          * Also need to convert to MHz as _PSS freq is in MHz.
517          */
518         if (!limits->turbo_disabled)
519                 cpu->acpi_perf_data.states[0].core_frequency =
520                                         policy->cpuinfo.max_freq / 1000;
521         cpu->valid_pss_table = true;
522         pr_debug("_PPC limits will be enforced\n");
523
524         return;
525
526  err:
527         cpu->valid_pss_table = false;
528         acpi_processor_unregister_performance(policy->cpu);
529 }
530
531 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
532 {
533         struct cpudata *cpu;
534
535         cpu = all_cpu_data[policy->cpu];
536         if (!cpu->valid_pss_table)
537                 return;
538
539         acpi_processor_unregister_performance(policy->cpu);
540 }
541
542 #else
543 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
544 {
545 }
546
547 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
548 {
549 }
550 #endif
551
552 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
553                              int deadband, int integral) {
554         pid->setpoint = int_tofp(setpoint);
555         pid->deadband  = int_tofp(deadband);
556         pid->integral  = int_tofp(integral);
557         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
558 }
559
560 static inline void pid_p_gain_set(struct _pid *pid, int percent)
561 {
562         pid->p_gain = div_fp(percent, 100);
563 }
564
565 static inline void pid_i_gain_set(struct _pid *pid, int percent)
566 {
567         pid->i_gain = div_fp(percent, 100);
568 }
569
570 static inline void pid_d_gain_set(struct _pid *pid, int percent)
571 {
572         pid->d_gain = div_fp(percent, 100);
573 }
574
575 static signed int pid_calc(struct _pid *pid, int32_t busy)
576 {
577         signed int result;
578         int32_t pterm, dterm, fp_error;
579         int32_t integral_limit;
580
581         fp_error = pid->setpoint - busy;
582
583         if (abs(fp_error) <= pid->deadband)
584                 return 0;
585
586         pterm = mul_fp(pid->p_gain, fp_error);
587
588         pid->integral += fp_error;
589
590         /*
591          * We limit the integral here so that it will never
592          * get higher than 30.  This prevents it from becoming
593          * too large an input over long periods of time and allows
594          * it to get factored out sooner.
595          *
596          * The value of 30 was chosen through experimentation.
597          */
598         integral_limit = int_tofp(30);
599         if (pid->integral > integral_limit)
600                 pid->integral = integral_limit;
601         if (pid->integral < -integral_limit)
602                 pid->integral = -integral_limit;
603
604         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
605         pid->last_err = fp_error;
606
607         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
608         result = result + (1 << (FRAC_BITS-1));
609         return (signed int)fp_toint(result);
610 }
611
612 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
613 {
614         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
615         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
616         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
617
618         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
619 }
620
621 static inline void intel_pstate_reset_all_pid(void)
622 {
623         unsigned int cpu;
624
625         for_each_online_cpu(cpu) {
626                 if (all_cpu_data[cpu])
627                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
628         }
629 }
630
631 static inline void update_turbo_state(void)
632 {
633         u64 misc_en;
634         struct cpudata *cpu;
635
636         cpu = all_cpu_data[0];
637         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
638         limits->turbo_disabled =
639                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
640                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
641 }
642
643 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
644 {
645         u64 epb;
646         int ret;
647
648         if (!static_cpu_has(X86_FEATURE_EPB))
649                 return -ENXIO;
650
651         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
652         if (ret)
653                 return (s16)ret;
654
655         return (s16)(epb & 0x0f);
656 }
657
658 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
659 {
660         s16 epp;
661
662         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
663                 /*
664                  * When hwp_req_data is 0, means that caller didn't read
665                  * MSR_HWP_REQUEST, so need to read and get EPP.
666                  */
667                 if (!hwp_req_data) {
668                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
669                                             &hwp_req_data);
670                         if (epp)
671                                 return epp;
672                 }
673                 epp = (hwp_req_data >> 24) & 0xff;
674         } else {
675                 /* When there is no EPP present, HWP uses EPB settings */
676                 epp = intel_pstate_get_epb(cpu_data);
677         }
678
679         return epp;
680 }
681
682 static int intel_pstate_set_epb(int cpu, s16 pref)
683 {
684         u64 epb;
685         int ret;
686
687         if (!static_cpu_has(X86_FEATURE_EPB))
688                 return -ENXIO;
689
690         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
691         if (ret)
692                 return ret;
693
694         epb = (epb & ~0x0f) | pref;
695         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
696
697         return 0;
698 }
699
700 /*
701  * EPP/EPB display strings corresponding to EPP index in the
702  * energy_perf_strings[]
703  *      index           String
704  *-------------------------------------
705  *      0               default
706  *      1               performance
707  *      2               balance_performance
708  *      3               balance_power
709  *      4               power
710  */
711 static const char * const energy_perf_strings[] = {
712         "default",
713         "performance",
714         "balance_performance",
715         "balance_power",
716         "power",
717         NULL
718 };
719
720 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
721 {
722         s16 epp;
723         int index = -EINVAL;
724
725         epp = intel_pstate_get_epp(cpu_data, 0);
726         if (epp < 0)
727                 return epp;
728
729         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
730                 /*
731                  * Range:
732                  *      0x00-0x3F       :       Performance
733                  *      0x40-0x7F       :       Balance performance
734                  *      0x80-0xBF       :       Balance power
735                  *      0xC0-0xFF       :       Power
736                  * The EPP is a 8 bit value, but our ranges restrict the
737                  * value which can be set. Here only using top two bits
738                  * effectively.
739                  */
740                 index = (epp >> 6) + 1;
741         } else if (static_cpu_has(X86_FEATURE_EPB)) {
742                 /*
743                  * Range:
744                  *      0x00-0x03       :       Performance
745                  *      0x04-0x07       :       Balance performance
746                  *      0x08-0x0B       :       Balance power
747                  *      0x0C-0x0F       :       Power
748                  * The EPB is a 4 bit value, but our ranges restrict the
749                  * value which can be set. Here only using top two bits
750                  * effectively.
751                  */
752                 index = (epp >> 2) + 1;
753         }
754
755         return index;
756 }
757
758 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
759                                               int pref_index)
760 {
761         int epp = -EINVAL;
762         int ret;
763
764         if (!pref_index)
765                 epp = cpu_data->epp_default;
766
767         mutex_lock(&intel_pstate_limits_lock);
768
769         if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
770                 u64 value;
771
772                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
773                 if (ret)
774                         goto return_pref;
775
776                 value &= ~GENMASK_ULL(31, 24);
777
778                 /*
779                  * If epp is not default, convert from index into
780                  * energy_perf_strings to epp value, by shifting 6
781                  * bits left to use only top two bits in epp.
782                  * The resultant epp need to shifted by 24 bits to
783                  * epp position in MSR_HWP_REQUEST.
784                  */
785                 if (epp == -EINVAL)
786                         epp = (pref_index - 1) << 6;
787
788                 value |= (u64)epp << 24;
789                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
790         } else {
791                 if (epp == -EINVAL)
792                         epp = (pref_index - 1) << 2;
793                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
794         }
795 return_pref:
796         mutex_unlock(&intel_pstate_limits_lock);
797
798         return ret;
799 }
800
801 static ssize_t show_energy_performance_available_preferences(
802                                 struct cpufreq_policy *policy, char *buf)
803 {
804         int i = 0;
805         int ret = 0;
806
807         while (energy_perf_strings[i] != NULL)
808                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
809
810         ret += sprintf(&buf[ret], "\n");
811
812         return ret;
813 }
814
815 cpufreq_freq_attr_ro(energy_performance_available_preferences);
816
817 static ssize_t store_energy_performance_preference(
818                 struct cpufreq_policy *policy, const char *buf, size_t count)
819 {
820         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
821         char str_preference[21];
822         int ret, i = 0;
823
824         ret = sscanf(buf, "%20s", str_preference);
825         if (ret != 1)
826                 return -EINVAL;
827
828         while (energy_perf_strings[i] != NULL) {
829                 if (!strcmp(str_preference, energy_perf_strings[i])) {
830                         intel_pstate_set_energy_pref_index(cpu_data, i);
831                         return count;
832                 }
833                 ++i;
834         }
835
836         return -EINVAL;
837 }
838
839 static ssize_t show_energy_performance_preference(
840                                 struct cpufreq_policy *policy, char *buf)
841 {
842         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
843         int preference;
844
845         preference = intel_pstate_get_energy_pref_index(cpu_data);
846         if (preference < 0)
847                 return preference;
848
849         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
850 }
851
852 cpufreq_freq_attr_rw(energy_performance_preference);
853
854 static struct freq_attr *hwp_cpufreq_attrs[] = {
855         &energy_performance_preference,
856         &energy_performance_available_preferences,
857         NULL,
858 };
859
860 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
861 {
862         int min, hw_min, max, hw_max, cpu, range, adj_range;
863         struct perf_limits *perf_limits = limits;
864         u64 value, cap;
865
866         for_each_cpu(cpu, cpumask) {
867                 int max_perf_pct, min_perf_pct;
868                 struct cpudata *cpu_data = all_cpu_data[cpu];
869                 s16 epp;
870
871                 if (per_cpu_limits)
872                         perf_limits = all_cpu_data[cpu]->perf_limits;
873
874                 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
875                 hw_min = HWP_LOWEST_PERF(cap);
876                 hw_max = HWP_HIGHEST_PERF(cap);
877                 range = hw_max - hw_min;
878
879                 max_perf_pct = perf_limits->max_perf_pct;
880                 min_perf_pct = perf_limits->min_perf_pct;
881
882                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
883                 adj_range = min_perf_pct * range / 100;
884                 min = hw_min + adj_range;
885                 value &= ~HWP_MIN_PERF(~0L);
886                 value |= HWP_MIN_PERF(min);
887
888                 adj_range = max_perf_pct * range / 100;
889                 max = hw_min + adj_range;
890                 if (limits->no_turbo) {
891                         hw_max = HWP_GUARANTEED_PERF(cap);
892                         if (hw_max < max)
893                                 max = hw_max;
894                 }
895
896                 value &= ~HWP_MAX_PERF(~0L);
897                 value |= HWP_MAX_PERF(max);
898
899                 if (cpu_data->epp_policy == cpu_data->policy)
900                         goto skip_epp;
901
902                 cpu_data->epp_policy = cpu_data->policy;
903
904                 if (cpu_data->epp_saved >= 0) {
905                         epp = cpu_data->epp_saved;
906                         cpu_data->epp_saved = -EINVAL;
907                         goto update_epp;
908                 }
909
910                 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
911                         epp = intel_pstate_get_epp(cpu_data, value);
912                         cpu_data->epp_powersave = epp;
913                         /* If EPP read was failed, then don't try to write */
914                         if (epp < 0)
915                                 goto skip_epp;
916
917
918                         epp = 0;
919                 } else {
920                         /* skip setting EPP, when saved value is invalid */
921                         if (cpu_data->epp_powersave < 0)
922                                 goto skip_epp;
923
924                         /*
925                          * No need to restore EPP when it is not zero. This
926                          * means:
927                          *  - Policy is not changed
928                          *  - user has manually changed
929                          *  - Error reading EPB
930                          */
931                         epp = intel_pstate_get_epp(cpu_data, value);
932                         if (epp)
933                                 goto skip_epp;
934
935                         epp = cpu_data->epp_powersave;
936                 }
937 update_epp:
938                 if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
939                         value &= ~GENMASK_ULL(31, 24);
940                         value |= (u64)epp << 24;
941                 } else {
942                         intel_pstate_set_epb(cpu, epp);
943                 }
944 skip_epp:
945                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
946         }
947 }
948
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
950 {
951         if (hwp_active)
952                 intel_pstate_hwp_set(policy->cpus);
953
954         return 0;
955 }
956
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
958 {
959         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
960
961         if (!hwp_active)
962                 return 0;
963
964         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
965
966         return 0;
967 }
968
969 static int intel_pstate_resume(struct cpufreq_policy *policy)
970 {
971         if (!hwp_active)
972                 return 0;
973
974         all_cpu_data[policy->cpu]->epp_policy = 0;
975
976         return intel_pstate_hwp_set_policy(policy);
977 }
978
979 static void intel_pstate_hwp_set_online_cpus(void)
980 {
981         get_online_cpus();
982         intel_pstate_hwp_set(cpu_online_mask);
983         put_online_cpus();
984 }
985
986 /************************** debugfs begin ************************/
987 static int pid_param_set(void *data, u64 val)
988 {
989         *(u32 *)data = val;
990         intel_pstate_reset_all_pid();
991         return 0;
992 }
993
994 static int pid_param_get(void *data, u64 *val)
995 {
996         *val = *(u32 *)data;
997         return 0;
998 }
999 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
1000
1001 struct pid_param {
1002         char *name;
1003         void *value;
1004 };
1005
1006 static struct pid_param pid_files[] = {
1007         {"sample_rate_ms", &pid_params.sample_rate_ms},
1008         {"d_gain_pct", &pid_params.d_gain_pct},
1009         {"i_gain_pct", &pid_params.i_gain_pct},
1010         {"deadband", &pid_params.deadband},
1011         {"setpoint", &pid_params.setpoint},
1012         {"p_gain_pct", &pid_params.p_gain_pct},
1013         {NULL, NULL}
1014 };
1015
1016 static void __init intel_pstate_debug_expose_params(void)
1017 {
1018         struct dentry *debugfs_parent;
1019         int i = 0;
1020
1021         if (hwp_active ||
1022             pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load)
1023                 return;
1024
1025         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1026         if (IS_ERR_OR_NULL(debugfs_parent))
1027                 return;
1028         while (pid_files[i].name) {
1029                 debugfs_create_file(pid_files[i].name, 0660,
1030                                     debugfs_parent, pid_files[i].value,
1031                                     &fops_pid_param);
1032                 i++;
1033         }
1034 }
1035
1036 /************************** debugfs end ************************/
1037
1038 /************************** sysfs begin ************************/
1039 #define show_one(file_name, object)                                     \
1040         static ssize_t show_##file_name                                 \
1041         (struct kobject *kobj, struct attribute *attr, char *buf)       \
1042         {                                                               \
1043                 return sprintf(buf, "%u\n", limits->object);            \
1044         }
1045
1046 static ssize_t show_turbo_pct(struct kobject *kobj,
1047                                 struct attribute *attr, char *buf)
1048 {
1049         struct cpudata *cpu;
1050         int total, no_turbo, turbo_pct;
1051         uint32_t turbo_fp;
1052
1053         cpu = all_cpu_data[0];
1054
1055         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1056         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1057         turbo_fp = div_fp(no_turbo, total);
1058         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1059         return sprintf(buf, "%u\n", turbo_pct);
1060 }
1061
1062 static ssize_t show_num_pstates(struct kobject *kobj,
1063                                 struct attribute *attr, char *buf)
1064 {
1065         struct cpudata *cpu;
1066         int total;
1067
1068         cpu = all_cpu_data[0];
1069         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070         return sprintf(buf, "%u\n", total);
1071 }
1072
1073 static ssize_t show_no_turbo(struct kobject *kobj,
1074                              struct attribute *attr, char *buf)
1075 {
1076         ssize_t ret;
1077
1078         update_turbo_state();
1079         if (limits->turbo_disabled)
1080                 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1081         else
1082                 ret = sprintf(buf, "%u\n", limits->no_turbo);
1083
1084         return ret;
1085 }
1086
1087 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1088                               const char *buf, size_t count)
1089 {
1090         unsigned int input;
1091         int ret;
1092
1093         ret = sscanf(buf, "%u", &input);
1094         if (ret != 1)
1095                 return -EINVAL;
1096
1097         mutex_lock(&intel_pstate_limits_lock);
1098
1099         update_turbo_state();
1100         if (limits->turbo_disabled) {
1101                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1102                 mutex_unlock(&intel_pstate_limits_lock);
1103                 return -EPERM;
1104         }
1105
1106         limits->no_turbo = clamp_t(int, input, 0, 1);
1107
1108         if (hwp_active)
1109                 intel_pstate_hwp_set_online_cpus();
1110
1111         mutex_unlock(&intel_pstate_limits_lock);
1112
1113         return count;
1114 }
1115
1116 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1117                                   const char *buf, size_t count)
1118 {
1119         unsigned int input;
1120         int ret;
1121
1122         ret = sscanf(buf, "%u", &input);
1123         if (ret != 1)
1124                 return -EINVAL;
1125
1126         mutex_lock(&intel_pstate_limits_lock);
1127
1128         limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1129         limits->max_perf_pct = min(limits->max_policy_pct,
1130                                    limits->max_sysfs_pct);
1131         limits->max_perf_pct = max(limits->min_policy_pct,
1132                                    limits->max_perf_pct);
1133         limits->max_perf_pct = max(limits->min_perf_pct,
1134                                    limits->max_perf_pct);
1135         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1136
1137         if (hwp_active)
1138                 intel_pstate_hwp_set_online_cpus();
1139
1140         mutex_unlock(&intel_pstate_limits_lock);
1141
1142         return count;
1143 }
1144
1145 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1146                                   const char *buf, size_t count)
1147 {
1148         unsigned int input;
1149         int ret;
1150
1151         ret = sscanf(buf, "%u", &input);
1152         if (ret != 1)
1153                 return -EINVAL;
1154
1155         mutex_lock(&intel_pstate_limits_lock);
1156
1157         limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1158         limits->min_perf_pct = max(limits->min_policy_pct,
1159                                    limits->min_sysfs_pct);
1160         limits->min_perf_pct = min(limits->max_policy_pct,
1161                                    limits->min_perf_pct);
1162         limits->min_perf_pct = min(limits->max_perf_pct,
1163                                    limits->min_perf_pct);
1164         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1165
1166         if (hwp_active)
1167                 intel_pstate_hwp_set_online_cpus();
1168
1169         mutex_unlock(&intel_pstate_limits_lock);
1170
1171         return count;
1172 }
1173
1174 show_one(max_perf_pct, max_perf_pct);
1175 show_one(min_perf_pct, min_perf_pct);
1176
1177 define_one_global_rw(no_turbo);
1178 define_one_global_rw(max_perf_pct);
1179 define_one_global_rw(min_perf_pct);
1180 define_one_global_ro(turbo_pct);
1181 define_one_global_ro(num_pstates);
1182
1183 static struct attribute *intel_pstate_attributes[] = {
1184         &no_turbo.attr,
1185         &turbo_pct.attr,
1186         &num_pstates.attr,
1187         NULL
1188 };
1189
1190 static struct attribute_group intel_pstate_attr_group = {
1191         .attrs = intel_pstate_attributes,
1192 };
1193
1194 static void __init intel_pstate_sysfs_expose_params(void)
1195 {
1196         struct kobject *intel_pstate_kobject;
1197         int rc;
1198
1199         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1200                                                 &cpu_subsys.dev_root->kobj);
1201         if (WARN_ON(!intel_pstate_kobject))
1202                 return;
1203
1204         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1205         if (WARN_ON(rc))
1206                 return;
1207
1208         /*
1209          * If per cpu limits are enforced there are no global limits, so
1210          * return without creating max/min_perf_pct attributes
1211          */
1212         if (per_cpu_limits)
1213                 return;
1214
1215         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1216         WARN_ON(rc);
1217
1218         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1219         WARN_ON(rc);
1220
1221 }
1222 /************************** sysfs end ************************/
1223
1224 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1225 {
1226         /* First disable HWP notification interrupt as we don't process them */
1227         if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1228                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1229
1230         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1231         cpudata->epp_policy = 0;
1232         if (cpudata->epp_default == -EINVAL)
1233                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1234 }
1235
1236 static int atom_get_min_pstate(void)
1237 {
1238         u64 value;
1239
1240         rdmsrl(ATOM_RATIOS, value);
1241         return (value >> 8) & 0x7F;
1242 }
1243
1244 static int atom_get_max_pstate(void)
1245 {
1246         u64 value;
1247
1248         rdmsrl(ATOM_RATIOS, value);
1249         return (value >> 16) & 0x7F;
1250 }
1251
1252 static int atom_get_turbo_pstate(void)
1253 {
1254         u64 value;
1255
1256         rdmsrl(ATOM_TURBO_RATIOS, value);
1257         return value & 0x7F;
1258 }
1259
1260 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1261 {
1262         u64 val;
1263         int32_t vid_fp;
1264         u32 vid;
1265
1266         val = (u64)pstate << 8;
1267         if (limits->no_turbo && !limits->turbo_disabled)
1268                 val |= (u64)1 << 32;
1269
1270         vid_fp = cpudata->vid.min + mul_fp(
1271                 int_tofp(pstate - cpudata->pstate.min_pstate),
1272                 cpudata->vid.ratio);
1273
1274         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1275         vid = ceiling_fp(vid_fp);
1276
1277         if (pstate > cpudata->pstate.max_pstate)
1278                 vid = cpudata->vid.turbo;
1279
1280         return val | vid;
1281 }
1282
1283 static int silvermont_get_scaling(void)
1284 {
1285         u64 value;
1286         int i;
1287         /* Defined in Table 35-6 from SDM (Sept 2015) */
1288         static int silvermont_freq_table[] = {
1289                 83300, 100000, 133300, 116700, 80000};
1290
1291         rdmsrl(MSR_FSB_FREQ, value);
1292         i = value & 0x7;
1293         WARN_ON(i > 4);
1294
1295         return silvermont_freq_table[i];
1296 }
1297
1298 static int airmont_get_scaling(void)
1299 {
1300         u64 value;
1301         int i;
1302         /* Defined in Table 35-10 from SDM (Sept 2015) */
1303         static int airmont_freq_table[] = {
1304                 83300, 100000, 133300, 116700, 80000,
1305                 93300, 90000, 88900, 87500};
1306
1307         rdmsrl(MSR_FSB_FREQ, value);
1308         i = value & 0xF;
1309         WARN_ON(i > 8);
1310
1311         return airmont_freq_table[i];
1312 }
1313
1314 static void atom_get_vid(struct cpudata *cpudata)
1315 {
1316         u64 value;
1317
1318         rdmsrl(ATOM_VIDS, value);
1319         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1320         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1321         cpudata->vid.ratio = div_fp(
1322                 cpudata->vid.max - cpudata->vid.min,
1323                 int_tofp(cpudata->pstate.max_pstate -
1324                         cpudata->pstate.min_pstate));
1325
1326         rdmsrl(ATOM_TURBO_VIDS, value);
1327         cpudata->vid.turbo = value & 0x7f;
1328 }
1329
1330 static int core_get_min_pstate(void)
1331 {
1332         u64 value;
1333
1334         rdmsrl(MSR_PLATFORM_INFO, value);
1335         return (value >> 40) & 0xFF;
1336 }
1337
1338 static int core_get_max_pstate_physical(void)
1339 {
1340         u64 value;
1341
1342         rdmsrl(MSR_PLATFORM_INFO, value);
1343         return (value >> 8) & 0xFF;
1344 }
1345
1346 static int core_get_max_pstate(void)
1347 {
1348         u64 tar;
1349         u64 plat_info;
1350         int max_pstate;
1351         int err;
1352
1353         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1354         max_pstate = (plat_info >> 8) & 0xFF;
1355
1356         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1357         if (!err) {
1358                 /* Do some sanity checking for safety */
1359                 if (plat_info & 0x600000000) {
1360                         u64 tdp_ctrl;
1361                         u64 tdp_ratio;
1362                         int tdp_msr;
1363
1364                         err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1365                         if (err)
1366                                 goto skip_tar;
1367
1368                         tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
1369                         err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1370                         if (err)
1371                                 goto skip_tar;
1372
1373                         /* For level 1 and 2, bits[23:16] contain the ratio */
1374                         if (tdp_ctrl)
1375                                 tdp_ratio >>= 16;
1376
1377                         tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1378                         if (tdp_ratio - 1 == tar) {
1379                                 max_pstate = tar;
1380                                 pr_debug("max_pstate=TAC %x\n", max_pstate);
1381                         } else {
1382                                 goto skip_tar;
1383                         }
1384                 }
1385         }
1386
1387 skip_tar:
1388         return max_pstate;
1389 }
1390
1391 static int core_get_turbo_pstate(void)
1392 {
1393         u64 value;
1394         int nont, ret;
1395
1396         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1397         nont = core_get_max_pstate();
1398         ret = (value) & 255;
1399         if (ret <= nont)
1400                 ret = nont;
1401         return ret;
1402 }
1403
1404 static inline int core_get_scaling(void)
1405 {
1406         return 100000;
1407 }
1408
1409 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1410 {
1411         u64 val;
1412
1413         val = (u64)pstate << 8;
1414         if (limits->no_turbo && !limits->turbo_disabled)
1415                 val |= (u64)1 << 32;
1416
1417         return val;
1418 }
1419
1420 static int knl_get_turbo_pstate(void)
1421 {
1422         u64 value;
1423         int nont, ret;
1424
1425         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1426         nont = core_get_max_pstate();
1427         ret = (((value) >> 8) & 0xFF);
1428         if (ret <= nont)
1429                 ret = nont;
1430         return ret;
1431 }
1432
1433 static struct cpu_defaults core_params = {
1434         .pid_policy = {
1435                 .sample_rate_ms = 10,
1436                 .deadband = 0,
1437                 .setpoint = 97,
1438                 .p_gain_pct = 20,
1439                 .d_gain_pct = 0,
1440                 .i_gain_pct = 0,
1441         },
1442         .funcs = {
1443                 .get_max = core_get_max_pstate,
1444                 .get_max_physical = core_get_max_pstate_physical,
1445                 .get_min = core_get_min_pstate,
1446                 .get_turbo = core_get_turbo_pstate,
1447                 .get_scaling = core_get_scaling,
1448                 .get_val = core_get_val,
1449                 .get_target_pstate = get_target_pstate_use_performance,
1450         },
1451 };
1452
1453 static const struct cpu_defaults silvermont_params = {
1454         .pid_policy = {
1455                 .sample_rate_ms = 10,
1456                 .deadband = 0,
1457                 .setpoint = 60,
1458                 .p_gain_pct = 14,
1459                 .d_gain_pct = 0,
1460                 .i_gain_pct = 4,
1461         },
1462         .funcs = {
1463                 .get_max = atom_get_max_pstate,
1464                 .get_max_physical = atom_get_max_pstate,
1465                 .get_min = atom_get_min_pstate,
1466                 .get_turbo = atom_get_turbo_pstate,
1467                 .get_val = atom_get_val,
1468                 .get_scaling = silvermont_get_scaling,
1469                 .get_vid = atom_get_vid,
1470                 .get_target_pstate = get_target_pstate_use_cpu_load,
1471         },
1472 };
1473
1474 static const struct cpu_defaults airmont_params = {
1475         .pid_policy = {
1476                 .sample_rate_ms = 10,
1477                 .deadband = 0,
1478                 .setpoint = 60,
1479                 .p_gain_pct = 14,
1480                 .d_gain_pct = 0,
1481                 .i_gain_pct = 4,
1482         },
1483         .funcs = {
1484                 .get_max = atom_get_max_pstate,
1485                 .get_max_physical = atom_get_max_pstate,
1486                 .get_min = atom_get_min_pstate,
1487                 .get_turbo = atom_get_turbo_pstate,
1488                 .get_val = atom_get_val,
1489                 .get_scaling = airmont_get_scaling,
1490                 .get_vid = atom_get_vid,
1491                 .get_target_pstate = get_target_pstate_use_cpu_load,
1492         },
1493 };
1494
1495 static const struct cpu_defaults knl_params = {
1496         .pid_policy = {
1497                 .sample_rate_ms = 10,
1498                 .deadband = 0,
1499                 .setpoint = 97,
1500                 .p_gain_pct = 20,
1501                 .d_gain_pct = 0,
1502                 .i_gain_pct = 0,
1503         },
1504         .funcs = {
1505                 .get_max = core_get_max_pstate,
1506                 .get_max_physical = core_get_max_pstate_physical,
1507                 .get_min = core_get_min_pstate,
1508                 .get_turbo = knl_get_turbo_pstate,
1509                 .get_scaling = core_get_scaling,
1510                 .get_val = core_get_val,
1511                 .get_target_pstate = get_target_pstate_use_performance,
1512         },
1513 };
1514
1515 static const struct cpu_defaults bxt_params = {
1516         .pid_policy = {
1517                 .sample_rate_ms = 10,
1518                 .deadband = 0,
1519                 .setpoint = 60,
1520                 .p_gain_pct = 14,
1521                 .d_gain_pct = 0,
1522                 .i_gain_pct = 4,
1523         },
1524         .funcs = {
1525                 .get_max = core_get_max_pstate,
1526                 .get_max_physical = core_get_max_pstate_physical,
1527                 .get_min = core_get_min_pstate,
1528                 .get_turbo = core_get_turbo_pstate,
1529                 .get_scaling = core_get_scaling,
1530                 .get_val = core_get_val,
1531                 .get_target_pstate = get_target_pstate_use_cpu_load,
1532         },
1533 };
1534
1535 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1536 {
1537         int max_perf = cpu->pstate.turbo_pstate;
1538         int max_perf_adj;
1539         int min_perf;
1540         struct perf_limits *perf_limits = limits;
1541
1542         if (limits->no_turbo || limits->turbo_disabled)
1543                 max_perf = cpu->pstate.max_pstate;
1544
1545         if (per_cpu_limits)
1546                 perf_limits = cpu->perf_limits;
1547
1548         /*
1549          * performance can be limited by user through sysfs, by cpufreq
1550          * policy, or by cpu specific default values determined through
1551          * experimentation.
1552          */
1553         max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1554         *max = clamp_t(int, max_perf_adj,
1555                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1556
1557         min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1558         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1559 }
1560
1561 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1562 {
1563         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1564         cpu->pstate.current_pstate = pstate;
1565         /*
1566          * Generally, there is no guarantee that this code will always run on
1567          * the CPU being updated, so force the register update to run on the
1568          * right CPU.
1569          */
1570         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1571                       pstate_funcs.get_val(cpu, pstate));
1572 }
1573
1574 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1575 {
1576         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1577 }
1578
1579 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1580 {
1581         int min_pstate, max_pstate;
1582
1583         update_turbo_state();
1584         intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1585         intel_pstate_set_pstate(cpu, max_pstate);
1586 }
1587
1588 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1589 {
1590         cpu->pstate.min_pstate = pstate_funcs.get_min();
1591         cpu->pstate.max_pstate = pstate_funcs.get_max();
1592         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1593         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1594         cpu->pstate.scaling = pstate_funcs.get_scaling();
1595         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1596         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1597
1598         if (pstate_funcs.get_vid)
1599                 pstate_funcs.get_vid(cpu);
1600
1601         intel_pstate_set_min_pstate(cpu);
1602 }
1603
1604 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1605 {
1606         struct sample *sample = &cpu->sample;
1607
1608         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1609 }
1610
1611 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1612 {
1613         u64 aperf, mperf;
1614         unsigned long flags;
1615         u64 tsc;
1616
1617         local_irq_save(flags);
1618         rdmsrl(MSR_IA32_APERF, aperf);
1619         rdmsrl(MSR_IA32_MPERF, mperf);
1620         tsc = rdtsc();
1621         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1622                 local_irq_restore(flags);
1623                 return false;
1624         }
1625         local_irq_restore(flags);
1626
1627         cpu->last_sample_time = cpu->sample.time;
1628         cpu->sample.time = time;
1629         cpu->sample.aperf = aperf;
1630         cpu->sample.mperf = mperf;
1631         cpu->sample.tsc =  tsc;
1632         cpu->sample.aperf -= cpu->prev_aperf;
1633         cpu->sample.mperf -= cpu->prev_mperf;
1634         cpu->sample.tsc -= cpu->prev_tsc;
1635
1636         cpu->prev_aperf = aperf;
1637         cpu->prev_mperf = mperf;
1638         cpu->prev_tsc = tsc;
1639         /*
1640          * First time this function is invoked in a given cycle, all of the
1641          * previous sample data fields are equal to zero or stale and they must
1642          * be populated with meaningful numbers for things to work, so assume
1643          * that sample.time will always be reset before setting the utilization
1644          * update hook and make the caller skip the sample then.
1645          */
1646         return !!cpu->last_sample_time;
1647 }
1648
1649 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1650 {
1651         return mul_ext_fp(cpu->sample.core_avg_perf,
1652                           cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1653 }
1654
1655 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1656 {
1657         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1658                           cpu->sample.core_avg_perf);
1659 }
1660
1661 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1662 {
1663         struct sample *sample = &cpu->sample;
1664         int32_t busy_frac, boost;
1665         int target, avg_pstate;
1666
1667         busy_frac = div_fp(sample->mperf, sample->tsc);
1668
1669         boost = cpu->iowait_boost;
1670         cpu->iowait_boost >>= 1;
1671
1672         if (busy_frac < boost)
1673                 busy_frac = boost;
1674
1675         sample->busy_scaled = busy_frac * 100;
1676
1677         target = limits->no_turbo || limits->turbo_disabled ?
1678                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1679         target += target >> 2;
1680         target = mul_fp(target, busy_frac);
1681         if (target < cpu->pstate.min_pstate)
1682                 target = cpu->pstate.min_pstate;
1683
1684         /*
1685          * If the average P-state during the previous cycle was higher than the
1686          * current target, add 50% of the difference to the target to reduce
1687          * possible performance oscillations and offset possible performance
1688          * loss related to moving the workload from one CPU to another within
1689          * a package/module.
1690          */
1691         avg_pstate = get_avg_pstate(cpu);
1692         if (avg_pstate > target)
1693                 target += (avg_pstate - target) >> 1;
1694
1695         return target;
1696 }
1697
1698 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1699 {
1700         int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1701         u64 duration_ns;
1702
1703         /*
1704          * perf_scaled is the ratio of the average P-state during the last
1705          * sampling period to the P-state requested last time (in percent).
1706          *
1707          * That measures the system's response to the previous P-state
1708          * selection.
1709          */
1710         max_pstate = cpu->pstate.max_pstate_physical;
1711         current_pstate = cpu->pstate.current_pstate;
1712         perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1713                                div_fp(100 * max_pstate, current_pstate));
1714
1715         /*
1716          * Since our utilization update callback will not run unless we are
1717          * in C0, check if the actual elapsed time is significantly greater (3x)
1718          * than our sample interval.  If it is, then we were idle for a long
1719          * enough period of time to adjust our performance metric.
1720          */
1721         duration_ns = cpu->sample.time - cpu->last_sample_time;
1722         if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1723                 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1724                 perf_scaled = mul_fp(perf_scaled, sample_ratio);
1725         } else {
1726                 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1727                 if (sample_ratio < int_tofp(1))
1728                         perf_scaled = 0;
1729         }
1730
1731         cpu->sample.busy_scaled = perf_scaled;
1732         return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1733 }
1734
1735 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1736 {
1737         int max_perf, min_perf;
1738
1739         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1740         pstate = clamp_t(int, pstate, min_perf, max_perf);
1741         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1742         return pstate;
1743 }
1744
1745 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1746 {
1747         pstate = intel_pstate_prepare_request(cpu, pstate);
1748         if (pstate == cpu->pstate.current_pstate)
1749                 return;
1750
1751         cpu->pstate.current_pstate = pstate;
1752         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1753 }
1754
1755 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1756 {
1757         int from, target_pstate;
1758         struct sample *sample;
1759
1760         from = cpu->pstate.current_pstate;
1761
1762         target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1763                 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1764
1765         update_turbo_state();
1766
1767         intel_pstate_update_pstate(cpu, target_pstate);
1768
1769         sample = &cpu->sample;
1770         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1771                 fp_toint(sample->busy_scaled),
1772                 from,
1773                 cpu->pstate.current_pstate,
1774                 sample->mperf,
1775                 sample->aperf,
1776                 sample->tsc,
1777                 get_avg_frequency(cpu),
1778                 fp_toint(cpu->iowait_boost * 100));
1779 }
1780
1781 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1782                                      unsigned int flags)
1783 {
1784         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1785         u64 delta_ns;
1786
1787         if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1788                 if (flags & SCHED_CPUFREQ_IOWAIT) {
1789                         cpu->iowait_boost = int_tofp(1);
1790                 } else if (cpu->iowait_boost) {
1791                         /* Clear iowait_boost if the CPU may have been idle. */
1792                         delta_ns = time - cpu->last_update;
1793                         if (delta_ns > TICK_NSEC)
1794                                 cpu->iowait_boost = 0;
1795                 }
1796                 cpu->last_update = time;
1797         }
1798
1799         delta_ns = time - cpu->sample.time;
1800         if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1801                 bool sample_taken = intel_pstate_sample(cpu, time);
1802
1803                 if (sample_taken) {
1804                         intel_pstate_calc_avg_perf(cpu);
1805                         if (!hwp_active)
1806                                 intel_pstate_adjust_busy_pstate(cpu);
1807                 }
1808         }
1809 }
1810
1811 #define ICPU(model, policy) \
1812         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1813                         (unsigned long)&policy }
1814
1815 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1816         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_params),
1817         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_params),
1818         ICPU(INTEL_FAM6_ATOM_SILVERMONT1,       silvermont_params),
1819         ICPU(INTEL_FAM6_IVYBRIDGE,              core_params),
1820         ICPU(INTEL_FAM6_HASWELL_CORE,           core_params),
1821         ICPU(INTEL_FAM6_BROADWELL_CORE,         core_params),
1822         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_params),
1823         ICPU(INTEL_FAM6_HASWELL_X,              core_params),
1824         ICPU(INTEL_FAM6_HASWELL_ULT,            core_params),
1825         ICPU(INTEL_FAM6_HASWELL_GT3E,           core_params),
1826         ICPU(INTEL_FAM6_BROADWELL_GT3E,         core_params),
1827         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_params),
1828         ICPU(INTEL_FAM6_SKYLAKE_MOBILE,         core_params),
1829         ICPU(INTEL_FAM6_BROADWELL_X,            core_params),
1830         ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,        core_params),
1831         ICPU(INTEL_FAM6_BROADWELL_XEON_D,       core_params),
1832         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_params),
1833         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_params),
1834         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          bxt_params),
1835         {}
1836 };
1837 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1838
1839 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1840         ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1841         ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1842         ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1843         {}
1844 };
1845
1846 static int intel_pstate_init_cpu(unsigned int cpunum)
1847 {
1848         struct cpudata *cpu;
1849
1850         cpu = all_cpu_data[cpunum];
1851
1852         if (!cpu) {
1853                 unsigned int size = sizeof(struct cpudata);
1854
1855                 if (per_cpu_limits)
1856                         size += sizeof(struct perf_limits);
1857
1858                 cpu = kzalloc(size, GFP_KERNEL);
1859                 if (!cpu)
1860                         return -ENOMEM;
1861
1862                 all_cpu_data[cpunum] = cpu;
1863                 if (per_cpu_limits)
1864                         cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1865
1866                 cpu->epp_default = -EINVAL;
1867                 cpu->epp_powersave = -EINVAL;
1868                 cpu->epp_saved = -EINVAL;
1869         }
1870
1871         cpu = all_cpu_data[cpunum];
1872
1873         cpu->cpu = cpunum;
1874
1875         if (hwp_active) {
1876                 intel_pstate_hwp_enable(cpu);
1877                 pid_params.sample_rate_ms = 50;
1878                 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1879         }
1880
1881         intel_pstate_get_cpu_pstates(cpu);
1882
1883         intel_pstate_busy_pid_reset(cpu);
1884
1885         pr_debug("controlling: cpu %d\n", cpunum);
1886
1887         return 0;
1888 }
1889
1890 static unsigned int intel_pstate_get(unsigned int cpu_num)
1891 {
1892         struct cpudata *cpu = all_cpu_data[cpu_num];
1893
1894         return cpu ? get_avg_frequency(cpu) : 0;
1895 }
1896
1897 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1898 {
1899         struct cpudata *cpu = all_cpu_data[cpu_num];
1900
1901         if (cpu->update_util_set)
1902                 return;
1903
1904         /* Prevent intel_pstate_update_util() from using stale data. */
1905         cpu->sample.time = 0;
1906         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1907                                      intel_pstate_update_util);
1908         cpu->update_util_set = true;
1909 }
1910
1911 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1912 {
1913         struct cpudata *cpu_data = all_cpu_data[cpu];
1914
1915         if (!cpu_data->update_util_set)
1916                 return;
1917
1918         cpufreq_remove_update_util_hook(cpu);
1919         cpu_data->update_util_set = false;
1920         synchronize_sched();
1921 }
1922
1923 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1924 {
1925         limits->no_turbo = 0;
1926         limits->turbo_disabled = 0;
1927         limits->max_perf_pct = 100;
1928         limits->max_perf = int_ext_tofp(1);
1929         limits->min_perf_pct = 100;
1930         limits->min_perf = int_ext_tofp(1);
1931         limits->max_policy_pct = 100;
1932         limits->max_sysfs_pct = 100;
1933         limits->min_policy_pct = 0;
1934         limits->min_sysfs_pct = 0;
1935 }
1936
1937 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1938                                             struct perf_limits *limits)
1939 {
1940
1941         limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1942                                               policy->cpuinfo.max_freq);
1943         limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
1944         if (policy->max == policy->min) {
1945                 limits->min_policy_pct = limits->max_policy_pct;
1946         } else {
1947                 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
1948                                                       policy->cpuinfo.max_freq);
1949                 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
1950                                                  0, 100);
1951         }
1952
1953         /* Normalize user input to [min_policy_pct, max_policy_pct] */
1954         limits->min_perf_pct = max(limits->min_policy_pct,
1955                                    limits->min_sysfs_pct);
1956         limits->min_perf_pct = min(limits->max_policy_pct,
1957                                    limits->min_perf_pct);
1958         limits->max_perf_pct = min(limits->max_policy_pct,
1959                                    limits->max_sysfs_pct);
1960         limits->max_perf_pct = max(limits->min_policy_pct,
1961                                    limits->max_perf_pct);
1962
1963         /* Make sure min_perf_pct <= max_perf_pct */
1964         limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1965
1966         limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1967         limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1968         limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
1969         limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
1970
1971         pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
1972                  limits->max_perf_pct, limits->min_perf_pct);
1973 }
1974
1975 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1976 {
1977         struct cpudata *cpu;
1978         struct perf_limits *perf_limits = NULL;
1979
1980         if (!policy->cpuinfo.max_freq)
1981                 return -ENODEV;
1982
1983         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1984                  policy->cpuinfo.max_freq, policy->max);
1985
1986         cpu = all_cpu_data[policy->cpu];
1987         cpu->policy = policy->policy;
1988
1989         if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1990             policy->max < policy->cpuinfo.max_freq &&
1991             policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1992                 pr_debug("policy->max > max non turbo frequency\n");
1993                 policy->max = policy->cpuinfo.max_freq;
1994         }
1995
1996         if (per_cpu_limits)
1997                 perf_limits = cpu->perf_limits;
1998
1999         mutex_lock(&intel_pstate_limits_lock);
2000
2001         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2002                 if (!perf_limits) {
2003                         limits = &performance_limits;
2004                         perf_limits = limits;
2005                 }
2006                 if (policy->max >= policy->cpuinfo.max_freq) {
2007                         pr_debug("set performance\n");
2008                         intel_pstate_set_performance_limits(perf_limits);
2009                         goto out;
2010                 }
2011         } else {
2012                 pr_debug("set powersave\n");
2013                 if (!perf_limits) {
2014                         limits = &powersave_limits;
2015                         perf_limits = limits;
2016                 }
2017
2018         }
2019
2020         intel_pstate_update_perf_limits(policy, perf_limits);
2021  out:
2022         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2023                 /*
2024                  * NOHZ_FULL CPUs need this as the governor callback may not
2025                  * be invoked on them.
2026                  */
2027                 intel_pstate_clear_update_util_hook(policy->cpu);
2028                 intel_pstate_max_within_limits(cpu);
2029         }
2030
2031         intel_pstate_set_update_util_hook(policy->cpu);
2032
2033         intel_pstate_hwp_set_policy(policy);
2034
2035         mutex_unlock(&intel_pstate_limits_lock);
2036
2037         return 0;
2038 }
2039
2040 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2041 {
2042         cpufreq_verify_within_cpu_limits(policy);
2043
2044         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2045             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2046                 return -EINVAL;
2047
2048         return 0;
2049 }
2050
2051 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2052 {
2053         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2054 }
2055
2056 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2057 {
2058         pr_debug("CPU %d exiting\n", policy->cpu);
2059
2060         intel_pstate_clear_update_util_hook(policy->cpu);
2061         if (hwp_active)
2062                 intel_pstate_hwp_save_state(policy);
2063         else
2064                 intel_cpufreq_stop_cpu(policy);
2065 }
2066
2067 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2068 {
2069         intel_pstate_exit_perf_limits(policy);
2070
2071         policy->fast_switch_possible = false;
2072
2073         return 0;
2074 }
2075
2076 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2077 {
2078         struct cpudata *cpu;
2079         int rc;
2080
2081         rc = intel_pstate_init_cpu(policy->cpu);
2082         if (rc)
2083                 return rc;
2084
2085         cpu = all_cpu_data[policy->cpu];
2086
2087         /*
2088          * We need sane value in the cpu->perf_limits, so inherit from global
2089          * perf_limits limits, which are seeded with values based on the
2090          * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2091          */
2092         if (per_cpu_limits)
2093                 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2094
2095         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2096         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2097
2098         /* cpuinfo and default policy values */
2099         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2100         update_turbo_state();
2101         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2102                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2103         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2104
2105         intel_pstate_init_acpi_perf_limits(policy);
2106         cpumask_set_cpu(policy->cpu, policy->cpus);
2107
2108         policy->fast_switch_possible = true;
2109
2110         return 0;
2111 }
2112
2113 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2114 {
2115         int ret = __intel_pstate_cpu_init(policy);
2116
2117         if (ret)
2118                 return ret;
2119
2120         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2121         if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2122                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2123         else
2124                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2125
2126         return 0;
2127 }
2128
2129 static struct cpufreq_driver intel_pstate = {
2130         .flags          = CPUFREQ_CONST_LOOPS,
2131         .verify         = intel_pstate_verify_policy,
2132         .setpolicy      = intel_pstate_set_policy,
2133         .suspend        = intel_pstate_hwp_save_state,
2134         .resume         = intel_pstate_resume,
2135         .get            = intel_pstate_get,
2136         .init           = intel_pstate_cpu_init,
2137         .exit           = intel_pstate_cpu_exit,
2138         .stop_cpu       = intel_pstate_stop_cpu,
2139         .name           = "intel_pstate",
2140 };
2141
2142 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2143 {
2144         struct cpudata *cpu = all_cpu_data[policy->cpu];
2145         struct perf_limits *perf_limits = limits;
2146
2147         update_turbo_state();
2148         policy->cpuinfo.max_freq = limits->turbo_disabled ?
2149                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2150
2151         cpufreq_verify_within_cpu_limits(policy);
2152
2153         if (per_cpu_limits)
2154                 perf_limits = cpu->perf_limits;
2155
2156         intel_pstate_update_perf_limits(policy, perf_limits);
2157
2158         return 0;
2159 }
2160
2161 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2162                                                struct cpufreq_policy *policy,
2163                                                unsigned int target_freq)
2164 {
2165         unsigned int max_freq;
2166
2167         update_turbo_state();
2168
2169         max_freq = limits->no_turbo || limits->turbo_disabled ?
2170                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2171         policy->cpuinfo.max_freq = max_freq;
2172         if (policy->max > max_freq)
2173                 policy->max = max_freq;
2174
2175         if (target_freq > max_freq)
2176                 target_freq = max_freq;
2177
2178         return target_freq;
2179 }
2180
2181 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2182                                 unsigned int target_freq,
2183                                 unsigned int relation)
2184 {
2185         struct cpudata *cpu = all_cpu_data[policy->cpu];
2186         struct cpufreq_freqs freqs;
2187         int target_pstate;
2188
2189         freqs.old = policy->cur;
2190         freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2191
2192         cpufreq_freq_transition_begin(policy, &freqs);
2193         switch (relation) {
2194         case CPUFREQ_RELATION_L:
2195                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2196                 break;
2197         case CPUFREQ_RELATION_H:
2198                 target_pstate = freqs.new / cpu->pstate.scaling;
2199                 break;
2200         default:
2201                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2202                 break;
2203         }
2204         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2205         if (target_pstate != cpu->pstate.current_pstate) {
2206                 cpu->pstate.current_pstate = target_pstate;
2207                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2208                               pstate_funcs.get_val(cpu, target_pstate));
2209         }
2210         cpufreq_freq_transition_end(policy, &freqs, false);
2211
2212         return 0;
2213 }
2214
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2216                                               unsigned int target_freq)
2217 {
2218         struct cpudata *cpu = all_cpu_data[policy->cpu];
2219         int target_pstate;
2220
2221         target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2222         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2223         intel_pstate_update_pstate(cpu, target_pstate);
2224         return target_freq;
2225 }
2226
2227 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2228 {
2229         int ret = __intel_pstate_cpu_init(policy);
2230
2231         if (ret)
2232                 return ret;
2233
2234         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2235         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2236         policy->cur = policy->cpuinfo.min_freq;
2237
2238         return 0;
2239 }
2240
2241 static struct cpufreq_driver intel_cpufreq = {
2242         .flags          = CPUFREQ_CONST_LOOPS,
2243         .verify         = intel_cpufreq_verify_policy,
2244         .target         = intel_cpufreq_target,
2245         .fast_switch    = intel_cpufreq_fast_switch,
2246         .init           = intel_cpufreq_cpu_init,
2247         .exit           = intel_pstate_cpu_exit,
2248         .stop_cpu       = intel_cpufreq_stop_cpu,
2249         .name           = "intel_cpufreq",
2250 };
2251
2252 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2253
2254 static int no_load __initdata;
2255 static int no_hwp __initdata;
2256 static int hwp_only __initdata;
2257 static unsigned int force_load __initdata;
2258
2259 static int __init intel_pstate_msrs_not_valid(void)
2260 {
2261         if (!pstate_funcs.get_max() ||
2262             !pstate_funcs.get_min() ||
2263             !pstate_funcs.get_turbo())
2264                 return -ENODEV;
2265
2266         return 0;
2267 }
2268
2269 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2270 {
2271         pid_params.sample_rate_ms = policy->sample_rate_ms;
2272         pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2273         pid_params.p_gain_pct = policy->p_gain_pct;
2274         pid_params.i_gain_pct = policy->i_gain_pct;
2275         pid_params.d_gain_pct = policy->d_gain_pct;
2276         pid_params.deadband = policy->deadband;
2277         pid_params.setpoint = policy->setpoint;
2278 }
2279
2280 #ifdef CONFIG_ACPI
2281 static void intel_pstate_use_acpi_profile(void)
2282 {
2283         if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2284                 pstate_funcs.get_target_pstate =
2285                                 get_target_pstate_use_cpu_load;
2286 }
2287 #else
2288 static void intel_pstate_use_acpi_profile(void)
2289 {
2290 }
2291 #endif
2292
2293 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2294 {
2295         pstate_funcs.get_max   = funcs->get_max;
2296         pstate_funcs.get_max_physical = funcs->get_max_physical;
2297         pstate_funcs.get_min   = funcs->get_min;
2298         pstate_funcs.get_turbo = funcs->get_turbo;
2299         pstate_funcs.get_scaling = funcs->get_scaling;
2300         pstate_funcs.get_val   = funcs->get_val;
2301         pstate_funcs.get_vid   = funcs->get_vid;
2302         pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2303
2304         intel_pstate_use_acpi_profile();
2305 }
2306
2307 #ifdef CONFIG_ACPI
2308
2309 static bool __init intel_pstate_no_acpi_pss(void)
2310 {
2311         int i;
2312
2313         for_each_possible_cpu(i) {
2314                 acpi_status status;
2315                 union acpi_object *pss;
2316                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2317                 struct acpi_processor *pr = per_cpu(processors, i);
2318
2319                 if (!pr)
2320                         continue;
2321
2322                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2323                 if (ACPI_FAILURE(status))
2324                         continue;
2325
2326                 pss = buffer.pointer;
2327                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2328                         kfree(pss);
2329                         return false;
2330                 }
2331
2332                 kfree(pss);
2333         }
2334
2335         return true;
2336 }
2337
2338 static bool __init intel_pstate_has_acpi_ppc(void)
2339 {
2340         int i;
2341
2342         for_each_possible_cpu(i) {
2343                 struct acpi_processor *pr = per_cpu(processors, i);
2344
2345                 if (!pr)
2346                         continue;
2347                 if (acpi_has_method(pr->handle, "_PPC"))
2348                         return true;
2349         }
2350         return false;
2351 }
2352
2353 enum {
2354         PSS,
2355         PPC,
2356 };
2357
2358 struct hw_vendor_info {
2359         u16  valid;
2360         char oem_id[ACPI_OEM_ID_SIZE];
2361         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2362         int  oem_pwr_table;
2363 };
2364
2365 /* Hardware vendor-specific info that has its own power management modes */
2366 static struct hw_vendor_info vendor_info[] __initdata = {
2367         {1, "HP    ", "ProLiant", PSS},
2368         {1, "ORACLE", "X4-2    ", PPC},
2369         {1, "ORACLE", "X4-2L   ", PPC},
2370         {1, "ORACLE", "X4-2B   ", PPC},
2371         {1, "ORACLE", "X3-2    ", PPC},
2372         {1, "ORACLE", "X3-2L   ", PPC},
2373         {1, "ORACLE", "X3-2B   ", PPC},
2374         {1, "ORACLE", "X4470M2 ", PPC},
2375         {1, "ORACLE", "X4270M3 ", PPC},
2376         {1, "ORACLE", "X4270M2 ", PPC},
2377         {1, "ORACLE", "X4170M2 ", PPC},
2378         {1, "ORACLE", "X4170 M3", PPC},
2379         {1, "ORACLE", "X4275 M3", PPC},
2380         {1, "ORACLE", "X6-2    ", PPC},
2381         {1, "ORACLE", "Sudbury ", PPC},
2382         {0, "", ""},
2383 };
2384
2385 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2386 {
2387         struct acpi_table_header hdr;
2388         struct hw_vendor_info *v_info;
2389         const struct x86_cpu_id *id;
2390         u64 misc_pwr;
2391
2392         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2393         if (id) {
2394                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2395                 if ( misc_pwr & (1 << 8))
2396                         return true;
2397         }
2398
2399         if (acpi_disabled ||
2400             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2401                 return false;
2402
2403         for (v_info = vendor_info; v_info->valid; v_info++) {
2404                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2405                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
2406                                                 ACPI_OEM_TABLE_ID_SIZE))
2407                         switch (v_info->oem_pwr_table) {
2408                         case PSS:
2409                                 return intel_pstate_no_acpi_pss();
2410                         case PPC:
2411                                 return intel_pstate_has_acpi_ppc() &&
2412                                         (!force_load);
2413                         }
2414         }
2415
2416         return false;
2417 }
2418
2419 static void intel_pstate_request_control_from_smm(void)
2420 {
2421         /*
2422          * It may be unsafe to request P-states control from SMM if _PPC support
2423          * has not been enabled.
2424          */
2425         if (acpi_ppc)
2426                 acpi_processor_pstate_control();
2427 }
2428 #else /* CONFIG_ACPI not enabled */
2429 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2430 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2431 static inline void intel_pstate_request_control_from_smm(void) {}
2432 #endif /* CONFIG_ACPI */
2433
2434 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2435         { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2436         {}
2437 };
2438
2439 static int __init intel_pstate_init(void)
2440 {
2441         int cpu, rc = 0;
2442         const struct x86_cpu_id *id;
2443         struct cpu_defaults *cpu_def;
2444
2445         if (no_load)
2446                 return -ENODEV;
2447
2448         if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2449                 copy_cpu_funcs(&core_params.funcs);
2450                 hwp_active++;
2451                 intel_pstate.attr = hwp_cpufreq_attrs;
2452                 goto hwp_cpu_matched;
2453         }
2454
2455         id = x86_match_cpu(intel_pstate_cpu_ids);
2456         if (!id)
2457                 return -ENODEV;
2458
2459         cpu_def = (struct cpu_defaults *)id->driver_data;
2460
2461         copy_pid_params(&cpu_def->pid_policy);
2462         copy_cpu_funcs(&cpu_def->funcs);
2463
2464         if (intel_pstate_msrs_not_valid())
2465                 return -ENODEV;
2466
2467 hwp_cpu_matched:
2468         /*
2469          * The Intel pstate driver will be ignored if the platform
2470          * firmware has its own power management modes.
2471          */
2472         if (intel_pstate_platform_pwr_mgmt_exists())
2473                 return -ENODEV;
2474
2475         pr_info("Intel P-state driver initializing\n");
2476
2477         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2478         if (!all_cpu_data)
2479                 return -ENOMEM;
2480
2481         if (!hwp_active && hwp_only)
2482                 goto out;
2483
2484         intel_pstate_request_control_from_smm();
2485
2486         rc = cpufreq_register_driver(intel_pstate_driver);
2487         if (rc)
2488                 goto out;
2489
2490         intel_pstate_debug_expose_params();
2491         intel_pstate_sysfs_expose_params();
2492
2493         if (hwp_active)
2494                 pr_info("HWP enabled\n");
2495
2496         return rc;
2497 out:
2498         get_online_cpus();
2499         for_each_online_cpu(cpu) {
2500                 if (all_cpu_data[cpu]) {
2501                         if (intel_pstate_driver == &intel_pstate)
2502                                 intel_pstate_clear_update_util_hook(cpu);
2503
2504                         kfree(all_cpu_data[cpu]);
2505                 }
2506         }
2507
2508         put_online_cpus();
2509         vfree(all_cpu_data);
2510         return -ENODEV;
2511 }
2512 device_initcall(intel_pstate_init);
2513
2514 static int __init intel_pstate_setup(char *str)
2515 {
2516         if (!str)
2517                 return -EINVAL;
2518
2519         if (!strcmp(str, "disable")) {
2520                 no_load = 1;
2521         } else if (!strcmp(str, "passive")) {
2522                 pr_info("Passive mode enabled\n");
2523                 intel_pstate_driver = &intel_cpufreq;
2524                 no_hwp = 1;
2525         }
2526         if (!strcmp(str, "no_hwp")) {
2527                 pr_info("HWP disabled\n");
2528                 no_hwp = 1;
2529         }
2530         if (!strcmp(str, "force"))
2531                 force_load = 1;
2532         if (!strcmp(str, "hwp_only"))
2533                 hwp_only = 1;
2534         if (!strcmp(str, "per_cpu_perf_limits"))
2535                 per_cpu_limits = true;
2536
2537 #ifdef CONFIG_ACPI
2538         if (!strcmp(str, "support_acpi_ppc"))
2539                 acpi_ppc = true;
2540 #endif
2541
2542         return 0;
2543 }
2544 early_param("intel_pstate", intel_pstate_setup);
2545
2546 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2547 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2548 MODULE_LICENSE("GPL");