]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/dma/imx-sdma.c
tpm: use tpm_buf functions in tpm2_pcr_read()
[karo-tx-linux.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR            0x000
54 #define SDMA_H_INTR             0x004
55 #define SDMA_H_STATSTOP         0x008
56 #define SDMA_H_START            0x00c
57 #define SDMA_H_EVTOVR           0x010
58 #define SDMA_H_DSPOVR           0x014
59 #define SDMA_H_HOSTOVR          0x018
60 #define SDMA_H_EVTPEND          0x01c
61 #define SDMA_H_DSPENBL          0x020
62 #define SDMA_H_RESET            0x024
63 #define SDMA_H_EVTERR           0x028
64 #define SDMA_H_INTRMSK          0x02c
65 #define SDMA_H_PSW              0x030
66 #define SDMA_H_EVTERRDBG        0x034
67 #define SDMA_H_CONFIG           0x038
68 #define SDMA_ONCE_ENB           0x040
69 #define SDMA_ONCE_DATA          0x044
70 #define SDMA_ONCE_INSTR         0x048
71 #define SDMA_ONCE_STAT          0x04c
72 #define SDMA_ONCE_CMD           0x050
73 #define SDMA_EVT_MIRROR         0x054
74 #define SDMA_ILLINSTADDR        0x058
75 #define SDMA_CHN0ADDR           0x05c
76 #define SDMA_ONCE_RTB           0x060
77 #define SDMA_XTRIG_CONF1        0x070
78 #define SDMA_XTRIG_CONF2        0x074
79 #define SDMA_CHNENBL0_IMX35     0x200
80 #define SDMA_CHNENBL0_IMX31     0x080
81 #define SDMA_CHNPRI_0           0x100
82
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130
131 /*
132  *  p_2_p watermark_level description
133  *      Bits            Name                    Description
134  *      0-7             Lower WML               Lower watermark level
135  *      8               PS                      1: Pad Swallowing
136  *                                              0: No Pad Swallowing
137  *      9               PA                      1: Pad Adding
138  *                                              0: No Pad Adding
139  *      10              SPDIF                   If this bit is set both source
140  *                                              and destination are on SPBA
141  *      11              Source Bit(SP)          1: Source on SPBA
142  *                                              0: Source on AIPS
143  *      12              Destination Bit(DP)     1: Destination on SPBA
144  *                                              0: Destination on AIPS
145  *      13-15           ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
180
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185         u32 count   : 16; /* size of the buffer pointed by this BD */
186         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187         u32 command :  8; /* command mostly used for channel 0 */
188 };
189
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194         struct sdma_mode_count  mode;
195         u32 buffer_addr;        /* address of the buffer described */
196         u32 ext_buffer_addr;    /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr      current buffer descriptor processed
203  * @base_bd_ptr         first element of buffer descriptor array
204  * @unused              padding. The SDMA engine expects an array of 128 byte
205  *                      control blocks
206  */
207 struct sdma_channel_control {
208         u32 current_bd_ptr;
209         u32 base_bd_ptr;
210         u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:         program counter
217  * @t:          test bit: status of arithmetic & test instruction
218  * @rpc:        return program counter
219  * @sf:         source fault while loading data
220  * @spc:        loop start program counter
221  * @df:         destination fault while storing data
222  * @epc:        loop end program counter
223  * @lm:         loop mode
224  */
225 struct sdma_state_registers {
226         u32 pc     :14;
227         u32 unused1: 1;
228         u32 t      : 1;
229         u32 rpc    :14;
230         u32 unused0: 1;
231         u32 sf     : 1;
232         u32 spc    :14;
233         u32 unused2: 1;
234         u32 df     : 1;
235         u32 epc    :14;
236         u32 lm     : 2;
237 } __attribute__ ((packed));
238
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:      channel state bits
243  * @gReg:               general registers
244  * @mda:                burst dma destination address register
245  * @msa:                burst dma source address register
246  * @ms:                 burst dma status register
247  * @md:                 burst dma data register
248  * @pda:                peripheral dma destination address register
249  * @psa:                peripheral dma source address register
250  * @ps:                 peripheral dma status register
251  * @pd:                 peripheral dma data register
252  * @ca:                 CRC polynomial register
253  * @cs:                 CRC accumulator register
254  * @dda:                dedicated core destination address register
255  * @dsa:                dedicated core source address register
256  * @ds:                 dedicated core status register
257  * @dd:                 dedicated core data register
258  */
259 struct sdma_context_data {
260         struct sdma_state_registers  channel_state;
261         u32  gReg[8];
262         u32  mda;
263         u32  msa;
264         u32  ms;
265         u32  md;
266         u32  pda;
267         u32  psa;
268         u32  ps;
269         u32  pd;
270         u32  ca;
271         u32  cs;
272         u32  dda;
273         u32  dsa;
274         u32  ds;
275         u32  dd;
276         u32  scratch0;
277         u32  scratch1;
278         u32  scratch2;
279         u32  scratch3;
280         u32  scratch4;
281         u32  scratch5;
282         u32  scratch6;
283         u32  scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma                pointer to the SDMA engine for this channel
294  * @channel             the channel number, matches dmaengine chan_id + 1
295  * @direction           transfer type. Needed for setting SDMA script
296  * @peripheral_type     Peripheral type. Needed for setting SDMA script
297  * @event_id0           aka dma request line
298  * @event_id1           for channels that use 2 events
299  * @word_size           peripheral access size
300  * @buf_tail            ID of the buffer that was processed
301  * @buf_ptail           ID of the previous buffer that was processed
302  * @num_bd              max NUM_BD. number of descriptors currently handling
303  */
304 struct sdma_channel {
305         struct sdma_engine              *sdma;
306         unsigned int                    channel;
307         enum dma_transfer_direction             direction;
308         enum sdma_peripheral_type       peripheral_type;
309         unsigned int                    event_id0;
310         unsigned int                    event_id1;
311         enum dma_slave_buswidth         word_size;
312         unsigned int                    buf_tail;
313         unsigned int                    buf_ptail;
314         unsigned int                    num_bd;
315         unsigned int                    period_len;
316         struct sdma_buffer_descriptor   *bd;
317         dma_addr_t                      bd_phys;
318         unsigned int                    pc_from_device, pc_to_device;
319         unsigned int                    device_to_device;
320         unsigned long                   flags;
321         dma_addr_t                      per_address, per_address2;
322         unsigned long                   event_mask[2];
323         unsigned long                   watermark_level;
324         u32                             shp_addr, per_addr;
325         struct dma_chan                 chan;
326         spinlock_t                      lock;
327         struct dma_async_tx_descriptor  desc;
328         enum dma_status                 status;
329         unsigned int                    chn_count;
330         unsigned int                    chn_real_count;
331         struct tasklet_struct           tasklet;
332         struct imx_dma_data             data;
333 };
334
335 #define IMX_DMA_SG_LOOP         BIT(0)
336
337 #define MAX_DMA_CHANNELS 32
338 #define MXC_SDMA_DEFAULT_PRIORITY 1
339 #define MXC_SDMA_MIN_PRIORITY 1
340 #define MXC_SDMA_MAX_PRIORITY 7
341
342 #define SDMA_FIRMWARE_MAGIC 0x414d4453
343
344 /**
345  * struct sdma_firmware_header - Layout of the firmware image
346  *
347  * @magic               "SDMA"
348  * @version_major       increased whenever layout of struct sdma_script_start_addrs
349  *                      changes.
350  * @version_minor       firmware minor version (for binary compatible changes)
351  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
352  * @num_script_addrs    Number of script addresses in this image
353  * @ram_code_start      offset of SDMA ram image in this firmware image
354  * @ram_code_size       size of SDMA ram image
355  * @script_addrs        Stores the start address of the SDMA scripts
356  *                      (in SDMA memory space)
357  */
358 struct sdma_firmware_header {
359         u32     magic;
360         u32     version_major;
361         u32     version_minor;
362         u32     script_addrs_start;
363         u32     num_script_addrs;
364         u32     ram_code_start;
365         u32     ram_code_size;
366 };
367
368 struct sdma_driver_data {
369         int chnenbl0;
370         int num_events;
371         struct sdma_script_start_addrs  *script_addrs;
372 };
373
374 struct sdma_engine {
375         struct device                   *dev;
376         struct device_dma_parameters    dma_parms;
377         struct sdma_channel             channel[MAX_DMA_CHANNELS];
378         struct sdma_channel_control     *channel_control;
379         void __iomem                    *regs;
380         struct sdma_context_data        *context;
381         dma_addr_t                      context_phys;
382         struct dma_device               dma_device;
383         struct clk                      *clk_ipg;
384         struct clk                      *clk_ahb;
385         spinlock_t                      channel_0_lock;
386         u32                             script_number;
387         struct sdma_script_start_addrs  *script_addrs;
388         const struct sdma_driver_data   *drvdata;
389         u32                             spba_start_addr;
390         u32                             spba_end_addr;
391         unsigned int                    irq;
392 };
393
394 static struct sdma_driver_data sdma_imx31 = {
395         .chnenbl0 = SDMA_CHNENBL0_IMX31,
396         .num_events = 32,
397 };
398
399 static struct sdma_script_start_addrs sdma_script_imx25 = {
400         .ap_2_ap_addr = 729,
401         .uart_2_mcu_addr = 904,
402         .per_2_app_addr = 1255,
403         .mcu_2_app_addr = 834,
404         .uartsh_2_mcu_addr = 1120,
405         .per_2_shp_addr = 1329,
406         .mcu_2_shp_addr = 1048,
407         .ata_2_mcu_addr = 1560,
408         .mcu_2_ata_addr = 1479,
409         .app_2_per_addr = 1189,
410         .app_2_mcu_addr = 770,
411         .shp_2_per_addr = 1407,
412         .shp_2_mcu_addr = 979,
413 };
414
415 static struct sdma_driver_data sdma_imx25 = {
416         .chnenbl0 = SDMA_CHNENBL0_IMX35,
417         .num_events = 48,
418         .script_addrs = &sdma_script_imx25,
419 };
420
421 static struct sdma_driver_data sdma_imx35 = {
422         .chnenbl0 = SDMA_CHNENBL0_IMX35,
423         .num_events = 48,
424 };
425
426 static struct sdma_script_start_addrs sdma_script_imx51 = {
427         .ap_2_ap_addr = 642,
428         .uart_2_mcu_addr = 817,
429         .mcu_2_app_addr = 747,
430         .mcu_2_shp_addr = 961,
431         .ata_2_mcu_addr = 1473,
432         .mcu_2_ata_addr = 1392,
433         .app_2_per_addr = 1033,
434         .app_2_mcu_addr = 683,
435         .shp_2_per_addr = 1251,
436         .shp_2_mcu_addr = 892,
437 };
438
439 static struct sdma_driver_data sdma_imx51 = {
440         .chnenbl0 = SDMA_CHNENBL0_IMX35,
441         .num_events = 48,
442         .script_addrs = &sdma_script_imx51,
443 };
444
445 static struct sdma_script_start_addrs sdma_script_imx53 = {
446         .ap_2_ap_addr = 642,
447         .app_2_mcu_addr = 683,
448         .mcu_2_app_addr = 747,
449         .uart_2_mcu_addr = 817,
450         .shp_2_mcu_addr = 891,
451         .mcu_2_shp_addr = 960,
452         .uartsh_2_mcu_addr = 1032,
453         .spdif_2_mcu_addr = 1100,
454         .mcu_2_spdif_addr = 1134,
455         .firi_2_mcu_addr = 1193,
456         .mcu_2_firi_addr = 1290,
457 };
458
459 static struct sdma_driver_data sdma_imx53 = {
460         .chnenbl0 = SDMA_CHNENBL0_IMX35,
461         .num_events = 48,
462         .script_addrs = &sdma_script_imx53,
463 };
464
465 static struct sdma_script_start_addrs sdma_script_imx6q = {
466         .ap_2_ap_addr = 642,
467         .uart_2_mcu_addr = 817,
468         .mcu_2_app_addr = 747,
469         .per_2_per_addr = 6331,
470         .uartsh_2_mcu_addr = 1032,
471         .mcu_2_shp_addr = 960,
472         .app_2_mcu_addr = 683,
473         .shp_2_mcu_addr = 891,
474         .spdif_2_mcu_addr = 1100,
475         .mcu_2_spdif_addr = 1134,
476 };
477
478 static struct sdma_driver_data sdma_imx6q = {
479         .chnenbl0 = SDMA_CHNENBL0_IMX35,
480         .num_events = 48,
481         .script_addrs = &sdma_script_imx6q,
482 };
483
484 static struct sdma_script_start_addrs sdma_script_imx7d = {
485         .ap_2_ap_addr = 644,
486         .uart_2_mcu_addr = 819,
487         .mcu_2_app_addr = 749,
488         .uartsh_2_mcu_addr = 1034,
489         .mcu_2_shp_addr = 962,
490         .app_2_mcu_addr = 685,
491         .shp_2_mcu_addr = 893,
492         .spdif_2_mcu_addr = 1102,
493         .mcu_2_spdif_addr = 1136,
494 };
495
496 static struct sdma_driver_data sdma_imx7d = {
497         .chnenbl0 = SDMA_CHNENBL0_IMX35,
498         .num_events = 48,
499         .script_addrs = &sdma_script_imx7d,
500 };
501
502 static const struct platform_device_id sdma_devtypes[] = {
503         {
504                 .name = "imx25-sdma",
505                 .driver_data = (unsigned long)&sdma_imx25,
506         }, {
507                 .name = "imx31-sdma",
508                 .driver_data = (unsigned long)&sdma_imx31,
509         }, {
510                 .name = "imx35-sdma",
511                 .driver_data = (unsigned long)&sdma_imx35,
512         }, {
513                 .name = "imx51-sdma",
514                 .driver_data = (unsigned long)&sdma_imx51,
515         }, {
516                 .name = "imx53-sdma",
517                 .driver_data = (unsigned long)&sdma_imx53,
518         }, {
519                 .name = "imx6q-sdma",
520                 .driver_data = (unsigned long)&sdma_imx6q,
521         }, {
522                 .name = "imx7d-sdma",
523                 .driver_data = (unsigned long)&sdma_imx7d,
524         }, {
525                 /* sentinel */
526         }
527 };
528 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
529
530 static const struct of_device_id sdma_dt_ids[] = {
531         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
532         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
533         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
534         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
535         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
536         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
537         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
538         { /* sentinel */ }
539 };
540 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
541
542 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
543 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
544 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
545 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
546
547 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
548 {
549         u32 chnenbl0 = sdma->drvdata->chnenbl0;
550         return chnenbl0 + event * 4;
551 }
552
553 static int sdma_config_ownership(struct sdma_channel *sdmac,
554                 bool event_override, bool mcu_override, bool dsp_override)
555 {
556         struct sdma_engine *sdma = sdmac->sdma;
557         int channel = sdmac->channel;
558         unsigned long evt, mcu, dsp;
559
560         if (event_override && mcu_override && dsp_override)
561                 return -EINVAL;
562
563         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
564         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
565         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
566
567         if (dsp_override)
568                 __clear_bit(channel, &dsp);
569         else
570                 __set_bit(channel, &dsp);
571
572         if (event_override)
573                 __clear_bit(channel, &evt);
574         else
575                 __set_bit(channel, &evt);
576
577         if (mcu_override)
578                 __clear_bit(channel, &mcu);
579         else
580                 __set_bit(channel, &mcu);
581
582         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
583         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
584         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
585
586         return 0;
587 }
588
589 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
590 {
591         writel(BIT(channel), sdma->regs + SDMA_H_START);
592 }
593
594 /*
595  * sdma_run_channel0 - run a channel and wait till it's done
596  */
597 static int sdma_run_channel0(struct sdma_engine *sdma)
598 {
599         int ret;
600         u32 reg;
601
602         sdma_enable_channel(sdma, 0);
603
604         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
605                                                 reg, !(reg & 1), 1, 500);
606         if (ret)
607                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
608
609         /* Set bits of CONFIG register with dynamic context switching */
610         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
611                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
612
613         return ret;
614 }
615
616 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
617                 u32 address)
618 {
619         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
620         void *buf_virt;
621         dma_addr_t buf_phys;
622         int ret;
623         unsigned long flags;
624
625         buf_virt = dma_alloc_coherent(NULL,
626                         size,
627                         &buf_phys, GFP_KERNEL);
628         if (!buf_virt) {
629                 return -ENOMEM;
630         }
631
632         spin_lock_irqsave(&sdma->channel_0_lock, flags);
633
634         bd0->mode.command = C0_SETPM;
635         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
636         bd0->mode.count = size / 2;
637         bd0->buffer_addr = buf_phys;
638         bd0->ext_buffer_addr = address;
639
640         memcpy(buf_virt, buf, size);
641
642         ret = sdma_run_channel0(sdma);
643
644         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
645
646         dma_free_coherent(NULL, size, buf_virt, buf_phys);
647
648         return ret;
649 }
650
651 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
652 {
653         struct sdma_engine *sdma = sdmac->sdma;
654         int channel = sdmac->channel;
655         unsigned long val;
656         u32 chnenbl = chnenbl_ofs(sdma, event);
657
658         val = readl_relaxed(sdma->regs + chnenbl);
659         __set_bit(channel, &val);
660         writel_relaxed(val, sdma->regs + chnenbl);
661 }
662
663 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
664 {
665         struct sdma_engine *sdma = sdmac->sdma;
666         int channel = sdmac->channel;
667         u32 chnenbl = chnenbl_ofs(sdma, event);
668         unsigned long val;
669
670         val = readl_relaxed(sdma->regs + chnenbl);
671         __clear_bit(channel, &val);
672         writel_relaxed(val, sdma->regs + chnenbl);
673 }
674
675 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
676 {
677         struct sdma_buffer_descriptor *bd;
678         int error = 0;
679         enum dma_status old_status = sdmac->status;
680
681         /*
682          * loop mode. Iterate over descriptors, re-setup them and
683          * call callback function.
684          */
685         while (1) {
686                 bd = &sdmac->bd[sdmac->buf_tail];
687
688                 if (bd->mode.status & BD_DONE)
689                         break;
690
691                 if (bd->mode.status & BD_RROR) {
692                         bd->mode.status &= ~BD_RROR;
693                         sdmac->status = DMA_ERROR;
694                         error = -EIO;
695                 }
696
697                /*
698                 * We use bd->mode.count to calculate the residue, since contains
699                 * the number of bytes present in the current buffer descriptor.
700                 */
701
702                 sdmac->chn_real_count = bd->mode.count;
703                 bd->mode.status |= BD_DONE;
704                 bd->mode.count = sdmac->period_len;
705                 sdmac->buf_ptail = sdmac->buf_tail;
706                 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
707
708                 /*
709                  * The callback is called from the interrupt context in order
710                  * to reduce latency and to avoid the risk of altering the
711                  * SDMA transaction status by the time the client tasklet is
712                  * executed.
713                  */
714
715                 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
716
717                 if (error)
718                         sdmac->status = old_status;
719         }
720 }
721
722 static void mxc_sdma_handle_channel_normal(unsigned long data)
723 {
724         struct sdma_channel *sdmac = (struct sdma_channel *) data;
725         struct sdma_buffer_descriptor *bd;
726         int i, error = 0;
727
728         sdmac->chn_real_count = 0;
729         /*
730          * non loop mode. Iterate over all descriptors, collect
731          * errors and call callback function
732          */
733         for (i = 0; i < sdmac->num_bd; i++) {
734                 bd = &sdmac->bd[i];
735
736                  if (bd->mode.status & (BD_DONE | BD_RROR))
737                         error = -EIO;
738                  sdmac->chn_real_count += bd->mode.count;
739         }
740
741         if (error)
742                 sdmac->status = DMA_ERROR;
743         else
744                 sdmac->status = DMA_COMPLETE;
745
746         dma_cookie_complete(&sdmac->desc);
747
748         dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
749 }
750
751 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
752 {
753         struct sdma_engine *sdma = dev_id;
754         unsigned long stat;
755
756         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
757         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
758         /* channel 0 is special and not handled here, see run_channel0() */
759         stat &= ~1;
760
761         while (stat) {
762                 int channel = fls(stat) - 1;
763                 struct sdma_channel *sdmac = &sdma->channel[channel];
764
765                 if (sdmac->flags & IMX_DMA_SG_LOOP)
766                         sdma_update_channel_loop(sdmac);
767                 else
768                         tasklet_schedule(&sdmac->tasklet);
769
770                 __clear_bit(channel, &stat);
771         }
772
773         return IRQ_HANDLED;
774 }
775
776 /*
777  * sets the pc of SDMA script according to the peripheral type
778  */
779 static void sdma_get_pc(struct sdma_channel *sdmac,
780                 enum sdma_peripheral_type peripheral_type)
781 {
782         struct sdma_engine *sdma = sdmac->sdma;
783         int per_2_emi = 0, emi_2_per = 0;
784         /*
785          * These are needed once we start to support transfers between
786          * two peripherals or memory-to-memory transfers
787          */
788         int per_2_per = 0;
789
790         sdmac->pc_from_device = 0;
791         sdmac->pc_to_device = 0;
792         sdmac->device_to_device = 0;
793
794         switch (peripheral_type) {
795         case IMX_DMATYPE_MEMORY:
796                 break;
797         case IMX_DMATYPE_DSP:
798                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
799                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
800                 break;
801         case IMX_DMATYPE_FIRI:
802                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
803                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
804                 break;
805         case IMX_DMATYPE_UART:
806                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
807                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
808                 break;
809         case IMX_DMATYPE_UART_SP:
810                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
811                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812                 break;
813         case IMX_DMATYPE_ATA:
814                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
815                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
816                 break;
817         case IMX_DMATYPE_CSPI:
818         case IMX_DMATYPE_EXT:
819         case IMX_DMATYPE_SSI:
820         case IMX_DMATYPE_SAI:
821                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
822                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
823                 break;
824         case IMX_DMATYPE_SSI_DUAL:
825                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
826                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
827                 break;
828         case IMX_DMATYPE_SSI_SP:
829         case IMX_DMATYPE_MMC:
830         case IMX_DMATYPE_SDHC:
831         case IMX_DMATYPE_CSPI_SP:
832         case IMX_DMATYPE_ESAI:
833         case IMX_DMATYPE_MSHC_SP:
834                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
835                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836                 break;
837         case IMX_DMATYPE_ASRC:
838                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
839                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
840                 per_2_per = sdma->script_addrs->per_2_per_addr;
841                 break;
842         case IMX_DMATYPE_ASRC_SP:
843                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
844                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
845                 per_2_per = sdma->script_addrs->per_2_per_addr;
846                 break;
847         case IMX_DMATYPE_MSHC:
848                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
849                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
850                 break;
851         case IMX_DMATYPE_CCM:
852                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
853                 break;
854         case IMX_DMATYPE_SPDIF:
855                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
856                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
857                 break;
858         case IMX_DMATYPE_IPU_MEMORY:
859                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
860                 break;
861         default:
862                 break;
863         }
864
865         sdmac->pc_from_device = per_2_emi;
866         sdmac->pc_to_device = emi_2_per;
867         sdmac->device_to_device = per_2_per;
868 }
869
870 static int sdma_load_context(struct sdma_channel *sdmac)
871 {
872         struct sdma_engine *sdma = sdmac->sdma;
873         int channel = sdmac->channel;
874         int load_address;
875         struct sdma_context_data *context = sdma->context;
876         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
877         int ret;
878         unsigned long flags;
879
880         if (sdmac->direction == DMA_DEV_TO_MEM)
881                 load_address = sdmac->pc_from_device;
882         else if (sdmac->direction == DMA_DEV_TO_DEV)
883                 load_address = sdmac->device_to_device;
884         else
885                 load_address = sdmac->pc_to_device;
886
887         if (load_address < 0)
888                 return load_address;
889
890         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
891         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
892         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
893         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
894         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
895         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
896
897         spin_lock_irqsave(&sdma->channel_0_lock, flags);
898
899         memset(context, 0, sizeof(*context));
900         context->channel_state.pc = load_address;
901
902         /* Send by context the event mask,base address for peripheral
903          * and watermark level
904          */
905         context->gReg[0] = sdmac->event_mask[1];
906         context->gReg[1] = sdmac->event_mask[0];
907         context->gReg[2] = sdmac->per_addr;
908         context->gReg[6] = sdmac->shp_addr;
909         context->gReg[7] = sdmac->watermark_level;
910
911         bd0->mode.command = C0_SETDM;
912         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
913         bd0->mode.count = sizeof(*context) / 4;
914         bd0->buffer_addr = sdma->context_phys;
915         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
916         ret = sdma_run_channel0(sdma);
917
918         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
919
920         return ret;
921 }
922
923 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
924 {
925         return container_of(chan, struct sdma_channel, chan);
926 }
927
928 static int sdma_disable_channel(struct dma_chan *chan)
929 {
930         struct sdma_channel *sdmac = to_sdma_chan(chan);
931         struct sdma_engine *sdma = sdmac->sdma;
932         int channel = sdmac->channel;
933
934         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
935         sdmac->status = DMA_ERROR;
936
937         return 0;
938 }
939
940 static int sdma_disable_channel_with_delay(struct dma_chan *chan)
941 {
942         sdma_disable_channel(chan);
943
944         /*
945          * According to NXP R&D team a delay of one BD SDMA cost time
946          * (maximum is 1ms) should be added after disable of the channel
947          * bit, to ensure SDMA core has really been stopped after SDMA
948          * clients call .device_terminate_all.
949          */
950         mdelay(1);
951
952         return 0;
953 }
954
955 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
956 {
957         struct sdma_engine *sdma = sdmac->sdma;
958
959         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
960         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
961
962         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
963         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
964
965         if (sdmac->event_id0 > 31)
966                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
967
968         if (sdmac->event_id1 > 31)
969                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
970
971         /*
972          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
973          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
974          * r0(event_mask[1]) and r1(event_mask[0]).
975          */
976         if (lwml > hwml) {
977                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
978                                                 SDMA_WATERMARK_LEVEL_HWML);
979                 sdmac->watermark_level |= hwml;
980                 sdmac->watermark_level |= lwml << 16;
981                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
982         }
983
984         if (sdmac->per_address2 >= sdma->spba_start_addr &&
985                         sdmac->per_address2 <= sdma->spba_end_addr)
986                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
987
988         if (sdmac->per_address >= sdma->spba_start_addr &&
989                         sdmac->per_address <= sdma->spba_end_addr)
990                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
991
992         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
993 }
994
995 static int sdma_config_channel(struct dma_chan *chan)
996 {
997         struct sdma_channel *sdmac = to_sdma_chan(chan);
998         int ret;
999
1000         sdma_disable_channel(chan);
1001
1002         sdmac->event_mask[0] = 0;
1003         sdmac->event_mask[1] = 0;
1004         sdmac->shp_addr = 0;
1005         sdmac->per_addr = 0;
1006
1007         if (sdmac->event_id0) {
1008                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1009                         return -EINVAL;
1010                 sdma_event_enable(sdmac, sdmac->event_id0);
1011         }
1012
1013         if (sdmac->event_id1) {
1014                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1015                         return -EINVAL;
1016                 sdma_event_enable(sdmac, sdmac->event_id1);
1017         }
1018
1019         switch (sdmac->peripheral_type) {
1020         case IMX_DMATYPE_DSP:
1021                 sdma_config_ownership(sdmac, false, true, true);
1022                 break;
1023         case IMX_DMATYPE_MEMORY:
1024                 sdma_config_ownership(sdmac, false, true, false);
1025                 break;
1026         default:
1027                 sdma_config_ownership(sdmac, true, true, false);
1028                 break;
1029         }
1030
1031         sdma_get_pc(sdmac, sdmac->peripheral_type);
1032
1033         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1034                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1035                 /* Handle multiple event channels differently */
1036                 if (sdmac->event_id1) {
1037                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1038                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1039                                 sdma_set_watermarklevel_for_p2p(sdmac);
1040                 } else
1041                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1042
1043                 /* Address */
1044                 sdmac->shp_addr = sdmac->per_address;
1045                 sdmac->per_addr = sdmac->per_address2;
1046         } else {
1047                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1048         }
1049
1050         ret = sdma_load_context(sdmac);
1051
1052         return ret;
1053 }
1054
1055 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1056                 unsigned int priority)
1057 {
1058         struct sdma_engine *sdma = sdmac->sdma;
1059         int channel = sdmac->channel;
1060
1061         if (priority < MXC_SDMA_MIN_PRIORITY
1062             || priority > MXC_SDMA_MAX_PRIORITY) {
1063                 return -EINVAL;
1064         }
1065
1066         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1067
1068         return 0;
1069 }
1070
1071 static int sdma_request_channel(struct sdma_channel *sdmac)
1072 {
1073         struct sdma_engine *sdma = sdmac->sdma;
1074         int channel = sdmac->channel;
1075         int ret = -EBUSY;
1076
1077         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1078                                         GFP_KERNEL);
1079         if (!sdmac->bd) {
1080                 ret = -ENOMEM;
1081                 goto out;
1082         }
1083
1084         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1085         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1086
1087         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1088         return 0;
1089 out:
1090
1091         return ret;
1092 }
1093
1094 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1095 {
1096         unsigned long flags;
1097         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1098         dma_cookie_t cookie;
1099
1100         spin_lock_irqsave(&sdmac->lock, flags);
1101
1102         cookie = dma_cookie_assign(tx);
1103
1104         spin_unlock_irqrestore(&sdmac->lock, flags);
1105
1106         return cookie;
1107 }
1108
1109 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1110 {
1111         struct sdma_channel *sdmac = to_sdma_chan(chan);
1112         struct imx_dma_data *data = chan->private;
1113         int prio, ret;
1114
1115         if (!data)
1116                 return -EINVAL;
1117
1118         switch (data->priority) {
1119         case DMA_PRIO_HIGH:
1120                 prio = 3;
1121                 break;
1122         case DMA_PRIO_MEDIUM:
1123                 prio = 2;
1124                 break;
1125         case DMA_PRIO_LOW:
1126         default:
1127                 prio = 1;
1128                 break;
1129         }
1130
1131         sdmac->peripheral_type = data->peripheral_type;
1132         sdmac->event_id0 = data->dma_request;
1133         sdmac->event_id1 = data->dma_request2;
1134
1135         ret = clk_enable(sdmac->sdma->clk_ipg);
1136         if (ret)
1137                 return ret;
1138         ret = clk_enable(sdmac->sdma->clk_ahb);
1139         if (ret)
1140                 goto disable_clk_ipg;
1141
1142         ret = sdma_request_channel(sdmac);
1143         if (ret)
1144                 goto disable_clk_ahb;
1145
1146         ret = sdma_set_channel_priority(sdmac, prio);
1147         if (ret)
1148                 goto disable_clk_ahb;
1149
1150         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1151         sdmac->desc.tx_submit = sdma_tx_submit;
1152         /* txd.flags will be overwritten in prep funcs */
1153         sdmac->desc.flags = DMA_CTRL_ACK;
1154
1155         return 0;
1156
1157 disable_clk_ahb:
1158         clk_disable(sdmac->sdma->clk_ahb);
1159 disable_clk_ipg:
1160         clk_disable(sdmac->sdma->clk_ipg);
1161         return ret;
1162 }
1163
1164 static void sdma_free_chan_resources(struct dma_chan *chan)
1165 {
1166         struct sdma_channel *sdmac = to_sdma_chan(chan);
1167         struct sdma_engine *sdma = sdmac->sdma;
1168
1169         sdma_disable_channel(chan);
1170
1171         if (sdmac->event_id0)
1172                 sdma_event_disable(sdmac, sdmac->event_id0);
1173         if (sdmac->event_id1)
1174                 sdma_event_disable(sdmac, sdmac->event_id1);
1175
1176         sdmac->event_id0 = 0;
1177         sdmac->event_id1 = 0;
1178
1179         sdma_set_channel_priority(sdmac, 0);
1180
1181         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1182
1183         clk_disable(sdma->clk_ipg);
1184         clk_disable(sdma->clk_ahb);
1185 }
1186
1187 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1188                 struct dma_chan *chan, struct scatterlist *sgl,
1189                 unsigned int sg_len, enum dma_transfer_direction direction,
1190                 unsigned long flags, void *context)
1191 {
1192         struct sdma_channel *sdmac = to_sdma_chan(chan);
1193         struct sdma_engine *sdma = sdmac->sdma;
1194         int ret, i, count;
1195         int channel = sdmac->channel;
1196         struct scatterlist *sg;
1197
1198         if (sdmac->status == DMA_IN_PROGRESS)
1199                 return NULL;
1200         sdmac->status = DMA_IN_PROGRESS;
1201
1202         sdmac->flags = 0;
1203
1204         sdmac->buf_tail = 0;
1205         sdmac->buf_ptail = 0;
1206         sdmac->chn_real_count = 0;
1207
1208         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1209                         sg_len, channel);
1210
1211         sdmac->direction = direction;
1212         ret = sdma_load_context(sdmac);
1213         if (ret)
1214                 goto err_out;
1215
1216         if (sg_len > NUM_BD) {
1217                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1218                                 channel, sg_len, NUM_BD);
1219                 ret = -EINVAL;
1220                 goto err_out;
1221         }
1222
1223         sdmac->chn_count = 0;
1224         for_each_sg(sgl, sg, sg_len, i) {
1225                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1226                 int param;
1227
1228                 bd->buffer_addr = sg->dma_address;
1229
1230                 count = sg_dma_len(sg);
1231
1232                 if (count > 0xffff) {
1233                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1234                                         channel, count, 0xffff);
1235                         ret = -EINVAL;
1236                         goto err_out;
1237                 }
1238
1239                 bd->mode.count = count;
1240                 sdmac->chn_count += count;
1241
1242                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1243                         ret =  -EINVAL;
1244                         goto err_out;
1245                 }
1246
1247                 switch (sdmac->word_size) {
1248                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1249                         bd->mode.command = 0;
1250                         if (count & 3 || sg->dma_address & 3)
1251                                 return NULL;
1252                         break;
1253                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1254                         bd->mode.command = 2;
1255                         if (count & 1 || sg->dma_address & 1)
1256                                 return NULL;
1257                         break;
1258                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1259                         bd->mode.command = 1;
1260                         break;
1261                 default:
1262                         return NULL;
1263                 }
1264
1265                 param = BD_DONE | BD_EXTD | BD_CONT;
1266
1267                 if (i + 1 == sg_len) {
1268                         param |= BD_INTR;
1269                         param |= BD_LAST;
1270                         param &= ~BD_CONT;
1271                 }
1272
1273                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1274                                 i, count, (u64)sg->dma_address,
1275                                 param & BD_WRAP ? "wrap" : "",
1276                                 param & BD_INTR ? " intr" : "");
1277
1278                 bd->mode.status = param;
1279         }
1280
1281         sdmac->num_bd = sg_len;
1282         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1283
1284         return &sdmac->desc;
1285 err_out:
1286         sdmac->status = DMA_ERROR;
1287         return NULL;
1288 }
1289
1290 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1291                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1292                 size_t period_len, enum dma_transfer_direction direction,
1293                 unsigned long flags)
1294 {
1295         struct sdma_channel *sdmac = to_sdma_chan(chan);
1296         struct sdma_engine *sdma = sdmac->sdma;
1297         int num_periods = buf_len / period_len;
1298         int channel = sdmac->channel;
1299         int ret, i = 0, buf = 0;
1300
1301         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1302
1303         if (sdmac->status == DMA_IN_PROGRESS)
1304                 return NULL;
1305
1306         sdmac->status = DMA_IN_PROGRESS;
1307
1308         sdmac->buf_tail = 0;
1309         sdmac->buf_ptail = 0;
1310         sdmac->chn_real_count = 0;
1311         sdmac->period_len = period_len;
1312
1313         sdmac->flags |= IMX_DMA_SG_LOOP;
1314         sdmac->direction = direction;
1315         ret = sdma_load_context(sdmac);
1316         if (ret)
1317                 goto err_out;
1318
1319         if (num_periods > NUM_BD) {
1320                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1321                                 channel, num_periods, NUM_BD);
1322                 goto err_out;
1323         }
1324
1325         if (period_len > 0xffff) {
1326                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1327                                 channel, period_len, 0xffff);
1328                 goto err_out;
1329         }
1330
1331         while (buf < buf_len) {
1332                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1333                 int param;
1334
1335                 bd->buffer_addr = dma_addr;
1336
1337                 bd->mode.count = period_len;
1338
1339                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1340                         goto err_out;
1341                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1342                         bd->mode.command = 0;
1343                 else
1344                         bd->mode.command = sdmac->word_size;
1345
1346                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1347                 if (i + 1 == num_periods)
1348                         param |= BD_WRAP;
1349
1350                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1351                                 i, period_len, (u64)dma_addr,
1352                                 param & BD_WRAP ? "wrap" : "",
1353                                 param & BD_INTR ? " intr" : "");
1354
1355                 bd->mode.status = param;
1356
1357                 dma_addr += period_len;
1358                 buf += period_len;
1359
1360                 i++;
1361         }
1362
1363         sdmac->num_bd = num_periods;
1364         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1365
1366         return &sdmac->desc;
1367 err_out:
1368         sdmac->status = DMA_ERROR;
1369         return NULL;
1370 }
1371
1372 static int sdma_config(struct dma_chan *chan,
1373                        struct dma_slave_config *dmaengine_cfg)
1374 {
1375         struct sdma_channel *sdmac = to_sdma_chan(chan);
1376
1377         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1378                 sdmac->per_address = dmaengine_cfg->src_addr;
1379                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1380                         dmaengine_cfg->src_addr_width;
1381                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1382         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1383                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1384                 sdmac->per_address = dmaengine_cfg->dst_addr;
1385                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1386                         SDMA_WATERMARK_LEVEL_LWML;
1387                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1388                         SDMA_WATERMARK_LEVEL_HWML;
1389                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1390         } else {
1391                 sdmac->per_address = dmaengine_cfg->dst_addr;
1392                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1393                         dmaengine_cfg->dst_addr_width;
1394                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1395         }
1396         sdmac->direction = dmaengine_cfg->direction;
1397         return sdma_config_channel(chan);
1398 }
1399
1400 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1401                                       dma_cookie_t cookie,
1402                                       struct dma_tx_state *txstate)
1403 {
1404         struct sdma_channel *sdmac = to_sdma_chan(chan);
1405         u32 residue;
1406
1407         if (sdmac->flags & IMX_DMA_SG_LOOP)
1408                 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1409                            sdmac->period_len - sdmac->chn_real_count;
1410         else
1411                 residue = sdmac->chn_count - sdmac->chn_real_count;
1412
1413         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1414                          residue);
1415
1416         return sdmac->status;
1417 }
1418
1419 static void sdma_issue_pending(struct dma_chan *chan)
1420 {
1421         struct sdma_channel *sdmac = to_sdma_chan(chan);
1422         struct sdma_engine *sdma = sdmac->sdma;
1423
1424         if (sdmac->status == DMA_IN_PROGRESS)
1425                 sdma_enable_channel(sdma, sdmac->channel);
1426 }
1427
1428 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1429 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1430 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1431 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1432
1433 static void sdma_add_scripts(struct sdma_engine *sdma,
1434                 const struct sdma_script_start_addrs *addr)
1435 {
1436         s32 *addr_arr = (u32 *)addr;
1437         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1438         int i;
1439
1440         /* use the default firmware in ROM if missing external firmware */
1441         if (!sdma->script_number)
1442                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1443
1444         for (i = 0; i < sdma->script_number; i++)
1445                 if (addr_arr[i] > 0)
1446                         saddr_arr[i] = addr_arr[i];
1447 }
1448
1449 static void sdma_load_firmware(const struct firmware *fw, void *context)
1450 {
1451         struct sdma_engine *sdma = context;
1452         const struct sdma_firmware_header *header;
1453         const struct sdma_script_start_addrs *addr;
1454         unsigned short *ram_code;
1455
1456         if (!fw) {
1457                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1458                 /* In this case we just use the ROM firmware. */
1459                 return;
1460         }
1461
1462         if (fw->size < sizeof(*header))
1463                 goto err_firmware;
1464
1465         header = (struct sdma_firmware_header *)fw->data;
1466
1467         if (header->magic != SDMA_FIRMWARE_MAGIC)
1468                 goto err_firmware;
1469         if (header->ram_code_start + header->ram_code_size > fw->size)
1470                 goto err_firmware;
1471         switch (header->version_major) {
1472         case 1:
1473                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1474                 break;
1475         case 2:
1476                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1477                 break;
1478         case 3:
1479                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1480                 break;
1481         case 4:
1482                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1483                 break;
1484         default:
1485                 dev_err(sdma->dev, "unknown firmware version\n");
1486                 goto err_firmware;
1487         }
1488
1489         addr = (void *)header + header->script_addrs_start;
1490         ram_code = (void *)header + header->ram_code_start;
1491
1492         clk_enable(sdma->clk_ipg);
1493         clk_enable(sdma->clk_ahb);
1494         /* download the RAM image for SDMA */
1495         sdma_load_script(sdma, ram_code,
1496                         header->ram_code_size,
1497                         addr->ram_code_start_addr);
1498         clk_disable(sdma->clk_ipg);
1499         clk_disable(sdma->clk_ahb);
1500
1501         sdma_add_scripts(sdma, addr);
1502
1503         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1504                         header->version_major,
1505                         header->version_minor);
1506
1507 err_firmware:
1508         release_firmware(fw);
1509 }
1510
1511 #define EVENT_REMAP_CELLS 3
1512
1513 static int sdma_event_remap(struct sdma_engine *sdma)
1514 {
1515         struct device_node *np = sdma->dev->of_node;
1516         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1517         struct property *event_remap;
1518         struct regmap *gpr;
1519         char propname[] = "fsl,sdma-event-remap";
1520         u32 reg, val, shift, num_map, i;
1521         int ret = 0;
1522
1523         if (IS_ERR(np) || IS_ERR(gpr_np))
1524                 goto out;
1525
1526         event_remap = of_find_property(np, propname, NULL);
1527         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1528         if (!num_map) {
1529                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1530                 goto out;
1531         } else if (num_map % EVENT_REMAP_CELLS) {
1532                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1533                                 propname, EVENT_REMAP_CELLS);
1534                 ret = -EINVAL;
1535                 goto out;
1536         }
1537
1538         gpr = syscon_node_to_regmap(gpr_np);
1539         if (IS_ERR(gpr)) {
1540                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1541                 ret = PTR_ERR(gpr);
1542                 goto out;
1543         }
1544
1545         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1546                 ret = of_property_read_u32_index(np, propname, i, &reg);
1547                 if (ret) {
1548                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1549                                         propname, i);
1550                         goto out;
1551                 }
1552
1553                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1554                 if (ret) {
1555                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1556                                         propname, i + 1);
1557                         goto out;
1558                 }
1559
1560                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1561                 if (ret) {
1562                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1563                                         propname, i + 2);
1564                         goto out;
1565                 }
1566
1567                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1568         }
1569
1570 out:
1571         if (!IS_ERR(gpr_np))
1572                 of_node_put(gpr_np);
1573
1574         return ret;
1575 }
1576
1577 static int sdma_get_firmware(struct sdma_engine *sdma,
1578                 const char *fw_name)
1579 {
1580         int ret;
1581
1582         ret = request_firmware_nowait(THIS_MODULE,
1583                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1584                         GFP_KERNEL, sdma, sdma_load_firmware);
1585
1586         return ret;
1587 }
1588
1589 static int sdma_init(struct sdma_engine *sdma)
1590 {
1591         int i, ret;
1592         dma_addr_t ccb_phys;
1593
1594         ret = clk_enable(sdma->clk_ipg);
1595         if (ret)
1596                 return ret;
1597         ret = clk_enable(sdma->clk_ahb);
1598         if (ret)
1599                 goto disable_clk_ipg;
1600
1601         /* Be sure SDMA has not started yet */
1602         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1603
1604         sdma->channel_control = dma_alloc_coherent(NULL,
1605                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1606                         sizeof(struct sdma_context_data),
1607                         &ccb_phys, GFP_KERNEL);
1608
1609         if (!sdma->channel_control) {
1610                 ret = -ENOMEM;
1611                 goto err_dma_alloc;
1612         }
1613
1614         sdma->context = (void *)sdma->channel_control +
1615                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1616         sdma->context_phys = ccb_phys +
1617                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1618
1619         /* Zero-out the CCB structures array just allocated */
1620         memset(sdma->channel_control, 0,
1621                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1622
1623         /* disable all channels */
1624         for (i = 0; i < sdma->drvdata->num_events; i++)
1625                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1626
1627         /* All channels have priority 0 */
1628         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1629                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1630
1631         ret = sdma_request_channel(&sdma->channel[0]);
1632         if (ret)
1633                 goto err_dma_alloc;
1634
1635         sdma_config_ownership(&sdma->channel[0], false, true, false);
1636
1637         /* Set Command Channel (Channel Zero) */
1638         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1639
1640         /* Set bits of CONFIG register but with static context switching */
1641         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1642         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1643
1644         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1645
1646         /* Initializes channel's priorities */
1647         sdma_set_channel_priority(&sdma->channel[0], 7);
1648
1649         clk_disable(sdma->clk_ipg);
1650         clk_disable(sdma->clk_ahb);
1651
1652         return 0;
1653
1654 err_dma_alloc:
1655         clk_disable(sdma->clk_ahb);
1656 disable_clk_ipg:
1657         clk_disable(sdma->clk_ipg);
1658         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1659         return ret;
1660 }
1661
1662 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1663 {
1664         struct sdma_channel *sdmac = to_sdma_chan(chan);
1665         struct imx_dma_data *data = fn_param;
1666
1667         if (!imx_dma_is_general_purpose(chan))
1668                 return false;
1669
1670         sdmac->data = *data;
1671         chan->private = &sdmac->data;
1672
1673         return true;
1674 }
1675
1676 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1677                                    struct of_dma *ofdma)
1678 {
1679         struct sdma_engine *sdma = ofdma->of_dma_data;
1680         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1681         struct imx_dma_data data;
1682
1683         if (dma_spec->args_count != 3)
1684                 return NULL;
1685
1686         data.dma_request = dma_spec->args[0];
1687         data.peripheral_type = dma_spec->args[1];
1688         data.priority = dma_spec->args[2];
1689         /*
1690          * init dma_request2 to zero, which is not used by the dts.
1691          * For P2P, dma_request2 is init from dma_request_channel(),
1692          * chan->private will point to the imx_dma_data, and in
1693          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1694          * be set to sdmac->event_id1.
1695          */
1696         data.dma_request2 = 0;
1697
1698         return dma_request_channel(mask, sdma_filter_fn, &data);
1699 }
1700
1701 static int sdma_probe(struct platform_device *pdev)
1702 {
1703         const struct of_device_id *of_id =
1704                         of_match_device(sdma_dt_ids, &pdev->dev);
1705         struct device_node *np = pdev->dev.of_node;
1706         struct device_node *spba_bus;
1707         const char *fw_name;
1708         int ret;
1709         int irq;
1710         struct resource *iores;
1711         struct resource spba_res;
1712         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1713         int i;
1714         struct sdma_engine *sdma;
1715         s32 *saddr_arr;
1716         const struct sdma_driver_data *drvdata = NULL;
1717
1718         if (of_id)
1719                 drvdata = of_id->data;
1720         else if (pdev->id_entry)
1721                 drvdata = (void *)pdev->id_entry->driver_data;
1722
1723         if (!drvdata) {
1724                 dev_err(&pdev->dev, "unable to find driver data\n");
1725                 return -EINVAL;
1726         }
1727
1728         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1729         if (ret)
1730                 return ret;
1731
1732         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1733         if (!sdma)
1734                 return -ENOMEM;
1735
1736         spin_lock_init(&sdma->channel_0_lock);
1737
1738         sdma->dev = &pdev->dev;
1739         sdma->drvdata = drvdata;
1740
1741         irq = platform_get_irq(pdev, 0);
1742         if (irq < 0)
1743                 return irq;
1744
1745         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1746         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1747         if (IS_ERR(sdma->regs))
1748                 return PTR_ERR(sdma->regs);
1749
1750         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1751         if (IS_ERR(sdma->clk_ipg))
1752                 return PTR_ERR(sdma->clk_ipg);
1753
1754         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1755         if (IS_ERR(sdma->clk_ahb))
1756                 return PTR_ERR(sdma->clk_ahb);
1757
1758         clk_prepare(sdma->clk_ipg);
1759         clk_prepare(sdma->clk_ahb);
1760
1761         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1762                                sdma);
1763         if (ret)
1764                 return ret;
1765
1766         sdma->irq = irq;
1767
1768         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1769         if (!sdma->script_addrs)
1770                 return -ENOMEM;
1771
1772         /* initially no scripts available */
1773         saddr_arr = (s32 *)sdma->script_addrs;
1774         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1775                 saddr_arr[i] = -EINVAL;
1776
1777         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1778         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1779
1780         INIT_LIST_HEAD(&sdma->dma_device.channels);
1781         /* Initialize channel parameters */
1782         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1783                 struct sdma_channel *sdmac = &sdma->channel[i];
1784
1785                 sdmac->sdma = sdma;
1786                 spin_lock_init(&sdmac->lock);
1787
1788                 sdmac->chan.device = &sdma->dma_device;
1789                 dma_cookie_init(&sdmac->chan);
1790                 sdmac->channel = i;
1791
1792                 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1793                              (unsigned long) sdmac);
1794                 /*
1795                  * Add the channel to the DMAC list. Do not add channel 0 though
1796                  * because we need it internally in the SDMA driver. This also means
1797                  * that channel 0 in dmaengine counting matches sdma channel 1.
1798                  */
1799                 if (i)
1800                         list_add_tail(&sdmac->chan.device_node,
1801                                         &sdma->dma_device.channels);
1802         }
1803
1804         ret = sdma_init(sdma);
1805         if (ret)
1806                 goto err_init;
1807
1808         ret = sdma_event_remap(sdma);
1809         if (ret)
1810                 goto err_init;
1811
1812         if (sdma->drvdata->script_addrs)
1813                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1814         if (pdata && pdata->script_addrs)
1815                 sdma_add_scripts(sdma, pdata->script_addrs);
1816
1817         if (pdata) {
1818                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1819                 if (ret)
1820                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1821         } else {
1822                 /*
1823                  * Because that device tree does not encode ROM script address,
1824                  * the RAM script in firmware is mandatory for device tree
1825                  * probe, otherwise it fails.
1826                  */
1827                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1828                                               &fw_name);
1829                 if (ret)
1830                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1831                 else {
1832                         ret = sdma_get_firmware(sdma, fw_name);
1833                         if (ret)
1834                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1835                 }
1836         }
1837
1838         sdma->dma_device.dev = &pdev->dev;
1839
1840         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1841         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1842         sdma->dma_device.device_tx_status = sdma_tx_status;
1843         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1844         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1845         sdma->dma_device.device_config = sdma_config;
1846         sdma->dma_device.device_terminate_all = sdma_disable_channel_with_delay;
1847         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1848         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1849         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1850         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1851         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1852         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1853         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1854
1855         platform_set_drvdata(pdev, sdma);
1856
1857         ret = dma_async_device_register(&sdma->dma_device);
1858         if (ret) {
1859                 dev_err(&pdev->dev, "unable to register\n");
1860                 goto err_init;
1861         }
1862
1863         if (np) {
1864                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1865                 if (ret) {
1866                         dev_err(&pdev->dev, "failed to register controller\n");
1867                         goto err_register;
1868                 }
1869
1870                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1871                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1872                 if (!ret) {
1873                         sdma->spba_start_addr = spba_res.start;
1874                         sdma->spba_end_addr = spba_res.end;
1875                 }
1876                 of_node_put(spba_bus);
1877         }
1878
1879         return 0;
1880
1881 err_register:
1882         dma_async_device_unregister(&sdma->dma_device);
1883 err_init:
1884         kfree(sdma->script_addrs);
1885         return ret;
1886 }
1887
1888 static int sdma_remove(struct platform_device *pdev)
1889 {
1890         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1891         int i;
1892
1893         devm_free_irq(&pdev->dev, sdma->irq, sdma);
1894         dma_async_device_unregister(&sdma->dma_device);
1895         kfree(sdma->script_addrs);
1896         /* Kill the tasklet */
1897         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1898                 struct sdma_channel *sdmac = &sdma->channel[i];
1899
1900                 tasklet_kill(&sdmac->tasklet);
1901         }
1902
1903         platform_set_drvdata(pdev, NULL);
1904         return 0;
1905 }
1906
1907 static struct platform_driver sdma_driver = {
1908         .driver         = {
1909                 .name   = "imx-sdma",
1910                 .of_match_table = sdma_dt_ids,
1911         },
1912         .id_table       = sdma_devtypes,
1913         .remove         = sdma_remove,
1914         .probe          = sdma_probe,
1915 };
1916
1917 module_platform_driver(sdma_driver);
1918
1919 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1920 MODULE_DESCRIPTION("i.MX SDMA driver");
1921 MODULE_LICENSE("GPL");