]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/edac/sb_edac.c
Merge remote-tracking branch 'asoc/topic/sti' into asoc-next
[karo-tx-linux.git] / drivers / edac / sb_edac.c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *       Mauro Carvalho Chehab
11  */
12
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26
27 #include "edac_core.h"
28
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)                      \
44         edac_printk(level, "sbridge", fmt, ##arg)
45
46 #define sbridge_mc_printk(mci, level, fmt, arg...)              \
47         edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi) \
53         (((v) & GENMASK_ULL(hi, lo)) >> (lo))
54
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57         0x80, 0x88, 0x90, 0x98, 0xa0,
58         0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60
61 static const u32 ibridge_dram_rule[] = {
62         0x60, 0x68, 0x70, 0x78, 0x80,
63         0x88, 0x90, 0x98, 0xa0, 0xa8,
64         0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65         0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67
68 static const u32 knl_dram_rule[] = {
69         0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70         0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71         0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72         0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73         0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75
76 #define DRAM_RULE_ENABLE(reg)   GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)             GET_BITFIELD(reg, 26, 26)
78
79 static char *show_dram_attr(u32 attr)
80 {
81         switch (attr) {
82                 case 0:
83                         return "DRAM";
84                 case 1:
85                         return "MMCFG";
86                 case 2:
87                         return "NXM";
88                 default:
89                         return "unknown";
90         }
91 }
92
93 static const u32 sbridge_interleave_list[] = {
94         0x84, 0x8c, 0x94, 0x9c, 0xa4,
95         0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97
98 static const u32 ibridge_interleave_list[] = {
99         0x64, 0x6c, 0x74, 0x7c, 0x84,
100         0x8c, 0x94, 0x9c, 0xa4, 0xac,
101         0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102         0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104
105 static const u32 knl_interleave_list[] = {
106         0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107         0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108         0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109         0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110         0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112
113 struct interleave_pkg {
114         unsigned char start;
115         unsigned char end;
116 };
117
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119         { 0, 2 },
120         { 3, 5 },
121         { 8, 10 },
122         { 11, 13 },
123         { 16, 18 },
124         { 19, 21 },
125         { 24, 26 },
126         { 27, 29 },
127 };
128
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130         { 0, 3 },
131         { 4, 7 },
132         { 8, 11 },
133         { 12, 15 },
134         { 16, 19 },
135         { 20, 23 },
136         { 24, 27 },
137         { 28, 31 },
138 };
139
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141                           int interleave)
142 {
143         return GET_BITFIELD(reg, table[interleave].start,
144                             table[interleave].end);
145 }
146
147 /* Devices 12 Function 7 */
148
149 #define TOLM            0x80
150 #define TOHM            0x84
151 #define HASWELL_TOLM    0xd0
152 #define HASWELL_TOHM_0  0xd4
153 #define HASWELL_TOHM_1  0xd8
154 #define KNL_TOLM        0xd0
155 #define KNL_TOHM_0      0xd4
156 #define KNL_TOHM_1      0xd8
157
158 #define GET_TOLM(reg)           ((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)           ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160
161 /* Device 13 Function 6 */
162
163 #define SAD_TARGET      0xf0
164
165 #define SOURCE_ID(reg)          GET_BITFIELD(reg, 9, 11)
166
167 #define SOURCE_ID_KNL(reg)      GET_BITFIELD(reg, 12, 14)
168
169 #define SAD_CONTROL     0xf4
170
171 /* Device 14 function 0 */
172
173 static const u32 tad_dram_rule[] = {
174         0x40, 0x44, 0x48, 0x4c,
175         0x50, 0x54, 0x58, 0x5c,
176         0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
179
180 #define TAD_LIMIT(reg)          ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)           GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)             GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)           GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)           GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)           GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)           GET_BITFIELD(reg,  0,  1)
187
188 /* Device 15, function 0 */
189
190 #define MCMTR                   0x7c
191 #define KNL_MCMTR               0x624
192
193 #define IS_ECC_ENABLED(mcmtr)           GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)      GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)              GET_BITFIELD(mcmtr, 0, 0)
196
197 /* Device 15, function 1 */
198
199 #define RASENABLES              0xac
200 #define IS_MIRROR_ENABLED(reg)          GET_BITFIELD(reg, 0, 0)
201
202 /* Device 15, functions 2-5 */
203
204 static const int mtr_regs[] = {
205         0x80, 0x84, 0x88,
206 };
207
208 static const int knl_mtr_reg = 0xb60;
209
210 #define RANK_DISABLE(mtr)               GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)            GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)              GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)            GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)             GET_BITFIELD(mtr, 0, 1)
215
216 static const u32 tad_ch_nilv_offset[] = {
217         0x90, 0x94, 0x98, 0x9c,
218         0xa0, 0xa4, 0xa8, 0xac,
219         0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)             GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)                 (GET_BITFIELD(reg,  6, 25) << 26)
223
224 static const u32 rir_way_limit[] = {
225         0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228
229 #define IS_RIR_VALID(reg)       GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)            GET_BITFIELD(reg, 28, 29)
231
232 #define MAX_RIR_WAY     8
233
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235         { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236         { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237         { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238         { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239         { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241
242 #define RIR_RNK_TGT(reg)                GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg)         GET_BITFIELD(reg,  2, 14)
244
245 /* Device 16, functions 2-7 */
246
247 /*
248  * FIXME: Implement the error count reads directly
249  */
250
251 static const u32 correrrcnt[] = {
252         0x104, 0x108, 0x10c, 0x110,
253 };
254
255 #define RANK_ODD_OV(reg)                GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg)           GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg)               GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg)          GET_BITFIELD(reg,  0, 14)
259
260 static const u32 correrrthrsld[] = {
261         0x11c, 0x120, 0x124, 0x128,
262 };
263
264 #define RANK_ODD_ERR_THRSLD(reg)        GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg)       GET_BITFIELD(reg,  0, 14)
266
267
268 /* Device 17, function 0 */
269
270 #define SB_RANK_CFG_A           0x0328
271
272 #define IB_RANK_CFG_A           0x0320
273
274 /*
275  * sbridge structs
276  */
277
278 #define NUM_CHANNELS            8       /* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS               3       /* Max DIMMS per channel */
280 #define KNL_MAX_CHAS            38      /* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS        6       /* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS            8       /* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED     0xf     /* Intel IA32 SDM 15-14 */
284
285 enum type {
286         SANDY_BRIDGE,
287         IVY_BRIDGE,
288         HASWELL,
289         BROADWELL,
290         KNIGHTS_LANDING,
291 };
292
293 struct sbridge_pvt;
294 struct sbridge_info {
295         enum type       type;
296         u32             mcmtr;
297         u32             rankcfgr;
298         u64             (*get_tolm)(struct sbridge_pvt *pvt);
299         u64             (*get_tohm)(struct sbridge_pvt *pvt);
300         u64             (*rir_limit)(u32 reg);
301         u64             (*sad_limit)(u32 reg);
302         u32             (*interleave_mode)(u32 reg);
303         char*           (*show_interleave_mode)(u32 reg);
304         u32             (*dram_attr)(u32 reg);
305         const u32       *dram_rule;
306         const u32       *interleave_list;
307         const struct interleave_pkg *interleave_pkg;
308         u8              max_sad;
309         u8              max_interleave;
310         u8              (*get_node_id)(struct sbridge_pvt *pvt);
311         enum mem_type   (*get_memory_type)(struct sbridge_pvt *pvt);
312         enum dev_type   (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
313         struct pci_dev  *pci_vtd;
314 };
315
316 struct sbridge_channel {
317         u32             ranks;
318         u32             dimms;
319 };
320
321 struct pci_id_descr {
322         int                     dev_id;
323         int                     optional;
324 };
325
326 struct pci_id_table {
327         const struct pci_id_descr       *descr;
328         int                             n_devs;
329 };
330
331 struct sbridge_dev {
332         struct list_head        list;
333         u8                      bus, mc;
334         u8                      node_id, source_id;
335         struct pci_dev          **pdev;
336         int                     n_devs;
337         struct mem_ctl_info     *mci;
338 };
339
340 struct knl_pvt {
341         struct pci_dev          *pci_cha[KNL_MAX_CHAS];
342         struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
343         struct pci_dev          *pci_mc0;
344         struct pci_dev          *pci_mc1;
345         struct pci_dev          *pci_mc0_misc;
346         struct pci_dev          *pci_mc1_misc;
347         struct pci_dev          *pci_mc_info; /* tolm, tohm */
348 };
349
350 struct sbridge_pvt {
351         struct pci_dev          *pci_ta, *pci_ddrio, *pci_ras;
352         struct pci_dev          *pci_sad0, *pci_sad1;
353         struct pci_dev          *pci_ha0, *pci_ha1;
354         struct pci_dev          *pci_br0, *pci_br1;
355         struct pci_dev          *pci_ha1_ta;
356         struct pci_dev          *pci_tad[NUM_CHANNELS];
357
358         struct sbridge_dev      *sbridge_dev;
359
360         struct sbridge_info     info;
361         struct sbridge_channel  channel[NUM_CHANNELS];
362
363         /* Memory type detection */
364         bool                    is_mirrored, is_lockstep, is_close_pg;
365         bool                    is_chan_hash;
366
367         /* Fifo double buffers */
368         struct mce              mce_entry[MCE_LOG_LEN];
369         struct mce              mce_outentry[MCE_LOG_LEN];
370
371         /* Fifo in/out counters */
372         unsigned                mce_in, mce_out;
373
374         /* Count indicator to show errors not got */
375         unsigned                mce_overrun;
376
377         /* Memory description */
378         u64                     tolm, tohm;
379         struct knl_pvt knl;
380 };
381
382 #define PCI_DESCR(device_id, opt)       \
383         .dev_id = (device_id),          \
384         .optional = opt
385
386 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
387                 /* Processor Home Agent */
388         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)     },
389
390                 /* Memory controller */
391         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)      },
392         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)     },
393         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)    },
394         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)    },
395         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)    },
396         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)    },
397         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)   },
398
399                 /* System Address Decoder */
400         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)        },
401         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)        },
402
403                 /* Broadcast Registers */
404         { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)          },
405 };
406
407 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
408 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
409         PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
410         {0,}                    /* 0 terminated list. */
411 };
412
413 /* This changes depending if 1HA or 2HA:
414  * 1HA:
415  *      0x0eb8 (17.0) is DDRIO0
416  * 2HA:
417  *      0x0ebc (17.4) is DDRIO0
418  */
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0      0x0eb8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0      0x0ebc
421
422 /* pci ids */
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0             0x0ea0
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA          0x0ea8
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS         0x0e71
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0        0x0eaa
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1        0x0eab
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2        0x0eac
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3        0x0ead
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD                 0x0ec8
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0                 0x0ec9
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1                 0x0eca
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1             0x0e60
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA          0x0e68
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS         0x0e79
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0        0x0e6a
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1        0x0e6b
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2        0x0e6c
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3        0x0e6d
440
441 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
442                 /* Processor Home Agent */
443         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)             },
444
445                 /* Memory controller */
446         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)          },
447         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)         },
448         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)        },
449         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)        },
450         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)        },
451         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)        },
452
453                 /* System Address Decoder */
454         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)                 },
455
456                 /* Broadcast Registers */
457         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)                 },
458         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)                 },
459
460                 /* Optional, mode 2HA */
461         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)             },
462 #if 0
463         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)  },
464         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) },
465 #endif
466         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)        },
467         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)        },
468         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)        },
469         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)        },
470
471         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)      },
472         { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)      },
473 };
474
475 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
476         PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
477         {0,}                    /* 0 terminated list. */
478 };
479
480 /* Haswell support */
481 /* EN processor:
482  *      - 1 IMC
483  *      - 3 DDR3 channels, 2 DPC per channel
484  * EP processor:
485  *      - 1 or 2 IMC
486  *      - 4 DDR4 channels, 3 DPC per channel
487  * EP 4S processor:
488  *      - 2 IMC
489  *      - 4 DDR4 channels, 3 DPC per channel
490  * EX processor:
491  *      - 2 IMC
492  *      - each IMC interfaces with a SMI 2 channel
493  *      - each SMI channel interfaces with a scalable memory buffer
494  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
495  */
496 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
497 #define HASWELL_HASYSDEFEATURE2 0x84
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0     0x2fa0
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1     0x2f60
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA  0x2fa8
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA  0x2f68
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
519 static const struct pci_id_descr pci_dev_descr_haswell[] = {
520         /* first item must be the HA */
521         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)             },
522
523         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)        },
524         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)        },
525
526         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)             },
527
528         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)          },
529         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)     },
530         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)        },
531         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)        },
532         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)        },
533         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)        },
534
535         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)          },
536         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)          },
537         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)          },
538         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)          },
539
540         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)          },
541         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)     },
542         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)        },
543         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)        },
544         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)        },
545         { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)        },
546 };
547
548 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
549         PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
550         {0,}                    /* 0 terminated list. */
551 };
552
553 /* Knight's Landing Support */
554 /*
555  * KNL's memory channels are swizzled between memory controllers.
556  * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
557  */
558 #define knl_channel_remap(channel) ((channel + 3) % 6)
559
560 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
562 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
564 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
565 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
566 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
567 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
568 /* SAD target - 1-29-1 (1 of these) */
569 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
570 /* Caching / Home Agent */
571 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
572 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
573 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
574
575 /*
576  * KNL differs from SB, IB, and Haswell in that it has multiple
577  * instances of the same device with the same device ID, so we handle that
578  * by creating as many copies in the table as we expect to find.
579  * (Like device ID must be grouped together.)
580  */
581
582 static const struct pci_id_descr pci_dev_descr_knl[] = {
583         [0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
584         [1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
585         [2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
586         [4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
587         [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
588         [48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
589         [49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
590 };
591
592 static const struct pci_id_table pci_dev_descr_knl_table[] = {
593         PCI_ID_TABLE_ENTRY(pci_dev_descr_knl),
594         {0,}
595 };
596
597 /*
598  * Broadwell support
599  *
600  * DE processor:
601  *      - 1 IMC
602  *      - 2 DDR3 channels, 2 DPC per channel
603  * EP processor:
604  *      - 1 or 2 IMC
605  *      - 4 DDR4 channels, 3 DPC per channel
606  * EP 4S processor:
607  *      - 2 IMC
608  *      - 4 DDR4 channels, 3 DPC per channel
609  * EX processor:
610  *      - 2 IMC
611  *      - each IMC interfaces with a SMI 2 channel
612  *      - each SMI channel interfaces with a scalable memory buffer
613  *      - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
614  */
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0   0x6fa0
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1   0x6f60
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA        0x6fa8
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA        0x6f68
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
633
634 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
635         /* first item must be the HA */
636         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)           },
637
638         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)      },
639         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)      },
640
641         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)           },
642
643         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)        },
644         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)   },
645         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)      },
646         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)      },
647         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)      },
648         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)      },
649
650         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)        },
651
652         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)        },
653         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)   },
654         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)      },
655         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)      },
656         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)      },
657         { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)      },
658 };
659
660 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
661         PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
662         {0,}                    /* 0 terminated list. */
663 };
664
665 /*
666  *      pci_device_id   table for which devices we are looking for
667  */
668 static const struct pci_device_id sbridge_pci_tbl[] = {
669         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
670         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
671         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
672         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
673         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0)},
674         {0,}                    /* 0 terminated list. */
675 };
676
677
678 /****************************************************************************
679                         Ancillary status routines
680  ****************************************************************************/
681
682 static inline int numrank(enum type type, u32 mtr)
683 {
684         int ranks = (1 << RANK_CNT_BITS(mtr));
685         int max = 4;
686
687         if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
688                 max = 8;
689
690         if (ranks > max) {
691                 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
692                          ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
693                 return -EINVAL;
694         }
695
696         return ranks;
697 }
698
699 static inline int numrow(u32 mtr)
700 {
701         int rows = (RANK_WIDTH_BITS(mtr) + 12);
702
703         if (rows < 13 || rows > 18) {
704                 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
705                          rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
706                 return -EINVAL;
707         }
708
709         return 1 << rows;
710 }
711
712 static inline int numcol(u32 mtr)
713 {
714         int cols = (COL_WIDTH_BITS(mtr) + 10);
715
716         if (cols > 12) {
717                 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
718                          cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
719                 return -EINVAL;
720         }
721
722         return 1 << cols;
723 }
724
725 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
726 {
727         struct sbridge_dev *sbridge_dev;
728
729         /*
730          * If we have devices scattered across several busses that pertain
731          * to the same memory controller, we'll lump them all together.
732          */
733         if (multi_bus) {
734                 return list_first_entry_or_null(&sbridge_edac_list,
735                                 struct sbridge_dev, list);
736         }
737
738         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
739                 if (sbridge_dev->bus == bus)
740                         return sbridge_dev;
741         }
742
743         return NULL;
744 }
745
746 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
747                                            const struct pci_id_table *table)
748 {
749         struct sbridge_dev *sbridge_dev;
750
751         sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
752         if (!sbridge_dev)
753                 return NULL;
754
755         sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
756                                    GFP_KERNEL);
757         if (!sbridge_dev->pdev) {
758                 kfree(sbridge_dev);
759                 return NULL;
760         }
761
762         sbridge_dev->bus = bus;
763         sbridge_dev->n_devs = table->n_devs;
764         list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
765
766         return sbridge_dev;
767 }
768
769 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
770 {
771         list_del(&sbridge_dev->list);
772         kfree(sbridge_dev->pdev);
773         kfree(sbridge_dev);
774 }
775
776 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
777 {
778         u32 reg;
779
780         /* Address range is 32:28 */
781         pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
782         return GET_TOLM(reg);
783 }
784
785 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
786 {
787         u32 reg;
788
789         pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
790         return GET_TOHM(reg);
791 }
792
793 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
794 {
795         u32 reg;
796
797         pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
798
799         return GET_TOLM(reg);
800 }
801
802 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
803 {
804         u32 reg;
805
806         pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
807
808         return GET_TOHM(reg);
809 }
810
811 static u64 rir_limit(u32 reg)
812 {
813         return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
814 }
815
816 static u64 sad_limit(u32 reg)
817 {
818         return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
819 }
820
821 static u32 interleave_mode(u32 reg)
822 {
823         return GET_BITFIELD(reg, 1, 1);
824 }
825
826 char *show_interleave_mode(u32 reg)
827 {
828         return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
829 }
830
831 static u32 dram_attr(u32 reg)
832 {
833         return GET_BITFIELD(reg, 2, 3);
834 }
835
836 static u64 knl_sad_limit(u32 reg)
837 {
838         return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
839 }
840
841 static u32 knl_interleave_mode(u32 reg)
842 {
843         return GET_BITFIELD(reg, 1, 2);
844 }
845
846 static char *knl_show_interleave_mode(u32 reg)
847 {
848         char *s;
849
850         switch (knl_interleave_mode(reg)) {
851         case 0:
852                 s = "use address bits [8:6]";
853                 break;
854         case 1:
855                 s = "use address bits [10:8]";
856                 break;
857         case 2:
858                 s = "use address bits [14:12]";
859                 break;
860         case 3:
861                 s = "use address bits [32:30]";
862                 break;
863         default:
864                 WARN_ON(1);
865                 break;
866         }
867
868         return s;
869 }
870
871 static u32 dram_attr_knl(u32 reg)
872 {
873         return GET_BITFIELD(reg, 3, 4);
874 }
875
876
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879         u32 reg;
880         enum mem_type mtype;
881
882         if (pvt->pci_ddrio) {
883                 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884                                       &reg);
885                 if (GET_BITFIELD(reg, 11, 11))
886                         /* FIXME: Can also be LRDIMM */
887                         mtype = MEM_RDDR3;
888                 else
889                         mtype = MEM_DDR3;
890         } else
891                 mtype = MEM_UNKNOWN;
892
893         return mtype;
894 }
895
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898         u32 reg;
899         bool registered = false;
900         enum mem_type mtype = MEM_UNKNOWN;
901
902         if (!pvt->pci_ddrio)
903                 goto out;
904
905         pci_read_config_dword(pvt->pci_ddrio,
906                               HASWELL_DDRCRCLKCONTROLS, &reg);
907         /* Is_Rdimm */
908         if (GET_BITFIELD(reg, 16, 16))
909                 registered = true;
910
911         pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912         if (GET_BITFIELD(reg, 14, 14)) {
913                 if (registered)
914                         mtype = MEM_RDDR4;
915                 else
916                         mtype = MEM_DDR4;
917         } else {
918                 if (registered)
919                         mtype = MEM_RDDR3;
920                 else
921                         mtype = MEM_DDR3;
922         }
923
924 out:
925         return mtype;
926 }
927
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930         /* for KNL value is fixed */
931         return DEV_X16;
932 }
933
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936         /* there's no way to figure out */
937         return DEV_UNKNOWN;
938 }
939
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942         enum dev_type type;
943
944         switch (mtr) {
945         case 3:
946                 type = DEV_UNKNOWN;
947                 break;
948         case 2:
949                 type = DEV_X16;
950                 break;
951         case 1:
952                 type = DEV_X8;
953                 break;
954         case 0:
955                 type = DEV_X4;
956                 break;
957         }
958
959         return type;
960 }
961
962 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
963 {
964         /*
965          * ddr3_width on the documentation but also valid for DDR4 on
966          * Haswell
967          */
968         return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
969 }
970
971 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
972 {
973         /* ddr3_width on the documentation but also valid for DDR4 */
974         return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
975 }
976
977 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
978 {
979         /* DDR4 RDIMMS and LRDIMMS are supported */
980         return MEM_RDDR4;
981 }
982
983 static u8 get_node_id(struct sbridge_pvt *pvt)
984 {
985         u32 reg;
986         pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
987         return GET_BITFIELD(reg, 0, 2);
988 }
989
990 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
991 {
992         u32 reg;
993
994         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995         return GET_BITFIELD(reg, 0, 3);
996 }
997
998 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
999 {
1000         u32 reg;
1001
1002         pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003         return GET_BITFIELD(reg, 0, 2);
1004 }
1005
1006
1007 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1008 {
1009         u32 reg;
1010
1011         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1012         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1013 }
1014
1015 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1016 {
1017         u64 rc;
1018         u32 reg;
1019
1020         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1021         rc = GET_BITFIELD(reg, 26, 31);
1022         pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1023         rc = ((reg << 6) | rc) << 26;
1024
1025         return rc | 0x1ffffff;
1026 }
1027
1028 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1029 {
1030         u32 reg;
1031
1032         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1033         return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1034 }
1035
1036 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1037 {
1038         u64 rc;
1039         u32 reg_lo, reg_hi;
1040
1041         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1042         pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1043         rc = ((u64)reg_hi << 32) | reg_lo;
1044         return rc | 0x3ffffff;
1045 }
1046
1047
1048 static u64 haswell_rir_limit(u32 reg)
1049 {
1050         return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1051 }
1052
1053 static inline u8 sad_pkg_socket(u8 pkg)
1054 {
1055         /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1056         return ((pkg >> 3) << 2) | (pkg & 0x3);
1057 }
1058
1059 static inline u8 sad_pkg_ha(u8 pkg)
1060 {
1061         return (pkg >> 2) & 0x1;
1062 }
1063
1064 static int haswell_chan_hash(int idx, u64 addr)
1065 {
1066         int i;
1067
1068         /*
1069          * XOR even bits from 12:26 to bit0 of idx,
1070          *     odd bits from 13:27 to bit1
1071          */
1072         for (i = 12; i < 28; i += 2)
1073                 idx ^= (addr >> i) & 3;
1074
1075         return idx;
1076 }
1077
1078 /****************************************************************************
1079                         Memory check routines
1080  ****************************************************************************/
1081 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1082 {
1083         struct pci_dev *pdev = NULL;
1084
1085         do {
1086                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1087                 if (pdev && pdev->bus->number == bus)
1088                         break;
1089         } while (pdev);
1090
1091         return pdev;
1092 }
1093
1094 /**
1095  * check_if_ecc_is_active() - Checks if ECC is active
1096  * @bus:        Device bus
1097  * @type:       Memory controller type
1098  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1099  *          disabled
1100  */
1101 static int check_if_ecc_is_active(const u8 bus, enum type type)
1102 {
1103         struct pci_dev *pdev = NULL;
1104         u32 mcmtr, id;
1105
1106         switch (type) {
1107         case IVY_BRIDGE:
1108                 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1109                 break;
1110         case HASWELL:
1111                 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1112                 break;
1113         case SANDY_BRIDGE:
1114                 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1115                 break;
1116         case BROADWELL:
1117                 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1118                 break;
1119         case KNIGHTS_LANDING:
1120                 /*
1121                  * KNL doesn't group things by bus the same way
1122                  * SB/IB/Haswell does.
1123                  */
1124                 id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1125                 break;
1126         default:
1127                 return -ENODEV;
1128         }
1129
1130         if (type != KNIGHTS_LANDING)
1131                 pdev = get_pdev_same_bus(bus, id);
1132         else
1133                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1134
1135         if (!pdev) {
1136                 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1137                                         "%04x:%04x! on bus %02d\n",
1138                                         PCI_VENDOR_ID_INTEL, id, bus);
1139                 return -ENODEV;
1140         }
1141
1142         pci_read_config_dword(pdev,
1143                         type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1144         if (!IS_ECC_ENABLED(mcmtr)) {
1145                 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1146                 return -ENODEV;
1147         }
1148         return 0;
1149 }
1150
1151 /* Low bits of TAD limit, and some metadata. */
1152 static const u32 knl_tad_dram_limit_lo[] = {
1153         0x400, 0x500, 0x600, 0x700,
1154         0x800, 0x900, 0xa00, 0xb00,
1155 };
1156
1157 /* Low bits of TAD offset. */
1158 static const u32 knl_tad_dram_offset_lo[] = {
1159         0x404, 0x504, 0x604, 0x704,
1160         0x804, 0x904, 0xa04, 0xb04,
1161 };
1162
1163 /* High 16 bits of TAD limit and offset. */
1164 static const u32 knl_tad_dram_hi[] = {
1165         0x408, 0x508, 0x608, 0x708,
1166         0x808, 0x908, 0xa08, 0xb08,
1167 };
1168
1169 /* Number of ways a tad entry is interleaved. */
1170 static const u32 knl_tad_ways[] = {
1171         8, 6, 4, 3, 2, 1,
1172 };
1173
1174 /*
1175  * Retrieve the n'th Target Address Decode table entry
1176  * from the memory controller's TAD table.
1177  *
1178  * @pvt:        driver private data
1179  * @entry:      which entry you want to retrieve
1180  * @mc:         which memory controller (0 or 1)
1181  * @offset:     output tad range offset
1182  * @limit:      output address of first byte above tad range
1183  * @ways:       output number of interleave ways
1184  *
1185  * The offset value has curious semantics.  It's a sort of running total
1186  * of the sizes of all the memory regions that aren't mapped in this
1187  * tad table.
1188  */
1189 static int knl_get_tad(const struct sbridge_pvt *pvt,
1190                 const int entry,
1191                 const int mc,
1192                 u64 *offset,
1193                 u64 *limit,
1194                 int *ways)
1195 {
1196         u32 reg_limit_lo, reg_offset_lo, reg_hi;
1197         struct pci_dev *pci_mc;
1198         int way_id;
1199
1200         switch (mc) {
1201         case 0:
1202                 pci_mc = pvt->knl.pci_mc0;
1203                 break;
1204         case 1:
1205                 pci_mc = pvt->knl.pci_mc1;
1206                 break;
1207         default:
1208                 WARN_ON(1);
1209                 return -EINVAL;
1210         }
1211
1212         pci_read_config_dword(pci_mc,
1213                         knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1214         pci_read_config_dword(pci_mc,
1215                         knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1216         pci_read_config_dword(pci_mc,
1217                         knl_tad_dram_hi[entry], &reg_hi);
1218
1219         /* Is this TAD entry enabled? */
1220         if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1221                 return -ENODEV;
1222
1223         way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1224
1225         if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1226                 *ways = knl_tad_ways[way_id];
1227         } else {
1228                 *ways = 0;
1229                 sbridge_printk(KERN_ERR,
1230                                 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1231                                 way_id);
1232                 return -ENODEV;
1233         }
1234
1235         /*
1236          * The least significant 6 bits of base and limit are truncated.
1237          * For limit, we fill the missing bits with 1s.
1238          */
1239         *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1240                                 ((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1241         *limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1242                                 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1243
1244         return 0;
1245 }
1246
1247 /* Determine which memory controller is responsible for a given channel. */
1248 static int knl_channel_mc(int channel)
1249 {
1250         WARN_ON(channel < 0 || channel >= 6);
1251
1252         return channel < 3 ? 1 : 0;
1253 }
1254
1255 /*
1256  * Get the Nth entry from EDC_ROUTE_TABLE register.
1257  * (This is the per-tile mapping of logical interleave targets to
1258  *  physical EDC modules.)
1259  *
1260  * entry 0: 0:2
1261  *       1: 3:5
1262  *       2: 6:8
1263  *       3: 9:11
1264  *       4: 12:14
1265  *       5: 15:17
1266  *       6: 18:20
1267  *       7: 21:23
1268  * reserved: 24:31
1269  */
1270 static u32 knl_get_edc_route(int entry, u32 reg)
1271 {
1272         WARN_ON(entry >= KNL_MAX_EDCS);
1273         return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1274 }
1275
1276 /*
1277  * Get the Nth entry from MC_ROUTE_TABLE register.
1278  * (This is the per-tile mapping of logical interleave targets to
1279  *  physical DRAM channels modules.)
1280  *
1281  * entry 0: mc 0:2   channel 18:19
1282  *       1: mc 3:5   channel 20:21
1283  *       2: mc 6:8   channel 22:23
1284  *       3: mc 9:11  channel 24:25
1285  *       4: mc 12:14 channel 26:27
1286  *       5: mc 15:17 channel 28:29
1287  * reserved: 30:31
1288  *
1289  * Though we have 3 bits to identify the MC, we should only see
1290  * the values 0 or 1.
1291  */
1292
1293 static u32 knl_get_mc_route(int entry, u32 reg)
1294 {
1295         int mc, chan;
1296
1297         WARN_ON(entry >= KNL_MAX_CHANNELS);
1298
1299         mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1300         chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1301
1302         return knl_channel_remap(mc*3 + chan);
1303 }
1304
1305 /*
1306  * Render the EDC_ROUTE register in human-readable form.
1307  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1308  */
1309 static void knl_show_edc_route(u32 reg, char *s)
1310 {
1311         int i;
1312
1313         for (i = 0; i < KNL_MAX_EDCS; i++) {
1314                 s[i*2] = knl_get_edc_route(i, reg) + '0';
1315                 s[i*2+1] = '-';
1316         }
1317
1318         s[KNL_MAX_EDCS*2 - 1] = '\0';
1319 }
1320
1321 /*
1322  * Render the MC_ROUTE register in human-readable form.
1323  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1324  */
1325 static void knl_show_mc_route(u32 reg, char *s)
1326 {
1327         int i;
1328
1329         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1330                 s[i*2] = knl_get_mc_route(i, reg) + '0';
1331                 s[i*2+1] = '-';
1332         }
1333
1334         s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1335 }
1336
1337 #define KNL_EDC_ROUTE 0xb8
1338 #define KNL_MC_ROUTE 0xb4
1339
1340 /* Is this dram rule backed by regular DRAM in flat mode? */
1341 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1342
1343 /* Is this dram rule cached? */
1344 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1345
1346 /* Is this rule backed by edc ? */
1347 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1348
1349 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1350 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1351
1352 /* Is this rule mod3? */
1353 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1354
1355 /*
1356  * Figure out how big our RAM modules are.
1357  *
1358  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1359  * have to figure this out from the SAD rules, interleave lists, route tables,
1360  * and TAD rules.
1361  *
1362  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1363  * inspect the TAD rules to figure out how large the SAD regions really are.
1364  *
1365  * When we know the real size of a SAD region and how many ways it's
1366  * interleaved, we know the individual contribution of each channel to
1367  * TAD is size/ways.
1368  *
1369  * Finally, we have to check whether each channel participates in each SAD
1370  * region.
1371  *
1372  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1373  * much memory the channel uses, we know the DIMM is at least that large.
1374  * (The BIOS might possibly choose not to map all available memory, in which
1375  * case we will underreport the size of the DIMM.)
1376  *
1377  * In theory, we could try to determine the EDC sizes as well, but that would
1378  * only work in flat mode, not in cache mode.
1379  *
1380  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1381  *            elements)
1382  */
1383 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1384 {
1385         u64 sad_base, sad_size, sad_limit = 0;
1386         u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1387         int sad_rule = 0;
1388         int tad_rule = 0;
1389         int intrlv_ways, tad_ways;
1390         u32 first_pkg, pkg;
1391         int i;
1392         u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1393         u32 dram_rule, interleave_reg;
1394         u32 mc_route_reg[KNL_MAX_CHAS];
1395         u32 edc_route_reg[KNL_MAX_CHAS];
1396         int edram_only;
1397         char edc_route_string[KNL_MAX_EDCS*2];
1398         char mc_route_string[KNL_MAX_CHANNELS*2];
1399         int cur_reg_start;
1400         int mc;
1401         int channel;
1402         int way;
1403         int participants[KNL_MAX_CHANNELS];
1404         int participant_count = 0;
1405
1406         for (i = 0; i < KNL_MAX_CHANNELS; i++)
1407                 mc_sizes[i] = 0;
1408
1409         /* Read the EDC route table in each CHA. */
1410         cur_reg_start = 0;
1411         for (i = 0; i < KNL_MAX_CHAS; i++) {
1412                 pci_read_config_dword(pvt->knl.pci_cha[i],
1413                                 KNL_EDC_ROUTE, &edc_route_reg[i]);
1414
1415                 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1416                         knl_show_edc_route(edc_route_reg[i-1],
1417                                         edc_route_string);
1418                         if (cur_reg_start == i-1)
1419                                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1420                                         cur_reg_start, edc_route_string);
1421                         else
1422                                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1423                                         cur_reg_start, i-1, edc_route_string);
1424                         cur_reg_start = i;
1425                 }
1426         }
1427         knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1428         if (cur_reg_start == i-1)
1429                 edac_dbg(0, "edc route table for CHA %d: %s\n",
1430                         cur_reg_start, edc_route_string);
1431         else
1432                 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1433                         cur_reg_start, i-1, edc_route_string);
1434
1435         /* Read the MC route table in each CHA. */
1436         cur_reg_start = 0;
1437         for (i = 0; i < KNL_MAX_CHAS; i++) {
1438                 pci_read_config_dword(pvt->knl.pci_cha[i],
1439                         KNL_MC_ROUTE, &mc_route_reg[i]);
1440
1441                 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1442                         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1443                         if (cur_reg_start == i-1)
1444                                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1445                                         cur_reg_start, mc_route_string);
1446                         else
1447                                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1448                                         cur_reg_start, i-1, mc_route_string);
1449                         cur_reg_start = i;
1450                 }
1451         }
1452         knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1453         if (cur_reg_start == i-1)
1454                 edac_dbg(0, "mc route table for CHA %d: %s\n",
1455                         cur_reg_start, mc_route_string);
1456         else
1457                 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1458                         cur_reg_start, i-1, mc_route_string);
1459
1460         /* Process DRAM rules */
1461         for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1462                 /* previous limit becomes the new base */
1463                 sad_base = sad_limit;
1464
1465                 pci_read_config_dword(pvt->pci_sad0,
1466                         pvt->info.dram_rule[sad_rule], &dram_rule);
1467
1468                 if (!DRAM_RULE_ENABLE(dram_rule))
1469                         break;
1470
1471                 edram_only = KNL_EDRAM_ONLY(dram_rule);
1472
1473                 sad_limit = pvt->info.sad_limit(dram_rule)+1;
1474                 sad_size = sad_limit - sad_base;
1475
1476                 pci_read_config_dword(pvt->pci_sad0,
1477                         pvt->info.interleave_list[sad_rule], &interleave_reg);
1478
1479                 /*
1480                  * Find out how many ways this dram rule is interleaved.
1481                  * We stop when we see the first channel again.
1482                  */
1483                 first_pkg = sad_pkg(pvt->info.interleave_pkg,
1484                                                 interleave_reg, 0);
1485                 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1486                         pkg = sad_pkg(pvt->info.interleave_pkg,
1487                                                 interleave_reg, intrlv_ways);
1488
1489                         if ((pkg & 0x8) == 0) {
1490                                 /*
1491                                  * 0 bit means memory is non-local,
1492                                  * which KNL doesn't support
1493                                  */
1494                                 edac_dbg(0, "Unexpected interleave target %d\n",
1495                                         pkg);
1496                                 return -1;
1497                         }
1498
1499                         if (pkg == first_pkg)
1500                                 break;
1501                 }
1502                 if (KNL_MOD3(dram_rule))
1503                         intrlv_ways *= 3;
1504
1505                 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1506                         sad_rule,
1507                         sad_base,
1508                         sad_limit,
1509                         intrlv_ways,
1510                         edram_only ? ", EDRAM" : "");
1511
1512                 /*
1513                  * Find out how big the SAD region really is by iterating
1514                  * over TAD tables (SAD regions may contain holes).
1515                  * Each memory controller might have a different TAD table, so
1516                  * we have to look at both.
1517                  *
1518                  * Livespace is the memory that's mapped in this TAD table,
1519                  * deadspace is the holes (this could be the MMIO hole, or it
1520                  * could be memory that's mapped by the other TAD table but
1521                  * not this one).
1522                  */
1523                 for (mc = 0; mc < 2; mc++) {
1524                         sad_actual_size[mc] = 0;
1525                         tad_livespace = 0;
1526                         for (tad_rule = 0;
1527                                         tad_rule < ARRAY_SIZE(
1528                                                 knl_tad_dram_limit_lo);
1529                                         tad_rule++) {
1530                                 if (knl_get_tad(pvt,
1531                                                 tad_rule,
1532                                                 mc,
1533                                                 &tad_deadspace,
1534                                                 &tad_limit,
1535                                                 &tad_ways))
1536                                         break;
1537
1538                                 tad_size = (tad_limit+1) -
1539                                         (tad_livespace + tad_deadspace);
1540                                 tad_livespace += tad_size;
1541                                 tad_base = (tad_limit+1) - tad_size;
1542
1543                                 if (tad_base < sad_base) {
1544                                         if (tad_limit > sad_base)
1545                                                 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1546                                 } else if (tad_base < sad_limit) {
1547                                         if (tad_limit+1 > sad_limit) {
1548                                                 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1549                                         } else {
1550                                                 /* TAD region is completely inside SAD region */
1551                                                 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1552                                                         tad_rule, tad_base,
1553                                                         tad_limit, tad_size,
1554                                                         mc);
1555                                                 sad_actual_size[mc] += tad_size;
1556                                         }
1557                                 }
1558                                 tad_base = tad_limit+1;
1559                         }
1560                 }
1561
1562                 for (mc = 0; mc < 2; mc++) {
1563                         edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1564                                 mc, sad_actual_size[mc], sad_actual_size[mc]);
1565                 }
1566
1567                 /* Ignore EDRAM rule */
1568                 if (edram_only)
1569                         continue;
1570
1571                 /* Figure out which channels participate in interleave. */
1572                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1573                         participants[channel] = 0;
1574
1575                 /* For each channel, does at least one CHA have
1576                  * this channel mapped to the given target?
1577                  */
1578                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1579                         for (way = 0; way < intrlv_ways; way++) {
1580                                 int target;
1581                                 int cha;
1582
1583                                 if (KNL_MOD3(dram_rule))
1584                                         target = way;
1585                                 else
1586                                         target = 0x7 & sad_pkg(
1587                                 pvt->info.interleave_pkg, interleave_reg, way);
1588
1589                                 for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1590                                         if (knl_get_mc_route(target,
1591                                                 mc_route_reg[cha]) == channel
1592                                                 && !participants[channel]) {
1593                                                 participant_count++;
1594                                                 participants[channel] = 1;
1595                                                 break;
1596                                         }
1597                                 }
1598                         }
1599                 }
1600
1601                 if (participant_count != intrlv_ways)
1602                         edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1603                                 participant_count, intrlv_ways);
1604
1605                 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1606                         mc = knl_channel_mc(channel);
1607                         if (participants[channel]) {
1608                                 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1609                                         channel,
1610                                         sad_actual_size[mc]/intrlv_ways,
1611                                         sad_rule);
1612                                 mc_sizes[channel] +=
1613                                         sad_actual_size[mc]/intrlv_ways;
1614                         }
1615                 }
1616         }
1617
1618         return 0;
1619 }
1620
1621 static int get_dimm_config(struct mem_ctl_info *mci)
1622 {
1623         struct sbridge_pvt *pvt = mci->pvt_info;
1624         struct dimm_info *dimm;
1625         unsigned i, j, banks, ranks, rows, cols, npages;
1626         u64 size;
1627         u32 reg;
1628         enum edac_type mode;
1629         enum mem_type mtype;
1630         int channels = pvt->info.type == KNIGHTS_LANDING ?
1631                 KNL_MAX_CHANNELS : NUM_CHANNELS;
1632         u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1633
1634         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1635                 pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1636                 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1637         }
1638         if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1639                         pvt->info.type == KNIGHTS_LANDING)
1640                 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1641         else
1642                 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1643
1644         if (pvt->info.type == KNIGHTS_LANDING)
1645                 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1646         else
1647                 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1648
1649         pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1650         edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1651                  pvt->sbridge_dev->mc,
1652                  pvt->sbridge_dev->node_id,
1653                  pvt->sbridge_dev->source_id);
1654
1655         /* KNL doesn't support mirroring or lockstep,
1656          * and is always closed page
1657          */
1658         if (pvt->info.type == KNIGHTS_LANDING) {
1659                 mode = EDAC_S4ECD4ED;
1660                 pvt->is_mirrored = false;
1661
1662                 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1663                         return -1;
1664         } else {
1665                 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1666                 if (IS_MIRROR_ENABLED(reg)) {
1667                         edac_dbg(0, "Memory mirror is enabled\n");
1668                         pvt->is_mirrored = true;
1669                 } else {
1670                         edac_dbg(0, "Memory mirror is disabled\n");
1671                         pvt->is_mirrored = false;
1672                 }
1673
1674                 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1675                 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1676                         edac_dbg(0, "Lockstep is enabled\n");
1677                         mode = EDAC_S8ECD8ED;
1678                         pvt->is_lockstep = true;
1679                 } else {
1680                         edac_dbg(0, "Lockstep is disabled\n");
1681                         mode = EDAC_S4ECD4ED;
1682                         pvt->is_lockstep = false;
1683                 }
1684                 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1685                         edac_dbg(0, "address map is on closed page mode\n");
1686                         pvt->is_close_pg = true;
1687                 } else {
1688                         edac_dbg(0, "address map is on open page mode\n");
1689                         pvt->is_close_pg = false;
1690                 }
1691         }
1692
1693         mtype = pvt->info.get_memory_type(pvt);
1694         if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1695                 edac_dbg(0, "Memory is registered\n");
1696         else if (mtype == MEM_UNKNOWN)
1697                 edac_dbg(0, "Cannot determine memory type\n");
1698         else
1699                 edac_dbg(0, "Memory is unregistered\n");
1700
1701         if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1702                 banks = 16;
1703         else
1704                 banks = 8;
1705
1706         for (i = 0; i < channels; i++) {
1707                 u32 mtr;
1708
1709                 int max_dimms_per_channel;
1710
1711                 if (pvt->info.type == KNIGHTS_LANDING) {
1712                         max_dimms_per_channel = 1;
1713                         if (!pvt->knl.pci_channel[i])
1714                                 continue;
1715                 } else {
1716                         max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1717                         if (!pvt->pci_tad[i])
1718                                 continue;
1719                 }
1720
1721                 for (j = 0; j < max_dimms_per_channel; j++) {
1722                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1723                                        i, j, 0);
1724                         if (pvt->info.type == KNIGHTS_LANDING) {
1725                                 pci_read_config_dword(pvt->knl.pci_channel[i],
1726                                         knl_mtr_reg, &mtr);
1727                         } else {
1728                                 pci_read_config_dword(pvt->pci_tad[i],
1729                                         mtr_regs[j], &mtr);
1730                         }
1731                         edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1732                         if (IS_DIMM_PRESENT(mtr)) {
1733                                 pvt->channel[i].dimms++;
1734
1735                                 ranks = numrank(pvt->info.type, mtr);
1736
1737                                 if (pvt->info.type == KNIGHTS_LANDING) {
1738                                         /* For DDR4, this is fixed. */
1739                                         cols = 1 << 10;
1740                                         rows = knl_mc_sizes[i] /
1741                                                 ((u64) cols * ranks * banks * 8);
1742                                 } else {
1743                                         rows = numrow(mtr);
1744                                         cols = numcol(mtr);
1745                                 }
1746
1747                                 size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1748                                 npages = MiB_TO_PAGES(size);
1749
1750                                 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1751                                          pvt->sbridge_dev->mc, i/4, i%4, j,
1752                                          size, npages,
1753                                          banks, ranks, rows, cols);
1754
1755                                 dimm->nr_pages = npages;
1756                                 dimm->grain = 32;
1757                                 dimm->dtype = pvt->info.get_width(pvt, mtr);
1758                                 dimm->mtype = mtype;
1759                                 dimm->edac_mode = mode;
1760                                 snprintf(dimm->label, sizeof(dimm->label),
1761                                          "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1762                                          pvt->sbridge_dev->source_id, i/4, i%4, j);
1763                         }
1764                 }
1765         }
1766
1767         return 0;
1768 }
1769
1770 static void get_memory_layout(const struct mem_ctl_info *mci)
1771 {
1772         struct sbridge_pvt *pvt = mci->pvt_info;
1773         int i, j, k, n_sads, n_tads, sad_interl;
1774         u32 reg;
1775         u64 limit, prv = 0;
1776         u64 tmp_mb;
1777         u32 gb, mb;
1778         u32 rir_way;
1779
1780         /*
1781          * Step 1) Get TOLM/TOHM ranges
1782          */
1783
1784         pvt->tolm = pvt->info.get_tolm(pvt);
1785         tmp_mb = (1 + pvt->tolm) >> 20;
1786
1787         gb = div_u64_rem(tmp_mb, 1024, &mb);
1788         edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1789                 gb, (mb*1000)/1024, (u64)pvt->tolm);
1790
1791         /* Address range is already 45:25 */
1792         pvt->tohm = pvt->info.get_tohm(pvt);
1793         tmp_mb = (1 + pvt->tohm) >> 20;
1794
1795         gb = div_u64_rem(tmp_mb, 1024, &mb);
1796         edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1797                 gb, (mb*1000)/1024, (u64)pvt->tohm);
1798
1799         /*
1800          * Step 2) Get SAD range and SAD Interleave list
1801          * TAD registers contain the interleave wayness. However, it
1802          * seems simpler to just discover it indirectly, with the
1803          * algorithm bellow.
1804          */
1805         prv = 0;
1806         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1807                 /* SAD_LIMIT Address range is 45:26 */
1808                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1809                                       &reg);
1810                 limit = pvt->info.sad_limit(reg);
1811
1812                 if (!DRAM_RULE_ENABLE(reg))
1813                         continue;
1814
1815                 if (limit <= prv)
1816                         break;
1817
1818                 tmp_mb = (limit + 1) >> 20;
1819                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1820                 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1821                          n_sads,
1822                          show_dram_attr(pvt->info.dram_attr(reg)),
1823                          gb, (mb*1000)/1024,
1824                          ((u64)tmp_mb) << 20L,
1825                          pvt->info.show_interleave_mode(reg),
1826                          reg);
1827                 prv = limit;
1828
1829                 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1830                                       &reg);
1831                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1832                 for (j = 0; j < 8; j++) {
1833                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1834                         if (j > 0 && sad_interl == pkg)
1835                                 break;
1836
1837                         edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1838                                  n_sads, j, pkg);
1839                 }
1840         }
1841
1842         if (pvt->info.type == KNIGHTS_LANDING)
1843                 return;
1844
1845         /*
1846          * Step 3) Get TAD range
1847          */
1848         prv = 0;
1849         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1850                 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1851                                       &reg);
1852                 limit = TAD_LIMIT(reg);
1853                 if (limit <= prv)
1854                         break;
1855                 tmp_mb = (limit + 1) >> 20;
1856
1857                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1858                 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1859                          n_tads, gb, (mb*1000)/1024,
1860                          ((u64)tmp_mb) << 20L,
1861                          (u32)(1 << TAD_SOCK(reg)),
1862                          (u32)TAD_CH(reg) + 1,
1863                          (u32)TAD_TGT0(reg),
1864                          (u32)TAD_TGT1(reg),
1865                          (u32)TAD_TGT2(reg),
1866                          (u32)TAD_TGT3(reg),
1867                          reg);
1868                 prv = limit;
1869         }
1870
1871         /*
1872          * Step 4) Get TAD offsets, per each channel
1873          */
1874         for (i = 0; i < NUM_CHANNELS; i++) {
1875                 if (!pvt->channel[i].dimms)
1876                         continue;
1877                 for (j = 0; j < n_tads; j++) {
1878                         pci_read_config_dword(pvt->pci_tad[i],
1879                                               tad_ch_nilv_offset[j],
1880                                               &reg);
1881                         tmp_mb = TAD_OFFSET(reg) >> 20;
1882                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1883                         edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1884                                  i, j,
1885                                  gb, (mb*1000)/1024,
1886                                  ((u64)tmp_mb) << 20L,
1887                                  reg);
1888                 }
1889         }
1890
1891         /*
1892          * Step 6) Get RIR Wayness/Limit, per each channel
1893          */
1894         for (i = 0; i < NUM_CHANNELS; i++) {
1895                 if (!pvt->channel[i].dimms)
1896                         continue;
1897                 for (j = 0; j < MAX_RIR_RANGES; j++) {
1898                         pci_read_config_dword(pvt->pci_tad[i],
1899                                               rir_way_limit[j],
1900                                               &reg);
1901
1902                         if (!IS_RIR_VALID(reg))
1903                                 continue;
1904
1905                         tmp_mb = pvt->info.rir_limit(reg) >> 20;
1906                         rir_way = 1 << RIR_WAY(reg);
1907                         gb = div_u64_rem(tmp_mb, 1024, &mb);
1908                         edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1909                                  i, j,
1910                                  gb, (mb*1000)/1024,
1911                                  ((u64)tmp_mb) << 20L,
1912                                  rir_way,
1913                                  reg);
1914
1915                         for (k = 0; k < rir_way; k++) {
1916                                 pci_read_config_dword(pvt->pci_tad[i],
1917                                                       rir_offset[j][k],
1918                                                       &reg);
1919                                 tmp_mb = RIR_OFFSET(reg) << 6;
1920
1921                                 gb = div_u64_rem(tmp_mb, 1024, &mb);
1922                                 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1923                                          i, j, k,
1924                                          gb, (mb*1000)/1024,
1925                                          ((u64)tmp_mb) << 20L,
1926                                          (u32)RIR_RNK_TGT(reg),
1927                                          reg);
1928                         }
1929                 }
1930         }
1931 }
1932
1933 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1934 {
1935         struct sbridge_dev *sbridge_dev;
1936
1937         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1938                 if (sbridge_dev->node_id == node_id)
1939                         return sbridge_dev->mci;
1940         }
1941         return NULL;
1942 }
1943
1944 static int get_memory_error_data(struct mem_ctl_info *mci,
1945                                  u64 addr,
1946                                  u8 *socket, u8 *ha,
1947                                  long *channel_mask,
1948                                  u8 *rank,
1949                                  char **area_type, char *msg)
1950 {
1951         struct mem_ctl_info     *new_mci;
1952         struct sbridge_pvt *pvt = mci->pvt_info;
1953         struct pci_dev          *pci_ha;
1954         int                     n_rir, n_sads, n_tads, sad_way, sck_xch;
1955         int                     sad_interl, idx, base_ch;
1956         int                     interleave_mode, shiftup = 0;
1957         unsigned                sad_interleave[pvt->info.max_interleave];
1958         u32                     reg, dram_rule;
1959         u8                      ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1960         u32                     tad_offset;
1961         u32                     rir_way;
1962         u32                     mb, gb;
1963         u64                     ch_addr, offset, limit = 0, prv = 0;
1964
1965
1966         /*
1967          * Step 0) Check if the address is at special memory ranges
1968          * The check bellow is probably enough to fill all cases where
1969          * the error is not inside a memory, except for the legacy
1970          * range (e. g. VGA addresses). It is unlikely, however, that the
1971          * memory controller would generate an error on that range.
1972          */
1973         if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1974                 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1975                 return -EINVAL;
1976         }
1977         if (addr >= (u64)pvt->tohm) {
1978                 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1979                 return -EINVAL;
1980         }
1981
1982         /*
1983          * Step 1) Get socket
1984          */
1985         for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1986                 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1987                                       &reg);
1988
1989                 if (!DRAM_RULE_ENABLE(reg))
1990                         continue;
1991
1992                 limit = pvt->info.sad_limit(reg);
1993                 if (limit <= prv) {
1994                         sprintf(msg, "Can't discover the memory socket");
1995                         return -EINVAL;
1996                 }
1997                 if  (addr <= limit)
1998                         break;
1999                 prv = limit;
2000         }
2001         if (n_sads == pvt->info.max_sad) {
2002                 sprintf(msg, "Can't discover the memory socket");
2003                 return -EINVAL;
2004         }
2005         dram_rule = reg;
2006         *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2007         interleave_mode = pvt->info.interleave_mode(dram_rule);
2008
2009         pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2010                               &reg);
2011
2012         if (pvt->info.type == SANDY_BRIDGE) {
2013                 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2014                 for (sad_way = 0; sad_way < 8; sad_way++) {
2015                         u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2016                         if (sad_way > 0 && sad_interl == pkg)
2017                                 break;
2018                         sad_interleave[sad_way] = pkg;
2019                         edac_dbg(0, "SAD interleave #%d: %d\n",
2020                                  sad_way, sad_interleave[sad_way]);
2021                 }
2022                 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2023                          pvt->sbridge_dev->mc,
2024                          n_sads,
2025                          addr,
2026                          limit,
2027                          sad_way + 7,
2028                          !interleave_mode ? "" : "XOR[18:16]");
2029                 if (interleave_mode)
2030                         idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2031                 else
2032                         idx = (addr >> 6) & 7;
2033                 switch (sad_way) {
2034                 case 1:
2035                         idx = 0;
2036                         break;
2037                 case 2:
2038                         idx = idx & 1;
2039                         break;
2040                 case 4:
2041                         idx = idx & 3;
2042                         break;
2043                 case 8:
2044                         break;
2045                 default:
2046                         sprintf(msg, "Can't discover socket interleave");
2047                         return -EINVAL;
2048                 }
2049                 *socket = sad_interleave[idx];
2050                 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2051                          idx, sad_way, *socket);
2052         } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2053                 int bits, a7mode = A7MODE(dram_rule);
2054
2055                 if (a7mode) {
2056                         /* A7 mode swaps P9 with P6 */
2057                         bits = GET_BITFIELD(addr, 7, 8) << 1;
2058                         bits |= GET_BITFIELD(addr, 9, 9);
2059                 } else
2060                         bits = GET_BITFIELD(addr, 6, 8);
2061
2062                 if (interleave_mode == 0) {
2063                         /* interleave mode will XOR {8,7,6} with {18,17,16} */
2064                         idx = GET_BITFIELD(addr, 16, 18);
2065                         idx ^= bits;
2066                 } else
2067                         idx = bits;
2068
2069                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2070                 *socket = sad_pkg_socket(pkg);
2071                 sad_ha = sad_pkg_ha(pkg);
2072                 if (sad_ha)
2073                         ch_add = 4;
2074
2075                 if (a7mode) {
2076                         /* MCChanShiftUpEnable */
2077                         pci_read_config_dword(pvt->pci_ha0,
2078                                               HASWELL_HASYSDEFEATURE2, &reg);
2079                         shiftup = GET_BITFIELD(reg, 22, 22);
2080                 }
2081
2082                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2083                          idx, *socket, sad_ha, shiftup);
2084         } else {
2085                 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2086                 idx = (addr >> 6) & 7;
2087                 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2088                 *socket = sad_pkg_socket(pkg);
2089                 sad_ha = sad_pkg_ha(pkg);
2090                 if (sad_ha)
2091                         ch_add = 4;
2092                 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2093                          idx, *socket, sad_ha);
2094         }
2095
2096         *ha = sad_ha;
2097
2098         /*
2099          * Move to the proper node structure, in order to access the
2100          * right PCI registers
2101          */
2102         new_mci = get_mci_for_node_id(*socket);
2103         if (!new_mci) {
2104                 sprintf(msg, "Struct for socket #%u wasn't initialized",
2105                         *socket);
2106                 return -EINVAL;
2107         }
2108         mci = new_mci;
2109         pvt = mci->pvt_info;
2110
2111         /*
2112          * Step 2) Get memory channel
2113          */
2114         prv = 0;
2115         if (pvt->info.type == SANDY_BRIDGE)
2116                 pci_ha = pvt->pci_ha0;
2117         else {
2118                 if (sad_ha)
2119                         pci_ha = pvt->pci_ha1;
2120                 else
2121                         pci_ha = pvt->pci_ha0;
2122         }
2123         for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2124                 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2125                 limit = TAD_LIMIT(reg);
2126                 if (limit <= prv) {
2127                         sprintf(msg, "Can't discover the memory channel");
2128                         return -EINVAL;
2129                 }
2130                 if  (addr <= limit)
2131                         break;
2132                 prv = limit;
2133         }
2134         if (n_tads == MAX_TAD) {
2135                 sprintf(msg, "Can't discover the memory channel");
2136                 return -EINVAL;
2137         }
2138
2139         ch_way = TAD_CH(reg) + 1;
2140         sck_way = TAD_SOCK(reg);
2141
2142         if (ch_way == 3)
2143                 idx = addr >> 6;
2144         else {
2145                 idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2146                 if (pvt->is_chan_hash)
2147                         idx = haswell_chan_hash(idx, addr);
2148         }
2149         idx = idx % ch_way;
2150
2151         /*
2152          * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2153          */
2154         switch (idx) {
2155         case 0:
2156                 base_ch = TAD_TGT0(reg);
2157                 break;
2158         case 1:
2159                 base_ch = TAD_TGT1(reg);
2160                 break;
2161         case 2:
2162                 base_ch = TAD_TGT2(reg);
2163                 break;
2164         case 3:
2165                 base_ch = TAD_TGT3(reg);
2166                 break;
2167         default:
2168                 sprintf(msg, "Can't discover the TAD target");
2169                 return -EINVAL;
2170         }
2171         *channel_mask = 1 << base_ch;
2172
2173         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2174                                 tad_ch_nilv_offset[n_tads],
2175                                 &tad_offset);
2176
2177         if (pvt->is_mirrored) {
2178                 *channel_mask |= 1 << ((base_ch + 2) % 4);
2179                 switch(ch_way) {
2180                 case 2:
2181                 case 4:
2182                         sck_xch = (1 << sck_way) * (ch_way >> 1);
2183                         break;
2184                 default:
2185                         sprintf(msg, "Invalid mirror set. Can't decode addr");
2186                         return -EINVAL;
2187                 }
2188         } else
2189                 sck_xch = (1 << sck_way) * ch_way;
2190
2191         if (pvt->is_lockstep)
2192                 *channel_mask |= 1 << ((base_ch + 1) % 4);
2193
2194         offset = TAD_OFFSET(tad_offset);
2195
2196         edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2197                  n_tads,
2198                  addr,
2199                  limit,
2200                  sck_way,
2201                  ch_way,
2202                  offset,
2203                  idx,
2204                  base_ch,
2205                  *channel_mask);
2206
2207         /* Calculate channel address */
2208         /* Remove the TAD offset */
2209
2210         if (offset > addr) {
2211                 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2212                         offset, addr);
2213                 return -EINVAL;
2214         }
2215
2216         ch_addr = addr - offset;
2217         ch_addr >>= (6 + shiftup);
2218         ch_addr /= sck_xch;
2219         ch_addr <<= (6 + shiftup);
2220         ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2221
2222         /*
2223          * Step 3) Decode rank
2224          */
2225         for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2226                 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2227                                       rir_way_limit[n_rir],
2228                                       &reg);
2229
2230                 if (!IS_RIR_VALID(reg))
2231                         continue;
2232
2233                 limit = pvt->info.rir_limit(reg);
2234                 gb = div_u64_rem(limit >> 20, 1024, &mb);
2235                 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2236                          n_rir,
2237                          gb, (mb*1000)/1024,
2238                          limit,
2239                          1 << RIR_WAY(reg));
2240                 if  (ch_addr <= limit)
2241                         break;
2242         }
2243         if (n_rir == MAX_RIR_RANGES) {
2244                 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2245                         ch_addr);
2246                 return -EINVAL;
2247         }
2248         rir_way = RIR_WAY(reg);
2249
2250         if (pvt->is_close_pg)
2251                 idx = (ch_addr >> 6);
2252         else
2253                 idx = (ch_addr >> 13);  /* FIXME: Datasheet says to shift by 15 */
2254         idx %= 1 << rir_way;
2255
2256         pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2257                               rir_offset[n_rir][idx],
2258                               &reg);
2259         *rank = RIR_RNK_TGT(reg);
2260
2261         edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2262                  n_rir,
2263                  ch_addr,
2264                  limit,
2265                  rir_way,
2266                  idx);
2267
2268         return 0;
2269 }
2270
2271 /****************************************************************************
2272         Device initialization routines: put/get, init/exit
2273  ****************************************************************************/
2274
2275 /*
2276  *      sbridge_put_all_devices 'put' all the devices that we have
2277  *                              reserved via 'get'
2278  */
2279 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2280 {
2281         int i;
2282
2283         edac_dbg(0, "\n");
2284         for (i = 0; i < sbridge_dev->n_devs; i++) {
2285                 struct pci_dev *pdev = sbridge_dev->pdev[i];
2286                 if (!pdev)
2287                         continue;
2288                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2289                          pdev->bus->number,
2290                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2291                 pci_dev_put(pdev);
2292         }
2293 }
2294
2295 static void sbridge_put_all_devices(void)
2296 {
2297         struct sbridge_dev *sbridge_dev, *tmp;
2298
2299         list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2300                 sbridge_put_devices(sbridge_dev);
2301                 free_sbridge_dev(sbridge_dev);
2302         }
2303 }
2304
2305 static int sbridge_get_onedevice(struct pci_dev **prev,
2306                                  u8 *num_mc,
2307                                  const struct pci_id_table *table,
2308                                  const unsigned devno,
2309                                  const int multi_bus)
2310 {
2311         struct sbridge_dev *sbridge_dev;
2312         const struct pci_id_descr *dev_descr = &table->descr[devno];
2313         struct pci_dev *pdev = NULL;
2314         u8 bus = 0;
2315
2316         sbridge_printk(KERN_DEBUG,
2317                 "Seeking for: PCI ID %04x:%04x\n",
2318                 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2319
2320         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2321                               dev_descr->dev_id, *prev);
2322
2323         if (!pdev) {
2324                 if (*prev) {
2325                         *prev = pdev;
2326                         return 0;
2327                 }
2328
2329                 if (dev_descr->optional)
2330                         return 0;
2331
2332                 /* if the HA wasn't found */
2333                 if (devno == 0)
2334                         return -ENODEV;
2335
2336                 sbridge_printk(KERN_INFO,
2337                         "Device not found: %04x:%04x\n",
2338                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2339
2340                 /* End of list, leave */
2341                 return -ENODEV;
2342         }
2343         bus = pdev->bus->number;
2344
2345         sbridge_dev = get_sbridge_dev(bus, multi_bus);
2346         if (!sbridge_dev) {
2347                 sbridge_dev = alloc_sbridge_dev(bus, table);
2348                 if (!sbridge_dev) {
2349                         pci_dev_put(pdev);
2350                         return -ENOMEM;
2351                 }
2352                 (*num_mc)++;
2353         }
2354
2355         if (sbridge_dev->pdev[devno]) {
2356                 sbridge_printk(KERN_ERR,
2357                         "Duplicated device for %04x:%04x\n",
2358                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2359                 pci_dev_put(pdev);
2360                 return -ENODEV;
2361         }
2362
2363         sbridge_dev->pdev[devno] = pdev;
2364
2365         /* Be sure that the device is enabled */
2366         if (unlikely(pci_enable_device(pdev) < 0)) {
2367                 sbridge_printk(KERN_ERR,
2368                         "Couldn't enable %04x:%04x\n",
2369                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2370                 return -ENODEV;
2371         }
2372
2373         edac_dbg(0, "Detected %04x:%04x\n",
2374                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2375
2376         /*
2377          * As stated on drivers/pci/search.c, the reference count for
2378          * @from is always decremented if it is not %NULL. So, as we need
2379          * to get all devices up to null, we need to do a get for the device
2380          */
2381         pci_dev_get(pdev);
2382
2383         *prev = pdev;
2384
2385         return 0;
2386 }
2387
2388 /*
2389  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2390  *                           devices we want to reference for this driver.
2391  * @num_mc: pointer to the memory controllers count, to be incremented in case
2392  *          of success.
2393  * @table: model specific table
2394  * @allow_dups: allow for multiple devices to exist with the same device id
2395  *              (as implemented, this isn't expected to work correctly in the
2396  *              multi-socket case).
2397  * @multi_bus: don't assume devices on different buses belong to different
2398  *             memory controllers.
2399  *
2400  * returns 0 in case of success or error code
2401  */
2402 static int sbridge_get_all_devices_full(u8 *num_mc,
2403                                         const struct pci_id_table *table,
2404                                         int allow_dups,
2405                                         int multi_bus)
2406 {
2407         int i, rc;
2408         struct pci_dev *pdev = NULL;
2409
2410         while (table && table->descr) {
2411                 for (i = 0; i < table->n_devs; i++) {
2412                         if (!allow_dups || i == 0 ||
2413                                         table->descr[i].dev_id !=
2414                                                 table->descr[i-1].dev_id) {
2415                                 pdev = NULL;
2416                         }
2417                         do {
2418                                 rc = sbridge_get_onedevice(&pdev, num_mc,
2419                                                            table, i, multi_bus);
2420                                 if (rc < 0) {
2421                                         if (i == 0) {
2422                                                 i = table->n_devs;
2423                                                 break;
2424                                         }
2425                                         sbridge_put_all_devices();
2426                                         return -ENODEV;
2427                                 }
2428                         } while (pdev && !allow_dups);
2429                 }
2430                 table++;
2431         }
2432
2433         return 0;
2434 }
2435
2436 #define sbridge_get_all_devices(num_mc, table) \
2437                 sbridge_get_all_devices_full(num_mc, table, 0, 0)
2438 #define sbridge_get_all_devices_knl(num_mc, table) \
2439                 sbridge_get_all_devices_full(num_mc, table, 1, 1)
2440
2441 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2442                                  struct sbridge_dev *sbridge_dev)
2443 {
2444         struct sbridge_pvt *pvt = mci->pvt_info;
2445         struct pci_dev *pdev;
2446         u8 saw_chan_mask = 0;
2447         int i;
2448
2449         for (i = 0; i < sbridge_dev->n_devs; i++) {
2450                 pdev = sbridge_dev->pdev[i];
2451                 if (!pdev)
2452                         continue;
2453
2454                 switch (pdev->device) {
2455                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2456                         pvt->pci_sad0 = pdev;
2457                         break;
2458                 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2459                         pvt->pci_sad1 = pdev;
2460                         break;
2461                 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2462                         pvt->pci_br0 = pdev;
2463                         break;
2464                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2465                         pvt->pci_ha0 = pdev;
2466                         break;
2467                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2468                         pvt->pci_ta = pdev;
2469                         break;
2470                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2471                         pvt->pci_ras = pdev;
2472                         break;
2473                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2474                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2475                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2476                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2477                 {
2478                         int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2479                         pvt->pci_tad[id] = pdev;
2480                         saw_chan_mask |= 1 << id;
2481                 }
2482                         break;
2483                 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2484                         pvt->pci_ddrio = pdev;
2485                         break;
2486                 default:
2487                         goto error;
2488                 }
2489
2490                 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2491                          pdev->vendor, pdev->device,
2492                          sbridge_dev->bus,
2493                          pdev);
2494         }
2495
2496         /* Check if everything were registered */
2497         if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2498             !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2499                 goto enodev;
2500
2501         if (saw_chan_mask != 0x0f)
2502                 goto enodev;
2503         return 0;
2504
2505 enodev:
2506         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2507         return -ENODEV;
2508
2509 error:
2510         sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2511                        PCI_VENDOR_ID_INTEL, pdev->device);
2512         return -EINVAL;
2513 }
2514
2515 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2516                                  struct sbridge_dev *sbridge_dev)
2517 {
2518         struct sbridge_pvt *pvt = mci->pvt_info;
2519         struct pci_dev *pdev;
2520         u8 saw_chan_mask = 0;
2521         int i;
2522
2523         for (i = 0; i < sbridge_dev->n_devs; i++) {
2524                 pdev = sbridge_dev->pdev[i];
2525                 if (!pdev)
2526                         continue;
2527
2528                 switch (pdev->device) {
2529                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2530                         pvt->pci_ha0 = pdev;
2531                         break;
2532                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2533                         pvt->pci_ta = pdev;
2534                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2535                         pvt->pci_ras = pdev;
2536                         break;
2537                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2538                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2539                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2540                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2541                 {
2542                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2543                         pvt->pci_tad[id] = pdev;
2544                         saw_chan_mask |= 1 << id;
2545                 }
2546                         break;
2547                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2548                         pvt->pci_ddrio = pdev;
2549                         break;
2550                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2551                         pvt->pci_ddrio = pdev;
2552                         break;
2553                 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2554                         pvt->pci_sad0 = pdev;
2555                         break;
2556                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2557                         pvt->pci_br0 = pdev;
2558                         break;
2559                 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2560                         pvt->pci_br1 = pdev;
2561                         break;
2562                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2563                         pvt->pci_ha1 = pdev;
2564                         break;
2565                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2566                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2567                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2568                 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2569                 {
2570                         int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2571                         pvt->pci_tad[id] = pdev;
2572                         saw_chan_mask |= 1 << id;
2573                 }
2574                         break;
2575                 default:
2576                         goto error;
2577                 }
2578
2579                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2580                          sbridge_dev->bus,
2581                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2582                          pdev);
2583         }
2584
2585         /* Check if everything were registered */
2586         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2587             !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2588             !pvt->pci_ta)
2589                 goto enodev;
2590
2591         if (saw_chan_mask != 0x0f && /* -EN */
2592             saw_chan_mask != 0x33 && /* -EP */
2593             saw_chan_mask != 0xff)   /* -EX */
2594                 goto enodev;
2595         return 0;
2596
2597 enodev:
2598         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2599         return -ENODEV;
2600
2601 error:
2602         sbridge_printk(KERN_ERR,
2603                        "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2604                         pdev->device);
2605         return -EINVAL;
2606 }
2607
2608 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2609                                  struct sbridge_dev *sbridge_dev)
2610 {
2611         struct sbridge_pvt *pvt = mci->pvt_info;
2612         struct pci_dev *pdev;
2613         u8 saw_chan_mask = 0;
2614         int i;
2615
2616         /* there's only one device per system; not tied to any bus */
2617         if (pvt->info.pci_vtd == NULL)
2618                 /* result will be checked later */
2619                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2620                                                    PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2621                                                    NULL);
2622
2623         for (i = 0; i < sbridge_dev->n_devs; i++) {
2624                 pdev = sbridge_dev->pdev[i];
2625                 if (!pdev)
2626                         continue;
2627
2628                 switch (pdev->device) {
2629                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2630                         pvt->pci_sad0 = pdev;
2631                         break;
2632                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2633                         pvt->pci_sad1 = pdev;
2634                         break;
2635                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2636                         pvt->pci_ha0 = pdev;
2637                         break;
2638                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2639                         pvt->pci_ta = pdev;
2640                         break;
2641                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2642                         pvt->pci_ras = pdev;
2643                         break;
2644                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2645                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2646                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2647                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2648                 {
2649                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2650
2651                         pvt->pci_tad[id] = pdev;
2652                         saw_chan_mask |= 1 << id;
2653                 }
2654                         break;
2655                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2656                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2657                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2658                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2659                 {
2660                         int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2661
2662                         pvt->pci_tad[id] = pdev;
2663                         saw_chan_mask |= 1 << id;
2664                 }
2665                         break;
2666                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2667                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2668                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2669                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2670                         if (!pvt->pci_ddrio)
2671                                 pvt->pci_ddrio = pdev;
2672                         break;
2673                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2674                         pvt->pci_ha1 = pdev;
2675                         break;
2676                 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2677                         pvt->pci_ha1_ta = pdev;
2678                         break;
2679                 default:
2680                         break;
2681                 }
2682
2683                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2684                          sbridge_dev->bus,
2685                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2686                          pdev);
2687         }
2688
2689         /* Check if everything were registered */
2690         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2691             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2692                 goto enodev;
2693
2694         if (saw_chan_mask != 0x0f && /* -EN */
2695             saw_chan_mask != 0x33 && /* -EP */
2696             saw_chan_mask != 0xff)   /* -EX */
2697                 goto enodev;
2698         return 0;
2699
2700 enodev:
2701         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2702         return -ENODEV;
2703 }
2704
2705 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2706                                  struct sbridge_dev *sbridge_dev)
2707 {
2708         struct sbridge_pvt *pvt = mci->pvt_info;
2709         struct pci_dev *pdev;
2710         u8 saw_chan_mask = 0;
2711         int i;
2712
2713         /* there's only one device per system; not tied to any bus */
2714         if (pvt->info.pci_vtd == NULL)
2715                 /* result will be checked later */
2716                 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2717                                                    PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2718                                                    NULL);
2719
2720         for (i = 0; i < sbridge_dev->n_devs; i++) {
2721                 pdev = sbridge_dev->pdev[i];
2722                 if (!pdev)
2723                         continue;
2724
2725                 switch (pdev->device) {
2726                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2727                         pvt->pci_sad0 = pdev;
2728                         break;
2729                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2730                         pvt->pci_sad1 = pdev;
2731                         break;
2732                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2733                         pvt->pci_ha0 = pdev;
2734                         break;
2735                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2736                         pvt->pci_ta = pdev;
2737                         break;
2738                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2739                         pvt->pci_ras = pdev;
2740                         break;
2741                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2742                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2743                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2744                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2745                 {
2746                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2747                         pvt->pci_tad[id] = pdev;
2748                         saw_chan_mask |= 1 << id;
2749                 }
2750                         break;
2751                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2752                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2753                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2754                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2755                 {
2756                         int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2757                         pvt->pci_tad[id] = pdev;
2758                         saw_chan_mask |= 1 << id;
2759                 }
2760                         break;
2761                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2762                         pvt->pci_ddrio = pdev;
2763                         break;
2764                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765                         pvt->pci_ha1 = pdev;
2766                         break;
2767                 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2768                         pvt->pci_ha1_ta = pdev;
2769                         break;
2770                 default:
2771                         break;
2772                 }
2773
2774                 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2775                          sbridge_dev->bus,
2776                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2777                          pdev);
2778         }
2779
2780         /* Check if everything were registered */
2781         if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2782             !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2783                 goto enodev;
2784
2785         if (saw_chan_mask != 0x0f && /* -EN */
2786             saw_chan_mask != 0x33 && /* -EP */
2787             saw_chan_mask != 0xff)   /* -EX */
2788                 goto enodev;
2789         return 0;
2790
2791 enodev:
2792         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2793         return -ENODEV;
2794 }
2795
2796 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2797                         struct sbridge_dev *sbridge_dev)
2798 {
2799         struct sbridge_pvt *pvt = mci->pvt_info;
2800         struct pci_dev *pdev;
2801         int dev, func;
2802
2803         int i;
2804         int devidx;
2805
2806         for (i = 0; i < sbridge_dev->n_devs; i++) {
2807                 pdev = sbridge_dev->pdev[i];
2808                 if (!pdev)
2809                         continue;
2810
2811                 /* Extract PCI device and function. */
2812                 dev = (pdev->devfn >> 3) & 0x1f;
2813                 func = pdev->devfn & 0x7;
2814
2815                 switch (pdev->device) {
2816                 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2817                         if (dev == 8)
2818                                 pvt->knl.pci_mc0 = pdev;
2819                         else if (dev == 9)
2820                                 pvt->knl.pci_mc1 = pdev;
2821                         else {
2822                                 sbridge_printk(KERN_ERR,
2823                                         "Memory controller in unexpected place! (dev %d, fn %d)\n",
2824                                         dev, func);
2825                                 continue;
2826                         }
2827                         break;
2828
2829                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2830                         pvt->pci_sad0 = pdev;
2831                         break;
2832
2833                 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2834                         pvt->pci_sad1 = pdev;
2835                         break;
2836
2837                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2838                         /* There are one of these per tile, and range from
2839                          * 1.14.0 to 1.18.5.
2840                          */
2841                         devidx = ((dev-14)*8)+func;
2842
2843                         if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2844                                 sbridge_printk(KERN_ERR,
2845                                         "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2846                                         dev, func);
2847                                 continue;
2848                         }
2849
2850                         WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2851
2852                         pvt->knl.pci_cha[devidx] = pdev;
2853                         break;
2854
2855                 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2856                         devidx = -1;
2857
2858                         /*
2859                          *  MC0 channels 0-2 are device 9 function 2-4,
2860                          *  MC1 channels 3-5 are device 8 function 2-4.
2861                          */
2862
2863                         if (dev == 9)
2864                                 devidx = func-2;
2865                         else if (dev == 8)
2866                                 devidx = 3 + (func-2);
2867
2868                         if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2869                                 sbridge_printk(KERN_ERR,
2870                                         "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2871                                         dev, func);
2872                                 continue;
2873                         }
2874
2875                         WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2876                         pvt->knl.pci_channel[devidx] = pdev;
2877                         break;
2878
2879                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2880                         pvt->knl.pci_mc_info = pdev;
2881                         break;
2882
2883                 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2884                         pvt->pci_ta = pdev;
2885                         break;
2886
2887                 default:
2888                         sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2889                                 pdev->device);
2890                         break;
2891                 }
2892         }
2893
2894         if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2895             !pvt->pci_sad0     || !pvt->pci_sad1    ||
2896             !pvt->pci_ta) {
2897                 goto enodev;
2898         }
2899
2900         for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2901                 if (!pvt->knl.pci_channel[i]) {
2902                         sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2903                         goto enodev;
2904                 }
2905         }
2906
2907         for (i = 0; i < KNL_MAX_CHAS; i++) {
2908                 if (!pvt->knl.pci_cha[i]) {
2909                         sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2910                         goto enodev;
2911                 }
2912         }
2913
2914         return 0;
2915
2916 enodev:
2917         sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2918         return -ENODEV;
2919 }
2920
2921 /****************************************************************************
2922                         Error check routines
2923  ****************************************************************************/
2924
2925 /*
2926  * While Sandy Bridge has error count registers, SMI BIOS read values from
2927  * and resets the counters. So, they are not reliable for the OS to read
2928  * from them. So, we have no option but to just trust on whatever MCE is
2929  * telling us about the errors.
2930  */
2931 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2932                                     const struct mce *m)
2933 {
2934         struct mem_ctl_info *new_mci;
2935         struct sbridge_pvt *pvt = mci->pvt_info;
2936         enum hw_event_mc_err_type tp_event;
2937         char *type, *optype, msg[256];
2938         bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2939         bool overflow = GET_BITFIELD(m->status, 62, 62);
2940         bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2941         bool recoverable;
2942         u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2943         u32 mscod = GET_BITFIELD(m->status, 16, 31);
2944         u32 errcode = GET_BITFIELD(m->status, 0, 15);
2945         u32 channel = GET_BITFIELD(m->status, 0, 3);
2946         u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2947         long channel_mask, first_channel;
2948         u8  rank, socket, ha;
2949         int rc, dimm;
2950         char *area_type = NULL;
2951
2952         if (pvt->info.type != SANDY_BRIDGE)
2953                 recoverable = true;
2954         else
2955                 recoverable = GET_BITFIELD(m->status, 56, 56);
2956
2957         if (uncorrected_error) {
2958                 if (ripv) {
2959                         type = "FATAL";
2960                         tp_event = HW_EVENT_ERR_FATAL;
2961                 } else {
2962                         type = "NON_FATAL";
2963                         tp_event = HW_EVENT_ERR_UNCORRECTED;
2964                 }
2965         } else {
2966                 type = "CORRECTED";
2967                 tp_event = HW_EVENT_ERR_CORRECTED;
2968         }
2969
2970         /*
2971          * According with Table 15-9 of the Intel Architecture spec vol 3A,
2972          * memory errors should fit in this mask:
2973          *      000f 0000 1mmm cccc (binary)
2974          * where:
2975          *      f = Correction Report Filtering Bit. If 1, subsequent errors
2976          *          won't be shown
2977          *      mmm = error type
2978          *      cccc = channel
2979          * If the mask doesn't match, report an error to the parsing logic
2980          */
2981         if (! ((errcode & 0xef80) == 0x80)) {
2982                 optype = "Can't parse: it is not a mem";
2983         } else {
2984                 switch (optypenum) {
2985                 case 0:
2986                         optype = "generic undef request error";
2987                         break;
2988                 case 1:
2989                         optype = "memory read error";
2990                         break;
2991                 case 2:
2992                         optype = "memory write error";
2993                         break;
2994                 case 3:
2995                         optype = "addr/cmd error";
2996                         break;
2997                 case 4:
2998                         optype = "memory scrubbing error";
2999                         break;
3000                 default:
3001                         optype = "reserved";
3002                         break;
3003                 }
3004         }
3005
3006         /* Only decode errors with an valid address (ADDRV) */
3007         if (!GET_BITFIELD(m->status, 58, 58))
3008                 return;
3009
3010         if (pvt->info.type == KNIGHTS_LANDING) {
3011                 if (channel == 14) {
3012                         edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3013                                 overflow ? " OVERFLOW" : "",
3014                                 (uncorrected_error && recoverable)
3015                                 ? " recoverable" : "",
3016                                 mscod, errcode,
3017                                 m->bank);
3018                 } else {
3019                         char A = *("A");
3020
3021                         channel = knl_channel_remap(channel);
3022                         channel_mask = 1 << channel;
3023                         snprintf(msg, sizeof(msg),
3024                                 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3025                                 overflow ? " OVERFLOW" : "",
3026                                 (uncorrected_error && recoverable)
3027                                 ? " recoverable" : " ",
3028                                 mscod, errcode, channel, A + channel);
3029                         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3030                                 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3031                                 channel, 0, -1,
3032                                 optype, msg);
3033                 }
3034                 return;
3035         } else {
3036                 rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3037                                 &channel_mask, &rank, &area_type, msg);
3038         }
3039
3040         if (rc < 0)
3041                 goto err_parsing;
3042         new_mci = get_mci_for_node_id(socket);
3043         if (!new_mci) {
3044                 strcpy(msg, "Error: socket got corrupted!");
3045                 goto err_parsing;
3046         }
3047         mci = new_mci;
3048         pvt = mci->pvt_info;
3049
3050         first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3051
3052         if (rank < 4)
3053                 dimm = 0;
3054         else if (rank < 8)
3055                 dimm = 1;
3056         else
3057                 dimm = 2;
3058
3059
3060         /*
3061          * FIXME: On some memory configurations (mirror, lockstep), the
3062          * Memory Controller can't point the error to a single DIMM. The
3063          * EDAC core should be handling the channel mask, in order to point
3064          * to the group of dimm's where the error may be happening.
3065          */
3066         if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3067                 channel = first_channel;
3068
3069         snprintf(msg, sizeof(msg),
3070                  "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3071                  overflow ? " OVERFLOW" : "",
3072                  (uncorrected_error && recoverable) ? " recoverable" : "",
3073                  area_type,
3074                  mscod, errcode,
3075                  socket, ha,
3076                  channel_mask,
3077                  rank);
3078
3079         edac_dbg(0, "%s\n", msg);
3080
3081         /* FIXME: need support for channel mask */
3082
3083         if (channel == CHANNEL_UNSPECIFIED)
3084                 channel = -1;
3085
3086         /* Call the helper to output message */
3087         edac_mc_handle_error(tp_event, mci, core_err_cnt,
3088                              m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3089                              4*ha+channel, dimm, -1,
3090                              optype, msg);
3091         return;
3092 err_parsing:
3093         edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3094                              -1, -1, -1,
3095                              msg, "");
3096
3097 }
3098
3099 /*
3100  *      sbridge_check_error     Retrieve and process errors reported by the
3101  *                              hardware. Called by the Core module.
3102  */
3103 static void sbridge_check_error(struct mem_ctl_info *mci)
3104 {
3105         struct sbridge_pvt *pvt = mci->pvt_info;
3106         int i;
3107         unsigned count = 0;
3108         struct mce *m;
3109
3110         /*
3111          * MCE first step: Copy all mce errors into a temporary buffer
3112          * We use a double buffering here, to reduce the risk of
3113          * loosing an error.
3114          */
3115         smp_rmb();
3116         count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
3117                 % MCE_LOG_LEN;
3118         if (!count)
3119                 return;
3120
3121         m = pvt->mce_outentry;
3122         if (pvt->mce_in + count > MCE_LOG_LEN) {
3123                 unsigned l = MCE_LOG_LEN - pvt->mce_in;
3124
3125                 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
3126                 smp_wmb();
3127                 pvt->mce_in = 0;
3128                 count -= l;
3129                 m += l;
3130         }
3131         memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
3132         smp_wmb();
3133         pvt->mce_in += count;
3134
3135         smp_rmb();
3136         if (pvt->mce_overrun) {
3137                 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
3138                               pvt->mce_overrun);
3139                 smp_wmb();
3140                 pvt->mce_overrun = 0;
3141         }
3142
3143         /*
3144          * MCE second step: parse errors and display
3145          */
3146         for (i = 0; i < count; i++)
3147                 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
3148 }
3149
3150 /*
3151  * sbridge_mce_check_error      Replicates mcelog routine to get errors
3152  *                              This routine simply queues mcelog errors, and
3153  *                              return. The error itself should be handled later
3154  *                              by sbridge_check_error.
3155  * WARNING: As this routine should be called at NMI time, extra care should
3156  * be taken to avoid deadlocks, and to be as fast as possible.
3157  */
3158 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3159                                    void *data)
3160 {
3161         struct mce *mce = (struct mce *)data;
3162         struct mem_ctl_info *mci;
3163         struct sbridge_pvt *pvt;
3164         char *type;
3165
3166         if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3167                 return NOTIFY_DONE;
3168
3169         mci = get_mci_for_node_id(mce->socketid);
3170         if (!mci)
3171                 return NOTIFY_DONE;
3172         pvt = mci->pvt_info;
3173
3174         /*
3175          * Just let mcelog handle it if the error is
3176          * outside the memory controller. A memory error
3177          * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3178          * bit 12 has an special meaning.
3179          */
3180         if ((mce->status & 0xefff) >> 7 != 1)
3181                 return NOTIFY_DONE;
3182
3183         if (mce->mcgstatus & MCG_STATUS_MCIP)
3184                 type = "Exception";
3185         else
3186                 type = "Event";
3187
3188         sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3189
3190         sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3191                           "Bank %d: %016Lx\n", mce->extcpu, type,
3192                           mce->mcgstatus, mce->bank, mce->status);
3193         sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3194         sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3195         sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3196
3197         sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3198                           "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3199                           mce->time, mce->socketid, mce->apicid);
3200
3201         smp_rmb();
3202         if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
3203                 smp_wmb();
3204                 pvt->mce_overrun++;
3205                 return NOTIFY_DONE;
3206         }
3207
3208         /* Copy memory error at the ringbuffer */
3209         memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
3210         smp_wmb();
3211         pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
3212
3213         /* Handle fatal errors immediately */
3214         if (mce->mcgstatus & 1)
3215                 sbridge_check_error(mci);
3216
3217         /* Advice mcelog that the error were handled */
3218         return NOTIFY_STOP;
3219 }
3220
3221 static struct notifier_block sbridge_mce_dec = {
3222         .notifier_call      = sbridge_mce_check_error,
3223 };
3224
3225 /****************************************************************************
3226                         EDAC register/unregister logic
3227  ****************************************************************************/
3228
3229 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3230 {
3231         struct mem_ctl_info *mci = sbridge_dev->mci;
3232         struct sbridge_pvt *pvt;
3233
3234         if (unlikely(!mci || !mci->pvt_info)) {
3235                 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3236
3237                 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3238                 return;
3239         }
3240
3241         pvt = mci->pvt_info;
3242
3243         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244                  mci, &sbridge_dev->pdev[0]->dev);
3245
3246         /* Remove MC sysfs nodes */
3247         edac_mc_del_mc(mci->pdev);
3248
3249         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3250         kfree(mci->ctl_name);
3251         edac_mc_free(mci);
3252         sbridge_dev->mci = NULL;
3253 }
3254
3255 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3256 {
3257         struct mem_ctl_info *mci;
3258         struct edac_mc_layer layers[2];
3259         struct sbridge_pvt *pvt;
3260         struct pci_dev *pdev = sbridge_dev->pdev[0];
3261         int rc;
3262
3263         /* Check the number of active and not disabled channels */
3264         rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3265         if (unlikely(rc < 0))
3266                 return rc;
3267
3268         /* allocate a new MC control structure */
3269         layers[0].type = EDAC_MC_LAYER_CHANNEL;
3270         layers[0].size = type == KNIGHTS_LANDING ?
3271                 KNL_MAX_CHANNELS : NUM_CHANNELS;
3272         layers[0].is_virt_csrow = false;
3273         layers[1].type = EDAC_MC_LAYER_SLOT;
3274         layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3275         layers[1].is_virt_csrow = true;
3276         mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3277                             sizeof(*pvt));
3278
3279         if (unlikely(!mci))
3280                 return -ENOMEM;
3281
3282         edac_dbg(0, "MC: mci = %p, dev = %p\n",
3283                  mci, &pdev->dev);
3284
3285         pvt = mci->pvt_info;
3286         memset(pvt, 0, sizeof(*pvt));
3287
3288         /* Associate sbridge_dev and mci for future usage */
3289         pvt->sbridge_dev = sbridge_dev;
3290         sbridge_dev->mci = mci;
3291
3292         mci->mtype_cap = type == KNIGHTS_LANDING ?
3293                 MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3294         mci->edac_ctl_cap = EDAC_FLAG_NONE;
3295         mci->edac_cap = EDAC_FLAG_NONE;
3296         mci->mod_name = "sbridge_edac.c";
3297         mci->mod_ver = SBRIDGE_REVISION;
3298         mci->dev_name = pci_name(pdev);
3299         mci->ctl_page_to_phys = NULL;
3300
3301         /* Set the function pointer to an actual operation function */
3302         mci->edac_check = sbridge_check_error;
3303
3304         pvt->info.type = type;
3305         switch (type) {
3306         case IVY_BRIDGE:
3307                 pvt->info.rankcfgr = IB_RANK_CFG_A;
3308                 pvt->info.get_tolm = ibridge_get_tolm;
3309                 pvt->info.get_tohm = ibridge_get_tohm;
3310                 pvt->info.dram_rule = ibridge_dram_rule;
3311                 pvt->info.get_memory_type = get_memory_type;
3312                 pvt->info.get_node_id = get_node_id;
3313                 pvt->info.rir_limit = rir_limit;
3314                 pvt->info.sad_limit = sad_limit;
3315                 pvt->info.interleave_mode = interleave_mode;
3316                 pvt->info.show_interleave_mode = show_interleave_mode;
3317                 pvt->info.dram_attr = dram_attr;
3318                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3319                 pvt->info.interleave_list = ibridge_interleave_list;
3320                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3321                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3322                 pvt->info.get_width = ibridge_get_width;
3323                 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3324
3325                 /* Store pci devices at mci for faster access */
3326                 rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3327                 if (unlikely(rc < 0))
3328                         goto fail0;
3329                 break;
3330         case SANDY_BRIDGE:
3331                 pvt->info.rankcfgr = SB_RANK_CFG_A;
3332                 pvt->info.get_tolm = sbridge_get_tolm;
3333                 pvt->info.get_tohm = sbridge_get_tohm;
3334                 pvt->info.dram_rule = sbridge_dram_rule;
3335                 pvt->info.get_memory_type = get_memory_type;
3336                 pvt->info.get_node_id = get_node_id;
3337                 pvt->info.rir_limit = rir_limit;
3338                 pvt->info.sad_limit = sad_limit;
3339                 pvt->info.interleave_mode = interleave_mode;
3340                 pvt->info.show_interleave_mode = show_interleave_mode;
3341                 pvt->info.dram_attr = dram_attr;
3342                 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3343                 pvt->info.interleave_list = sbridge_interleave_list;
3344                 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3345                 pvt->info.interleave_pkg = sbridge_interleave_pkg;
3346                 pvt->info.get_width = sbridge_get_width;
3347                 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3348
3349                 /* Store pci devices at mci for faster access */
3350                 rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3351                 if (unlikely(rc < 0))
3352                         goto fail0;
3353                 break;
3354         case HASWELL:
3355                 /* rankcfgr isn't used */
3356                 pvt->info.get_tolm = haswell_get_tolm;
3357                 pvt->info.get_tohm = haswell_get_tohm;
3358                 pvt->info.dram_rule = ibridge_dram_rule;
3359                 pvt->info.get_memory_type = haswell_get_memory_type;
3360                 pvt->info.get_node_id = haswell_get_node_id;
3361                 pvt->info.rir_limit = haswell_rir_limit;
3362                 pvt->info.sad_limit = sad_limit;
3363                 pvt->info.interleave_mode = interleave_mode;
3364                 pvt->info.show_interleave_mode = show_interleave_mode;
3365                 pvt->info.dram_attr = dram_attr;
3366                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3367                 pvt->info.interleave_list = ibridge_interleave_list;
3368                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3369                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3370                 pvt->info.get_width = ibridge_get_width;
3371                 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3372
3373                 /* Store pci devices at mci for faster access */
3374                 rc = haswell_mci_bind_devs(mci, sbridge_dev);
3375                 if (unlikely(rc < 0))
3376                         goto fail0;
3377                 break;
3378         case BROADWELL:
3379                 /* rankcfgr isn't used */
3380                 pvt->info.get_tolm = haswell_get_tolm;
3381                 pvt->info.get_tohm = haswell_get_tohm;
3382                 pvt->info.dram_rule = ibridge_dram_rule;
3383                 pvt->info.get_memory_type = haswell_get_memory_type;
3384                 pvt->info.get_node_id = haswell_get_node_id;
3385                 pvt->info.rir_limit = haswell_rir_limit;
3386                 pvt->info.sad_limit = sad_limit;
3387                 pvt->info.interleave_mode = interleave_mode;
3388                 pvt->info.show_interleave_mode = show_interleave_mode;
3389                 pvt->info.dram_attr = dram_attr;
3390                 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3391                 pvt->info.interleave_list = ibridge_interleave_list;
3392                 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3393                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3394                 pvt->info.get_width = broadwell_get_width;
3395                 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3396
3397                 /* Store pci devices at mci for faster access */
3398                 rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3399                 if (unlikely(rc < 0))
3400                         goto fail0;
3401                 break;
3402         case KNIGHTS_LANDING:
3403                 /* pvt->info.rankcfgr == ??? */
3404                 pvt->info.get_tolm = knl_get_tolm;
3405                 pvt->info.get_tohm = knl_get_tohm;
3406                 pvt->info.dram_rule = knl_dram_rule;
3407                 pvt->info.get_memory_type = knl_get_memory_type;
3408                 pvt->info.get_node_id = knl_get_node_id;
3409                 pvt->info.rir_limit = NULL;
3410                 pvt->info.sad_limit = knl_sad_limit;
3411                 pvt->info.interleave_mode = knl_interleave_mode;
3412                 pvt->info.show_interleave_mode = knl_show_interleave_mode;
3413                 pvt->info.dram_attr = dram_attr_knl;
3414                 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3415                 pvt->info.interleave_list = knl_interleave_list;
3416                 pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3417                 pvt->info.interleave_pkg = ibridge_interleave_pkg;
3418                 pvt->info.get_width = knl_get_width;
3419                 mci->ctl_name = kasprintf(GFP_KERNEL,
3420                         "Knights Landing Socket#%d", mci->mc_idx);
3421
3422                 rc = knl_mci_bind_devs(mci, sbridge_dev);
3423                 if (unlikely(rc < 0))
3424                         goto fail0;
3425                 break;
3426         }
3427
3428         /* Get dimm basic config and the memory layout */
3429         get_dimm_config(mci);
3430         get_memory_layout(mci);
3431
3432         /* record ptr to the generic device */
3433         mci->pdev = &pdev->dev;
3434
3435         /* add this new MC control structure to EDAC's list of MCs */
3436         if (unlikely(edac_mc_add_mc(mci))) {
3437                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3438                 rc = -EINVAL;
3439                 goto fail0;
3440         }
3441
3442         return 0;
3443
3444 fail0:
3445         kfree(mci->ctl_name);
3446         edac_mc_free(mci);
3447         sbridge_dev->mci = NULL;
3448         return rc;
3449 }
3450
3451 /*
3452  *      sbridge_probe   Probe for ONE instance of device to see if it is
3453  *                      present.
3454  *      return:
3455  *              0 for FOUND a device
3456  *              < 0 for error code
3457  */
3458
3459 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3460 {
3461         int rc = -ENODEV;
3462         u8 mc, num_mc = 0;
3463         struct sbridge_dev *sbridge_dev;
3464         enum type type = SANDY_BRIDGE;
3465
3466         /* get the pci devices we want to reserve for our use */
3467         mutex_lock(&sbridge_edac_lock);
3468
3469         /*
3470          * All memory controllers are allocated at the first pass.
3471          */
3472         if (unlikely(probed >= 1)) {
3473                 mutex_unlock(&sbridge_edac_lock);
3474                 return -ENODEV;
3475         }
3476         probed++;
3477
3478         switch (pdev->device) {
3479         case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
3480                 rc = sbridge_get_all_devices(&num_mc,
3481                                         pci_dev_descr_ibridge_table);
3482                 type = IVY_BRIDGE;
3483                 break;
3484         case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
3485                 rc = sbridge_get_all_devices(&num_mc,
3486                                         pci_dev_descr_sbridge_table);
3487                 type = SANDY_BRIDGE;
3488                 break;
3489         case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
3490                 rc = sbridge_get_all_devices(&num_mc,
3491                                         pci_dev_descr_haswell_table);
3492                 type = HASWELL;
3493                 break;
3494         case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
3495                 rc = sbridge_get_all_devices(&num_mc,
3496                                         pci_dev_descr_broadwell_table);
3497                 type = BROADWELL;
3498             break;
3499         case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
3500                 rc = sbridge_get_all_devices_knl(&num_mc,
3501                                         pci_dev_descr_knl_table);
3502                 type = KNIGHTS_LANDING;
3503                 break;
3504         }
3505         if (unlikely(rc < 0)) {
3506                 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
3507                 goto fail0;
3508         }
3509
3510         mc = 0;
3511
3512         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3513                 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3514                          mc, mc + 1, num_mc);
3515
3516                 sbridge_dev->mc = mc++;
3517                 rc = sbridge_register_mci(sbridge_dev, type);
3518                 if (unlikely(rc < 0))
3519                         goto fail1;
3520         }
3521
3522         sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3523
3524         mutex_unlock(&sbridge_edac_lock);
3525         return 0;
3526
3527 fail1:
3528         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3529                 sbridge_unregister_mci(sbridge_dev);
3530
3531         sbridge_put_all_devices();
3532 fail0:
3533         mutex_unlock(&sbridge_edac_lock);
3534         return rc;
3535 }
3536
3537 /*
3538  *      sbridge_remove  destructor for one instance of device
3539  *
3540  */
3541 static void sbridge_remove(struct pci_dev *pdev)
3542 {
3543         struct sbridge_dev *sbridge_dev;
3544
3545         edac_dbg(0, "\n");
3546
3547         /*
3548          * we have a trouble here: pdev value for removal will be wrong, since
3549          * it will point to the X58 register used to detect that the machine
3550          * is a Nehalem or upper design. However, due to the way several PCI
3551          * devices are grouped together to provide MC functionality, we need
3552          * to use a different method for releasing the devices
3553          */
3554
3555         mutex_lock(&sbridge_edac_lock);
3556
3557         if (unlikely(!probed)) {
3558                 mutex_unlock(&sbridge_edac_lock);
3559                 return;
3560         }
3561
3562         list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3563                 sbridge_unregister_mci(sbridge_dev);
3564
3565         /* Release PCI resources */
3566         sbridge_put_all_devices();
3567
3568         probed--;
3569
3570         mutex_unlock(&sbridge_edac_lock);
3571 }
3572
3573 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
3574
3575 /*
3576  *      sbridge_driver  pci_driver structure for this module
3577  *
3578  */
3579 static struct pci_driver sbridge_driver = {
3580         .name     = "sbridge_edac",
3581         .probe    = sbridge_probe,
3582         .remove   = sbridge_remove,
3583         .id_table = sbridge_pci_tbl,
3584 };
3585
3586 /*
3587  *      sbridge_init            Module entry function
3588  *                      Try to initialize this module for its devices
3589  */
3590 static int __init sbridge_init(void)
3591 {
3592         int pci_rc;
3593
3594         edac_dbg(2, "\n");
3595
3596         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3597         opstate_init();
3598
3599         pci_rc = pci_register_driver(&sbridge_driver);
3600         if (pci_rc >= 0) {
3601                 mce_register_decode_chain(&sbridge_mce_dec);
3602                 if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3603                         sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3604                 return 0;
3605         }
3606
3607         sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3608                       pci_rc);
3609
3610         return pci_rc;
3611 }
3612
3613 /*
3614  *      sbridge_exit()  Module exit function
3615  *                      Unregister the driver
3616  */
3617 static void __exit sbridge_exit(void)
3618 {
3619         edac_dbg(2, "\n");
3620         pci_unregister_driver(&sbridge_driver);
3621         mce_unregister_decode_chain(&sbridge_mce_dec);
3622 }
3623
3624 module_init(sbridge_init);
3625 module_exit(sbridge_exit);
3626
3627 module_param(edac_op_state, int, 0444);
3628 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3629
3630 MODULE_LICENSE("GPL");
3631 MODULE_AUTHOR("Mauro Carvalho Chehab");
3632 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3633 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3634                    SBRIDGE_REVISION);