]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/edma.c
dma: edma: Write out and handle MAX_NR_SG at a given time
[karo-tx-linux.git] / drivers / dma / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/list.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include <linux/platform_data/edma.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * This will go away when the private EDMA API is folded
34  * into this driver and the platform device(s) are
35  * instantiated in the arch code. We can only get away
36  * with this simplification because DA8XX may not be built
37  * in the same kernel image with other DaVinci parts. This
38  * avoids having to sprinkle dmaengine driver platform devices
39  * and data throughout all the existing board files.
40  */
41 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
42 #define EDMA_CTLRS      2
43 #define EDMA_CHANS      32
44 #else
45 #define EDMA_CTLRS      1
46 #define EDMA_CHANS      64
47 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
48
49 /* Max of 16 segments per channel to conserve PaRAM slots */
50 #define MAX_NR_SG               16
51 #define EDMA_MAX_SLOTS          MAX_NR_SG
52 #define EDMA_DESCRIPTORS        16
53
54 struct edma_desc {
55         struct virt_dma_desc            vdesc;
56         struct list_head                node;
57         int                             absync;
58         int                             pset_nr;
59         int                             processed;
60         struct edmacc_param             pset[0];
61 };
62
63 struct edma_cc;
64
65 struct edma_chan {
66         struct virt_dma_chan            vchan;
67         struct list_head                node;
68         struct edma_desc                *edesc;
69         struct edma_cc                  *ecc;
70         int                             ch_num;
71         bool                            alloced;
72         int                             slot[EDMA_MAX_SLOTS];
73         struct dma_slave_config         cfg;
74 };
75
76 struct edma_cc {
77         int                             ctlr;
78         struct dma_device               dma_slave;
79         struct edma_chan                slave_chans[EDMA_CHANS];
80         int                             num_slave_chans;
81         int                             dummy_slot;
82 };
83
84 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
85 {
86         return container_of(d, struct edma_cc, dma_slave);
87 }
88
89 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
90 {
91         return container_of(c, struct edma_chan, vchan.chan);
92 }
93
94 static inline struct edma_desc
95 *to_edma_desc(struct dma_async_tx_descriptor *tx)
96 {
97         return container_of(tx, struct edma_desc, vdesc.tx);
98 }
99
100 static void edma_desc_free(struct virt_dma_desc *vdesc)
101 {
102         kfree(container_of(vdesc, struct edma_desc, vdesc));
103 }
104
105 /* Dispatch a queued descriptor to the controller (caller holds lock) */
106 static void edma_execute(struct edma_chan *echan)
107 {
108         struct virt_dma_desc *vdesc;
109         struct edma_desc *edesc;
110         struct device *dev = echan->vchan.chan.device->dev;
111         int i, j, left, nslots;
112
113         /* If either we processed all psets or we're still not started */
114         if (!echan->edesc ||
115             echan->edesc->pset_nr == echan->edesc->processed) {
116                 /* Get next vdesc */
117                 vdesc = vchan_next_desc(&echan->vchan);
118                 if (!vdesc) {
119                         echan->edesc = NULL;
120                         return;
121                 }
122                 list_del(&vdesc->node);
123                 echan->edesc = to_edma_desc(&vdesc->tx);
124         }
125
126         edesc = echan->edesc;
127
128         /* Find out how many left */
129         left = edesc->pset_nr - edesc->processed;
130         nslots = min(MAX_NR_SG, left);
131
132         /* Write descriptor PaRAM set(s) */
133         for (i = 0; i < nslots; i++) {
134                 j = i + edesc->processed;
135                 edma_write_slot(echan->slot[i], &edesc->pset[j]);
136                 dev_dbg(echan->vchan.chan.device->dev,
137                         "\n pset[%d]:\n"
138                         "  chnum\t%d\n"
139                         "  slot\t%d\n"
140                         "  opt\t%08x\n"
141                         "  src\t%08x\n"
142                         "  dst\t%08x\n"
143                         "  abcnt\t%08x\n"
144                         "  ccnt\t%08x\n"
145                         "  bidx\t%08x\n"
146                         "  cidx\t%08x\n"
147                         "  lkrld\t%08x\n",
148                         j, echan->ch_num, echan->slot[i],
149                         edesc->pset[j].opt,
150                         edesc->pset[j].src,
151                         edesc->pset[j].dst,
152                         edesc->pset[j].a_b_cnt,
153                         edesc->pset[j].ccnt,
154                         edesc->pset[j].src_dst_bidx,
155                         edesc->pset[j].src_dst_cidx,
156                         edesc->pset[j].link_bcntrld);
157                 /* Link to the previous slot if not the last set */
158                 if (i != (nslots - 1))
159                         edma_link(echan->slot[i], echan->slot[i+1]);
160                 /* Final pset links to the dummy pset */
161                 else
162                         edma_link(echan->slot[i], echan->ecc->dummy_slot);
163         }
164
165         edesc->processed += nslots;
166
167         edma_resume(echan->ch_num);
168
169         if (edesc->processed <= MAX_NR_SG) {
170                 dev_dbg(dev, "first transfer starting %d\n", echan->ch_num);
171                 edma_start(echan->ch_num);
172         }
173 }
174
175 static int edma_terminate_all(struct edma_chan *echan)
176 {
177         unsigned long flags;
178         LIST_HEAD(head);
179
180         spin_lock_irqsave(&echan->vchan.lock, flags);
181
182         /*
183          * Stop DMA activity: we assume the callback will not be called
184          * after edma_dma() returns (even if it does, it will see
185          * echan->edesc is NULL and exit.)
186          */
187         if (echan->edesc) {
188                 echan->edesc = NULL;
189                 edma_stop(echan->ch_num);
190         }
191
192         vchan_get_all_descriptors(&echan->vchan, &head);
193         spin_unlock_irqrestore(&echan->vchan.lock, flags);
194         vchan_dma_desc_free_list(&echan->vchan, &head);
195
196         return 0;
197 }
198
199 static int edma_slave_config(struct edma_chan *echan,
200         struct dma_slave_config *cfg)
201 {
202         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
203             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
204                 return -EINVAL;
205
206         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
207
208         return 0;
209 }
210
211 static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
212                         unsigned long arg)
213 {
214         int ret = 0;
215         struct dma_slave_config *config;
216         struct edma_chan *echan = to_edma_chan(chan);
217
218         switch (cmd) {
219         case DMA_TERMINATE_ALL:
220                 edma_terminate_all(echan);
221                 break;
222         case DMA_SLAVE_CONFIG:
223                 config = (struct dma_slave_config *)arg;
224                 ret = edma_slave_config(echan, config);
225                 break;
226         default:
227                 ret = -ENOSYS;
228         }
229
230         return ret;
231 }
232
233 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
234         struct dma_chan *chan, struct scatterlist *sgl,
235         unsigned int sg_len, enum dma_transfer_direction direction,
236         unsigned long tx_flags, void *context)
237 {
238         struct edma_chan *echan = to_edma_chan(chan);
239         struct device *dev = chan->device->dev;
240         struct edma_desc *edesc;
241         dma_addr_t dev_addr;
242         enum dma_slave_buswidth dev_width;
243         u32 burst;
244         struct scatterlist *sg;
245         int acnt, bcnt, ccnt, src, dst, cidx;
246         int src_bidx, dst_bidx, src_cidx, dst_cidx;
247         int i, nslots;
248
249         if (unlikely(!echan || !sgl || !sg_len))
250                 return NULL;
251
252         if (direction == DMA_DEV_TO_MEM) {
253                 dev_addr = echan->cfg.src_addr;
254                 dev_width = echan->cfg.src_addr_width;
255                 burst = echan->cfg.src_maxburst;
256         } else if (direction == DMA_MEM_TO_DEV) {
257                 dev_addr = echan->cfg.dst_addr;
258                 dev_width = echan->cfg.dst_addr_width;
259                 burst = echan->cfg.dst_maxburst;
260         } else {
261                 dev_err(dev, "%s: bad direction?\n", __func__);
262                 return NULL;
263         }
264
265         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
266                 dev_err(dev, "Undefined slave buswidth\n");
267                 return NULL;
268         }
269
270         if (sg_len > MAX_NR_SG) {
271                 dev_err(dev, "Exceeded max SG segments %d > %d\n",
272                         sg_len, MAX_NR_SG);
273                 return NULL;
274         }
275
276         edesc = kzalloc(sizeof(*edesc) + sg_len *
277                 sizeof(edesc->pset[0]), GFP_ATOMIC);
278         if (!edesc) {
279                 dev_dbg(dev, "Failed to allocate a descriptor\n");
280                 return NULL;
281         }
282
283         edesc->pset_nr = sg_len;
284
285         /* Allocate a PaRAM slot, if needed */
286         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
287
288         for (i = 0; i < nslots; i++) {
289                 if (echan->slot[i] < 0) {
290                         echan->slot[i] =
291                                 edma_alloc_slot(EDMA_CTLR(echan->ch_num),
292                                                 EDMA_SLOT_ANY);
293                         if (echan->slot[i] < 0) {
294                                 dev_err(dev, "Failed to allocate slot\n");
295                                 return NULL;
296                         }
297                 }
298         }
299
300         /* Configure PaRAM sets for each SG */
301         for_each_sg(sgl, sg, sg_len, i) {
302
303                 acnt = dev_width;
304
305                 /*
306                  * If the maxburst is equal to the fifo width, use
307                  * A-synced transfers. This allows for large contiguous
308                  * buffer transfers using only one PaRAM set.
309                  */
310                 if (burst == 1) {
311                         edesc->absync = false;
312                         ccnt = sg_dma_len(sg) / acnt / (SZ_64K - 1);
313                         bcnt = sg_dma_len(sg) / acnt - ccnt * (SZ_64K - 1);
314                         if (bcnt)
315                                 ccnt++;
316                         else
317                                 bcnt = SZ_64K - 1;
318                         cidx = acnt;
319                 /*
320                  * If maxburst is greater than the fifo address_width,
321                  * use AB-synced transfers where A count is the fifo
322                  * address_width and B count is the maxburst. In this
323                  * case, we are limited to transfers of C count frames
324                  * of (address_width * maxburst) where C count is limited
325                  * to SZ_64K-1. This places an upper bound on the length
326                  * of an SG segment that can be handled.
327                  */
328                 } else {
329                         edesc->absync = true;
330                         bcnt = burst;
331                         ccnt = sg_dma_len(sg) / (acnt * bcnt);
332                         if (ccnt > (SZ_64K - 1)) {
333                                 dev_err(dev, "Exceeded max SG segment size\n");
334                                 return NULL;
335                         }
336                         cidx = acnt * bcnt;
337                 }
338
339                 if (direction == DMA_MEM_TO_DEV) {
340                         src = sg_dma_address(sg);
341                         dst = dev_addr;
342                         src_bidx = acnt;
343                         src_cidx = cidx;
344                         dst_bidx = 0;
345                         dst_cidx = 0;
346                 } else {
347                         src = dev_addr;
348                         dst = sg_dma_address(sg);
349                         src_bidx = 0;
350                         src_cidx = 0;
351                         dst_bidx = acnt;
352                         dst_cidx = cidx;
353                 }
354
355                 edesc->pset[i].opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
356                 /* Configure A or AB synchronized transfers */
357                 if (edesc->absync)
358                         edesc->pset[i].opt |= SYNCDIM;
359
360                 /* If this is the last in a current SG set of transactions,
361                    enable interrupts so that next set is processed */
362                 if (!((i+1) % MAX_NR_SG))
363                         edesc->pset[i].opt |= TCINTEN;
364
365                 /* If this is the last set, enable completion interrupt flag */
366                 if (i == sg_len - 1)
367                         edesc->pset[i].opt |= TCINTEN;
368
369                 edesc->pset[i].src = src;
370                 edesc->pset[i].dst = dst;
371
372                 edesc->pset[i].src_dst_bidx = (dst_bidx << 16) | src_bidx;
373                 edesc->pset[i].src_dst_cidx = (dst_cidx << 16) | src_cidx;
374
375                 edesc->pset[i].a_b_cnt = bcnt << 16 | acnt;
376                 edesc->pset[i].ccnt = ccnt;
377                 edesc->pset[i].link_bcntrld = 0xffffffff;
378
379         }
380
381         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
382 }
383
384 static void edma_callback(unsigned ch_num, u16 ch_status, void *data)
385 {
386         struct edma_chan *echan = data;
387         struct device *dev = echan->vchan.chan.device->dev;
388         struct edma_desc *edesc;
389         unsigned long flags;
390
391         /* Pause the channel */
392         edma_pause(echan->ch_num);
393
394         switch (ch_status) {
395         case DMA_COMPLETE:
396                 spin_lock_irqsave(&echan->vchan.lock, flags);
397
398                 edesc = echan->edesc;
399                 if (edesc) {
400                         if (edesc->processed == edesc->pset_nr) {
401                                 dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num);
402                                 edma_stop(echan->ch_num);
403                                 vchan_cookie_complete(&edesc->vdesc);
404                         } else {
405                                 dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num);
406                         }
407
408                         edma_execute(echan);
409                 }
410
411                 spin_unlock_irqrestore(&echan->vchan.lock, flags);
412
413                 break;
414         case DMA_CC_ERROR:
415                 dev_dbg(dev, "transfer error on channel %d\n", ch_num);
416                 break;
417         default:
418                 break;
419         }
420 }
421
422 /* Alloc channel resources */
423 static int edma_alloc_chan_resources(struct dma_chan *chan)
424 {
425         struct edma_chan *echan = to_edma_chan(chan);
426         struct device *dev = chan->device->dev;
427         int ret;
428         int a_ch_num;
429         LIST_HEAD(descs);
430
431         a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback,
432                                         chan, EVENTQ_DEFAULT);
433
434         if (a_ch_num < 0) {
435                 ret = -ENODEV;
436                 goto err_no_chan;
437         }
438
439         if (a_ch_num != echan->ch_num) {
440                 dev_err(dev, "failed to allocate requested channel %u:%u\n",
441                         EDMA_CTLR(echan->ch_num),
442                         EDMA_CHAN_SLOT(echan->ch_num));
443                 ret = -ENODEV;
444                 goto err_wrong_chan;
445         }
446
447         echan->alloced = true;
448         echan->slot[0] = echan->ch_num;
449
450         dev_info(dev, "allocated channel for %u:%u\n",
451                  EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num));
452
453         return 0;
454
455 err_wrong_chan:
456         edma_free_channel(a_ch_num);
457 err_no_chan:
458         return ret;
459 }
460
461 /* Free channel resources */
462 static void edma_free_chan_resources(struct dma_chan *chan)
463 {
464         struct edma_chan *echan = to_edma_chan(chan);
465         struct device *dev = chan->device->dev;
466         int i;
467
468         /* Terminate transfers */
469         edma_stop(echan->ch_num);
470
471         vchan_free_chan_resources(&echan->vchan);
472
473         /* Free EDMA PaRAM slots */
474         for (i = 1; i < EDMA_MAX_SLOTS; i++) {
475                 if (echan->slot[i] >= 0) {
476                         edma_free_slot(echan->slot[i]);
477                         echan->slot[i] = -1;
478                 }
479         }
480
481         /* Free EDMA channel */
482         if (echan->alloced) {
483                 edma_free_channel(echan->ch_num);
484                 echan->alloced = false;
485         }
486
487         dev_info(dev, "freeing channel for %u\n", echan->ch_num);
488 }
489
490 /* Send pending descriptor to hardware */
491 static void edma_issue_pending(struct dma_chan *chan)
492 {
493         struct edma_chan *echan = to_edma_chan(chan);
494         unsigned long flags;
495
496         spin_lock_irqsave(&echan->vchan.lock, flags);
497         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
498                 edma_execute(echan);
499         spin_unlock_irqrestore(&echan->vchan.lock, flags);
500 }
501
502 static size_t edma_desc_size(struct edma_desc *edesc)
503 {
504         int i;
505         size_t size;
506
507         if (edesc->absync)
508                 for (size = i = 0; i < edesc->pset_nr; i++)
509                         size += (edesc->pset[i].a_b_cnt & 0xffff) *
510                                 (edesc->pset[i].a_b_cnt >> 16) *
511                                  edesc->pset[i].ccnt;
512         else
513                 size = (edesc->pset[0].a_b_cnt & 0xffff) *
514                         (edesc->pset[0].a_b_cnt >> 16) +
515                         (edesc->pset[0].a_b_cnt & 0xffff) *
516                         (SZ_64K - 1) * edesc->pset[0].ccnt;
517
518         return size;
519 }
520
521 /* Check request completion status */
522 static enum dma_status edma_tx_status(struct dma_chan *chan,
523                                       dma_cookie_t cookie,
524                                       struct dma_tx_state *txstate)
525 {
526         struct edma_chan *echan = to_edma_chan(chan);
527         struct virt_dma_desc *vdesc;
528         enum dma_status ret;
529         unsigned long flags;
530
531         ret = dma_cookie_status(chan, cookie, txstate);
532         if (ret == DMA_SUCCESS || !txstate)
533                 return ret;
534
535         spin_lock_irqsave(&echan->vchan.lock, flags);
536         vdesc = vchan_find_desc(&echan->vchan, cookie);
537         if (vdesc) {
538                 txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx));
539         } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
540                 struct edma_desc *edesc = echan->edesc;
541                 txstate->residue = edma_desc_size(edesc);
542         }
543         spin_unlock_irqrestore(&echan->vchan.lock, flags);
544
545         return ret;
546 }
547
548 static void __init edma_chan_init(struct edma_cc *ecc,
549                                   struct dma_device *dma,
550                                   struct edma_chan *echans)
551 {
552         int i, j;
553
554         for (i = 0; i < EDMA_CHANS; i++) {
555                 struct edma_chan *echan = &echans[i];
556                 echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i);
557                 echan->ecc = ecc;
558                 echan->vchan.desc_free = edma_desc_free;
559
560                 vchan_init(&echan->vchan, dma);
561
562                 INIT_LIST_HEAD(&echan->node);
563                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
564                         echan->slot[j] = -1;
565         }
566 }
567
568 static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma,
569                           struct device *dev)
570 {
571         dma->device_prep_slave_sg = edma_prep_slave_sg;
572         dma->device_alloc_chan_resources = edma_alloc_chan_resources;
573         dma->device_free_chan_resources = edma_free_chan_resources;
574         dma->device_issue_pending = edma_issue_pending;
575         dma->device_tx_status = edma_tx_status;
576         dma->device_control = edma_control;
577         dma->dev = dev;
578
579         INIT_LIST_HEAD(&dma->channels);
580 }
581
582 static int edma_probe(struct platform_device *pdev)
583 {
584         struct edma_cc *ecc;
585         int ret;
586
587         ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL);
588         if (!ecc) {
589                 dev_err(&pdev->dev, "Can't allocate controller\n");
590                 return -ENOMEM;
591         }
592
593         ecc->ctlr = pdev->id;
594         ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY);
595         if (ecc->dummy_slot < 0) {
596                 dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n");
597                 return -EIO;
598         }
599
600         dma_cap_zero(ecc->dma_slave.cap_mask);
601         dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask);
602
603         edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev);
604
605         edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans);
606
607         ret = dma_async_device_register(&ecc->dma_slave);
608         if (ret)
609                 goto err_reg1;
610
611         platform_set_drvdata(pdev, ecc);
612
613         dev_info(&pdev->dev, "TI EDMA DMA engine driver\n");
614
615         return 0;
616
617 err_reg1:
618         edma_free_slot(ecc->dummy_slot);
619         return ret;
620 }
621
622 static int edma_remove(struct platform_device *pdev)
623 {
624         struct device *dev = &pdev->dev;
625         struct edma_cc *ecc = dev_get_drvdata(dev);
626
627         dma_async_device_unregister(&ecc->dma_slave);
628         edma_free_slot(ecc->dummy_slot);
629
630         return 0;
631 }
632
633 static struct platform_driver edma_driver = {
634         .probe          = edma_probe,
635         .remove         = edma_remove,
636         .driver = {
637                 .name = "edma-dma-engine",
638                 .owner = THIS_MODULE,
639         },
640 };
641
642 bool edma_filter_fn(struct dma_chan *chan, void *param)
643 {
644         if (chan->device->dev->driver == &edma_driver.driver) {
645                 struct edma_chan *echan = to_edma_chan(chan);
646                 unsigned ch_req = *(unsigned *)param;
647                 return ch_req == echan->ch_num;
648         }
649         return false;
650 }
651 EXPORT_SYMBOL(edma_filter_fn);
652
653 static struct platform_device *pdev0, *pdev1;
654
655 static const struct platform_device_info edma_dev_info0 = {
656         .name = "edma-dma-engine",
657         .id = 0,
658 };
659
660 static const struct platform_device_info edma_dev_info1 = {
661         .name = "edma-dma-engine",
662         .id = 1,
663 };
664
665 static int edma_init(void)
666 {
667         int ret = platform_driver_register(&edma_driver);
668
669         if (ret == 0) {
670                 pdev0 = platform_device_register_full(&edma_dev_info0);
671                 if (IS_ERR(pdev0)) {
672                         platform_driver_unregister(&edma_driver);
673                         ret = PTR_ERR(pdev0);
674                         goto out;
675                 }
676                 pdev0->dev.dma_mask = &pdev0->dev.coherent_dma_mask;
677                 pdev0->dev.coherent_dma_mask = DMA_BIT_MASK(32);
678         }
679
680         if (EDMA_CTLRS == 2) {
681                 pdev1 = platform_device_register_full(&edma_dev_info1);
682                 if (IS_ERR(pdev1)) {
683                         platform_driver_unregister(&edma_driver);
684                         platform_device_unregister(pdev0);
685                         ret = PTR_ERR(pdev1);
686                 }
687                 pdev1->dev.dma_mask = &pdev1->dev.coherent_dma_mask;
688                 pdev1->dev.coherent_dma_mask = DMA_BIT_MASK(32);
689         }
690
691 out:
692         return ret;
693 }
694 subsys_initcall(edma_init);
695
696 static void __exit edma_exit(void)
697 {
698         platform_device_unregister(pdev0);
699         if (pdev1)
700                 platform_device_unregister(pdev1);
701         platform_driver_unregister(&edma_driver);
702 }
703 module_exit(edma_exit);
704
705 MODULE_AUTHOR("Matt Porter <mporter@ti.com>");
706 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
707 MODULE_LICENSE("GPL v2");