]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/edma.c
Merge remote-tracking branch 'regulator/topic/lp8755' into regulator-next
[karo-tx-linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /* Max of 16 segments per channel to conserve PaRAM slots */
50 #define MAX_NR_SG               16
51 #define EDMA_MAX_SLOTS          MAX_NR_SG
52 #define EDMA_DESCRIPTORS        16
53
54 struct edma_desc {
55         struct virt_dma_desc            vdesc;
56         struct list_head                node;
57         int                             absync;
58         int                             pset_nr;
59         struct edmacc_param             pset[0];
60 };
61
62 struct edma_cc;
63
64 struct edma_chan {
65         struct virt_dma_chan            vchan;
66         struct list_head                node;
67         struct edma_desc                *edesc;
68         struct edma_cc                  *ecc;
69         int                             ch_num;
70         bool                            alloced;
71         int                             slot[EDMA_MAX_SLOTS];
72         struct dma_slave_config         cfg;
73 };
74
75 struct edma_cc {
76         int                             ctlr;
77         struct dma_device               dma_slave;
78         struct edma_chan                slave_chans[EDMA_CHANS];
79         int                             num_slave_chans;
80         int                             dummy_slot;
81 };
82
83 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
84 {
85         return container_of(d, struct edma_cc, dma_slave);
86 }
87
88 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
89 {
90         return container_of(c, struct edma_chan, vchan.chan);
91 }
92
93 static inline struct edma_desc
94 *to_edma_desc(struct dma_async_tx_descriptor *tx)
95 {
96         return container_of(tx, struct edma_desc, vdesc.tx);
97 }
98
99 static void edma_desc_free(struct virt_dma_desc *vdesc)
100 {
101         kfree(container_of(vdesc, struct edma_desc, vdesc));
102 }
103
104 /* Dispatch a queued descriptor to the controller (caller holds lock) */
105 static void edma_execute(struct edma_chan *echan)
106 {
107         struct virt_dma_desc *vdesc = vchan_next_desc(&echan->vchan);
108         struct edma_desc *edesc;
109         int i;
110
111         if (!vdesc) {
112                 echan->edesc = NULL;
113                 return;
114         }
115
116         list_del(&vdesc->node);
117
118         echan->edesc = edesc = to_edma_desc(&vdesc->tx);
119
120         /* Write descriptor PaRAM set(s) */
121         for (i = 0; i < edesc->pset_nr; i++) {
122                 edma_write_slot(echan->slot[i], &edesc->pset[i]);
123                 dev_dbg(echan->vchan.chan.device->dev,
124                         "\n pset[%d]:\n"
125                         "  chnum\t%d\n"
126                         "  slot\t%d\n"
127                         "  opt\t%08x\n"
128                         "  src\t%08x\n"
129                         "  dst\t%08x\n"
130                         "  abcnt\t%08x\n"
131                         "  ccnt\t%08x\n"
132                         "  bidx\t%08x\n"
133                         "  cidx\t%08x\n"
134                         "  lkrld\t%08x\n",
135                         i, echan->ch_num, echan->slot[i],
136                         edesc->pset[i].opt,
137                         edesc->pset[i].src,
138                         edesc->pset[i].dst,
139                         edesc->pset[i].a_b_cnt,
140                         edesc->pset[i].ccnt,
141                         edesc->pset[i].src_dst_bidx,
142                         edesc->pset[i].src_dst_cidx,
143                         edesc->pset[i].link_bcntrld);
144                 /* Link to the previous slot if not the last set */
145                 if (i != (edesc->pset_nr - 1))
146                         edma_link(echan->slot[i], echan->slot[i+1]);
147                 /* Final pset links to the dummy pset */
148                 else
149                         edma_link(echan->slot[i], echan->ecc->dummy_slot);
150         }
151
152         edma_start(echan->ch_num);
153 }
154
155 static int edma_terminate_all(struct edma_chan *echan)
156 {
157         unsigned long flags;
158         LIST_HEAD(head);
159
160         spin_lock_irqsave(&echan->vchan.lock, flags);
161
162         /*
163          * Stop DMA activity: we assume the callback will not be called
164          * after edma_dma() returns (even if it does, it will see
165          * echan->edesc is NULL and exit.)
166          */
167         if (echan->edesc) {
168                 echan->edesc = NULL;
169                 edma_stop(echan->ch_num);
170         }
171
172         vchan_get_all_descriptors(&echan->vchan, &head);
173         spin_unlock_irqrestore(&echan->vchan.lock, flags);
174         vchan_dma_desc_free_list(&echan->vchan, &head);
175
176         return 0;
177 }
178
179 static int edma_slave_config(struct edma_chan *echan,
180         struct dma_slave_config *cfg)
181 {
182         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
183             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
184                 return -EINVAL;
185
186         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
187
188         return 0;
189 }
190
191 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
192                         unsigned long arg)
193 {
194         int ret = 0;
195         struct dma_slave_config *config;
196         struct edma_chan *echan = to_edma_chan(chan);
197
198         switch (cmd) {
199         case DMA_TERMINATE_ALL:
200                 edma_terminate_all(echan);
201                 break;
202         case DMA_SLAVE_CONFIG:
203                 config = (struct dma_slave_config *)arg;
204                 ret = edma_slave_config(echan, config);
205                 break;
206         default:
207                 ret = -ENOSYS;
208         }
209
210         return ret;
211 }
212
213 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
214         struct dma_chan *chan, struct scatterlist *sgl,
215         unsigned int sg_len, enum dma_transfer_direction direction,
216         unsigned long tx_flags, void *context)
217 {
218         struct edma_chan *echan = to_edma_chan(chan);
219         struct device *dev = chan->device->dev;
220         struct edma_desc *edesc;
221         dma_addr_t dev_addr;
222         enum dma_slave_buswidth dev_width;
223         u32 burst;
224         struct scatterlist *sg;
225         int i;
226         int acnt, bcnt, ccnt, src, dst, cidx;
227         int src_bidx, dst_bidx, src_cidx, dst_cidx;
228
229         if (unlikely(!echan || !sgl || !sg_len))
230                 return NULL;
231
232         if (direction == DMA_DEV_TO_MEM) {
233                 dev_addr = echan->cfg.src_addr;
234                 dev_width = echan->cfg.src_addr_width;
235                 burst = echan->cfg.src_maxburst;
236         } else if (direction == DMA_MEM_TO_DEV) {
237                 dev_addr = echan->cfg.dst_addr;
238                 dev_width = echan->cfg.dst_addr_width;
239                 burst = echan->cfg.dst_maxburst;
240         } else {
241                 dev_err(dev, "%s: bad direction?\n", __func__);
242                 return NULL;
243         }
244
245         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
246                 dev_err(dev, "Undefined slave buswidth\n");
247                 return NULL;
248         }
249
250         if (sg_len > MAX_NR_SG) {
251                 dev_err(dev, "Exceeded max SG segments %d > %d\n",
252                         sg_len, MAX_NR_SG);
253                 return NULL;
254         }
255
256         edesc = kzalloc(sizeof(*edesc) + sg_len *
257                 sizeof(edesc->pset[0]), GFP_ATOMIC);
258         if (!edesc) {
259                 dev_dbg(dev, "Failed to allocate a descriptor\n");
260                 return NULL;
261         }
262
263         edesc->pset_nr = sg_len;
264
265         for_each_sg(sgl, sg, sg_len, i) {
266                 /* Allocate a PaRAM slot, if needed */
267                 if (echan->slot[i] < 0) {
268                         echan->slot[i] =
269                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
270                                                 EDMA_SLOT_ANY);
271                         if (echan->slot[i] < 0) {
272                                 dev_err(dev, "Failed to allocate slot\n");
273                                 return NULL;
274                         }
275                 }
276
277                 acnt = dev_width;
278
279                 /*
280                  * If the maxburst is equal to the fifo width, use
281                  * A-synced transfers. This allows for large contiguous
282                  * buffer transfers using only one PaRAM set.
283                  */
284                 if (burst == 1) {
285                         edesc->absync = false;
286                         ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1);
287                         bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1);
288                         if (bcnt)
289                                 ccnt++;
290                         else
291                                 bcnt = SZ_64K - 1;
292                         cidx = acnt;
293                 /*
294                  * If maxburst is greater than the fifo address_width,
295                  * use AB-synced transfers where A count is the fifo
296                  * address_width and B count is the maxburst. In this
297                  * case, we are limited to transfers of C count frames
298                  * of (address_width * maxburst) where C count is limited
299                  * to SZ_64K-1. This places an upper bound on the length
300                  * of an SG segment that can be handled.
301                  */
302                 } else {
303                         edesc->absync = true;
304                         bcnt = burst;
305                         ccnt = sg_dma_len(sg) / (acnt * bcnt);
306                         if (ccnt > (SZ_64K - 1)) {
307                                 dev_err(dev, "Exceeded max SG segment size\n");
308                                 return NULL;
309                         }
310                         cidx = acnt * bcnt;
311                 }
312
313                 if (direction == DMA_MEM_TO_DEV) {
314                         src = sg_dma_address(sg);
315                         dst = dev_addr;
316                         src_bidx = acnt;
317                         src_cidx = cidx;
318                         dst_bidx = 0;
319                         dst_cidx = 0;
320                 } else {
321                         src = dev_addr;
322                         dst = sg_dma_address(sg);
323                         src_bidx = 0;
324                         src_cidx = 0;
325                         dst_bidx = acnt;
326                         dst_cidx = cidx;
327                 }
328
329                 edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
330                 /* Configure A or AB synchronized transfers */
331                 if (edesc->absync)
332                         edesc->pset[i].opt |= SYNCDIM;
333                 /* If this is the last set, enable completion interrupt flag */
334                 if (i == sg_len - 1)
335                         edesc->pset[i].opt |= TCINTEN;
336
337                 edesc->pset[i].src = src;
338                 edesc->pset[i].dst = dst;
339
340                 edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx;
341                 edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx;
342
343                 edesc->pset[i].a_b_cnt = bcnt << 16 | acnt;
344                 edesc->pset[i].ccnt = ccnt;
345                 edesc->pset[i].link_bcntrld = 0xffffffff;
346
347         }
348
349         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
350 }
351
352 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
353 {
354         struct edma_chan *echan = data;
355         struct device *dev = echan->vchan.chan.device->dev;
356         struct edma_desc *edesc;
357         unsigned long flags;
358
359         /* Stop the channel */
360         edma_stop(echan->ch_num);
361
362         switch (ch_status) {
363         case DMA_COMPLETE:
364                 dev_dbg(dev, "transfer complete on channel %d\n", ch_num);
365
366                 spin_lock_irqsave(&echan->vchan.lock, flags);
367
368                 edesc = echan->edesc;
369                 if (edesc) {
370                         edma_execute(echan);
371                         vchan_cookie_complete(&edesc->vdesc);
372                 }
373
374                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
375
376                 break;
377         case DMA_CC_ERROR:
378                 dev_dbg(dev, "transfer error on channel %d\n", ch_num);
379                 break;
380         default:
381                 break;
382         }
383 }
384
385 /* Alloc channel resources */
386 static int edma_alloc_chan_resources(struct dma_chan *chan)
387 {
388         struct edma_chan *echan = to_edma_chan(chan);
389         struct device *dev = chan->device->dev;
390         int ret;
391         int a_ch_num;
392         LIST_HEAD(descs);
393
394         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
395                                         chan, EVENTQ_DEFAULT);
396
397         if (a_ch_num < 0) {
398                 ret = -ENODEV;
399                 goto err_no_chan;
400         }
401
402         if (a_ch_num != echan->ch_num) {
403                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
404                         EDMA_CTLR(echan->ch_num),
405                         EDMA_CHAN_SLOT(echan->ch_num));
406                 ret = -ENODEV;
407                 goto err_wrong_chan;
408         }
409
410         echan->alloced = true;
411         echan->slot[0] = echan->ch_num;
412
413         dev_info(dev, "allocated channel for %u:%u\n",
414                  EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
415
416         return 0;
417
418 err_wrong_chan:
419         edma_free_channel(a_ch_num);
420 err_no_chan:
421         return ret;
422 }
423
424 /* Free channel resources */
425 static void edma_free_chan_resources(struct dma_chan *chan)
426 {
427         struct edma_chan *echan = to_edma_chan(chan);
428         struct device *dev = chan->device->dev;
429         int i;
430
431         /* Terminate transfers */
432         edma_stop(echan->ch_num);
433
434         vchan_free_chan_resources(&echan->vchan);
435
436         /* Free EDMA PaRAM slots */
437         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
438                 if (echan->slot[i] >= 0) {
439                         edma_free_slot(echan->slot[i]);
440                         echan->slot[i] = -1;
441                 }
442         }
443
444         /* Free EDMA channel */
445         if (echan->alloced) {
446                 edma_free_channel(echan->ch_num);
447                 echan->alloced = false;
448         }
449
450         dev_info(dev, "freeing channel for %u\n", echan->ch_num);
451 }
452
453 /* Send pending descriptor to hardware */
454 static void edma_issue_pending(struct dma_chan *chan)
455 {
456         struct edma_chan *echan = to_edma_chan(chan);
457         unsigned long flags;
458
459         spin_lock_irqsave(&echan->vchan.lock, flags);
460         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
461                 edma_execute(echan);
462         spin_unlock_irqrestore(&echan->vchan.lock, flags);
463 }
464
465 static size_t edma_desc_size(struct edma_desc *edesc)
466 {
467         int i;
468         size_t size;
469
470         if (edesc->absync)
471                 for (size = i = 0; i < edesc->pset_nr; i++)
472                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
473                                 (edesc->pset[i].a_b_cnt >> 16) *
474                                  edesc->pset[i].ccnt;
475         else
476                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
477                         (edesc->pset[0].a_b_cnt >> 16) +
478                         (edesc->pset[0].a_b_cnt & 0xffff) *
479                         (SZ_64K - 1) * edesc->pset[0].ccnt;
480
481         return size;
482 }
483
484 /* Check request completion status */
485 static enum dma_status edma_tx_status(struct dma_chan *chan,
486                                       dma_cookie_t cookie,
487                                       struct dma_tx_state *txstate)
488 {
489         struct edma_chan *echan = to_edma_chan(chan);
490         struct virt_dma_desc *vdesc;
491         enum dma_status ret;
492         unsigned long flags;
493
494         ret = dma_cookie_status(chan, cookie, txstate);
495         if (ret == DMA_SUCCESS || !txstate)
496                 return ret;
497
498         spin_lock_irqsave(&echan->vchan.lock, flags);
499         vdesc = vchan_find_desc(&echan->vchan, cookie);
500         if (vdesc) {
501                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
502         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
503                 struct edma_desc *edesc = echan->edesc;
504                 txstate->residue = edma_desc_size(edesc);
505         } else {
506                 txstate->residue = 0;
507         }
508         spin_unlock_irqrestore(&echan->vchan.lock, flags);
509
510         return ret;
511 }
512
513 static void __init edma_chan_init(struct edma_cc *ecc,
514                                   struct dma_device *dma,
515                                   struct edma_chan *echans)
516 {
517         int i, j;
518
519         for (i = 0; i < EDMA_CHANS; i++) {
520                 struct edma_chan *echan = &echans[i];
521                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
522                 echan->ecc = ecc;
523                 echan->vchan.desc_free = edma_desc_free;
524
525                 vchan_init(&echan->vchan, dma);
526
527                 INIT_LIST_HEAD(&echan->node);
528                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
529                         echan->slot[j] = -1;
530         }
531 }
532
533 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
534                           struct device *dev)
535 {
536         dma->device_prep_slave_sg = edma_prep_slave_sg;
537         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
538         dma->device_free_chan_resources = edma_free_chan_resources;
539         dma->device_issue_pending = edma_issue_pending;
540         dma->device_tx_status = edma_tx_status;
541         dma->device_control = edma_control;
542         dma->dev = dev;
543
544         INIT_LIST_HEAD(&dma->channels);
545 }
546
547 static int edma_probe(struct platform_device *pdev)
548 {
549         struct edma_cc *ecc;
550         int ret;
551
552         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
553         if (!ecc) {
554                 dev_err(&pdev->dev, "Can't allocate controller\n");
555                 return -ENOMEM;
556         }
557
558         ecc->ctlr = pdev->id;
559         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
560         if (ecc->dummy_slot < 0) {
561                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
562                 return -EIO;
563         }
564
565         dma_cap_zero(ecc->dma_slave.cap_mask);
566         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
567
568         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
569
570         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
571
572         ret = dma_async_device_register(&ecc->dma_slave);
573         if (ret)
574                 goto err_reg1;
575
576         platform_set_drvdata(pdev, ecc);
577
578         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
579
580         return 0;
581
582 err_reg1:
583         edma_free_slot(ecc->dummy_slot);
584         return ret;
585 }
586
587 static int edma_remove(struct platform_device *pdev)
588 {
589         struct device *dev = &pdev->dev;
590         struct edma_cc *ecc = dev_get_drvdata(dev);
591
592         dma_async_device_unregister(&ecc->dma_slave);
593         edma_free_slot(ecc->dummy_slot);
594
595         return 0;
596 }
597
598 static struct platform_driver edma_driver = {
599         .probe          = edma_probe,
600         .remove         = edma_remove,
601         .driver = {
602                 .name = "edma-dma-engine",
603                 .owner = THIS_MODULE,
604         },
605 };
606
607 bool edma_filter_fn(struct dma_chan *chan, void *param)
608 {
609         if (chan->device->dev->driver == &edma_driver.driver) {
610                 struct edma_chan *echan = to_edma_chan(chan);
611                 unsigned ch_req = *(unsigned *)param;
612                 return ch_req == echan->ch_num;
613         }
614         return false;
615 }
616 EXPORT_SYMBOL(edma_filter_fn);
617
618 static struct platform_device *pdev0, *pdev1;
619
620 static const struct platform_device_info edma_dev_info0 = {
621         .name = "edma-dma-engine",
622         .id = 0,
623 };
624
625 static const struct platform_device_info edma_dev_info1 = {
626         .name = "edma-dma-engine",
627         .id = 1,
628 };
629
630 static int edma_init(void)
631 {
632         int ret = platform_driver_register(&edma_driver);
633
634         if (ret == 0) {
635                 pdev0 = platform_device_register_full(&edma_dev_info0);
636                 if (IS_ERR(pdev0)) {
637                         platform_driver_unregister(&edma_driver);
638                         ret = PTR_ERR(pdev0);
639                         goto out;
640                 }
641                 pdev0->dev.dma_mask = &pdev0->dev.coherent_dma_mask;
642                 pdev0->dev.coherent_dma_mask = DMA_BIT_MASK(32);
643         }
644
645         if (EDMA_CTLRS == 2) {
646                 pdev1 = platform_device_register_full(&edma_dev_info1);
647                 if (IS_ERR(pdev1)) {
648                         platform_driver_unregister(&edma_driver);
649                         platform_device_unregister(pdev0);
650                         ret = PTR_ERR(pdev1);
651                 }
652                 pdev1->dev.dma_mask = &pdev1->dev.coherent_dma_mask;
653                 pdev1->dev.coherent_dma_mask = DMA_BIT_MASK(32);
654         }
655
656 out:
657         return ret;
658 }
659 subsys_initcall(edma_init);
660
661 static void __exit edma_exit(void)
662 {
663         platform_device_unregister(pdev0);
664         if (pdev1)
665                 platform_device_unregister(pdev1);
666         platform_driver_unregister(&edma_driver);
667 }
668 module_exit(edma_exit);
669
670 MODULE_AUTHOR("Matt Porter <mporter@ti.com>");
671 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
672 MODULE_LICENSE("GPL v2");