]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge airlied/drm-next into drm-misc-next
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55                 return false;
56
57         if (!i915_gem_object_is_coherent(obj))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         if (!i915_reset_in_progress(error))
107                 return 0;
108
109         /*
110          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111          * userspace. If it takes that long something really bad is going on and
112          * we should simply try to bail out and fail as gracefully as possible.
113          */
114         ret = wait_event_interruptible_timeout(error->reset_queue,
115                                                !i915_reset_in_progress(error),
116                                                I915_RESET_TIMEOUT);
117         if (ret == 0) {
118                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
119                 return -EIO;
120         } else if (ret < 0) {
121                 return ret;
122         } else {
123                 return 0;
124         }
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         struct drm_i915_private *dev_priv = to_i915(dev);
130         int ret;
131
132         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
133         if (ret)
134                 return ret;
135
136         ret = mutex_lock_interruptible(&dev->struct_mutex);
137         if (ret)
138                 return ret;
139
140         return 0;
141 }
142
143 int
144 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
145                             struct drm_file *file)
146 {
147         struct drm_i915_private *dev_priv = to_i915(dev);
148         struct i915_ggtt *ggtt = &dev_priv->ggtt;
149         struct drm_i915_gem_get_aperture *args = data;
150         struct i915_vma *vma;
151         size_t pinned;
152
153         pinned = 0;
154         mutex_lock(&dev->struct_mutex);
155         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
156                 if (i915_vma_is_pinned(vma))
157                         pinned += vma->node.size;
158         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
159                 if (i915_vma_is_pinned(vma))
160                         pinned += vma->node.size;
161         mutex_unlock(&dev->struct_mutex);
162
163         args->aper_size = ggtt->base.total;
164         args->aper_available_size = args->aper_size - pinned;
165
166         return 0;
167 }
168
169 static struct sg_table *
170 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
171 {
172         struct address_space *mapping = obj->base.filp->f_mapping;
173         drm_dma_handle_t *phys;
174         struct sg_table *st;
175         struct scatterlist *sg;
176         char *vaddr;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return ERR_PTR(-EINVAL);
181
182         /* Always aligning to the object size, allows a single allocation
183          * to handle all possible callers, and given typical object sizes,
184          * the alignment of the buddy allocation will naturally match.
185          */
186         phys = drm_pci_alloc(obj->base.dev,
187                              obj->base.size,
188                              roundup_pow_of_two(obj->base.size));
189         if (!phys)
190                 return ERR_PTR(-ENOMEM);
191
192         vaddr = phys->vaddr;
193         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
194                 struct page *page;
195                 char *src;
196
197                 page = shmem_read_mapping_page(mapping, i);
198                 if (IS_ERR(page)) {
199                         st = ERR_CAST(page);
200                         goto err_phys;
201                 }
202
203                 src = kmap_atomic(page);
204                 memcpy(vaddr, src, PAGE_SIZE);
205                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
206                 kunmap_atomic(src);
207
208                 put_page(page);
209                 vaddr += PAGE_SIZE;
210         }
211
212         i915_gem_chipset_flush(to_i915(obj->base.dev));
213
214         st = kmalloc(sizeof(*st), GFP_KERNEL);
215         if (!st) {
216                 st = ERR_PTR(-ENOMEM);
217                 goto err_phys;
218         }
219
220         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
221                 kfree(st);
222                 st = ERR_PTR(-ENOMEM);
223                 goto err_phys;
224         }
225
226         sg = st->sgl;
227         sg->offset = 0;
228         sg->length = obj->base.size;
229
230         sg_dma_address(sg) = phys->busaddr;
231         sg_dma_len(sg) = obj->base.size;
232
233         obj->phys_handle = phys;
234         return st;
235
236 err_phys:
237         drm_pci_free(obj->base.dev, phys);
238         return st;
239 }
240
241 static void
242 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
243                                 struct sg_table *pages,
244                                 bool needs_clflush)
245 {
246         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
247
248         if (obj->mm.madv == I915_MADV_DONTNEED)
249                 obj->mm.dirty = false;
250
251         if (needs_clflush &&
252             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
253             !i915_gem_object_is_coherent(obj))
254                 drm_clflush_sg(pages);
255
256         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
257         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
258 }
259
260 static void
261 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
262                                struct sg_table *pages)
263 {
264         __i915_gem_object_release_shmem(obj, pages, false);
265
266         if (obj->mm.dirty) {
267                 struct address_space *mapping = obj->base.filp->f_mapping;
268                 char *vaddr = obj->phys_handle->vaddr;
269                 int i;
270
271                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
272                         struct page *page;
273                         char *dst;
274
275                         page = shmem_read_mapping_page(mapping, i);
276                         if (IS_ERR(page))
277                                 continue;
278
279                         dst = kmap_atomic(page);
280                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
281                         memcpy(dst, vaddr, PAGE_SIZE);
282                         kunmap_atomic(dst);
283
284                         set_page_dirty(page);
285                         if (obj->mm.madv == I915_MADV_WILLNEED)
286                                 mark_page_accessed(page);
287                         put_page(page);
288                         vaddr += PAGE_SIZE;
289                 }
290                 obj->mm.dirty = false;
291         }
292
293         sg_free_table(pages);
294         kfree(pages);
295
296         drm_pci_free(obj->base.dev, obj->phys_handle);
297 }
298
299 static void
300 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
301 {
302         i915_gem_object_unpin_pages(obj);
303 }
304
305 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
306         .get_pages = i915_gem_object_get_pages_phys,
307         .put_pages = i915_gem_object_put_pages_phys,
308         .release = i915_gem_object_release_phys,
309 };
310
311 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
312
313 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
314 {
315         struct i915_vma *vma;
316         LIST_HEAD(still_in_list);
317         int ret;
318
319         lockdep_assert_held(&obj->base.dev->struct_mutex);
320
321         /* Closed vma are removed from the obj->vma_list - but they may
322          * still have an active binding on the object. To remove those we
323          * must wait for all rendering to complete to the object (as unbinding
324          * must anyway), and retire the requests.
325          */
326         ret = i915_gem_object_wait(obj,
327                                    I915_WAIT_INTERRUPTIBLE |
328                                    I915_WAIT_LOCKED |
329                                    I915_WAIT_ALL,
330                                    MAX_SCHEDULE_TIMEOUT,
331                                    NULL);
332         if (ret)
333                 return ret;
334
335         i915_gem_retire_requests(to_i915(obj->base.dev));
336
337         while ((vma = list_first_entry_or_null(&obj->vma_list,
338                                                struct i915_vma,
339                                                obj_link))) {
340                 list_move_tail(&vma->obj_link, &still_in_list);
341                 ret = i915_vma_unbind(vma);
342                 if (ret)
343                         break;
344         }
345         list_splice(&still_in_list, &obj->vma_list);
346
347         return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352                            unsigned int flags,
353                            long timeout,
354                            struct intel_rps_client *rps)
355 {
356         struct drm_i915_gem_request *rq;
357
358         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361                 return timeout;
362
363         if (!dma_fence_is_i915(fence))
364                 return dma_fence_wait_timeout(fence,
365                                               flags & I915_WAIT_INTERRUPTIBLE,
366                                               timeout);
367
368         rq = to_request(fence);
369         if (i915_gem_request_completed(rq))
370                 goto out;
371
372         /* This client is about to stall waiting for the GPU. In many cases
373          * this is undesirable and limits the throughput of the system, as
374          * many clients cannot continue processing user input/output whilst
375          * blocked. RPS autotuning may take tens of milliseconds to respond
376          * to the GPU load and thus incurs additional latency for the client.
377          * We can circumvent that by promoting the GPU frequency to maximum
378          * before we wait. This makes the GPU throttle up much more quickly
379          * (good for benchmarks and user experience, e.g. window animations),
380          * but at a cost of spending more power processing the workload
381          * (bad for battery). Not all clients even want their results
382          * immediately and for them we should just let the GPU select its own
383          * frequency to maximise efficiency. To prevent a single client from
384          * forcing the clocks too high for the whole system, we only allow
385          * each client to waitboost once in a busy period.
386          */
387         if (rps) {
388                 if (INTEL_GEN(rq->i915) >= 6)
389                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
390                 else
391                         rps = NULL;
392         }
393
394         timeout = i915_wait_request(rq, flags, timeout);
395
396 out:
397         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398                 i915_gem_request_retire_upto(rq);
399
400         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
401                 /* The GPU is now idle and this client has stalled.
402                  * Since no other client has submitted a request in the
403                  * meantime, assume that this client is the only one
404                  * supplying work to the GPU but is unable to keep that
405                  * work supplied because it is waiting. Since the GPU is
406                  * then never kept fully busy, RPS autoclocking will
407                  * keep the clocks relatively low, causing further delays.
408                  * Compensate by giving the synchronous client credit for
409                  * a waitboost next time.
410                  */
411                 spin_lock(&rq->i915->rps.client_lock);
412                 list_del_init(&rps->link);
413                 spin_unlock(&rq->i915->rps.client_lock);
414         }
415
416         return timeout;
417 }
418
419 static long
420 i915_gem_object_wait_reservation(struct reservation_object *resv,
421                                  unsigned int flags,
422                                  long timeout,
423                                  struct intel_rps_client *rps)
424 {
425         unsigned int seq = __read_seqcount_begin(&resv->seq);
426         struct dma_fence *excl;
427         bool prune_fences = false;
428
429         if (flags & I915_WAIT_ALL) {
430                 struct dma_fence **shared;
431                 unsigned int count, i;
432                 int ret;
433
434                 ret = reservation_object_get_fences_rcu(resv,
435                                                         &excl, &count, &shared);
436                 if (ret)
437                         return ret;
438
439                 for (i = 0; i < count; i++) {
440                         timeout = i915_gem_object_wait_fence(shared[i],
441                                                              flags, timeout,
442                                                              rps);
443                         if (timeout < 0)
444                                 break;
445
446                         dma_fence_put(shared[i]);
447                 }
448
449                 for (; i < count; i++)
450                         dma_fence_put(shared[i]);
451                 kfree(shared);
452
453                 prune_fences = count && timeout >= 0;
454         } else {
455                 excl = reservation_object_get_excl_rcu(resv);
456         }
457
458         if (excl && timeout >= 0) {
459                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460                 prune_fences = timeout >= 0;
461         }
462
463         dma_fence_put(excl);
464
465         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
466                 reservation_object_lock(resv, NULL);
467                 if (!__read_seqcount_retry(&resv->seq, seq))
468                         reservation_object_add_excl_fence(resv, NULL);
469                 reservation_object_unlock(resv);
470         }
471
472         return timeout;
473 }
474
475 static void __fence_set_priority(struct dma_fence *fence, int prio)
476 {
477         struct drm_i915_gem_request *rq;
478         struct intel_engine_cs *engine;
479
480         if (!dma_fence_is_i915(fence))
481                 return;
482
483         rq = to_request(fence);
484         engine = rq->engine;
485         if (!engine->schedule)
486                 return;
487
488         engine->schedule(rq, prio);
489 }
490
491 static void fence_set_priority(struct dma_fence *fence, int prio)
492 {
493         /* Recurse once into a fence-array */
494         if (dma_fence_is_array(fence)) {
495                 struct dma_fence_array *array = to_dma_fence_array(fence);
496                 int i;
497
498                 for (i = 0; i < array->num_fences; i++)
499                         __fence_set_priority(array->fences[i], prio);
500         } else {
501                 __fence_set_priority(fence, prio);
502         }
503 }
504
505 int
506 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
507                               unsigned int flags,
508                               int prio)
509 {
510         struct dma_fence *excl;
511
512         if (flags & I915_WAIT_ALL) {
513                 struct dma_fence **shared;
514                 unsigned int count, i;
515                 int ret;
516
517                 ret = reservation_object_get_fences_rcu(obj->resv,
518                                                         &excl, &count, &shared);
519                 if (ret)
520                         return ret;
521
522                 for (i = 0; i < count; i++) {
523                         fence_set_priority(shared[i], prio);
524                         dma_fence_put(shared[i]);
525                 }
526
527                 kfree(shared);
528         } else {
529                 excl = reservation_object_get_excl_rcu(obj->resv);
530         }
531
532         if (excl) {
533                 fence_set_priority(excl, prio);
534                 dma_fence_put(excl);
535         }
536         return 0;
537 }
538
539 /**
540  * Waits for rendering to the object to be completed
541  * @obj: i915 gem object
542  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
543  * @timeout: how long to wait
544  * @rps: client (user process) to charge for any waitboosting
545  */
546 int
547 i915_gem_object_wait(struct drm_i915_gem_object *obj,
548                      unsigned int flags,
549                      long timeout,
550                      struct intel_rps_client *rps)
551 {
552         might_sleep();
553 #if IS_ENABLED(CONFIG_LOCKDEP)
554         GEM_BUG_ON(debug_locks &&
555                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
556                    !!(flags & I915_WAIT_LOCKED));
557 #endif
558         GEM_BUG_ON(timeout < 0);
559
560         timeout = i915_gem_object_wait_reservation(obj->resv,
561                                                    flags, timeout,
562                                                    rps);
563         return timeout < 0 ? timeout : 0;
564 }
565
566 static struct intel_rps_client *to_rps_client(struct drm_file *file)
567 {
568         struct drm_i915_file_private *fpriv = file->driver_priv;
569
570         return &fpriv->rps;
571 }
572
573 int
574 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
575                             int align)
576 {
577         int ret;
578
579         if (align > obj->base.size)
580                 return -EINVAL;
581
582         if (obj->ops == &i915_gem_phys_ops)
583                 return 0;
584
585         if (obj->mm.madv != I915_MADV_WILLNEED)
586                 return -EFAULT;
587
588         if (obj->base.filp == NULL)
589                 return -EINVAL;
590
591         ret = i915_gem_object_unbind(obj);
592         if (ret)
593                 return ret;
594
595         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
596         if (obj->mm.pages)
597                 return -EBUSY;
598
599         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
600         obj->ops = &i915_gem_phys_ops;
601
602         ret = i915_gem_object_pin_pages(obj);
603         if (ret)
604                 goto err_xfer;
605
606         return 0;
607
608 err_xfer:
609         obj->ops = &i915_gem_object_ops;
610         return ret;
611 }
612
613 static int
614 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
615                      struct drm_i915_gem_pwrite *args,
616                      struct drm_file *file)
617 {
618         void *vaddr = obj->phys_handle->vaddr + args->offset;
619         char __user *user_data = u64_to_user_ptr(args->data_ptr);
620
621         /* We manually control the domain here and pretend that it
622          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
623          */
624         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
625         if (copy_from_user(vaddr, user_data, args->size))
626                 return -EFAULT;
627
628         drm_clflush_virt_range(vaddr, args->size);
629         i915_gem_chipset_flush(to_i915(obj->base.dev));
630
631         intel_fb_obj_flush(obj, ORIGIN_CPU);
632         return 0;
633 }
634
635 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
636 {
637         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
638 }
639
640 void i915_gem_object_free(struct drm_i915_gem_object *obj)
641 {
642         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
643         kmem_cache_free(dev_priv->objects, obj);
644 }
645
646 static int
647 i915_gem_create(struct drm_file *file,
648                 struct drm_i915_private *dev_priv,
649                 uint64_t size,
650                 uint32_t *handle_p)
651 {
652         struct drm_i915_gem_object *obj;
653         int ret;
654         u32 handle;
655
656         size = roundup(size, PAGE_SIZE);
657         if (size == 0)
658                 return -EINVAL;
659
660         /* Allocate the new object */
661         obj = i915_gem_object_create(dev_priv, size);
662         if (IS_ERR(obj))
663                 return PTR_ERR(obj);
664
665         ret = drm_gem_handle_create(file, &obj->base, &handle);
666         /* drop reference from allocate - handle holds it now */
667         i915_gem_object_put(obj);
668         if (ret)
669                 return ret;
670
671         *handle_p = handle;
672         return 0;
673 }
674
675 int
676 i915_gem_dumb_create(struct drm_file *file,
677                      struct drm_device *dev,
678                      struct drm_mode_create_dumb *args)
679 {
680         /* have to work out size/pitch and return them */
681         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
682         args->size = args->pitch * args->height;
683         return i915_gem_create(file, to_i915(dev),
684                                args->size, &args->handle);
685 }
686
687 /**
688  * Creates a new mm object and returns a handle to it.
689  * @dev: drm device pointer
690  * @data: ioctl data blob
691  * @file: drm file pointer
692  */
693 int
694 i915_gem_create_ioctl(struct drm_device *dev, void *data,
695                       struct drm_file *file)
696 {
697         struct drm_i915_private *dev_priv = to_i915(dev);
698         struct drm_i915_gem_create *args = data;
699
700         i915_gem_flush_free_objects(dev_priv);
701
702         return i915_gem_create(file, dev_priv,
703                                args->size, &args->handle);
704 }
705
706 static inline int
707 __copy_to_user_swizzled(char __user *cpu_vaddr,
708                         const char *gpu_vaddr, int gpu_offset,
709                         int length)
710 {
711         int ret, cpu_offset = 0;
712
713         while (length > 0) {
714                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
715                 int this_length = min(cacheline_end - gpu_offset, length);
716                 int swizzled_gpu_offset = gpu_offset ^ 64;
717
718                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
719                                      gpu_vaddr + swizzled_gpu_offset,
720                                      this_length);
721                 if (ret)
722                         return ret + length;
723
724                 cpu_offset += this_length;
725                 gpu_offset += this_length;
726                 length -= this_length;
727         }
728
729         return 0;
730 }
731
732 static inline int
733 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
734                           const char __user *cpu_vaddr,
735                           int length)
736 {
737         int ret, cpu_offset = 0;
738
739         while (length > 0) {
740                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
741                 int this_length = min(cacheline_end - gpu_offset, length);
742                 int swizzled_gpu_offset = gpu_offset ^ 64;
743
744                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
745                                        cpu_vaddr + cpu_offset,
746                                        this_length);
747                 if (ret)
748                         return ret + length;
749
750                 cpu_offset += this_length;
751                 gpu_offset += this_length;
752                 length -= this_length;
753         }
754
755         return 0;
756 }
757
758 /*
759  * Pins the specified object's pages and synchronizes the object with
760  * GPU accesses. Sets needs_clflush to non-zero if the caller should
761  * flush the object from the CPU cache.
762  */
763 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
764                                     unsigned int *needs_clflush)
765 {
766         int ret;
767
768         lockdep_assert_held(&obj->base.dev->struct_mutex);
769
770         *needs_clflush = 0;
771         if (!i915_gem_object_has_struct_page(obj))
772                 return -ENODEV;
773
774         ret = i915_gem_object_wait(obj,
775                                    I915_WAIT_INTERRUPTIBLE |
776                                    I915_WAIT_LOCKED,
777                                    MAX_SCHEDULE_TIMEOUT,
778                                    NULL);
779         if (ret)
780                 return ret;
781
782         ret = i915_gem_object_pin_pages(obj);
783         if (ret)
784                 return ret;
785
786         i915_gem_object_flush_gtt_write_domain(obj);
787
788         /* If we're not in the cpu read domain, set ourself into the gtt
789          * read domain and manually flush cachelines (if required). This
790          * optimizes for the case when the gpu will dirty the data
791          * anyway again before the next pread happens.
792          */
793         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
794                 *needs_clflush = !i915_gem_object_is_coherent(obj);
795
796         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
797                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
798                 if (ret)
799                         goto err_unpin;
800
801                 *needs_clflush = 0;
802         }
803
804         /* return with the pages pinned */
805         return 0;
806
807 err_unpin:
808         i915_gem_object_unpin_pages(obj);
809         return ret;
810 }
811
812 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
813                                      unsigned int *needs_clflush)
814 {
815         int ret;
816
817         lockdep_assert_held(&obj->base.dev->struct_mutex);
818
819         *needs_clflush = 0;
820         if (!i915_gem_object_has_struct_page(obj))
821                 return -ENODEV;
822
823         ret = i915_gem_object_wait(obj,
824                                    I915_WAIT_INTERRUPTIBLE |
825                                    I915_WAIT_LOCKED |
826                                    I915_WAIT_ALL,
827                                    MAX_SCHEDULE_TIMEOUT,
828                                    NULL);
829         if (ret)
830                 return ret;
831
832         ret = i915_gem_object_pin_pages(obj);
833         if (ret)
834                 return ret;
835
836         i915_gem_object_flush_gtt_write_domain(obj);
837
838         /* If we're not in the cpu write domain, set ourself into the
839          * gtt write domain and manually flush cachelines (as required).
840          * This optimizes for the case when the gpu will use the data
841          * right away and we therefore have to clflush anyway.
842          */
843         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
844                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
845
846         /* Same trick applies to invalidate partially written cachelines read
847          * before writing.
848          */
849         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
850                 *needs_clflush |= !i915_gem_object_is_coherent(obj);
851
852         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
853                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
854                 if (ret)
855                         goto err_unpin;
856
857                 *needs_clflush = 0;
858         }
859
860         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
861                 obj->cache_dirty = true;
862
863         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
864         obj->mm.dirty = true;
865         /* return with the pages pinned */
866         return 0;
867
868 err_unpin:
869         i915_gem_object_unpin_pages(obj);
870         return ret;
871 }
872
873 static void
874 shmem_clflush_swizzled_range(char *addr, unsigned long length,
875                              bool swizzled)
876 {
877         if (unlikely(swizzled)) {
878                 unsigned long start = (unsigned long) addr;
879                 unsigned long end = (unsigned long) addr + length;
880
881                 /* For swizzling simply ensure that we always flush both
882                  * channels. Lame, but simple and it works. Swizzled
883                  * pwrite/pread is far from a hotpath - current userspace
884                  * doesn't use it at all. */
885                 start = round_down(start, 128);
886                 end = round_up(end, 128);
887
888                 drm_clflush_virt_range((void *)start, end - start);
889         } else {
890                 drm_clflush_virt_range(addr, length);
891         }
892
893 }
894
895 /* Only difference to the fast-path function is that this can handle bit17
896  * and uses non-atomic copy and kmap functions. */
897 static int
898 shmem_pread_slow(struct page *page, int offset, int length,
899                  char __user *user_data,
900                  bool page_do_bit17_swizzling, bool needs_clflush)
901 {
902         char *vaddr;
903         int ret;
904
905         vaddr = kmap(page);
906         if (needs_clflush)
907                 shmem_clflush_swizzled_range(vaddr + offset, length,
908                                              page_do_bit17_swizzling);
909
910         if (page_do_bit17_swizzling)
911                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
912         else
913                 ret = __copy_to_user(user_data, vaddr + offset, length);
914         kunmap(page);
915
916         return ret ? - EFAULT : 0;
917 }
918
919 static int
920 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
921             bool page_do_bit17_swizzling, bool needs_clflush)
922 {
923         int ret;
924
925         ret = -ENODEV;
926         if (!page_do_bit17_swizzling) {
927                 char *vaddr = kmap_atomic(page);
928
929                 if (needs_clflush)
930                         drm_clflush_virt_range(vaddr + offset, length);
931                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
932                 kunmap_atomic(vaddr);
933         }
934         if (ret == 0)
935                 return 0;
936
937         return shmem_pread_slow(page, offset, length, user_data,
938                                 page_do_bit17_swizzling, needs_clflush);
939 }
940
941 static int
942 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
943                      struct drm_i915_gem_pread *args)
944 {
945         char __user *user_data;
946         u64 remain;
947         unsigned int obj_do_bit17_swizzling;
948         unsigned int needs_clflush;
949         unsigned int idx, offset;
950         int ret;
951
952         obj_do_bit17_swizzling = 0;
953         if (i915_gem_object_needs_bit17_swizzle(obj))
954                 obj_do_bit17_swizzling = BIT(17);
955
956         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
957         if (ret)
958                 return ret;
959
960         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
961         mutex_unlock(&obj->base.dev->struct_mutex);
962         if (ret)
963                 return ret;
964
965         remain = args->size;
966         user_data = u64_to_user_ptr(args->data_ptr);
967         offset = offset_in_page(args->offset);
968         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
969                 struct page *page = i915_gem_object_get_page(obj, idx);
970                 int length;
971
972                 length = remain;
973                 if (offset + length > PAGE_SIZE)
974                         length = PAGE_SIZE - offset;
975
976                 ret = shmem_pread(page, offset, length, user_data,
977                                   page_to_phys(page) & obj_do_bit17_swizzling,
978                                   needs_clflush);
979                 if (ret)
980                         break;
981
982                 remain -= length;
983                 user_data += length;
984                 offset = 0;
985         }
986
987         i915_gem_obj_finish_shmem_access(obj);
988         return ret;
989 }
990
991 static inline bool
992 gtt_user_read(struct io_mapping *mapping,
993               loff_t base, int offset,
994               char __user *user_data, int length)
995 {
996         void *vaddr;
997         unsigned long unwritten;
998
999         /* We can use the cpu mem copy function because this is X86. */
1000         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1001         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1002         io_mapping_unmap_atomic(vaddr);
1003         if (unwritten) {
1004                 vaddr = (void __force *)
1005                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1006                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1007                 io_mapping_unmap(vaddr);
1008         }
1009         return unwritten;
1010 }
1011
1012 static int
1013 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1014                    const struct drm_i915_gem_pread *args)
1015 {
1016         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1017         struct i915_ggtt *ggtt = &i915->ggtt;
1018         struct drm_mm_node node;
1019         struct i915_vma *vma;
1020         void __user *user_data;
1021         u64 remain, offset;
1022         int ret;
1023
1024         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1025         if (ret)
1026                 return ret;
1027
1028         intel_runtime_pm_get(i915);
1029         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1030                                        PIN_MAPPABLE | PIN_NONBLOCK);
1031         if (!IS_ERR(vma)) {
1032                 node.start = i915_ggtt_offset(vma);
1033                 node.allocated = false;
1034                 ret = i915_vma_put_fence(vma);
1035                 if (ret) {
1036                         i915_vma_unpin(vma);
1037                         vma = ERR_PTR(ret);
1038                 }
1039         }
1040         if (IS_ERR(vma)) {
1041                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1042                 if (ret)
1043                         goto out_unlock;
1044                 GEM_BUG_ON(!node.allocated);
1045         }
1046
1047         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1048         if (ret)
1049                 goto out_unpin;
1050
1051         mutex_unlock(&i915->drm.struct_mutex);
1052
1053         user_data = u64_to_user_ptr(args->data_ptr);
1054         remain = args->size;
1055         offset = args->offset;
1056
1057         while (remain > 0) {
1058                 /* Operation in this page
1059                  *
1060                  * page_base = page offset within aperture
1061                  * page_offset = offset within page
1062                  * page_length = bytes to copy for this page
1063                  */
1064                 u32 page_base = node.start;
1065                 unsigned page_offset = offset_in_page(offset);
1066                 unsigned page_length = PAGE_SIZE - page_offset;
1067                 page_length = remain < page_length ? remain : page_length;
1068                 if (node.allocated) {
1069                         wmb();
1070                         ggtt->base.insert_page(&ggtt->base,
1071                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1072                                                node.start, I915_CACHE_NONE, 0);
1073                         wmb();
1074                 } else {
1075                         page_base += offset & PAGE_MASK;
1076                 }
1077
1078                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1079                                   user_data, page_length)) {
1080                         ret = -EFAULT;
1081                         break;
1082                 }
1083
1084                 remain -= page_length;
1085                 user_data += page_length;
1086                 offset += page_length;
1087         }
1088
1089         mutex_lock(&i915->drm.struct_mutex);
1090 out_unpin:
1091         if (node.allocated) {
1092                 wmb();
1093                 ggtt->base.clear_range(&ggtt->base,
1094                                        node.start, node.size);
1095                 remove_mappable_node(&node);
1096         } else {
1097                 i915_vma_unpin(vma);
1098         }
1099 out_unlock:
1100         intel_runtime_pm_put(i915);
1101         mutex_unlock(&i915->drm.struct_mutex);
1102
1103         return ret;
1104 }
1105
1106 /**
1107  * Reads data from the object referenced by handle.
1108  * @dev: drm device pointer
1109  * @data: ioctl data blob
1110  * @file: drm file pointer
1111  *
1112  * On error, the contents of *data are undefined.
1113  */
1114 int
1115 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1116                      struct drm_file *file)
1117 {
1118         struct drm_i915_gem_pread *args = data;
1119         struct drm_i915_gem_object *obj;
1120         int ret;
1121
1122         if (args->size == 0)
1123                 return 0;
1124
1125         if (!access_ok(VERIFY_WRITE,
1126                        u64_to_user_ptr(args->data_ptr),
1127                        args->size))
1128                 return -EFAULT;
1129
1130         obj = i915_gem_object_lookup(file, args->handle);
1131         if (!obj)
1132                 return -ENOENT;
1133
1134         /* Bounds check source.  */
1135         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1136                 ret = -EINVAL;
1137                 goto out;
1138         }
1139
1140         trace_i915_gem_object_pread(obj, args->offset, args->size);
1141
1142         ret = i915_gem_object_wait(obj,
1143                                    I915_WAIT_INTERRUPTIBLE,
1144                                    MAX_SCHEDULE_TIMEOUT,
1145                                    to_rps_client(file));
1146         if (ret)
1147                 goto out;
1148
1149         ret = i915_gem_object_pin_pages(obj);
1150         if (ret)
1151                 goto out;
1152
1153         ret = i915_gem_shmem_pread(obj, args);
1154         if (ret == -EFAULT || ret == -ENODEV)
1155                 ret = i915_gem_gtt_pread(obj, args);
1156
1157         i915_gem_object_unpin_pages(obj);
1158 out:
1159         i915_gem_object_put(obj);
1160         return ret;
1161 }
1162
1163 /* This is the fast write path which cannot handle
1164  * page faults in the source data
1165  */
1166
1167 static inline bool
1168 ggtt_write(struct io_mapping *mapping,
1169            loff_t base, int offset,
1170            char __user *user_data, int length)
1171 {
1172         void *vaddr;
1173         unsigned long unwritten;
1174
1175         /* We can use the cpu mem copy function because this is X86. */
1176         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1177         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1178                                                       user_data, length);
1179         io_mapping_unmap_atomic(vaddr);
1180         if (unwritten) {
1181                 vaddr = (void __force *)
1182                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1183                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1184                 io_mapping_unmap(vaddr);
1185         }
1186
1187         return unwritten;
1188 }
1189
1190 /**
1191  * This is the fast pwrite path, where we copy the data directly from the
1192  * user into the GTT, uncached.
1193  * @obj: i915 GEM object
1194  * @args: pwrite arguments structure
1195  */
1196 static int
1197 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1198                          const struct drm_i915_gem_pwrite *args)
1199 {
1200         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1201         struct i915_ggtt *ggtt = &i915->ggtt;
1202         struct drm_mm_node node;
1203         struct i915_vma *vma;
1204         u64 remain, offset;
1205         void __user *user_data;
1206         int ret;
1207
1208         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1209         if (ret)
1210                 return ret;
1211
1212         intel_runtime_pm_get(i915);
1213         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1214                                        PIN_MAPPABLE | PIN_NONBLOCK);
1215         if (!IS_ERR(vma)) {
1216                 node.start = i915_ggtt_offset(vma);
1217                 node.allocated = false;
1218                 ret = i915_vma_put_fence(vma);
1219                 if (ret) {
1220                         i915_vma_unpin(vma);
1221                         vma = ERR_PTR(ret);
1222                 }
1223         }
1224         if (IS_ERR(vma)) {
1225                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1226                 if (ret)
1227                         goto out_unlock;
1228                 GEM_BUG_ON(!node.allocated);
1229         }
1230
1231         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1232         if (ret)
1233                 goto out_unpin;
1234
1235         mutex_unlock(&i915->drm.struct_mutex);
1236
1237         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1238
1239         user_data = u64_to_user_ptr(args->data_ptr);
1240         offset = args->offset;
1241         remain = args->size;
1242         while (remain) {
1243                 /* Operation in this page
1244                  *
1245                  * page_base = page offset within aperture
1246                  * page_offset = offset within page
1247                  * page_length = bytes to copy for this page
1248                  */
1249                 u32 page_base = node.start;
1250                 unsigned int page_offset = offset_in_page(offset);
1251                 unsigned int page_length = PAGE_SIZE - page_offset;
1252                 page_length = remain < page_length ? remain : page_length;
1253                 if (node.allocated) {
1254                         wmb(); /* flush the write before we modify the GGTT */
1255                         ggtt->base.insert_page(&ggtt->base,
1256                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1257                                                node.start, I915_CACHE_NONE, 0);
1258                         wmb(); /* flush modifications to the GGTT (insert_page) */
1259                 } else {
1260                         page_base += offset & PAGE_MASK;
1261                 }
1262                 /* If we get a fault while copying data, then (presumably) our
1263                  * source page isn't available.  Return the error and we'll
1264                  * retry in the slow path.
1265                  * If the object is non-shmem backed, we retry again with the
1266                  * path that handles page fault.
1267                  */
1268                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1269                                user_data, page_length)) {
1270                         ret = -EFAULT;
1271                         break;
1272                 }
1273
1274                 remain -= page_length;
1275                 user_data += page_length;
1276                 offset += page_length;
1277         }
1278         intel_fb_obj_flush(obj, ORIGIN_CPU);
1279
1280         mutex_lock(&i915->drm.struct_mutex);
1281 out_unpin:
1282         if (node.allocated) {
1283                 wmb();
1284                 ggtt->base.clear_range(&ggtt->base,
1285                                        node.start, node.size);
1286                 remove_mappable_node(&node);
1287         } else {
1288                 i915_vma_unpin(vma);
1289         }
1290 out_unlock:
1291         intel_runtime_pm_put(i915);
1292         mutex_unlock(&i915->drm.struct_mutex);
1293         return ret;
1294 }
1295
1296 static int
1297 shmem_pwrite_slow(struct page *page, int offset, int length,
1298                   char __user *user_data,
1299                   bool page_do_bit17_swizzling,
1300                   bool needs_clflush_before,
1301                   bool needs_clflush_after)
1302 {
1303         char *vaddr;
1304         int ret;
1305
1306         vaddr = kmap(page);
1307         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1308                 shmem_clflush_swizzled_range(vaddr + offset, length,
1309                                              page_do_bit17_swizzling);
1310         if (page_do_bit17_swizzling)
1311                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1312                                                 length);
1313         else
1314                 ret = __copy_from_user(vaddr + offset, user_data, length);
1315         if (needs_clflush_after)
1316                 shmem_clflush_swizzled_range(vaddr + offset, length,
1317                                              page_do_bit17_swizzling);
1318         kunmap(page);
1319
1320         return ret ? -EFAULT : 0;
1321 }
1322
1323 /* Per-page copy function for the shmem pwrite fastpath.
1324  * Flushes invalid cachelines before writing to the target if
1325  * needs_clflush_before is set and flushes out any written cachelines after
1326  * writing if needs_clflush is set.
1327  */
1328 static int
1329 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1330              bool page_do_bit17_swizzling,
1331              bool needs_clflush_before,
1332              bool needs_clflush_after)
1333 {
1334         int ret;
1335
1336         ret = -ENODEV;
1337         if (!page_do_bit17_swizzling) {
1338                 char *vaddr = kmap_atomic(page);
1339
1340                 if (needs_clflush_before)
1341                         drm_clflush_virt_range(vaddr + offset, len);
1342                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1343                 if (needs_clflush_after)
1344                         drm_clflush_virt_range(vaddr + offset, len);
1345
1346                 kunmap_atomic(vaddr);
1347         }
1348         if (ret == 0)
1349                 return ret;
1350
1351         return shmem_pwrite_slow(page, offset, len, user_data,
1352                                  page_do_bit17_swizzling,
1353                                  needs_clflush_before,
1354                                  needs_clflush_after);
1355 }
1356
1357 static int
1358 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1359                       const struct drm_i915_gem_pwrite *args)
1360 {
1361         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1362         void __user *user_data;
1363         u64 remain;
1364         unsigned int obj_do_bit17_swizzling;
1365         unsigned int partial_cacheline_write;
1366         unsigned int needs_clflush;
1367         unsigned int offset, idx;
1368         int ret;
1369
1370         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1371         if (ret)
1372                 return ret;
1373
1374         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1375         mutex_unlock(&i915->drm.struct_mutex);
1376         if (ret)
1377                 return ret;
1378
1379         obj_do_bit17_swizzling = 0;
1380         if (i915_gem_object_needs_bit17_swizzle(obj))
1381                 obj_do_bit17_swizzling = BIT(17);
1382
1383         /* If we don't overwrite a cacheline completely we need to be
1384          * careful to have up-to-date data by first clflushing. Don't
1385          * overcomplicate things and flush the entire patch.
1386          */
1387         partial_cacheline_write = 0;
1388         if (needs_clflush & CLFLUSH_BEFORE)
1389                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1390
1391         user_data = u64_to_user_ptr(args->data_ptr);
1392         remain = args->size;
1393         offset = offset_in_page(args->offset);
1394         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1395                 struct page *page = i915_gem_object_get_page(obj, idx);
1396                 int length;
1397
1398                 length = remain;
1399                 if (offset + length > PAGE_SIZE)
1400                         length = PAGE_SIZE - offset;
1401
1402                 ret = shmem_pwrite(page, offset, length, user_data,
1403                                    page_to_phys(page) & obj_do_bit17_swizzling,
1404                                    (offset | length) & partial_cacheline_write,
1405                                    needs_clflush & CLFLUSH_AFTER);
1406                 if (ret)
1407                         break;
1408
1409                 remain -= length;
1410                 user_data += length;
1411                 offset = 0;
1412         }
1413
1414         intel_fb_obj_flush(obj, ORIGIN_CPU);
1415         i915_gem_obj_finish_shmem_access(obj);
1416         return ret;
1417 }
1418
1419 /**
1420  * Writes data to the object referenced by handle.
1421  * @dev: drm device
1422  * @data: ioctl data blob
1423  * @file: drm file
1424  *
1425  * On error, the contents of the buffer that were to be modified are undefined.
1426  */
1427 int
1428 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1429                       struct drm_file *file)
1430 {
1431         struct drm_i915_gem_pwrite *args = data;
1432         struct drm_i915_gem_object *obj;
1433         int ret;
1434
1435         if (args->size == 0)
1436                 return 0;
1437
1438         if (!access_ok(VERIFY_READ,
1439                        u64_to_user_ptr(args->data_ptr),
1440                        args->size))
1441                 return -EFAULT;
1442
1443         obj = i915_gem_object_lookup(file, args->handle);
1444         if (!obj)
1445                 return -ENOENT;
1446
1447         /* Bounds check destination. */
1448         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1449                 ret = -EINVAL;
1450                 goto err;
1451         }
1452
1453         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1454
1455         ret = i915_gem_object_wait(obj,
1456                                    I915_WAIT_INTERRUPTIBLE |
1457                                    I915_WAIT_ALL,
1458                                    MAX_SCHEDULE_TIMEOUT,
1459                                    to_rps_client(file));
1460         if (ret)
1461                 goto err;
1462
1463         ret = i915_gem_object_pin_pages(obj);
1464         if (ret)
1465                 goto err;
1466
1467         ret = -EFAULT;
1468         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1469          * it would end up going through the fenced access, and we'll get
1470          * different detiling behavior between reading and writing.
1471          * pread/pwrite currently are reading and writing from the CPU
1472          * perspective, requiring manual detiling by the client.
1473          */
1474         if (!i915_gem_object_has_struct_page(obj) ||
1475             cpu_write_needs_clflush(obj))
1476                 /* Note that the gtt paths might fail with non-page-backed user
1477                  * pointers (e.g. gtt mappings when moving data between
1478                  * textures). Fallback to the shmem path in that case.
1479                  */
1480                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1481
1482         if (ret == -EFAULT || ret == -ENOSPC) {
1483                 if (obj->phys_handle)
1484                         ret = i915_gem_phys_pwrite(obj, args, file);
1485                 else
1486                         ret = i915_gem_shmem_pwrite(obj, args);
1487         }
1488
1489         i915_gem_object_unpin_pages(obj);
1490 err:
1491         i915_gem_object_put(obj);
1492         return ret;
1493 }
1494
1495 static inline enum fb_op_origin
1496 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1497 {
1498         return (domain == I915_GEM_DOMAIN_GTT ?
1499                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1500 }
1501
1502 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1503 {
1504         struct drm_i915_private *i915;
1505         struct list_head *list;
1506         struct i915_vma *vma;
1507
1508         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1509                 if (!i915_vma_is_ggtt(vma))
1510                         break;
1511
1512                 if (i915_vma_is_active(vma))
1513                         continue;
1514
1515                 if (!drm_mm_node_allocated(&vma->node))
1516                         continue;
1517
1518                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1519         }
1520
1521         i915 = to_i915(obj->base.dev);
1522         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1523         list_move_tail(&obj->global_link, list);
1524 }
1525
1526 /**
1527  * Called when user space prepares to use an object with the CPU, either
1528  * through the mmap ioctl's mapping or a GTT mapping.
1529  * @dev: drm device
1530  * @data: ioctl data blob
1531  * @file: drm file
1532  */
1533 int
1534 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1535                           struct drm_file *file)
1536 {
1537         struct drm_i915_gem_set_domain *args = data;
1538         struct drm_i915_gem_object *obj;
1539         uint32_t read_domains = args->read_domains;
1540         uint32_t write_domain = args->write_domain;
1541         int err;
1542
1543         /* Only handle setting domains to types used by the CPU. */
1544         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1545                 return -EINVAL;
1546
1547         /* Having something in the write domain implies it's in the read
1548          * domain, and only that read domain.  Enforce that in the request.
1549          */
1550         if (write_domain != 0 && read_domains != write_domain)
1551                 return -EINVAL;
1552
1553         obj = i915_gem_object_lookup(file, args->handle);
1554         if (!obj)
1555                 return -ENOENT;
1556
1557         /* Try to flush the object off the GPU without holding the lock.
1558          * We will repeat the flush holding the lock in the normal manner
1559          * to catch cases where we are gazumped.
1560          */
1561         err = i915_gem_object_wait(obj,
1562                                    I915_WAIT_INTERRUPTIBLE |
1563                                    (write_domain ? I915_WAIT_ALL : 0),
1564                                    MAX_SCHEDULE_TIMEOUT,
1565                                    to_rps_client(file));
1566         if (err)
1567                 goto out;
1568
1569         /* Flush and acquire obj->pages so that we are coherent through
1570          * direct access in memory with previous cached writes through
1571          * shmemfs and that our cache domain tracking remains valid.
1572          * For example, if the obj->filp was moved to swap without us
1573          * being notified and releasing the pages, we would mistakenly
1574          * continue to assume that the obj remained out of the CPU cached
1575          * domain.
1576          */
1577         err = i915_gem_object_pin_pages(obj);
1578         if (err)
1579                 goto out;
1580
1581         err = i915_mutex_lock_interruptible(dev);
1582         if (err)
1583                 goto out_unpin;
1584
1585         if (read_domains & I915_GEM_DOMAIN_GTT)
1586                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1587         else
1588                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1589
1590         /* And bump the LRU for this access */
1591         i915_gem_object_bump_inactive_ggtt(obj);
1592
1593         mutex_unlock(&dev->struct_mutex);
1594
1595         if (write_domain != 0)
1596                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1597
1598 out_unpin:
1599         i915_gem_object_unpin_pages(obj);
1600 out:
1601         i915_gem_object_put(obj);
1602         return err;
1603 }
1604
1605 /**
1606  * Called when user space has done writes to this buffer
1607  * @dev: drm device
1608  * @data: ioctl data blob
1609  * @file: drm file
1610  */
1611 int
1612 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1613                          struct drm_file *file)
1614 {
1615         struct drm_i915_gem_sw_finish *args = data;
1616         struct drm_i915_gem_object *obj;
1617
1618         obj = i915_gem_object_lookup(file, args->handle);
1619         if (!obj)
1620                 return -ENOENT;
1621
1622         /* Pinned buffers may be scanout, so flush the cache */
1623         i915_gem_object_flush_if_display(obj);
1624         i915_gem_object_put(obj);
1625
1626         return 0;
1627 }
1628
1629 /**
1630  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1631  *                       it is mapped to.
1632  * @dev: drm device
1633  * @data: ioctl data blob
1634  * @file: drm file
1635  *
1636  * While the mapping holds a reference on the contents of the object, it doesn't
1637  * imply a ref on the object itself.
1638  *
1639  * IMPORTANT:
1640  *
1641  * DRM driver writers who look a this function as an example for how to do GEM
1642  * mmap support, please don't implement mmap support like here. The modern way
1643  * to implement DRM mmap support is with an mmap offset ioctl (like
1644  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1645  * That way debug tooling like valgrind will understand what's going on, hiding
1646  * the mmap call in a driver private ioctl will break that. The i915 driver only
1647  * does cpu mmaps this way because we didn't know better.
1648  */
1649 int
1650 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1651                     struct drm_file *file)
1652 {
1653         struct drm_i915_gem_mmap *args = data;
1654         struct drm_i915_gem_object *obj;
1655         unsigned long addr;
1656
1657         if (args->flags & ~(I915_MMAP_WC))
1658                 return -EINVAL;
1659
1660         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1661                 return -ENODEV;
1662
1663         obj = i915_gem_object_lookup(file, args->handle);
1664         if (!obj)
1665                 return -ENOENT;
1666
1667         /* prime objects have no backing filp to GEM mmap
1668          * pages from.
1669          */
1670         if (!obj->base.filp) {
1671                 i915_gem_object_put(obj);
1672                 return -EINVAL;
1673         }
1674
1675         addr = vm_mmap(obj->base.filp, 0, args->size,
1676                        PROT_READ | PROT_WRITE, MAP_SHARED,
1677                        args->offset);
1678         if (args->flags & I915_MMAP_WC) {
1679                 struct mm_struct *mm = current->mm;
1680                 struct vm_area_struct *vma;
1681
1682                 if (down_write_killable(&mm->mmap_sem)) {
1683                         i915_gem_object_put(obj);
1684                         return -EINTR;
1685                 }
1686                 vma = find_vma(mm, addr);
1687                 if (vma)
1688                         vma->vm_page_prot =
1689                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1690                 else
1691                         addr = -ENOMEM;
1692                 up_write(&mm->mmap_sem);
1693
1694                 /* This may race, but that's ok, it only gets set */
1695                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1696         }
1697         i915_gem_object_put(obj);
1698         if (IS_ERR((void *)addr))
1699                 return addr;
1700
1701         args->addr_ptr = (uint64_t) addr;
1702
1703         return 0;
1704 }
1705
1706 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1707 {
1708         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1709 }
1710
1711 /**
1712  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1713  *
1714  * A history of the GTT mmap interface:
1715  *
1716  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1717  *     aligned and suitable for fencing, and still fit into the available
1718  *     mappable space left by the pinned display objects. A classic problem
1719  *     we called the page-fault-of-doom where we would ping-pong between
1720  *     two objects that could not fit inside the GTT and so the memcpy
1721  *     would page one object in at the expense of the other between every
1722  *     single byte.
1723  *
1724  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1725  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1726  *     object is too large for the available space (or simply too large
1727  *     for the mappable aperture!), a view is created instead and faulted
1728  *     into userspace. (This view is aligned and sized appropriately for
1729  *     fenced access.)
1730  *
1731  * Restrictions:
1732  *
1733  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1734  *    hangs on some architectures, corruption on others. An attempt to service
1735  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1736  *
1737  *  * the object must be able to fit into RAM (physical memory, though no
1738  *    limited to the mappable aperture).
1739  *
1740  *
1741  * Caveats:
1742  *
1743  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1744  *    all data to system memory. Subsequent access will not be synchronized.
1745  *
1746  *  * all mappings are revoked on runtime device suspend.
1747  *
1748  *  * there are only 8, 16 or 32 fence registers to share between all users
1749  *    (older machines require fence register for display and blitter access
1750  *    as well). Contention of the fence registers will cause the previous users
1751  *    to be unmapped and any new access will generate new page faults.
1752  *
1753  *  * running out of memory while servicing a fault may generate a SIGBUS,
1754  *    rather than the expected SIGSEGV.
1755  */
1756 int i915_gem_mmap_gtt_version(void)
1757 {
1758         return 1;
1759 }
1760
1761 static inline struct i915_ggtt_view
1762 compute_partial_view(struct drm_i915_gem_object *obj,
1763                      pgoff_t page_offset,
1764                      unsigned int chunk)
1765 {
1766         struct i915_ggtt_view view;
1767
1768         if (i915_gem_object_is_tiled(obj))
1769                 chunk = roundup(chunk, tile_row_pages(obj));
1770
1771         view.type = I915_GGTT_VIEW_PARTIAL;
1772         view.partial.offset = rounddown(page_offset, chunk);
1773         view.partial.size =
1774                 min_t(unsigned int, chunk,
1775                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1776
1777         /* If the partial covers the entire object, just create a normal VMA. */
1778         if (chunk >= obj->base.size >> PAGE_SHIFT)
1779                 view.type = I915_GGTT_VIEW_NORMAL;
1780
1781         return view;
1782 }
1783
1784 /**
1785  * i915_gem_fault - fault a page into the GTT
1786  * @area: CPU VMA in question
1787  * @vmf: fault info
1788  *
1789  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1790  * from userspace.  The fault handler takes care of binding the object to
1791  * the GTT (if needed), allocating and programming a fence register (again,
1792  * only if needed based on whether the old reg is still valid or the object
1793  * is tiled) and inserting a new PTE into the faulting process.
1794  *
1795  * Note that the faulting process may involve evicting existing objects
1796  * from the GTT and/or fence registers to make room.  So performance may
1797  * suffer if the GTT working set is large or there are few fence registers
1798  * left.
1799  *
1800  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1801  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1802  */
1803 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1804 {
1805 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1806         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1807         struct drm_device *dev = obj->base.dev;
1808         struct drm_i915_private *dev_priv = to_i915(dev);
1809         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1810         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1811         struct i915_vma *vma;
1812         pgoff_t page_offset;
1813         unsigned int flags;
1814         int ret;
1815
1816         /* We don't use vmf->pgoff since that has the fake offset */
1817         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1818
1819         trace_i915_gem_object_fault(obj, page_offset, true, write);
1820
1821         /* Try to flush the object off the GPU first without holding the lock.
1822          * Upon acquiring the lock, we will perform our sanity checks and then
1823          * repeat the flush holding the lock in the normal manner to catch cases
1824          * where we are gazumped.
1825          */
1826         ret = i915_gem_object_wait(obj,
1827                                    I915_WAIT_INTERRUPTIBLE,
1828                                    MAX_SCHEDULE_TIMEOUT,
1829                                    NULL);
1830         if (ret)
1831                 goto err;
1832
1833         ret = i915_gem_object_pin_pages(obj);
1834         if (ret)
1835                 goto err;
1836
1837         intel_runtime_pm_get(dev_priv);
1838
1839         ret = i915_mutex_lock_interruptible(dev);
1840         if (ret)
1841                 goto err_rpm;
1842
1843         /* Access to snoopable pages through the GTT is incoherent. */
1844         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1845                 ret = -EFAULT;
1846                 goto err_unlock;
1847         }
1848
1849         /* If the object is smaller than a couple of partial vma, it is
1850          * not worth only creating a single partial vma - we may as well
1851          * clear enough space for the full object.
1852          */
1853         flags = PIN_MAPPABLE;
1854         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1855                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1856
1857         /* Now pin it into the GTT as needed */
1858         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1859         if (IS_ERR(vma)) {
1860                 /* Use a partial view if it is bigger than available space */
1861                 struct i915_ggtt_view view =
1862                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1863
1864                 /* Userspace is now writing through an untracked VMA, abandon
1865                  * all hope that the hardware is able to track future writes.
1866                  */
1867                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1868
1869                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1870         }
1871         if (IS_ERR(vma)) {
1872                 ret = PTR_ERR(vma);
1873                 goto err_unlock;
1874         }
1875
1876         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1877         if (ret)
1878                 goto err_unpin;
1879
1880         ret = i915_vma_get_fence(vma);
1881         if (ret)
1882                 goto err_unpin;
1883
1884         /* Mark as being mmapped into userspace for later revocation */
1885         assert_rpm_wakelock_held(dev_priv);
1886         if (list_empty(&obj->userfault_link))
1887                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1888
1889         /* Finally, remap it using the new GTT offset */
1890         ret = remap_io_mapping(area,
1891                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1892                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1893                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1894                                &ggtt->mappable);
1895
1896 err_unpin:
1897         __i915_vma_unpin(vma);
1898 err_unlock:
1899         mutex_unlock(&dev->struct_mutex);
1900 err_rpm:
1901         intel_runtime_pm_put(dev_priv);
1902         i915_gem_object_unpin_pages(obj);
1903 err:
1904         switch (ret) {
1905         case -EIO:
1906                 /*
1907                  * We eat errors when the gpu is terminally wedged to avoid
1908                  * userspace unduly crashing (gl has no provisions for mmaps to
1909                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1910                  * and so needs to be reported.
1911                  */
1912                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1913                         ret = VM_FAULT_SIGBUS;
1914                         break;
1915                 }
1916         case -EAGAIN:
1917                 /*
1918                  * EAGAIN means the gpu is hung and we'll wait for the error
1919                  * handler to reset everything when re-faulting in
1920                  * i915_mutex_lock_interruptible.
1921                  */
1922         case 0:
1923         case -ERESTARTSYS:
1924         case -EINTR:
1925         case -EBUSY:
1926                 /*
1927                  * EBUSY is ok: this just means that another thread
1928                  * already did the job.
1929                  */
1930                 ret = VM_FAULT_NOPAGE;
1931                 break;
1932         case -ENOMEM:
1933                 ret = VM_FAULT_OOM;
1934                 break;
1935         case -ENOSPC:
1936         case -EFAULT:
1937                 ret = VM_FAULT_SIGBUS;
1938                 break;
1939         default:
1940                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1941                 ret = VM_FAULT_SIGBUS;
1942                 break;
1943         }
1944         return ret;
1945 }
1946
1947 /**
1948  * i915_gem_release_mmap - remove physical page mappings
1949  * @obj: obj in question
1950  *
1951  * Preserve the reservation of the mmapping with the DRM core code, but
1952  * relinquish ownership of the pages back to the system.
1953  *
1954  * It is vital that we remove the page mapping if we have mapped a tiled
1955  * object through the GTT and then lose the fence register due to
1956  * resource pressure. Similarly if the object has been moved out of the
1957  * aperture, than pages mapped into userspace must be revoked. Removing the
1958  * mapping will then trigger a page fault on the next user access, allowing
1959  * fixup by i915_gem_fault().
1960  */
1961 void
1962 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1963 {
1964         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1965
1966         /* Serialisation between user GTT access and our code depends upon
1967          * revoking the CPU's PTE whilst the mutex is held. The next user
1968          * pagefault then has to wait until we release the mutex.
1969          *
1970          * Note that RPM complicates somewhat by adding an additional
1971          * requirement that operations to the GGTT be made holding the RPM
1972          * wakeref.
1973          */
1974         lockdep_assert_held(&i915->drm.struct_mutex);
1975         intel_runtime_pm_get(i915);
1976
1977         if (list_empty(&obj->userfault_link))
1978                 goto out;
1979
1980         list_del_init(&obj->userfault_link);
1981         drm_vma_node_unmap(&obj->base.vma_node,
1982                            obj->base.dev->anon_inode->i_mapping);
1983
1984         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1985          * memory transactions from userspace before we return. The TLB
1986          * flushing implied above by changing the PTE above *should* be
1987          * sufficient, an extra barrier here just provides us with a bit
1988          * of paranoid documentation about our requirement to serialise
1989          * memory writes before touching registers / GSM.
1990          */
1991         wmb();
1992
1993 out:
1994         intel_runtime_pm_put(i915);
1995 }
1996
1997 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1998 {
1999         struct drm_i915_gem_object *obj, *on;
2000         int i;
2001
2002         /*
2003          * Only called during RPM suspend. All users of the userfault_list
2004          * must be holding an RPM wakeref to ensure that this can not
2005          * run concurrently with themselves (and use the struct_mutex for
2006          * protection between themselves).
2007          */
2008
2009         list_for_each_entry_safe(obj, on,
2010                                  &dev_priv->mm.userfault_list, userfault_link) {
2011                 list_del_init(&obj->userfault_link);
2012                 drm_vma_node_unmap(&obj->base.vma_node,
2013                                    obj->base.dev->anon_inode->i_mapping);
2014         }
2015
2016         /* The fence will be lost when the device powers down. If any were
2017          * in use by hardware (i.e. they are pinned), we should not be powering
2018          * down! All other fences will be reacquired by the user upon waking.
2019          */
2020         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2021                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2022
2023                 /* Ideally we want to assert that the fence register is not
2024                  * live at this point (i.e. that no piece of code will be
2025                  * trying to write through fence + GTT, as that both violates
2026                  * our tracking of activity and associated locking/barriers,
2027                  * but also is illegal given that the hw is powered down).
2028                  *
2029                  * Previously we used reg->pin_count as a "liveness" indicator.
2030                  * That is not sufficient, and we need a more fine-grained
2031                  * tool if we want to have a sanity check here.
2032                  */
2033
2034                 if (!reg->vma)
2035                         continue;
2036
2037                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2038                 reg->dirty = true;
2039         }
2040 }
2041
2042 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2043 {
2044         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2045         int err;
2046
2047         err = drm_gem_create_mmap_offset(&obj->base);
2048         if (likely(!err))
2049                 return 0;
2050
2051         /* Attempt to reap some mmap space from dead objects */
2052         do {
2053                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2054                 if (err)
2055                         break;
2056
2057                 i915_gem_drain_freed_objects(dev_priv);
2058                 err = drm_gem_create_mmap_offset(&obj->base);
2059                 if (!err)
2060                         break;
2061
2062         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2063
2064         return err;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074                   struct drm_device *dev,
2075                   uint32_t handle,
2076                   uint64_t *offset)
2077 {
2078         struct drm_i915_gem_object *obj;
2079         int ret;
2080
2081         obj = i915_gem_object_lookup(file, handle);
2082         if (!obj)
2083                 return -ENOENT;
2084
2085         ret = i915_gem_object_create_mmap_offset(obj);
2086         if (ret == 0)
2087                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2088
2089         i915_gem_object_put(obj);
2090         return ret;
2091 }
2092
2093 /**
2094  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2095  * @dev: DRM device
2096  * @data: GTT mapping ioctl data
2097  * @file: GEM object info
2098  *
2099  * Simply returns the fake offset to userspace so it can mmap it.
2100  * The mmap call will end up in drm_gem_mmap(), which will set things
2101  * up so we can get faults in the handler above.
2102  *
2103  * The fault handler will take care of binding the object into the GTT
2104  * (since it may have been evicted to make room for something), allocating
2105  * a fence register, and mapping the appropriate aperture address into
2106  * userspace.
2107  */
2108 int
2109 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2110                         struct drm_file *file)
2111 {
2112         struct drm_i915_gem_mmap_gtt *args = data;
2113
2114         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2115 }
2116
2117 /* Immediately discard the backing storage */
2118 static void
2119 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2120 {
2121         i915_gem_object_free_mmap_offset(obj);
2122
2123         if (obj->base.filp == NULL)
2124                 return;
2125
2126         /* Our goal here is to return as much of the memory as
2127          * is possible back to the system as we are called from OOM.
2128          * To do this we must instruct the shmfs to drop all of its
2129          * backing pages, *now*.
2130          */
2131         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2132         obj->mm.madv = __I915_MADV_PURGED;
2133 }
2134
2135 /* Try to discard unwanted pages */
2136 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2137 {
2138         struct address_space *mapping;
2139
2140         lockdep_assert_held(&obj->mm.lock);
2141         GEM_BUG_ON(obj->mm.pages);
2142
2143         switch (obj->mm.madv) {
2144         case I915_MADV_DONTNEED:
2145                 i915_gem_object_truncate(obj);
2146         case __I915_MADV_PURGED:
2147                 return;
2148         }
2149
2150         if (obj->base.filp == NULL)
2151                 return;
2152
2153         mapping = obj->base.filp->f_mapping,
2154         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2155 }
2156
2157 static void
2158 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2159                               struct sg_table *pages)
2160 {
2161         struct sgt_iter sgt_iter;
2162         struct page *page;
2163
2164         __i915_gem_object_release_shmem(obj, pages, true);
2165
2166         i915_gem_gtt_finish_pages(obj, pages);
2167
2168         if (i915_gem_object_needs_bit17_swizzle(obj))
2169                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2170
2171         for_each_sgt_page(page, sgt_iter, pages) {
2172                 if (obj->mm.dirty)
2173                         set_page_dirty(page);
2174
2175                 if (obj->mm.madv == I915_MADV_WILLNEED)
2176                         mark_page_accessed(page);
2177
2178                 put_page(page);
2179         }
2180         obj->mm.dirty = false;
2181
2182         sg_free_table(pages);
2183         kfree(pages);
2184 }
2185
2186 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2187 {
2188         struct radix_tree_iter iter;
2189         void **slot;
2190
2191         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2192                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2193 }
2194
2195 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2196                                  enum i915_mm_subclass subclass)
2197 {
2198         struct sg_table *pages;
2199
2200         if (i915_gem_object_has_pinned_pages(obj))
2201                 return;
2202
2203         GEM_BUG_ON(obj->bind_count);
2204         if (!READ_ONCE(obj->mm.pages))
2205                 return;
2206
2207         /* May be called by shrinker from within get_pages() (on another bo) */
2208         mutex_lock_nested(&obj->mm.lock, subclass);
2209         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2210                 goto unlock;
2211
2212         /* ->put_pages might need to allocate memory for the bit17 swizzle
2213          * array, hence protect them from being reaped by removing them from gtt
2214          * lists early. */
2215         pages = fetch_and_zero(&obj->mm.pages);
2216         GEM_BUG_ON(!pages);
2217
2218         if (obj->mm.mapping) {
2219                 void *ptr;
2220
2221                 ptr = ptr_mask_bits(obj->mm.mapping);
2222                 if (is_vmalloc_addr(ptr))
2223                         vunmap(ptr);
2224                 else
2225                         kunmap(kmap_to_page(ptr));
2226
2227                 obj->mm.mapping = NULL;
2228         }
2229
2230         __i915_gem_object_reset_page_iter(obj);
2231
2232         obj->ops->put_pages(obj, pages);
2233 unlock:
2234         mutex_unlock(&obj->mm.lock);
2235 }
2236
2237 static bool i915_sg_trim(struct sg_table *orig_st)
2238 {
2239         struct sg_table new_st;
2240         struct scatterlist *sg, *new_sg;
2241         unsigned int i;
2242
2243         if (orig_st->nents == orig_st->orig_nents)
2244                 return false;
2245
2246         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2247                 return false;
2248
2249         new_sg = new_st.sgl;
2250         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2251                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2252                 /* called before being DMA mapped, no need to copy sg->dma_* */
2253                 new_sg = sg_next(new_sg);
2254         }
2255         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2256
2257         sg_free_table(orig_st);
2258
2259         *orig_st = new_st;
2260         return true;
2261 }
2262
2263 static struct sg_table *
2264 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2265 {
2266         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2267         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2268         unsigned long i;
2269         struct address_space *mapping;
2270         struct sg_table *st;
2271         struct scatterlist *sg;
2272         struct sgt_iter sgt_iter;
2273         struct page *page;
2274         unsigned long last_pfn = 0;     /* suppress gcc warning */
2275         unsigned int max_segment;
2276         int ret;
2277         gfp_t gfp;
2278
2279         /* Assert that the object is not currently in any GPU domain. As it
2280          * wasn't in the GTT, there shouldn't be any way it could have been in
2281          * a GPU cache
2282          */
2283         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2284         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2285
2286         max_segment = swiotlb_max_segment();
2287         if (!max_segment)
2288                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2289
2290         st = kmalloc(sizeof(*st), GFP_KERNEL);
2291         if (st == NULL)
2292                 return ERR_PTR(-ENOMEM);
2293
2294 rebuild_st:
2295         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2296                 kfree(st);
2297                 return ERR_PTR(-ENOMEM);
2298         }
2299
2300         /* Get the list of pages out of our struct file.  They'll be pinned
2301          * at this point until we release them.
2302          *
2303          * Fail silently without starting the shrinker
2304          */
2305         mapping = obj->base.filp->f_mapping;
2306         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2307         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2308         sg = st->sgl;
2309         st->nents = 0;
2310         for (i = 0; i < page_count; i++) {
2311                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2312                 if (IS_ERR(page)) {
2313                         i915_gem_shrink(dev_priv,
2314                                         page_count,
2315                                         I915_SHRINK_BOUND |
2316                                         I915_SHRINK_UNBOUND |
2317                                         I915_SHRINK_PURGEABLE);
2318                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2319                 }
2320                 if (IS_ERR(page)) {
2321                         /* We've tried hard to allocate the memory by reaping
2322                          * our own buffer, now let the real VM do its job and
2323                          * go down in flames if truly OOM.
2324                          */
2325                         page = shmem_read_mapping_page(mapping, i);
2326                         if (IS_ERR(page)) {
2327                                 ret = PTR_ERR(page);
2328                                 goto err_sg;
2329                         }
2330                 }
2331                 if (!i ||
2332                     sg->length >= max_segment ||
2333                     page_to_pfn(page) != last_pfn + 1) {
2334                         if (i)
2335                                 sg = sg_next(sg);
2336                         st->nents++;
2337                         sg_set_page(sg, page, PAGE_SIZE, 0);
2338                 } else {
2339                         sg->length += PAGE_SIZE;
2340                 }
2341                 last_pfn = page_to_pfn(page);
2342
2343                 /* Check that the i965g/gm workaround works. */
2344                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2345         }
2346         if (sg) /* loop terminated early; short sg table */
2347                 sg_mark_end(sg);
2348
2349         /* Trim unused sg entries to avoid wasting memory. */
2350         i915_sg_trim(st);
2351
2352         ret = i915_gem_gtt_prepare_pages(obj, st);
2353         if (ret) {
2354                 /* DMA remapping failed? One possible cause is that
2355                  * it could not reserve enough large entries, asking
2356                  * for PAGE_SIZE chunks instead may be helpful.
2357                  */
2358                 if (max_segment > PAGE_SIZE) {
2359                         for_each_sgt_page(page, sgt_iter, st)
2360                                 put_page(page);
2361                         sg_free_table(st);
2362
2363                         max_segment = PAGE_SIZE;
2364                         goto rebuild_st;
2365                 } else {
2366                         dev_warn(&dev_priv->drm.pdev->dev,
2367                                  "Failed to DMA remap %lu pages\n",
2368                                  page_count);
2369                         goto err_pages;
2370                 }
2371         }
2372
2373         if (i915_gem_object_needs_bit17_swizzle(obj))
2374                 i915_gem_object_do_bit_17_swizzle(obj, st);
2375
2376         return st;
2377
2378 err_sg:
2379         sg_mark_end(sg);
2380 err_pages:
2381         for_each_sgt_page(page, sgt_iter, st)
2382                 put_page(page);
2383         sg_free_table(st);
2384         kfree(st);
2385
2386         /* shmemfs first checks if there is enough memory to allocate the page
2387          * and reports ENOSPC should there be insufficient, along with the usual
2388          * ENOMEM for a genuine allocation failure.
2389          *
2390          * We use ENOSPC in our driver to mean that we have run out of aperture
2391          * space and so want to translate the error from shmemfs back to our
2392          * usual understanding of ENOMEM.
2393          */
2394         if (ret == -ENOSPC)
2395                 ret = -ENOMEM;
2396
2397         return ERR_PTR(ret);
2398 }
2399
2400 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2401                                  struct sg_table *pages)
2402 {
2403         lockdep_assert_held(&obj->mm.lock);
2404
2405         obj->mm.get_page.sg_pos = pages->sgl;
2406         obj->mm.get_page.sg_idx = 0;
2407
2408         obj->mm.pages = pages;
2409
2410         if (i915_gem_object_is_tiled(obj) &&
2411             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2412                 GEM_BUG_ON(obj->mm.quirked);
2413                 __i915_gem_object_pin_pages(obj);
2414                 obj->mm.quirked = true;
2415         }
2416 }
2417
2418 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2419 {
2420         struct sg_table *pages;
2421
2422         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2423
2424         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2425                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2426                 return -EFAULT;
2427         }
2428
2429         pages = obj->ops->get_pages(obj);
2430         if (unlikely(IS_ERR(pages)))
2431                 return PTR_ERR(pages);
2432
2433         __i915_gem_object_set_pages(obj, pages);
2434         return 0;
2435 }
2436
2437 /* Ensure that the associated pages are gathered from the backing storage
2438  * and pinned into our object. i915_gem_object_pin_pages() may be called
2439  * multiple times before they are released by a single call to
2440  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2441  * either as a result of memory pressure (reaping pages under the shrinker)
2442  * or as the object is itself released.
2443  */
2444 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2445 {
2446         int err;
2447
2448         err = mutex_lock_interruptible(&obj->mm.lock);
2449         if (err)
2450                 return err;
2451
2452         if (unlikely(!obj->mm.pages)) {
2453                 err = ____i915_gem_object_get_pages(obj);
2454                 if (err)
2455                         goto unlock;
2456
2457                 smp_mb__before_atomic();
2458         }
2459         atomic_inc(&obj->mm.pages_pin_count);
2460
2461 unlock:
2462         mutex_unlock(&obj->mm.lock);
2463         return err;
2464 }
2465
2466 /* The 'mapping' part of i915_gem_object_pin_map() below */
2467 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2468                                  enum i915_map_type type)
2469 {
2470         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2471         struct sg_table *sgt = obj->mm.pages;
2472         struct sgt_iter sgt_iter;
2473         struct page *page;
2474         struct page *stack_pages[32];
2475         struct page **pages = stack_pages;
2476         unsigned long i = 0;
2477         pgprot_t pgprot;
2478         void *addr;
2479
2480         /* A single page can always be kmapped */
2481         if (n_pages == 1 && type == I915_MAP_WB)
2482                 return kmap(sg_page(sgt->sgl));
2483
2484         if (n_pages > ARRAY_SIZE(stack_pages)) {
2485                 /* Too big for stack -- allocate temporary array instead */
2486                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2487                 if (!pages)
2488                         return NULL;
2489         }
2490
2491         for_each_sgt_page(page, sgt_iter, sgt)
2492                 pages[i++] = page;
2493
2494         /* Check that we have the expected number of pages */
2495         GEM_BUG_ON(i != n_pages);
2496
2497         switch (type) {
2498         case I915_MAP_WB:
2499                 pgprot = PAGE_KERNEL;
2500                 break;
2501         case I915_MAP_WC:
2502                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2503                 break;
2504         }
2505         addr = vmap(pages, n_pages, 0, pgprot);
2506
2507         if (pages != stack_pages)
2508                 drm_free_large(pages);
2509
2510         return addr;
2511 }
2512
2513 /* get, pin, and map the pages of the object into kernel space */
2514 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2515                               enum i915_map_type type)
2516 {
2517         enum i915_map_type has_type;
2518         bool pinned;
2519         void *ptr;
2520         int ret;
2521
2522         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2523
2524         ret = mutex_lock_interruptible(&obj->mm.lock);
2525         if (ret)
2526                 return ERR_PTR(ret);
2527
2528         pinned = true;
2529         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2530                 if (unlikely(!obj->mm.pages)) {
2531                         ret = ____i915_gem_object_get_pages(obj);
2532                         if (ret)
2533                                 goto err_unlock;
2534
2535                         smp_mb__before_atomic();
2536                 }
2537                 atomic_inc(&obj->mm.pages_pin_count);
2538                 pinned = false;
2539         }
2540         GEM_BUG_ON(!obj->mm.pages);
2541
2542         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2543         if (ptr && has_type != type) {
2544                 if (pinned) {
2545                         ret = -EBUSY;
2546                         goto err_unpin;
2547                 }
2548
2549                 if (is_vmalloc_addr(ptr))
2550                         vunmap(ptr);
2551                 else
2552                         kunmap(kmap_to_page(ptr));
2553
2554                 ptr = obj->mm.mapping = NULL;
2555         }
2556
2557         if (!ptr) {
2558                 ptr = i915_gem_object_map(obj, type);
2559                 if (!ptr) {
2560                         ret = -ENOMEM;
2561                         goto err_unpin;
2562                 }
2563
2564                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2565         }
2566
2567 out_unlock:
2568         mutex_unlock(&obj->mm.lock);
2569         return ptr;
2570
2571 err_unpin:
2572         atomic_dec(&obj->mm.pages_pin_count);
2573 err_unlock:
2574         ptr = ERR_PTR(ret);
2575         goto out_unlock;
2576 }
2577
2578 static bool ban_context(const struct i915_gem_context *ctx)
2579 {
2580         return (i915_gem_context_is_bannable(ctx) &&
2581                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2582 }
2583
2584 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2585 {
2586         ctx->guilty_count++;
2587         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2588         if (ban_context(ctx))
2589                 i915_gem_context_set_banned(ctx);
2590
2591         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2592                          ctx->name, ctx->ban_score,
2593                          yesno(i915_gem_context_is_banned(ctx)));
2594
2595         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2596                 return;
2597
2598         ctx->file_priv->context_bans++;
2599         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2600                          ctx->name, ctx->file_priv->context_bans);
2601 }
2602
2603 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2604 {
2605         ctx->active_count++;
2606 }
2607
2608 struct drm_i915_gem_request *
2609 i915_gem_find_active_request(struct intel_engine_cs *engine)
2610 {
2611         struct drm_i915_gem_request *request, *active = NULL;
2612         unsigned long flags;
2613
2614         /* We are called by the error capture and reset at a random
2615          * point in time. In particular, note that neither is crucially
2616          * ordered with an interrupt. After a hang, the GPU is dead and we
2617          * assume that no more writes can happen (we waited long enough for
2618          * all writes that were in transaction to be flushed) - adding an
2619          * extra delay for a recent interrupt is pointless. Hence, we do
2620          * not need an engine->irq_seqno_barrier() before the seqno reads.
2621          */
2622         spin_lock_irqsave(&engine->timeline->lock, flags);
2623         list_for_each_entry(request, &engine->timeline->requests, link) {
2624                 if (__i915_gem_request_completed(request,
2625                                                  request->global_seqno))
2626                         continue;
2627
2628                 GEM_BUG_ON(request->engine != engine);
2629                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2630                                     &request->fence.flags));
2631
2632                 active = request;
2633                 break;
2634         }
2635         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2636
2637         return active;
2638 }
2639
2640 static bool engine_stalled(struct intel_engine_cs *engine)
2641 {
2642         if (!engine->hangcheck.stalled)
2643                 return false;
2644
2645         /* Check for possible seqno movement after hang declaration */
2646         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2647                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2648                 return false;
2649         }
2650
2651         return true;
2652 }
2653
2654 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2655 {
2656         struct intel_engine_cs *engine;
2657         enum intel_engine_id id;
2658         int err = 0;
2659
2660         /* Ensure irq handler finishes, and not run again. */
2661         for_each_engine(engine, dev_priv, id) {
2662                 struct drm_i915_gem_request *request;
2663
2664                 /* Prevent the signaler thread from updating the request
2665                  * state (by calling dma_fence_signal) as we are processing
2666                  * the reset. The write from the GPU of the seqno is
2667                  * asynchronous and the signaler thread may see a different
2668                  * value to us and declare the request complete, even though
2669                  * the reset routine have picked that request as the active
2670                  * (incomplete) request. This conflict is not handled
2671                  * gracefully!
2672                  */
2673                 kthread_park(engine->breadcrumbs.signaler);
2674
2675                 /* Prevent request submission to the hardware until we have
2676                  * completed the reset in i915_gem_reset_finish(). If a request
2677                  * is completed by one engine, it may then queue a request
2678                  * to a second via its engine->irq_tasklet *just* as we are
2679                  * calling engine->init_hw() and also writing the ELSP.
2680                  * Turning off the engine->irq_tasklet until the reset is over
2681                  * prevents the race.
2682                  */
2683                 tasklet_kill(&engine->irq_tasklet);
2684                 tasklet_disable(&engine->irq_tasklet);
2685
2686                 if (engine->irq_seqno_barrier)
2687                         engine->irq_seqno_barrier(engine);
2688
2689                 if (engine_stalled(engine)) {
2690                         request = i915_gem_find_active_request(engine);
2691                         if (request && request->fence.error == -EIO)
2692                                 err = -EIO; /* Previous reset failed! */
2693                 }
2694         }
2695
2696         i915_gem_revoke_fences(dev_priv);
2697
2698         return err;
2699 }
2700
2701 static void skip_request(struct drm_i915_gem_request *request)
2702 {
2703         void *vaddr = request->ring->vaddr;
2704         u32 head;
2705
2706         /* As this request likely depends on state from the lost
2707          * context, clear out all the user operations leaving the
2708          * breadcrumb at the end (so we get the fence notifications).
2709          */
2710         head = request->head;
2711         if (request->postfix < head) {
2712                 memset(vaddr + head, 0, request->ring->size - head);
2713                 head = 0;
2714         }
2715         memset(vaddr + head, 0, request->postfix - head);
2716
2717         dma_fence_set_error(&request->fence, -EIO);
2718 }
2719
2720 static void engine_skip_context(struct drm_i915_gem_request *request)
2721 {
2722         struct intel_engine_cs *engine = request->engine;
2723         struct i915_gem_context *hung_ctx = request->ctx;
2724         struct intel_timeline *timeline;
2725         unsigned long flags;
2726
2727         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2728
2729         spin_lock_irqsave(&engine->timeline->lock, flags);
2730         spin_lock(&timeline->lock);
2731
2732         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2733                 if (request->ctx == hung_ctx)
2734                         skip_request(request);
2735
2736         list_for_each_entry(request, &timeline->requests, link)
2737                 skip_request(request);
2738
2739         spin_unlock(&timeline->lock);
2740         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2741 }
2742
2743 /* Returns true if the request was guilty of hang */
2744 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2745 {
2746         /* Read once and return the resolution */
2747         const bool guilty = engine_stalled(request->engine);
2748
2749         /* The guilty request will get skipped on a hung engine.
2750          *
2751          * Users of client default contexts do not rely on logical
2752          * state preserved between batches so it is safe to execute
2753          * queued requests following the hang. Non default contexts
2754          * rely on preserved state, so skipping a batch loses the
2755          * evolution of the state and it needs to be considered corrupted.
2756          * Executing more queued batches on top of corrupted state is
2757          * risky. But we take the risk by trying to advance through
2758          * the queued requests in order to make the client behaviour
2759          * more predictable around resets, by not throwing away random
2760          * amount of batches it has prepared for execution. Sophisticated
2761          * clients can use gem_reset_stats_ioctl and dma fence status
2762          * (exported via sync_file info ioctl on explicit fences) to observe
2763          * when it loses the context state and should rebuild accordingly.
2764          *
2765          * The context ban, and ultimately the client ban, mechanism are safety
2766          * valves if client submission ends up resulting in nothing more than
2767          * subsequent hangs.
2768          */
2769
2770         if (guilty) {
2771                 i915_gem_context_mark_guilty(request->ctx);
2772                 skip_request(request);
2773         } else {
2774                 i915_gem_context_mark_innocent(request->ctx);
2775                 dma_fence_set_error(&request->fence, -EAGAIN);
2776         }
2777
2778         return guilty;
2779 }
2780
2781 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2782 {
2783         struct drm_i915_gem_request *request;
2784
2785         request = i915_gem_find_active_request(engine);
2786         if (request && i915_gem_reset_request(request)) {
2787                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2788                                  engine->name, request->global_seqno);
2789
2790                 /* If this context is now banned, skip all pending requests. */
2791                 if (i915_gem_context_is_banned(request->ctx))
2792                         engine_skip_context(request);
2793         }
2794
2795         /* Setup the CS to resume from the breadcrumb of the hung request */
2796         engine->reset_hw(engine, request);
2797 }
2798
2799 void i915_gem_reset(struct drm_i915_private *dev_priv)
2800 {
2801         struct intel_engine_cs *engine;
2802         enum intel_engine_id id;
2803
2804         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2805
2806         i915_gem_retire_requests(dev_priv);
2807
2808         for_each_engine(engine, dev_priv, id) {
2809                 struct i915_gem_context *ctx;
2810
2811                 i915_gem_reset_engine(engine);
2812                 ctx = fetch_and_zero(&engine->last_retired_context);
2813                 if (ctx)
2814                         engine->context_unpin(engine, ctx);
2815         }
2816
2817         i915_gem_restore_fences(dev_priv);
2818
2819         if (dev_priv->gt.awake) {
2820                 intel_sanitize_gt_powersave(dev_priv);
2821                 intel_enable_gt_powersave(dev_priv);
2822                 if (INTEL_GEN(dev_priv) >= 6)
2823                         gen6_rps_busy(dev_priv);
2824         }
2825 }
2826
2827 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2828 {
2829         struct intel_engine_cs *engine;
2830         enum intel_engine_id id;
2831
2832         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2833
2834         for_each_engine(engine, dev_priv, id) {
2835                 tasklet_enable(&engine->irq_tasklet);
2836                 kthread_unpark(engine->breadcrumbs.signaler);
2837         }
2838 }
2839
2840 static void nop_submit_request(struct drm_i915_gem_request *request)
2841 {
2842         dma_fence_set_error(&request->fence, -EIO);
2843         i915_gem_request_submit(request);
2844         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2845 }
2846
2847 static void engine_set_wedged(struct intel_engine_cs *engine)
2848 {
2849         struct drm_i915_gem_request *request;
2850         unsigned long flags;
2851
2852         /* We need to be sure that no thread is running the old callback as
2853          * we install the nop handler (otherwise we would submit a request
2854          * to hardware that will never complete). In order to prevent this
2855          * race, we wait until the machine is idle before making the swap
2856          * (using stop_machine()).
2857          */
2858         engine->submit_request = nop_submit_request;
2859
2860         /* Mark all executing requests as skipped */
2861         spin_lock_irqsave(&engine->timeline->lock, flags);
2862         list_for_each_entry(request, &engine->timeline->requests, link)
2863                 dma_fence_set_error(&request->fence, -EIO);
2864         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2865
2866         /* Mark all pending requests as complete so that any concurrent
2867          * (lockless) lookup doesn't try and wait upon the request as we
2868          * reset it.
2869          */
2870         intel_engine_init_global_seqno(engine,
2871                                        intel_engine_last_submit(engine));
2872
2873         /*
2874          * Clear the execlists queue up before freeing the requests, as those
2875          * are the ones that keep the context and ringbuffer backing objects
2876          * pinned in place.
2877          */
2878
2879         if (i915.enable_execlists) {
2880                 unsigned long flags;
2881
2882                 spin_lock_irqsave(&engine->timeline->lock, flags);
2883
2884                 i915_gem_request_put(engine->execlist_port[0].request);
2885                 i915_gem_request_put(engine->execlist_port[1].request);
2886                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2887                 engine->execlist_queue = RB_ROOT;
2888                 engine->execlist_first = NULL;
2889
2890                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2891         }
2892 }
2893
2894 static int __i915_gem_set_wedged_BKL(void *data)
2895 {
2896         struct drm_i915_private *i915 = data;
2897         struct intel_engine_cs *engine;
2898         enum intel_engine_id id;
2899
2900         for_each_engine(engine, i915, id)
2901                 engine_set_wedged(engine);
2902
2903         return 0;
2904 }
2905
2906 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2907 {
2908         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2909         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2910
2911         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2912
2913         i915_gem_context_lost(dev_priv);
2914         i915_gem_retire_requests(dev_priv);
2915
2916         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2917 }
2918
2919 static void
2920 i915_gem_retire_work_handler(struct work_struct *work)
2921 {
2922         struct drm_i915_private *dev_priv =
2923                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2924         struct drm_device *dev = &dev_priv->drm;
2925
2926         /* Come back later if the device is busy... */
2927         if (mutex_trylock(&dev->struct_mutex)) {
2928                 i915_gem_retire_requests(dev_priv);
2929                 mutex_unlock(&dev->struct_mutex);
2930         }
2931
2932         /* Keep the retire handler running until we are finally idle.
2933          * We do not need to do this test under locking as in the worst-case
2934          * we queue the retire worker once too often.
2935          */
2936         if (READ_ONCE(dev_priv->gt.awake)) {
2937                 i915_queue_hangcheck(dev_priv);
2938                 queue_delayed_work(dev_priv->wq,
2939                                    &dev_priv->gt.retire_work,
2940                                    round_jiffies_up_relative(HZ));
2941         }
2942 }
2943
2944 static void
2945 i915_gem_idle_work_handler(struct work_struct *work)
2946 {
2947         struct drm_i915_private *dev_priv =
2948                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2949         struct drm_device *dev = &dev_priv->drm;
2950         struct intel_engine_cs *engine;
2951         enum intel_engine_id id;
2952         bool rearm_hangcheck;
2953
2954         if (!READ_ONCE(dev_priv->gt.awake))
2955                 return;
2956
2957         /*
2958          * Wait for last execlists context complete, but bail out in case a
2959          * new request is submitted.
2960          */
2961         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2962                  intel_execlists_idle(dev_priv), 10);
2963
2964         if (READ_ONCE(dev_priv->gt.active_requests))
2965                 return;
2966
2967         rearm_hangcheck =
2968                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2969
2970         if (!mutex_trylock(&dev->struct_mutex)) {
2971                 /* Currently busy, come back later */
2972                 mod_delayed_work(dev_priv->wq,
2973                                  &dev_priv->gt.idle_work,
2974                                  msecs_to_jiffies(50));
2975                 goto out_rearm;
2976         }
2977
2978         /*
2979          * New request retired after this work handler started, extend active
2980          * period until next instance of the work.
2981          */
2982         if (work_pending(work))
2983                 goto out_unlock;
2984
2985         if (dev_priv->gt.active_requests)
2986                 goto out_unlock;
2987
2988         if (wait_for(intel_execlists_idle(dev_priv), 10))
2989                 DRM_ERROR("Timeout waiting for engines to idle\n");
2990
2991         for_each_engine(engine, dev_priv, id)
2992                 i915_gem_batch_pool_fini(&engine->batch_pool);
2993
2994         GEM_BUG_ON(!dev_priv->gt.awake);
2995         dev_priv->gt.awake = false;
2996         rearm_hangcheck = false;
2997
2998         if (INTEL_GEN(dev_priv) >= 6)
2999                 gen6_rps_idle(dev_priv);
3000         intel_runtime_pm_put(dev_priv);
3001 out_unlock:
3002         mutex_unlock(&dev->struct_mutex);
3003
3004 out_rearm:
3005         if (rearm_hangcheck) {
3006                 GEM_BUG_ON(!dev_priv->gt.awake);
3007                 i915_queue_hangcheck(dev_priv);
3008         }
3009 }
3010
3011 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3012 {
3013         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3014         struct drm_i915_file_private *fpriv = file->driver_priv;
3015         struct i915_vma *vma, *vn;
3016
3017         mutex_lock(&obj->base.dev->struct_mutex);
3018         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3019                 if (vma->vm->file == fpriv)
3020                         i915_vma_close(vma);
3021
3022         if (i915_gem_object_is_active(obj) &&
3023             !i915_gem_object_has_active_reference(obj)) {
3024                 i915_gem_object_set_active_reference(obj);
3025                 i915_gem_object_get(obj);
3026         }
3027         mutex_unlock(&obj->base.dev->struct_mutex);
3028 }
3029
3030 static unsigned long to_wait_timeout(s64 timeout_ns)
3031 {
3032         if (timeout_ns < 0)
3033                 return MAX_SCHEDULE_TIMEOUT;
3034
3035         if (timeout_ns == 0)
3036                 return 0;
3037
3038         return nsecs_to_jiffies_timeout(timeout_ns);
3039 }
3040
3041 /**
3042  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3043  * @dev: drm device pointer
3044  * @data: ioctl data blob
3045  * @file: drm file pointer
3046  *
3047  * Returns 0 if successful, else an error is returned with the remaining time in
3048  * the timeout parameter.
3049  *  -ETIME: object is still busy after timeout
3050  *  -ERESTARTSYS: signal interrupted the wait
3051  *  -ENONENT: object doesn't exist
3052  * Also possible, but rare:
3053  *  -EAGAIN: GPU wedged
3054  *  -ENOMEM: damn
3055  *  -ENODEV: Internal IRQ fail
3056  *  -E?: The add request failed
3057  *
3058  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3059  * non-zero timeout parameter the wait ioctl will wait for the given number of
3060  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3061  * without holding struct_mutex the object may become re-busied before this
3062  * function completes. A similar but shorter * race condition exists in the busy
3063  * ioctl
3064  */
3065 int
3066 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3067 {
3068         struct drm_i915_gem_wait *args = data;
3069         struct drm_i915_gem_object *obj;
3070         ktime_t start;
3071         long ret;
3072
3073         if (args->flags != 0)
3074                 return -EINVAL;
3075
3076         obj = i915_gem_object_lookup(file, args->bo_handle);
3077         if (!obj)
3078                 return -ENOENT;
3079
3080         start = ktime_get();
3081
3082         ret = i915_gem_object_wait(obj,
3083                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3084                                    to_wait_timeout(args->timeout_ns),
3085                                    to_rps_client(file));
3086
3087         if (args->timeout_ns > 0) {
3088                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3089                 if (args->timeout_ns < 0)
3090                         args->timeout_ns = 0;
3091
3092                 /*
3093                  * Apparently ktime isn't accurate enough and occasionally has a
3094                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3095                  * things up to make the test happy. We allow up to 1 jiffy.
3096                  *
3097                  * This is a regression from the timespec->ktime conversion.
3098                  */
3099                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3100                         args->timeout_ns = 0;
3101         }
3102
3103         i915_gem_object_put(obj);
3104         return ret;
3105 }
3106
3107 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3108 {
3109         int ret, i;
3110
3111         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3112                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3113                 if (ret)
3114                         return ret;
3115         }
3116
3117         return 0;
3118 }
3119
3120 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3121 {
3122         int ret;
3123
3124         if (flags & I915_WAIT_LOCKED) {
3125                 struct i915_gem_timeline *tl;
3126
3127                 lockdep_assert_held(&i915->drm.struct_mutex);
3128
3129                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3130                         ret = wait_for_timeline(tl, flags);
3131                         if (ret)
3132                                 return ret;
3133                 }
3134         } else {
3135                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3136                 if (ret)
3137                         return ret;
3138         }
3139
3140         return 0;
3141 }
3142
3143 /** Flushes the GTT write domain for the object if it's dirty. */
3144 static void
3145 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3146 {
3147         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3148
3149         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3150                 return;
3151
3152         /* No actual flushing is required for the GTT write domain.  Writes
3153          * to it "immediately" go to main memory as far as we know, so there's
3154          * no chipset flush.  It also doesn't land in render cache.
3155          *
3156          * However, we do have to enforce the order so that all writes through
3157          * the GTT land before any writes to the device, such as updates to
3158          * the GATT itself.
3159          *
3160          * We also have to wait a bit for the writes to land from the GTT.
3161          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3162          * timing. This issue has only been observed when switching quickly
3163          * between GTT writes and CPU reads from inside the kernel on recent hw,
3164          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3165          * system agents we cannot reproduce this behaviour).
3166          */
3167         wmb();
3168         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3169                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3170
3171         intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3172
3173         obj->base.write_domain = 0;
3174 }
3175
3176 /** Flushes the CPU write domain for the object if it's dirty. */
3177 static void
3178 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3179 {
3180         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3181                 return;
3182
3183         i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3184         obj->base.write_domain = 0;
3185 }
3186
3187 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3188 {
3189         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3190                 return;
3191
3192         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3193         obj->base.write_domain = 0;
3194 }
3195
3196 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3197 {
3198         if (!READ_ONCE(obj->pin_display))
3199                 return;
3200
3201         mutex_lock(&obj->base.dev->struct_mutex);
3202         __i915_gem_object_flush_for_display(obj);
3203         mutex_unlock(&obj->base.dev->struct_mutex);
3204 }
3205
3206 /**
3207  * Moves a single object to the GTT read, and possibly write domain.
3208  * @obj: object to act on
3209  * @write: ask for write access or read only
3210  *
3211  * This function returns when the move is complete, including waiting on
3212  * flushes to occur.
3213  */
3214 int
3215 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3216 {
3217         int ret;
3218
3219         lockdep_assert_held(&obj->base.dev->struct_mutex);
3220
3221         ret = i915_gem_object_wait(obj,
3222                                    I915_WAIT_INTERRUPTIBLE |
3223                                    I915_WAIT_LOCKED |
3224                                    (write ? I915_WAIT_ALL : 0),
3225                                    MAX_SCHEDULE_TIMEOUT,
3226                                    NULL);
3227         if (ret)
3228                 return ret;
3229
3230         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3231                 return 0;
3232
3233         /* Flush and acquire obj->pages so that we are coherent through
3234          * direct access in memory with previous cached writes through
3235          * shmemfs and that our cache domain tracking remains valid.
3236          * For example, if the obj->filp was moved to swap without us
3237          * being notified and releasing the pages, we would mistakenly
3238          * continue to assume that the obj remained out of the CPU cached
3239          * domain.
3240          */
3241         ret = i915_gem_object_pin_pages(obj);
3242         if (ret)
3243                 return ret;
3244
3245         i915_gem_object_flush_cpu_write_domain(obj);
3246
3247         /* Serialise direct access to this object with the barriers for
3248          * coherent writes from the GPU, by effectively invalidating the
3249          * GTT domain upon first access.
3250          */
3251         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3252                 mb();
3253
3254         /* It should now be out of any other write domains, and we can update
3255          * the domain values for our changes.
3256          */
3257         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3258         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3259         if (write) {
3260                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3261                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3262                 obj->mm.dirty = true;
3263         }
3264
3265         i915_gem_object_unpin_pages(obj);
3266         return 0;
3267 }
3268
3269 /**
3270  * Changes the cache-level of an object across all VMA.
3271  * @obj: object to act on
3272  * @cache_level: new cache level to set for the object
3273  *
3274  * After this function returns, the object will be in the new cache-level
3275  * across all GTT and the contents of the backing storage will be coherent,
3276  * with respect to the new cache-level. In order to keep the backing storage
3277  * coherent for all users, we only allow a single cache level to be set
3278  * globally on the object and prevent it from being changed whilst the
3279  * hardware is reading from the object. That is if the object is currently
3280  * on the scanout it will be set to uncached (or equivalent display
3281  * cache coherency) and all non-MOCS GPU access will also be uncached so
3282  * that all direct access to the scanout remains coherent.
3283  */
3284 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3285                                     enum i915_cache_level cache_level)
3286 {
3287         struct i915_vma *vma;
3288         int ret;
3289
3290         lockdep_assert_held(&obj->base.dev->struct_mutex);
3291
3292         if (obj->cache_level == cache_level)
3293                 return 0;
3294
3295         /* Inspect the list of currently bound VMA and unbind any that would
3296          * be invalid given the new cache-level. This is principally to
3297          * catch the issue of the CS prefetch crossing page boundaries and
3298          * reading an invalid PTE on older architectures.
3299          */
3300 restart:
3301         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3302                 if (!drm_mm_node_allocated(&vma->node))
3303                         continue;
3304
3305                 if (i915_vma_is_pinned(vma)) {
3306                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3307                         return -EBUSY;
3308                 }
3309
3310                 if (i915_gem_valid_gtt_space(vma, cache_level))
3311                         continue;
3312
3313                 ret = i915_vma_unbind(vma);
3314                 if (ret)
3315                         return ret;
3316
3317                 /* As unbinding may affect other elements in the
3318                  * obj->vma_list (due to side-effects from retiring
3319                  * an active vma), play safe and restart the iterator.
3320                  */
3321                 goto restart;
3322         }
3323
3324         /* We can reuse the existing drm_mm nodes but need to change the
3325          * cache-level on the PTE. We could simply unbind them all and
3326          * rebind with the correct cache-level on next use. However since
3327          * we already have a valid slot, dma mapping, pages etc, we may as
3328          * rewrite the PTE in the belief that doing so tramples upon less
3329          * state and so involves less work.
3330          */
3331         if (obj->bind_count) {
3332                 /* Before we change the PTE, the GPU must not be accessing it.
3333                  * If we wait upon the object, we know that all the bound
3334                  * VMA are no longer active.
3335                  */
3336                 ret = i915_gem_object_wait(obj,
3337                                            I915_WAIT_INTERRUPTIBLE |
3338                                            I915_WAIT_LOCKED |
3339                                            I915_WAIT_ALL,
3340                                            MAX_SCHEDULE_TIMEOUT,
3341                                            NULL);
3342                 if (ret)
3343                         return ret;
3344
3345                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3346                     cache_level != I915_CACHE_NONE) {
3347                         /* Access to snoopable pages through the GTT is
3348                          * incoherent and on some machines causes a hard
3349                          * lockup. Relinquish the CPU mmaping to force
3350                          * userspace to refault in the pages and we can
3351                          * then double check if the GTT mapping is still
3352                          * valid for that pointer access.
3353                          */
3354                         i915_gem_release_mmap(obj);
3355
3356                         /* As we no longer need a fence for GTT access,
3357                          * we can relinquish it now (and so prevent having
3358                          * to steal a fence from someone else on the next
3359                          * fence request). Note GPU activity would have
3360                          * dropped the fence as all snoopable access is
3361                          * supposed to be linear.
3362                          */
3363                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3364                                 ret = i915_vma_put_fence(vma);
3365                                 if (ret)
3366                                         return ret;
3367                         }
3368                 } else {
3369                         /* We either have incoherent backing store and
3370                          * so no GTT access or the architecture is fully
3371                          * coherent. In such cases, existing GTT mmaps
3372                          * ignore the cache bit in the PTE and we can
3373                          * rewrite it without confusing the GPU or having
3374                          * to force userspace to fault back in its mmaps.
3375                          */
3376                 }
3377
3378                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3379                         if (!drm_mm_node_allocated(&vma->node))
3380                                 continue;
3381
3382                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3383                         if (ret)
3384                                 return ret;
3385                 }
3386         }
3387
3388         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3389             i915_gem_object_is_coherent(obj))
3390                 obj->cache_dirty = true;
3391
3392         list_for_each_entry(vma, &obj->vma_list, obj_link)
3393                 vma->node.color = cache_level;
3394         obj->cache_level = cache_level;
3395
3396         return 0;
3397 }
3398
3399 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3400                                struct drm_file *file)
3401 {
3402         struct drm_i915_gem_caching *args = data;
3403         struct drm_i915_gem_object *obj;
3404         int err = 0;
3405
3406         rcu_read_lock();
3407         obj = i915_gem_object_lookup_rcu(file, args->handle);
3408         if (!obj) {
3409                 err = -ENOENT;
3410                 goto out;
3411         }
3412
3413         switch (obj->cache_level) {
3414         case I915_CACHE_LLC:
3415         case I915_CACHE_L3_LLC:
3416                 args->caching = I915_CACHING_CACHED;
3417                 break;
3418
3419         case I915_CACHE_WT:
3420                 args->caching = I915_CACHING_DISPLAY;
3421                 break;
3422
3423         default:
3424                 args->caching = I915_CACHING_NONE;
3425                 break;
3426         }
3427 out:
3428         rcu_read_unlock();
3429         return err;
3430 }
3431
3432 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3433                                struct drm_file *file)
3434 {
3435         struct drm_i915_private *i915 = to_i915(dev);
3436         struct drm_i915_gem_caching *args = data;
3437         struct drm_i915_gem_object *obj;
3438         enum i915_cache_level level;
3439         int ret = 0;
3440
3441         switch (args->caching) {
3442         case I915_CACHING_NONE:
3443                 level = I915_CACHE_NONE;
3444                 break;
3445         case I915_CACHING_CACHED:
3446                 /*
3447                  * Due to a HW issue on BXT A stepping, GPU stores via a
3448                  * snooped mapping may leave stale data in a corresponding CPU
3449                  * cacheline, whereas normally such cachelines would get
3450                  * invalidated.
3451                  */
3452                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3453                         return -ENODEV;
3454
3455                 level = I915_CACHE_LLC;
3456                 break;
3457         case I915_CACHING_DISPLAY:
3458                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3459                 break;
3460         default:
3461                 return -EINVAL;
3462         }
3463
3464         obj = i915_gem_object_lookup(file, args->handle);
3465         if (!obj)
3466                 return -ENOENT;
3467
3468         if (obj->cache_level == level)
3469                 goto out;
3470
3471         ret = i915_gem_object_wait(obj,
3472                                    I915_WAIT_INTERRUPTIBLE,
3473                                    MAX_SCHEDULE_TIMEOUT,
3474                                    to_rps_client(file));
3475         if (ret)
3476                 goto out;
3477
3478         ret = i915_mutex_lock_interruptible(dev);
3479         if (ret)
3480                 goto out;
3481
3482         ret = i915_gem_object_set_cache_level(obj, level);
3483         mutex_unlock(&dev->struct_mutex);
3484
3485 out:
3486         i915_gem_object_put(obj);
3487         return ret;
3488 }
3489
3490 /*
3491  * Prepare buffer for display plane (scanout, cursors, etc).
3492  * Can be called from an uninterruptible phase (modesetting) and allows
3493  * any flushes to be pipelined (for pageflips).
3494  */
3495 struct i915_vma *
3496 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3497                                      u32 alignment,
3498                                      const struct i915_ggtt_view *view)
3499 {
3500         struct i915_vma *vma;
3501         int ret;
3502
3503         lockdep_assert_held(&obj->base.dev->struct_mutex);
3504
3505         /* Mark the pin_display early so that we account for the
3506          * display coherency whilst setting up the cache domains.
3507          */
3508         obj->pin_display++;
3509
3510         /* The display engine is not coherent with the LLC cache on gen6.  As
3511          * a result, we make sure that the pinning that is about to occur is
3512          * done with uncached PTEs. This is lowest common denominator for all
3513          * chipsets.
3514          *
3515          * However for gen6+, we could do better by using the GFDT bit instead
3516          * of uncaching, which would allow us to flush all the LLC-cached data
3517          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3518          */
3519         ret = i915_gem_object_set_cache_level(obj,
3520                                               HAS_WT(to_i915(obj->base.dev)) ?
3521                                               I915_CACHE_WT : I915_CACHE_NONE);
3522         if (ret) {
3523                 vma = ERR_PTR(ret);
3524                 goto err_unpin_display;
3525         }
3526
3527         /* As the user may map the buffer once pinned in the display plane
3528          * (e.g. libkms for the bootup splash), we have to ensure that we
3529          * always use map_and_fenceable for all scanout buffers. However,
3530          * it may simply be too big to fit into mappable, in which case
3531          * put it anyway and hope that userspace can cope (but always first
3532          * try to preserve the existing ABI).
3533          */
3534         vma = ERR_PTR(-ENOSPC);
3535         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3536                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3537                                                PIN_MAPPABLE | PIN_NONBLOCK);
3538         if (IS_ERR(vma)) {
3539                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3540                 unsigned int flags;
3541
3542                 /* Valleyview is definitely limited to scanning out the first
3543                  * 512MiB. Lets presume this behaviour was inherited from the
3544                  * g4x display engine and that all earlier gen are similarly
3545                  * limited. Testing suggests that it is a little more
3546                  * complicated than this. For example, Cherryview appears quite
3547                  * happy to scanout from anywhere within its global aperture.
3548                  */
3549                 flags = 0;
3550                 if (HAS_GMCH_DISPLAY(i915))
3551                         flags = PIN_MAPPABLE;
3552                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3553         }
3554         if (IS_ERR(vma))
3555                 goto err_unpin_display;
3556
3557         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3558
3559         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3560         __i915_gem_object_flush_for_display(obj);
3561         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3562
3563         /* It should now be out of any other write domains, and we can update
3564          * the domain values for our changes.
3565          */
3566         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3567
3568         return vma;
3569
3570 err_unpin_display:
3571         obj->pin_display--;
3572         return vma;
3573 }
3574
3575 void
3576 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3577 {
3578         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3579
3580         if (WARN_ON(vma->obj->pin_display == 0))
3581                 return;
3582
3583         if (--vma->obj->pin_display == 0)
3584                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3585
3586         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3587         i915_gem_object_bump_inactive_ggtt(vma->obj);
3588
3589         i915_vma_unpin(vma);
3590 }
3591
3592 /**
3593  * Moves a single object to the CPU read, and possibly write domain.
3594  * @obj: object to act on
3595  * @write: requesting write or read-only access
3596  *
3597  * This function returns when the move is complete, including waiting on
3598  * flushes to occur.
3599  */
3600 int
3601 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3602 {
3603         int ret;
3604
3605         lockdep_assert_held(&obj->base.dev->struct_mutex);
3606
3607         ret = i915_gem_object_wait(obj,
3608                                    I915_WAIT_INTERRUPTIBLE |
3609                                    I915_WAIT_LOCKED |
3610                                    (write ? I915_WAIT_ALL : 0),
3611                                    MAX_SCHEDULE_TIMEOUT,
3612                                    NULL);
3613         if (ret)
3614                 return ret;
3615
3616         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3617                 return 0;
3618
3619         i915_gem_object_flush_gtt_write_domain(obj);
3620
3621         /* Flush the CPU cache if it's still invalid. */
3622         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3623                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3624                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3625         }
3626
3627         /* It should now be out of any other write domains, and we can update
3628          * the domain values for our changes.
3629          */
3630         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3631
3632         /* If we're writing through the CPU, then the GPU read domains will
3633          * need to be invalidated at next use.
3634          */
3635         if (write) {
3636                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3637                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3638         }
3639
3640         return 0;
3641 }
3642
3643 /* Throttle our rendering by waiting until the ring has completed our requests
3644  * emitted over 20 msec ago.
3645  *
3646  * Note that if we were to use the current jiffies each time around the loop,
3647  * we wouldn't escape the function with any frames outstanding if the time to
3648  * render a frame was over 20ms.
3649  *
3650  * This should get us reasonable parallelism between CPU and GPU but also
3651  * relatively low latency when blocking on a particular request to finish.
3652  */
3653 static int
3654 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3655 {
3656         struct drm_i915_private *dev_priv = to_i915(dev);
3657         struct drm_i915_file_private *file_priv = file->driver_priv;
3658         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3659         struct drm_i915_gem_request *request, *target = NULL;
3660         long ret;
3661
3662         /* ABI: return -EIO if already wedged */
3663         if (i915_terminally_wedged(&dev_priv->gpu_error))
3664                 return -EIO;
3665
3666         spin_lock(&file_priv->mm.lock);
3667         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3668                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3669                         break;
3670
3671                 /*
3672                  * Note that the request might not have been submitted yet.
3673                  * In which case emitted_jiffies will be zero.
3674                  */
3675                 if (!request->emitted_jiffies)
3676                         continue;
3677
3678                 target = request;
3679         }
3680         if (target)
3681                 i915_gem_request_get(target);
3682         spin_unlock(&file_priv->mm.lock);
3683
3684         if (target == NULL)
3685                 return 0;
3686
3687         ret = i915_wait_request(target,
3688                                 I915_WAIT_INTERRUPTIBLE,
3689                                 MAX_SCHEDULE_TIMEOUT);
3690         i915_gem_request_put(target);
3691
3692         return ret < 0 ? ret : 0;
3693 }
3694
3695 struct i915_vma *
3696 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3697                          const struct i915_ggtt_view *view,
3698                          u64 size,
3699                          u64 alignment,
3700                          u64 flags)
3701 {
3702         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3703         struct i915_address_space *vm = &dev_priv->ggtt.base;
3704         struct i915_vma *vma;
3705         int ret;
3706
3707         lockdep_assert_held(&obj->base.dev->struct_mutex);
3708
3709         vma = i915_vma_instance(obj, vm, view);
3710         if (unlikely(IS_ERR(vma)))
3711                 return vma;
3712
3713         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3714                 if (flags & PIN_NONBLOCK &&
3715                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3716                         return ERR_PTR(-ENOSPC);
3717
3718                 if (flags & PIN_MAPPABLE) {
3719                         /* If the required space is larger than the available
3720                          * aperture, we will not able to find a slot for the
3721                          * object and unbinding the object now will be in
3722                          * vain. Worse, doing so may cause us to ping-pong
3723                          * the object in and out of the Global GTT and
3724                          * waste a lot of cycles under the mutex.
3725                          */
3726                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3727                                 return ERR_PTR(-E2BIG);
3728
3729                         /* If NONBLOCK is set the caller is optimistically
3730                          * trying to cache the full object within the mappable
3731                          * aperture, and *must* have a fallback in place for
3732                          * situations where we cannot bind the object. We
3733                          * can be a little more lax here and use the fallback
3734                          * more often to avoid costly migrations of ourselves
3735                          * and other objects within the aperture.
3736                          *
3737                          * Half-the-aperture is used as a simple heuristic.
3738                          * More interesting would to do search for a free
3739                          * block prior to making the commitment to unbind.
3740                          * That caters for the self-harm case, and with a
3741                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3742                          * we could try to minimise harm to others.
3743                          */
3744                         if (flags & PIN_NONBLOCK &&
3745                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3746                                 return ERR_PTR(-ENOSPC);
3747                 }
3748
3749                 WARN(i915_vma_is_pinned(vma),
3750                      "bo is already pinned in ggtt with incorrect alignment:"
3751                      " offset=%08x, req.alignment=%llx,"
3752                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3753                      i915_ggtt_offset(vma), alignment,
3754                      !!(flags & PIN_MAPPABLE),
3755                      i915_vma_is_map_and_fenceable(vma));
3756                 ret = i915_vma_unbind(vma);
3757                 if (ret)
3758                         return ERR_PTR(ret);
3759         }
3760
3761         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3762         if (ret)
3763                 return ERR_PTR(ret);
3764
3765         return vma;
3766 }
3767
3768 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3769 {
3770         /* Note that we could alias engines in the execbuf API, but
3771          * that would be very unwise as it prevents userspace from
3772          * fine control over engine selection. Ahem.
3773          *
3774          * This should be something like EXEC_MAX_ENGINE instead of
3775          * I915_NUM_ENGINES.
3776          */
3777         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3778         return 0x10000 << id;
3779 }
3780
3781 static __always_inline unsigned int __busy_write_id(unsigned int id)
3782 {
3783         /* The uABI guarantees an active writer is also amongst the read
3784          * engines. This would be true if we accessed the activity tracking
3785          * under the lock, but as we perform the lookup of the object and
3786          * its activity locklessly we can not guarantee that the last_write
3787          * being active implies that we have set the same engine flag from
3788          * last_read - hence we always set both read and write busy for
3789          * last_write.
3790          */
3791         return id | __busy_read_flag(id);
3792 }
3793
3794 static __always_inline unsigned int
3795 __busy_set_if_active(const struct dma_fence *fence,
3796                      unsigned int (*flag)(unsigned int id))
3797 {
3798         struct drm_i915_gem_request *rq;
3799
3800         /* We have to check the current hw status of the fence as the uABI
3801          * guarantees forward progress. We could rely on the idle worker
3802          * to eventually flush us, but to minimise latency just ask the
3803          * hardware.
3804          *
3805          * Note we only report on the status of native fences.
3806          */
3807         if (!dma_fence_is_i915(fence))
3808                 return 0;
3809
3810         /* opencode to_request() in order to avoid const warnings */
3811         rq = container_of(fence, struct drm_i915_gem_request, fence);
3812         if (i915_gem_request_completed(rq))
3813                 return 0;
3814
3815         return flag(rq->engine->exec_id);
3816 }
3817
3818 static __always_inline unsigned int
3819 busy_check_reader(const struct dma_fence *fence)
3820 {
3821         return __busy_set_if_active(fence, __busy_read_flag);
3822 }
3823
3824 static __always_inline unsigned int
3825 busy_check_writer(const struct dma_fence *fence)
3826 {
3827         if (!fence)
3828                 return 0;
3829
3830         return __busy_set_if_active(fence, __busy_write_id);
3831 }
3832
3833 int
3834 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3835                     struct drm_file *file)
3836 {
3837         struct drm_i915_gem_busy *args = data;
3838         struct drm_i915_gem_object *obj;
3839         struct reservation_object_list *list;
3840         unsigned int seq;
3841         int err;
3842
3843         err = -ENOENT;
3844         rcu_read_lock();
3845         obj = i915_gem_object_lookup_rcu(file, args->handle);
3846         if (!obj)
3847                 goto out;
3848
3849         /* A discrepancy here is that we do not report the status of
3850          * non-i915 fences, i.e. even though we may report the object as idle,
3851          * a call to set-domain may still stall waiting for foreign rendering.
3852          * This also means that wait-ioctl may report an object as busy,
3853          * where busy-ioctl considers it idle.
3854          *
3855          * We trade the ability to warn of foreign fences to report on which
3856          * i915 engines are active for the object.
3857          *
3858          * Alternatively, we can trade that extra information on read/write
3859          * activity with
3860          *      args->busy =
3861          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3862          * to report the overall busyness. This is what the wait-ioctl does.
3863          *
3864          */
3865 retry:
3866         seq = raw_read_seqcount(&obj->resv->seq);
3867
3868         /* Translate the exclusive fence to the READ *and* WRITE engine */
3869         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3870
3871         /* Translate shared fences to READ set of engines */
3872         list = rcu_dereference(obj->resv->fence);
3873         if (list) {
3874                 unsigned int shared_count = list->shared_count, i;
3875
3876                 for (i = 0; i < shared_count; ++i) {
3877                         struct dma_fence *fence =
3878                                 rcu_dereference(list->shared[i]);
3879
3880                         args->busy |= busy_check_reader(fence);
3881                 }
3882         }
3883
3884         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3885                 goto retry;
3886
3887         err = 0;
3888 out:
3889         rcu_read_unlock();
3890         return err;
3891 }
3892
3893 int
3894 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3895                         struct drm_file *file_priv)
3896 {
3897         return i915_gem_ring_throttle(dev, file_priv);
3898 }
3899
3900 int
3901 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3902                        struct drm_file *file_priv)
3903 {
3904         struct drm_i915_private *dev_priv = to_i915(dev);
3905         struct drm_i915_gem_madvise *args = data;
3906         struct drm_i915_gem_object *obj;
3907         int err;
3908
3909         switch (args->madv) {
3910         case I915_MADV_DONTNEED:
3911         case I915_MADV_WILLNEED:
3912             break;
3913         default:
3914             return -EINVAL;
3915         }
3916
3917         obj = i915_gem_object_lookup(file_priv, args->handle);
3918         if (!obj)
3919                 return -ENOENT;
3920
3921         err = mutex_lock_interruptible(&obj->mm.lock);
3922         if (err)
3923                 goto out;
3924
3925         if (obj->mm.pages &&
3926             i915_gem_object_is_tiled(obj) &&
3927             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3928                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3929                         GEM_BUG_ON(!obj->mm.quirked);
3930                         __i915_gem_object_unpin_pages(obj);
3931                         obj->mm.quirked = false;
3932                 }
3933                 if (args->madv == I915_MADV_WILLNEED) {
3934                         GEM_BUG_ON(obj->mm.quirked);
3935                         __i915_gem_object_pin_pages(obj);
3936                         obj->mm.quirked = true;
3937                 }
3938         }
3939
3940         if (obj->mm.madv != __I915_MADV_PURGED)
3941                 obj->mm.madv = args->madv;
3942
3943         /* if the object is no longer attached, discard its backing storage */
3944         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3945                 i915_gem_object_truncate(obj);
3946
3947         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3948         mutex_unlock(&obj->mm.lock);
3949
3950 out:
3951         i915_gem_object_put(obj);
3952         return err;
3953 }
3954
3955 static void
3956 frontbuffer_retire(struct i915_gem_active *active,
3957                    struct drm_i915_gem_request *request)
3958 {
3959         struct drm_i915_gem_object *obj =
3960                 container_of(active, typeof(*obj), frontbuffer_write);
3961
3962         intel_fb_obj_flush(obj, ORIGIN_CS);
3963 }
3964
3965 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3966                           const struct drm_i915_gem_object_ops *ops)
3967 {
3968         mutex_init(&obj->mm.lock);
3969
3970         INIT_LIST_HEAD(&obj->global_link);
3971         INIT_LIST_HEAD(&obj->userfault_link);
3972         INIT_LIST_HEAD(&obj->obj_exec_link);
3973         INIT_LIST_HEAD(&obj->vma_list);
3974         INIT_LIST_HEAD(&obj->batch_pool_link);
3975
3976         obj->ops = ops;
3977
3978         reservation_object_init(&obj->__builtin_resv);
3979         obj->resv = &obj->__builtin_resv;
3980
3981         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3982         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3983
3984         obj->mm.madv = I915_MADV_WILLNEED;
3985         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3986         mutex_init(&obj->mm.get_page.lock);
3987
3988         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3989 }
3990
3991 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3992         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3993                  I915_GEM_OBJECT_IS_SHRINKABLE,
3994         .get_pages = i915_gem_object_get_pages_gtt,
3995         .put_pages = i915_gem_object_put_pages_gtt,
3996 };
3997
3998 struct drm_i915_gem_object *
3999 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4000 {
4001         struct drm_i915_gem_object *obj;
4002         struct address_space *mapping;
4003         gfp_t mask;
4004         int ret;
4005
4006         /* There is a prevalence of the assumption that we fit the object's
4007          * page count inside a 32bit _signed_ variable. Let's document this and
4008          * catch if we ever need to fix it. In the meantime, if you do spot
4009          * such a local variable, please consider fixing!
4010          */
4011         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4012                 return ERR_PTR(-E2BIG);
4013
4014         if (overflows_type(size, obj->base.size))
4015                 return ERR_PTR(-E2BIG);
4016
4017         obj = i915_gem_object_alloc(dev_priv);
4018         if (obj == NULL)
4019                 return ERR_PTR(-ENOMEM);
4020
4021         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4022         if (ret)
4023                 goto fail;
4024
4025         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4026         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4027                 /* 965gm cannot relocate objects above 4GiB. */
4028                 mask &= ~__GFP_HIGHMEM;
4029                 mask |= __GFP_DMA32;
4030         }
4031
4032         mapping = obj->base.filp->f_mapping;
4033         mapping_set_gfp_mask(mapping, mask);
4034
4035         i915_gem_object_init(obj, &i915_gem_object_ops);
4036
4037         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4038         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4039
4040         if (HAS_LLC(dev_priv)) {
4041                 /* On some devices, we can have the GPU use the LLC (the CPU
4042                  * cache) for about a 10% performance improvement
4043                  * compared to uncached.  Graphics requests other than
4044                  * display scanout are coherent with the CPU in
4045                  * accessing this cache.  This means in this mode we
4046                  * don't need to clflush on the CPU side, and on the
4047                  * GPU side we only need to flush internal caches to
4048                  * get data visible to the CPU.
4049                  *
4050                  * However, we maintain the display planes as UC, and so
4051                  * need to rebind when first used as such.
4052                  */
4053                 obj->cache_level = I915_CACHE_LLC;
4054         } else
4055                 obj->cache_level = I915_CACHE_NONE;
4056
4057         trace_i915_gem_object_create(obj);
4058
4059         return obj;
4060
4061 fail:
4062         i915_gem_object_free(obj);
4063         return ERR_PTR(ret);
4064 }
4065
4066 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4067 {
4068         /* If we are the last user of the backing storage (be it shmemfs
4069          * pages or stolen etc), we know that the pages are going to be
4070          * immediately released. In this case, we can then skip copying
4071          * back the contents from the GPU.
4072          */
4073
4074         if (obj->mm.madv != I915_MADV_WILLNEED)
4075                 return false;
4076
4077         if (obj->base.filp == NULL)
4078                 return true;
4079
4080         /* At first glance, this looks racy, but then again so would be
4081          * userspace racing mmap against close. However, the first external
4082          * reference to the filp can only be obtained through the
4083          * i915_gem_mmap_ioctl() which safeguards us against the user
4084          * acquiring such a reference whilst we are in the middle of
4085          * freeing the object.
4086          */
4087         return atomic_long_read(&obj->base.filp->f_count) == 1;
4088 }
4089
4090 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4091                                     struct llist_node *freed)
4092 {
4093         struct drm_i915_gem_object *obj, *on;
4094
4095         mutex_lock(&i915->drm.struct_mutex);
4096         intel_runtime_pm_get(i915);
4097         llist_for_each_entry(obj, freed, freed) {
4098                 struct i915_vma *vma, *vn;
4099
4100                 trace_i915_gem_object_destroy(obj);
4101
4102                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4103                 list_for_each_entry_safe(vma, vn,
4104                                          &obj->vma_list, obj_link) {
4105                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4106                         GEM_BUG_ON(i915_vma_is_active(vma));
4107                         vma->flags &= ~I915_VMA_PIN_MASK;
4108                         i915_vma_close(vma);
4109                 }
4110                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4111                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4112
4113                 list_del(&obj->global_link);
4114         }
4115         intel_runtime_pm_put(i915);
4116         mutex_unlock(&i915->drm.struct_mutex);
4117
4118         llist_for_each_entry_safe(obj, on, freed, freed) {
4119                 GEM_BUG_ON(obj->bind_count);
4120                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4121
4122                 if (obj->ops->release)
4123                         obj->ops->release(obj);
4124
4125                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4126                         atomic_set(&obj->mm.pages_pin_count, 0);
4127                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4128                 GEM_BUG_ON(obj->mm.pages);
4129
4130                 if (obj->base.import_attach)
4131                         drm_prime_gem_destroy(&obj->base, NULL);
4132
4133                 reservation_object_fini(&obj->__builtin_resv);
4134                 drm_gem_object_release(&obj->base);
4135                 i915_gem_info_remove_obj(i915, obj->base.size);
4136
4137                 kfree(obj->bit_17);
4138                 i915_gem_object_free(obj);
4139         }
4140 }
4141
4142 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4143 {
4144         struct llist_node *freed;
4145
4146         freed = llist_del_all(&i915->mm.free_list);
4147         if (unlikely(freed))
4148                 __i915_gem_free_objects(i915, freed);
4149 }
4150
4151 static void __i915_gem_free_work(struct work_struct *work)
4152 {
4153         struct drm_i915_private *i915 =
4154                 container_of(work, struct drm_i915_private, mm.free_work);
4155         struct llist_node *freed;
4156
4157         /* All file-owned VMA should have been released by this point through
4158          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4159          * However, the object may also be bound into the global GTT (e.g.
4160          * older GPUs without per-process support, or for direct access through
4161          * the GTT either for the user or for scanout). Those VMA still need to
4162          * unbound now.
4163          */
4164
4165         while ((freed = llist_del_all(&i915->mm.free_list)))
4166                 __i915_gem_free_objects(i915, freed);
4167 }
4168
4169 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4170 {
4171         struct drm_i915_gem_object *obj =
4172                 container_of(head, typeof(*obj), rcu);
4173         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4174
4175         /* We can't simply use call_rcu() from i915_gem_free_object()
4176          * as we need to block whilst unbinding, and the call_rcu
4177          * task may be called from softirq context. So we take a
4178          * detour through a worker.
4179          */
4180         if (llist_add(&obj->freed, &i915->mm.free_list))
4181                 schedule_work(&i915->mm.free_work);
4182 }
4183
4184 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4185 {
4186         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4187
4188         if (obj->mm.quirked)
4189                 __i915_gem_object_unpin_pages(obj);
4190
4191         if (discard_backing_storage(obj))
4192                 obj->mm.madv = I915_MADV_DONTNEED;
4193
4194         /* Before we free the object, make sure any pure RCU-only
4195          * read-side critical sections are complete, e.g.
4196          * i915_gem_busy_ioctl(). For the corresponding synchronized
4197          * lookup see i915_gem_object_lookup_rcu().
4198          */
4199         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4200 }
4201
4202 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4203 {
4204         lockdep_assert_held(&obj->base.dev->struct_mutex);
4205
4206         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4207         if (i915_gem_object_is_active(obj))
4208                 i915_gem_object_set_active_reference(obj);
4209         else
4210                 i915_gem_object_put(obj);
4211 }
4212
4213 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4214 {
4215         struct intel_engine_cs *engine;
4216         enum intel_engine_id id;
4217
4218         for_each_engine(engine, dev_priv, id)
4219                 GEM_BUG_ON(engine->last_retired_context &&
4220                            !i915_gem_context_is_kernel(engine->last_retired_context));
4221 }
4222
4223 void i915_gem_sanitize(struct drm_i915_private *i915)
4224 {
4225         /*
4226          * If we inherit context state from the BIOS or earlier occupants
4227          * of the GPU, the GPU may be in an inconsistent state when we
4228          * try to take over. The only way to remove the earlier state
4229          * is by resetting. However, resetting on earlier gen is tricky as
4230          * it may impact the display and we are uncertain about the stability
4231          * of the reset, so we only reset recent machines with logical
4232          * context support (that must be reset to remove any stray contexts).
4233          */
4234         if (HAS_HW_CONTEXTS(i915)) {
4235                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4236                 WARN_ON(reset && reset != -ENODEV);
4237         }
4238 }
4239
4240 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4241 {
4242         struct drm_device *dev = &dev_priv->drm;
4243         int ret;
4244
4245         intel_suspend_gt_powersave(dev_priv);
4246
4247         mutex_lock(&dev->struct_mutex);
4248
4249         /* We have to flush all the executing contexts to main memory so
4250          * that they can saved in the hibernation image. To ensure the last
4251          * context image is coherent, we have to switch away from it. That
4252          * leaves the dev_priv->kernel_context still active when
4253          * we actually suspend, and its image in memory may not match the GPU
4254          * state. Fortunately, the kernel_context is disposable and we do
4255          * not rely on its state.
4256          */
4257         ret = i915_gem_switch_to_kernel_context(dev_priv);
4258         if (ret)
4259                 goto err;
4260
4261         ret = i915_gem_wait_for_idle(dev_priv,
4262                                      I915_WAIT_INTERRUPTIBLE |
4263                                      I915_WAIT_LOCKED);
4264         if (ret)
4265                 goto err;
4266
4267         i915_gem_retire_requests(dev_priv);
4268         GEM_BUG_ON(dev_priv->gt.active_requests);
4269
4270         assert_kernel_context_is_current(dev_priv);
4271         i915_gem_context_lost(dev_priv);
4272         mutex_unlock(&dev->struct_mutex);
4273
4274         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4275         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4276
4277         /* As the idle_work is rearming if it detects a race, play safe and
4278          * repeat the flush until it is definitely idle.
4279          */
4280         while (flush_delayed_work(&dev_priv->gt.idle_work))
4281                 ;
4282
4283         i915_gem_drain_freed_objects(dev_priv);
4284
4285         /* Assert that we sucessfully flushed all the work and
4286          * reset the GPU back to its idle, low power state.
4287          */
4288         WARN_ON(dev_priv->gt.awake);
4289         WARN_ON(!intel_execlists_idle(dev_priv));
4290
4291         /*
4292          * Neither the BIOS, ourselves or any other kernel
4293          * expects the system to be in execlists mode on startup,
4294          * so we need to reset the GPU back to legacy mode. And the only
4295          * known way to disable logical contexts is through a GPU reset.
4296          *
4297          * So in order to leave the system in a known default configuration,
4298          * always reset the GPU upon unload and suspend. Afterwards we then
4299          * clean up the GEM state tracking, flushing off the requests and
4300          * leaving the system in a known idle state.
4301          *
4302          * Note that is of the upmost importance that the GPU is idle and
4303          * all stray writes are flushed *before* we dismantle the backing
4304          * storage for the pinned objects.
4305          *
4306          * However, since we are uncertain that resetting the GPU on older
4307          * machines is a good idea, we don't - just in case it leaves the
4308          * machine in an unusable condition.
4309          */
4310         i915_gem_sanitize(dev_priv);
4311
4312         return 0;
4313
4314 err:
4315         mutex_unlock(&dev->struct_mutex);
4316         return ret;
4317 }
4318
4319 void i915_gem_resume(struct drm_i915_private *dev_priv)
4320 {
4321         struct drm_device *dev = &dev_priv->drm;
4322
4323         WARN_ON(dev_priv->gt.awake);
4324
4325         mutex_lock(&dev->struct_mutex);
4326         i915_gem_restore_gtt_mappings(dev_priv);
4327
4328         /* As we didn't flush the kernel context before suspend, we cannot
4329          * guarantee that the context image is complete. So let's just reset
4330          * it and start again.
4331          */
4332         dev_priv->gt.resume(dev_priv);
4333
4334         mutex_unlock(&dev->struct_mutex);
4335 }
4336
4337 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4338 {
4339         if (INTEL_GEN(dev_priv) < 5 ||
4340             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4341                 return;
4342
4343         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4344                                  DISP_TILE_SURFACE_SWIZZLING);
4345
4346         if (IS_GEN5(dev_priv))
4347                 return;
4348
4349         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4350         if (IS_GEN6(dev_priv))
4351                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4352         else if (IS_GEN7(dev_priv))
4353                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4354         else if (IS_GEN8(dev_priv))
4355                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4356         else
4357                 BUG();
4358 }
4359
4360 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4361 {
4362         I915_WRITE(RING_CTL(base), 0);
4363         I915_WRITE(RING_HEAD(base), 0);
4364         I915_WRITE(RING_TAIL(base), 0);
4365         I915_WRITE(RING_START(base), 0);
4366 }
4367
4368 static void init_unused_rings(struct drm_i915_private *dev_priv)
4369 {
4370         if (IS_I830(dev_priv)) {
4371                 init_unused_ring(dev_priv, PRB1_BASE);
4372                 init_unused_ring(dev_priv, SRB0_BASE);
4373                 init_unused_ring(dev_priv, SRB1_BASE);
4374                 init_unused_ring(dev_priv, SRB2_BASE);
4375                 init_unused_ring(dev_priv, SRB3_BASE);
4376         } else if (IS_GEN2(dev_priv)) {
4377                 init_unused_ring(dev_priv, SRB0_BASE);
4378                 init_unused_ring(dev_priv, SRB1_BASE);
4379         } else if (IS_GEN3(dev_priv)) {
4380                 init_unused_ring(dev_priv, PRB1_BASE);
4381                 init_unused_ring(dev_priv, PRB2_BASE);
4382         }
4383 }
4384
4385 static int __i915_gem_restart_engines(void *data)
4386 {
4387         struct drm_i915_private *i915 = data;
4388         struct intel_engine_cs *engine;
4389         enum intel_engine_id id;
4390         int err;
4391
4392         for_each_engine(engine, i915, id) {
4393                 err = engine->init_hw(engine);
4394                 if (err)
4395                         return err;
4396         }
4397
4398         return 0;
4399 }
4400
4401 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4402 {
4403         int ret;
4404
4405         dev_priv->gt.last_init_time = ktime_get();
4406
4407         /* Double layer security blanket, see i915_gem_init() */
4408         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4409
4410         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4411                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4412
4413         if (IS_HASWELL(dev_priv))
4414                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4415                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4416
4417         if (HAS_PCH_NOP(dev_priv)) {
4418                 if (IS_IVYBRIDGE(dev_priv)) {
4419                         u32 temp = I915_READ(GEN7_MSG_CTL);
4420                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4421                         I915_WRITE(GEN7_MSG_CTL, temp);
4422                 } else if (INTEL_GEN(dev_priv) >= 7) {
4423                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4424                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4425                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4426                 }
4427         }
4428
4429         i915_gem_init_swizzling(dev_priv);
4430
4431         /*
4432          * At least 830 can leave some of the unused rings
4433          * "active" (ie. head != tail) after resume which
4434          * will prevent c3 entry. Makes sure all unused rings
4435          * are totally idle.
4436          */
4437         init_unused_rings(dev_priv);
4438
4439         BUG_ON(!dev_priv->kernel_context);
4440
4441         ret = i915_ppgtt_init_hw(dev_priv);
4442         if (ret) {
4443                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4444                 goto out;
4445         }
4446
4447         /* Need to do basic initialisation of all rings first: */
4448         ret = __i915_gem_restart_engines(dev_priv);
4449         if (ret)
4450                 goto out;
4451
4452         intel_mocs_init_l3cc_table(dev_priv);
4453
4454         /* We can't enable contexts until all firmware is loaded */
4455         ret = intel_guc_setup(dev_priv);
4456         if (ret)
4457                 goto out;
4458
4459 out:
4460         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4461         return ret;
4462 }
4463
4464 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4465 {
4466         if (INTEL_INFO(dev_priv)->gen < 6)
4467                 return false;
4468
4469         /* TODO: make semaphores and Execlists play nicely together */
4470         if (i915.enable_execlists)
4471                 return false;
4472
4473         if (value >= 0)
4474                 return value;
4475
4476 #ifdef CONFIG_INTEL_IOMMU
4477         /* Enable semaphores on SNB when IO remapping is off */
4478         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4479                 return false;
4480 #endif
4481
4482         return true;
4483 }
4484
4485 int i915_gem_init(struct drm_i915_private *dev_priv)
4486 {
4487         int ret;
4488
4489         mutex_lock(&dev_priv->drm.struct_mutex);
4490
4491         i915_gem_clflush_init(dev_priv);
4492
4493         if (!i915.enable_execlists) {
4494                 dev_priv->gt.resume = intel_legacy_submission_resume;
4495                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4496         } else {
4497                 dev_priv->gt.resume = intel_lr_context_resume;
4498                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4499         }
4500
4501         /* This is just a security blanket to placate dragons.
4502          * On some systems, we very sporadically observe that the first TLBs
4503          * used by the CS may be stale, despite us poking the TLB reset. If
4504          * we hold the forcewake during initialisation these problems
4505          * just magically go away.
4506          */
4507         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4508
4509         i915_gem_init_userptr(dev_priv);
4510
4511         ret = i915_gem_init_ggtt(dev_priv);
4512         if (ret)
4513                 goto out_unlock;
4514
4515         ret = i915_gem_context_init(dev_priv);
4516         if (ret)
4517                 goto out_unlock;
4518
4519         ret = intel_engines_init(dev_priv);
4520         if (ret)
4521                 goto out_unlock;
4522
4523         ret = i915_gem_init_hw(dev_priv);
4524         if (ret == -EIO) {
4525                 /* Allow engine initialisation to fail by marking the GPU as
4526                  * wedged. But we only want to do this where the GPU is angry,
4527                  * for all other failure, such as an allocation failure, bail.
4528                  */
4529                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4530                 i915_gem_set_wedged(dev_priv);
4531                 ret = 0;
4532         }
4533
4534 out_unlock:
4535         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4536         mutex_unlock(&dev_priv->drm.struct_mutex);
4537
4538         return ret;
4539 }
4540
4541 void i915_gem_init_mmio(struct drm_i915_private *i915)
4542 {
4543         i915_gem_sanitize(i915);
4544 }
4545
4546 void
4547 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4548 {
4549         struct intel_engine_cs *engine;
4550         enum intel_engine_id id;
4551
4552         for_each_engine(engine, dev_priv, id)
4553                 dev_priv->gt.cleanup_engine(engine);
4554 }
4555
4556 void
4557 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4558 {
4559         int i;
4560
4561         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4562             !IS_CHERRYVIEW(dev_priv))
4563                 dev_priv->num_fence_regs = 32;
4564         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4565                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4566                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4567                 dev_priv->num_fence_regs = 16;
4568         else
4569                 dev_priv->num_fence_regs = 8;
4570
4571         if (intel_vgpu_active(dev_priv))
4572                 dev_priv->num_fence_regs =
4573                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4574
4575         /* Initialize fence registers to zero */
4576         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4577                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4578
4579                 fence->i915 = dev_priv;
4580                 fence->id = i;
4581                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4582         }
4583         i915_gem_restore_fences(dev_priv);
4584
4585         i915_gem_detect_bit_6_swizzle(dev_priv);
4586 }
4587
4588 int
4589 i915_gem_load_init(struct drm_i915_private *dev_priv)
4590 {
4591         int err = -ENOMEM;
4592
4593         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4594         if (!dev_priv->objects)
4595                 goto err_out;
4596
4597         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4598         if (!dev_priv->vmas)
4599                 goto err_objects;
4600
4601         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4602                                         SLAB_HWCACHE_ALIGN |
4603                                         SLAB_RECLAIM_ACCOUNT |
4604                                         SLAB_DESTROY_BY_RCU);
4605         if (!dev_priv->requests)
4606                 goto err_vmas;
4607
4608         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4609                                             SLAB_HWCACHE_ALIGN |
4610                                             SLAB_RECLAIM_ACCOUNT);
4611         if (!dev_priv->dependencies)
4612                 goto err_requests;
4613
4614         mutex_lock(&dev_priv->drm.struct_mutex);
4615         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4616         err = i915_gem_timeline_init__global(dev_priv);
4617         mutex_unlock(&dev_priv->drm.struct_mutex);
4618         if (err)
4619                 goto err_dependencies;
4620
4621         INIT_LIST_HEAD(&dev_priv->context_list);
4622         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4623         init_llist_head(&dev_priv->mm.free_list);
4624         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4625         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4626         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4627         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4628         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4629                           i915_gem_retire_work_handler);
4630         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4631                           i915_gem_idle_work_handler);
4632         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4633         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4634
4635         init_waitqueue_head(&dev_priv->pending_flip_queue);
4636
4637         dev_priv->mm.interruptible = true;
4638
4639         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4640
4641         spin_lock_init(&dev_priv->fb_tracking.lock);
4642
4643         return 0;
4644
4645 err_dependencies:
4646         kmem_cache_destroy(dev_priv->dependencies);
4647 err_requests:
4648         kmem_cache_destroy(dev_priv->requests);
4649 err_vmas:
4650         kmem_cache_destroy(dev_priv->vmas);
4651 err_objects:
4652         kmem_cache_destroy(dev_priv->objects);
4653 err_out:
4654         return err;
4655 }
4656
4657 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4658 {
4659         i915_gem_drain_freed_objects(dev_priv);
4660         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4661         WARN_ON(dev_priv->mm.object_count);
4662
4663         mutex_lock(&dev_priv->drm.struct_mutex);
4664         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4665         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4666         mutex_unlock(&dev_priv->drm.struct_mutex);
4667
4668         kmem_cache_destroy(dev_priv->dependencies);
4669         kmem_cache_destroy(dev_priv->requests);
4670         kmem_cache_destroy(dev_priv->vmas);
4671         kmem_cache_destroy(dev_priv->objects);
4672
4673         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4674         rcu_barrier();
4675 }
4676
4677 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4678 {
4679         mutex_lock(&dev_priv->drm.struct_mutex);
4680         i915_gem_shrink_all(dev_priv);
4681         mutex_unlock(&dev_priv->drm.struct_mutex);
4682
4683         return 0;
4684 }
4685
4686 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4687 {
4688         struct drm_i915_gem_object *obj;
4689         struct list_head *phases[] = {
4690                 &dev_priv->mm.unbound_list,
4691                 &dev_priv->mm.bound_list,
4692                 NULL
4693         }, **p;
4694
4695         /* Called just before we write the hibernation image.
4696          *
4697          * We need to update the domain tracking to reflect that the CPU
4698          * will be accessing all the pages to create and restore from the
4699          * hibernation, and so upon restoration those pages will be in the
4700          * CPU domain.
4701          *
4702          * To make sure the hibernation image contains the latest state,
4703          * we update that state just before writing out the image.
4704          *
4705          * To try and reduce the hibernation image, we manually shrink
4706          * the objects as well.
4707          */
4708
4709         mutex_lock(&dev_priv->drm.struct_mutex);
4710         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4711
4712         for (p = phases; *p; p++) {
4713                 list_for_each_entry(obj, *p, global_link) {
4714                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4715                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4716                 }
4717         }
4718         mutex_unlock(&dev_priv->drm.struct_mutex);
4719
4720         return 0;
4721 }
4722
4723 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4724 {
4725         struct drm_i915_file_private *file_priv = file->driver_priv;
4726         struct drm_i915_gem_request *request;
4727
4728         /* Clean up our request list when the client is going away, so that
4729          * later retire_requests won't dereference our soon-to-be-gone
4730          * file_priv.
4731          */
4732         spin_lock(&file_priv->mm.lock);
4733         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4734                 request->file_priv = NULL;
4735         spin_unlock(&file_priv->mm.lock);
4736
4737         if (!list_empty(&file_priv->rps.link)) {
4738                 spin_lock(&to_i915(dev)->rps.client_lock);
4739                 list_del(&file_priv->rps.link);
4740                 spin_unlock(&to_i915(dev)->rps.client_lock);
4741         }
4742 }
4743
4744 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4745 {
4746         struct drm_i915_file_private *file_priv;
4747         int ret;
4748
4749         DRM_DEBUG("\n");
4750
4751         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4752         if (!file_priv)
4753                 return -ENOMEM;
4754
4755         file->driver_priv = file_priv;
4756         file_priv->dev_priv = to_i915(dev);
4757         file_priv->file = file;
4758         INIT_LIST_HEAD(&file_priv->rps.link);
4759
4760         spin_lock_init(&file_priv->mm.lock);
4761         INIT_LIST_HEAD(&file_priv->mm.request_list);
4762
4763         file_priv->bsd_engine = -1;
4764
4765         ret = i915_gem_context_open(dev, file);
4766         if (ret)
4767                 kfree(file_priv);
4768
4769         return ret;
4770 }
4771
4772 /**
4773  * i915_gem_track_fb - update frontbuffer tracking
4774  * @old: current GEM buffer for the frontbuffer slots
4775  * @new: new GEM buffer for the frontbuffer slots
4776  * @frontbuffer_bits: bitmask of frontbuffer slots
4777  *
4778  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4779  * from @old and setting them in @new. Both @old and @new can be NULL.
4780  */
4781 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4782                        struct drm_i915_gem_object *new,
4783                        unsigned frontbuffer_bits)
4784 {
4785         /* Control of individual bits within the mask are guarded by
4786          * the owning plane->mutex, i.e. we can never see concurrent
4787          * manipulation of individual bits. But since the bitfield as a whole
4788          * is updated using RMW, we need to use atomics in order to update
4789          * the bits.
4790          */
4791         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4792                      sizeof(atomic_t) * BITS_PER_BYTE);
4793
4794         if (old) {
4795                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4796                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4797         }
4798
4799         if (new) {
4800                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4801                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4802         }
4803 }
4804
4805 /* Allocate a new GEM object and fill it with the supplied data */
4806 struct drm_i915_gem_object *
4807 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4808                                  const void *data, size_t size)
4809 {
4810         struct drm_i915_gem_object *obj;
4811         struct sg_table *sg;
4812         size_t bytes;
4813         int ret;
4814
4815         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4816         if (IS_ERR(obj))
4817                 return obj;
4818
4819         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4820         if (ret)
4821                 goto fail;
4822
4823         ret = i915_gem_object_pin_pages(obj);
4824         if (ret)
4825                 goto fail;
4826
4827         sg = obj->mm.pages;
4828         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4829         obj->mm.dirty = true; /* Backing store is now out of date */
4830         i915_gem_object_unpin_pages(obj);
4831
4832         if (WARN_ON(bytes != size)) {
4833                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4834                 ret = -EFAULT;
4835                 goto fail;
4836         }
4837
4838         return obj;
4839
4840 fail:
4841         i915_gem_object_put(obj);
4842         return ERR_PTR(ret);
4843 }
4844
4845 struct scatterlist *
4846 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4847                        unsigned int n,
4848                        unsigned int *offset)
4849 {
4850         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4851         struct scatterlist *sg;
4852         unsigned int idx, count;
4853
4854         might_sleep();
4855         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4856         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4857
4858         /* As we iterate forward through the sg, we record each entry in a
4859          * radixtree for quick repeated (backwards) lookups. If we have seen
4860          * this index previously, we will have an entry for it.
4861          *
4862          * Initial lookup is O(N), but this is amortized to O(1) for
4863          * sequential page access (where each new request is consecutive
4864          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4865          * i.e. O(1) with a large constant!
4866          */
4867         if (n < READ_ONCE(iter->sg_idx))
4868                 goto lookup;
4869
4870         mutex_lock(&iter->lock);
4871
4872         /* We prefer to reuse the last sg so that repeated lookup of this
4873          * (or the subsequent) sg are fast - comparing against the last
4874          * sg is faster than going through the radixtree.
4875          */
4876
4877         sg = iter->sg_pos;
4878         idx = iter->sg_idx;
4879         count = __sg_page_count(sg);
4880
4881         while (idx + count <= n) {
4882                 unsigned long exception, i;
4883                 int ret;
4884
4885                 /* If we cannot allocate and insert this entry, or the
4886                  * individual pages from this range, cancel updating the
4887                  * sg_idx so that on this lookup we are forced to linearly
4888                  * scan onwards, but on future lookups we will try the
4889                  * insertion again (in which case we need to be careful of
4890                  * the error return reporting that we have already inserted
4891                  * this index).
4892                  */
4893                 ret = radix_tree_insert(&iter->radix, idx, sg);
4894                 if (ret && ret != -EEXIST)
4895                         goto scan;
4896
4897                 exception =
4898                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4899                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4900                 for (i = 1; i < count; i++) {
4901                         ret = radix_tree_insert(&iter->radix, idx + i,
4902                                                 (void *)exception);
4903                         if (ret && ret != -EEXIST)
4904                                 goto scan;
4905                 }
4906
4907                 idx += count;
4908                 sg = ____sg_next(sg);
4909                 count = __sg_page_count(sg);
4910         }
4911
4912 scan:
4913         iter->sg_pos = sg;
4914         iter->sg_idx = idx;
4915
4916         mutex_unlock(&iter->lock);
4917
4918         if (unlikely(n < idx)) /* insertion completed by another thread */
4919                 goto lookup;
4920
4921         /* In case we failed to insert the entry into the radixtree, we need
4922          * to look beyond the current sg.
4923          */
4924         while (idx + count <= n) {
4925                 idx += count;
4926                 sg = ____sg_next(sg);
4927                 count = __sg_page_count(sg);
4928         }
4929
4930         *offset = n - idx;
4931         return sg;
4932
4933 lookup:
4934         rcu_read_lock();
4935
4936         sg = radix_tree_lookup(&iter->radix, n);
4937         GEM_BUG_ON(!sg);
4938
4939         /* If this index is in the middle of multi-page sg entry,
4940          * the radixtree will contain an exceptional entry that points
4941          * to the start of that range. We will return the pointer to
4942          * the base page and the offset of this page within the
4943          * sg entry's range.
4944          */
4945         *offset = 0;
4946         if (unlikely(radix_tree_exception(sg))) {
4947                 unsigned long base =
4948                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4949
4950                 sg = radix_tree_lookup(&iter->radix, base);
4951                 GEM_BUG_ON(!sg);
4952
4953                 *offset = n - base;
4954         }
4955
4956         rcu_read_unlock();
4957
4958         return sg;
4959 }
4960
4961 struct page *
4962 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4963 {
4964         struct scatterlist *sg;
4965         unsigned int offset;
4966
4967         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4968
4969         sg = i915_gem_object_get_sg(obj, n, &offset);
4970         return nth_page(sg_page(sg), offset);
4971 }
4972
4973 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4974 struct page *
4975 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4976                                unsigned int n)
4977 {
4978         struct page *page;
4979
4980         page = i915_gem_object_get_page(obj, n);
4981         if (!obj->mm.dirty)
4982                 set_page_dirty(page);
4983
4984         return page;
4985 }
4986
4987 dma_addr_t
4988 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4989                                 unsigned long n)
4990 {
4991         struct scatterlist *sg;
4992         unsigned int offset;
4993
4994         sg = i915_gem_object_get_sg(obj, n, &offset);
4995         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4996 }
4997
4998 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4999 #include "selftests/scatterlist.c"
5000 #include "selftests/mock_gem_device.c"
5001 #include "selftests/huge_gem_object.c"
5002 #include "selftests/i915_gem_object.c"
5003 #include "selftests/i915_gem_coherency.c"
5004 #endif