]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/crypto/atmel-sha.c
Merge branch 'linux-4.4' of git://github.com/skeggsb/linux into drm-fixes
[karo-tx-linux.git] / drivers / crypto / atmel-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44
45 /* SHA flags */
46 #define SHA_FLAGS_BUSY                  BIT(0)
47 #define SHA_FLAGS_FINAL                 BIT(1)
48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
50 #define SHA_FLAGS_INIT                  BIT(4)
51 #define SHA_FLAGS_CPU                   BIT(5)
52 #define SHA_FLAGS_DMA_READY             BIT(6)
53
54 #define SHA_FLAGS_FINUP         BIT(16)
55 #define SHA_FLAGS_SG            BIT(17)
56 #define SHA_FLAGS_SHA1          BIT(18)
57 #define SHA_FLAGS_SHA224        BIT(19)
58 #define SHA_FLAGS_SHA256        BIT(20)
59 #define SHA_FLAGS_SHA384        BIT(21)
60 #define SHA_FLAGS_SHA512        BIT(22)
61 #define SHA_FLAGS_ERROR         BIT(23)
62 #define SHA_FLAGS_PAD           BIT(24)
63
64 #define SHA_OP_UPDATE   1
65 #define SHA_OP_FINAL    2
66
67 #define SHA_BUFFER_LEN          PAGE_SIZE
68
69 #define ATMEL_SHA_DMA_THRESHOLD         56
70
71 struct atmel_sha_caps {
72         bool    has_dma;
73         bool    has_dualbuff;
74         bool    has_sha224;
75         bool    has_sha_384_512;
76 };
77
78 struct atmel_sha_dev;
79
80 struct atmel_sha_reqctx {
81         struct atmel_sha_dev    *dd;
82         unsigned long   flags;
83         unsigned long   op;
84
85         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
86         u64     digcnt[2];
87         size_t  bufcnt;
88         size_t  buflen;
89         dma_addr_t      dma_addr;
90
91         /* walk state */
92         struct scatterlist      *sg;
93         unsigned int    offset; /* offset in current sg */
94         unsigned int    total;  /* total request */
95
96         size_t block_size;
97
98         u8      buffer[0] __aligned(sizeof(u32));
99 };
100
101 struct atmel_sha_ctx {
102         struct atmel_sha_dev    *dd;
103
104         unsigned long           flags;
105 };
106
107 #define ATMEL_SHA_QUEUE_LENGTH  50
108
109 struct atmel_sha_dma {
110         struct dma_chan                 *chan;
111         struct dma_slave_config dma_conf;
112 };
113
114 struct atmel_sha_dev {
115         struct list_head        list;
116         unsigned long           phys_base;
117         struct device           *dev;
118         struct clk                      *iclk;
119         int                                     irq;
120         void __iomem            *io_base;
121
122         spinlock_t              lock;
123         int                     err;
124         struct tasklet_struct   done_task;
125
126         unsigned long           flags;
127         struct crypto_queue     queue;
128         struct ahash_request    *req;
129
130         struct atmel_sha_dma    dma_lch_in;
131
132         struct atmel_sha_caps   caps;
133
134         u32     hw_version;
135 };
136
137 struct atmel_sha_drv {
138         struct list_head        dev_list;
139         spinlock_t              lock;
140 };
141
142 static struct atmel_sha_drv atmel_sha = {
143         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
144         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
145 };
146
147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
148 {
149         return readl_relaxed(dd->io_base + offset);
150 }
151
152 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
153                                         u32 offset, u32 value)
154 {
155         writel_relaxed(value, dd->io_base + offset);
156 }
157
158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
159 {
160         size_t count;
161
162         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
163                 count = min(ctx->sg->length - ctx->offset, ctx->total);
164                 count = min(count, ctx->buflen - ctx->bufcnt);
165
166                 if (count <= 0) {
167                         /*
168                         * Check if count <= 0 because the buffer is full or
169                         * because the sg length is 0. In the latest case,
170                         * check if there is another sg in the list, a 0 length
171                         * sg doesn't necessarily mean the end of the sg list.
172                         */
173                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
174                                 ctx->sg = sg_next(ctx->sg);
175                                 continue;
176                         } else {
177                                 break;
178                         }
179                 }
180
181                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
182                         ctx->offset, count, 0);
183
184                 ctx->bufcnt += count;
185                 ctx->offset += count;
186                 ctx->total -= count;
187
188                 if (ctx->offset == ctx->sg->length) {
189                         ctx->sg = sg_next(ctx->sg);
190                         if (ctx->sg)
191                                 ctx->offset = 0;
192                         else
193                                 ctx->total = 0;
194                 }
195         }
196
197         return 0;
198 }
199
200 /*
201  * The purpose of this padding is to ensure that the padded message is a
202  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
203  * The bit "1" is appended at the end of the message followed by
204  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
205  * 128 bits block (SHA384/SHA512) equals to the message length in bits
206  * is appended.
207  *
208  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
209  *  - if message length < 56 bytes then padlen = 56 - message length
210  *  - else padlen = 64 + 56 - message length
211  *
212  * For SHA384/SHA512, padlen is calculated as followed:
213  *  - if message length < 112 bytes then padlen = 112 - message length
214  *  - else padlen = 128 + 112 - message length
215  */
216 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
217 {
218         unsigned int index, padlen;
219         u64 bits[2];
220         u64 size[2];
221
222         size[0] = ctx->digcnt[0];
223         size[1] = ctx->digcnt[1];
224
225         size[0] += ctx->bufcnt;
226         if (size[0] < ctx->bufcnt)
227                 size[1]++;
228
229         size[0] += length;
230         if (size[0]  < length)
231                 size[1]++;
232
233         bits[1] = cpu_to_be64(size[0] << 3);
234         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
235
236         if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
237                 index = ctx->bufcnt & 0x7f;
238                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
239                 *(ctx->buffer + ctx->bufcnt) = 0x80;
240                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
241                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
242                 ctx->bufcnt += padlen + 16;
243                 ctx->flags |= SHA_FLAGS_PAD;
244         } else {
245                 index = ctx->bufcnt & 0x3f;
246                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
247                 *(ctx->buffer + ctx->bufcnt) = 0x80;
248                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
249                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
250                 ctx->bufcnt += padlen + 8;
251                 ctx->flags |= SHA_FLAGS_PAD;
252         }
253 }
254
255 static int atmel_sha_init(struct ahash_request *req)
256 {
257         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
258         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
259         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
260         struct atmel_sha_dev *dd = NULL;
261         struct atmel_sha_dev *tmp;
262
263         spin_lock_bh(&atmel_sha.lock);
264         if (!tctx->dd) {
265                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
266                         dd = tmp;
267                         break;
268                 }
269                 tctx->dd = dd;
270         } else {
271                 dd = tctx->dd;
272         }
273
274         spin_unlock_bh(&atmel_sha.lock);
275
276         ctx->dd = dd;
277
278         ctx->flags = 0;
279
280         dev_dbg(dd->dev, "init: digest size: %d\n",
281                 crypto_ahash_digestsize(tfm));
282
283         switch (crypto_ahash_digestsize(tfm)) {
284         case SHA1_DIGEST_SIZE:
285                 ctx->flags |= SHA_FLAGS_SHA1;
286                 ctx->block_size = SHA1_BLOCK_SIZE;
287                 break;
288         case SHA224_DIGEST_SIZE:
289                 ctx->flags |= SHA_FLAGS_SHA224;
290                 ctx->block_size = SHA224_BLOCK_SIZE;
291                 break;
292         case SHA256_DIGEST_SIZE:
293                 ctx->flags |= SHA_FLAGS_SHA256;
294                 ctx->block_size = SHA256_BLOCK_SIZE;
295                 break;
296         case SHA384_DIGEST_SIZE:
297                 ctx->flags |= SHA_FLAGS_SHA384;
298                 ctx->block_size = SHA384_BLOCK_SIZE;
299                 break;
300         case SHA512_DIGEST_SIZE:
301                 ctx->flags |= SHA_FLAGS_SHA512;
302                 ctx->block_size = SHA512_BLOCK_SIZE;
303                 break;
304         default:
305                 return -EINVAL;
306                 break;
307         }
308
309         ctx->bufcnt = 0;
310         ctx->digcnt[0] = 0;
311         ctx->digcnt[1] = 0;
312         ctx->buflen = SHA_BUFFER_LEN;
313
314         return 0;
315 }
316
317 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
318 {
319         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
320         u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
321
322         if (likely(dma)) {
323                 if (!dd->caps.has_dma)
324                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
325                 valmr = SHA_MR_MODE_PDC;
326                 if (dd->caps.has_dualbuff)
327                         valmr |= SHA_MR_DUALBUFF;
328         } else {
329                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
330         }
331
332         if (ctx->flags & SHA_FLAGS_SHA1)
333                 valmr |= SHA_MR_ALGO_SHA1;
334         else if (ctx->flags & SHA_FLAGS_SHA224)
335                 valmr |= SHA_MR_ALGO_SHA224;
336         else if (ctx->flags & SHA_FLAGS_SHA256)
337                 valmr |= SHA_MR_ALGO_SHA256;
338         else if (ctx->flags & SHA_FLAGS_SHA384)
339                 valmr |= SHA_MR_ALGO_SHA384;
340         else if (ctx->flags & SHA_FLAGS_SHA512)
341                 valmr |= SHA_MR_ALGO_SHA512;
342
343         /* Setting CR_FIRST only for the first iteration */
344         if (!(ctx->digcnt[0] || ctx->digcnt[1]))
345                 valcr = SHA_CR_FIRST;
346
347         atmel_sha_write(dd, SHA_CR, valcr);
348         atmel_sha_write(dd, SHA_MR, valmr);
349 }
350
351 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
352                               size_t length, int final)
353 {
354         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
355         int count, len32;
356         const u32 *buffer = (const u32 *)buf;
357
358         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
359                 ctx->digcnt[1], ctx->digcnt[0], length, final);
360
361         atmel_sha_write_ctrl(dd, 0);
362
363         /* should be non-zero before next lines to disable clocks later */
364         ctx->digcnt[0] += length;
365         if (ctx->digcnt[0] < length)
366                 ctx->digcnt[1]++;
367
368         if (final)
369                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
370
371         len32 = DIV_ROUND_UP(length, sizeof(u32));
372
373         dd->flags |= SHA_FLAGS_CPU;
374
375         for (count = 0; count < len32; count++)
376                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
377
378         return -EINPROGRESS;
379 }
380
381 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
382                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
383 {
384         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
385         int len32;
386
387         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
388                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
389
390         len32 = DIV_ROUND_UP(length1, sizeof(u32));
391         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
392         atmel_sha_write(dd, SHA_TPR, dma_addr1);
393         atmel_sha_write(dd, SHA_TCR, len32);
394
395         len32 = DIV_ROUND_UP(length2, sizeof(u32));
396         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
397         atmel_sha_write(dd, SHA_TNCR, len32);
398
399         atmel_sha_write_ctrl(dd, 1);
400
401         /* should be non-zero before next lines to disable clocks later */
402         ctx->digcnt[0] += length1;
403         if (ctx->digcnt[0] < length1)
404                 ctx->digcnt[1]++;
405
406         if (final)
407                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
408
409         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
410
411         /* Start DMA transfer */
412         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
413
414         return -EINPROGRESS;
415 }
416
417 static void atmel_sha_dma_callback(void *data)
418 {
419         struct atmel_sha_dev *dd = data;
420
421         /* dma_lch_in - completed - wait DATRDY */
422         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
423 }
424
425 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
426                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
427 {
428         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
429         struct dma_async_tx_descriptor  *in_desc;
430         struct scatterlist sg[2];
431
432         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
433                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
434
435         dd->dma_lch_in.dma_conf.src_maxburst = 16;
436         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
437
438         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
439
440         if (length2) {
441                 sg_init_table(sg, 2);
442                 sg_dma_address(&sg[0]) = dma_addr1;
443                 sg_dma_len(&sg[0]) = length1;
444                 sg_dma_address(&sg[1]) = dma_addr2;
445                 sg_dma_len(&sg[1]) = length2;
446                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
447                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448         } else {
449                 sg_init_table(sg, 1);
450                 sg_dma_address(&sg[0]) = dma_addr1;
451                 sg_dma_len(&sg[0]) = length1;
452                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
453                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
454         }
455         if (!in_desc)
456                 return -EINVAL;
457
458         in_desc->callback = atmel_sha_dma_callback;
459         in_desc->callback_param = dd;
460
461         atmel_sha_write_ctrl(dd, 1);
462
463         /* should be non-zero before next lines to disable clocks later */
464         ctx->digcnt[0] += length1;
465         if (ctx->digcnt[0] < length1)
466                 ctx->digcnt[1]++;
467
468         if (final)
469                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
470
471         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
472
473         /* Start DMA transfer */
474         dmaengine_submit(in_desc);
475         dma_async_issue_pending(dd->dma_lch_in.chan);
476
477         return -EINPROGRESS;
478 }
479
480 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
481                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
482 {
483         if (dd->caps.has_dma)
484                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
485                                 dma_addr2, length2, final);
486         else
487                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
488                                 dma_addr2, length2, final);
489 }
490
491 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
492 {
493         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
494         int bufcnt;
495
496         atmel_sha_append_sg(ctx);
497         atmel_sha_fill_padding(ctx, 0);
498         bufcnt = ctx->bufcnt;
499         ctx->bufcnt = 0;
500
501         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
502 }
503
504 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
505                                         struct atmel_sha_reqctx *ctx,
506                                         size_t length, int final)
507 {
508         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
509                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
510         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
511                 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
512                                 ctx->block_size);
513                 return -EINVAL;
514         }
515
516         ctx->flags &= ~SHA_FLAGS_SG;
517
518         /* next call does not fail... so no unmap in the case of error */
519         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
520 }
521
522 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
523 {
524         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
525         unsigned int final;
526         size_t count;
527
528         atmel_sha_append_sg(ctx);
529
530         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
531
532         dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
533                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
534
535         if (final)
536                 atmel_sha_fill_padding(ctx, 0);
537
538         if (final || (ctx->bufcnt == ctx->buflen)) {
539                 count = ctx->bufcnt;
540                 ctx->bufcnt = 0;
541                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
542         }
543
544         return 0;
545 }
546
547 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
548 {
549         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
550         unsigned int length, final, tail;
551         struct scatterlist *sg;
552         unsigned int count;
553
554         if (!ctx->total)
555                 return 0;
556
557         if (ctx->bufcnt || ctx->offset)
558                 return atmel_sha_update_dma_slow(dd);
559
560         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
561                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
562
563         sg = ctx->sg;
564
565         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
566                 return atmel_sha_update_dma_slow(dd);
567
568         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
569                 /* size is not ctx->block_size aligned */
570                 return atmel_sha_update_dma_slow(dd);
571
572         length = min(ctx->total, sg->length);
573
574         if (sg_is_last(sg)) {
575                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
576                         /* not last sg must be ctx->block_size aligned */
577                         tail = length & (ctx->block_size - 1);
578                         length -= tail;
579                 }
580         }
581
582         ctx->total -= length;
583         ctx->offset = length; /* offset where to start slow */
584
585         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
586
587         /* Add padding */
588         if (final) {
589                 tail = length & (ctx->block_size - 1);
590                 length -= tail;
591                 ctx->total += tail;
592                 ctx->offset = length; /* offset where to start slow */
593
594                 sg = ctx->sg;
595                 atmel_sha_append_sg(ctx);
596
597                 atmel_sha_fill_padding(ctx, length);
598
599                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
600                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
601                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
602                         dev_err(dd->dev, "dma %u bytes error\n",
603                                 ctx->buflen + ctx->block_size);
604                         return -EINVAL;
605                 }
606
607                 if (length == 0) {
608                         ctx->flags &= ~SHA_FLAGS_SG;
609                         count = ctx->bufcnt;
610                         ctx->bufcnt = 0;
611                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
612                                         0, final);
613                 } else {
614                         ctx->sg = sg;
615                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
616                                 DMA_TO_DEVICE)) {
617                                         dev_err(dd->dev, "dma_map_sg  error\n");
618                                         return -EINVAL;
619                         }
620
621                         ctx->flags |= SHA_FLAGS_SG;
622
623                         count = ctx->bufcnt;
624                         ctx->bufcnt = 0;
625                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
626                                         length, ctx->dma_addr, count, final);
627                 }
628         }
629
630         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
631                 dev_err(dd->dev, "dma_map_sg  error\n");
632                 return -EINVAL;
633         }
634
635         ctx->flags |= SHA_FLAGS_SG;
636
637         /* next call does not fail... so no unmap in the case of error */
638         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
639                                                                 0, final);
640 }
641
642 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
643 {
644         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
645
646         if (ctx->flags & SHA_FLAGS_SG) {
647                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
648                 if (ctx->sg->length == ctx->offset) {
649                         ctx->sg = sg_next(ctx->sg);
650                         if (ctx->sg)
651                                 ctx->offset = 0;
652                 }
653                 if (ctx->flags & SHA_FLAGS_PAD) {
654                         dma_unmap_single(dd->dev, ctx->dma_addr,
655                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
656                 }
657         } else {
658                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
659                                                 ctx->block_size, DMA_TO_DEVICE);
660         }
661
662         return 0;
663 }
664
665 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
666 {
667         struct ahash_request *req = dd->req;
668         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
669         int err;
670
671         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
672                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
673
674         if (ctx->flags & SHA_FLAGS_CPU)
675                 err = atmel_sha_update_cpu(dd);
676         else
677                 err = atmel_sha_update_dma_start(dd);
678
679         /* wait for dma completion before can take more data */
680         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
681                         err, ctx->digcnt[1], ctx->digcnt[0]);
682
683         return err;
684 }
685
686 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
687 {
688         struct ahash_request *req = dd->req;
689         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
690         int err = 0;
691         int count;
692
693         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
694                 atmel_sha_fill_padding(ctx, 0);
695                 count = ctx->bufcnt;
696                 ctx->bufcnt = 0;
697                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
698         }
699         /* faster to handle last block with cpu */
700         else {
701                 atmel_sha_fill_padding(ctx, 0);
702                 count = ctx->bufcnt;
703                 ctx->bufcnt = 0;
704                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
705         }
706
707         dev_dbg(dd->dev, "final_req: err: %d\n", err);
708
709         return err;
710 }
711
712 static void atmel_sha_copy_hash(struct ahash_request *req)
713 {
714         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
715         u32 *hash = (u32 *)ctx->digest;
716         int i;
717
718         if (ctx->flags & SHA_FLAGS_SHA1)
719                 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
720                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721         else if (ctx->flags & SHA_FLAGS_SHA224)
722                 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
723                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724         else if (ctx->flags & SHA_FLAGS_SHA256)
725                 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
726                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727         else if (ctx->flags & SHA_FLAGS_SHA384)
728                 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
729                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
730         else
731                 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
732                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
733 }
734
735 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
736 {
737         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
738
739         if (!req->result)
740                 return;
741
742         if (ctx->flags & SHA_FLAGS_SHA1)
743                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
744         else if (ctx->flags & SHA_FLAGS_SHA224)
745                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
746         else if (ctx->flags & SHA_FLAGS_SHA256)
747                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
748         else if (ctx->flags & SHA_FLAGS_SHA384)
749                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
750         else
751                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
752 }
753
754 static int atmel_sha_finish(struct ahash_request *req)
755 {
756         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
757         struct atmel_sha_dev *dd = ctx->dd;
758         int err = 0;
759
760         if (ctx->digcnt[0] || ctx->digcnt[1])
761                 atmel_sha_copy_ready_hash(req);
762
763         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
764                 ctx->digcnt[0], ctx->bufcnt);
765
766         return err;
767 }
768
769 static void atmel_sha_finish_req(struct ahash_request *req, int err)
770 {
771         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
772         struct atmel_sha_dev *dd = ctx->dd;
773
774         if (!err) {
775                 atmel_sha_copy_hash(req);
776                 if (SHA_FLAGS_FINAL & dd->flags)
777                         err = atmel_sha_finish(req);
778         } else {
779                 ctx->flags |= SHA_FLAGS_ERROR;
780         }
781
782         /* atomic operation is not needed here */
783         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
784                         SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
785
786         clk_disable_unprepare(dd->iclk);
787
788         if (req->base.complete)
789                 req->base.complete(&req->base, err);
790
791         /* handle new request */
792         tasklet_schedule(&dd->done_task);
793 }
794
795 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
796 {
797         int err;
798
799         err = clk_prepare_enable(dd->iclk);
800         if (err)
801                 return err;
802
803         if (!(SHA_FLAGS_INIT & dd->flags)) {
804                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
805                 dd->flags |= SHA_FLAGS_INIT;
806                 dd->err = 0;
807         }
808
809         return 0;
810 }
811
812 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
813 {
814         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
815 }
816
817 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
818 {
819         atmel_sha_hw_init(dd);
820
821         dd->hw_version = atmel_sha_get_version(dd);
822
823         dev_info(dd->dev,
824                         "version: 0x%x\n", dd->hw_version);
825
826         clk_disable_unprepare(dd->iclk);
827 }
828
829 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
830                                   struct ahash_request *req)
831 {
832         struct crypto_async_request *async_req, *backlog;
833         struct atmel_sha_reqctx *ctx;
834         unsigned long flags;
835         int err = 0, ret = 0;
836
837         spin_lock_irqsave(&dd->lock, flags);
838         if (req)
839                 ret = ahash_enqueue_request(&dd->queue, req);
840
841         if (SHA_FLAGS_BUSY & dd->flags) {
842                 spin_unlock_irqrestore(&dd->lock, flags);
843                 return ret;
844         }
845
846         backlog = crypto_get_backlog(&dd->queue);
847         async_req = crypto_dequeue_request(&dd->queue);
848         if (async_req)
849                 dd->flags |= SHA_FLAGS_BUSY;
850
851         spin_unlock_irqrestore(&dd->lock, flags);
852
853         if (!async_req)
854                 return ret;
855
856         if (backlog)
857                 backlog->complete(backlog, -EINPROGRESS);
858
859         req = ahash_request_cast(async_req);
860         dd->req = req;
861         ctx = ahash_request_ctx(req);
862
863         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
864                                                 ctx->op, req->nbytes);
865
866         err = atmel_sha_hw_init(dd);
867
868         if (err)
869                 goto err1;
870
871         if (ctx->op == SHA_OP_UPDATE) {
872                 err = atmel_sha_update_req(dd);
873                 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
874                         /* no final() after finup() */
875                         err = atmel_sha_final_req(dd);
876         } else if (ctx->op == SHA_OP_FINAL) {
877                 err = atmel_sha_final_req(dd);
878         }
879
880 err1:
881         if (err != -EINPROGRESS)
882                 /* done_task will not finish it, so do it here */
883                 atmel_sha_finish_req(req, err);
884
885         dev_dbg(dd->dev, "exit, err: %d\n", err);
886
887         return ret;
888 }
889
890 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
891 {
892         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
893         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
894         struct atmel_sha_dev *dd = tctx->dd;
895
896         ctx->op = op;
897
898         return atmel_sha_handle_queue(dd, req);
899 }
900
901 static int atmel_sha_update(struct ahash_request *req)
902 {
903         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
904
905         if (!req->nbytes)
906                 return 0;
907
908         ctx->total = req->nbytes;
909         ctx->sg = req->src;
910         ctx->offset = 0;
911
912         if (ctx->flags & SHA_FLAGS_FINUP) {
913                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
914                         /* faster to use CPU for short transfers */
915                         ctx->flags |= SHA_FLAGS_CPU;
916         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
917                 atmel_sha_append_sg(ctx);
918                 return 0;
919         }
920         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
921 }
922
923 static int atmel_sha_final(struct ahash_request *req)
924 {
925         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
926         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
927         struct atmel_sha_dev *dd = tctx->dd;
928
929         int err = 0;
930
931         ctx->flags |= SHA_FLAGS_FINUP;
932
933         if (ctx->flags & SHA_FLAGS_ERROR)
934                 return 0; /* uncompleted hash is not needed */
935
936         if (ctx->bufcnt) {
937                 return atmel_sha_enqueue(req, SHA_OP_FINAL);
938         } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
939                 err = atmel_sha_hw_init(dd);
940                 if (err)
941                         goto err1;
942
943                 dd->flags |= SHA_FLAGS_BUSY;
944                 err = atmel_sha_final_req(dd);
945         } else {
946                 /* copy ready hash (+ finalize hmac) */
947                 return atmel_sha_finish(req);
948         }
949
950 err1:
951         if (err != -EINPROGRESS)
952                 /* done_task will not finish it, so do it here */
953                 atmel_sha_finish_req(req, err);
954
955         return err;
956 }
957
958 static int atmel_sha_finup(struct ahash_request *req)
959 {
960         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
961         int err1, err2;
962
963         ctx->flags |= SHA_FLAGS_FINUP;
964
965         err1 = atmel_sha_update(req);
966         if (err1 == -EINPROGRESS || err1 == -EBUSY)
967                 return err1;
968
969         /*
970          * final() has to be always called to cleanup resources
971          * even if udpate() failed, except EINPROGRESS
972          */
973         err2 = atmel_sha_final(req);
974
975         return err1 ?: err2;
976 }
977
978 static int atmel_sha_digest(struct ahash_request *req)
979 {
980         return atmel_sha_init(req) ?: atmel_sha_finup(req);
981 }
982
983 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
984 {
985         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
986                                  sizeof(struct atmel_sha_reqctx) +
987                                  SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
988
989         return 0;
990 }
991
992 static struct ahash_alg sha_1_256_algs[] = {
993 {
994         .init           = atmel_sha_init,
995         .update         = atmel_sha_update,
996         .final          = atmel_sha_final,
997         .finup          = atmel_sha_finup,
998         .digest         = atmel_sha_digest,
999         .halg = {
1000                 .digestsize     = SHA1_DIGEST_SIZE,
1001                 .base   = {
1002                         .cra_name               = "sha1",
1003                         .cra_driver_name        = "atmel-sha1",
1004                         .cra_priority           = 100,
1005                         .cra_flags              = CRYPTO_ALG_ASYNC,
1006                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1007                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1008                         .cra_alignmask          = 0,
1009                         .cra_module             = THIS_MODULE,
1010                         .cra_init               = atmel_sha_cra_init,
1011                 }
1012         }
1013 },
1014 {
1015         .init           = atmel_sha_init,
1016         .update         = atmel_sha_update,
1017         .final          = atmel_sha_final,
1018         .finup          = atmel_sha_finup,
1019         .digest         = atmel_sha_digest,
1020         .halg = {
1021                 .digestsize     = SHA256_DIGEST_SIZE,
1022                 .base   = {
1023                         .cra_name               = "sha256",
1024                         .cra_driver_name        = "atmel-sha256",
1025                         .cra_priority           = 100,
1026                         .cra_flags              = CRYPTO_ALG_ASYNC,
1027                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1028                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1029                         .cra_alignmask          = 0,
1030                         .cra_module             = THIS_MODULE,
1031                         .cra_init               = atmel_sha_cra_init,
1032                 }
1033         }
1034 },
1035 };
1036
1037 static struct ahash_alg sha_224_alg = {
1038         .init           = atmel_sha_init,
1039         .update         = atmel_sha_update,
1040         .final          = atmel_sha_final,
1041         .finup          = atmel_sha_finup,
1042         .digest         = atmel_sha_digest,
1043         .halg = {
1044                 .digestsize     = SHA224_DIGEST_SIZE,
1045                 .base   = {
1046                         .cra_name               = "sha224",
1047                         .cra_driver_name        = "atmel-sha224",
1048                         .cra_priority           = 100,
1049                         .cra_flags              = CRYPTO_ALG_ASYNC,
1050                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1051                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1052                         .cra_alignmask          = 0,
1053                         .cra_module             = THIS_MODULE,
1054                         .cra_init               = atmel_sha_cra_init,
1055                 }
1056         }
1057 };
1058
1059 static struct ahash_alg sha_384_512_algs[] = {
1060 {
1061         .init           = atmel_sha_init,
1062         .update         = atmel_sha_update,
1063         .final          = atmel_sha_final,
1064         .finup          = atmel_sha_finup,
1065         .digest         = atmel_sha_digest,
1066         .halg = {
1067                 .digestsize     = SHA384_DIGEST_SIZE,
1068                 .base   = {
1069                         .cra_name               = "sha384",
1070                         .cra_driver_name        = "atmel-sha384",
1071                         .cra_priority           = 100,
1072                         .cra_flags              = CRYPTO_ALG_ASYNC,
1073                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1074                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1075                         .cra_alignmask          = 0x3,
1076                         .cra_module             = THIS_MODULE,
1077                         .cra_init               = atmel_sha_cra_init,
1078                 }
1079         }
1080 },
1081 {
1082         .init           = atmel_sha_init,
1083         .update         = atmel_sha_update,
1084         .final          = atmel_sha_final,
1085         .finup          = atmel_sha_finup,
1086         .digest         = atmel_sha_digest,
1087         .halg = {
1088                 .digestsize     = SHA512_DIGEST_SIZE,
1089                 .base   = {
1090                         .cra_name               = "sha512",
1091                         .cra_driver_name        = "atmel-sha512",
1092                         .cra_priority           = 100,
1093                         .cra_flags              = CRYPTO_ALG_ASYNC,
1094                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1095                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1096                         .cra_alignmask          = 0x3,
1097                         .cra_module             = THIS_MODULE,
1098                         .cra_init               = atmel_sha_cra_init,
1099                 }
1100         }
1101 },
1102 };
1103
1104 static void atmel_sha_done_task(unsigned long data)
1105 {
1106         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1107         int err = 0;
1108
1109         if (!(SHA_FLAGS_BUSY & dd->flags)) {
1110                 atmel_sha_handle_queue(dd, NULL);
1111                 return;
1112         }
1113
1114         if (SHA_FLAGS_CPU & dd->flags) {
1115                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1116                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1117                         goto finish;
1118                 }
1119         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1120                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1121                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1122                         atmel_sha_update_dma_stop(dd);
1123                         if (dd->err) {
1124                                 err = dd->err;
1125                                 goto finish;
1126                         }
1127                 }
1128                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1129                         /* hash or semi-hash ready */
1130                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1131                                                 SHA_FLAGS_OUTPUT_READY);
1132                         err = atmel_sha_update_dma_start(dd);
1133                         if (err != -EINPROGRESS)
1134                                 goto finish;
1135                 }
1136         }
1137         return;
1138
1139 finish:
1140         /* finish curent request */
1141         atmel_sha_finish_req(dd->req, err);
1142 }
1143
1144 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1145 {
1146         struct atmel_sha_dev *sha_dd = dev_id;
1147         u32 reg;
1148
1149         reg = atmel_sha_read(sha_dd, SHA_ISR);
1150         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1151                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1152                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1153                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1154                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1155                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1156                         tasklet_schedule(&sha_dd->done_task);
1157                 } else {
1158                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1159                 }
1160                 return IRQ_HANDLED;
1161         }
1162
1163         return IRQ_NONE;
1164 }
1165
1166 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1167 {
1168         int i;
1169
1170         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1171                 crypto_unregister_ahash(&sha_1_256_algs[i]);
1172
1173         if (dd->caps.has_sha224)
1174                 crypto_unregister_ahash(&sha_224_alg);
1175
1176         if (dd->caps.has_sha_384_512) {
1177                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1178                         crypto_unregister_ahash(&sha_384_512_algs[i]);
1179         }
1180 }
1181
1182 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1183 {
1184         int err, i, j;
1185
1186         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1187                 err = crypto_register_ahash(&sha_1_256_algs[i]);
1188                 if (err)
1189                         goto err_sha_1_256_algs;
1190         }
1191
1192         if (dd->caps.has_sha224) {
1193                 err = crypto_register_ahash(&sha_224_alg);
1194                 if (err)
1195                         goto err_sha_224_algs;
1196         }
1197
1198         if (dd->caps.has_sha_384_512) {
1199                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1200                         err = crypto_register_ahash(&sha_384_512_algs[i]);
1201                         if (err)
1202                                 goto err_sha_384_512_algs;
1203                 }
1204         }
1205
1206         return 0;
1207
1208 err_sha_384_512_algs:
1209         for (j = 0; j < i; j++)
1210                 crypto_unregister_ahash(&sha_384_512_algs[j]);
1211         crypto_unregister_ahash(&sha_224_alg);
1212 err_sha_224_algs:
1213         i = ARRAY_SIZE(sha_1_256_algs);
1214 err_sha_1_256_algs:
1215         for (j = 0; j < i; j++)
1216                 crypto_unregister_ahash(&sha_1_256_algs[j]);
1217
1218         return err;
1219 }
1220
1221 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1222 {
1223         struct at_dma_slave     *sl = slave;
1224
1225         if (sl && sl->dma_dev == chan->device->dev) {
1226                 chan->private = sl;
1227                 return true;
1228         } else {
1229                 return false;
1230         }
1231 }
1232
1233 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1234                                 struct crypto_platform_data *pdata)
1235 {
1236         int err = -ENOMEM;
1237         dma_cap_mask_t mask_in;
1238
1239         /* Try to grab DMA channel */
1240         dma_cap_zero(mask_in);
1241         dma_cap_set(DMA_SLAVE, mask_in);
1242
1243         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1244                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1245         if (!dd->dma_lch_in.chan) {
1246                 dev_warn(dd->dev, "no DMA channel available\n");
1247                 return err;
1248         }
1249
1250         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1251         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1252                 SHA_REG_DIN(0);
1253         dd->dma_lch_in.dma_conf.src_maxburst = 1;
1254         dd->dma_lch_in.dma_conf.src_addr_width =
1255                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1256         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1257         dd->dma_lch_in.dma_conf.dst_addr_width =
1258                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1259         dd->dma_lch_in.dma_conf.device_fc = false;
1260
1261         return 0;
1262 }
1263
1264 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1265 {
1266         dma_release_channel(dd->dma_lch_in.chan);
1267 }
1268
1269 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1270 {
1271
1272         dd->caps.has_dma = 0;
1273         dd->caps.has_dualbuff = 0;
1274         dd->caps.has_sha224 = 0;
1275         dd->caps.has_sha_384_512 = 0;
1276
1277         /* keep only major version number */
1278         switch (dd->hw_version & 0xff0) {
1279         case 0x420:
1280                 dd->caps.has_dma = 1;
1281                 dd->caps.has_dualbuff = 1;
1282                 dd->caps.has_sha224 = 1;
1283                 dd->caps.has_sha_384_512 = 1;
1284                 break;
1285         case 0x410:
1286                 dd->caps.has_dma = 1;
1287                 dd->caps.has_dualbuff = 1;
1288                 dd->caps.has_sha224 = 1;
1289                 dd->caps.has_sha_384_512 = 1;
1290                 break;
1291         case 0x400:
1292                 dd->caps.has_dma = 1;
1293                 dd->caps.has_dualbuff = 1;
1294                 dd->caps.has_sha224 = 1;
1295                 break;
1296         case 0x320:
1297                 break;
1298         default:
1299                 dev_warn(dd->dev,
1300                                 "Unmanaged sha version, set minimum capabilities\n");
1301                 break;
1302         }
1303 }
1304
1305 #if defined(CONFIG_OF)
1306 static const struct of_device_id atmel_sha_dt_ids[] = {
1307         { .compatible = "atmel,at91sam9g46-sha" },
1308         { /* sentinel */ }
1309 };
1310
1311 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1312
1313 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1314 {
1315         struct device_node *np = pdev->dev.of_node;
1316         struct crypto_platform_data *pdata;
1317
1318         if (!np) {
1319                 dev_err(&pdev->dev, "device node not found\n");
1320                 return ERR_PTR(-EINVAL);
1321         }
1322
1323         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1324         if (!pdata) {
1325                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1326                 return ERR_PTR(-ENOMEM);
1327         }
1328
1329         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1330                                         sizeof(*(pdata->dma_slave)),
1331                                         GFP_KERNEL);
1332         if (!pdata->dma_slave) {
1333                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1334                 return ERR_PTR(-ENOMEM);
1335         }
1336
1337         return pdata;
1338 }
1339 #else /* CONFIG_OF */
1340 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1341 {
1342         return ERR_PTR(-EINVAL);
1343 }
1344 #endif
1345
1346 static int atmel_sha_probe(struct platform_device *pdev)
1347 {
1348         struct atmel_sha_dev *sha_dd;
1349         struct crypto_platform_data     *pdata;
1350         struct device *dev = &pdev->dev;
1351         struct resource *sha_res;
1352         int err;
1353
1354         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
1355         if (sha_dd == NULL) {
1356                 dev_err(dev, "unable to alloc data struct.\n");
1357                 err = -ENOMEM;
1358                 goto sha_dd_err;
1359         }
1360
1361         sha_dd->dev = dev;
1362
1363         platform_set_drvdata(pdev, sha_dd);
1364
1365         INIT_LIST_HEAD(&sha_dd->list);
1366         spin_lock_init(&sha_dd->lock);
1367
1368         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1369                                         (unsigned long)sha_dd);
1370
1371         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1372
1373         sha_dd->irq = -1;
1374
1375         /* Get the base address */
1376         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1377         if (!sha_res) {
1378                 dev_err(dev, "no MEM resource info\n");
1379                 err = -ENODEV;
1380                 goto res_err;
1381         }
1382         sha_dd->phys_base = sha_res->start;
1383
1384         /* Get the IRQ */
1385         sha_dd->irq = platform_get_irq(pdev,  0);
1386         if (sha_dd->irq < 0) {
1387                 dev_err(dev, "no IRQ resource info\n");
1388                 err = sha_dd->irq;
1389                 goto res_err;
1390         }
1391
1392         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
1393                                IRQF_SHARED, "atmel-sha", sha_dd);
1394         if (err) {
1395                 dev_err(dev, "unable to request sha irq.\n");
1396                 goto res_err;
1397         }
1398
1399         /* Initializing the clock */
1400         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
1401         if (IS_ERR(sha_dd->iclk)) {
1402                 dev_err(dev, "clock initialization failed.\n");
1403                 err = PTR_ERR(sha_dd->iclk);
1404                 goto res_err;
1405         }
1406
1407         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
1408         if (!sha_dd->io_base) {
1409                 dev_err(dev, "can't ioremap\n");
1410                 err = -ENOMEM;
1411                 goto res_err;
1412         }
1413
1414         atmel_sha_hw_version_init(sha_dd);
1415
1416         atmel_sha_get_cap(sha_dd);
1417
1418         if (sha_dd->caps.has_dma) {
1419                 pdata = pdev->dev.platform_data;
1420                 if (!pdata) {
1421                         pdata = atmel_sha_of_init(pdev);
1422                         if (IS_ERR(pdata)) {
1423                                 dev_err(&pdev->dev, "platform data not available\n");
1424                                 err = PTR_ERR(pdata);
1425                                 goto res_err;
1426                         }
1427                 }
1428                 if (!pdata->dma_slave) {
1429                         err = -ENXIO;
1430                         goto res_err;
1431                 }
1432                 err = atmel_sha_dma_init(sha_dd, pdata);
1433                 if (err)
1434                         goto err_sha_dma;
1435
1436                 dev_info(dev, "using %s for DMA transfers\n",
1437                                 dma_chan_name(sha_dd->dma_lch_in.chan));
1438         }
1439
1440         spin_lock(&atmel_sha.lock);
1441         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1442         spin_unlock(&atmel_sha.lock);
1443
1444         err = atmel_sha_register_algs(sha_dd);
1445         if (err)
1446                 goto err_algs;
1447
1448         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1449                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
1450                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1451
1452         return 0;
1453
1454 err_algs:
1455         spin_lock(&atmel_sha.lock);
1456         list_del(&sha_dd->list);
1457         spin_unlock(&atmel_sha.lock);
1458         if (sha_dd->caps.has_dma)
1459                 atmel_sha_dma_cleanup(sha_dd);
1460 err_sha_dma:
1461 res_err:
1462         tasklet_kill(&sha_dd->done_task);
1463 sha_dd_err:
1464         dev_err(dev, "initialization failed.\n");
1465
1466         return err;
1467 }
1468
1469 static int atmel_sha_remove(struct platform_device *pdev)
1470 {
1471         static struct atmel_sha_dev *sha_dd;
1472
1473         sha_dd = platform_get_drvdata(pdev);
1474         if (!sha_dd)
1475                 return -ENODEV;
1476         spin_lock(&atmel_sha.lock);
1477         list_del(&sha_dd->list);
1478         spin_unlock(&atmel_sha.lock);
1479
1480         atmel_sha_unregister_algs(sha_dd);
1481
1482         tasklet_kill(&sha_dd->done_task);
1483
1484         if (sha_dd->caps.has_dma)
1485                 atmel_sha_dma_cleanup(sha_dd);
1486
1487         iounmap(sha_dd->io_base);
1488
1489         clk_put(sha_dd->iclk);
1490
1491         if (sha_dd->irq >= 0)
1492                 free_irq(sha_dd->irq, sha_dd);
1493
1494         return 0;
1495 }
1496
1497 static struct platform_driver atmel_sha_driver = {
1498         .probe          = atmel_sha_probe,
1499         .remove         = atmel_sha_remove,
1500         .driver         = {
1501                 .name   = "atmel_sha",
1502                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1503         },
1504 };
1505
1506 module_platform_driver(atmel_sha_driver);
1507
1508 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1509 MODULE_LICENSE("GPL v2");
1510 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");