]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'v3.7-rc2' into drm-intel-next-queued
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92         struct drm_i915_private *dev_priv = dev->dev_private;
93         struct completion *x = &dev_priv->error_completion;
94         unsigned long flags;
95         int ret;
96
97         if (!atomic_read(&dev_priv->mm.wedged))
98                 return 0;
99
100         /*
101          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102          * userspace. If it takes that long something really bad is going on and
103          * we should simply try to bail out and fail as gracefully as possible.
104          */
105         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106         if (ret == 0) {
107                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108                 return -EIO;
109         } else if (ret < 0) {
110                 return ret;
111         }
112
113         if (atomic_read(&dev_priv->mm.wedged)) {
114                 /* GPU is hung, bump the completion count to account for
115                  * the token we just consumed so that we never hit zero and
116                  * end up waiting upon a subsequent completion event that
117                  * will never happen.
118                  */
119                 spin_lock_irqsave(&x->wait.lock, flags);
120                 x->done++;
121                 spin_unlock_irqrestore(&x->wait.lock, flags);
122         }
123         return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128         int ret;
129
130         ret = i915_gem_wait_for_error(dev);
131         if (ret)
132                 return ret;
133
134         ret = mutex_lock_interruptible(&dev->struct_mutex);
135         if (ret)
136                 return ret;
137
138         WARN_ON(i915_verify_lists(dev));
139         return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145         return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150                     struct drm_file *file)
151 {
152         struct drm_i915_gem_init *args = data;
153
154         if (drm_core_check_feature(dev, DRIVER_MODESET))
155                 return -ENODEV;
156
157         if (args->gtt_start >= args->gtt_end ||
158             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159                 return -EINVAL;
160
161         /* GEM with user mode setting was never supported on ilk and later. */
162         if (INTEL_INFO(dev)->gen >= 5)
163                 return -ENODEV;
164
165         mutex_lock(&dev->struct_mutex);
166         i915_gem_init_global_gtt(dev, args->gtt_start,
167                                  args->gtt_end, args->gtt_end);
168         mutex_unlock(&dev->struct_mutex);
169
170         return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175                             struct drm_file *file)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         struct drm_i915_gem_get_aperture *args = data;
179         struct drm_i915_gem_object *obj;
180         size_t pinned;
181
182         pinned = 0;
183         mutex_lock(&dev->struct_mutex);
184         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185                 if (obj->pin_count)
186                         pinned += obj->gtt_space->size;
187         mutex_unlock(&dev->struct_mutex);
188
189         args->aper_size = dev_priv->mm.gtt_total;
190         args->aper_available_size = args->aper_size - pinned;
191
192         return 0;
193 }
194
195 static int
196 i915_gem_create(struct drm_file *file,
197                 struct drm_device *dev,
198                 uint64_t size,
199                 uint32_t *handle_p)
200 {
201         struct drm_i915_gem_object *obj;
202         int ret;
203         u32 handle;
204
205         size = roundup(size, PAGE_SIZE);
206         if (size == 0)
207                 return -EINVAL;
208
209         /* Allocate the new object */
210         obj = i915_gem_alloc_object(dev, size);
211         if (obj == NULL)
212                 return -ENOMEM;
213
214         ret = drm_gem_handle_create(file, &obj->base, &handle);
215         if (ret) {
216                 drm_gem_object_release(&obj->base);
217                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
218                 kfree(obj);
219                 return ret;
220         }
221
222         /* drop reference from allocate - handle holds it now */
223         drm_gem_object_unreference(&obj->base);
224         trace_i915_gem_object_create(obj);
225
226         *handle_p = handle;
227         return 0;
228 }
229
230 int
231 i915_gem_dumb_create(struct drm_file *file,
232                      struct drm_device *dev,
233                      struct drm_mode_create_dumb *args)
234 {
235         /* have to work out size/pitch and return them */
236         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
237         args->size = args->pitch * args->height;
238         return i915_gem_create(file, dev,
239                                args->size, &args->handle);
240 }
241
242 int i915_gem_dumb_destroy(struct drm_file *file,
243                           struct drm_device *dev,
244                           uint32_t handle)
245 {
246         return drm_gem_handle_delete(file, handle);
247 }
248
249 /**
250  * Creates a new mm object and returns a handle to it.
251  */
252 int
253 i915_gem_create_ioctl(struct drm_device *dev, void *data,
254                       struct drm_file *file)
255 {
256         struct drm_i915_gem_create *args = data;
257
258         return i915_gem_create(file, dev,
259                                args->size, &args->handle);
260 }
261
262 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
263 {
264         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
265
266         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
267                 obj->tiling_mode != I915_TILING_NONE;
268 }
269
270 static inline int
271 __copy_to_user_swizzled(char __user *cpu_vaddr,
272                         const char *gpu_vaddr, int gpu_offset,
273                         int length)
274 {
275         int ret, cpu_offset = 0;
276
277         while (length > 0) {
278                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279                 int this_length = min(cacheline_end - gpu_offset, length);
280                 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283                                      gpu_vaddr + swizzled_gpu_offset,
284                                      this_length);
285                 if (ret)
286                         return ret + length;
287
288                 cpu_offset += this_length;
289                 gpu_offset += this_length;
290                 length -= this_length;
291         }
292
293         return 0;
294 }
295
296 static inline int
297 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298                           const char __user *cpu_vaddr,
299                           int length)
300 {
301         int ret, cpu_offset = 0;
302
303         while (length > 0) {
304                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305                 int this_length = min(cacheline_end - gpu_offset, length);
306                 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309                                        cpu_vaddr + cpu_offset,
310                                        this_length);
311                 if (ret)
312                         return ret + length;
313
314                 cpu_offset += this_length;
315                 gpu_offset += this_length;
316                 length -= this_length;
317         }
318
319         return 0;
320 }
321
322 /* Per-page copy function for the shmem pread fastpath.
323  * Flushes invalid cachelines before reading the target if
324  * needs_clflush is set. */
325 static int
326 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327                  char __user *user_data,
328                  bool page_do_bit17_swizzling, bool needs_clflush)
329 {
330         char *vaddr;
331         int ret;
332
333         if (unlikely(page_do_bit17_swizzling))
334                 return -EINVAL;
335
336         vaddr = kmap_atomic(page);
337         if (needs_clflush)
338                 drm_clflush_virt_range(vaddr + shmem_page_offset,
339                                        page_length);
340         ret = __copy_to_user_inatomic(user_data,
341                                       vaddr + shmem_page_offset,
342                                       page_length);
343         kunmap_atomic(vaddr);
344
345         return ret ? -EFAULT : 0;
346 }
347
348 static void
349 shmem_clflush_swizzled_range(char *addr, unsigned long length,
350                              bool swizzled)
351 {
352         if (unlikely(swizzled)) {
353                 unsigned long start = (unsigned long) addr;
354                 unsigned long end = (unsigned long) addr + length;
355
356                 /* For swizzling simply ensure that we always flush both
357                  * channels. Lame, but simple and it works. Swizzled
358                  * pwrite/pread is far from a hotpath - current userspace
359                  * doesn't use it at all. */
360                 start = round_down(start, 128);
361                 end = round_up(end, 128);
362
363                 drm_clflush_virt_range((void *)start, end - start);
364         } else {
365                 drm_clflush_virt_range(addr, length);
366         }
367
368 }
369
370 /* Only difference to the fast-path function is that this can handle bit17
371  * and uses non-atomic copy and kmap functions. */
372 static int
373 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374                  char __user *user_data,
375                  bool page_do_bit17_swizzling, bool needs_clflush)
376 {
377         char *vaddr;
378         int ret;
379
380         vaddr = kmap(page);
381         if (needs_clflush)
382                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383                                              page_length,
384                                              page_do_bit17_swizzling);
385
386         if (page_do_bit17_swizzling)
387                 ret = __copy_to_user_swizzled(user_data,
388                                               vaddr, shmem_page_offset,
389                                               page_length);
390         else
391                 ret = __copy_to_user(user_data,
392                                      vaddr + shmem_page_offset,
393                                      page_length);
394         kunmap(page);
395
396         return ret ? - EFAULT : 0;
397 }
398
399 static int
400 i915_gem_shmem_pread(struct drm_device *dev,
401                      struct drm_i915_gem_object *obj,
402                      struct drm_i915_gem_pread *args,
403                      struct drm_file *file)
404 {
405         char __user *user_data;
406         ssize_t remain;
407         loff_t offset;
408         int shmem_page_offset, page_length, ret = 0;
409         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
410         int hit_slowpath = 0;
411         int prefaulted = 0;
412         int needs_clflush = 0;
413         struct scatterlist *sg;
414         int i;
415
416         user_data = (char __user *) (uintptr_t) args->data_ptr;
417         remain = args->size;
418
419         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422                 /* If we're not in the cpu read domain, set ourself into the gtt
423                  * read domain and manually flush cachelines (if required). This
424                  * optimizes for the case when the gpu will dirty the data
425                  * anyway again before the next pread happens. */
426                 if (obj->cache_level == I915_CACHE_NONE)
427                         needs_clflush = 1;
428                 if (obj->gtt_space) {
429                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
430                         if (ret)
431                                 return ret;
432                 }
433         }
434
435         ret = i915_gem_object_get_pages(obj);
436         if (ret)
437                 return ret;
438
439         i915_gem_object_pin_pages(obj);
440
441         offset = args->offset;
442
443         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
444                 struct page *page;
445
446                 if (i < offset >> PAGE_SHIFT)
447                         continue;
448
449                 if (remain <= 0)
450                         break;
451
452                 /* Operation in this page
453                  *
454                  * shmem_page_offset = offset within page in shmem file
455                  * page_length = bytes to copy for this page
456                  */
457                 shmem_page_offset = offset_in_page(offset);
458                 page_length = remain;
459                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460                         page_length = PAGE_SIZE - shmem_page_offset;
461
462                 page = sg_page(sg);
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         if (hit_slowpath) {
506                 /* Fixup: Kill any reinstated backing storage pages */
507                 if (obj->madv == __I915_MADV_PURGED)
508                         i915_gem_object_truncate(obj);
509         }
510
511         return ret;
512 }
513
514 /**
515  * Reads data from the object referenced by handle.
516  *
517  * On error, the contents of *data are undefined.
518  */
519 int
520 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
521                      struct drm_file *file)
522 {
523         struct drm_i915_gem_pread *args = data;
524         struct drm_i915_gem_object *obj;
525         int ret = 0;
526
527         if (args->size == 0)
528                 return 0;
529
530         if (!access_ok(VERIFY_WRITE,
531                        (char __user *)(uintptr_t)args->data_ptr,
532                        args->size))
533                 return -EFAULT;
534
535         ret = i915_mutex_lock_interruptible(dev);
536         if (ret)
537                 return ret;
538
539         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
540         if (&obj->base == NULL) {
541                 ret = -ENOENT;
542                 goto unlock;
543         }
544
545         /* Bounds check source.  */
546         if (args->offset > obj->base.size ||
547             args->size > obj->base.size - args->offset) {
548                 ret = -EINVAL;
549                 goto out;
550         }
551
552         /* prime objects have no backing filp to GEM pread/pwrite
553          * pages from.
554          */
555         if (!obj->base.filp) {
556                 ret = -EINVAL;
557                 goto out;
558         }
559
560         trace_i915_gem_object_pread(obj, args->offset, args->size);
561
562         ret = i915_gem_shmem_pread(dev, obj, args, file);
563
564 out:
565         drm_gem_object_unreference(&obj->base);
566 unlock:
567         mutex_unlock(&dev->struct_mutex);
568         return ret;
569 }
570
571 /* This is the fast write path which cannot handle
572  * page faults in the source data
573  */
574
575 static inline int
576 fast_user_write(struct io_mapping *mapping,
577                 loff_t page_base, int page_offset,
578                 char __user *user_data,
579                 int length)
580 {
581         void __iomem *vaddr_atomic;
582         void *vaddr;
583         unsigned long unwritten;
584
585         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
586         /* We can use the cpu mem copy function because this is X86. */
587         vaddr = (void __force*)vaddr_atomic + page_offset;
588         unwritten = __copy_from_user_inatomic_nocache(vaddr,
589                                                       user_data, length);
590         io_mapping_unmap_atomic(vaddr_atomic);
591         return unwritten;
592 }
593
594 /**
595  * This is the fast pwrite path, where we copy the data directly from the
596  * user into the GTT, uncached.
597  */
598 static int
599 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600                          struct drm_i915_gem_object *obj,
601                          struct drm_i915_gem_pwrite *args,
602                          struct drm_file *file)
603 {
604         drm_i915_private_t *dev_priv = dev->dev_private;
605         ssize_t remain;
606         loff_t offset, page_base;
607         char __user *user_data;
608         int page_offset, page_length, ret;
609
610         ret = i915_gem_object_pin(obj, 0, true, true);
611         if (ret)
612                 goto out;
613
614         ret = i915_gem_object_set_to_gtt_domain(obj, true);
615         if (ret)
616                 goto out_unpin;
617
618         ret = i915_gem_object_put_fence(obj);
619         if (ret)
620                 goto out_unpin;
621
622         user_data = (char __user *) (uintptr_t) args->data_ptr;
623         remain = args->size;
624
625         offset = obj->gtt_offset + args->offset;
626
627         while (remain > 0) {
628                 /* Operation in this page
629                  *
630                  * page_base = page offset within aperture
631                  * page_offset = offset within page
632                  * page_length = bytes to copy for this page
633                  */
634                 page_base = offset & PAGE_MASK;
635                 page_offset = offset_in_page(offset);
636                 page_length = remain;
637                 if ((page_offset + remain) > PAGE_SIZE)
638                         page_length = PAGE_SIZE - page_offset;
639
640                 /* If we get a fault while copying data, then (presumably) our
641                  * source page isn't available.  Return the error and we'll
642                  * retry in the slow path.
643                  */
644                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
645                                     page_offset, user_data, page_length)) {
646                         ret = -EFAULT;
647                         goto out_unpin;
648                 }
649
650                 remain -= page_length;
651                 user_data += page_length;
652                 offset += page_length;
653         }
654
655 out_unpin:
656         i915_gem_object_unpin(obj);
657 out:
658         return ret;
659 }
660
661 /* Per-page copy function for the shmem pwrite fastpath.
662  * Flushes invalid cachelines before writing to the target if
663  * needs_clflush_before is set and flushes out any written cachelines after
664  * writing if needs_clflush is set. */
665 static int
666 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667                   char __user *user_data,
668                   bool page_do_bit17_swizzling,
669                   bool needs_clflush_before,
670                   bool needs_clflush_after)
671 {
672         char *vaddr;
673         int ret;
674
675         if (unlikely(page_do_bit17_swizzling))
676                 return -EINVAL;
677
678         vaddr = kmap_atomic(page);
679         if (needs_clflush_before)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683                                                 user_data,
684                                                 page_length);
685         if (needs_clflush_after)
686                 drm_clflush_virt_range(vaddr + shmem_page_offset,
687                                        page_length);
688         kunmap_atomic(vaddr);
689
690         return ret ? -EFAULT : 0;
691 }
692
693 /* Only difference to the fast-path function is that this can handle bit17
694  * and uses non-atomic copy and kmap functions. */
695 static int
696 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697                   char __user *user_data,
698                   bool page_do_bit17_swizzling,
699                   bool needs_clflush_before,
700                   bool needs_clflush_after)
701 {
702         char *vaddr;
703         int ret;
704
705         vaddr = kmap(page);
706         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
707                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708                                              page_length,
709                                              page_do_bit17_swizzling);
710         if (page_do_bit17_swizzling)
711                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
712                                                 user_data,
713                                                 page_length);
714         else
715                 ret = __copy_from_user(vaddr + shmem_page_offset,
716                                        user_data,
717                                        page_length);
718         if (needs_clflush_after)
719                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720                                              page_length,
721                                              page_do_bit17_swizzling);
722         kunmap(page);
723
724         return ret ? -EFAULT : 0;
725 }
726
727 static int
728 i915_gem_shmem_pwrite(struct drm_device *dev,
729                       struct drm_i915_gem_object *obj,
730                       struct drm_i915_gem_pwrite *args,
731                       struct drm_file *file)
732 {
733         ssize_t remain;
734         loff_t offset;
735         char __user *user_data;
736         int shmem_page_offset, page_length, ret = 0;
737         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
738         int hit_slowpath = 0;
739         int needs_clflush_after = 0;
740         int needs_clflush_before = 0;
741         int i;
742         struct scatterlist *sg;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750                 /* If we're not in the cpu write domain, set ourself into the gtt
751                  * write domain and manually flush cachelines (if required). This
752                  * optimizes for the case when the gpu will use the data
753                  * right away and we therefore have to clflush anyway. */
754                 if (obj->cache_level == I915_CACHE_NONE)
755                         needs_clflush_after = 1;
756                 if (obj->gtt_space) {
757                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
758                         if (ret)
759                                 return ret;
760                 }
761         }
762         /* Same trick applies for invalidate partially written cachelines before
763          * writing.  */
764         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765             && obj->cache_level == I915_CACHE_NONE)
766                 needs_clflush_before = 1;
767
768         ret = i915_gem_object_get_pages(obj);
769         if (ret)
770                 return ret;
771
772         i915_gem_object_pin_pages(obj);
773
774         offset = args->offset;
775         obj->dirty = 1;
776
777         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
778                 struct page *page;
779                 int partial_cacheline_write;
780
781                 if (i < offset >> PAGE_SHIFT)
782                         continue;
783
784                 if (remain <= 0)
785                         break;
786
787                 /* Operation in this page
788                  *
789                  * shmem_page_offset = offset within page in shmem file
790                  * page_length = bytes to copy for this page
791                  */
792                 shmem_page_offset = offset_in_page(offset);
793
794                 page_length = remain;
795                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796                         page_length = PAGE_SIZE - shmem_page_offset;
797
798                 /* If we don't overwrite a cacheline completely we need to be
799                  * careful to have up-to-date data by first clflushing. Don't
800                  * overcomplicate things and flush the entire patch. */
801                 partial_cacheline_write = needs_clflush_before &&
802                         ((shmem_page_offset | page_length)
803                                 & (boot_cpu_data.x86_clflush_size - 1));
804
805                 page = sg_page(sg);
806                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807                         (page_to_phys(page) & (1 << 17)) != 0;
808
809                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813                 if (ret == 0)
814                         goto next_page;
815
816                 hit_slowpath = 1;
817                 mutex_unlock(&dev->struct_mutex);
818                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819                                         user_data, page_do_bit17_swizzling,
820                                         partial_cacheline_write,
821                                         needs_clflush_after);
822
823                 mutex_lock(&dev->struct_mutex);
824
825 next_page:
826                 set_page_dirty(page);
827                 mark_page_accessed(page);
828
829                 if (ret)
830                         goto out;
831
832                 remain -= page_length;
833                 user_data += page_length;
834                 offset += page_length;
835         }
836
837 out:
838         i915_gem_object_unpin_pages(obj);
839
840         if (hit_slowpath) {
841                 /* Fixup: Kill any reinstated backing storage pages */
842                 if (obj->madv == __I915_MADV_PURGED)
843                         i915_gem_object_truncate(obj);
844                 /* and flush dirty cachelines in case the object isn't in the cpu write
845                  * domain anymore. */
846                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847                         i915_gem_clflush_object(obj);
848                         intel_gtt_chipset_flush();
849                 }
850         }
851
852         if (needs_clflush_after)
853                 intel_gtt_chipset_flush();
854
855         return ret;
856 }
857
858 /**
859  * Writes data to the object referenced by handle.
860  *
861  * On error, the contents of the buffer that were to be modified are undefined.
862  */
863 int
864 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
865                       struct drm_file *file)
866 {
867         struct drm_i915_gem_pwrite *args = data;
868         struct drm_i915_gem_object *obj;
869         int ret;
870
871         if (args->size == 0)
872                 return 0;
873
874         if (!access_ok(VERIFY_READ,
875                        (char __user *)(uintptr_t)args->data_ptr,
876                        args->size))
877                 return -EFAULT;
878
879         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880                                            args->size);
881         if (ret)
882                 return -EFAULT;
883
884         ret = i915_mutex_lock_interruptible(dev);
885         if (ret)
886                 return ret;
887
888         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
889         if (&obj->base == NULL) {
890                 ret = -ENOENT;
891                 goto unlock;
892         }
893
894         /* Bounds check destination. */
895         if (args->offset > obj->base.size ||
896             args->size > obj->base.size - args->offset) {
897                 ret = -EINVAL;
898                 goto out;
899         }
900
901         /* prime objects have no backing filp to GEM pread/pwrite
902          * pages from.
903          */
904         if (!obj->base.filp) {
905                 ret = -EINVAL;
906                 goto out;
907         }
908
909         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
911         ret = -EFAULT;
912         /* We can only do the GTT pwrite on untiled buffers, as otherwise
913          * it would end up going through the fenced access, and we'll get
914          * different detiling behavior between reading and writing.
915          * pread/pwrite currently are reading and writing from the CPU
916          * perspective, requiring manual detiling by the client.
917          */
918         if (obj->phys_obj) {
919                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
920                 goto out;
921         }
922
923         if (obj->cache_level == I915_CACHE_NONE &&
924             obj->tiling_mode == I915_TILING_NONE &&
925             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
926                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
927                 /* Note that the gtt paths might fail with non-page-backed user
928                  * pointers (e.g. gtt mappings when moving data between
929                  * textures). Fallback to the shmem path in that case. */
930         }
931
932         if (ret == -EFAULT || ret == -ENOSPC)
933                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
934
935 out:
936         drm_gem_object_unreference(&obj->base);
937 unlock:
938         mutex_unlock(&dev->struct_mutex);
939         return ret;
940 }
941
942 int
943 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944                      bool interruptible)
945 {
946         if (atomic_read(&dev_priv->mm.wedged)) {
947                 struct completion *x = &dev_priv->error_completion;
948                 bool recovery_complete;
949                 unsigned long flags;
950
951                 /* Give the error handler a chance to run. */
952                 spin_lock_irqsave(&x->wait.lock, flags);
953                 recovery_complete = x->done > 0;
954                 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956                 /* Non-interruptible callers can't handle -EAGAIN, hence return
957                  * -EIO unconditionally for these. */
958                 if (!interruptible)
959                         return -EIO;
960
961                 /* Recovery complete, but still wedged means reset failure. */
962                 if (recovery_complete)
963                         return -EIO;
964
965                 return -EAGAIN;
966         }
967
968         return 0;
969 }
970
971 /*
972  * Compare seqno against outstanding lazy request. Emit a request if they are
973  * equal.
974  */
975 static int
976 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977 {
978         int ret;
979
980         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982         ret = 0;
983         if (seqno == ring->outstanding_lazy_request)
984                 ret = i915_add_request(ring, NULL, NULL);
985
986         return ret;
987 }
988
989 /**
990  * __wait_seqno - wait until execution of seqno has finished
991  * @ring: the ring expected to report seqno
992  * @seqno: duh!
993  * @interruptible: do an interruptible wait (normally yes)
994  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995  *
996  * Returns 0 if the seqno was found within the alloted time. Else returns the
997  * errno with remaining time filled in timeout argument.
998  */
999 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000                         bool interruptible, struct timespec *timeout)
1001 {
1002         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003         struct timespec before, now, wait_time={1,0};
1004         unsigned long timeout_jiffies;
1005         long end;
1006         bool wait_forever = true;
1007         int ret;
1008
1009         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010                 return 0;
1011
1012         trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014         if (timeout != NULL) {
1015                 wait_time = *timeout;
1016                 wait_forever = false;
1017         }
1018
1019         timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021         if (WARN_ON(!ring->irq_get(ring)))
1022                 return -ENODEV;
1023
1024         /* Record current time in case interrupted by signal, or wedged * */
1025         getrawmonotonic(&before);
1026
1027 #define EXIT_COND \
1028         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029         atomic_read(&dev_priv->mm.wedged))
1030         do {
1031                 if (interruptible)
1032                         end = wait_event_interruptible_timeout(ring->irq_queue,
1033                                                                EXIT_COND,
1034                                                                timeout_jiffies);
1035                 else
1036                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037                                                  timeout_jiffies);
1038
1039                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040                 if (ret)
1041                         end = ret;
1042         } while (end == 0 && wait_forever);
1043
1044         getrawmonotonic(&now);
1045
1046         ring->irq_put(ring);
1047         trace_i915_gem_request_wait_end(ring, seqno);
1048 #undef EXIT_COND
1049
1050         if (timeout) {
1051                 struct timespec sleep_time = timespec_sub(now, before);
1052                 *timeout = timespec_sub(*timeout, sleep_time);
1053         }
1054
1055         switch (end) {
1056         case -EIO:
1057         case -EAGAIN: /* Wedged */
1058         case -ERESTARTSYS: /* Signal */
1059                 return (int)end;
1060         case 0: /* Timeout */
1061                 if (timeout)
1062                         set_normalized_timespec(timeout, 0, 0);
1063                 return -ETIME;
1064         default: /* Completed */
1065                 WARN_ON(end < 0); /* We're not aware of other errors */
1066                 return 0;
1067         }
1068 }
1069
1070 /**
1071  * Waits for a sequence number to be signaled, and cleans up the
1072  * request and object lists appropriately for that event.
1073  */
1074 int
1075 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076 {
1077         struct drm_device *dev = ring->dev;
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         bool interruptible = dev_priv->mm.interruptible;
1080         int ret;
1081
1082         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083         BUG_ON(seqno == 0);
1084
1085         ret = i915_gem_check_wedge(dev_priv, interruptible);
1086         if (ret)
1087                 return ret;
1088
1089         ret = i915_gem_check_olr(ring, seqno);
1090         if (ret)
1091                 return ret;
1092
1093         return __wait_seqno(ring, seqno, interruptible, NULL);
1094 }
1095
1096 /**
1097  * Ensures that all rendering to the object has completed and the object is
1098  * safe to unbind from the GTT or access from the CPU.
1099  */
1100 static __must_check int
1101 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102                                bool readonly)
1103 {
1104         struct intel_ring_buffer *ring = obj->ring;
1105         u32 seqno;
1106         int ret;
1107
1108         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109         if (seqno == 0)
1110                 return 0;
1111
1112         ret = i915_wait_seqno(ring, seqno);
1113         if (ret)
1114                 return ret;
1115
1116         i915_gem_retire_requests_ring(ring);
1117
1118         /* Manually manage the write flush as we may have not yet
1119          * retired the buffer.
1120          */
1121         if (obj->last_write_seqno &&
1122             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123                 obj->last_write_seqno = 0;
1124                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125         }
1126
1127         return 0;
1128 }
1129
1130 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1131  * as the object state may change during this call.
1132  */
1133 static __must_check int
1134 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135                                             bool readonly)
1136 {
1137         struct drm_device *dev = obj->base.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139         struct intel_ring_buffer *ring = obj->ring;
1140         u32 seqno;
1141         int ret;
1142
1143         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144         BUG_ON(!dev_priv->mm.interruptible);
1145
1146         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147         if (seqno == 0)
1148                 return 0;
1149
1150         ret = i915_gem_check_wedge(dev_priv, true);
1151         if (ret)
1152                 return ret;
1153
1154         ret = i915_gem_check_olr(ring, seqno);
1155         if (ret)
1156                 return ret;
1157
1158         mutex_unlock(&dev->struct_mutex);
1159         ret = __wait_seqno(ring, seqno, true, NULL);
1160         mutex_lock(&dev->struct_mutex);
1161
1162         i915_gem_retire_requests_ring(ring);
1163
1164         /* Manually manage the write flush as we may have not yet
1165          * retired the buffer.
1166          */
1167         if (obj->last_write_seqno &&
1168             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169                 obj->last_write_seqno = 0;
1170                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171         }
1172
1173         return ret;
1174 }
1175
1176 /**
1177  * Called when user space prepares to use an object with the CPU, either
1178  * through the mmap ioctl's mapping or a GTT mapping.
1179  */
1180 int
1181 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1182                           struct drm_file *file)
1183 {
1184         struct drm_i915_gem_set_domain *args = data;
1185         struct drm_i915_gem_object *obj;
1186         uint32_t read_domains = args->read_domains;
1187         uint32_t write_domain = args->write_domain;
1188         int ret;
1189
1190         /* Only handle setting domains to types used by the CPU. */
1191         if (write_domain & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         if (read_domains & I915_GEM_GPU_DOMAINS)
1195                 return -EINVAL;
1196
1197         /* Having something in the write domain implies it's in the read
1198          * domain, and only that read domain.  Enforce that in the request.
1199          */
1200         if (write_domain != 0 && read_domains != write_domain)
1201                 return -EINVAL;
1202
1203         ret = i915_mutex_lock_interruptible(dev);
1204         if (ret)
1205                 return ret;
1206
1207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1208         if (&obj->base == NULL) {
1209                 ret = -ENOENT;
1210                 goto unlock;
1211         }
1212
1213         /* Try to flush the object off the GPU without holding the lock.
1214          * We will repeat the flush holding the lock in the normal manner
1215          * to catch cases where we are gazumped.
1216          */
1217         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218         if (ret)
1219                 goto unref;
1220
1221         if (read_domains & I915_GEM_DOMAIN_GTT) {
1222                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1223
1224                 /* Silently promote "you're not bound, there was nothing to do"
1225                  * to success, since the client was just asking us to
1226                  * make sure everything was done.
1227                  */
1228                 if (ret == -EINVAL)
1229                         ret = 0;
1230         } else {
1231                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1232         }
1233
1234 unref:
1235         drm_gem_object_unreference(&obj->base);
1236 unlock:
1237         mutex_unlock(&dev->struct_mutex);
1238         return ret;
1239 }
1240
1241 /**
1242  * Called when user space has done writes to this buffer
1243  */
1244 int
1245 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1246                          struct drm_file *file)
1247 {
1248         struct drm_i915_gem_sw_finish *args = data;
1249         struct drm_i915_gem_object *obj;
1250         int ret = 0;
1251
1252         ret = i915_mutex_lock_interruptible(dev);
1253         if (ret)
1254                 return ret;
1255
1256         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1257         if (&obj->base == NULL) {
1258                 ret = -ENOENT;
1259                 goto unlock;
1260         }
1261
1262         /* Pinned buffers may be scanout, so flush the cache */
1263         if (obj->pin_count)
1264                 i915_gem_object_flush_cpu_write_domain(obj);
1265
1266         drm_gem_object_unreference(&obj->base);
1267 unlock:
1268         mutex_unlock(&dev->struct_mutex);
1269         return ret;
1270 }
1271
1272 /**
1273  * Maps the contents of an object, returning the address it is mapped
1274  * into.
1275  *
1276  * While the mapping holds a reference on the contents of the object, it doesn't
1277  * imply a ref on the object itself.
1278  */
1279 int
1280 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1281                     struct drm_file *file)
1282 {
1283         struct drm_i915_gem_mmap *args = data;
1284         struct drm_gem_object *obj;
1285         unsigned long addr;
1286
1287         obj = drm_gem_object_lookup(dev, file, args->handle);
1288         if (obj == NULL)
1289                 return -ENOENT;
1290
1291         /* prime objects have no backing filp to GEM mmap
1292          * pages from.
1293          */
1294         if (!obj->filp) {
1295                 drm_gem_object_unreference_unlocked(obj);
1296                 return -EINVAL;
1297         }
1298
1299         addr = vm_mmap(obj->filp, 0, args->size,
1300                        PROT_READ | PROT_WRITE, MAP_SHARED,
1301                        args->offset);
1302         drm_gem_object_unreference_unlocked(obj);
1303         if (IS_ERR((void *)addr))
1304                 return addr;
1305
1306         args->addr_ptr = (uint64_t) addr;
1307
1308         return 0;
1309 }
1310
1311 /**
1312  * i915_gem_fault - fault a page into the GTT
1313  * vma: VMA in question
1314  * vmf: fault info
1315  *
1316  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317  * from userspace.  The fault handler takes care of binding the object to
1318  * the GTT (if needed), allocating and programming a fence register (again,
1319  * only if needed based on whether the old reg is still valid or the object
1320  * is tiled) and inserting a new PTE into the faulting process.
1321  *
1322  * Note that the faulting process may involve evicting existing objects
1323  * from the GTT and/or fence registers to make room.  So performance may
1324  * suffer if the GTT working set is large or there are few fence registers
1325  * left.
1326  */
1327 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328 {
1329         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330         struct drm_device *dev = obj->base.dev;
1331         drm_i915_private_t *dev_priv = dev->dev_private;
1332         pgoff_t page_offset;
1333         unsigned long pfn;
1334         int ret = 0;
1335         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1336
1337         /* We don't use vmf->pgoff since that has the fake offset */
1338         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339                 PAGE_SHIFT;
1340
1341         ret = i915_mutex_lock_interruptible(dev);
1342         if (ret)
1343                 goto out;
1344
1345         trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
1347         /* Now bind it into the GTT if needed */
1348         if (!obj->map_and_fenceable) {
1349                 ret = i915_gem_object_unbind(obj);
1350                 if (ret)
1351                         goto unlock;
1352         }
1353         if (!obj->gtt_space) {
1354                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1355                 if (ret)
1356                         goto unlock;
1357
1358                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359                 if (ret)
1360                         goto unlock;
1361         }
1362
1363         if (!obj->has_global_gtt_mapping)
1364                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
1366         ret = i915_gem_object_get_fence(obj);
1367         if (ret)
1368                 goto unlock;
1369
1370         if (i915_gem_object_is_inactive(obj))
1371                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1372
1373         obj->fault_mappable = true;
1374
1375         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1376                 page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unlock:
1381         mutex_unlock(&dev->struct_mutex);
1382 out:
1383         switch (ret) {
1384         case -EIO:
1385                 /* If this -EIO is due to a gpu hang, give the reset code a
1386                  * chance to clean up the mess. Otherwise return the proper
1387                  * SIGBUS. */
1388                 if (!atomic_read(&dev_priv->mm.wedged))
1389                         return VM_FAULT_SIGBUS;
1390         case -EAGAIN:
1391                 /* Give the error handler a chance to run and move the
1392                  * objects off the GPU active list. Next time we service the
1393                  * fault, we should be able to transition the page into the
1394                  * GTT without touching the GPU (and so avoid further
1395                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396                  * with coherency, just lost writes.
1397                  */
1398                 set_need_resched();
1399         case 0:
1400         case -ERESTARTSYS:
1401         case -EINTR:
1402         case -EBUSY:
1403                 /*
1404                  * EBUSY is ok: this just means that another thread
1405                  * already did the job.
1406                  */
1407                 return VM_FAULT_NOPAGE;
1408         case -ENOMEM:
1409                 return VM_FAULT_OOM;
1410         default:
1411                 WARN_ON_ONCE(ret);
1412                 return VM_FAULT_SIGBUS;
1413         }
1414 }
1415
1416 /**
1417  * i915_gem_release_mmap - remove physical page mappings
1418  * @obj: obj in question
1419  *
1420  * Preserve the reservation of the mmapping with the DRM core code, but
1421  * relinquish ownership of the pages back to the system.
1422  *
1423  * It is vital that we remove the page mapping if we have mapped a tiled
1424  * object through the GTT and then lose the fence register due to
1425  * resource pressure. Similarly if the object has been moved out of the
1426  * aperture, than pages mapped into userspace must be revoked. Removing the
1427  * mapping will then trigger a page fault on the next user access, allowing
1428  * fixup by i915_gem_fault().
1429  */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433         if (!obj->fault_mappable)
1434                 return;
1435
1436         if (obj->base.dev->dev_mapping)
1437                 unmap_mapping_range(obj->base.dev->dev_mapping,
1438                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439                                     obj->base.size, 1);
1440
1441         obj->fault_mappable = false;
1442 }
1443
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447         uint32_t gtt_size;
1448
1449         if (INTEL_INFO(dev)->gen >= 4 ||
1450             tiling_mode == I915_TILING_NONE)
1451                 return size;
1452
1453         /* Previous chips need a power-of-two fence region when tiling */
1454         if (INTEL_INFO(dev)->gen == 3)
1455                 gtt_size = 1024*1024;
1456         else
1457                 gtt_size = 512*1024;
1458
1459         while (gtt_size < size)
1460                 gtt_size <<= 1;
1461
1462         return gtt_size;
1463 }
1464
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474                            uint32_t size,
1475                            int tiling_mode)
1476 {
1477         /*
1478          * Minimum alignment is 4k (GTT page size), but might be greater
1479          * if a fence register is needed for the object.
1480          */
1481         if (INTEL_INFO(dev)->gen >= 4 ||
1482             tiling_mode == I915_TILING_NONE)
1483                 return 4096;
1484
1485         /*
1486          * Previous chips need to be aligned to the size of the smallest
1487          * fence register that can contain the object.
1488          */
1489         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491
1492 /**
1493  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494  *                                       unfenced object
1495  * @dev: the device
1496  * @size: size of the object
1497  * @tiling_mode: tiling mode of the object
1498  *
1499  * Return the required GTT alignment for an object, only taking into account
1500  * unfenced tiled surface requirements.
1501  */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504                                     uint32_t size,
1505                                     int tiling_mode)
1506 {
1507         /*
1508          * Minimum alignment is 4k (GTT page size) for sane hw.
1509          */
1510         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511             tiling_mode == I915_TILING_NONE)
1512                 return 4096;
1513
1514         /* Previous hardware however needs to be aligned to a power-of-two
1515          * tile height. The simplest method for determining this is to reuse
1516          * the power-of-tile object size.
1517          */
1518         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524         int ret;
1525
1526         if (obj->base.map_list.map)
1527                 return 0;
1528
1529         ret = drm_gem_create_mmap_offset(&obj->base);
1530         if (ret != -ENOSPC)
1531                 return ret;
1532
1533         /* Badly fragmented mmap space? The only way we can recover
1534          * space is by destroying unwanted objects. We can't randomly release
1535          * mmap_offsets as userspace expects them to be persistent for the
1536          * lifetime of the objects. The closest we can is to release the
1537          * offsets on purgeable objects by truncating it and marking it purged,
1538          * which prevents userspace from ever using that object again.
1539          */
1540         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541         ret = drm_gem_create_mmap_offset(&obj->base);
1542         if (ret != -ENOSPC)
1543                 return ret;
1544
1545         i915_gem_shrink_all(dev_priv);
1546         return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551         if (!obj->base.map_list.map)
1552                 return;
1553
1554         drm_gem_free_mmap_offset(&obj->base);
1555 }
1556
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559                   struct drm_device *dev,
1560                   uint32_t handle,
1561                   uint64_t *offset)
1562 {
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj;
1565         int ret;
1566
1567         ret = i915_mutex_lock_interruptible(dev);
1568         if (ret)
1569                 return ret;
1570
1571         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572         if (&obj->base == NULL) {
1573                 ret = -ENOENT;
1574                 goto unlock;
1575         }
1576
1577         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578                 ret = -E2BIG;
1579                 goto out;
1580         }
1581
1582         if (obj->madv != I915_MADV_WILLNEED) {
1583                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584                 ret = -EINVAL;
1585                 goto out;
1586         }
1587
1588         ret = i915_gem_object_create_mmap_offset(obj);
1589         if (ret)
1590                 goto out;
1591
1592         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593
1594 out:
1595         drm_gem_object_unreference(&obj->base);
1596 unlock:
1597         mutex_unlock(&dev->struct_mutex);
1598         return ret;
1599 }
1600
1601 /**
1602  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603  * @dev: DRM device
1604  * @data: GTT mapping ioctl data
1605  * @file: GEM object info
1606  *
1607  * Simply returns the fake offset to userspace so it can mmap it.
1608  * The mmap call will end up in drm_gem_mmap(), which will set things
1609  * up so we can get faults in the handler above.
1610  *
1611  * The fault handler will take care of binding the object into the GTT
1612  * (since it may have been evicted to make room for something), allocating
1613  * a fence register, and mapping the appropriate aperture address into
1614  * userspace.
1615  */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618                         struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap_gtt *args = data;
1621
1622         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629         struct inode *inode;
1630
1631         i915_gem_object_free_mmap_offset(obj);
1632
1633         if (obj->base.filp == NULL)
1634                 return;
1635
1636         /* Our goal here is to return as much of the memory as
1637          * is possible back to the system as we are called from OOM.
1638          * To do this we must instruct the shmfs to drop all of its
1639          * backing pages, *now*.
1640          */
1641         inode = obj->base.filp->f_path.dentry->d_inode;
1642         shmem_truncate_range(inode, 0, (loff_t)-1);
1643
1644         obj->madv = __I915_MADV_PURGED;
1645 }
1646
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650         return obj->madv == I915_MADV_DONTNEED;
1651 }
1652
1653 static void
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656         int page_count = obj->base.size / PAGE_SIZE;
1657         struct scatterlist *sg;
1658         int ret, i;
1659
1660         BUG_ON(obj->madv == __I915_MADV_PURGED);
1661
1662         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663         if (ret) {
1664                 /* In the event of a disaster, abandon all caches and
1665                  * hope for the best.
1666                  */
1667                 WARN_ON(ret != -EIO);
1668                 i915_gem_clflush_object(obj);
1669                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670         }
1671
1672         if (i915_gem_object_needs_bit17_swizzle(obj))
1673                 i915_gem_object_save_bit_17_swizzle(obj);
1674
1675         if (obj->madv == I915_MADV_DONTNEED)
1676                 obj->dirty = 0;
1677
1678         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679                 struct page *page = sg_page(sg);
1680
1681                 if (obj->dirty)
1682                         set_page_dirty(page);
1683
1684                 if (obj->madv == I915_MADV_WILLNEED)
1685                         mark_page_accessed(page);
1686
1687                 page_cache_release(page);
1688         }
1689         obj->dirty = 0;
1690
1691         sg_free_table(obj->pages);
1692         kfree(obj->pages);
1693 }
1694
1695 static int
1696 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697 {
1698         const struct drm_i915_gem_object_ops *ops = obj->ops;
1699
1700         if (obj->pages == NULL)
1701                 return 0;
1702
1703         BUG_ON(obj->gtt_space);
1704
1705         if (obj->pages_pin_count)
1706                 return -EBUSY;
1707
1708         ops->put_pages(obj);
1709         obj->pages = NULL;
1710
1711         list_del(&obj->gtt_list);
1712         if (i915_gem_object_is_purgeable(obj))
1713                 i915_gem_object_truncate(obj);
1714
1715         return 0;
1716 }
1717
1718 static long
1719 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1720 {
1721         struct drm_i915_gem_object *obj, *next;
1722         long count = 0;
1723
1724         list_for_each_entry_safe(obj, next,
1725                                  &dev_priv->mm.unbound_list,
1726                                  gtt_list) {
1727                 if (i915_gem_object_is_purgeable(obj) &&
1728                     i915_gem_object_put_pages(obj) == 0) {
1729                         count += obj->base.size >> PAGE_SHIFT;
1730                         if (count >= target)
1731                                 return count;
1732                 }
1733         }
1734
1735         list_for_each_entry_safe(obj, next,
1736                                  &dev_priv->mm.inactive_list,
1737                                  mm_list) {
1738                 if (i915_gem_object_is_purgeable(obj) &&
1739                     i915_gem_object_unbind(obj) == 0 &&
1740                     i915_gem_object_put_pages(obj) == 0) {
1741                         count += obj->base.size >> PAGE_SHIFT;
1742                         if (count >= target)
1743                                 return count;
1744                 }
1745         }
1746
1747         return count;
1748 }
1749
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753         struct drm_i915_gem_object *obj, *next;
1754
1755         i915_gem_evict_everything(dev_priv->dev);
1756
1757         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1758                 i915_gem_object_put_pages(obj);
1759 }
1760
1761 static int
1762 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1763 {
1764         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1765         int page_count, i;
1766         struct address_space *mapping;
1767         struct sg_table *st;
1768         struct scatterlist *sg;
1769         struct page *page;
1770         gfp_t gfp;
1771
1772         /* Assert that the object is not currently in any GPU domain. As it
1773          * wasn't in the GTT, there shouldn't be any way it could have been in
1774          * a GPU cache
1775          */
1776         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1777         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1778
1779         st = kmalloc(sizeof(*st), GFP_KERNEL);
1780         if (st == NULL)
1781                 return -ENOMEM;
1782
1783         page_count = obj->base.size / PAGE_SIZE;
1784         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1785                 sg_free_table(st);
1786                 kfree(st);
1787                 return -ENOMEM;
1788         }
1789
1790         /* Get the list of pages out of our struct file.  They'll be pinned
1791          * at this point until we release them.
1792          *
1793          * Fail silently without starting the shrinker
1794          */
1795         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1796         gfp = mapping_gfp_mask(mapping);
1797         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1798         gfp &= ~(__GFP_IO | __GFP_WAIT);
1799         for_each_sg(st->sgl, sg, page_count, i) {
1800                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801                 if (IS_ERR(page)) {
1802                         i915_gem_purge(dev_priv, page_count);
1803                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804                 }
1805                 if (IS_ERR(page)) {
1806                         /* We've tried hard to allocate the memory by reaping
1807                          * our own buffer, now let the real VM do its job and
1808                          * go down in flames if truly OOM.
1809                          */
1810                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1811                         gfp |= __GFP_IO | __GFP_WAIT;
1812
1813                         i915_gem_shrink_all(dev_priv);
1814                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1815                         if (IS_ERR(page))
1816                                 goto err_pages;
1817
1818                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
1819                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1820                 }
1821
1822                 sg_set_page(sg, page, PAGE_SIZE, 0);
1823         }
1824
1825         if (i915_gem_object_needs_bit17_swizzle(obj))
1826                 i915_gem_object_do_bit_17_swizzle(obj);
1827
1828         obj->pages = st;
1829         return 0;
1830
1831 err_pages:
1832         for_each_sg(st->sgl, sg, i, page_count)
1833                 page_cache_release(sg_page(sg));
1834         sg_free_table(st);
1835         kfree(st);
1836         return PTR_ERR(page);
1837 }
1838
1839 /* Ensure that the associated pages are gathered from the backing storage
1840  * and pinned into our object. i915_gem_object_get_pages() may be called
1841  * multiple times before they are released by a single call to
1842  * i915_gem_object_put_pages() - once the pages are no longer referenced
1843  * either as a result of memory pressure (reaping pages under the shrinker)
1844  * or as the object is itself released.
1845  */
1846 int
1847 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1848 {
1849         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1850         const struct drm_i915_gem_object_ops *ops = obj->ops;
1851         int ret;
1852
1853         if (obj->pages)
1854                 return 0;
1855
1856         BUG_ON(obj->pages_pin_count);
1857
1858         ret = ops->get_pages(obj);
1859         if (ret)
1860                 return ret;
1861
1862         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1863         return 0;
1864 }
1865
1866 void
1867 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1868                                struct intel_ring_buffer *ring,
1869                                u32 seqno)
1870 {
1871         struct drm_device *dev = obj->base.dev;
1872         struct drm_i915_private *dev_priv = dev->dev_private;
1873
1874         BUG_ON(ring == NULL);
1875         obj->ring = ring;
1876
1877         /* Add a reference if we're newly entering the active list. */
1878         if (!obj->active) {
1879                 drm_gem_object_reference(&obj->base);
1880                 obj->active = 1;
1881         }
1882
1883         /* Move from whatever list we were on to the tail of execution. */
1884         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885         list_move_tail(&obj->ring_list, &ring->active_list);
1886
1887         obj->last_read_seqno = seqno;
1888
1889         if (obj->fenced_gpu_access) {
1890                 obj->last_fenced_seqno = seqno;
1891
1892                 /* Bump MRU to take account of the delayed flush */
1893                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894                         struct drm_i915_fence_reg *reg;
1895
1896                         reg = &dev_priv->fence_regs[obj->fence_reg];
1897                         list_move_tail(&reg->lru_list,
1898                                        &dev_priv->mm.fence_list);
1899                 }
1900         }
1901 }
1902
1903 static void
1904 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905 {
1906         struct drm_device *dev = obj->base.dev;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908
1909         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1910         BUG_ON(!obj->active);
1911
1912         if (obj->pin_count) /* are we a framebuffer? */
1913                 intel_mark_fb_idle(obj);
1914
1915         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916
1917         list_del_init(&obj->ring_list);
1918         obj->ring = NULL;
1919
1920         obj->last_read_seqno = 0;
1921         obj->last_write_seqno = 0;
1922         obj->base.write_domain = 0;
1923
1924         obj->last_fenced_seqno = 0;
1925         obj->fenced_gpu_access = false;
1926
1927         obj->active = 0;
1928         drm_gem_object_unreference(&obj->base);
1929
1930         WARN_ON(i915_verify_lists(dev));
1931 }
1932
1933 static u32
1934 i915_gem_get_seqno(struct drm_device *dev)
1935 {
1936         drm_i915_private_t *dev_priv = dev->dev_private;
1937         u32 seqno = dev_priv->next_seqno;
1938
1939         /* reserve 0 for non-seqno */
1940         if (++dev_priv->next_seqno == 0)
1941                 dev_priv->next_seqno = 1;
1942
1943         return seqno;
1944 }
1945
1946 u32
1947 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1948 {
1949         if (ring->outstanding_lazy_request == 0)
1950                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1951
1952         return ring->outstanding_lazy_request;
1953 }
1954
1955 int
1956 i915_add_request(struct intel_ring_buffer *ring,
1957                  struct drm_file *file,
1958                  u32 *out_seqno)
1959 {
1960         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1961         struct drm_i915_gem_request *request;
1962         u32 request_ring_position;
1963         u32 seqno;
1964         int was_empty;
1965         int ret;
1966
1967         /*
1968          * Emit any outstanding flushes - execbuf can fail to emit the flush
1969          * after having emitted the batchbuffer command. Hence we need to fix
1970          * things up similar to emitting the lazy request. The difference here
1971          * is that the flush _must_ happen before the next request, no matter
1972          * what.
1973          */
1974         ret = intel_ring_flush_all_caches(ring);
1975         if (ret)
1976                 return ret;
1977
1978         request = kmalloc(sizeof(*request), GFP_KERNEL);
1979         if (request == NULL)
1980                 return -ENOMEM;
1981
1982         seqno = i915_gem_next_request_seqno(ring);
1983
1984         /* Record the position of the start of the request so that
1985          * should we detect the updated seqno part-way through the
1986          * GPU processing the request, we never over-estimate the
1987          * position of the head.
1988          */
1989         request_ring_position = intel_ring_get_tail(ring);
1990
1991         ret = ring->add_request(ring, &seqno);
1992         if (ret) {
1993                 kfree(request);
1994                 return ret;
1995         }
1996
1997         trace_i915_gem_request_add(ring, seqno);
1998
1999         request->seqno = seqno;
2000         request->ring = ring;
2001         request->tail = request_ring_position;
2002         request->emitted_jiffies = jiffies;
2003         was_empty = list_empty(&ring->request_list);
2004         list_add_tail(&request->list, &ring->request_list);
2005         request->file_priv = NULL;
2006
2007         if (file) {
2008                 struct drm_i915_file_private *file_priv = file->driver_priv;
2009
2010                 spin_lock(&file_priv->mm.lock);
2011                 request->file_priv = file_priv;
2012                 list_add_tail(&request->client_list,
2013                               &file_priv->mm.request_list);
2014                 spin_unlock(&file_priv->mm.lock);
2015         }
2016
2017         ring->outstanding_lazy_request = 0;
2018
2019         if (!dev_priv->mm.suspended) {
2020                 if (i915_enable_hangcheck) {
2021                         mod_timer(&dev_priv->hangcheck_timer,
2022                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2023                 }
2024                 if (was_empty) {
2025                         queue_delayed_work(dev_priv->wq,
2026                                            &dev_priv->mm.retire_work,
2027                                            round_jiffies_up_relative(HZ));
2028                         intel_mark_busy(dev_priv->dev);
2029                 }
2030         }
2031
2032         if (out_seqno)
2033                 *out_seqno = seqno;
2034         return 0;
2035 }
2036
2037 static inline void
2038 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2039 {
2040         struct drm_i915_file_private *file_priv = request->file_priv;
2041
2042         if (!file_priv)
2043                 return;
2044
2045         spin_lock(&file_priv->mm.lock);
2046         if (request->file_priv) {
2047                 list_del(&request->client_list);
2048                 request->file_priv = NULL;
2049         }
2050         spin_unlock(&file_priv->mm.lock);
2051 }
2052
2053 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054                                       struct intel_ring_buffer *ring)
2055 {
2056         while (!list_empty(&ring->request_list)) {
2057                 struct drm_i915_gem_request *request;
2058
2059                 request = list_first_entry(&ring->request_list,
2060                                            struct drm_i915_gem_request,
2061                                            list);
2062
2063                 list_del(&request->list);
2064                 i915_gem_request_remove_from_client(request);
2065                 kfree(request);
2066         }
2067
2068         while (!list_empty(&ring->active_list)) {
2069                 struct drm_i915_gem_object *obj;
2070
2071                 obj = list_first_entry(&ring->active_list,
2072                                        struct drm_i915_gem_object,
2073                                        ring_list);
2074
2075                 i915_gem_object_move_to_inactive(obj);
2076         }
2077 }
2078
2079 static void i915_gem_reset_fences(struct drm_device *dev)
2080 {
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         int i;
2083
2084         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
2087                 i915_gem_write_fence(dev, i, NULL);
2088
2089                 if (reg->obj)
2090                         i915_gem_object_fence_lost(reg->obj);
2091
2092                 reg->pin_count = 0;
2093                 reg->obj = NULL;
2094                 INIT_LIST_HEAD(&reg->lru_list);
2095         }
2096
2097         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2098 }
2099
2100 void i915_gem_reset(struct drm_device *dev)
2101 {
2102         struct drm_i915_private *dev_priv = dev->dev_private;
2103         struct drm_i915_gem_object *obj;
2104         struct intel_ring_buffer *ring;
2105         int i;
2106
2107         for_each_ring(ring, dev_priv, i)
2108                 i915_gem_reset_ring_lists(dev_priv, ring);
2109
2110         /* Move everything out of the GPU domains to ensure we do any
2111          * necessary invalidation upon reuse.
2112          */
2113         list_for_each_entry(obj,
2114                             &dev_priv->mm.inactive_list,
2115                             mm_list)
2116         {
2117                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2118         }
2119
2120         /* The fence registers are invalidated so clear them out */
2121         i915_gem_reset_fences(dev);
2122 }
2123
2124 /**
2125  * This function clears the request list as sequence numbers are passed.
2126  */
2127 void
2128 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2129 {
2130         uint32_t seqno;
2131         int i;
2132
2133         if (list_empty(&ring->request_list))
2134                 return;
2135
2136         WARN_ON(i915_verify_lists(ring->dev));
2137
2138         seqno = ring->get_seqno(ring, true);
2139
2140         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2141                 if (seqno >= ring->sync_seqno[i])
2142                         ring->sync_seqno[i] = 0;
2143
2144         while (!list_empty(&ring->request_list)) {
2145                 struct drm_i915_gem_request *request;
2146
2147                 request = list_first_entry(&ring->request_list,
2148                                            struct drm_i915_gem_request,
2149                                            list);
2150
2151                 if (!i915_seqno_passed(seqno, request->seqno))
2152                         break;
2153
2154                 trace_i915_gem_request_retire(ring, request->seqno);
2155                 /* We know the GPU must have read the request to have
2156                  * sent us the seqno + interrupt, so use the position
2157                  * of tail of the request to update the last known position
2158                  * of the GPU head.
2159                  */
2160                 ring->last_retired_head = request->tail;
2161
2162                 list_del(&request->list);
2163                 i915_gem_request_remove_from_client(request);
2164                 kfree(request);
2165         }
2166
2167         /* Move any buffers on the active list that are no longer referenced
2168          * by the ringbuffer to the flushing/inactive lists as appropriate.
2169          */
2170         while (!list_empty(&ring->active_list)) {
2171                 struct drm_i915_gem_object *obj;
2172
2173                 obj = list_first_entry(&ring->active_list,
2174                                       struct drm_i915_gem_object,
2175                                       ring_list);
2176
2177                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2178                         break;
2179
2180                 i915_gem_object_move_to_inactive(obj);
2181         }
2182
2183         if (unlikely(ring->trace_irq_seqno &&
2184                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2185                 ring->irq_put(ring);
2186                 ring->trace_irq_seqno = 0;
2187         }
2188
2189         WARN_ON(i915_verify_lists(ring->dev));
2190 }
2191
2192 void
2193 i915_gem_retire_requests(struct drm_device *dev)
2194 {
2195         drm_i915_private_t *dev_priv = dev->dev_private;
2196         struct intel_ring_buffer *ring;
2197         int i;
2198
2199         for_each_ring(ring, dev_priv, i)
2200                 i915_gem_retire_requests_ring(ring);
2201 }
2202
2203 static void
2204 i915_gem_retire_work_handler(struct work_struct *work)
2205 {
2206         drm_i915_private_t *dev_priv;
2207         struct drm_device *dev;
2208         struct intel_ring_buffer *ring;
2209         bool idle;
2210         int i;
2211
2212         dev_priv = container_of(work, drm_i915_private_t,
2213                                 mm.retire_work.work);
2214         dev = dev_priv->dev;
2215
2216         /* Come back later if the device is busy... */
2217         if (!mutex_trylock(&dev->struct_mutex)) {
2218                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2219                                    round_jiffies_up_relative(HZ));
2220                 return;
2221         }
2222
2223         i915_gem_retire_requests(dev);
2224
2225         /* Send a periodic flush down the ring so we don't hold onto GEM
2226          * objects indefinitely.
2227          */
2228         idle = true;
2229         for_each_ring(ring, dev_priv, i) {
2230                 if (ring->gpu_caches_dirty)
2231                         i915_add_request(ring, NULL, NULL);
2232
2233                 idle &= list_empty(&ring->request_list);
2234         }
2235
2236         if (!dev_priv->mm.suspended && !idle)
2237                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2238                                    round_jiffies_up_relative(HZ));
2239         if (idle)
2240                 intel_mark_idle(dev);
2241
2242         mutex_unlock(&dev->struct_mutex);
2243 }
2244
2245 /**
2246  * Ensures that an object will eventually get non-busy by flushing any required
2247  * write domains, emitting any outstanding lazy request and retiring and
2248  * completed requests.
2249  */
2250 static int
2251 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2252 {
2253         int ret;
2254
2255         if (obj->active) {
2256                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2257                 if (ret)
2258                         return ret;
2259
2260                 i915_gem_retire_requests_ring(obj->ring);
2261         }
2262
2263         return 0;
2264 }
2265
2266 /**
2267  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2268  * @DRM_IOCTL_ARGS: standard ioctl arguments
2269  *
2270  * Returns 0 if successful, else an error is returned with the remaining time in
2271  * the timeout parameter.
2272  *  -ETIME: object is still busy after timeout
2273  *  -ERESTARTSYS: signal interrupted the wait
2274  *  -ENONENT: object doesn't exist
2275  * Also possible, but rare:
2276  *  -EAGAIN: GPU wedged
2277  *  -ENOMEM: damn
2278  *  -ENODEV: Internal IRQ fail
2279  *  -E?: The add request failed
2280  *
2281  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2282  * non-zero timeout parameter the wait ioctl will wait for the given number of
2283  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2284  * without holding struct_mutex the object may become re-busied before this
2285  * function completes. A similar but shorter * race condition exists in the busy
2286  * ioctl
2287  */
2288 int
2289 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2290 {
2291         struct drm_i915_gem_wait *args = data;
2292         struct drm_i915_gem_object *obj;
2293         struct intel_ring_buffer *ring = NULL;
2294         struct timespec timeout_stack, *timeout = NULL;
2295         u32 seqno = 0;
2296         int ret = 0;
2297
2298         if (args->timeout_ns >= 0) {
2299                 timeout_stack = ns_to_timespec(args->timeout_ns);
2300                 timeout = &timeout_stack;
2301         }
2302
2303         ret = i915_mutex_lock_interruptible(dev);
2304         if (ret)
2305                 return ret;
2306
2307         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2308         if (&obj->base == NULL) {
2309                 mutex_unlock(&dev->struct_mutex);
2310                 return -ENOENT;
2311         }
2312
2313         /* Need to make sure the object gets inactive eventually. */
2314         ret = i915_gem_object_flush_active(obj);
2315         if (ret)
2316                 goto out;
2317
2318         if (obj->active) {
2319                 seqno = obj->last_read_seqno;
2320                 ring = obj->ring;
2321         }
2322
2323         if (seqno == 0)
2324                  goto out;
2325
2326         /* Do this after OLR check to make sure we make forward progress polling
2327          * on this IOCTL with a 0 timeout (like busy ioctl)
2328          */
2329         if (!args->timeout_ns) {
2330                 ret = -ETIME;
2331                 goto out;
2332         }
2333
2334         drm_gem_object_unreference(&obj->base);
2335         mutex_unlock(&dev->struct_mutex);
2336
2337         ret = __wait_seqno(ring, seqno, true, timeout);
2338         if (timeout) {
2339                 WARN_ON(!timespec_valid(timeout));
2340                 args->timeout_ns = timespec_to_ns(timeout);
2341         }
2342         return ret;
2343
2344 out:
2345         drm_gem_object_unreference(&obj->base);
2346         mutex_unlock(&dev->struct_mutex);
2347         return ret;
2348 }
2349
2350 /**
2351  * i915_gem_object_sync - sync an object to a ring.
2352  *
2353  * @obj: object which may be in use on another ring.
2354  * @to: ring we wish to use the object on. May be NULL.
2355  *
2356  * This code is meant to abstract object synchronization with the GPU.
2357  * Calling with NULL implies synchronizing the object with the CPU
2358  * rather than a particular GPU ring.
2359  *
2360  * Returns 0 if successful, else propagates up the lower layer error.
2361  */
2362 int
2363 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2364                      struct intel_ring_buffer *to)
2365 {
2366         struct intel_ring_buffer *from = obj->ring;
2367         u32 seqno;
2368         int ret, idx;
2369
2370         if (from == NULL || to == from)
2371                 return 0;
2372
2373         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2374                 return i915_gem_object_wait_rendering(obj, false);
2375
2376         idx = intel_ring_sync_index(from, to);
2377
2378         seqno = obj->last_read_seqno;
2379         if (seqno <= from->sync_seqno[idx])
2380                 return 0;
2381
2382         ret = i915_gem_check_olr(obj->ring, seqno);
2383         if (ret)
2384                 return ret;
2385
2386         ret = to->sync_to(to, from, seqno);
2387         if (!ret)
2388                 from->sync_seqno[idx] = seqno;
2389
2390         return ret;
2391 }
2392
2393 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2394 {
2395         u32 old_write_domain, old_read_domains;
2396
2397         /* Act a barrier for all accesses through the GTT */
2398         mb();
2399
2400         /* Force a pagefault for domain tracking on next user access */
2401         i915_gem_release_mmap(obj);
2402
2403         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2404                 return;
2405
2406         old_read_domains = obj->base.read_domains;
2407         old_write_domain = obj->base.write_domain;
2408
2409         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2410         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2411
2412         trace_i915_gem_object_change_domain(obj,
2413                                             old_read_domains,
2414                                             old_write_domain);
2415 }
2416
2417 /**
2418  * Unbinds an object from the GTT aperture.
2419  */
2420 int
2421 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2422 {
2423         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2424         int ret = 0;
2425
2426         if (obj->gtt_space == NULL)
2427                 return 0;
2428
2429         if (obj->pin_count)
2430                 return -EBUSY;
2431
2432         BUG_ON(obj->pages == NULL);
2433
2434         ret = i915_gem_object_finish_gpu(obj);
2435         if (ret)
2436                 return ret;
2437         /* Continue on if we fail due to EIO, the GPU is hung so we
2438          * should be safe and we need to cleanup or else we might
2439          * cause memory corruption through use-after-free.
2440          */
2441
2442         i915_gem_object_finish_gtt(obj);
2443
2444         /* release the fence reg _after_ flushing */
2445         ret = i915_gem_object_put_fence(obj);
2446         if (ret)
2447                 return ret;
2448
2449         trace_i915_gem_object_unbind(obj);
2450
2451         if (obj->has_global_gtt_mapping)
2452                 i915_gem_gtt_unbind_object(obj);
2453         if (obj->has_aliasing_ppgtt_mapping) {
2454                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2455                 obj->has_aliasing_ppgtt_mapping = 0;
2456         }
2457         i915_gem_gtt_finish_object(obj);
2458
2459         list_del(&obj->mm_list);
2460         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2461         /* Avoid an unnecessary call to unbind on rebind. */
2462         obj->map_and_fenceable = true;
2463
2464         drm_mm_put_block(obj->gtt_space);
2465         obj->gtt_space = NULL;
2466         obj->gtt_offset = 0;
2467
2468         return 0;
2469 }
2470
2471 static int i915_ring_idle(struct intel_ring_buffer *ring)
2472 {
2473         if (list_empty(&ring->active_list))
2474                 return 0;
2475
2476         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2477 }
2478
2479 int i915_gpu_idle(struct drm_device *dev)
2480 {
2481         drm_i915_private_t *dev_priv = dev->dev_private;
2482         struct intel_ring_buffer *ring;
2483         int ret, i;
2484
2485         /* Flush everything onto the inactive list. */
2486         for_each_ring(ring, dev_priv, i) {
2487                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2488                 if (ret)
2489                         return ret;
2490
2491                 ret = i915_ring_idle(ring);
2492                 if (ret)
2493                         return ret;
2494         }
2495
2496         return 0;
2497 }
2498
2499 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2500                                         struct drm_i915_gem_object *obj)
2501 {
2502         drm_i915_private_t *dev_priv = dev->dev_private;
2503         uint64_t val;
2504
2505         if (obj) {
2506                 u32 size = obj->gtt_space->size;
2507
2508                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2509                                  0xfffff000) << 32;
2510                 val |= obj->gtt_offset & 0xfffff000;
2511                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2512                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2513
2514                 if (obj->tiling_mode == I915_TILING_Y)
2515                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2516                 val |= I965_FENCE_REG_VALID;
2517         } else
2518                 val = 0;
2519
2520         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2521         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2522 }
2523
2524 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2525                                  struct drm_i915_gem_object *obj)
2526 {
2527         drm_i915_private_t *dev_priv = dev->dev_private;
2528         uint64_t val;
2529
2530         if (obj) {
2531                 u32 size = obj->gtt_space->size;
2532
2533                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2534                                  0xfffff000) << 32;
2535                 val |= obj->gtt_offset & 0xfffff000;
2536                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2537                 if (obj->tiling_mode == I915_TILING_Y)
2538                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2539                 val |= I965_FENCE_REG_VALID;
2540         } else
2541                 val = 0;
2542
2543         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2544         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2545 }
2546
2547 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2548                                  struct drm_i915_gem_object *obj)
2549 {
2550         drm_i915_private_t *dev_priv = dev->dev_private;
2551         u32 val;
2552
2553         if (obj) {
2554                 u32 size = obj->gtt_space->size;
2555                 int pitch_val;
2556                 int tile_width;
2557
2558                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2559                      (size & -size) != size ||
2560                      (obj->gtt_offset & (size - 1)),
2561                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2562                      obj->gtt_offset, obj->map_and_fenceable, size);
2563
2564                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2565                         tile_width = 128;
2566                 else
2567                         tile_width = 512;
2568
2569                 /* Note: pitch better be a power of two tile widths */
2570                 pitch_val = obj->stride / tile_width;
2571                 pitch_val = ffs(pitch_val) - 1;
2572
2573                 val = obj->gtt_offset;
2574                 if (obj->tiling_mode == I915_TILING_Y)
2575                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2576                 val |= I915_FENCE_SIZE_BITS(size);
2577                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2578                 val |= I830_FENCE_REG_VALID;
2579         } else
2580                 val = 0;
2581
2582         if (reg < 8)
2583                 reg = FENCE_REG_830_0 + reg * 4;
2584         else
2585                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2586
2587         I915_WRITE(reg, val);
2588         POSTING_READ(reg);
2589 }
2590
2591 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2592                                 struct drm_i915_gem_object *obj)
2593 {
2594         drm_i915_private_t *dev_priv = dev->dev_private;
2595         uint32_t val;
2596
2597         if (obj) {
2598                 u32 size = obj->gtt_space->size;
2599                 uint32_t pitch_val;
2600
2601                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2602                      (size & -size) != size ||
2603                      (obj->gtt_offset & (size - 1)),
2604                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2605                      obj->gtt_offset, size);
2606
2607                 pitch_val = obj->stride / 128;
2608                 pitch_val = ffs(pitch_val) - 1;
2609
2610                 val = obj->gtt_offset;
2611                 if (obj->tiling_mode == I915_TILING_Y)
2612                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2613                 val |= I830_FENCE_SIZE_BITS(size);
2614                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2615                 val |= I830_FENCE_REG_VALID;
2616         } else
2617                 val = 0;
2618
2619         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2620         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2621 }
2622
2623 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2624                                  struct drm_i915_gem_object *obj)
2625 {
2626         switch (INTEL_INFO(dev)->gen) {
2627         case 7:
2628         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2629         case 5:
2630         case 4: i965_write_fence_reg(dev, reg, obj); break;
2631         case 3: i915_write_fence_reg(dev, reg, obj); break;
2632         case 2: i830_write_fence_reg(dev, reg, obj); break;
2633         default: break;
2634         }
2635 }
2636
2637 static inline int fence_number(struct drm_i915_private *dev_priv,
2638                                struct drm_i915_fence_reg *fence)
2639 {
2640         return fence - dev_priv->fence_regs;
2641 }
2642
2643 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2644                                          struct drm_i915_fence_reg *fence,
2645                                          bool enable)
2646 {
2647         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2648         int reg = fence_number(dev_priv, fence);
2649
2650         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2651
2652         if (enable) {
2653                 obj->fence_reg = reg;
2654                 fence->obj = obj;
2655                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2656         } else {
2657                 obj->fence_reg = I915_FENCE_REG_NONE;
2658                 fence->obj = NULL;
2659                 list_del_init(&fence->lru_list);
2660         }
2661 }
2662
2663 static int
2664 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2665 {
2666         if (obj->last_fenced_seqno) {
2667                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2668                 if (ret)
2669                         return ret;
2670
2671                 obj->last_fenced_seqno = 0;
2672         }
2673
2674         /* Ensure that all CPU reads are completed before installing a fence
2675          * and all writes before removing the fence.
2676          */
2677         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2678                 mb();
2679
2680         obj->fenced_gpu_access = false;
2681         return 0;
2682 }
2683
2684 int
2685 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2686 {
2687         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2688         int ret;
2689
2690         ret = i915_gem_object_flush_fence(obj);
2691         if (ret)
2692                 return ret;
2693
2694         if (obj->fence_reg == I915_FENCE_REG_NONE)
2695                 return 0;
2696
2697         i915_gem_object_update_fence(obj,
2698                                      &dev_priv->fence_regs[obj->fence_reg],
2699                                      false);
2700         i915_gem_object_fence_lost(obj);
2701
2702         return 0;
2703 }
2704
2705 static struct drm_i915_fence_reg *
2706 i915_find_fence_reg(struct drm_device *dev)
2707 {
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         struct drm_i915_fence_reg *reg, *avail;
2710         int i;
2711
2712         /* First try to find a free reg */
2713         avail = NULL;
2714         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2715                 reg = &dev_priv->fence_regs[i];
2716                 if (!reg->obj)
2717                         return reg;
2718
2719                 if (!reg->pin_count)
2720                         avail = reg;
2721         }
2722
2723         if (avail == NULL)
2724                 return NULL;
2725
2726         /* None available, try to steal one or wait for a user to finish */
2727         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2728                 if (reg->pin_count)
2729                         continue;
2730
2731                 return reg;
2732         }
2733
2734         return NULL;
2735 }
2736
2737 /**
2738  * i915_gem_object_get_fence - set up fencing for an object
2739  * @obj: object to map through a fence reg
2740  *
2741  * When mapping objects through the GTT, userspace wants to be able to write
2742  * to them without having to worry about swizzling if the object is tiled.
2743  * This function walks the fence regs looking for a free one for @obj,
2744  * stealing one if it can't find any.
2745  *
2746  * It then sets up the reg based on the object's properties: address, pitch
2747  * and tiling format.
2748  *
2749  * For an untiled surface, this removes any existing fence.
2750  */
2751 int
2752 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2753 {
2754         struct drm_device *dev = obj->base.dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         bool enable = obj->tiling_mode != I915_TILING_NONE;
2757         struct drm_i915_fence_reg *reg;
2758         int ret;
2759
2760         /* Have we updated the tiling parameters upon the object and so
2761          * will need to serialise the write to the associated fence register?
2762          */
2763         if (obj->fence_dirty) {
2764                 ret = i915_gem_object_flush_fence(obj);
2765                 if (ret)
2766                         return ret;
2767         }
2768
2769         /* Just update our place in the LRU if our fence is getting reused. */
2770         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2771                 reg = &dev_priv->fence_regs[obj->fence_reg];
2772                 if (!obj->fence_dirty) {
2773                         list_move_tail(&reg->lru_list,
2774                                        &dev_priv->mm.fence_list);
2775                         return 0;
2776                 }
2777         } else if (enable) {
2778                 reg = i915_find_fence_reg(dev);
2779                 if (reg == NULL)
2780                         return -EDEADLK;
2781
2782                 if (reg->obj) {
2783                         struct drm_i915_gem_object *old = reg->obj;
2784
2785                         ret = i915_gem_object_flush_fence(old);
2786                         if (ret)
2787                                 return ret;
2788
2789                         i915_gem_object_fence_lost(old);
2790                 }
2791         } else
2792                 return 0;
2793
2794         i915_gem_object_update_fence(obj, reg, enable);
2795         obj->fence_dirty = false;
2796
2797         return 0;
2798 }
2799
2800 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2801                                      struct drm_mm_node *gtt_space,
2802                                      unsigned long cache_level)
2803 {
2804         struct drm_mm_node *other;
2805
2806         /* On non-LLC machines we have to be careful when putting differing
2807          * types of snoopable memory together to avoid the prefetcher
2808          * crossing memory domains and dieing.
2809          */
2810         if (HAS_LLC(dev))
2811                 return true;
2812
2813         if (gtt_space == NULL)
2814                 return true;
2815
2816         if (list_empty(&gtt_space->node_list))
2817                 return true;
2818
2819         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2820         if (other->allocated && !other->hole_follows && other->color != cache_level)
2821                 return false;
2822
2823         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2824         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2825                 return false;
2826
2827         return true;
2828 }
2829
2830 static void i915_gem_verify_gtt(struct drm_device *dev)
2831 {
2832 #if WATCH_GTT
2833         struct drm_i915_private *dev_priv = dev->dev_private;
2834         struct drm_i915_gem_object *obj;
2835         int err = 0;
2836
2837         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2838                 if (obj->gtt_space == NULL) {
2839                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2840                         err++;
2841                         continue;
2842                 }
2843
2844                 if (obj->cache_level != obj->gtt_space->color) {
2845                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2846                                obj->gtt_space->start,
2847                                obj->gtt_space->start + obj->gtt_space->size,
2848                                obj->cache_level,
2849                                obj->gtt_space->color);
2850                         err++;
2851                         continue;
2852                 }
2853
2854                 if (!i915_gem_valid_gtt_space(dev,
2855                                               obj->gtt_space,
2856                                               obj->cache_level)) {
2857                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2858                                obj->gtt_space->start,
2859                                obj->gtt_space->start + obj->gtt_space->size,
2860                                obj->cache_level);
2861                         err++;
2862                         continue;
2863                 }
2864         }
2865
2866         WARN_ON(err);
2867 #endif
2868 }
2869
2870 /**
2871  * Finds free space in the GTT aperture and binds the object there.
2872  */
2873 static int
2874 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2875                             unsigned alignment,
2876                             bool map_and_fenceable,
2877                             bool nonblocking)
2878 {
2879         struct drm_device *dev = obj->base.dev;
2880         drm_i915_private_t *dev_priv = dev->dev_private;
2881         struct drm_mm_node *free_space;
2882         u32 size, fence_size, fence_alignment, unfenced_alignment;
2883         bool mappable, fenceable;
2884         int ret;
2885
2886         if (obj->madv != I915_MADV_WILLNEED) {
2887                 DRM_ERROR("Attempting to bind a purgeable object\n");
2888                 return -EINVAL;
2889         }
2890
2891         fence_size = i915_gem_get_gtt_size(dev,
2892                                            obj->base.size,
2893                                            obj->tiling_mode);
2894         fence_alignment = i915_gem_get_gtt_alignment(dev,
2895                                                      obj->base.size,
2896                                                      obj->tiling_mode);
2897         unfenced_alignment =
2898                 i915_gem_get_unfenced_gtt_alignment(dev,
2899                                                     obj->base.size,
2900                                                     obj->tiling_mode);
2901
2902         if (alignment == 0)
2903                 alignment = map_and_fenceable ? fence_alignment :
2904                                                 unfenced_alignment;
2905         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2906                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2907                 return -EINVAL;
2908         }
2909
2910         size = map_and_fenceable ? fence_size : obj->base.size;
2911
2912         /* If the object is bigger than the entire aperture, reject it early
2913          * before evicting everything in a vain attempt to find space.
2914          */
2915         if (obj->base.size >
2916             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2917                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2918                 return -E2BIG;
2919         }
2920
2921         ret = i915_gem_object_get_pages(obj);
2922         if (ret)
2923                 return ret;
2924
2925  search_free:
2926         if (map_and_fenceable)
2927                 free_space =
2928                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2929                                                           size, alignment, obj->cache_level,
2930                                                           0, dev_priv->mm.gtt_mappable_end,
2931                                                           false);
2932         else
2933                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2934                                                       size, alignment, obj->cache_level,
2935                                                       false);
2936
2937         if (free_space != NULL) {
2938                 if (map_and_fenceable)
2939                         obj->gtt_space =
2940                                 drm_mm_get_block_range_generic(free_space,
2941                                                                size, alignment, obj->cache_level,
2942                                                                0, dev_priv->mm.gtt_mappable_end,
2943                                                                false);
2944                 else
2945                         obj->gtt_space =
2946                                 drm_mm_get_block_generic(free_space,
2947                                                          size, alignment, obj->cache_level,
2948                                                          false);
2949         }
2950         if (obj->gtt_space == NULL) {
2951                 ret = i915_gem_evict_something(dev, size, alignment,
2952                                                obj->cache_level,
2953                                                map_and_fenceable,
2954                                                nonblocking);
2955                 if (ret)
2956                         return ret;
2957
2958                 goto search_free;
2959         }
2960         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2961                                               obj->gtt_space,
2962                                               obj->cache_level))) {
2963                 drm_mm_put_block(obj->gtt_space);
2964                 obj->gtt_space = NULL;
2965                 return -EINVAL;
2966         }
2967
2968
2969         ret = i915_gem_gtt_prepare_object(obj);
2970         if (ret) {
2971                 drm_mm_put_block(obj->gtt_space);
2972                 obj->gtt_space = NULL;
2973                 return ret;
2974         }
2975
2976         if (!dev_priv->mm.aliasing_ppgtt)
2977                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2978
2979         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2980         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
2982         obj->gtt_offset = obj->gtt_space->start;
2983
2984         fenceable =
2985                 obj->gtt_space->size == fence_size &&
2986                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2987
2988         mappable =
2989                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2990
2991         obj->map_and_fenceable = mappable && fenceable;
2992
2993         trace_i915_gem_object_bind(obj, map_and_fenceable);
2994         i915_gem_verify_gtt(dev);
2995         return 0;
2996 }
2997
2998 void
2999 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3000 {
3001         /* If we don't have a page list set up, then we're not pinned
3002          * to GPU, and we can ignore the cache flush because it'll happen
3003          * again at bind time.
3004          */
3005         if (obj->pages == NULL)
3006                 return;
3007
3008         /* If the GPU is snooping the contents of the CPU cache,
3009          * we do not need to manually clear the CPU cache lines.  However,
3010          * the caches are only snooped when the render cache is
3011          * flushed/invalidated.  As we always have to emit invalidations
3012          * and flushes when moving into and out of the RENDER domain, correct
3013          * snooping behaviour occurs naturally as the result of our domain
3014          * tracking.
3015          */
3016         if (obj->cache_level != I915_CACHE_NONE)
3017                 return;
3018
3019         trace_i915_gem_object_clflush(obj);
3020
3021         drm_clflush_sg(obj->pages);
3022 }
3023
3024 /** Flushes the GTT write domain for the object if it's dirty. */
3025 static void
3026 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3027 {
3028         uint32_t old_write_domain;
3029
3030         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3031                 return;
3032
3033         /* No actual flushing is required for the GTT write domain.  Writes
3034          * to it immediately go to main memory as far as we know, so there's
3035          * no chipset flush.  It also doesn't land in render cache.
3036          *
3037          * However, we do have to enforce the order so that all writes through
3038          * the GTT land before any writes to the device, such as updates to
3039          * the GATT itself.
3040          */
3041         wmb();
3042
3043         old_write_domain = obj->base.write_domain;
3044         obj->base.write_domain = 0;
3045
3046         trace_i915_gem_object_change_domain(obj,
3047                                             obj->base.read_domains,
3048                                             old_write_domain);
3049 }
3050
3051 /** Flushes the CPU write domain for the object if it's dirty. */
3052 static void
3053 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3054 {
3055         uint32_t old_write_domain;
3056
3057         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3058                 return;
3059
3060         i915_gem_clflush_object(obj);
3061         intel_gtt_chipset_flush();
3062         old_write_domain = obj->base.write_domain;
3063         obj->base.write_domain = 0;
3064
3065         trace_i915_gem_object_change_domain(obj,
3066                                             obj->base.read_domains,
3067                                             old_write_domain);
3068 }
3069
3070 /**
3071  * Moves a single object to the GTT read, and possibly write domain.
3072  *
3073  * This function returns when the move is complete, including waiting on
3074  * flushes to occur.
3075  */
3076 int
3077 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3078 {
3079         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3080         uint32_t old_write_domain, old_read_domains;
3081         int ret;
3082
3083         /* Not valid to be called on unbound objects. */
3084         if (obj->gtt_space == NULL)
3085                 return -EINVAL;
3086
3087         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3088                 return 0;
3089
3090         ret = i915_gem_object_wait_rendering(obj, !write);
3091         if (ret)
3092                 return ret;
3093
3094         i915_gem_object_flush_cpu_write_domain(obj);
3095
3096         old_write_domain = obj->base.write_domain;
3097         old_read_domains = obj->base.read_domains;
3098
3099         /* It should now be out of any other write domains, and we can update
3100          * the domain values for our changes.
3101          */
3102         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3103         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3104         if (write) {
3105                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3106                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3107                 obj->dirty = 1;
3108         }
3109
3110         trace_i915_gem_object_change_domain(obj,
3111                                             old_read_domains,
3112                                             old_write_domain);
3113
3114         /* And bump the LRU for this access */
3115         if (i915_gem_object_is_inactive(obj))
3116                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3117
3118         return 0;
3119 }
3120
3121 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3122                                     enum i915_cache_level cache_level)
3123 {
3124         struct drm_device *dev = obj->base.dev;
3125         drm_i915_private_t *dev_priv = dev->dev_private;
3126         int ret;
3127
3128         if (obj->cache_level == cache_level)
3129                 return 0;
3130
3131         if (obj->pin_count) {
3132                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3133                 return -EBUSY;
3134         }
3135
3136         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3137                 ret = i915_gem_object_unbind(obj);
3138                 if (ret)
3139                         return ret;
3140         }
3141
3142         if (obj->gtt_space) {
3143                 ret = i915_gem_object_finish_gpu(obj);
3144                 if (ret)
3145                         return ret;
3146
3147                 i915_gem_object_finish_gtt(obj);
3148
3149                 /* Before SandyBridge, you could not use tiling or fence
3150                  * registers with snooped memory, so relinquish any fences
3151                  * currently pointing to our region in the aperture.
3152                  */
3153                 if (INTEL_INFO(dev)->gen < 6) {
3154                         ret = i915_gem_object_put_fence(obj);
3155                         if (ret)
3156                                 return ret;
3157                 }
3158
3159                 if (obj->has_global_gtt_mapping)
3160                         i915_gem_gtt_bind_object(obj, cache_level);
3161                 if (obj->has_aliasing_ppgtt_mapping)
3162                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3163                                                obj, cache_level);
3164
3165                 obj->gtt_space->color = cache_level;
3166         }
3167
3168         if (cache_level == I915_CACHE_NONE) {
3169                 u32 old_read_domains, old_write_domain;
3170
3171                 /* If we're coming from LLC cached, then we haven't
3172                  * actually been tracking whether the data is in the
3173                  * CPU cache or not, since we only allow one bit set
3174                  * in obj->write_domain and have been skipping the clflushes.
3175                  * Just set it to the CPU cache for now.
3176                  */
3177                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3178                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3179
3180                 old_read_domains = obj->base.read_domains;
3181                 old_write_domain = obj->base.write_domain;
3182
3183                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3184                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3185
3186                 trace_i915_gem_object_change_domain(obj,
3187                                                     old_read_domains,
3188                                                     old_write_domain);
3189         }
3190
3191         obj->cache_level = cache_level;
3192         i915_gem_verify_gtt(dev);
3193         return 0;
3194 }
3195
3196 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3197                                struct drm_file *file)
3198 {
3199         struct drm_i915_gem_caching *args = data;
3200         struct drm_i915_gem_object *obj;
3201         int ret;
3202
3203         ret = i915_mutex_lock_interruptible(dev);
3204         if (ret)
3205                 return ret;
3206
3207         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3208         if (&obj->base == NULL) {
3209                 ret = -ENOENT;
3210                 goto unlock;
3211         }
3212
3213         args->caching = obj->cache_level != I915_CACHE_NONE;
3214
3215         drm_gem_object_unreference(&obj->base);
3216 unlock:
3217         mutex_unlock(&dev->struct_mutex);
3218         return ret;
3219 }
3220
3221 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3222                                struct drm_file *file)
3223 {
3224         struct drm_i915_gem_caching *args = data;
3225         struct drm_i915_gem_object *obj;
3226         enum i915_cache_level level;
3227         int ret;
3228
3229         switch (args->caching) {
3230         case I915_CACHING_NONE:
3231                 level = I915_CACHE_NONE;
3232                 break;
3233         case I915_CACHING_CACHED:
3234                 level = I915_CACHE_LLC;
3235                 break;
3236         default:
3237                 return -EINVAL;
3238         }
3239
3240         ret = i915_mutex_lock_interruptible(dev);
3241         if (ret)
3242                 return ret;
3243
3244         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3245         if (&obj->base == NULL) {
3246                 ret = -ENOENT;
3247                 goto unlock;
3248         }
3249
3250         ret = i915_gem_object_set_cache_level(obj, level);
3251
3252         drm_gem_object_unreference(&obj->base);
3253 unlock:
3254         mutex_unlock(&dev->struct_mutex);
3255         return ret;
3256 }
3257
3258 /*
3259  * Prepare buffer for display plane (scanout, cursors, etc).
3260  * Can be called from an uninterruptible phase (modesetting) and allows
3261  * any flushes to be pipelined (for pageflips).
3262  */
3263 int
3264 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3265                                      u32 alignment,
3266                                      struct intel_ring_buffer *pipelined)
3267 {
3268         u32 old_read_domains, old_write_domain;
3269         int ret;
3270
3271         if (pipelined != obj->ring) {
3272                 ret = i915_gem_object_sync(obj, pipelined);
3273                 if (ret)
3274                         return ret;
3275         }
3276
3277         /* The display engine is not coherent with the LLC cache on gen6.  As
3278          * a result, we make sure that the pinning that is about to occur is
3279          * done with uncached PTEs. This is lowest common denominator for all
3280          * chipsets.
3281          *
3282          * However for gen6+, we could do better by using the GFDT bit instead
3283          * of uncaching, which would allow us to flush all the LLC-cached data
3284          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3285          */
3286         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3287         if (ret)
3288                 return ret;
3289
3290         /* As the user may map the buffer once pinned in the display plane
3291          * (e.g. libkms for the bootup splash), we have to ensure that we
3292          * always use map_and_fenceable for all scanout buffers.
3293          */
3294         ret = i915_gem_object_pin(obj, alignment, true, false);
3295         if (ret)
3296                 return ret;
3297
3298         i915_gem_object_flush_cpu_write_domain(obj);
3299
3300         old_write_domain = obj->base.write_domain;
3301         old_read_domains = obj->base.read_domains;
3302
3303         /* It should now be out of any other write domains, and we can update
3304          * the domain values for our changes.
3305          */
3306         obj->base.write_domain = 0;
3307         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3308
3309         trace_i915_gem_object_change_domain(obj,
3310                                             old_read_domains,
3311                                             old_write_domain);
3312
3313         return 0;
3314 }
3315
3316 int
3317 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3318 {
3319         int ret;
3320
3321         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3322                 return 0;
3323
3324         ret = i915_gem_object_wait_rendering(obj, false);
3325         if (ret)
3326                 return ret;
3327
3328         /* Ensure that we invalidate the GPU's caches and TLBs. */
3329         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3330         return 0;
3331 }
3332
3333 /**
3334  * Moves a single object to the CPU read, and possibly write domain.
3335  *
3336  * This function returns when the move is complete, including waiting on
3337  * flushes to occur.
3338  */
3339 int
3340 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3341 {
3342         uint32_t old_write_domain, old_read_domains;
3343         int ret;
3344
3345         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3346                 return 0;
3347
3348         ret = i915_gem_object_wait_rendering(obj, !write);
3349         if (ret)
3350                 return ret;
3351
3352         i915_gem_object_flush_gtt_write_domain(obj);
3353
3354         old_write_domain = obj->base.write_domain;
3355         old_read_domains = obj->base.read_domains;
3356
3357         /* Flush the CPU cache if it's still invalid. */
3358         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3359                 i915_gem_clflush_object(obj);
3360
3361                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3362         }
3363
3364         /* It should now be out of any other write domains, and we can update
3365          * the domain values for our changes.
3366          */
3367         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3368
3369         /* If we're writing through the CPU, then the GPU read domains will
3370          * need to be invalidated at next use.
3371          */
3372         if (write) {
3373                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3374                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3375         }
3376
3377         trace_i915_gem_object_change_domain(obj,
3378                                             old_read_domains,
3379                                             old_write_domain);
3380
3381         return 0;
3382 }
3383
3384 /* Throttle our rendering by waiting until the ring has completed our requests
3385  * emitted over 20 msec ago.
3386  *
3387  * Note that if we were to use the current jiffies each time around the loop,
3388  * we wouldn't escape the function with any frames outstanding if the time to
3389  * render a frame was over 20ms.
3390  *
3391  * This should get us reasonable parallelism between CPU and GPU but also
3392  * relatively low latency when blocking on a particular request to finish.
3393  */
3394 static int
3395 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3396 {
3397         struct drm_i915_private *dev_priv = dev->dev_private;
3398         struct drm_i915_file_private *file_priv = file->driver_priv;
3399         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3400         struct drm_i915_gem_request *request;
3401         struct intel_ring_buffer *ring = NULL;
3402         u32 seqno = 0;
3403         int ret;
3404
3405         if (atomic_read(&dev_priv->mm.wedged))
3406                 return -EIO;
3407
3408         spin_lock(&file_priv->mm.lock);
3409         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3410                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411                         break;
3412
3413                 ring = request->ring;
3414                 seqno = request->seqno;
3415         }
3416         spin_unlock(&file_priv->mm.lock);
3417
3418         if (seqno == 0)
3419                 return 0;
3420
3421         ret = __wait_seqno(ring, seqno, true, NULL);
3422         if (ret == 0)
3423                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3424
3425         return ret;
3426 }
3427
3428 int
3429 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430                     uint32_t alignment,
3431                     bool map_and_fenceable,
3432                     bool nonblocking)
3433 {
3434         int ret;
3435
3436         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437                 return -EBUSY;
3438
3439         if (obj->gtt_space != NULL) {
3440                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441                     (map_and_fenceable && !obj->map_and_fenceable)) {
3442                         WARN(obj->pin_count,
3443                              "bo is already pinned with incorrect alignment:"
3444                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445                              " obj->map_and_fenceable=%d\n",
3446                              obj->gtt_offset, alignment,
3447                              map_and_fenceable,
3448                              obj->map_and_fenceable);
3449                         ret = i915_gem_object_unbind(obj);
3450                         if (ret)
3451                                 return ret;
3452                 }
3453         }
3454
3455         if (obj->gtt_space == NULL) {
3456                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3457                                                   map_and_fenceable,
3458                                                   nonblocking);
3459                 if (ret)
3460                         return ret;
3461         }
3462
3463         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3464                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3465
3466         obj->pin_count++;
3467         obj->pin_mappable |= map_and_fenceable;
3468
3469         return 0;
3470 }
3471
3472 void
3473 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3474 {
3475         BUG_ON(obj->pin_count == 0);
3476         BUG_ON(obj->gtt_space == NULL);
3477
3478         if (--obj->pin_count == 0)
3479                 obj->pin_mappable = false;
3480 }
3481
3482 int
3483 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3484                    struct drm_file *file)
3485 {
3486         struct drm_i915_gem_pin *args = data;
3487         struct drm_i915_gem_object *obj;
3488         int ret;
3489
3490         ret = i915_mutex_lock_interruptible(dev);
3491         if (ret)
3492                 return ret;
3493
3494         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3495         if (&obj->base == NULL) {
3496                 ret = -ENOENT;
3497                 goto unlock;
3498         }
3499
3500         if (obj->madv != I915_MADV_WILLNEED) {
3501                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3502                 ret = -EINVAL;
3503                 goto out;
3504         }
3505
3506         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3507                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3508                           args->handle);
3509                 ret = -EINVAL;
3510                 goto out;
3511         }
3512
3513         obj->user_pin_count++;
3514         obj->pin_filp = file;
3515         if (obj->user_pin_count == 1) {
3516                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3517                 if (ret)
3518                         goto out;
3519         }
3520
3521         /* XXX - flush the CPU caches for pinned objects
3522          * as the X server doesn't manage domains yet
3523          */
3524         i915_gem_object_flush_cpu_write_domain(obj);
3525         args->offset = obj->gtt_offset;
3526 out:
3527         drm_gem_object_unreference(&obj->base);
3528 unlock:
3529         mutex_unlock(&dev->struct_mutex);
3530         return ret;
3531 }
3532
3533 int
3534 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3535                      struct drm_file *file)
3536 {
3537         struct drm_i915_gem_pin *args = data;
3538         struct drm_i915_gem_object *obj;
3539         int ret;
3540
3541         ret = i915_mutex_lock_interruptible(dev);
3542         if (ret)
3543                 return ret;
3544
3545         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3546         if (&obj->base == NULL) {
3547                 ret = -ENOENT;
3548                 goto unlock;
3549         }
3550
3551         if (obj->pin_filp != file) {
3552                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3553                           args->handle);
3554                 ret = -EINVAL;
3555                 goto out;
3556         }
3557         obj->user_pin_count--;
3558         if (obj->user_pin_count == 0) {
3559                 obj->pin_filp = NULL;
3560                 i915_gem_object_unpin(obj);
3561         }
3562
3563 out:
3564         drm_gem_object_unreference(&obj->base);
3565 unlock:
3566         mutex_unlock(&dev->struct_mutex);
3567         return ret;
3568 }
3569
3570 int
3571 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3572                     struct drm_file *file)
3573 {
3574         struct drm_i915_gem_busy *args = data;
3575         struct drm_i915_gem_object *obj;
3576         int ret;
3577
3578         ret = i915_mutex_lock_interruptible(dev);
3579         if (ret)
3580                 return ret;
3581
3582         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3583         if (&obj->base == NULL) {
3584                 ret = -ENOENT;
3585                 goto unlock;
3586         }
3587
3588         /* Count all active objects as busy, even if they are currently not used
3589          * by the gpu. Users of this interface expect objects to eventually
3590          * become non-busy without any further actions, therefore emit any
3591          * necessary flushes here.
3592          */
3593         ret = i915_gem_object_flush_active(obj);
3594
3595         args->busy = obj->active;
3596         if (obj->ring) {
3597                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3598                 args->busy |= intel_ring_flag(obj->ring) << 16;
3599         }
3600
3601         drm_gem_object_unreference(&obj->base);
3602 unlock:
3603         mutex_unlock(&dev->struct_mutex);
3604         return ret;
3605 }
3606
3607 int
3608 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3609                         struct drm_file *file_priv)
3610 {
3611         return i915_gem_ring_throttle(dev, file_priv);
3612 }
3613
3614 int
3615 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3616                        struct drm_file *file_priv)
3617 {
3618         struct drm_i915_gem_madvise *args = data;
3619         struct drm_i915_gem_object *obj;
3620         int ret;
3621
3622         switch (args->madv) {
3623         case I915_MADV_DONTNEED:
3624         case I915_MADV_WILLNEED:
3625             break;
3626         default:
3627             return -EINVAL;
3628         }
3629
3630         ret = i915_mutex_lock_interruptible(dev);
3631         if (ret)
3632                 return ret;
3633
3634         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3635         if (&obj->base == NULL) {
3636                 ret = -ENOENT;
3637                 goto unlock;
3638         }
3639
3640         if (obj->pin_count) {
3641                 ret = -EINVAL;
3642                 goto out;
3643         }
3644
3645         if (obj->madv != __I915_MADV_PURGED)
3646                 obj->madv = args->madv;
3647
3648         /* if the object is no longer attached, discard its backing storage */
3649         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3650                 i915_gem_object_truncate(obj);
3651
3652         args->retained = obj->madv != __I915_MADV_PURGED;
3653
3654 out:
3655         drm_gem_object_unreference(&obj->base);
3656 unlock:
3657         mutex_unlock(&dev->struct_mutex);
3658         return ret;
3659 }
3660
3661 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3662                           const struct drm_i915_gem_object_ops *ops)
3663 {
3664         INIT_LIST_HEAD(&obj->mm_list);
3665         INIT_LIST_HEAD(&obj->gtt_list);
3666         INIT_LIST_HEAD(&obj->ring_list);
3667         INIT_LIST_HEAD(&obj->exec_list);
3668
3669         obj->ops = ops;
3670
3671         obj->fence_reg = I915_FENCE_REG_NONE;
3672         obj->madv = I915_MADV_WILLNEED;
3673         /* Avoid an unnecessary call to unbind on the first bind. */
3674         obj->map_and_fenceable = true;
3675
3676         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3677 }
3678
3679 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3680         .get_pages = i915_gem_object_get_pages_gtt,
3681         .put_pages = i915_gem_object_put_pages_gtt,
3682 };
3683
3684 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3685                                                   size_t size)
3686 {
3687         struct drm_i915_gem_object *obj;
3688         struct address_space *mapping;
3689         u32 mask;
3690
3691         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3692         if (obj == NULL)
3693                 return NULL;
3694
3695         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3696                 kfree(obj);
3697                 return NULL;
3698         }
3699
3700         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3701         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3702                 /* 965gm cannot relocate objects above 4GiB. */
3703                 mask &= ~__GFP_HIGHMEM;
3704                 mask |= __GFP_DMA32;
3705         }
3706
3707         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3708         mapping_set_gfp_mask(mapping, mask);
3709
3710         i915_gem_object_init(obj, &i915_gem_object_ops);
3711
3712         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3713         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3714
3715         if (HAS_LLC(dev)) {
3716                 /* On some devices, we can have the GPU use the LLC (the CPU
3717                  * cache) for about a 10% performance improvement
3718                  * compared to uncached.  Graphics requests other than
3719                  * display scanout are coherent with the CPU in
3720                  * accessing this cache.  This means in this mode we
3721                  * don't need to clflush on the CPU side, and on the
3722                  * GPU side we only need to flush internal caches to
3723                  * get data visible to the CPU.
3724                  *
3725                  * However, we maintain the display planes as UC, and so
3726                  * need to rebind when first used as such.
3727                  */
3728                 obj->cache_level = I915_CACHE_LLC;
3729         } else
3730                 obj->cache_level = I915_CACHE_NONE;
3731
3732         return obj;
3733 }
3734
3735 int i915_gem_init_object(struct drm_gem_object *obj)
3736 {
3737         BUG();
3738
3739         return 0;
3740 }
3741
3742 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3743 {
3744         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3745         struct drm_device *dev = obj->base.dev;
3746         drm_i915_private_t *dev_priv = dev->dev_private;
3747
3748         trace_i915_gem_object_destroy(obj);
3749
3750         if (obj->phys_obj)
3751                 i915_gem_detach_phys_object(dev, obj);
3752
3753         obj->pin_count = 0;
3754         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3755                 bool was_interruptible;
3756
3757                 was_interruptible = dev_priv->mm.interruptible;
3758                 dev_priv->mm.interruptible = false;
3759
3760                 WARN_ON(i915_gem_object_unbind(obj));
3761
3762                 dev_priv->mm.interruptible = was_interruptible;
3763         }
3764
3765         obj->pages_pin_count = 0;
3766         i915_gem_object_put_pages(obj);
3767         i915_gem_object_free_mmap_offset(obj);
3768
3769         BUG_ON(obj->pages);
3770
3771         if (obj->base.import_attach)
3772                 drm_prime_gem_destroy(&obj->base, NULL);
3773
3774         drm_gem_object_release(&obj->base);
3775         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3776
3777         kfree(obj->bit_17);
3778         kfree(obj);
3779 }
3780
3781 int
3782 i915_gem_idle(struct drm_device *dev)
3783 {
3784         drm_i915_private_t *dev_priv = dev->dev_private;
3785         int ret;
3786
3787         mutex_lock(&dev->struct_mutex);
3788
3789         if (dev_priv->mm.suspended) {
3790                 mutex_unlock(&dev->struct_mutex);
3791                 return 0;
3792         }
3793
3794         ret = i915_gpu_idle(dev);
3795         if (ret) {
3796                 mutex_unlock(&dev->struct_mutex);
3797                 return ret;
3798         }
3799         i915_gem_retire_requests(dev);
3800
3801         /* Under UMS, be paranoid and evict. */
3802         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3803                 i915_gem_evict_everything(dev);
3804
3805         i915_gem_reset_fences(dev);
3806
3807         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3808          * We need to replace this with a semaphore, or something.
3809          * And not confound mm.suspended!
3810          */
3811         dev_priv->mm.suspended = 1;
3812         del_timer_sync(&dev_priv->hangcheck_timer);
3813
3814         i915_kernel_lost_context(dev);
3815         i915_gem_cleanup_ringbuffer(dev);
3816
3817         mutex_unlock(&dev->struct_mutex);
3818
3819         /* Cancel the retire work handler, which should be idle now. */
3820         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3821
3822         return 0;
3823 }
3824
3825 void i915_gem_l3_remap(struct drm_device *dev)
3826 {
3827         drm_i915_private_t *dev_priv = dev->dev_private;
3828         u32 misccpctl;
3829         int i;
3830
3831         if (!IS_IVYBRIDGE(dev))
3832                 return;
3833
3834         if (!dev_priv->mm.l3_remap_info)
3835                 return;
3836
3837         misccpctl = I915_READ(GEN7_MISCCPCTL);
3838         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3839         POSTING_READ(GEN7_MISCCPCTL);
3840
3841         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3842                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3843                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3844                         DRM_DEBUG("0x%x was already programmed to %x\n",
3845                                   GEN7_L3LOG_BASE + i, remap);
3846                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3847                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3848                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3849         }
3850
3851         /* Make sure all the writes land before disabling dop clock gating */
3852         POSTING_READ(GEN7_L3LOG_BASE);
3853
3854         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3855 }
3856
3857 void i915_gem_init_swizzling(struct drm_device *dev)
3858 {
3859         drm_i915_private_t *dev_priv = dev->dev_private;
3860
3861         if (INTEL_INFO(dev)->gen < 5 ||
3862             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3863                 return;
3864
3865         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3866                                  DISP_TILE_SURFACE_SWIZZLING);
3867
3868         if (IS_GEN5(dev))
3869                 return;
3870
3871         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3872         if (IS_GEN6(dev))
3873                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3874         else
3875                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3876 }
3877
3878 void i915_gem_init_ppgtt(struct drm_device *dev)
3879 {
3880         drm_i915_private_t *dev_priv = dev->dev_private;
3881         uint32_t pd_offset;
3882         struct intel_ring_buffer *ring;
3883         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3884         uint32_t __iomem *pd_addr;
3885         uint32_t pd_entry;
3886         int i;
3887
3888         if (!dev_priv->mm.aliasing_ppgtt)
3889                 return;
3890
3891
3892         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3893         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3894                 dma_addr_t pt_addr;
3895
3896                 if (dev_priv->mm.gtt->needs_dmar)
3897                         pt_addr = ppgtt->pt_dma_addr[i];
3898                 else
3899                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3900
3901                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3902                 pd_entry |= GEN6_PDE_VALID;
3903
3904                 writel(pd_entry, pd_addr + i);
3905         }
3906         readl(pd_addr);
3907
3908         pd_offset = ppgtt->pd_offset;
3909         pd_offset /= 64; /* in cachelines, */
3910         pd_offset <<= 16;
3911
3912         if (INTEL_INFO(dev)->gen == 6) {
3913                 uint32_t ecochk, gab_ctl, ecobits;
3914
3915                 ecobits = I915_READ(GAC_ECO_BITS); 
3916                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3917
3918                 gab_ctl = I915_READ(GAB_CTL);
3919                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3920
3921                 ecochk = I915_READ(GAM_ECOCHK);
3922                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3923                                        ECOCHK_PPGTT_CACHE64B);
3924                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3925         } else if (INTEL_INFO(dev)->gen >= 7) {
3926                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3927                 /* GFX_MODE is per-ring on gen7+ */
3928         }
3929
3930         for_each_ring(ring, dev_priv, i) {
3931                 if (INTEL_INFO(dev)->gen >= 7)
3932                         I915_WRITE(RING_MODE_GEN7(ring),
3933                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3934
3935                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3936                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3937         }
3938 }
3939
3940 static bool
3941 intel_enable_blt(struct drm_device *dev)
3942 {
3943         if (!HAS_BLT(dev))
3944                 return false;
3945
3946         /* The blitter was dysfunctional on early prototypes */
3947         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3948                 DRM_INFO("BLT not supported on this pre-production hardware;"
3949                          " graphics performance will be degraded.\n");
3950                 return false;
3951         }
3952
3953         return true;
3954 }
3955
3956 int
3957 i915_gem_init_hw(struct drm_device *dev)
3958 {
3959         drm_i915_private_t *dev_priv = dev->dev_private;
3960         int ret;
3961
3962         if (!intel_enable_gtt())
3963                 return -EIO;
3964
3965         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3966                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3967
3968         i915_gem_l3_remap(dev);
3969
3970         i915_gem_init_swizzling(dev);
3971
3972         ret = intel_init_render_ring_buffer(dev);
3973         if (ret)
3974                 return ret;
3975
3976         if (HAS_BSD(dev)) {
3977                 ret = intel_init_bsd_ring_buffer(dev);
3978                 if (ret)
3979                         goto cleanup_render_ring;
3980         }
3981
3982         if (intel_enable_blt(dev)) {
3983                 ret = intel_init_blt_ring_buffer(dev);
3984                 if (ret)
3985                         goto cleanup_bsd_ring;
3986         }
3987
3988         dev_priv->next_seqno = 1;
3989
3990         /*
3991          * XXX: There was some w/a described somewhere suggesting loading
3992          * contexts before PPGTT.
3993          */
3994         i915_gem_context_init(dev);
3995         i915_gem_init_ppgtt(dev);
3996
3997         return 0;
3998
3999 cleanup_bsd_ring:
4000         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4001 cleanup_render_ring:
4002         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4003         return ret;
4004 }
4005
4006 static bool
4007 intel_enable_ppgtt(struct drm_device *dev)
4008 {
4009         if (i915_enable_ppgtt >= 0)
4010                 return i915_enable_ppgtt;
4011
4012 #ifdef CONFIG_INTEL_IOMMU
4013         /* Disable ppgtt on SNB if VT-d is on. */
4014         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4015                 return false;
4016 #endif
4017
4018         return true;
4019 }
4020
4021 int i915_gem_init(struct drm_device *dev)
4022 {
4023         struct drm_i915_private *dev_priv = dev->dev_private;
4024         unsigned long gtt_size, mappable_size;
4025         int ret;
4026
4027         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4028         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4029
4030         mutex_lock(&dev->struct_mutex);
4031         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4032                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4033                  * aperture accordingly when using aliasing ppgtt. */
4034                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4035
4036                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4037
4038                 ret = i915_gem_init_aliasing_ppgtt(dev);
4039                 if (ret) {
4040                         mutex_unlock(&dev->struct_mutex);
4041                         return ret;
4042                 }
4043         } else {
4044                 /* Let GEM Manage all of the aperture.
4045                  *
4046                  * However, leave one page at the end still bound to the scratch
4047                  * page.  There are a number of places where the hardware
4048                  * apparently prefetches past the end of the object, and we've
4049                  * seen multiple hangs with the GPU head pointer stuck in a
4050                  * batchbuffer bound at the last page of the aperture.  One page
4051                  * should be enough to keep any prefetching inside of the
4052                  * aperture.
4053                  */
4054                 i915_gem_init_global_gtt(dev, 0, mappable_size,
4055                                          gtt_size);
4056         }
4057
4058         ret = i915_gem_init_hw(dev);
4059         mutex_unlock(&dev->struct_mutex);
4060         if (ret) {
4061                 i915_gem_cleanup_aliasing_ppgtt(dev);
4062                 return ret;
4063         }
4064
4065         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4066         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4067                 dev_priv->dri1.allow_batchbuffer = 1;
4068         return 0;
4069 }
4070
4071 void
4072 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4073 {
4074         drm_i915_private_t *dev_priv = dev->dev_private;
4075         struct intel_ring_buffer *ring;
4076         int i;
4077
4078         for_each_ring(ring, dev_priv, i)
4079                 intel_cleanup_ring_buffer(ring);
4080 }
4081
4082 int
4083 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4084                        struct drm_file *file_priv)
4085 {
4086         drm_i915_private_t *dev_priv = dev->dev_private;
4087         int ret;
4088
4089         if (drm_core_check_feature(dev, DRIVER_MODESET))
4090                 return 0;
4091
4092         if (atomic_read(&dev_priv->mm.wedged)) {
4093                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4094                 atomic_set(&dev_priv->mm.wedged, 0);
4095         }
4096
4097         mutex_lock(&dev->struct_mutex);
4098         dev_priv->mm.suspended = 0;
4099
4100         ret = i915_gem_init_hw(dev);
4101         if (ret != 0) {
4102                 mutex_unlock(&dev->struct_mutex);
4103                 return ret;
4104         }
4105
4106         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4107         mutex_unlock(&dev->struct_mutex);
4108
4109         ret = drm_irq_install(dev);
4110         if (ret)
4111                 goto cleanup_ringbuffer;
4112
4113         return 0;
4114
4115 cleanup_ringbuffer:
4116         mutex_lock(&dev->struct_mutex);
4117         i915_gem_cleanup_ringbuffer(dev);
4118         dev_priv->mm.suspended = 1;
4119         mutex_unlock(&dev->struct_mutex);
4120
4121         return ret;
4122 }
4123
4124 int
4125 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4126                        struct drm_file *file_priv)
4127 {
4128         if (drm_core_check_feature(dev, DRIVER_MODESET))
4129                 return 0;
4130
4131         drm_irq_uninstall(dev);
4132         return i915_gem_idle(dev);
4133 }
4134
4135 void
4136 i915_gem_lastclose(struct drm_device *dev)
4137 {
4138         int ret;
4139
4140         if (drm_core_check_feature(dev, DRIVER_MODESET))
4141                 return;
4142
4143         ret = i915_gem_idle(dev);
4144         if (ret)
4145                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4146 }
4147
4148 static void
4149 init_ring_lists(struct intel_ring_buffer *ring)
4150 {
4151         INIT_LIST_HEAD(&ring->active_list);
4152         INIT_LIST_HEAD(&ring->request_list);
4153 }
4154
4155 void
4156 i915_gem_load(struct drm_device *dev)
4157 {
4158         int i;
4159         drm_i915_private_t *dev_priv = dev->dev_private;
4160
4161         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4162         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4163         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4164         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4165         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4166         for (i = 0; i < I915_NUM_RINGS; i++)
4167                 init_ring_lists(&dev_priv->ring[i]);
4168         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4169                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4170         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4171                           i915_gem_retire_work_handler);
4172         init_completion(&dev_priv->error_completion);
4173
4174         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4175         if (IS_GEN3(dev)) {
4176                 I915_WRITE(MI_ARB_STATE,
4177                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4178         }
4179
4180         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4181
4182         /* Old X drivers will take 0-2 for front, back, depth buffers */
4183         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4184                 dev_priv->fence_reg_start = 3;
4185
4186         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4187                 dev_priv->num_fence_regs = 16;
4188         else
4189                 dev_priv->num_fence_regs = 8;
4190
4191         /* Initialize fence registers to zero */
4192         i915_gem_reset_fences(dev);
4193
4194         i915_gem_detect_bit_6_swizzle(dev);
4195         init_waitqueue_head(&dev_priv->pending_flip_queue);
4196
4197         dev_priv->mm.interruptible = true;
4198
4199         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4200         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4201         register_shrinker(&dev_priv->mm.inactive_shrinker);
4202 }
4203
4204 /*
4205  * Create a physically contiguous memory object for this object
4206  * e.g. for cursor + overlay regs
4207  */
4208 static int i915_gem_init_phys_object(struct drm_device *dev,
4209                                      int id, int size, int align)
4210 {
4211         drm_i915_private_t *dev_priv = dev->dev_private;
4212         struct drm_i915_gem_phys_object *phys_obj;
4213         int ret;
4214
4215         if (dev_priv->mm.phys_objs[id - 1] || !size)
4216                 return 0;
4217
4218         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4219         if (!phys_obj)
4220                 return -ENOMEM;
4221
4222         phys_obj->id = id;
4223
4224         phys_obj->handle = drm_pci_alloc(dev, size, align);
4225         if (!phys_obj->handle) {
4226                 ret = -ENOMEM;
4227                 goto kfree_obj;
4228         }
4229 #ifdef CONFIG_X86
4230         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4231 #endif
4232
4233         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4234
4235         return 0;
4236 kfree_obj:
4237         kfree(phys_obj);
4238         return ret;
4239 }
4240
4241 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4242 {
4243         drm_i915_private_t *dev_priv = dev->dev_private;
4244         struct drm_i915_gem_phys_object *phys_obj;
4245
4246         if (!dev_priv->mm.phys_objs[id - 1])
4247                 return;
4248
4249         phys_obj = dev_priv->mm.phys_objs[id - 1];
4250         if (phys_obj->cur_obj) {
4251                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4252         }
4253
4254 #ifdef CONFIG_X86
4255         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4256 #endif
4257         drm_pci_free(dev, phys_obj->handle);
4258         kfree(phys_obj);
4259         dev_priv->mm.phys_objs[id - 1] = NULL;
4260 }
4261
4262 void i915_gem_free_all_phys_object(struct drm_device *dev)
4263 {
4264         int i;
4265
4266         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4267                 i915_gem_free_phys_object(dev, i);
4268 }
4269
4270 void i915_gem_detach_phys_object(struct drm_device *dev,
4271                                  struct drm_i915_gem_object *obj)
4272 {
4273         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4274         char *vaddr;
4275         int i;
4276         int page_count;
4277
4278         if (!obj->phys_obj)
4279                 return;
4280         vaddr = obj->phys_obj->handle->vaddr;
4281
4282         page_count = obj->base.size / PAGE_SIZE;
4283         for (i = 0; i < page_count; i++) {
4284                 struct page *page = shmem_read_mapping_page(mapping, i);
4285                 if (!IS_ERR(page)) {
4286                         char *dst = kmap_atomic(page);
4287                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4288                         kunmap_atomic(dst);
4289
4290                         drm_clflush_pages(&page, 1);
4291
4292                         set_page_dirty(page);
4293                         mark_page_accessed(page);
4294                         page_cache_release(page);
4295                 }
4296         }
4297         intel_gtt_chipset_flush();
4298
4299         obj->phys_obj->cur_obj = NULL;
4300         obj->phys_obj = NULL;
4301 }
4302
4303 int
4304 i915_gem_attach_phys_object(struct drm_device *dev,
4305                             struct drm_i915_gem_object *obj,
4306                             int id,
4307                             int align)
4308 {
4309         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4310         drm_i915_private_t *dev_priv = dev->dev_private;
4311         int ret = 0;
4312         int page_count;
4313         int i;
4314
4315         if (id > I915_MAX_PHYS_OBJECT)
4316                 return -EINVAL;
4317
4318         if (obj->phys_obj) {
4319                 if (obj->phys_obj->id == id)
4320                         return 0;
4321                 i915_gem_detach_phys_object(dev, obj);
4322         }
4323
4324         /* create a new object */
4325         if (!dev_priv->mm.phys_objs[id - 1]) {
4326                 ret = i915_gem_init_phys_object(dev, id,
4327                                                 obj->base.size, align);
4328                 if (ret) {
4329                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4330                                   id, obj->base.size);
4331                         return ret;
4332                 }
4333         }
4334
4335         /* bind to the object */
4336         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4337         obj->phys_obj->cur_obj = obj;
4338
4339         page_count = obj->base.size / PAGE_SIZE;
4340
4341         for (i = 0; i < page_count; i++) {
4342                 struct page *page;
4343                 char *dst, *src;
4344
4345                 page = shmem_read_mapping_page(mapping, i);
4346                 if (IS_ERR(page))
4347                         return PTR_ERR(page);
4348
4349                 src = kmap_atomic(page);
4350                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4351                 memcpy(dst, src, PAGE_SIZE);
4352                 kunmap_atomic(src);
4353
4354                 mark_page_accessed(page);
4355                 page_cache_release(page);
4356         }
4357
4358         return 0;
4359 }
4360
4361 static int
4362 i915_gem_phys_pwrite(struct drm_device *dev,
4363                      struct drm_i915_gem_object *obj,
4364                      struct drm_i915_gem_pwrite *args,
4365                      struct drm_file *file_priv)
4366 {
4367         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4368         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4369
4370         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4371                 unsigned long unwritten;
4372
4373                 /* The physical object once assigned is fixed for the lifetime
4374                  * of the obj, so we can safely drop the lock and continue
4375                  * to access vaddr.
4376                  */
4377                 mutex_unlock(&dev->struct_mutex);
4378                 unwritten = copy_from_user(vaddr, user_data, args->size);
4379                 mutex_lock(&dev->struct_mutex);
4380                 if (unwritten)
4381                         return -EFAULT;
4382         }
4383
4384         intel_gtt_chipset_flush();
4385         return 0;
4386 }
4387
4388 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4389 {
4390         struct drm_i915_file_private *file_priv = file->driver_priv;
4391
4392         /* Clean up our request list when the client is going away, so that
4393          * later retire_requests won't dereference our soon-to-be-gone
4394          * file_priv.
4395          */
4396         spin_lock(&file_priv->mm.lock);
4397         while (!list_empty(&file_priv->mm.request_list)) {
4398                 struct drm_i915_gem_request *request;
4399
4400                 request = list_first_entry(&file_priv->mm.request_list,
4401                                            struct drm_i915_gem_request,
4402                                            client_list);
4403                 list_del(&request->client_list);
4404                 request->file_priv = NULL;
4405         }
4406         spin_unlock(&file_priv->mm.lock);
4407 }
4408
4409 static int
4410 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4411 {
4412         struct drm_i915_private *dev_priv =
4413                 container_of(shrinker,
4414                              struct drm_i915_private,
4415                              mm.inactive_shrinker);
4416         struct drm_device *dev = dev_priv->dev;
4417         struct drm_i915_gem_object *obj;
4418         int nr_to_scan = sc->nr_to_scan;
4419         int cnt;
4420
4421         if (!mutex_trylock(&dev->struct_mutex))
4422                 return 0;
4423
4424         if (nr_to_scan) {
4425                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4426                 if (nr_to_scan > 0)
4427                         i915_gem_shrink_all(dev_priv);
4428         }
4429
4430         cnt = 0;
4431         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4432                 if (obj->pages_pin_count == 0)
4433                         cnt += obj->base.size >> PAGE_SHIFT;
4434         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4435                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4436                         cnt += obj->base.size >> PAGE_SHIFT;
4437
4438         mutex_unlock(&dev->struct_mutex);
4439         return cnt;
4440 }