]> git.kernelconcepts.de Git - karo-tx-uboot.git/blob - drivers/ddr/altera/sequencer.c
ddr: altera: Clean up reg_file_set*()
[karo-tx-uboot.git] / drivers / ddr / altera / sequencer.c
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19         (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22         (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25         (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28         (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31         (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34         (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35
36 static struct socfpga_data_mgr *data_mgr =
37         (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40         (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41
42 #define DELTA_D         1
43
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61         STATIC_SKIP_DELAY_LOOPS)
62
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74
75 uint16_t skip_delay_mask;       /* mask off bits when skipping/not-skipping */
76
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78         ((non_skip_value) & skip_delay_mask)
79
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85         uint32_t write_group, uint32_t use_dm,
86         uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89         uint32_t substage)
90 {
91         /*
92          * Only set the global stage if there was not been any other
93          * failing group
94          */
95         if (gbl->error_stage == CAL_STAGE_NIL)  {
96                 gbl->error_substage = substage;
97                 gbl->error_stage = stage;
98                 gbl->error_group = group;
99         }
100 }
101
102 static void reg_file_set_group(u16 set_group)
103 {
104         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106
107 static void reg_file_set_stage(u8 set_stage)
108 {
109         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114         set_sub_stage &= 0xff;
115         clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117
118 static void initialize(void)
119 {
120         debug("%s:%d\n", __func__, __LINE__);
121         /* USER calibration has control over path to memory */
122         /*
123          * In Hard PHY this is a 2-bit control:
124          * 0: AFI Mux Select
125          * 1: DDIO Mux Select
126          */
127         writel(0x3, &phy_mgr_cfg->mux_sel);
128
129         /* USER memory clock is not stable we begin initialization  */
130         writel(0, &phy_mgr_cfg->reset_mem_stbl);
131
132         /* USER calibration status all set to zero */
133         writel(0, &phy_mgr_cfg->cal_status);
134
135         writel(0, &phy_mgr_cfg->cal_debug_info);
136
137         if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
138                 param->read_correct_mask_vg  = ((uint32_t)1 <<
139                         (RW_MGR_MEM_DQ_PER_READ_DQS /
140                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
141                 param->write_correct_mask_vg = ((uint32_t)1 <<
142                         (RW_MGR_MEM_DQ_PER_READ_DQS /
143                         RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
144                 param->read_correct_mask     = ((uint32_t)1 <<
145                         RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
146                 param->write_correct_mask    = ((uint32_t)1 <<
147                         RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
148                 param->dm_correct_mask       = ((uint32_t)1 <<
149                         (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
150                         - 1;
151         }
152 }
153
154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
155 {
156         uint32_t odt_mask_0 = 0;
157         uint32_t odt_mask_1 = 0;
158         uint32_t cs_and_odt_mask;
159
160         if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
161                 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
162                         /*
163                          * 1 Rank
164                          * Read: ODT = 0
165                          * Write: ODT = 1
166                          */
167                         odt_mask_0 = 0x0;
168                         odt_mask_1 = 0x1;
169                 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
170                         /* 2 Ranks */
171                         if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
172                                 /* - Dual-Slot , Single-Rank
173                                  * (1 chip-select per DIMM)
174                                  * OR
175                                  * - RDIMM, 4 total CS (2 CS per DIMM)
176                                  * means 2 DIMM
177                                  * Since MEM_NUMBER_OF_RANKS is 2 they are
178                                  * both single rank
179                                  * with 2 CS each (special for RDIMM)
180                                  * Read: Turn on ODT on the opposite rank
181                                  * Write: Turn on ODT on all ranks
182                                  */
183                                 odt_mask_0 = 0x3 & ~(1 << rank);
184                                 odt_mask_1 = 0x3;
185                         } else {
186                                 /*
187                                  * USER - Single-Slot , Dual-rank DIMMs
188                                  * (2 chip-selects per DIMM)
189                                  * USER Read: Turn on ODT off on all ranks
190                                  * USER Write: Turn on ODT on active rank
191                                  */
192                                 odt_mask_0 = 0x0;
193                                 odt_mask_1 = 0x3 & (1 << rank);
194                         }
195                 } else {
196                         /* 4 Ranks
197                          * Read:
198                          * ----------+-----------------------+
199                          *           |                       |
200                          *           |         ODT           |
201                          * Read From +-----------------------+
202                          *   Rank    |  3  |  2  |  1  |  0  |
203                          * ----------+-----+-----+-----+-----+
204                          *     0     |  0  |  1  |  0  |  0  |
205                          *     1     |  1  |  0  |  0  |  0  |
206                          *     2     |  0  |  0  |  0  |  1  |
207                          *     3     |  0  |  0  |  1  |  0  |
208                          * ----------+-----+-----+-----+-----+
209                          *
210                          * Write:
211                          * ----------+-----------------------+
212                          *           |                       |
213                          *           |         ODT           |
214                          * Write To  +-----------------------+
215                          *   Rank    |  3  |  2  |  1  |  0  |
216                          * ----------+-----+-----+-----+-----+
217                          *     0     |  0  |  1  |  0  |  1  |
218                          *     1     |  1  |  0  |  1  |  0  |
219                          *     2     |  0  |  1  |  0  |  1  |
220                          *     3     |  1  |  0  |  1  |  0  |
221                          * ----------+-----+-----+-----+-----+
222                          */
223                         switch (rank) {
224                         case 0:
225                                 odt_mask_0 = 0x4;
226                                 odt_mask_1 = 0x5;
227                                 break;
228                         case 1:
229                                 odt_mask_0 = 0x8;
230                                 odt_mask_1 = 0xA;
231                                 break;
232                         case 2:
233                                 odt_mask_0 = 0x1;
234                                 odt_mask_1 = 0x5;
235                                 break;
236                         case 3:
237                                 odt_mask_0 = 0x2;
238                                 odt_mask_1 = 0xA;
239                                 break;
240                         }
241                 }
242         } else {
243                 odt_mask_0 = 0x0;
244                 odt_mask_1 = 0x0;
245         }
246
247         cs_and_odt_mask =
248                 (0xFF & ~(1 << rank)) |
249                 ((0xFF & odt_mask_0) << 8) |
250                 ((0xFF & odt_mask_1) << 16);
251         writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
252                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
253 }
254
255 static void scc_mgr_initialize(void)
256 {
257         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET;
258
259         /*
260          * Clear register file for HPS
261          * 16 (2^4) is the size of the full register file in the scc mgr:
262          *      RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
263          * MEM_IF_READ_DQS_WIDTH - 1) + 1;
264          */
265         uint32_t i;
266         for (i = 0; i < 16; i++) {
267                 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
268                            __func__, __LINE__, i);
269                 writel(0, addr + (i << 2));
270         }
271 }
272
273 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
274                                                 uint32_t delay)
275 {
276         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
277
278         /* Load the setting in the SCC manager */
279         writel(delay, addr + (read_group << 2));
280 }
281
282 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
283         uint32_t delay)
284 {
285         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
286
287         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
288 }
289
290 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
291 {
292         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET;
293
294         /* Load the setting in the SCC manager */
295         writel(phase, addr + (read_group << 2));
296 }
297
298 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
299                                                uint32_t phase)
300 {
301         uint32_t r;
302         uint32_t update_scan_chains;
303
304         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
305              r += NUM_RANKS_PER_SHADOW_REG) {
306                 /*
307                  * USER although the h/w doesn't support different phases per
308                  * shadow register, for simplicity our scc manager modeling
309                  * keeps different phase settings per shadow reg, and it's
310                  * important for us to keep them in sync to match h/w.
311                  * for efficiency, the scan chain update should occur only
312                  * once to sr0.
313                  */
314                 update_scan_chains = (r == 0) ? 1 : 0;
315
316                 scc_mgr_set_dqs_en_phase(read_group, phase);
317
318                 if (update_scan_chains) {
319                         writel(read_group, &sdr_scc_mgr->dqs_ena);
320                         writel(0, &sdr_scc_mgr->update);
321                 }
322         }
323 }
324
325 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
326                                                   uint32_t phase)
327 {
328         u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET;
329
330         /* Load the setting in the SCC manager */
331         writel(phase, addr + (write_group << 2));
332 }
333
334 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
335                                                      uint32_t phase)
336 {
337         uint32_t r;
338         uint32_t update_scan_chains;
339
340         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
341              r += NUM_RANKS_PER_SHADOW_REG) {
342                 /*
343                  * USER although the h/w doesn't support different phases per
344                  * shadow register, for simplicity our scc manager modeling
345                  * keeps different phase settings per shadow reg, and it's
346                  * important for us to keep them in sync to match h/w.
347                  * for efficiency, the scan chain update should occur only
348                  * once to sr0.
349                  */
350                 update_scan_chains = (r == 0) ? 1 : 0;
351
352                 scc_mgr_set_dqdqs_output_phase(write_group, phase);
353
354                 if (update_scan_chains) {
355                         writel(write_group, &sdr_scc_mgr->dqs_ena);
356                         writel(0, &sdr_scc_mgr->update);
357                 }
358         }
359 }
360
361 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
362 {
363         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET;
364
365         /* Load the setting in the SCC manager */
366         writel(delay + IO_DQS_EN_DELAY_OFFSET, addr +
367                (read_group << 2));
368 }
369
370 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
371                                                uint32_t delay)
372 {
373         uint32_t r;
374
375         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
376                 r += NUM_RANKS_PER_SHADOW_REG) {
377                 scc_mgr_set_dqs_en_delay(read_group, delay);
378
379                 writel(read_group, &sdr_scc_mgr->dqs_ena);
380                 /*
381                  * In shadow register mode, the T11 settings are stored in
382                  * registers in the core, which are updated by the DQS_ENA
383                  * signals. Not issuing the SCC_MGR_UPD command allows us to
384                  * save lots of rank switching overhead, by calling
385                  * select_shadow_regs_for_update with update_scan_chains
386                  * set to 0.
387                  */
388                 writel(0, &sdr_scc_mgr->update);
389         }
390         /*
391          * In shadow register mode, the T11 settings are stored in
392          * registers in the core, which are updated by the DQS_ENA
393          * signals. Not issuing the SCC_MGR_UPD command allows us to
394          * save lots of rank switching overhead, by calling
395          * select_shadow_regs_for_update with update_scan_chains
396          * set to 0.
397          */
398         writel(0, &sdr_scc_mgr->update);
399 }
400
401 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
402 {
403         uint32_t read_group;
404         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
405
406         /*
407          * Load the setting in the SCC manager
408          * Although OCT affects only write data, the OCT delay is controlled
409          * by the DQS logic block which is instantiated once per read group.
410          * For protocols where a write group consists of multiple read groups,
411          * the setting must be set multiple times.
412          */
413         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
414              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
415              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
416              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
417                 writel(delay, addr + (read_group << 2));
418 }
419
420 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
421                                       uint32_t dq_in_group, uint32_t delay)
422 {
423         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
424
425         /* Load the setting in the SCC manager */
426         writel(delay, addr + (dq_in_group << 2));
427 }
428
429 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
430         uint32_t dq_in_group, uint32_t delay)
431 {
432         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
433
434         /* Load the setting in the SCC manager */
435         writel(delay, addr + (dq_in_group << 2));
436 }
437
438 static void scc_mgr_set_hhp_extras(void)
439 {
440         /*
441          * Load the fixed setting in the SCC manager
442          * bits: 0:0 = 1'b1   - dqs bypass
443          * bits: 1:1 = 1'b1   - dq bypass
444          * bits: 4:2 = 3'b001   - rfifo_mode
445          * bits: 6:5 = 2'b01  - rfifo clock_select
446          * bits: 7:7 = 1'b0  - separate gating from ungating setting
447          * bits: 8:8 = 1'b0  - separate OE from Output delay setting
448          */
449         uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
450         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
451
452         writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
453 }
454
455 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
456                                               uint32_t delay)
457 {
458         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
459
460         /* Load the setting in the SCC manager */
461         writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
462 }
463
464 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
465                                              uint32_t dm, uint32_t delay)
466 {
467         uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
468
469         /* Load the setting in the SCC manager */
470         writel(delay, addr +
471                 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
472 }
473
474 /*
475  * USER Zero all DQS config
476  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
477  */
478 static void scc_mgr_zero_all(void)
479 {
480         uint32_t i, r;
481
482         /*
483          * USER Zero all DQS config settings, across all groups and all
484          * shadow registers
485          */
486         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
487              NUM_RANKS_PER_SHADOW_REG) {
488                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
489                         /*
490                          * The phases actually don't exist on a per-rank basis,
491                          * but there's no harm updating them several times, so
492                          * let's keep the code simple.
493                          */
494                         scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
495                         scc_mgr_set_dqs_en_phase(i, 0);
496                         scc_mgr_set_dqs_en_delay(i, 0);
497                 }
498
499                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
500                         scc_mgr_set_dqdqs_output_phase(i, 0);
501                         /* av/cv don't have out2 */
502                         scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
503                 }
504         }
505
506         /* multicast to all DQS group enables */
507         writel(0xff, &sdr_scc_mgr->dqs_ena);
508         writel(0, &sdr_scc_mgr->update);
509 }
510
511 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
512 {
513         /* mode = 0 : Do NOT bypass - Half Rate Mode */
514         /* mode = 1 : Bypass - Full Rate Mode */
515
516         /* only need to set once for all groups, pins, dq, dqs, dm */
517         if (write_group == 0) {
518                 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
519                            __LINE__);
520                 scc_mgr_set_hhp_extras();
521                 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
522                           __func__, __LINE__);
523         }
524         /* multicast to all DQ enables */
525         writel(0xff, &sdr_scc_mgr->dq_ena);
526         writel(0xff, &sdr_scc_mgr->dm_ena);
527
528         /* update current DQS IO enable */
529         writel(0, &sdr_scc_mgr->dqs_io_ena);
530
531         /* update the DQS logic */
532         writel(write_group, &sdr_scc_mgr->dqs_ena);
533
534         /* hit update */
535         writel(0, &sdr_scc_mgr->update);
536 }
537
538 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
539                                int32_t out_only)
540 {
541         uint32_t i, r;
542
543         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
544                 NUM_RANKS_PER_SHADOW_REG) {
545                 /* Zero all DQ config settings */
546                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
547                         scc_mgr_set_dq_out1_delay(write_group, i, 0);
548                         if (!out_only)
549                                 scc_mgr_set_dq_in_delay(write_group, i, 0);
550                 }
551
552                 /* multicast to all DQ enables */
553                 writel(0xff, &sdr_scc_mgr->dq_ena);
554
555                 /* Zero all DM config settings */
556                 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
557                         scc_mgr_set_dm_out1_delay(write_group, i, 0);
558                 }
559
560                 /* multicast to all DM enables */
561                 writel(0xff, &sdr_scc_mgr->dm_ena);
562
563                 /* zero all DQS io settings */
564                 if (!out_only)
565                         scc_mgr_set_dqs_io_in_delay(write_group, 0);
566                 /* av/cv don't have out2 */
567                 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
568                 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
569                 scc_mgr_load_dqs_for_write_group(write_group);
570
571                 /* multicast to all DQS IO enables (only 1) */
572                 writel(0, &sdr_scc_mgr->dqs_io_ena);
573
574                 /* hit update to zero everything */
575                 writel(0, &sdr_scc_mgr->update);
576         }
577 }
578
579 /* load up dqs config settings */
580 static void scc_mgr_load_dqs(uint32_t dqs)
581 {
582         writel(dqs, &sdr_scc_mgr->dqs_ena);
583 }
584
585 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
586 {
587         uint32_t read_group;
588         uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
589         /*
590          * Although OCT affects only write data, the OCT delay is controlled
591          * by the DQS logic block which is instantiated once per read group.
592          * For protocols where a write group consists of multiple read groups,
593          * the setting must be scanned multiple times.
594          */
595         for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
596              RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
597              read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
598              RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
599                 writel(read_group, addr);
600 }
601
602 /* load up dqs io config settings */
603 static void scc_mgr_load_dqs_io(void)
604 {
605         writel(0, &sdr_scc_mgr->dqs_io_ena);
606 }
607
608 /* load up dq config settings */
609 static void scc_mgr_load_dq(uint32_t dq_in_group)
610 {
611         writel(dq_in_group, &sdr_scc_mgr->dq_ena);
612 }
613
614 /* load up dm config settings */
615 static void scc_mgr_load_dm(uint32_t dm)
616 {
617         writel(dm, &sdr_scc_mgr->dm_ena);
618 }
619
620 /*
621  * apply and load a particular input delay for the DQ pins in a group
622  * group_bgn is the index of the first dq pin (in the write group)
623  */
624 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
625                                             uint32_t group_bgn, uint32_t delay)
626 {
627         uint32_t i, p;
628
629         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
630                 scc_mgr_set_dq_in_delay(write_group, p, delay);
631                 scc_mgr_load_dq(p);
632         }
633 }
634
635 /* apply and load a particular output delay for the DQ pins in a group */
636 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
637                                               uint32_t group_bgn,
638                                               uint32_t delay1)
639 {
640         uint32_t i, p;
641
642         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
643                 scc_mgr_set_dq_out1_delay(write_group, i, delay1);
644                 scc_mgr_load_dq(i);
645         }
646 }
647
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
650                                               uint32_t delay1)
651 {
652         uint32_t i;
653
654         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655                 scc_mgr_set_dm_out1_delay(write_group, i, delay1);
656                 scc_mgr_load_dm(i);
657         }
658 }
659
660
661 /* apply and load delay on both DQS and OCT out1 */
662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
663                                                     uint32_t delay)
664 {
665         scc_mgr_set_dqs_out1_delay(write_group, delay);
666         scc_mgr_load_dqs_io();
667
668         scc_mgr_set_oct_out1_delay(write_group, delay);
669         scc_mgr_load_dqs_for_write_group(write_group);
670 }
671
672 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
673 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
674                                                   uint32_t group_bgn,
675                                                   uint32_t delay)
676 {
677         uint32_t i, p, new_delay;
678
679         /* dq shift */
680         for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
681                 new_delay = READ_SCC_DQ_OUT2_DELAY;
682                 new_delay += delay;
683
684                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
685                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
686                                    %u > %lu => %lu", __func__, __LINE__,
687                                    write_group, group_bgn, delay, i, p, new_delay,
688                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
689                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
690                         new_delay = IO_IO_OUT2_DELAY_MAX;
691                 }
692
693                 scc_mgr_load_dq(i);
694         }
695
696         /* dm shift */
697         for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
698                 new_delay = READ_SCC_DM_IO_OUT2_DELAY;
699                 new_delay += delay;
700
701                 if (new_delay > IO_IO_OUT2_DELAY_MAX) {
702                         debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
703                                    %u > %lu => %lu\n",  __func__, __LINE__,
704                                    write_group, group_bgn, delay, i, new_delay,
705                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX,
706                                    (long unsigned int)IO_IO_OUT2_DELAY_MAX);
707                         new_delay = IO_IO_OUT2_DELAY_MAX;
708                 }
709
710                 scc_mgr_load_dm(i);
711         }
712
713         /* dqs shift */
714         new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
715         new_delay += delay;
716
717         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
718                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
719                            " adding %u to OUT1\n", __func__, __LINE__,
720                            write_group, group_bgn, delay, new_delay,
721                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
722                            new_delay - IO_IO_OUT2_DELAY_MAX);
723                 scc_mgr_set_dqs_out1_delay(write_group, new_delay -
724                                            IO_IO_OUT2_DELAY_MAX);
725                 new_delay = IO_IO_OUT2_DELAY_MAX;
726         }
727
728         scc_mgr_load_dqs_io();
729
730         /* oct shift */
731         new_delay = READ_SCC_OCT_OUT2_DELAY;
732         new_delay += delay;
733
734         if (new_delay > IO_IO_OUT2_DELAY_MAX) {
735                 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
736                            " adding %u to OUT1\n", __func__, __LINE__,
737                            write_group, group_bgn, delay, new_delay,
738                            IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
739                            new_delay - IO_IO_OUT2_DELAY_MAX);
740                 scc_mgr_set_oct_out1_delay(write_group, new_delay -
741                                            IO_IO_OUT2_DELAY_MAX);
742                 new_delay = IO_IO_OUT2_DELAY_MAX;
743         }
744
745         scc_mgr_load_dqs_for_write_group(write_group);
746 }
747
748 /*
749  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
750  * and to all ranks
751  */
752 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
753         uint32_t write_group, uint32_t group_bgn, uint32_t delay)
754 {
755         uint32_t r;
756
757         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
758                 r += NUM_RANKS_PER_SHADOW_REG) {
759                 scc_mgr_apply_group_all_out_delay_add(write_group,
760                                                       group_bgn, delay);
761                 writel(0, &sdr_scc_mgr->update);
762         }
763 }
764
765 /* optimization used to recover some slots in ddr3 inst_rom */
766 /* could be applied to other protocols if we wanted to */
767 static void set_jump_as_return(void)
768 {
769         /*
770          * to save space, we replace return with jump to special shared
771          * RETURN instruction so we set the counter to large value so that
772          * we always jump
773          */
774         writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
775         writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
776 }
777
778 /*
779  * should always use constants as argument to ensure all computations are
780  * performed at compile time
781  */
782 static void delay_for_n_mem_clocks(const uint32_t clocks)
783 {
784         uint32_t afi_clocks;
785         uint8_t inner = 0;
786         uint8_t outer = 0;
787         uint16_t c_loop = 0;
788
789         debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
790
791
792         afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
793         /* scale (rounding up) to get afi clocks */
794
795         /*
796          * Note, we don't bother accounting for being off a little bit
797          * because of a few extra instructions in outer loops
798          * Note, the loops have a test at the end, and do the test before
799          * the decrement, and so always perform the loop
800          * 1 time more than the counter value
801          */
802         if (afi_clocks == 0) {
803                 ;
804         } else if (afi_clocks <= 0x100) {
805                 inner = afi_clocks-1;
806                 outer = 0;
807                 c_loop = 0;
808         } else if (afi_clocks <= 0x10000) {
809                 inner = 0xff;
810                 outer = (afi_clocks-1) >> 8;
811                 c_loop = 0;
812         } else {
813                 inner = 0xff;
814                 outer = 0xff;
815                 c_loop = (afi_clocks-1) >> 16;
816         }
817
818         /*
819          * rom instructions are structured as follows:
820          *
821          *    IDLE_LOOP2: jnz cntr0, TARGET_A
822          *    IDLE_LOOP1: jnz cntr1, TARGET_B
823          *                return
824          *
825          * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
826          * TARGET_B is set to IDLE_LOOP2 as well
827          *
828          * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
829          * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
830          *
831          * a little confusing, but it helps save precious space in the inst_rom
832          * and sequencer rom and keeps the delays more accurate and reduces
833          * overhead
834          */
835         if (afi_clocks <= 0x100) {
836                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
837                         &sdr_rw_load_mgr_regs->load_cntr1);
838
839                 writel(RW_MGR_IDLE_LOOP1,
840                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
841
842                 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
843                                           RW_MGR_RUN_SINGLE_GROUP_OFFSET);
844         } else {
845                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
846                         &sdr_rw_load_mgr_regs->load_cntr0);
847
848                 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
849                         &sdr_rw_load_mgr_regs->load_cntr1);
850
851                 writel(RW_MGR_IDLE_LOOP2,
852                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
853
854                 writel(RW_MGR_IDLE_LOOP2,
855                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
856
857                 /* hack to get around compiler not being smart enough */
858                 if (afi_clocks <= 0x10000) {
859                         /* only need to run once */
860                         writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
861                                                   RW_MGR_RUN_SINGLE_GROUP_OFFSET);
862                 } else {
863                         do {
864                                 writel(RW_MGR_IDLE_LOOP2,
865                                         SDR_PHYGRP_RWMGRGRP_ADDRESS |
866                                         RW_MGR_RUN_SINGLE_GROUP_OFFSET);
867                         } while (c_loop-- != 0);
868                 }
869         }
870         debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
871 }
872
873 static void rw_mgr_mem_initialize(void)
874 {
875         uint32_t r;
876         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
877                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
878
879         debug("%s:%d\n", __func__, __LINE__);
880
881         /* The reset / cke part of initialization is broadcasted to all ranks */
882         writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
883                                 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
884
885         /*
886          * Here's how you load register for a loop
887          * Counters are located @ 0x800
888          * Jump address are located @ 0xC00
889          * For both, registers 0 to 3 are selected using bits 3 and 2, like
890          * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
891          * I know this ain't pretty, but Avalon bus throws away the 2 least
892          * significant bits
893          */
894
895         /* start with memory RESET activated */
896
897         /* tINIT = 200us */
898
899         /*
900          * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
901          * If a and b are the number of iteration in 2 nested loops
902          * it takes the following number of cycles to complete the operation:
903          * number_of_cycles = ((2 + n) * a + 2) * b
904          * where n is the number of instruction in the inner loop
905          * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
906          * b = 6A
907          */
908
909         /* Load counters */
910         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
911                &sdr_rw_load_mgr_regs->load_cntr0);
912         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
913                &sdr_rw_load_mgr_regs->load_cntr1);
914         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
915                &sdr_rw_load_mgr_regs->load_cntr2);
916
917         /* Load jump address */
918         writel(RW_MGR_INIT_RESET_0_CKE_0,
919                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
920         writel(RW_MGR_INIT_RESET_0_CKE_0,
921                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
922         writel(RW_MGR_INIT_RESET_0_CKE_0,
923                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
924
925         /* Execute count instruction */
926         writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
927
928         /* indicate that memory is stable */
929         writel(1, &phy_mgr_cfg->reset_mem_stbl);
930
931         /*
932          * transition the RESET to high
933          * Wait for 500us
934          */
935
936         /*
937          * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
938          * If a and b are the number of iteration in 2 nested loops
939          * it takes the following number of cycles to complete the operation
940          * number_of_cycles = ((2 + n) * a + 2) * b
941          * where n is the number of instruction in the inner loop
942          * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
943          * b = FF
944          */
945
946         /* Load counters */
947         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
948                &sdr_rw_load_mgr_regs->load_cntr0);
949         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
950                &sdr_rw_load_mgr_regs->load_cntr1);
951         writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
952                &sdr_rw_load_mgr_regs->load_cntr2);
953
954         /* Load jump address */
955         writel(RW_MGR_INIT_RESET_1_CKE_0,
956                 &sdr_rw_load_jump_mgr_regs->load_jump_add0);
957         writel(RW_MGR_INIT_RESET_1_CKE_0,
958                 &sdr_rw_load_jump_mgr_regs->load_jump_add1);
959         writel(RW_MGR_INIT_RESET_1_CKE_0,
960                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
961
962         writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
963
964         /* bring up clock enable */
965
966         /* tXRP < 250 ck cycles */
967         delay_for_n_mem_clocks(250);
968
969         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
970                 if (param->skip_ranks[r]) {
971                         /* request to skip the rank */
972                         continue;
973                 }
974
975                 /* set rank */
976                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
977
978                 /*
979                  * USER Use Mirror-ed commands for odd ranks if address
980                  * mirrorring is on
981                  */
982                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
983                         set_jump_as_return();
984                         writel(RW_MGR_MRS2_MIRR, grpaddr);
985                         delay_for_n_mem_clocks(4);
986                         set_jump_as_return();
987                         writel(RW_MGR_MRS3_MIRR, grpaddr);
988                         delay_for_n_mem_clocks(4);
989                         set_jump_as_return();
990                         writel(RW_MGR_MRS1_MIRR, grpaddr);
991                         delay_for_n_mem_clocks(4);
992                         set_jump_as_return();
993                         writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
994                 } else {
995                         set_jump_as_return();
996                         writel(RW_MGR_MRS2, grpaddr);
997                         delay_for_n_mem_clocks(4);
998                         set_jump_as_return();
999                         writel(RW_MGR_MRS3, grpaddr);
1000                         delay_for_n_mem_clocks(4);
1001                         set_jump_as_return();
1002                         writel(RW_MGR_MRS1, grpaddr);
1003                         set_jump_as_return();
1004                         writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
1005                 }
1006                 set_jump_as_return();
1007                 writel(RW_MGR_ZQCL, grpaddr);
1008
1009                 /* tZQinit = tDLLK = 512 ck cycles */
1010                 delay_for_n_mem_clocks(512);
1011         }
1012 }
1013
1014 /*
1015  * At the end of calibration we have to program the user settings in, and
1016  * USER  hand off the memory to the user.
1017  */
1018 static void rw_mgr_mem_handoff(void)
1019 {
1020         uint32_t r;
1021         uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1022                            RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1023
1024         debug("%s:%d\n", __func__, __LINE__);
1025         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1026                 if (param->skip_ranks[r])
1027                         /* request to skip the rank */
1028                         continue;
1029                 /* set rank */
1030                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1031
1032                 /* precharge all banks ... */
1033                 writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1034
1035                 /* load up MR settings specified by user */
1036
1037                 /*
1038                  * Use Mirror-ed commands for odd ranks if address
1039                  * mirrorring is on
1040                  */
1041                 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1042                         set_jump_as_return();
1043                         writel(RW_MGR_MRS2_MIRR, grpaddr);
1044                         delay_for_n_mem_clocks(4);
1045                         set_jump_as_return();
1046                         writel(RW_MGR_MRS3_MIRR, grpaddr);
1047                         delay_for_n_mem_clocks(4);
1048                         set_jump_as_return();
1049                         writel(RW_MGR_MRS1_MIRR, grpaddr);
1050                         delay_for_n_mem_clocks(4);
1051                         set_jump_as_return();
1052                         writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1053                 } else {
1054                         set_jump_as_return();
1055                         writel(RW_MGR_MRS2, grpaddr);
1056                         delay_for_n_mem_clocks(4);
1057                         set_jump_as_return();
1058                         writel(RW_MGR_MRS3, grpaddr);
1059                         delay_for_n_mem_clocks(4);
1060                         set_jump_as_return();
1061                         writel(RW_MGR_MRS1, grpaddr);
1062                         delay_for_n_mem_clocks(4);
1063                         set_jump_as_return();
1064                         writel(RW_MGR_MRS0_USER, grpaddr);
1065                 }
1066                 /*
1067                  * USER  need to wait tMOD (12CK or 15ns) time before issuing
1068                  * other commands, but we will have plenty of NIOS cycles before
1069                  * actual handoff so its okay.
1070                  */
1071         }
1072 }
1073
1074 /*
1075  * performs a guaranteed read on the patterns we are going to use during a
1076  * read test to ensure memory works
1077  */
1078 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1079         uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1080         uint32_t all_ranks)
1081 {
1082         uint32_t r, vg;
1083         uint32_t correct_mask_vg;
1084         uint32_t tmp_bit_chk;
1085         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1086                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1087         uint32_t addr;
1088         uint32_t base_rw_mgr;
1089
1090         *bit_chk = param->read_correct_mask;
1091         correct_mask_vg = param->read_correct_mask_vg;
1092
1093         for (r = rank_bgn; r < rank_end; r++) {
1094                 if (param->skip_ranks[r])
1095                         /* request to skip the rank */
1096                         continue;
1097
1098                 /* set rank */
1099                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1100
1101                 /* Load up a constant bursts of read commands */
1102                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1103                 writel(RW_MGR_GUARANTEED_READ,
1104                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1105
1106                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1107                 writel(RW_MGR_GUARANTEED_READ_CONT,
1108                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1109
1110                 tmp_bit_chk = 0;
1111                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1112                         /* reset the fifos to get pointers to known state */
1113
1114                         writel(0, &phy_mgr_cmd->fifo_reset);
1115                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1116                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1117
1118                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1119                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1120
1121                         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1122                         writel(RW_MGR_GUARANTEED_READ, addr +
1123                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1124                                 vg) << 2));
1125
1126                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1127                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1128
1129                         if (vg == 0)
1130                                 break;
1131                 }
1132                 *bit_chk &= tmp_bit_chk;
1133         }
1134
1135         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1136         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1137
1138         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1139         debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1140                    %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1141                    (long unsigned int)(*bit_chk == param->read_correct_mask));
1142         return *bit_chk == param->read_correct_mask;
1143 }
1144
1145 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1146         (uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1147 {
1148         return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1149                 num_tries, bit_chk, 1);
1150 }
1151
1152 /* load up the patterns we are going to use during a read test */
1153 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1154         uint32_t all_ranks)
1155 {
1156         uint32_t r;
1157         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1158                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1159
1160         debug("%s:%d\n", __func__, __LINE__);
1161         for (r = rank_bgn; r < rank_end; r++) {
1162                 if (param->skip_ranks[r])
1163                         /* request to skip the rank */
1164                         continue;
1165
1166                 /* set rank */
1167                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1168
1169                 /* Load up a constant bursts */
1170                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1171
1172                 writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1173                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1174
1175                 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1176
1177                 writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1178                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1179
1180                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1181
1182                 writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1183                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1184
1185                 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1186
1187                 writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1188                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1189
1190                 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1191                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1192         }
1193
1194         set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1195 }
1196
1197 /*
1198  * try a read and see if it returns correct data back. has dummy reads
1199  * inserted into the mix used to align dqs enable. has more thorough checks
1200  * than the regular read test.
1201  */
1202 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1203         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1204         uint32_t all_groups, uint32_t all_ranks)
1205 {
1206         uint32_t r, vg;
1207         uint32_t correct_mask_vg;
1208         uint32_t tmp_bit_chk;
1209         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1210                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1211         uint32_t addr;
1212         uint32_t base_rw_mgr;
1213
1214         *bit_chk = param->read_correct_mask;
1215         correct_mask_vg = param->read_correct_mask_vg;
1216
1217         uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1218                 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1219
1220         for (r = rank_bgn; r < rank_end; r++) {
1221                 if (param->skip_ranks[r])
1222                         /* request to skip the rank */
1223                         continue;
1224
1225                 /* set rank */
1226                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1227
1228                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1229
1230                 writel(RW_MGR_READ_B2B_WAIT1,
1231                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1232
1233                 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1234                 writel(RW_MGR_READ_B2B_WAIT2,
1235                         &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1236
1237                 if (quick_read_mode)
1238                         writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1239                         /* need at least two (1+1) reads to capture failures */
1240                 else if (all_groups)
1241                         writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1242                 else
1243                         writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1244
1245                 writel(RW_MGR_READ_B2B,
1246                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1247                 if (all_groups)
1248                         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1249                                RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1250                                &sdr_rw_load_mgr_regs->load_cntr3);
1251                 else
1252                         writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1253
1254                 writel(RW_MGR_READ_B2B,
1255                         &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1256
1257                 tmp_bit_chk = 0;
1258                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1259                         /* reset the fifos to get pointers to known state */
1260                         writel(0, &phy_mgr_cmd->fifo_reset);
1261                         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1262                                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
1263
1264                         tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1265                                 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1266
1267                         if (all_groups)
1268                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1269                         else
1270                                 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1271
1272                         writel(RW_MGR_READ_B2B, addr +
1273                                ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1274                                vg) << 2));
1275
1276                         base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1277                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1278
1279                         if (vg == 0)
1280                                 break;
1281                 }
1282                 *bit_chk &= tmp_bit_chk;
1283         }
1284
1285         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1286         writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1287
1288         if (all_correct) {
1289                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1291                            (%u == %u) => %lu", __func__, __LINE__, group,
1292                            all_groups, *bit_chk, param->read_correct_mask,
1293                            (long unsigned int)(*bit_chk ==
1294                            param->read_correct_mask));
1295                 return *bit_chk == param->read_correct_mask;
1296         } else  {
1297                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1298                 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1299                            (%u != %lu) => %lu\n", __func__, __LINE__,
1300                            group, all_groups, *bit_chk, (long unsigned int)0,
1301                            (long unsigned int)(*bit_chk != 0x00));
1302                 return *bit_chk != 0x00;
1303         }
1304 }
1305
1306 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1307         uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1308         uint32_t all_groups)
1309 {
1310         return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1311                                               bit_chk, all_groups, 1);
1312 }
1313
1314 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1315 {
1316         writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1317         (*v)++;
1318 }
1319
1320 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1321 {
1322         uint32_t i;
1323
1324         for (i = 0; i < VFIFO_SIZE-1; i++)
1325                 rw_mgr_incr_vfifo(grp, v);
1326 }
1327
1328 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1329 {
1330         uint32_t  v;
1331         uint32_t fail_cnt = 0;
1332         uint32_t test_status;
1333
1334         for (v = 0; v < VFIFO_SIZE; ) {
1335                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1336                            __func__, __LINE__, v);
1337                 test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1338                         (grp, 1, PASS_ONE_BIT, bit_chk, 0);
1339                 if (!test_status) {
1340                         fail_cnt++;
1341
1342                         if (fail_cnt == 2)
1343                                 break;
1344                 }
1345
1346                 /* fiddle with FIFO */
1347                 rw_mgr_incr_vfifo(grp, &v);
1348         }
1349
1350         if (v >= VFIFO_SIZE) {
1351                 /* no failing read found!! Something must have gone wrong */
1352                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1353                            __func__, __LINE__);
1354                 return 0;
1355         } else {
1356                 return v;
1357         }
1358 }
1359
1360 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1361                               uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1362                               uint32_t *v, uint32_t *d, uint32_t *p,
1363                               uint32_t *i, uint32_t *max_working_cnt)
1364 {
1365         uint32_t found_begin = 0;
1366         uint32_t tmp_delay = 0;
1367         uint32_t test_status;
1368
1369         for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1370                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1371                 *work_bgn = tmp_delay;
1372                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1373
1374                 for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1375                         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1376                                 IO_DELAY_PER_OPA_TAP) {
1377                                 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1378
1379                                 test_status =
1380                                 rw_mgr_mem_calibrate_read_test_all_ranks
1381                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1382
1383                                 if (test_status) {
1384                                         *max_working_cnt = 1;
1385                                         found_begin = 1;
1386                                         break;
1387                                 }
1388                         }
1389
1390                         if (found_begin)
1391                                 break;
1392
1393                         if (*p > IO_DQS_EN_PHASE_MAX)
1394                                 /* fiddle with FIFO */
1395                                 rw_mgr_incr_vfifo(*grp, v);
1396                 }
1397
1398                 if (found_begin)
1399                         break;
1400         }
1401
1402         if (*i >= VFIFO_SIZE) {
1403                 /* cannot find working solution */
1404                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1405                            ptap/dtap\n", __func__, __LINE__);
1406                 return 0;
1407         } else {
1408                 return 1;
1409         }
1410 }
1411
1412 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1413                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1414                              uint32_t *p, uint32_t *max_working_cnt)
1415 {
1416         uint32_t found_begin = 0;
1417         uint32_t tmp_delay;
1418
1419         /* Special case code for backing up a phase */
1420         if (*p == 0) {
1421                 *p = IO_DQS_EN_PHASE_MAX;
1422                 rw_mgr_decr_vfifo(*grp, v);
1423         } else {
1424                 (*p)--;
1425         }
1426         tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1427         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1428
1429         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1430                 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1431                 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1432
1433                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1434                                                              PASS_ONE_BIT,
1435                                                              bit_chk, 0)) {
1436                         found_begin = 1;
1437                         *work_bgn = tmp_delay;
1438                         break;
1439                 }
1440         }
1441
1442         /* We have found a working dtap before the ptap found above */
1443         if (found_begin == 1)
1444                 (*max_working_cnt)++;
1445
1446         /*
1447          * Restore VFIFO to old state before we decremented it
1448          * (if needed).
1449          */
1450         (*p)++;
1451         if (*p > IO_DQS_EN_PHASE_MAX) {
1452                 *p = 0;
1453                 rw_mgr_incr_vfifo(*grp, v);
1454         }
1455
1456         scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1457 }
1458
1459 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1460                              uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1461                              uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1462                              uint32_t *work_end)
1463 {
1464         uint32_t found_end = 0;
1465
1466         (*p)++;
1467         *work_end += IO_DELAY_PER_OPA_TAP;
1468         if (*p > IO_DQS_EN_PHASE_MAX) {
1469                 /* fiddle with FIFO */
1470                 *p = 0;
1471                 rw_mgr_incr_vfifo(*grp, v);
1472         }
1473
1474         for (; *i < VFIFO_SIZE + 1; (*i)++) {
1475                 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1476                         += IO_DELAY_PER_OPA_TAP) {
1477                         scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1478
1479                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1480                                 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1481                                 found_end = 1;
1482                                 break;
1483                         } else {
1484                                 (*max_working_cnt)++;
1485                         }
1486                 }
1487
1488                 if (found_end)
1489                         break;
1490
1491                 if (*p > IO_DQS_EN_PHASE_MAX) {
1492                         /* fiddle with FIFO */
1493                         rw_mgr_incr_vfifo(*grp, v);
1494                         *p = 0;
1495                 }
1496         }
1497
1498         if (*i >= VFIFO_SIZE + 1) {
1499                 /* cannot see edge of failing read */
1500                 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1501                            failed\n", __func__, __LINE__);
1502                 return 0;
1503         } else {
1504                 return 1;
1505         }
1506 }
1507
1508 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1509                                   uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1510                                   uint32_t *p, uint32_t *work_mid,
1511                                   uint32_t *work_end)
1512 {
1513         int i;
1514         int tmp_delay = 0;
1515
1516         *work_mid = (*work_bgn + *work_end) / 2;
1517
1518         debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1519                    *work_bgn, *work_end, *work_mid);
1520         /* Get the middle delay to be less than a VFIFO delay */
1521         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1522                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1523                 ;
1524         debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1525         while (*work_mid > tmp_delay)
1526                 *work_mid -= tmp_delay;
1527         debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1528
1529         tmp_delay = 0;
1530         for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1531                 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1532                 ;
1533         tmp_delay -= IO_DELAY_PER_OPA_TAP;
1534         debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1535         for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1536                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1537                 ;
1538         debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1539
1540         scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1541         scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1542
1543         /*
1544          * push vfifo until we can successfully calibrate. We can do this
1545          * because the largest possible margin in 1 VFIFO cycle.
1546          */
1547         for (i = 0; i < VFIFO_SIZE; i++) {
1548                 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1549                            *v);
1550                 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1551                                                              PASS_ONE_BIT,
1552                                                              bit_chk, 0)) {
1553                         break;
1554                 }
1555
1556                 /* fiddle with FIFO */
1557                 rw_mgr_incr_vfifo(*grp, v);
1558         }
1559
1560         if (i >= VFIFO_SIZE) {
1561                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1562                            failed\n", __func__, __LINE__);
1563                 return 0;
1564         } else {
1565                 return 1;
1566         }
1567 }
1568
1569 /* find a good dqs enable to use */
1570 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1571 {
1572         uint32_t v, d, p, i;
1573         uint32_t max_working_cnt;
1574         uint32_t bit_chk;
1575         uint32_t dtaps_per_ptap;
1576         uint32_t work_bgn, work_mid, work_end;
1577         uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1578
1579         debug("%s:%d %u\n", __func__, __LINE__, grp);
1580
1581         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1582
1583         scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1584         scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1585
1586         /* ************************************************************** */
1587         /* * Step 0 : Determine number of delay taps for each phase tap * */
1588         dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1589
1590         /* ********************************************************* */
1591         /* * Step 1 : First push vfifo until we get a failing read * */
1592         v = find_vfifo_read(grp, &bit_chk);
1593
1594         max_working_cnt = 0;
1595
1596         /* ******************************************************** */
1597         /* * step 2: find first working phase, increment in ptaps * */
1598         work_bgn = 0;
1599         if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1600                                 &p, &i, &max_working_cnt) == 0)
1601                 return 0;
1602
1603         work_end = work_bgn;
1604
1605         /*
1606          * If d is 0 then the working window covers a phase tap and
1607          * we can follow the old procedure otherwise, we've found the beginning,
1608          * and we need to increment the dtaps until we find the end.
1609          */
1610         if (d == 0) {
1611                 /* ********************************************************* */
1612                 /* * step 3a: if we have room, back off by one and
1613                 increment in dtaps * */
1614
1615                 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1616                                  &max_working_cnt);
1617
1618                 /* ********************************************************* */
1619                 /* * step 4a: go forward from working phase to non working
1620                 phase, increment in ptaps * */
1621                 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1622                                          &i, &max_working_cnt, &work_end) == 0)
1623                         return 0;
1624
1625                 /* ********************************************************* */
1626                 /* * step 5a:  back off one from last, increment in dtaps  * */
1627
1628                 /* Special case code for backing up a phase */
1629                 if (p == 0) {
1630                         p = IO_DQS_EN_PHASE_MAX;
1631                         rw_mgr_decr_vfifo(grp, &v);
1632                 } else {
1633                         p = p - 1;
1634                 }
1635
1636                 work_end -= IO_DELAY_PER_OPA_TAP;
1637                 scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1638
1639                 /* * The actual increment of dtaps is done outside of
1640                 the if/else loop to share code */
1641                 d = 0;
1642
1643                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1644                            vfifo=%u ptap=%u\n", __func__, __LINE__,
1645                            v, p);
1646         } else {
1647                 /* ******************************************************* */
1648                 /* * step 3-5b:  Find the right edge of the window using
1649                 delay taps   * */
1650                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1651                            ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1652                            v, p, d, work_bgn);
1653
1654                 work_end = work_bgn;
1655
1656                 /* * The actual increment of dtaps is done outside of the
1657                 if/else loop to share code */
1658
1659                 /* Only here to counterbalance a subtract later on which is
1660                 not needed if this branch of the algorithm is taken */
1661                 max_working_cnt++;
1662         }
1663
1664         /* The dtap increment to find the failing edge is done here */
1665         for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1666                 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1667                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1668                                    end-2: dtap=%u\n", __func__, __LINE__, d);
1669                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1670
1671                         if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1672                                                                       PASS_ONE_BIT,
1673                                                                       &bit_chk, 0)) {
1674                                 break;
1675                         }
1676         }
1677
1678         /* Go back to working dtap */
1679         if (d != 0)
1680                 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1681
1682         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1683                    ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1684                    v, p, d-1, work_end);
1685
1686         if (work_end < work_bgn) {
1687                 /* nil range */
1688                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1689                            failed\n", __func__, __LINE__);
1690                 return 0;
1691         }
1692
1693         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1694                    __func__, __LINE__, work_bgn, work_end);
1695
1696         /* *************************************************************** */
1697         /*
1698          * * We need to calculate the number of dtaps that equal a ptap
1699          * * To do that we'll back up a ptap and re-find the edge of the
1700          * * window using dtaps
1701          */
1702
1703         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1704                    for tracking\n", __func__, __LINE__);
1705
1706         /* Special case code for backing up a phase */
1707         if (p == 0) {
1708                 p = IO_DQS_EN_PHASE_MAX;
1709                 rw_mgr_decr_vfifo(grp, &v);
1710                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1711                            cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1712                            v, p);
1713         } else {
1714                 p = p - 1;
1715                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1716                            phase only: v=%u p=%u", __func__, __LINE__,
1717                            v, p);
1718         }
1719
1720         scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1721
1722         /*
1723          * Increase dtap until we first see a passing read (in case the
1724          * window is smaller than a ptap),
1725          * and then a failing read to mark the edge of the window again
1726          */
1727
1728         /* Find a passing read */
1729         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1730                    __func__, __LINE__);
1731         found_passing_read = 0;
1732         found_failing_read = 0;
1733         initial_failing_dtap = d;
1734         for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1735                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1736                            read d=%u\n", __func__, __LINE__, d);
1737                 scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1738
1739                 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1740                                                              PASS_ONE_BIT,
1741                                                              &bit_chk, 0)) {
1742                         found_passing_read = 1;
1743                         break;
1744                 }
1745         }
1746
1747         if (found_passing_read) {
1748                 /* Find a failing read */
1749                 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1750                            read\n", __func__, __LINE__);
1751                 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1752                         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1753                                    testing read d=%u\n", __func__, __LINE__, d);
1754                         scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1755
1756                         if (!rw_mgr_mem_calibrate_read_test_all_ranks
1757                                 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1758                                 found_failing_read = 1;
1759                                 break;
1760                         }
1761                 }
1762         } else {
1763                 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1764                            calculate dtaps", __func__, __LINE__);
1765                 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1766         }
1767
1768         /*
1769          * The dynamically calculated dtaps_per_ptap is only valid if we
1770          * found a passing/failing read. If we didn't, it means d hit the max
1771          * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1772          * statically calculated value.
1773          */
1774         if (found_passing_read && found_failing_read)
1775                 dtaps_per_ptap = d - initial_failing_dtap;
1776
1777         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1778         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1779                    - %u = %u",  __func__, __LINE__, d,
1780                    initial_failing_dtap, dtaps_per_ptap);
1781
1782         /* ******************************************** */
1783         /* * step 6:  Find the centre of the window   * */
1784         if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1785                                    &work_mid, &work_end) == 0)
1786                 return 0;
1787
1788         debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1789                    vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1790                    v, p-1, d);
1791         return 1;
1792 }
1793
1794 /*
1795  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1796  * dq_in_delay values
1797  */
1798 static uint32_t
1799 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1800 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1801 {
1802         uint32_t found;
1803         uint32_t i;
1804         uint32_t p;
1805         uint32_t d;
1806         uint32_t r;
1807
1808         const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1809                 (RW_MGR_MEM_DQ_PER_READ_DQS-1);
1810                 /* we start at zero, so have one less dq to devide among */
1811
1812         debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1813               test_bgn);
1814
1815         /* try different dq_in_delays since the dq path is shorter than dqs */
1816
1817         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1818              r += NUM_RANKS_PER_SHADOW_REG) {
1819                 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1820                         i++, p++, d += delay_step) {
1821                         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1822                                    vfifo_find_dqs_", __func__, __LINE__);
1823                         debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1824                                write_group, read_group);
1825                         debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1826                         scc_mgr_set_dq_in_delay(write_group, p, d);
1827                         scc_mgr_load_dq(p);
1828                 }
1829                 writel(0, &sdr_scc_mgr->update);
1830         }
1831
1832         found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1833
1834         debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1835                    en_phase_sweep_dq", __func__, __LINE__);
1836         debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1837                    chain to zero\n", write_group, read_group, found);
1838
1839         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1840              r += NUM_RANKS_PER_SHADOW_REG) {
1841                 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1842                         i++, p++) {
1843                         scc_mgr_set_dq_in_delay(write_group, p, 0);
1844                         scc_mgr_load_dq(p);
1845                 }
1846                 writel(0, &sdr_scc_mgr->update);
1847         }
1848
1849         return found;
1850 }
1851
1852 /* per-bit deskew DQ and center */
1853 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1854         uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1855         uint32_t use_read_test, uint32_t update_fom)
1856 {
1857         uint32_t i, p, d, min_index;
1858         /*
1859          * Store these as signed since there are comparisons with
1860          * signed numbers.
1861          */
1862         uint32_t bit_chk;
1863         uint32_t sticky_bit_chk;
1864         int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1865         int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1866         int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1867         int32_t mid;
1868         int32_t orig_mid_min, mid_min;
1869         int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1870                 final_dqs_en;
1871         int32_t dq_margin, dqs_margin;
1872         uint32_t stop;
1873         uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1874         uint32_t addr;
1875
1876         debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1877
1878         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1879         start_dqs = readl(addr + (read_group << 2));
1880         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1881                 start_dqs_en = readl(addr + ((read_group << 2)
1882                                      - IO_DQS_EN_DELAY_OFFSET));
1883
1884         /* set the left and right edge of each bit to an illegal value */
1885         /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1886         sticky_bit_chk = 0;
1887         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1888                 left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1889                 right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1890         }
1891
1892         /* Search for the left edge of the window for each bit */
1893         for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1894                 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1895
1896                 writel(0, &sdr_scc_mgr->update);
1897
1898                 /*
1899                  * Stop searching when the read test doesn't pass AND when
1900                  * we've seen a passing read on every bit.
1901                  */
1902                 if (use_read_test) {
1903                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1904                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1905                                 &bit_chk, 0, 0);
1906                 } else {
1907                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1908                                                         0, PASS_ONE_BIT,
1909                                                         &bit_chk, 0);
1910                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1911                                 (read_group - (write_group *
1912                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
1913                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1914                         stop = (bit_chk == 0);
1915                 }
1916                 sticky_bit_chk = sticky_bit_chk | bit_chk;
1917                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
1918                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1919                            && %u", __func__, __LINE__, d,
1920                            sticky_bit_chk,
1921                         param->read_correct_mask, stop);
1922
1923                 if (stop == 1) {
1924                         break;
1925                 } else {
1926                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1927                                 if (bit_chk & 1) {
1928                                         /* Remember a passing test as the
1929                                         left_edge */
1930                                         left_edge[i] = d;
1931                                 } else {
1932                                         /* If a left edge has not been seen yet,
1933                                         then a future passing test will mark
1934                                         this edge as the right edge */
1935                                         if (left_edge[i] ==
1936                                                 IO_IO_IN_DELAY_MAX + 1) {
1937                                                 right_edge[i] = -(d + 1);
1938                                         }
1939                                 }
1940                                 bit_chk = bit_chk >> 1;
1941                         }
1942                 }
1943         }
1944
1945         /* Reset DQ delay chains to 0 */
1946         scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1947         sticky_bit_chk = 0;
1948         for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1949                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1950                            %d right_edge[%u]: %d\n", __func__, __LINE__,
1951                            i, left_edge[i], i, right_edge[i]);
1952
1953                 /*
1954                  * Check for cases where we haven't found the left edge,
1955                  * which makes our assignment of the the right edge invalid.
1956                  * Reset it to the illegal value.
1957                  */
1958                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1959                         right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1960                         right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1961                         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1962                                    right_edge[%u]: %d\n", __func__, __LINE__,
1963                                    i, right_edge[i]);
1964                 }
1965
1966                 /*
1967                  * Reset sticky bit (except for bits where we have seen
1968                  * both the left and right edge).
1969                  */
1970                 sticky_bit_chk = sticky_bit_chk << 1;
1971                 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1972                     (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1973                         sticky_bit_chk = sticky_bit_chk | 1;
1974                 }
1975
1976                 if (i == 0)
1977                         break;
1978         }
1979
1980         /* Search for the right edge of the window for each bit */
1981         for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1982                 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1983                 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1984                         uint32_t delay = d + start_dqs_en;
1985                         if (delay > IO_DQS_EN_DELAY_MAX)
1986                                 delay = IO_DQS_EN_DELAY_MAX;
1987                         scc_mgr_set_dqs_en_delay(read_group, delay);
1988                 }
1989                 scc_mgr_load_dqs(read_group);
1990
1991                 writel(0, &sdr_scc_mgr->update);
1992
1993                 /*
1994                  * Stop searching when the read test doesn't pass AND when
1995                  * we've seen a passing read on every bit.
1996                  */
1997                 if (use_read_test) {
1998                         stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1999                                 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2000                                 &bit_chk, 0, 0);
2001                 } else {
2002                         rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2003                                                         0, PASS_ONE_BIT,
2004                                                         &bit_chk, 0);
2005                         bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2006                                 (read_group - (write_group *
2007                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
2008                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2009                         stop = (bit_chk == 0);
2010                 }
2011                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2012                 stop = stop && (sticky_bit_chk == param->read_correct_mask);
2013
2014                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2015                            %u && %u", __func__, __LINE__, d,
2016                            sticky_bit_chk, param->read_correct_mask, stop);
2017
2018                 if (stop == 1) {
2019                         break;
2020                 } else {
2021                         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2022                                 if (bit_chk & 1) {
2023                                         /* Remember a passing test as
2024                                         the right_edge */
2025                                         right_edge[i] = d;
2026                                 } else {
2027                                         if (d != 0) {
2028                                                 /* If a right edge has not been
2029                                                 seen yet, then a future passing
2030                                                 test will mark this edge as the
2031                                                 left edge */
2032                                                 if (right_edge[i] ==
2033                                                 IO_IO_IN_DELAY_MAX + 1) {
2034                                                         left_edge[i] = -(d + 1);
2035                                                 }
2036                                         } else {
2037                                                 /* d = 0 failed, but it passed
2038                                                 when testing the left edge,
2039                                                 so it must be marginal,
2040                                                 set it to -1 */
2041                                                 if (right_edge[i] ==
2042                                                         IO_IO_IN_DELAY_MAX + 1 &&
2043                                                         left_edge[i] !=
2044                                                         IO_IO_IN_DELAY_MAX
2045                                                         + 1) {
2046                                                         right_edge[i] = -1;
2047                                                 }
2048                                                 /* If a right edge has not been
2049                                                 seen yet, then a future passing
2050                                                 test will mark this edge as the
2051                                                 left edge */
2052                                                 else if (right_edge[i] ==
2053                                                         IO_IO_IN_DELAY_MAX +
2054                                                         1) {
2055                                                         left_edge[i] = -(d + 1);
2056                                                 }
2057                                         }
2058                                 }
2059
2060                                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2061                                            d=%u]: ", __func__, __LINE__, d);
2062                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2063                                            (int)(bit_chk & 1), i, left_edge[i]);
2064                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2065                                            right_edge[i]);
2066                                 bit_chk = bit_chk >> 1;
2067                         }
2068                 }
2069         }
2070
2071         /* Check that all bits have a window */
2072         for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2073                 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2074                            %d right_edge[%u]: %d", __func__, __LINE__,
2075                            i, left_edge[i], i, right_edge[i]);
2076                 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2077                         == IO_IO_IN_DELAY_MAX + 1)) {
2078                         /*
2079                          * Restore delay chain settings before letting the loop
2080                          * in rw_mgr_mem_calibrate_vfifo to retry different
2081                          * dqs/ck relationships.
2082                          */
2083                         scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2084                         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2085                                 scc_mgr_set_dqs_en_delay(read_group,
2086                                                          start_dqs_en);
2087                         }
2088                         scc_mgr_load_dqs(read_group);
2089                         writel(0, &sdr_scc_mgr->update);
2090
2091                         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2092                                    find edge [%u]: %d %d", __func__, __LINE__,
2093                                    i, left_edge[i], right_edge[i]);
2094                         if (use_read_test) {
2095                                 set_failing_group_stage(read_group *
2096                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2097                                         CAL_STAGE_VFIFO,
2098                                         CAL_SUBSTAGE_VFIFO_CENTER);
2099                         } else {
2100                                 set_failing_group_stage(read_group *
2101                                         RW_MGR_MEM_DQ_PER_READ_DQS + i,
2102                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2103                                         CAL_SUBSTAGE_VFIFO_CENTER);
2104                         }
2105                         return 0;
2106                 }
2107         }
2108
2109         /* Find middle of window for each DQ bit */
2110         mid_min = left_edge[0] - right_edge[0];
2111         min_index = 0;
2112         for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2113                 mid = left_edge[i] - right_edge[i];
2114                 if (mid < mid_min) {
2115                         mid_min = mid;
2116                         min_index = i;
2117                 }
2118         }
2119
2120         /*
2121          * -mid_min/2 represents the amount that we need to move DQS.
2122          * If mid_min is odd and positive we'll need to add one to
2123          * make sure the rounding in further calculations is correct
2124          * (always bias to the right), so just add 1 for all positive values.
2125          */
2126         if (mid_min > 0)
2127                 mid_min++;
2128
2129         mid_min = mid_min / 2;
2130
2131         debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2132                    __func__, __LINE__, mid_min, min_index);
2133
2134         /* Determine the amount we can change DQS (which is -mid_min) */
2135         orig_mid_min = mid_min;
2136         new_dqs = start_dqs - mid_min;
2137         if (new_dqs > IO_DQS_IN_DELAY_MAX)
2138                 new_dqs = IO_DQS_IN_DELAY_MAX;
2139         else if (new_dqs < 0)
2140                 new_dqs = 0;
2141
2142         mid_min = start_dqs - new_dqs;
2143         debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2144                    mid_min, new_dqs);
2145
2146         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2147                 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2148                         mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2149                 else if (start_dqs_en - mid_min < 0)
2150                         mid_min += start_dqs_en - mid_min;
2151         }
2152         new_dqs = start_dqs - mid_min;
2153
2154         debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2155                    new_dqs=%d mid_min=%d\n", start_dqs,
2156                    IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2157                    new_dqs, mid_min);
2158
2159         /* Initialize data for export structures */
2160         dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2161         dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2162
2163         /* add delay to bring centre of all DQ windows to the same "level" */
2164         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2165                 /* Use values before divide by 2 to reduce round off error */
2166                 shift_dq = (left_edge[i] - right_edge[i] -
2167                         (left_edge[min_index] - right_edge[min_index]))/2  +
2168                         (orig_mid_min - mid_min);
2169
2170                 debug_cond(DLEVEL == 2, "vfifo_center: before: \
2171                            shift_dq[%u]=%d\n", i, shift_dq);
2172
2173                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2174                 temp_dq_in_delay1 = readl(addr + (p << 2));
2175                 temp_dq_in_delay2 = readl(addr + (i << 2));
2176
2177                 if (shift_dq + (int32_t)temp_dq_in_delay1 >
2178                         (int32_t)IO_IO_IN_DELAY_MAX) {
2179                         shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2180                 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2181                         shift_dq = -(int32_t)temp_dq_in_delay1;
2182                 }
2183                 debug_cond(DLEVEL == 2, "vfifo_center: after: \
2184                            shift_dq[%u]=%d\n", i, shift_dq);
2185                 final_dq[i] = temp_dq_in_delay1 + shift_dq;
2186                 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2187                 scc_mgr_load_dq(p);
2188
2189                 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2190                            left_edge[i] - shift_dq + (-mid_min),
2191                            right_edge[i] + shift_dq - (-mid_min));
2192                 /* To determine values for export structures */
2193                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2194                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2195
2196                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2197                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2198         }
2199
2200         final_dqs = new_dqs;
2201         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2202                 final_dqs_en = start_dqs_en - mid_min;
2203
2204         /* Move DQS-en */
2205         if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2206                 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2207                 scc_mgr_load_dqs(read_group);
2208         }
2209
2210         /* Move DQS */
2211         scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2212         scc_mgr_load_dqs(read_group);
2213         debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2214                    dqs_margin=%d", __func__, __LINE__,
2215                    dq_margin, dqs_margin);
2216
2217         /*
2218          * Do not remove this line as it makes sure all of our decisions
2219          * have been applied. Apply the update bit.
2220          */
2221         writel(0, &sdr_scc_mgr->update);
2222
2223         return (dq_margin >= 0) && (dqs_margin >= 0);
2224 }
2225
2226 /*
2227  * calibrate the read valid prediction FIFO.
2228  *
2229  *  - read valid prediction will consist of finding a good DQS enable phase,
2230  * DQS enable delay, DQS input phase, and DQS input delay.
2231  *  - we also do a per-bit deskew on the DQ lines.
2232  */
2233 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2234                                            uint32_t test_bgn)
2235 {
2236         uint32_t p, d, rank_bgn, sr;
2237         uint32_t dtaps_per_ptap;
2238         uint32_t tmp_delay;
2239         uint32_t bit_chk;
2240         uint32_t grp_calibrated;
2241         uint32_t write_group, write_test_bgn;
2242         uint32_t failed_substage;
2243
2244         debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2245
2246         /* update info for sims */
2247         reg_file_set_stage(CAL_STAGE_VFIFO);
2248
2249         write_group = read_group;
2250         write_test_bgn = test_bgn;
2251
2252         /* USER Determine number of delay taps for each phase tap */
2253         dtaps_per_ptap = 0;
2254         tmp_delay = 0;
2255         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2256                 dtaps_per_ptap++;
2257                 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2258         }
2259         dtaps_per_ptap--;
2260         tmp_delay = 0;
2261
2262         /* update info for sims */
2263         reg_file_set_group(read_group);
2264
2265         grp_calibrated = 0;
2266
2267         reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2268         failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2269
2270         for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2271                 /*
2272                  * In RLDRAMX we may be messing the delay of pins in
2273                  * the same write group but outside of the current read
2274                  * the group, but that's ok because we haven't
2275                  * calibrated output side yet.
2276                  */
2277                 if (d > 0) {
2278                         scc_mgr_apply_group_all_out_delay_add_all_ranks
2279                         (write_group, write_test_bgn, d);
2280                 }
2281
2282                 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2283                         p++) {
2284                         /* set a particular dqdqs phase */
2285                         scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2286
2287                         debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2288                                    p=%u d=%u\n", __func__, __LINE__,
2289                                    read_group, p, d);
2290
2291                         /*
2292                          * Load up the patterns used by read calibration
2293                          * using current DQDQS phase.
2294                          */
2295                         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2296                         if (!(gbl->phy_debug_mode_flags &
2297                                 PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2298                                 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2299                                     (read_group, 1, &bit_chk)) {
2300                                         debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2301                                                    __func__, __LINE__);
2302                                         debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2303                                                    read_group, p, d);
2304                                         break;
2305                                 }
2306                         }
2307
2308 /* case:56390 */
2309                         grp_calibrated = 1;
2310                 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2311                     (write_group, read_group, test_bgn)) {
2312                                 /*
2313                                  * USER Read per-bit deskew can be done on a
2314                                  * per shadow register basis.
2315                                  */
2316                                 for (rank_bgn = 0, sr = 0;
2317                                         rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2318                                         rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2319                                         ++sr) {
2320                                         /*
2321                                          * Determine if this set of ranks
2322                                          * should be skipped entirely.
2323                                          */
2324                                         if (!param->skip_shadow_regs[sr]) {
2325                                                 /*
2326                                                  * If doing read after write
2327                                                  * calibration, do not update
2328                                                  * FOM, now - do it then.
2329                                                  */
2330                                         if (!rw_mgr_mem_calibrate_vfifo_center
2331                                                 (rank_bgn, write_group,
2332                                                 read_group, test_bgn, 1, 0)) {
2333                                                         grp_calibrated = 0;
2334                                                         failed_substage =
2335                                                 CAL_SUBSTAGE_VFIFO_CENTER;
2336                                                 }
2337                                         }
2338                                 }
2339                         } else {
2340                                 grp_calibrated = 0;
2341                                 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2342                         }
2343                 }
2344         }
2345
2346         if (grp_calibrated == 0) {
2347                 set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2348                                         failed_substage);
2349                 return 0;
2350         }
2351
2352         /*
2353          * Reset the delay chains back to zero if they have moved > 1
2354          * (check for > 1 because loop will increase d even when pass in
2355          * first case).
2356          */
2357         if (d > 2)
2358                 scc_mgr_zero_group(write_group, write_test_bgn, 1);
2359
2360         return 1;
2361 }
2362
2363 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2364 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2365                                                uint32_t test_bgn)
2366 {
2367         uint32_t rank_bgn, sr;
2368         uint32_t grp_calibrated;
2369         uint32_t write_group;
2370
2371         debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2372
2373         /* update info for sims */
2374
2375         reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2376         reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2377
2378         write_group = read_group;
2379
2380         /* update info for sims */
2381         reg_file_set_group(read_group);
2382
2383         grp_calibrated = 1;
2384         /* Read per-bit deskew can be done on a per shadow register basis */
2385         for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2386                 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2387                 /* Determine if this set of ranks should be skipped entirely */
2388                 if (!param->skip_shadow_regs[sr]) {
2389                 /* This is the last calibration round, update FOM here */
2390                         if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2391                                                                 write_group,
2392                                                                 read_group,
2393                                                                 test_bgn, 0,
2394                                                                 1)) {
2395                                 grp_calibrated = 0;
2396                         }
2397                 }
2398         }
2399
2400
2401         if (grp_calibrated == 0) {
2402                 set_failing_group_stage(write_group,
2403                                         CAL_STAGE_VFIFO_AFTER_WRITES,
2404                                         CAL_SUBSTAGE_VFIFO_CENTER);
2405                 return 0;
2406         }
2407
2408         return 1;
2409 }
2410
2411 /* Calibrate LFIFO to find smallest read latency */
2412 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2413 {
2414         uint32_t found_one;
2415         uint32_t bit_chk;
2416
2417         debug("%s:%d\n", __func__, __LINE__);
2418
2419         /* update info for sims */
2420         reg_file_set_stage(CAL_STAGE_LFIFO);
2421         reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2422
2423         /* Load up the patterns used by read calibration for all ranks */
2424         rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2425         found_one = 0;
2426
2427         do {
2428                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2429                 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2430                            __func__, __LINE__, gbl->curr_read_lat);
2431
2432                 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2433                                                               NUM_READ_TESTS,
2434                                                               PASS_ALL_BITS,
2435                                                               &bit_chk, 1)) {
2436                         break;
2437                 }
2438
2439                 found_one = 1;
2440                 /* reduce read latency and see if things are working */
2441                 /* correctly */
2442                 gbl->curr_read_lat--;
2443         } while (gbl->curr_read_lat > 0);
2444
2445         /* reset the fifos to get pointers to known state */
2446
2447         writel(0, &phy_mgr_cmd->fifo_reset);
2448
2449         if (found_one) {
2450                 /* add a fudge factor to the read latency that was determined */
2451                 gbl->curr_read_lat += 2;
2452                 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2453                 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2454                            read_lat=%u\n", __func__, __LINE__,
2455                            gbl->curr_read_lat);
2456                 return 1;
2457         } else {
2458                 set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2459                                         CAL_SUBSTAGE_READ_LATENCY);
2460
2461                 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2462                            read_lat=%u\n", __func__, __LINE__,
2463                            gbl->curr_read_lat);
2464                 return 0;
2465         }
2466 }
2467
2468 /*
2469  * issue write test command.
2470  * two variants are provided. one that just tests a write pattern and
2471  * another that tests datamask functionality.
2472  */
2473 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2474                                                   uint32_t test_dm)
2475 {
2476         uint32_t mcc_instruction;
2477         uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2478                 ENABLE_SUPER_QUICK_CALIBRATION);
2479         uint32_t rw_wl_nop_cycles;
2480         uint32_t addr;
2481
2482         /*
2483          * Set counter and jump addresses for the right
2484          * number of NOP cycles.
2485          * The number of supported NOP cycles can range from -1 to infinity
2486          * Three different cases are handled:
2487          *
2488          * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2489          *    mechanism will be used to insert the right number of NOPs
2490          *
2491          * 2. For a number of NOP cycles equals to 0, the micro-instruction
2492          *    issuing the write command will jump straight to the
2493          *    micro-instruction that turns on DQS (for DDRx), or outputs write
2494          *    data (for RLD), skipping
2495          *    the NOP micro-instruction all together
2496          *
2497          * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2498          *    turned on in the same micro-instruction that issues the write
2499          *    command. Then we need
2500          *    to directly jump to the micro-instruction that sends out the data
2501          *
2502          * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2503          *       (2 and 3). One jump-counter (0) is used to perform multiple
2504          *       write-read operations.
2505          *       one counter left to issue this command in "multiple-group" mode
2506          */
2507
2508         rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2509
2510         if (rw_wl_nop_cycles == -1) {
2511                 /*
2512                  * CNTR 2 - We want to execute the special write operation that
2513                  * turns on DQS right away and then skip directly to the
2514                  * instruction that sends out the data. We set the counter to a
2515                  * large number so that the jump is always taken.
2516                  */
2517                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2518
2519                 /* CNTR 3 - Not used */
2520                 if (test_dm) {
2521                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2522                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2523                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2524                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2525                                &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2526                 } else {
2527                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2528                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2529                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2530                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2531                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2532                 }
2533         } else if (rw_wl_nop_cycles == 0) {
2534                 /*
2535                  * CNTR 2 - We want to skip the NOP operation and go straight
2536                  * to the DQS enable instruction. We set the counter to a large
2537                  * number so that the jump is always taken.
2538                  */
2539                 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2540
2541                 /* CNTR 3 - Not used */
2542                 if (test_dm) {
2543                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2544                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2545                                &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2546                 } else {
2547                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2548                         writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2549                                 &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2550                 }
2551         } else {
2552                 /*
2553                  * CNTR 2 - In this case we want to execute the next instruction
2554                  * and NOT take the jump. So we set the counter to 0. The jump
2555                  * address doesn't count.
2556                  */
2557                 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2558                 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559
2560                 /*
2561                  * CNTR 3 - Set the nop counter to the number of cycles we
2562                  * need to loop for, minus 1.
2563                  */
2564                 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2565                 if (test_dm) {
2566                         mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2567                         writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2568                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2569                 } else {
2570                         mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2571                         writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2572                                 &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2573                 }
2574         }
2575
2576         writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2577                   RW_MGR_RESET_READ_DATAPATH_OFFSET);
2578
2579         if (quick_write_mode)
2580                 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2581         else
2582                 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2583
2584         writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2585
2586         /*
2587          * CNTR 1 - This is used to ensure enough time elapses
2588          * for read data to come back.
2589          */
2590         writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2591
2592         if (test_dm) {
2593                 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2594                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2595         } else {
2596                 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2597                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
2598         }
2599
2600         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2601         writel(mcc_instruction, addr + (group << 2));
2602 }
2603
2604 /* Test writes, can check for a single bit pass or multiple bit pass */
2605 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2606         uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2607         uint32_t *bit_chk, uint32_t all_ranks)
2608 {
2609         uint32_t r;
2610         uint32_t correct_mask_vg;
2611         uint32_t tmp_bit_chk;
2612         uint32_t vg;
2613         uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2614                 (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2615         uint32_t addr_rw_mgr;
2616         uint32_t base_rw_mgr;
2617
2618         *bit_chk = param->write_correct_mask;
2619         correct_mask_vg = param->write_correct_mask_vg;
2620
2621         for (r = rank_bgn; r < rank_end; r++) {
2622                 if (param->skip_ranks[r]) {
2623                         /* request to skip the rank */
2624                         continue;
2625                 }
2626
2627                 /* set rank */
2628                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2629
2630                 tmp_bit_chk = 0;
2631                 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2632                 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2633                         /* reset the fifos to get pointers to known state */
2634                         writel(0, &phy_mgr_cmd->fifo_reset);
2635
2636                         tmp_bit_chk = tmp_bit_chk <<
2637                                 (RW_MGR_MEM_DQ_PER_WRITE_DQS /
2638                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2639                         rw_mgr_mem_calibrate_write_test_issue(write_group *
2640                                 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2641                                 use_dm);
2642
2643                         base_rw_mgr = readl(addr_rw_mgr);
2644                         tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2645                         if (vg == 0)
2646                                 break;
2647                 }
2648                 *bit_chk &= tmp_bit_chk;
2649         }
2650
2651         if (all_correct) {
2652                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2653                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2654                            %u => %lu", write_group, use_dm,
2655                            *bit_chk, param->write_correct_mask,
2656                            (long unsigned int)(*bit_chk ==
2657                            param->write_correct_mask));
2658                 return *bit_chk == param->write_correct_mask;
2659         } else {
2660                 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2661                 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2662                        write_group, use_dm, *bit_chk);
2663                 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2664                         (long unsigned int)(*bit_chk != 0));
2665                 return *bit_chk != 0x00;
2666         }
2667 }
2668
2669 /*
2670  * center all windows. do per-bit-deskew to possibly increase size of
2671  * certain windows.
2672  */
2673 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2674         uint32_t write_group, uint32_t test_bgn)
2675 {
2676         uint32_t i, p, min_index;
2677         int32_t d;
2678         /*
2679          * Store these as signed since there are comparisons with
2680          * signed numbers.
2681          */
2682         uint32_t bit_chk;
2683         uint32_t sticky_bit_chk;
2684         int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2685         int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2686         int32_t mid;
2687         int32_t mid_min, orig_mid_min;
2688         int32_t new_dqs, start_dqs, shift_dq;
2689         int32_t dq_margin, dqs_margin, dm_margin;
2690         uint32_t stop;
2691         uint32_t temp_dq_out1_delay;
2692         uint32_t addr;
2693
2694         debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2695
2696         dm_margin = 0;
2697
2698         addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2699         start_dqs = readl(addr +
2700                           (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2701
2702         /* per-bit deskew */
2703
2704         /*
2705          * set the left and right edge of each bit to an illegal value
2706          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2707          */
2708         sticky_bit_chk = 0;
2709         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2710                 left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2711                 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2712         }
2713
2714         /* Search for the left edge of the window for each bit */
2715         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2716                 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2717
2718                 writel(0, &sdr_scc_mgr->update);
2719
2720                 /*
2721                  * Stop searching when the read test doesn't pass AND when
2722                  * we've seen a passing read on every bit.
2723                  */
2724                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2725                         0, PASS_ONE_BIT, &bit_chk, 0);
2726                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2727                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2728                 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2729                            == %u && %u [bit_chk= %u ]\n",
2730                         d, sticky_bit_chk, param->write_correct_mask,
2731                         stop, bit_chk);
2732
2733                 if (stop == 1) {
2734                         break;
2735                 } else {
2736                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2737                                 if (bit_chk & 1) {
2738                                         /*
2739                                          * Remember a passing test as the
2740                                          * left_edge.
2741                                          */
2742                                         left_edge[i] = d;
2743                                 } else {
2744                                         /*
2745                                          * If a left edge has not been seen
2746                                          * yet, then a future passing test will
2747                                          * mark this edge as the right edge.
2748                                          */
2749                                         if (left_edge[i] ==
2750                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2751                                                 right_edge[i] = -(d + 1);
2752                                         }
2753                                 }
2754                                 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2755                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2756                                            (int)(bit_chk & 1), i, left_edge[i]);
2757                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2758                                        right_edge[i]);
2759                                 bit_chk = bit_chk >> 1;
2760                         }
2761                 }
2762         }
2763
2764         /* Reset DQ delay chains to 0 */
2765         scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2766         sticky_bit_chk = 0;
2767         for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2768                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2769                            %d right_edge[%u]: %d\n", __func__, __LINE__,
2770                            i, left_edge[i], i, right_edge[i]);
2771
2772                 /*
2773                  * Check for cases where we haven't found the left edge,
2774                  * which makes our assignment of the the right edge invalid.
2775                  * Reset it to the illegal value.
2776                  */
2777                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2778                     (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2779                         right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2780                         debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2781                                    right_edge[%u]: %d\n", __func__, __LINE__,
2782                                    i, right_edge[i]);
2783                 }
2784
2785                 /*
2786                  * Reset sticky bit (except for bits where we have
2787                  * seen the left edge).
2788                  */
2789                 sticky_bit_chk = sticky_bit_chk << 1;
2790                 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2791                         sticky_bit_chk = sticky_bit_chk | 1;
2792
2793                 if (i == 0)
2794                         break;
2795         }
2796
2797         /* Search for the right edge of the window for each bit */
2798         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2799                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2800                                                         d + start_dqs);
2801
2802                 writel(0, &sdr_scc_mgr->update);
2803
2804                 /*
2805                  * Stop searching when the read test doesn't pass AND when
2806                  * we've seen a passing read on every bit.
2807                  */
2808                 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2809                         0, PASS_ONE_BIT, &bit_chk, 0);
2810
2811                 sticky_bit_chk = sticky_bit_chk | bit_chk;
2812                 stop = stop && (sticky_bit_chk == param->write_correct_mask);
2813
2814                 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2815                            %u && %u\n", d, sticky_bit_chk,
2816                            param->write_correct_mask, stop);
2817
2818                 if (stop == 1) {
2819                         if (d == 0) {
2820                                 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2821                                         i++) {
2822                                         /* d = 0 failed, but it passed when
2823                                         testing the left edge, so it must be
2824                                         marginal, set it to -1 */
2825                                         if (right_edge[i] ==
2826                                                 IO_IO_OUT1_DELAY_MAX + 1 &&
2827                                                 left_edge[i] !=
2828                                                 IO_IO_OUT1_DELAY_MAX + 1) {
2829                                                 right_edge[i] = -1;
2830                                         }
2831                                 }
2832                         }
2833                         break;
2834                 } else {
2835                         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2836                                 if (bit_chk & 1) {
2837                                         /*
2838                                          * Remember a passing test as
2839                                          * the right_edge.
2840                                          */
2841                                         right_edge[i] = d;
2842                                 } else {
2843                                         if (d != 0) {
2844                                                 /*
2845                                                  * If a right edge has not
2846                                                  * been seen yet, then a future
2847                                                  * passing test will mark this
2848                                                  * edge as the left edge.
2849                                                  */
2850                                                 if (right_edge[i] ==
2851                                                     IO_IO_OUT1_DELAY_MAX + 1)
2852                                                         left_edge[i] = -(d + 1);
2853                                         } else {
2854                                                 /*
2855                                                  * d = 0 failed, but it passed
2856                                                  * when testing the left edge,
2857                                                  * so it must be marginal, set
2858                                                  * it to -1.
2859                                                  */
2860                                                 if (right_edge[i] ==
2861                                                     IO_IO_OUT1_DELAY_MAX + 1 &&
2862                                                     left_edge[i] !=
2863                                                     IO_IO_OUT1_DELAY_MAX + 1)
2864                                                         right_edge[i] = -1;
2865                                                 /*
2866                                                  * If a right edge has not been
2867                                                  * seen yet, then a future
2868                                                  * passing test will mark this
2869                                                  * edge as the left edge.
2870                                                  */
2871                                                 else if (right_edge[i] ==
2872                                                         IO_IO_OUT1_DELAY_MAX +
2873                                                         1)
2874                                                         left_edge[i] = -(d + 1);
2875                                         }
2876                                 }
2877                                 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2878                                 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2879                                            (int)(bit_chk & 1), i, left_edge[i]);
2880                                 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2881                                            right_edge[i]);
2882                                 bit_chk = bit_chk >> 1;
2883                         }
2884                 }
2885         }
2886
2887         /* Check that all bits have a window */
2888         for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2889                 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2890                            %d right_edge[%u]: %d", __func__, __LINE__,
2891                            i, left_edge[i], i, right_edge[i]);
2892                 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2893                     (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2894                         set_failing_group_stage(test_bgn + i,
2895                                                 CAL_STAGE_WRITES,
2896                                                 CAL_SUBSTAGE_WRITES_CENTER);
2897                         return 0;
2898                 }
2899         }
2900
2901         /* Find middle of window for each DQ bit */
2902         mid_min = left_edge[0] - right_edge[0];
2903         min_index = 0;
2904         for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2905                 mid = left_edge[i] - right_edge[i];
2906                 if (mid < mid_min) {
2907                         mid_min = mid;
2908                         min_index = i;
2909                 }
2910         }
2911
2912         /*
2913          * -mid_min/2 represents the amount that we need to move DQS.
2914          * If mid_min is odd and positive we'll need to add one to
2915          * make sure the rounding in further calculations is correct
2916          * (always bias to the right), so just add 1 for all positive values.
2917          */
2918         if (mid_min > 0)
2919                 mid_min++;
2920         mid_min = mid_min / 2;
2921         debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2922                    __LINE__, mid_min);
2923
2924         /* Determine the amount we can change DQS (which is -mid_min) */
2925         orig_mid_min = mid_min;
2926         new_dqs = start_dqs;
2927         mid_min = 0;
2928         debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2929                    mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2930         /* Initialize data for export structures */
2931         dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2932         dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2933
2934         /* add delay to bring centre of all DQ windows to the same "level" */
2935         for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2936                 /* Use values before divide by 2 to reduce round off error */
2937                 shift_dq = (left_edge[i] - right_edge[i] -
2938                         (left_edge[min_index] - right_edge[min_index]))/2  +
2939                 (orig_mid_min - mid_min);
2940
2941                 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2942                            [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2943
2944                 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2945                 temp_dq_out1_delay = readl(addr + (i << 2));
2946                 if (shift_dq + (int32_t)temp_dq_out1_delay >
2947                         (int32_t)IO_IO_OUT1_DELAY_MAX) {
2948                         shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2949                 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2950                         shift_dq = -(int32_t)temp_dq_out1_delay;
2951                 }
2952                 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2953                            i, shift_dq);
2954                 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
2955                                           shift_dq);
2956                 scc_mgr_load_dq(i);
2957
2958                 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2959                            left_edge[i] - shift_dq + (-mid_min),
2960                            right_edge[i] + shift_dq - (-mid_min));
2961                 /* To determine values for export structures */
2962                 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2963                         dq_margin = left_edge[i] - shift_dq + (-mid_min);
2964
2965                 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2966                         dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2967         }
2968
2969         /* Move DQS */
2970         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2971         writel(0, &sdr_scc_mgr->update);
2972
2973         /* Centre DM */
2974         debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2975
2976         /*
2977          * set the left and right edge of each bit to an illegal value,
2978          * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2979          */
2980         left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2981         right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2982         int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2983         int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2984         int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2985         int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2986         int32_t win_best = 0;
2987
2988         /* Search for the/part of the window with DM shift */
2989         for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2990                 scc_mgr_apply_group_dm_out1_delay(write_group, d);
2991                 writel(0, &sdr_scc_mgr->update);
2992
2993                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2994                                                     PASS_ALL_BITS, &bit_chk,
2995                                                     0)) {
2996                         /* USE Set current end of the window */
2997                         end_curr = -d;
2998                         /*
2999                          * If a starting edge of our window has not been seen
3000                          * this is our current start of the DM window.
3001                          */
3002                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3003                                 bgn_curr = -d;
3004
3005                         /*
3006                          * If current window is bigger than best seen.
3007                          * Set best seen to be current window.
3008                          */
3009                         if ((end_curr-bgn_curr+1) > win_best) {
3010                                 win_best = end_curr-bgn_curr+1;
3011                                 bgn_best = bgn_curr;
3012                                 end_best = end_curr;
3013                         }
3014                 } else {
3015                         /* We just saw a failing test. Reset temp edge */
3016                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3017                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3018                         }
3019                 }
3020
3021
3022         /* Reset DM delay chains to 0 */
3023         scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3024
3025         /*
3026          * Check to see if the current window nudges up aganist 0 delay.
3027          * If so we need to continue the search by shifting DQS otherwise DQS
3028          * search begins as a new search. */
3029         if (end_curr != 0) {
3030                 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3031                 end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032         }
3033
3034         /* Search for the/part of the window with DQS shifts */
3035         for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3036                 /*
3037                  * Note: This only shifts DQS, so are we limiting ourselve to
3038                  * width of DQ unnecessarily.
3039                  */
3040                 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3041                                                         d + new_dqs);
3042
3043                 writel(0, &sdr_scc_mgr->update);
3044                 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3045                                                     PASS_ALL_BITS, &bit_chk,
3046                                                     0)) {
3047                         /* USE Set current end of the window */
3048                         end_curr = d;
3049                         /*
3050                          * If a beginning edge of our window has not been seen
3051                          * this is our current begin of the DM window.
3052                          */
3053                         if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3054                                 bgn_curr = d;
3055
3056                         /*
3057                          * If current window is bigger than best seen. Set best
3058                          * seen to be current window.
3059                          */
3060                         if ((end_curr-bgn_curr+1) > win_best) {
3061                                 win_best = end_curr-bgn_curr+1;
3062                                 bgn_best = bgn_curr;
3063                                 end_best = end_curr;
3064                         }
3065                 } else {
3066                         /* We just saw a failing test. Reset temp edge */
3067                         bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3068                         end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3069
3070                         /* Early exit optimization: if ther remaining delay
3071                         chain space is less than already seen largest window
3072                         we can exit */
3073                         if ((win_best-1) >
3074                                 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3075                                         break;
3076                                 }
3077                         }
3078                 }
3079
3080         /* assign left and right edge for cal and reporting; */
3081         left_edge[0] = -1*bgn_best;
3082         right_edge[0] = end_best;
3083
3084         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3085                    __LINE__, left_edge[0], right_edge[0]);
3086
3087         /* Move DQS (back to orig) */
3088         scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3089
3090         /* Move DM */
3091
3092         /* Find middle of window for the DM bit */
3093         mid = (left_edge[0] - right_edge[0]) / 2;
3094
3095         /* only move right, since we are not moving DQS/DQ */
3096         if (mid < 0)
3097                 mid = 0;
3098
3099         /* dm_marign should fail if we never find a window */
3100         if (win_best == 0)
3101                 dm_margin = -1;
3102         else
3103                 dm_margin = left_edge[0] - mid;
3104
3105         scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3106         writel(0, &sdr_scc_mgr->update);
3107
3108         debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3109                    dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3110                    right_edge[0], mid, dm_margin);
3111         /* Export values */
3112         gbl->fom_out += dq_margin + dqs_margin;
3113
3114         debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3115                    dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3116                    dq_margin, dqs_margin, dm_margin);
3117
3118         /*
3119          * Do not remove this line as it makes sure all of our
3120          * decisions have been applied.
3121          */
3122         writel(0, &sdr_scc_mgr->update);
3123         return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3124 }
3125
3126 /* calibrate the write operations */
3127 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3128         uint32_t test_bgn)
3129 {
3130         /* update info for sims */
3131         debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3132
3133         reg_file_set_stage(CAL_STAGE_WRITES);
3134         reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3135
3136         reg_file_set_group(g);
3137
3138         if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3139                 set_failing_group_stage(g, CAL_STAGE_WRITES,
3140                                         CAL_SUBSTAGE_WRITES_CENTER);
3141                 return 0;
3142         }
3143
3144         return 1;
3145 }
3146
3147 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3148 static void mem_precharge_and_activate(void)
3149 {
3150         uint32_t r;
3151
3152         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3153                 if (param->skip_ranks[r]) {
3154                         /* request to skip the rank */
3155                         continue;
3156                 }
3157
3158                 /* set rank */
3159                 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3160
3161                 /* precharge all banks ... */
3162                 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3163                                              RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3164
3165                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3166                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3167                         &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3168
3169                 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3170                 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3171                         &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3172
3173                 /* activate rows */
3174                 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3175                                                 RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3176         }
3177 }
3178
3179 /* Configure various memory related parameters. */
3180 static void mem_config(void)
3181 {
3182         uint32_t rlat, wlat;
3183         uint32_t rw_wl_nop_cycles;
3184         uint32_t max_latency;
3185
3186         debug("%s:%d\n", __func__, __LINE__);
3187         /* read in write and read latency */
3188         wlat = readl(&data_mgr->t_wl_add);
3189         wlat += readl(&data_mgr->mem_t_add);
3190
3191         /* WL for hard phy does not include additive latency */
3192
3193         /*
3194          * add addtional write latency to offset the address/command extra
3195          * clock cycle. We change the AC mux setting causing AC to be delayed
3196          * by one mem clock cycle. Only do this for DDR3
3197          */
3198         wlat = wlat + 1;
3199
3200         rlat = readl(&data_mgr->t_rl_add);
3201
3202         rw_wl_nop_cycles = wlat - 2;
3203         gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3204
3205         /*
3206          * For AV/CV, lfifo is hardened and always runs at full rate so
3207          * max latency in AFI clocks, used here, is correspondingly smaller.
3208          */
3209         max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3210         /* configure for a burst length of 8 */
3211
3212         /* write latency */
3213         /* Adjust Write Latency for Hard PHY */
3214         wlat = wlat + 1;
3215
3216         /* set a pretty high read latency initially */
3217         gbl->curr_read_lat = rlat + 16;
3218
3219         if (gbl->curr_read_lat > max_latency)
3220                 gbl->curr_read_lat = max_latency;
3221
3222         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3223
3224         /* advertise write latency */
3225         gbl->curr_write_lat = wlat;
3226         writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3227
3228         /* initialize bit slips */
3229         mem_precharge_and_activate();
3230 }
3231
3232 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3233 static void mem_skip_calibrate(void)
3234 {
3235         uint32_t vfifo_offset;
3236         uint32_t i, j, r;
3237
3238         debug("%s:%d\n", __func__, __LINE__);
3239         /* Need to update every shadow register set used by the interface */
3240         for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3241                 r += NUM_RANKS_PER_SHADOW_REG) {
3242                 /*
3243                  * Set output phase alignment settings appropriate for
3244                  * skip calibration.
3245                  */
3246                 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3247                         scc_mgr_set_dqs_en_phase(i, 0);
3248 #if IO_DLL_CHAIN_LENGTH == 6
3249                         scc_mgr_set_dqdqs_output_phase(i, 6);
3250 #else
3251                         scc_mgr_set_dqdqs_output_phase(i, 7);
3252 #endif
3253                         /*
3254                          * Case:33398
3255                          *
3256                          * Write data arrives to the I/O two cycles before write
3257                          * latency is reached (720 deg).
3258                          *   -> due to bit-slip in a/c bus
3259                          *   -> to allow board skew where dqs is longer than ck
3260                          *      -> how often can this happen!?
3261                          *      -> can claim back some ptaps for high freq
3262                          *       support if we can relax this, but i digress...
3263                          *
3264                          * The write_clk leads mem_ck by 90 deg
3265                          * The minimum ptap of the OPA is 180 deg
3266                          * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3267                          * The write_clk is always delayed by 2 ptaps
3268                          *
3269                          * Hence, to make DQS aligned to CK, we need to delay
3270                          * DQS by:
3271                          *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3272                          *
3273                          * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3274                          * gives us the number of ptaps, which simplies to:
3275                          *
3276                          *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3277                          */
3278                         scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3279                                 IO_DLL_CHAIN_LENGTH - 2));
3280                 }
3281                 writel(0xff, &sdr_scc_mgr->dqs_ena);
3282                 writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3283
3284                 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3285                         writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3286                                   SCC_MGR_GROUP_COUNTER_OFFSET);
3287                 }
3288                 writel(0xff, &sdr_scc_mgr->dq_ena);
3289                 writel(0xff, &sdr_scc_mgr->dm_ena);
3290                 writel(0, &sdr_scc_mgr->update);
3291         }
3292
3293         /* Compensate for simulation model behaviour */
3294         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3295                 scc_mgr_set_dqs_bus_in_delay(i, 10);
3296                 scc_mgr_load_dqs(i);
3297         }
3298         writel(0, &sdr_scc_mgr->update);
3299
3300         /*
3301          * ArriaV has hard FIFOs that can only be initialized by incrementing
3302          * in sequencer.
3303          */
3304         vfifo_offset = CALIB_VFIFO_OFFSET;
3305         for (j = 0; j < vfifo_offset; j++) {
3306                 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3307         }
3308         writel(0, &phy_mgr_cmd->fifo_reset);
3309
3310         /*
3311          * For ACV with hard lfifo, we get the skip-cal setting from
3312          * generation-time constant.
3313          */
3314         gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3315         writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3316 }
3317
3318 /* Memory calibration entry point */
3319 static uint32_t mem_calibrate(void)
3320 {
3321         uint32_t i;
3322         uint32_t rank_bgn, sr;
3323         uint32_t write_group, write_test_bgn;
3324         uint32_t read_group, read_test_bgn;
3325         uint32_t run_groups, current_run;
3326         uint32_t failing_groups = 0;
3327         uint32_t group_failed = 0;
3328         uint32_t sr_failed = 0;
3329
3330         debug("%s:%d\n", __func__, __LINE__);
3331         /* Initialize the data settings */
3332
3333         gbl->error_substage = CAL_SUBSTAGE_NIL;
3334         gbl->error_stage = CAL_STAGE_NIL;
3335         gbl->error_group = 0xff;
3336         gbl->fom_in = 0;
3337         gbl->fom_out = 0;
3338
3339         mem_config();
3340
3341         uint32_t bypass_mode = 0x1;
3342         for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3343                 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3344                           SCC_MGR_GROUP_COUNTER_OFFSET);
3345                 scc_set_bypass_mode(i, bypass_mode);
3346         }
3347
3348         if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3349                 /*
3350                  * Set VFIFO and LFIFO to instant-on settings in skip
3351                  * calibration mode.
3352                  */
3353                 mem_skip_calibrate();
3354         } else {
3355                 for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3356                         /*
3357                          * Zero all delay chain/phase settings for all
3358                          * groups and all shadow register sets.
3359                          */
3360                         scc_mgr_zero_all();
3361
3362                         run_groups = ~param->skip_groups;
3363
3364                         for (write_group = 0, write_test_bgn = 0; write_group
3365                                 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3366                                 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3367                                 /* Initialized the group failure */
3368                                 group_failed = 0;
3369
3370                                 current_run = run_groups & ((1 <<
3371                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3372                                 run_groups = run_groups >>
3373                                         RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3374
3375                                 if (current_run == 0)
3376                                         continue;
3377
3378                                 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3379                                                     SCC_MGR_GROUP_COUNTER_OFFSET);
3380                                 scc_mgr_zero_group(write_group, write_test_bgn,
3381                                                    0);
3382
3383                                 for (read_group = write_group *
3384                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3385                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3386                                         read_test_bgn = 0;
3387                                         read_group < (write_group + 1) *
3388                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3389                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3390                                         group_failed == 0;
3391                                         read_group++, read_test_bgn +=
3392                                         RW_MGR_MEM_DQ_PER_READ_DQS) {
3393                                         /* Calibrate the VFIFO */
3394                                         if (!((STATIC_CALIB_STEPS) &
3395                                                 CALIB_SKIP_VFIFO)) {
3396                                                 if (!rw_mgr_mem_calibrate_vfifo
3397                                                         (read_group,
3398                                                         read_test_bgn)) {
3399                                                         group_failed = 1;
3400
3401                                                         if (!(gbl->
3402                                                         phy_debug_mode_flags &
3403                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3404                                                                 return 0;
3405                                                         }
3406                                                 }
3407                                         }
3408                                 }
3409
3410                                 /* Calibrate the output side */
3411                                 if (group_failed == 0)  {
3412                                         for (rank_bgn = 0, sr = 0; rank_bgn
3413                                                 < RW_MGR_MEM_NUMBER_OF_RANKS;
3414                                                 rank_bgn +=
3415                                                 NUM_RANKS_PER_SHADOW_REG,
3416                                                 ++sr) {
3417                                                 sr_failed = 0;
3418                                                 if (!((STATIC_CALIB_STEPS) &
3419                                                 CALIB_SKIP_WRITES)) {
3420                                                         if ((STATIC_CALIB_STEPS)
3421                                                 & CALIB_SKIP_DELAY_SWEEPS) {
3422                                                 /* not needed in quick mode! */
3423                                                         } else {
3424                                                 /*
3425                                                  * Determine if this set of
3426                                                  * ranks should be skipped
3427                                                  * entirely.
3428                                                  */
3429                                         if (!param->skip_shadow_regs[sr]) {
3430                                                 if (!rw_mgr_mem_calibrate_writes
3431                                                 (rank_bgn, write_group,
3432                                                 write_test_bgn)) {
3433                                                         sr_failed = 1;
3434                                                         if (!(gbl->
3435                                                         phy_debug_mode_flags &
3436                                                 PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3437                                                                 return 0;
3438                                                                         }
3439                                                                         }
3440                                                                 }
3441                                                         }
3442                                                 }
3443                                                 if (sr_failed != 0)
3444                                                         group_failed = 1;
3445                                         }
3446                                 }
3447
3448                                 if (group_failed == 0) {
3449                                         for (read_group = write_group *
3450                                         RW_MGR_MEM_IF_READ_DQS_WIDTH /
3451                                         RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3452                                         read_test_bgn = 0;
3453                                                 read_group < (write_group + 1)
3454                                                 * RW_MGR_MEM_IF_READ_DQS_WIDTH
3455                                                 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3456                                                 group_failed == 0;
3457                                                 read_group++, read_test_bgn +=
3458                                                 RW_MGR_MEM_DQ_PER_READ_DQS) {
3459                                                 if (!((STATIC_CALIB_STEPS) &
3460                                                         CALIB_SKIP_WRITES)) {
3461                                         if (!rw_mgr_mem_calibrate_vfifo_end
3462                                                 (read_group, read_test_bgn)) {
3463                                                         group_failed = 1;
3464
3465                                                 if (!(gbl->phy_debug_mode_flags
3466                                                 & PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3467                                                                 return 0;
3468                                                                 }
3469                                                         }
3470                                                 }
3471                                         }
3472                                 }
3473
3474                                 if (group_failed != 0)
3475                                         failing_groups++;
3476                         }
3477
3478                         /*
3479                          * USER If there are any failing groups then report
3480                          * the failure.
3481                          */
3482                         if (failing_groups != 0)
3483                                 return 0;
3484
3485                         /* Calibrate the LFIFO */
3486                         if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3487                                 /*
3488                                  * If we're skipping groups as part of debug,
3489                                  * don't calibrate LFIFO.
3490                                  */
3491                                 if (param->skip_groups == 0) {
3492                                         if (!rw_mgr_mem_calibrate_lfifo())
3493                                                 return 0;
3494                                 }
3495                         }
3496                 }
3497         }
3498
3499         /*
3500          * Do not remove this line as it makes sure all of our decisions
3501          * have been applied.
3502          */
3503         writel(0, &sdr_scc_mgr->update);
3504         return 1;
3505 }
3506
3507 static uint32_t run_mem_calibrate(void)
3508 {
3509         uint32_t pass;
3510         uint32_t debug_info;
3511
3512         debug("%s:%d\n", __func__, __LINE__);
3513
3514         /* Reset pass/fail status shown on afi_cal_success/fail */
3515         writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3516
3517         /* stop tracking manger */
3518         uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3519
3520         writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3521
3522         initialize();
3523         rw_mgr_mem_initialize();
3524
3525         pass = mem_calibrate();
3526
3527         mem_precharge_and_activate();
3528         writel(0, &phy_mgr_cmd->fifo_reset);
3529
3530         /*
3531          * Handoff:
3532          * Don't return control of the PHY back to AFI when in debug mode.
3533          */
3534         if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3535                 rw_mgr_mem_handoff();
3536                 /*
3537                  * In Hard PHY this is a 2-bit control:
3538                  * 0: AFI Mux Select
3539                  * 1: DDIO Mux Select
3540                  */
3541                 writel(0x2, &phy_mgr_cfg->mux_sel);
3542         }
3543
3544         writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3545
3546         if (pass) {
3547                 printf("%s: CALIBRATION PASSED\n", __FILE__);
3548
3549                 gbl->fom_in /= 2;
3550                 gbl->fom_out /= 2;
3551
3552                 if (gbl->fom_in > 0xff)
3553                         gbl->fom_in = 0xff;
3554
3555                 if (gbl->fom_out > 0xff)
3556                         gbl->fom_out = 0xff;
3557
3558                 /* Update the FOM in the register file */
3559                 debug_info = gbl->fom_in;
3560                 debug_info |= gbl->fom_out << 8;
3561                 writel(debug_info, &sdr_reg_file->fom);
3562
3563                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3564                 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3565         } else {
3566                 printf("%s: CALIBRATION FAILED\n", __FILE__);
3567
3568                 debug_info = gbl->error_stage;
3569                 debug_info |= gbl->error_substage << 8;
3570                 debug_info |= gbl->error_group << 16;
3571
3572                 writel(debug_info, &sdr_reg_file->failing_stage);
3573                 writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3574                 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3575
3576                 /* Update the failing group/stage in the register file */
3577                 debug_info = gbl->error_stage;
3578                 debug_info |= gbl->error_substage << 8;
3579                 debug_info |= gbl->error_group << 16;
3580                 writel(debug_info, &sdr_reg_file->failing_stage);
3581         }
3582
3583         return pass;
3584 }
3585
3586 /**
3587  * hc_initialize_rom_data() - Initialize ROM data
3588  *
3589  * Initialize ROM data.
3590  */
3591 static void hc_initialize_rom_data(void)
3592 {
3593         u32 i, addr;
3594
3595         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3596         for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3597                 writel(inst_rom_init[i], addr + (i << 2));
3598
3599         addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3600         for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3601                 writel(ac_rom_init[i], addr + (i << 2));
3602 }
3603
3604 /**
3605  * initialize_reg_file() - Initialize SDR register file
3606  *
3607  * Initialize SDR register file.
3608  */
3609 static void initialize_reg_file(void)
3610 {
3611         /* Initialize the register file with the correct data */
3612         writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3613         writel(0, &sdr_reg_file->debug_data_addr);
3614         writel(0, &sdr_reg_file->cur_stage);
3615         writel(0, &sdr_reg_file->fom);
3616         writel(0, &sdr_reg_file->failing_stage);
3617         writel(0, &sdr_reg_file->debug1);
3618         writel(0, &sdr_reg_file->debug2);
3619 }
3620
3621 /**
3622  * initialize_hps_phy() - Initialize HPS PHY
3623  *
3624  * Initialize HPS PHY.
3625  */
3626 static void initialize_hps_phy(void)
3627 {
3628         uint32_t reg;
3629         /*
3630          * Tracking also gets configured here because it's in the
3631          * same register.
3632          */
3633         uint32_t trk_sample_count = 7500;
3634         uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3635         /*
3636          * Format is number of outer loops in the 16 MSB, sample
3637          * count in 16 LSB.
3638          */
3639
3640         reg = 0;
3641         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3642         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3643         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3644         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3645         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3646         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3647         /*
3648          * This field selects the intrinsic latency to RDATA_EN/FULL path.
3649          * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3650          */
3651         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3652         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3653                 trk_sample_count);
3654         writel(reg, &sdr_ctrl->phy_ctrl0);
3655
3656         reg = 0;
3657         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3658                 trk_sample_count >>
3659                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3660         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3661                 trk_long_idle_sample_count);
3662         writel(reg, &sdr_ctrl->phy_ctrl1);
3663
3664         reg = 0;
3665         reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3666                 trk_long_idle_sample_count >>
3667                 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3668         writel(reg, &sdr_ctrl->phy_ctrl2);
3669 }
3670
3671 static void initialize_tracking(void)
3672 {
3673         uint32_t concatenated_longidle = 0x0;
3674         uint32_t concatenated_delays = 0x0;
3675         uint32_t concatenated_rw_addr = 0x0;
3676         uint32_t concatenated_refresh = 0x0;
3677         uint32_t trk_sample_count = 7500;
3678         uint32_t dtaps_per_ptap;
3679         uint32_t tmp_delay;
3680
3681         /*
3682          * compute usable version of value in case we skip full
3683          * computation later
3684          */
3685         dtaps_per_ptap = 0;
3686         tmp_delay = 0;
3687         while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3688                 dtaps_per_ptap++;
3689                 tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3690         }
3691         dtaps_per_ptap--;
3692
3693         concatenated_longidle = concatenated_longidle ^ 10;
3694                 /*longidle outer loop */
3695         concatenated_longidle = concatenated_longidle << 16;
3696         concatenated_longidle = concatenated_longidle ^ 100;
3697                 /*longidle sample count */
3698         concatenated_delays = concatenated_delays ^ 243;
3699                 /* trfc, worst case of 933Mhz 4Gb */
3700         concatenated_delays = concatenated_delays << 8;
3701         concatenated_delays = concatenated_delays ^ 14;
3702                 /* trcd, worst case */
3703         concatenated_delays = concatenated_delays << 8;
3704         concatenated_delays = concatenated_delays ^ 10;
3705                 /* vfifo wait */
3706         concatenated_delays = concatenated_delays << 8;
3707         concatenated_delays = concatenated_delays ^ 4;
3708                 /* mux delay */
3709
3710         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3711         concatenated_rw_addr = concatenated_rw_addr << 8;
3712         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3713         concatenated_rw_addr = concatenated_rw_addr << 8;
3714         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3715         concatenated_rw_addr = concatenated_rw_addr << 8;
3716         concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3717
3718         concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3719         concatenated_refresh = concatenated_refresh << 24;
3720         concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3721
3722         /* Initialize the register file with the correct data */
3723         writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3724         writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3725         writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3726         writel(concatenated_delays, &sdr_reg_file->delays);
3727         writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3728         writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3729         writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3730 }
3731
3732 int sdram_calibration_full(void)
3733 {
3734         struct param_type my_param;
3735         struct gbl_type my_gbl;
3736         uint32_t pass;
3737         uint32_t i;
3738
3739         param = &my_param;
3740         gbl = &my_gbl;
3741
3742         /* Initialize the debug mode flags */
3743         gbl->phy_debug_mode_flags = 0;
3744         /* Set the calibration enabled by default */
3745         gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3746         /*
3747          * Only sweep all groups (regardless of fail state) by default
3748          * Set enabled read test by default.
3749          */
3750 #if DISABLE_GUARANTEED_READ
3751         gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3752 #endif
3753         /* Initialize the register file */
3754         initialize_reg_file();
3755
3756         /* Initialize any PHY CSR */
3757         initialize_hps_phy();
3758
3759         scc_mgr_initialize();
3760
3761         initialize_tracking();
3762
3763         /* USER Enable all ranks, groups */
3764         for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3765                 param->skip_ranks[i] = 0;
3766         for (i = 0; i < NUM_SHADOW_REGS; ++i)
3767                 param->skip_shadow_regs[i] = 0;
3768         param->skip_groups = 0;
3769
3770         printf("%s: Preparing to start memory calibration\n", __FILE__);
3771
3772         debug("%s:%d\n", __func__, __LINE__);
3773         debug_cond(DLEVEL == 1,
3774                    "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3775                    RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3776                    RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3777                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3778                    RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3779         debug_cond(DLEVEL == 1,
3780                    "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3781                    RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3782                    RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3783                    IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3784         debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3785                    IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3786         debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3787                    IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3788                    IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3789         debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3790                    IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3791                    IO_IO_OUT2_DELAY_MAX);
3792         debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3793                    IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3794
3795         hc_initialize_rom_data();
3796
3797         /* update info for sims */
3798         reg_file_set_stage(CAL_STAGE_NIL);
3799         reg_file_set_group(0);
3800
3801         /*
3802          * Load global needed for those actions that require
3803          * some dynamic calibration support.
3804          */
3805         dyn_calib_steps = STATIC_CALIB_STEPS;
3806         /*
3807          * Load global to allow dynamic selection of delay loop settings
3808          * based on calibration mode.
3809          */
3810         if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3811                 skip_delay_mask = 0xff;
3812         else
3813                 skip_delay_mask = 0x0;
3814
3815         pass = run_mem_calibrate();
3816
3817         printf("%s: Calibration complete\n", __FILE__);
3818         return pass;
3819 }