]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/cpufreq/intel_pstate.c
Merge commit '3cf2f34' into sched/core, to fix build error
[karo-tx-linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define SAMPLE_COUNT            3
36
37 #define BYT_RATIOS              0x66a
38 #define BYT_VIDS                0x66b
39 #define BYT_TURBO_RATIOS        0x66c
40 #define BYT_TURBO_VIDS          0x66d
41
42
43 #define FRAC_BITS 6
44 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
45 #define fp_toint(X) ((X) >> FRAC_BITS)
46 #define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
47
48 static inline int32_t mul_fp(int32_t x, int32_t y)
49 {
50         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
51 }
52
53 static inline int32_t div_fp(int32_t x, int32_t y)
54 {
55         return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
56 }
57
58 struct sample {
59         int32_t core_pct_busy;
60         u64 aperf;
61         u64 mperf;
62         unsigned long long tsc;
63         int freq;
64 };
65
66 struct pstate_data {
67         int     current_pstate;
68         int     min_pstate;
69         int     max_pstate;
70         int     turbo_pstate;
71 };
72
73 struct vid_data {
74         int min;
75         int max;
76         int turbo;
77         int32_t ratio;
78 };
79
80 struct _pid {
81         int setpoint;
82         int32_t integral;
83         int32_t p_gain;
84         int32_t i_gain;
85         int32_t d_gain;
86         int deadband;
87         int32_t last_err;
88 };
89
90 struct cpudata {
91         int cpu;
92
93         char name[64];
94
95         struct timer_list timer;
96
97         struct pstate_data pstate;
98         struct vid_data vid;
99         struct _pid pid;
100
101         u64     prev_aperf;
102         u64     prev_mperf;
103         unsigned long long prev_tsc;
104         struct sample sample;
105 };
106
107 static struct cpudata **all_cpu_data;
108 struct pstate_adjust_policy {
109         int sample_rate_ms;
110         int deadband;
111         int setpoint;
112         int p_gain_pct;
113         int d_gain_pct;
114         int i_gain_pct;
115 };
116
117 struct pstate_funcs {
118         int (*get_max)(void);
119         int (*get_min)(void);
120         int (*get_turbo)(void);
121         void (*set)(struct cpudata*, int pstate);
122         void (*get_vid)(struct cpudata *);
123 };
124
125 struct cpu_defaults {
126         struct pstate_adjust_policy pid_policy;
127         struct pstate_funcs funcs;
128 };
129
130 static struct pstate_adjust_policy pid_params;
131 static struct pstate_funcs pstate_funcs;
132
133 struct perf_limits {
134         int no_turbo;
135         int max_perf_pct;
136         int min_perf_pct;
137         int32_t max_perf;
138         int32_t min_perf;
139         int max_policy_pct;
140         int max_sysfs_pct;
141 };
142
143 static struct perf_limits limits = {
144         .no_turbo = 0,
145         .max_perf_pct = 100,
146         .max_perf = int_tofp(1),
147         .min_perf_pct = 0,
148         .min_perf = 0,
149         .max_policy_pct = 100,
150         .max_sysfs_pct = 100,
151 };
152
153 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
154                         int deadband, int integral) {
155         pid->setpoint = setpoint;
156         pid->deadband  = deadband;
157         pid->integral  = int_tofp(integral);
158         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
159 }
160
161 static inline void pid_p_gain_set(struct _pid *pid, int percent)
162 {
163         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
164 }
165
166 static inline void pid_i_gain_set(struct _pid *pid, int percent)
167 {
168         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
169 }
170
171 static inline void pid_d_gain_set(struct _pid *pid, int percent)
172 {
173
174         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static signed int pid_calc(struct _pid *pid, int32_t busy)
178 {
179         signed int result;
180         int32_t pterm, dterm, fp_error;
181         int32_t integral_limit;
182
183         fp_error = int_tofp(pid->setpoint) - busy;
184
185         if (abs(fp_error) <= int_tofp(pid->deadband))
186                 return 0;
187
188         pterm = mul_fp(pid->p_gain, fp_error);
189
190         pid->integral += fp_error;
191
192         /* limit the integral term */
193         integral_limit = int_tofp(30);
194         if (pid->integral > integral_limit)
195                 pid->integral = integral_limit;
196         if (pid->integral < -integral_limit)
197                 pid->integral = -integral_limit;
198
199         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
200         pid->last_err = fp_error;
201
202         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
203
204         return (signed int)fp_toint(result);
205 }
206
207 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
208 {
209         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
210         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
211         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
212
213         pid_reset(&cpu->pid,
214                 pid_params.setpoint,
215                 100,
216                 pid_params.deadband,
217                 0);
218 }
219
220 static inline void intel_pstate_reset_all_pid(void)
221 {
222         unsigned int cpu;
223         for_each_online_cpu(cpu) {
224                 if (all_cpu_data[cpu])
225                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
226         }
227 }
228
229 /************************** debugfs begin ************************/
230 static int pid_param_set(void *data, u64 val)
231 {
232         *(u32 *)data = val;
233         intel_pstate_reset_all_pid();
234         return 0;
235 }
236 static int pid_param_get(void *data, u64 *val)
237 {
238         *val = *(u32 *)data;
239         return 0;
240 }
241 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
242                         pid_param_set, "%llu\n");
243
244 struct pid_param {
245         char *name;
246         void *value;
247 };
248
249 static struct pid_param pid_files[] = {
250         {"sample_rate_ms", &pid_params.sample_rate_ms},
251         {"d_gain_pct", &pid_params.d_gain_pct},
252         {"i_gain_pct", &pid_params.i_gain_pct},
253         {"deadband", &pid_params.deadband},
254         {"setpoint", &pid_params.setpoint},
255         {"p_gain_pct", &pid_params.p_gain_pct},
256         {NULL, NULL}
257 };
258
259 static struct dentry *debugfs_parent;
260 static void intel_pstate_debug_expose_params(void)
261 {
262         int i = 0;
263
264         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
265         if (IS_ERR_OR_NULL(debugfs_parent))
266                 return;
267         while (pid_files[i].name) {
268                 debugfs_create_file(pid_files[i].name, 0660,
269                                 debugfs_parent, pid_files[i].value,
270                                 &fops_pid_param);
271                 i++;
272         }
273 }
274
275 /************************** debugfs end ************************/
276
277 /************************** sysfs begin ************************/
278 #define show_one(file_name, object)                                     \
279         static ssize_t show_##file_name                                 \
280         (struct kobject *kobj, struct attribute *attr, char *buf)       \
281         {                                                               \
282                 return sprintf(buf, "%u\n", limits.object);             \
283         }
284
285 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
286                                 const char *buf, size_t count)
287 {
288         unsigned int input;
289         int ret;
290         ret = sscanf(buf, "%u", &input);
291         if (ret != 1)
292                 return -EINVAL;
293         limits.no_turbo = clamp_t(int, input, 0 , 1);
294
295         return count;
296 }
297
298 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
299                                 const char *buf, size_t count)
300 {
301         unsigned int input;
302         int ret;
303         ret = sscanf(buf, "%u", &input);
304         if (ret != 1)
305                 return -EINVAL;
306
307         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
308         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
309         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
310         return count;
311 }
312
313 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
314                                 const char *buf, size_t count)
315 {
316         unsigned int input;
317         int ret;
318         ret = sscanf(buf, "%u", &input);
319         if (ret != 1)
320                 return -EINVAL;
321         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
322         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
323
324         return count;
325 }
326
327 show_one(no_turbo, no_turbo);
328 show_one(max_perf_pct, max_perf_pct);
329 show_one(min_perf_pct, min_perf_pct);
330
331 define_one_global_rw(no_turbo);
332 define_one_global_rw(max_perf_pct);
333 define_one_global_rw(min_perf_pct);
334
335 static struct attribute *intel_pstate_attributes[] = {
336         &no_turbo.attr,
337         &max_perf_pct.attr,
338         &min_perf_pct.attr,
339         NULL
340 };
341
342 static struct attribute_group intel_pstate_attr_group = {
343         .attrs = intel_pstate_attributes,
344 };
345 static struct kobject *intel_pstate_kobject;
346
347 static void intel_pstate_sysfs_expose_params(void)
348 {
349         int rc;
350
351         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
352                                                 &cpu_subsys.dev_root->kobj);
353         BUG_ON(!intel_pstate_kobject);
354         rc = sysfs_create_group(intel_pstate_kobject,
355                                 &intel_pstate_attr_group);
356         BUG_ON(rc);
357 }
358
359 /************************** sysfs end ************************/
360 static int byt_get_min_pstate(void)
361 {
362         u64 value;
363         rdmsrl(BYT_RATIOS, value);
364         return (value >> 8) & 0x3F;
365 }
366
367 static int byt_get_max_pstate(void)
368 {
369         u64 value;
370         rdmsrl(BYT_RATIOS, value);
371         return (value >> 16) & 0x3F;
372 }
373
374 static int byt_get_turbo_pstate(void)
375 {
376         u64 value;
377         rdmsrl(BYT_TURBO_RATIOS, value);
378         return value & 0x3F;
379 }
380
381 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
382 {
383         u64 val;
384         int32_t vid_fp;
385         u32 vid;
386
387         val = pstate << 8;
388         if (limits.no_turbo)
389                 val |= (u64)1 << 32;
390
391         vid_fp = cpudata->vid.min + mul_fp(
392                 int_tofp(pstate - cpudata->pstate.min_pstate),
393                 cpudata->vid.ratio);
394
395         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
396         vid = fp_toint(vid_fp);
397
398         if (pstate > cpudata->pstate.max_pstate)
399                 vid = cpudata->vid.turbo;
400
401         val |= vid;
402
403         wrmsrl(MSR_IA32_PERF_CTL, val);
404 }
405
406 static void byt_get_vid(struct cpudata *cpudata)
407 {
408         u64 value;
409
410
411         rdmsrl(BYT_VIDS, value);
412         cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
413         cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
414         cpudata->vid.ratio = div_fp(
415                 cpudata->vid.max - cpudata->vid.min,
416                 int_tofp(cpudata->pstate.max_pstate -
417                         cpudata->pstate.min_pstate));
418
419         rdmsrl(BYT_TURBO_VIDS, value);
420         cpudata->vid.turbo = value & 0x7f;
421 }
422
423
424 static int core_get_min_pstate(void)
425 {
426         u64 value;
427         rdmsrl(MSR_PLATFORM_INFO, value);
428         return (value >> 40) & 0xFF;
429 }
430
431 static int core_get_max_pstate(void)
432 {
433         u64 value;
434         rdmsrl(MSR_PLATFORM_INFO, value);
435         return (value >> 8) & 0xFF;
436 }
437
438 static int core_get_turbo_pstate(void)
439 {
440         u64 value;
441         int nont, ret;
442         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
443         nont = core_get_max_pstate();
444         ret = ((value) & 255);
445         if (ret <= nont)
446                 ret = nont;
447         return ret;
448 }
449
450 static void core_set_pstate(struct cpudata *cpudata, int pstate)
451 {
452         u64 val;
453
454         val = pstate << 8;
455         if (limits.no_turbo)
456                 val |= (u64)1 << 32;
457
458         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
459 }
460
461 static struct cpu_defaults core_params = {
462         .pid_policy = {
463                 .sample_rate_ms = 10,
464                 .deadband = 0,
465                 .setpoint = 97,
466                 .p_gain_pct = 20,
467                 .d_gain_pct = 0,
468                 .i_gain_pct = 0,
469         },
470         .funcs = {
471                 .get_max = core_get_max_pstate,
472                 .get_min = core_get_min_pstate,
473                 .get_turbo = core_get_turbo_pstate,
474                 .set = core_set_pstate,
475         },
476 };
477
478 static struct cpu_defaults byt_params = {
479         .pid_policy = {
480                 .sample_rate_ms = 10,
481                 .deadband = 0,
482                 .setpoint = 97,
483                 .p_gain_pct = 14,
484                 .d_gain_pct = 0,
485                 .i_gain_pct = 4,
486         },
487         .funcs = {
488                 .get_max = byt_get_max_pstate,
489                 .get_min = byt_get_min_pstate,
490                 .get_turbo = byt_get_turbo_pstate,
491                 .set = byt_set_pstate,
492                 .get_vid = byt_get_vid,
493         },
494 };
495
496
497 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
498 {
499         int max_perf = cpu->pstate.turbo_pstate;
500         int max_perf_adj;
501         int min_perf;
502         if (limits.no_turbo)
503                 max_perf = cpu->pstate.max_pstate;
504
505         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
506         *max = clamp_t(int, max_perf_adj,
507                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
508
509         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
510         *min = clamp_t(int, min_perf,
511                         cpu->pstate.min_pstate, max_perf);
512 }
513
514 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
515 {
516         int max_perf, min_perf;
517
518         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
519
520         pstate = clamp_t(int, pstate, min_perf, max_perf);
521
522         if (pstate == cpu->pstate.current_pstate)
523                 return;
524
525         trace_cpu_frequency(pstate * 100000, cpu->cpu);
526
527         cpu->pstate.current_pstate = pstate;
528
529         pstate_funcs.set(cpu, pstate);
530 }
531
532 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
533 {
534         int target;
535         target = cpu->pstate.current_pstate + steps;
536
537         intel_pstate_set_pstate(cpu, target);
538 }
539
540 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
541 {
542         int target;
543         target = cpu->pstate.current_pstate - steps;
544         intel_pstate_set_pstate(cpu, target);
545 }
546
547 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
548 {
549         sprintf(cpu->name, "Intel 2nd generation core");
550
551         cpu->pstate.min_pstate = pstate_funcs.get_min();
552         cpu->pstate.max_pstate = pstate_funcs.get_max();
553         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
554
555         if (pstate_funcs.get_vid)
556                 pstate_funcs.get_vid(cpu);
557         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
558 }
559
560 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
561                                         struct sample *sample)
562 {
563         int32_t core_pct;
564         int32_t c0_pct;
565
566         core_pct = div_fp(int_tofp((sample->aperf)),
567                         int_tofp((sample->mperf)));
568         core_pct = mul_fp(core_pct, int_tofp(100));
569         FP_ROUNDUP(core_pct);
570
571         c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
572
573         sample->freq = fp_toint(
574                 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
575
576         sample->core_pct_busy = mul_fp(core_pct, c0_pct);
577 }
578
579 static inline void intel_pstate_sample(struct cpudata *cpu)
580 {
581         u64 aperf, mperf;
582         unsigned long long tsc;
583
584         rdmsrl(MSR_IA32_APERF, aperf);
585         rdmsrl(MSR_IA32_MPERF, mperf);
586         tsc = native_read_tsc();
587
588         aperf = aperf >> FRAC_BITS;
589         mperf = mperf >> FRAC_BITS;
590         tsc = tsc >> FRAC_BITS;
591
592         cpu->sample.aperf = aperf;
593         cpu->sample.mperf = mperf;
594         cpu->sample.tsc = tsc;
595         cpu->sample.aperf -= cpu->prev_aperf;
596         cpu->sample.mperf -= cpu->prev_mperf;
597         cpu->sample.tsc -= cpu->prev_tsc;
598
599         intel_pstate_calc_busy(cpu, &cpu->sample);
600
601         cpu->prev_aperf = aperf;
602         cpu->prev_mperf = mperf;
603         cpu->prev_tsc = tsc;
604 }
605
606 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
607 {
608         int sample_time, delay;
609
610         sample_time = pid_params.sample_rate_ms;
611         delay = msecs_to_jiffies(sample_time);
612         mod_timer_pinned(&cpu->timer, jiffies + delay);
613 }
614
615 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
616 {
617         int32_t core_busy, max_pstate, current_pstate;
618
619         core_busy = cpu->sample.core_pct_busy;
620         max_pstate = int_tofp(cpu->pstate.max_pstate);
621         current_pstate = int_tofp(cpu->pstate.current_pstate);
622         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
623         return FP_ROUNDUP(core_busy);
624 }
625
626 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
627 {
628         int32_t busy_scaled;
629         struct _pid *pid;
630         signed int ctl = 0;
631         int steps;
632
633         pid = &cpu->pid;
634         busy_scaled = intel_pstate_get_scaled_busy(cpu);
635
636         ctl = pid_calc(pid, busy_scaled);
637
638         steps = abs(ctl);
639
640         if (ctl < 0)
641                 intel_pstate_pstate_increase(cpu, steps);
642         else
643                 intel_pstate_pstate_decrease(cpu, steps);
644 }
645
646 static void intel_pstate_timer_func(unsigned long __data)
647 {
648         struct cpudata *cpu = (struct cpudata *) __data;
649         struct sample *sample;
650
651         intel_pstate_sample(cpu);
652
653         sample = &cpu->sample;
654
655         intel_pstate_adjust_busy_pstate(cpu);
656
657         trace_pstate_sample(fp_toint(sample->core_pct_busy),
658                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
659                         cpu->pstate.current_pstate,
660                         sample->mperf,
661                         sample->aperf,
662                         sample->freq);
663
664         intel_pstate_set_sample_time(cpu);
665 }
666
667 #define ICPU(model, policy) \
668         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
669                         (unsigned long)&policy }
670
671 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
672         ICPU(0x2a, core_params),
673         ICPU(0x2d, core_params),
674         ICPU(0x37, byt_params),
675         ICPU(0x3a, core_params),
676         ICPU(0x3c, core_params),
677         ICPU(0x3e, core_params),
678         ICPU(0x3f, core_params),
679         ICPU(0x45, core_params),
680         ICPU(0x46, core_params),
681         {}
682 };
683 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
684
685 static int intel_pstate_init_cpu(unsigned int cpunum)
686 {
687
688         const struct x86_cpu_id *id;
689         struct cpudata *cpu;
690
691         id = x86_match_cpu(intel_pstate_cpu_ids);
692         if (!id)
693                 return -ENODEV;
694
695         all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
696         if (!all_cpu_data[cpunum])
697                 return -ENOMEM;
698
699         cpu = all_cpu_data[cpunum];
700
701         intel_pstate_get_cpu_pstates(cpu);
702
703         cpu->cpu = cpunum;
704
705         init_timer_deferrable(&cpu->timer);
706         cpu->timer.function = intel_pstate_timer_func;
707         cpu->timer.data =
708                 (unsigned long)cpu;
709         cpu->timer.expires = jiffies + HZ/100;
710         intel_pstate_busy_pid_reset(cpu);
711         intel_pstate_sample(cpu);
712
713         add_timer_on(&cpu->timer, cpunum);
714
715         pr_info("Intel pstate controlling: cpu %d\n", cpunum);
716
717         return 0;
718 }
719
720 static unsigned int intel_pstate_get(unsigned int cpu_num)
721 {
722         struct sample *sample;
723         struct cpudata *cpu;
724
725         cpu = all_cpu_data[cpu_num];
726         if (!cpu)
727                 return 0;
728         sample = &cpu->sample;
729         return sample->freq;
730 }
731
732 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
733 {
734         struct cpudata *cpu;
735
736         cpu = all_cpu_data[policy->cpu];
737
738         if (!policy->cpuinfo.max_freq)
739                 return -ENODEV;
740
741         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
742                 limits.min_perf_pct = 100;
743                 limits.min_perf = int_tofp(1);
744                 limits.max_perf_pct = 100;
745                 limits.max_perf = int_tofp(1);
746                 limits.no_turbo = 0;
747                 return 0;
748         }
749         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
750         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
751         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
752
753         limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
754         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
755         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
756         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
757
758         return 0;
759 }
760
761 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
762 {
763         cpufreq_verify_within_cpu_limits(policy);
764
765         if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
766                 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
767                 return -EINVAL;
768
769         return 0;
770 }
771
772 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
773 {
774         int cpu_num = policy->cpu;
775         struct cpudata *cpu = all_cpu_data[cpu_num];
776
777         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
778
779         del_timer_sync(&all_cpu_data[cpu_num]->timer);
780         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
781         kfree(all_cpu_data[cpu_num]);
782         all_cpu_data[cpu_num] = NULL;
783 }
784
785 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
786 {
787         struct cpudata *cpu;
788         int rc;
789
790         rc = intel_pstate_init_cpu(policy->cpu);
791         if (rc)
792                 return rc;
793
794         cpu = all_cpu_data[policy->cpu];
795
796         if (!limits.no_turbo &&
797                 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
798                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
799         else
800                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
801
802         policy->min = cpu->pstate.min_pstate * 100000;
803         policy->max = cpu->pstate.turbo_pstate * 100000;
804
805         /* cpuinfo and default policy values */
806         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
807         policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
808         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
809         cpumask_set_cpu(policy->cpu, policy->cpus);
810
811         return 0;
812 }
813
814 static struct cpufreq_driver intel_pstate_driver = {
815         .flags          = CPUFREQ_CONST_LOOPS,
816         .verify         = intel_pstate_verify_policy,
817         .setpolicy      = intel_pstate_set_policy,
818         .get            = intel_pstate_get,
819         .init           = intel_pstate_cpu_init,
820         .stop_cpu       = intel_pstate_stop_cpu,
821         .name           = "intel_pstate",
822 };
823
824 static int __initdata no_load;
825
826 static int intel_pstate_msrs_not_valid(void)
827 {
828         /* Check that all the msr's we are using are valid. */
829         u64 aperf, mperf, tmp;
830
831         rdmsrl(MSR_IA32_APERF, aperf);
832         rdmsrl(MSR_IA32_MPERF, mperf);
833
834         if (!pstate_funcs.get_max() ||
835                 !pstate_funcs.get_min() ||
836                 !pstate_funcs.get_turbo())
837                 return -ENODEV;
838
839         rdmsrl(MSR_IA32_APERF, tmp);
840         if (!(tmp - aperf))
841                 return -ENODEV;
842
843         rdmsrl(MSR_IA32_MPERF, tmp);
844         if (!(tmp - mperf))
845                 return -ENODEV;
846
847         return 0;
848 }
849
850 static void copy_pid_params(struct pstate_adjust_policy *policy)
851 {
852         pid_params.sample_rate_ms = policy->sample_rate_ms;
853         pid_params.p_gain_pct = policy->p_gain_pct;
854         pid_params.i_gain_pct = policy->i_gain_pct;
855         pid_params.d_gain_pct = policy->d_gain_pct;
856         pid_params.deadband = policy->deadband;
857         pid_params.setpoint = policy->setpoint;
858 }
859
860 static void copy_cpu_funcs(struct pstate_funcs *funcs)
861 {
862         pstate_funcs.get_max   = funcs->get_max;
863         pstate_funcs.get_min   = funcs->get_min;
864         pstate_funcs.get_turbo = funcs->get_turbo;
865         pstate_funcs.set       = funcs->set;
866         pstate_funcs.get_vid   = funcs->get_vid;
867 }
868
869 #if IS_ENABLED(CONFIG_ACPI)
870 #include <acpi/processor.h>
871
872 static bool intel_pstate_no_acpi_pss(void)
873 {
874         int i;
875
876         for_each_possible_cpu(i) {
877                 acpi_status status;
878                 union acpi_object *pss;
879                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
880                 struct acpi_processor *pr = per_cpu(processors, i);
881
882                 if (!pr)
883                         continue;
884
885                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
886                 if (ACPI_FAILURE(status))
887                         continue;
888
889                 pss = buffer.pointer;
890                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
891                         kfree(pss);
892                         return false;
893                 }
894
895                 kfree(pss);
896         }
897
898         return true;
899 }
900
901 struct hw_vendor_info {
902         u16  valid;
903         char oem_id[ACPI_OEM_ID_SIZE];
904         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
905 };
906
907 /* Hardware vendor-specific info that has its own power management modes */
908 static struct hw_vendor_info vendor_info[] = {
909         {1, "HP    ", "ProLiant"},
910         {0, "", ""},
911 };
912
913 static bool intel_pstate_platform_pwr_mgmt_exists(void)
914 {
915         struct acpi_table_header hdr;
916         struct hw_vendor_info *v_info;
917
918         if (acpi_disabled
919             || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
920                 return false;
921
922         for (v_info = vendor_info; v_info->valid; v_info++) {
923                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
924                     && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
925                     && intel_pstate_no_acpi_pss())
926                         return true;
927         }
928
929         return false;
930 }
931 #else /* CONFIG_ACPI not enabled */
932 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
933 #endif /* CONFIG_ACPI */
934
935 static int __init intel_pstate_init(void)
936 {
937         int cpu, rc = 0;
938         const struct x86_cpu_id *id;
939         struct cpu_defaults *cpu_info;
940
941         if (no_load)
942                 return -ENODEV;
943
944         id = x86_match_cpu(intel_pstate_cpu_ids);
945         if (!id)
946                 return -ENODEV;
947
948         /*
949          * The Intel pstate driver will be ignored if the platform
950          * firmware has its own power management modes.
951          */
952         if (intel_pstate_platform_pwr_mgmt_exists())
953                 return -ENODEV;
954
955         cpu_info = (struct cpu_defaults *)id->driver_data;
956
957         copy_pid_params(&cpu_info->pid_policy);
958         copy_cpu_funcs(&cpu_info->funcs);
959
960         if (intel_pstate_msrs_not_valid())
961                 return -ENODEV;
962
963         pr_info("Intel P-state driver initializing.\n");
964
965         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
966         if (!all_cpu_data)
967                 return -ENOMEM;
968
969         rc = cpufreq_register_driver(&intel_pstate_driver);
970         if (rc)
971                 goto out;
972
973         intel_pstate_debug_expose_params();
974         intel_pstate_sysfs_expose_params();
975
976         return rc;
977 out:
978         get_online_cpus();
979         for_each_online_cpu(cpu) {
980                 if (all_cpu_data[cpu]) {
981                         del_timer_sync(&all_cpu_data[cpu]->timer);
982                         kfree(all_cpu_data[cpu]);
983                 }
984         }
985
986         put_online_cpus();
987         vfree(all_cpu_data);
988         return -ENODEV;
989 }
990 device_initcall(intel_pstate_init);
991
992 static int __init intel_pstate_setup(char *str)
993 {
994         if (!str)
995                 return -EINVAL;
996
997         if (!strcmp(str, "disable"))
998                 no_load = 1;
999         return 0;
1000 }
1001 early_param("intel_pstate", intel_pstate_setup);
1002
1003 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1004 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1005 MODULE_LICENSE("GPL");