]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[karo-tx-linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59                 return false;
60
61         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62                 return true;
63
64         return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69                      struct drm_mm_node *node, u32 size)
70 {
71         memset(node, 0, sizeof(*node));
72         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
73                                            size, 0, I915_COLOR_UNEVICTABLE,
74                                            0, ggtt->mappable_end,
75                                            DRM_MM_INSERT_LOW);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   u64 size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      u64 size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         might_sleep();
109
110         if (!i915_reset_in_progress(error))
111                 return 0;
112
113         /*
114          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115          * userspace. If it takes that long something really bad is going on and
116          * we should simply try to bail out and fail as gracefully as possible.
117          */
118         ret = wait_event_interruptible_timeout(error->reset_queue,
119                                                !i915_reset_in_progress(error),
120                                                I915_RESET_TIMEOUT);
121         if (ret == 0) {
122                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123                 return -EIO;
124         } else if (ret < 0) {
125                 return ret;
126         } else {
127                 return 0;
128         }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = to_i915(dev);
134         int ret;
135
136         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137         if (ret)
138                 return ret;
139
140         ret = mutex_lock_interruptible(&dev->struct_mutex);
141         if (ret)
142                 return ret;
143
144         return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149                             struct drm_file *file)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         struct i915_ggtt *ggtt = &dev_priv->ggtt;
153         struct drm_i915_gem_get_aperture *args = data;
154         struct i915_vma *vma;
155         size_t pinned;
156
157         pinned = 0;
158         mutex_lock(&dev->struct_mutex);
159         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163                 if (i915_vma_is_pinned(vma))
164                         pinned += vma->node.size;
165         mutex_unlock(&dev->struct_mutex);
166
167         args->aper_size = ggtt->base.total;
168         args->aper_available_size = args->aper_size - pinned;
169
170         return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176         struct address_space *mapping = obj->base.filp->f_mapping;
177         drm_dma_handle_t *phys;
178         struct sg_table *st;
179         struct scatterlist *sg;
180         char *vaddr;
181         int i;
182
183         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184                 return ERR_PTR(-EINVAL);
185
186         /* Always aligning to the object size, allows a single allocation
187          * to handle all possible callers, and given typical object sizes,
188          * the alignment of the buddy allocation will naturally match.
189          */
190         phys = drm_pci_alloc(obj->base.dev,
191                              obj->base.size,
192                              roundup_pow_of_two(obj->base.size));
193         if (!phys)
194                 return ERR_PTR(-ENOMEM);
195
196         vaddr = phys->vaddr;
197         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198                 struct page *page;
199                 char *src;
200
201                 page = shmem_read_mapping_page(mapping, i);
202                 if (IS_ERR(page)) {
203                         st = ERR_CAST(page);
204                         goto err_phys;
205                 }
206
207                 src = kmap_atomic(page);
208                 memcpy(vaddr, src, PAGE_SIZE);
209                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210                 kunmap_atomic(src);
211
212                 put_page(page);
213                 vaddr += PAGE_SIZE;
214         }
215
216         i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218         st = kmalloc(sizeof(*st), GFP_KERNEL);
219         if (!st) {
220                 st = ERR_PTR(-ENOMEM);
221                 goto err_phys;
222         }
223
224         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225                 kfree(st);
226                 st = ERR_PTR(-ENOMEM);
227                 goto err_phys;
228         }
229
230         sg = st->sgl;
231         sg->offset = 0;
232         sg->length = obj->base.size;
233
234         sg_dma_address(sg) = phys->busaddr;
235         sg_dma_len(sg) = obj->base.size;
236
237         obj->phys_handle = phys;
238         return st;
239
240 err_phys:
241         drm_pci_free(obj->base.dev, phys);
242         return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247                                 struct sg_table *pages,
248                                 bool needs_clflush)
249 {
250         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252         if (obj->mm.madv == I915_MADV_DONTNEED)
253                 obj->mm.dirty = false;
254
255         if (needs_clflush &&
256             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257             !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258                 drm_clflush_sg(pages);
259
260         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266                                struct sg_table *pages)
267 {
268         __i915_gem_object_release_shmem(obj, pages, false);
269
270         if (obj->mm.dirty) {
271                 struct address_space *mapping = obj->base.filp->f_mapping;
272                 char *vaddr = obj->phys_handle->vaddr;
273                 int i;
274
275                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276                         struct page *page;
277                         char *dst;
278
279                         page = shmem_read_mapping_page(mapping, i);
280                         if (IS_ERR(page))
281                                 continue;
282
283                         dst = kmap_atomic(page);
284                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
285                         memcpy(dst, vaddr, PAGE_SIZE);
286                         kunmap_atomic(dst);
287
288                         set_page_dirty(page);
289                         if (obj->mm.madv == I915_MADV_WILLNEED)
290                                 mark_page_accessed(page);
291                         put_page(page);
292                         vaddr += PAGE_SIZE;
293                 }
294                 obj->mm.dirty = false;
295         }
296
297         sg_free_table(pages);
298         kfree(pages);
299
300         drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306         i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310         .get_pages = i915_gem_object_get_pages_phys,
311         .put_pages = i915_gem_object_put_pages_phys,
312         .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403                 /* The GPU is now idle and this client has stalled.
404                  * Since no other client has submitted a request in the
405                  * meantime, assume that this client is the only one
406                  * supplying work to the GPU but is unable to keep that
407                  * work supplied because it is waiting. Since the GPU is
408                  * then never kept fully busy, RPS autoclocking will
409                  * keep the clocks relatively low, causing further delays.
410                  * Compensate by giving the synchronous client credit for
411                  * a waitboost next time.
412                  */
413                 spin_lock(&rq->i915->rps.client_lock);
414                 list_del_init(&rps->link);
415                 spin_unlock(&rq->i915->rps.client_lock);
416         }
417
418         return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423                                  unsigned int flags,
424                                  long timeout,
425                                  struct intel_rps_client *rps)
426 {
427         struct dma_fence *excl;
428
429         if (flags & I915_WAIT_ALL) {
430                 struct dma_fence **shared;
431                 unsigned int count, i;
432                 int ret;
433
434                 ret = reservation_object_get_fences_rcu(resv,
435                                                         &excl, &count, &shared);
436                 if (ret)
437                         return ret;
438
439                 for (i = 0; i < count; i++) {
440                         timeout = i915_gem_object_wait_fence(shared[i],
441                                                              flags, timeout,
442                                                              rps);
443                         if (timeout < 0)
444                                 break;
445
446                         dma_fence_put(shared[i]);
447                 }
448
449                 for (; i < count; i++)
450                         dma_fence_put(shared[i]);
451                 kfree(shared);
452         } else {
453                 excl = reservation_object_get_excl_rcu(resv);
454         }
455
456         if (excl && timeout >= 0)
457                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459         dma_fence_put(excl);
460
461         return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466         struct drm_i915_gem_request *rq;
467         struct intel_engine_cs *engine;
468
469         if (!dma_fence_is_i915(fence))
470                 return;
471
472         rq = to_request(fence);
473         engine = rq->engine;
474         if (!engine->schedule)
475                 return;
476
477         engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482         /* Recurse once into a fence-array */
483         if (dma_fence_is_array(fence)) {
484                 struct dma_fence_array *array = to_dma_fence_array(fence);
485                 int i;
486
487                 for (i = 0; i < array->num_fences; i++)
488                         __fence_set_priority(array->fences[i], prio);
489         } else {
490                 __fence_set_priority(fence, prio);
491         }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496                               unsigned int flags,
497                               int prio)
498 {
499         struct dma_fence *excl;
500
501         if (flags & I915_WAIT_ALL) {
502                 struct dma_fence **shared;
503                 unsigned int count, i;
504                 int ret;
505
506                 ret = reservation_object_get_fences_rcu(obj->resv,
507                                                         &excl, &count, &shared);
508                 if (ret)
509                         return ret;
510
511                 for (i = 0; i < count; i++) {
512                         fence_set_priority(shared[i], prio);
513                         dma_fence_put(shared[i]);
514                 }
515
516                 kfree(shared);
517         } else {
518                 excl = reservation_object_get_excl_rcu(obj->resv);
519         }
520
521         if (excl) {
522                 fence_set_priority(excl, prio);
523                 dma_fence_put(excl);
524         }
525         return 0;
526 }
527
528 /**
529  * Waits for rendering to the object to be completed
530  * @obj: i915 gem object
531  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532  * @timeout: how long to wait
533  * @rps: client (user process) to charge for any waitboosting
534  */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537                      unsigned int flags,
538                      long timeout,
539                      struct intel_rps_client *rps)
540 {
541         might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543         GEM_BUG_ON(debug_locks &&
544                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545                    !!(flags & I915_WAIT_LOCKED));
546 #endif
547         GEM_BUG_ON(timeout < 0);
548
549         timeout = i915_gem_object_wait_reservation(obj->resv,
550                                                    flags, timeout,
551                                                    rps);
552         return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557         struct drm_i915_file_private *fpriv = file->driver_priv;
558
559         return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564                             int align)
565 {
566         int ret;
567
568         if (align > obj->base.size)
569                 return -EINVAL;
570
571         if (obj->ops == &i915_gem_phys_ops)
572                 return 0;
573
574         if (obj->mm.madv != I915_MADV_WILLNEED)
575                 return -EFAULT;
576
577         if (obj->base.filp == NULL)
578                 return -EINVAL;
579
580         ret = i915_gem_object_unbind(obj);
581         if (ret)
582                 return ret;
583
584         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585         if (obj->mm.pages)
586                 return -EBUSY;
587
588         obj->ops = &i915_gem_phys_ops;
589
590         return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595                      struct drm_i915_gem_pwrite *args,
596                      struct drm_file *file)
597 {
598         void *vaddr = obj->phys_handle->vaddr + args->offset;
599         char __user *user_data = u64_to_user_ptr(args->data_ptr);
600
601         /* We manually control the domain here and pretend that it
602          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603          */
604         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605         if (copy_from_user(vaddr, user_data, args->size))
606                 return -EFAULT;
607
608         drm_clflush_virt_range(vaddr, args->size);
609         i915_gem_chipset_flush(to_i915(obj->base.dev));
610
611         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612         return 0;
613 }
614
615 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616 {
617         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 }
619
620 void i915_gem_object_free(struct drm_i915_gem_object *obj)
621 {
622         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623         kmem_cache_free(dev_priv->objects, obj);
624 }
625
626 static int
627 i915_gem_create(struct drm_file *file,
628                 struct drm_i915_private *dev_priv,
629                 uint64_t size,
630                 uint32_t *handle_p)
631 {
632         struct drm_i915_gem_object *obj;
633         int ret;
634         u32 handle;
635
636         size = roundup(size, PAGE_SIZE);
637         if (size == 0)
638                 return -EINVAL;
639
640         /* Allocate the new object */
641         obj = i915_gem_object_create(dev_priv, size);
642         if (IS_ERR(obj))
643                 return PTR_ERR(obj);
644
645         ret = drm_gem_handle_create(file, &obj->base, &handle);
646         /* drop reference from allocate - handle holds it now */
647         i915_gem_object_put(obj);
648         if (ret)
649                 return ret;
650
651         *handle_p = handle;
652         return 0;
653 }
654
655 int
656 i915_gem_dumb_create(struct drm_file *file,
657                      struct drm_device *dev,
658                      struct drm_mode_create_dumb *args)
659 {
660         /* have to work out size/pitch and return them */
661         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662         args->size = args->pitch * args->height;
663         return i915_gem_create(file, to_i915(dev),
664                                args->size, &args->handle);
665 }
666
667 /**
668  * Creates a new mm object and returns a handle to it.
669  * @dev: drm device pointer
670  * @data: ioctl data blob
671  * @file: drm file pointer
672  */
673 int
674 i915_gem_create_ioctl(struct drm_device *dev, void *data,
675                       struct drm_file *file)
676 {
677         struct drm_i915_private *dev_priv = to_i915(dev);
678         struct drm_i915_gem_create *args = data;
679
680         i915_gem_flush_free_objects(dev_priv);
681
682         return i915_gem_create(file, dev_priv,
683                                args->size, &args->handle);
684 }
685
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688                         const char *gpu_vaddr, int gpu_offset,
689                         int length)
690 {
691         int ret, cpu_offset = 0;
692
693         while (length > 0) {
694                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695                 int this_length = min(cacheline_end - gpu_offset, length);
696                 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699                                      gpu_vaddr + swizzled_gpu_offset,
700                                      this_length);
701                 if (ret)
702                         return ret + length;
703
704                 cpu_offset += this_length;
705                 gpu_offset += this_length;
706                 length -= this_length;
707         }
708
709         return 0;
710 }
711
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714                           const char __user *cpu_vaddr,
715                           int length)
716 {
717         int ret, cpu_offset = 0;
718
719         while (length > 0) {
720                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721                 int this_length = min(cacheline_end - gpu_offset, length);
722                 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725                                        cpu_vaddr + cpu_offset,
726                                        this_length);
727                 if (ret)
728                         return ret + length;
729
730                 cpu_offset += this_length;
731                 gpu_offset += this_length;
732                 length -= this_length;
733         }
734
735         return 0;
736 }
737
738 /*
739  * Pins the specified object's pages and synchronizes the object with
740  * GPU accesses. Sets needs_clflush to non-zero if the caller should
741  * flush the object from the CPU cache.
742  */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744                                     unsigned int *needs_clflush)
745 {
746         int ret;
747
748         lockdep_assert_held(&obj->base.dev->struct_mutex);
749
750         *needs_clflush = 0;
751         if (!i915_gem_object_has_struct_page(obj))
752                 return -ENODEV;
753
754         ret = i915_gem_object_wait(obj,
755                                    I915_WAIT_INTERRUPTIBLE |
756                                    I915_WAIT_LOCKED,
757                                    MAX_SCHEDULE_TIMEOUT,
758                                    NULL);
759         if (ret)
760                 return ret;
761
762         ret = i915_gem_object_pin_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_flush_gtt_write_domain(obj);
767
768         /* If we're not in the cpu read domain, set ourself into the gtt
769          * read domain and manually flush cachelines (if required). This
770          * optimizes for the case when the gpu will dirty the data
771          * anyway again before the next pread happens.
772          */
773         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775                                                         obj->cache_level);
776
777         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
779                 if (ret)
780                         goto err_unpin;
781
782                 *needs_clflush = 0;
783         }
784
785         /* return with the pages pinned */
786         return 0;
787
788 err_unpin:
789         i915_gem_object_unpin_pages(obj);
790         return ret;
791 }
792
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794                                      unsigned int *needs_clflush)
795 {
796         int ret;
797
798         lockdep_assert_held(&obj->base.dev->struct_mutex);
799
800         *needs_clflush = 0;
801         if (!i915_gem_object_has_struct_page(obj))
802                 return -ENODEV;
803
804         ret = i915_gem_object_wait(obj,
805                                    I915_WAIT_INTERRUPTIBLE |
806                                    I915_WAIT_LOCKED |
807                                    I915_WAIT_ALL,
808                                    MAX_SCHEDULE_TIMEOUT,
809                                    NULL);
810         if (ret)
811                 return ret;
812
813         ret = i915_gem_object_pin_pages(obj);
814         if (ret)
815                 return ret;
816
817         i915_gem_object_flush_gtt_write_domain(obj);
818
819         /* If we're not in the cpu write domain, set ourself into the
820          * gtt write domain and manually flush cachelines (as required).
821          * This optimizes for the case when the gpu will use the data
822          * right away and we therefore have to clflush anyway.
823          */
824         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827         /* Same trick applies to invalidate partially written cachelines read
828          * before writing.
829          */
830         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832                                                          obj->cache_level);
833
834         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
836                 if (ret)
837                         goto err_unpin;
838
839                 *needs_clflush = 0;
840         }
841
842         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843                 obj->cache_dirty = true;
844
845         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846         obj->mm.dirty = true;
847         /* return with the pages pinned */
848         return 0;
849
850 err_unpin:
851         i915_gem_object_unpin_pages(obj);
852         return ret;
853 }
854
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857                              bool swizzled)
858 {
859         if (unlikely(swizzled)) {
860                 unsigned long start = (unsigned long) addr;
861                 unsigned long end = (unsigned long) addr + length;
862
863                 /* For swizzling simply ensure that we always flush both
864                  * channels. Lame, but simple and it works. Swizzled
865                  * pwrite/pread is far from a hotpath - current userspace
866                  * doesn't use it at all. */
867                 start = round_down(start, 128);
868                 end = round_up(end, 128);
869
870                 drm_clflush_virt_range((void *)start, end - start);
871         } else {
872                 drm_clflush_virt_range(addr, length);
873         }
874
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878  * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881                  char __user *user_data,
882                  bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884         char *vaddr;
885         int ret;
886
887         vaddr = kmap(page);
888         if (needs_clflush)
889                 shmem_clflush_swizzled_range(vaddr + offset, length,
890                                              page_do_bit17_swizzling);
891
892         if (page_do_bit17_swizzling)
893                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894         else
895                 ret = __copy_to_user(user_data, vaddr + offset, length);
896         kunmap(page);
897
898         return ret ? - EFAULT : 0;
899 }
900
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903             bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905         int ret;
906
907         ret = -ENODEV;
908         if (!page_do_bit17_swizzling) {
909                 char *vaddr = kmap_atomic(page);
910
911                 if (needs_clflush)
912                         drm_clflush_virt_range(vaddr + offset, length);
913                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914                 kunmap_atomic(vaddr);
915         }
916         if (ret == 0)
917                 return 0;
918
919         return shmem_pread_slow(page, offset, length, user_data,
920                                 page_do_bit17_swizzling, needs_clflush);
921 }
922
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925                      struct drm_i915_gem_pread *args)
926 {
927         char __user *user_data;
928         u64 remain;
929         unsigned int obj_do_bit17_swizzling;
930         unsigned int needs_clflush;
931         unsigned int idx, offset;
932         int ret;
933
934         obj_do_bit17_swizzling = 0;
935         if (i915_gem_object_needs_bit17_swizzle(obj))
936                 obj_do_bit17_swizzling = BIT(17);
937
938         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939         if (ret)
940                 return ret;
941
942         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943         mutex_unlock(&obj->base.dev->struct_mutex);
944         if (ret)
945                 return ret;
946
947         remain = args->size;
948         user_data = u64_to_user_ptr(args->data_ptr);
949         offset = offset_in_page(args->offset);
950         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951                 struct page *page = i915_gem_object_get_page(obj, idx);
952                 int length;
953
954                 length = remain;
955                 if (offset + length > PAGE_SIZE)
956                         length = PAGE_SIZE - offset;
957
958                 ret = shmem_pread(page, offset, length, user_data,
959                                   page_to_phys(page) & obj_do_bit17_swizzling,
960                                   needs_clflush);
961                 if (ret)
962                         break;
963
964                 remain -= length;
965                 user_data += length;
966                 offset = 0;
967         }
968
969         i915_gem_obj_finish_shmem_access(obj);
970         return ret;
971 }
972
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975               loff_t base, int offset,
976               char __user *user_data, int length)
977 {
978         void *vaddr;
979         unsigned long unwritten;
980
981         /* We can use the cpu mem copy function because this is X86. */
982         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984         io_mapping_unmap_atomic(vaddr);
985         if (unwritten) {
986                 vaddr = (void __force *)
987                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
988                 unwritten = copy_to_user(user_data, vaddr + offset, length);
989                 io_mapping_unmap(vaddr);
990         }
991         return unwritten;
992 }
993
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996                    const struct drm_i915_gem_pread *args)
997 {
998         struct drm_i915_private *i915 = to_i915(obj->base.dev);
999         struct i915_ggtt *ggtt = &i915->ggtt;
1000         struct drm_mm_node node;
1001         struct i915_vma *vma;
1002         void __user *user_data;
1003         u64 remain, offset;
1004         int ret;
1005
1006         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007         if (ret)
1008                 return ret;
1009
1010         intel_runtime_pm_get(i915);
1011         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012                                        PIN_MAPPABLE | PIN_NONBLOCK);
1013         if (!IS_ERR(vma)) {
1014                 node.start = i915_ggtt_offset(vma);
1015                 node.allocated = false;
1016                 ret = i915_vma_put_fence(vma);
1017                 if (ret) {
1018                         i915_vma_unpin(vma);
1019                         vma = ERR_PTR(ret);
1020                 }
1021         }
1022         if (IS_ERR(vma)) {
1023                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024                 if (ret)
1025                         goto out_unlock;
1026                 GEM_BUG_ON(!node.allocated);
1027         }
1028
1029         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030         if (ret)
1031                 goto out_unpin;
1032
1033         mutex_unlock(&i915->drm.struct_mutex);
1034
1035         user_data = u64_to_user_ptr(args->data_ptr);
1036         remain = args->size;
1037         offset = args->offset;
1038
1039         while (remain > 0) {
1040                 /* Operation in this page
1041                  *
1042                  * page_base = page offset within aperture
1043                  * page_offset = offset within page
1044                  * page_length = bytes to copy for this page
1045                  */
1046                 u32 page_base = node.start;
1047                 unsigned page_offset = offset_in_page(offset);
1048                 unsigned page_length = PAGE_SIZE - page_offset;
1049                 page_length = remain < page_length ? remain : page_length;
1050                 if (node.allocated) {
1051                         wmb();
1052                         ggtt->base.insert_page(&ggtt->base,
1053                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054                                                node.start, I915_CACHE_NONE, 0);
1055                         wmb();
1056                 } else {
1057                         page_base += offset & PAGE_MASK;
1058                 }
1059
1060                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061                                   user_data, page_length)) {
1062                         ret = -EFAULT;
1063                         break;
1064                 }
1065
1066                 remain -= page_length;
1067                 user_data += page_length;
1068                 offset += page_length;
1069         }
1070
1071         mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073         if (node.allocated) {
1074                 wmb();
1075                 ggtt->base.clear_range(&ggtt->base,
1076                                        node.start, node.size);
1077                 remove_mappable_node(&node);
1078         } else {
1079                 i915_vma_unpin(vma);
1080         }
1081 out_unlock:
1082         intel_runtime_pm_put(i915);
1083         mutex_unlock(&i915->drm.struct_mutex);
1084
1085         return ret;
1086 }
1087
1088 /**
1089  * Reads data from the object referenced by handle.
1090  * @dev: drm device pointer
1091  * @data: ioctl data blob
1092  * @file: drm file pointer
1093  *
1094  * On error, the contents of *data are undefined.
1095  */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098                      struct drm_file *file)
1099 {
1100         struct drm_i915_gem_pread *args = data;
1101         struct drm_i915_gem_object *obj;
1102         int ret;
1103
1104         if (args->size == 0)
1105                 return 0;
1106
1107         if (!access_ok(VERIFY_WRITE,
1108                        u64_to_user_ptr(args->data_ptr),
1109                        args->size))
1110                 return -EFAULT;
1111
1112         obj = i915_gem_object_lookup(file, args->handle);
1113         if (!obj)
1114                 return -ENOENT;
1115
1116         /* Bounds check source.  */
1117         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1118                 ret = -EINVAL;
1119                 goto out;
1120         }
1121
1122         trace_i915_gem_object_pread(obj, args->offset, args->size);
1123
1124         ret = i915_gem_object_wait(obj,
1125                                    I915_WAIT_INTERRUPTIBLE,
1126                                    MAX_SCHEDULE_TIMEOUT,
1127                                    to_rps_client(file));
1128         if (ret)
1129                 goto out;
1130
1131         ret = i915_gem_object_pin_pages(obj);
1132         if (ret)
1133                 goto out;
1134
1135         ret = i915_gem_shmem_pread(obj, args);
1136         if (ret == -EFAULT || ret == -ENODEV)
1137                 ret = i915_gem_gtt_pread(obj, args);
1138
1139         i915_gem_object_unpin_pages(obj);
1140 out:
1141         i915_gem_object_put(obj);
1142         return ret;
1143 }
1144
1145 /* This is the fast write path which cannot handle
1146  * page faults in the source data
1147  */
1148
1149 static inline bool
1150 ggtt_write(struct io_mapping *mapping,
1151            loff_t base, int offset,
1152            char __user *user_data, int length)
1153 {
1154         void *vaddr;
1155         unsigned long unwritten;
1156
1157         /* We can use the cpu mem copy function because this is X86. */
1158         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1159         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160                                                       user_data, length);
1161         io_mapping_unmap_atomic(vaddr);
1162         if (unwritten) {
1163                 vaddr = (void __force *)
1164                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1165                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1166                 io_mapping_unmap(vaddr);
1167         }
1168
1169         return unwritten;
1170 }
1171
1172 /**
1173  * This is the fast pwrite path, where we copy the data directly from the
1174  * user into the GTT, uncached.
1175  * @obj: i915 GEM object
1176  * @args: pwrite arguments structure
1177  */
1178 static int
1179 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1180                          const struct drm_i915_gem_pwrite *args)
1181 {
1182         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183         struct i915_ggtt *ggtt = &i915->ggtt;
1184         struct drm_mm_node node;
1185         struct i915_vma *vma;
1186         u64 remain, offset;
1187         void __user *user_data;
1188         int ret;
1189
1190         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1191         if (ret)
1192                 return ret;
1193
1194         intel_runtime_pm_get(i915);
1195         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196                                        PIN_MAPPABLE | PIN_NONBLOCK);
1197         if (!IS_ERR(vma)) {
1198                 node.start = i915_ggtt_offset(vma);
1199                 node.allocated = false;
1200                 ret = i915_vma_put_fence(vma);
1201                 if (ret) {
1202                         i915_vma_unpin(vma);
1203                         vma = ERR_PTR(ret);
1204                 }
1205         }
1206         if (IS_ERR(vma)) {
1207                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208                 if (ret)
1209                         goto out_unlock;
1210                 GEM_BUG_ON(!node.allocated);
1211         }
1212
1213         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1214         if (ret)
1215                 goto out_unpin;
1216
1217         mutex_unlock(&i915->drm.struct_mutex);
1218
1219         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220
1221         user_data = u64_to_user_ptr(args->data_ptr);
1222         offset = args->offset;
1223         remain = args->size;
1224         while (remain) {
1225                 /* Operation in this page
1226                  *
1227                  * page_base = page offset within aperture
1228                  * page_offset = offset within page
1229                  * page_length = bytes to copy for this page
1230                  */
1231                 u32 page_base = node.start;
1232                 unsigned int page_offset = offset_in_page(offset);
1233                 unsigned int page_length = PAGE_SIZE - page_offset;
1234                 page_length = remain < page_length ? remain : page_length;
1235                 if (node.allocated) {
1236                         wmb(); /* flush the write before we modify the GGTT */
1237                         ggtt->base.insert_page(&ggtt->base,
1238                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1239                                                node.start, I915_CACHE_NONE, 0);
1240                         wmb(); /* flush modifications to the GGTT (insert_page) */
1241                 } else {
1242                         page_base += offset & PAGE_MASK;
1243                 }
1244                 /* If we get a fault while copying data, then (presumably) our
1245                  * source page isn't available.  Return the error and we'll
1246                  * retry in the slow path.
1247                  * If the object is non-shmem backed, we retry again with the
1248                  * path that handles page fault.
1249                  */
1250                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1251                                user_data, page_length)) {
1252                         ret = -EFAULT;
1253                         break;
1254                 }
1255
1256                 remain -= page_length;
1257                 user_data += page_length;
1258                 offset += page_length;
1259         }
1260         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261
1262         mutex_lock(&i915->drm.struct_mutex);
1263 out_unpin:
1264         if (node.allocated) {
1265                 wmb();
1266                 ggtt->base.clear_range(&ggtt->base,
1267                                        node.start, node.size);
1268                 remove_mappable_node(&node);
1269         } else {
1270                 i915_vma_unpin(vma);
1271         }
1272 out_unlock:
1273         intel_runtime_pm_put(i915);
1274         mutex_unlock(&i915->drm.struct_mutex);
1275         return ret;
1276 }
1277
1278 static int
1279 shmem_pwrite_slow(struct page *page, int offset, int length,
1280                   char __user *user_data,
1281                   bool page_do_bit17_swizzling,
1282                   bool needs_clflush_before,
1283                   bool needs_clflush_after)
1284 {
1285         char *vaddr;
1286         int ret;
1287
1288         vaddr = kmap(page);
1289         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290                 shmem_clflush_swizzled_range(vaddr + offset, length,
1291                                              page_do_bit17_swizzling);
1292         if (page_do_bit17_swizzling)
1293                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1294                                                 length);
1295         else
1296                 ret = __copy_from_user(vaddr + offset, user_data, length);
1297         if (needs_clflush_after)
1298                 shmem_clflush_swizzled_range(vaddr + offset, length,
1299                                              page_do_bit17_swizzling);
1300         kunmap(page);
1301
1302         return ret ? -EFAULT : 0;
1303 }
1304
1305 /* Per-page copy function for the shmem pwrite fastpath.
1306  * Flushes invalid cachelines before writing to the target if
1307  * needs_clflush_before is set and flushes out any written cachelines after
1308  * writing if needs_clflush is set.
1309  */
1310 static int
1311 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1312              bool page_do_bit17_swizzling,
1313              bool needs_clflush_before,
1314              bool needs_clflush_after)
1315 {
1316         int ret;
1317
1318         ret = -ENODEV;
1319         if (!page_do_bit17_swizzling) {
1320                 char *vaddr = kmap_atomic(page);
1321
1322                 if (needs_clflush_before)
1323                         drm_clflush_virt_range(vaddr + offset, len);
1324                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1325                 if (needs_clflush_after)
1326                         drm_clflush_virt_range(vaddr + offset, len);
1327
1328                 kunmap_atomic(vaddr);
1329         }
1330         if (ret == 0)
1331                 return ret;
1332
1333         return shmem_pwrite_slow(page, offset, len, user_data,
1334                                  page_do_bit17_swizzling,
1335                                  needs_clflush_before,
1336                                  needs_clflush_after);
1337 }
1338
1339 static int
1340 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1341                       const struct drm_i915_gem_pwrite *args)
1342 {
1343         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344         void __user *user_data;
1345         u64 remain;
1346         unsigned int obj_do_bit17_swizzling;
1347         unsigned int partial_cacheline_write;
1348         unsigned int needs_clflush;
1349         unsigned int offset, idx;
1350         int ret;
1351
1352         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353         if (ret)
1354                 return ret;
1355
1356         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1357         mutex_unlock(&i915->drm.struct_mutex);
1358         if (ret)
1359                 return ret;
1360
1361         obj_do_bit17_swizzling = 0;
1362         if (i915_gem_object_needs_bit17_swizzle(obj))
1363                 obj_do_bit17_swizzling = BIT(17);
1364
1365         /* If we don't overwrite a cacheline completely we need to be
1366          * careful to have up-to-date data by first clflushing. Don't
1367          * overcomplicate things and flush the entire patch.
1368          */
1369         partial_cacheline_write = 0;
1370         if (needs_clflush & CLFLUSH_BEFORE)
1371                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372
1373         user_data = u64_to_user_ptr(args->data_ptr);
1374         remain = args->size;
1375         offset = offset_in_page(args->offset);
1376         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1377                 struct page *page = i915_gem_object_get_page(obj, idx);
1378                 int length;
1379
1380                 length = remain;
1381                 if (offset + length > PAGE_SIZE)
1382                         length = PAGE_SIZE - offset;
1383
1384                 ret = shmem_pwrite(page, offset, length, user_data,
1385                                    page_to_phys(page) & obj_do_bit17_swizzling,
1386                                    (offset | length) & partial_cacheline_write,
1387                                    needs_clflush & CLFLUSH_AFTER);
1388                 if (ret)
1389                         break;
1390
1391                 remain -= length;
1392                 user_data += length;
1393                 offset = 0;
1394         }
1395
1396         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397         i915_gem_obj_finish_shmem_access(obj);
1398         return ret;
1399 }
1400
1401 /**
1402  * Writes data to the object referenced by handle.
1403  * @dev: drm device
1404  * @data: ioctl data blob
1405  * @file: drm file
1406  *
1407  * On error, the contents of the buffer that were to be modified are undefined.
1408  */
1409 int
1410 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411                       struct drm_file *file)
1412 {
1413         struct drm_i915_gem_pwrite *args = data;
1414         struct drm_i915_gem_object *obj;
1415         int ret;
1416
1417         if (args->size == 0)
1418                 return 0;
1419
1420         if (!access_ok(VERIFY_READ,
1421                        u64_to_user_ptr(args->data_ptr),
1422                        args->size))
1423                 return -EFAULT;
1424
1425         obj = i915_gem_object_lookup(file, args->handle);
1426         if (!obj)
1427                 return -ENOENT;
1428
1429         /* Bounds check destination. */
1430         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1431                 ret = -EINVAL;
1432                 goto err;
1433         }
1434
1435         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1436
1437         ret = i915_gem_object_wait(obj,
1438                                    I915_WAIT_INTERRUPTIBLE |
1439                                    I915_WAIT_ALL,
1440                                    MAX_SCHEDULE_TIMEOUT,
1441                                    to_rps_client(file));
1442         if (ret)
1443                 goto err;
1444
1445         ret = i915_gem_object_pin_pages(obj);
1446         if (ret)
1447                 goto err;
1448
1449         ret = -EFAULT;
1450         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1451          * it would end up going through the fenced access, and we'll get
1452          * different detiling behavior between reading and writing.
1453          * pread/pwrite currently are reading and writing from the CPU
1454          * perspective, requiring manual detiling by the client.
1455          */
1456         if (!i915_gem_object_has_struct_page(obj) ||
1457             cpu_write_needs_clflush(obj))
1458                 /* Note that the gtt paths might fail with non-page-backed user
1459                  * pointers (e.g. gtt mappings when moving data between
1460                  * textures). Fallback to the shmem path in that case.
1461                  */
1462                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1463
1464         if (ret == -EFAULT || ret == -ENOSPC) {
1465                 if (obj->phys_handle)
1466                         ret = i915_gem_phys_pwrite(obj, args, file);
1467                 else
1468                         ret = i915_gem_shmem_pwrite(obj, args);
1469         }
1470
1471         i915_gem_object_unpin_pages(obj);
1472 err:
1473         i915_gem_object_put(obj);
1474         return ret;
1475 }
1476
1477 static inline enum fb_op_origin
1478 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1479 {
1480         return (domain == I915_GEM_DOMAIN_GTT ?
1481                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 }
1483
1484 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *i915;
1487         struct list_head *list;
1488         struct i915_vma *vma;
1489
1490         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1491                 if (!i915_vma_is_ggtt(vma))
1492                         break;
1493
1494                 if (i915_vma_is_active(vma))
1495                         continue;
1496
1497                 if (!drm_mm_node_allocated(&vma->node))
1498                         continue;
1499
1500                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1501         }
1502
1503         i915 = to_i915(obj->base.dev);
1504         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505         list_move_tail(&obj->global_link, list);
1506 }
1507
1508 /**
1509  * Called when user space prepares to use an object with the CPU, either
1510  * through the mmap ioctl's mapping or a GTT mapping.
1511  * @dev: drm device
1512  * @data: ioctl data blob
1513  * @file: drm file
1514  */
1515 int
1516 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517                           struct drm_file *file)
1518 {
1519         struct drm_i915_gem_set_domain *args = data;
1520         struct drm_i915_gem_object *obj;
1521         uint32_t read_domains = args->read_domains;
1522         uint32_t write_domain = args->write_domain;
1523         int err;
1524
1525         /* Only handle setting domains to types used by the CPU. */
1526         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527                 return -EINVAL;
1528
1529         /* Having something in the write domain implies it's in the read
1530          * domain, and only that read domain.  Enforce that in the request.
1531          */
1532         if (write_domain != 0 && read_domains != write_domain)
1533                 return -EINVAL;
1534
1535         obj = i915_gem_object_lookup(file, args->handle);
1536         if (!obj)
1537                 return -ENOENT;
1538
1539         /* Try to flush the object off the GPU without holding the lock.
1540          * We will repeat the flush holding the lock in the normal manner
1541          * to catch cases where we are gazumped.
1542          */
1543         err = i915_gem_object_wait(obj,
1544                                    I915_WAIT_INTERRUPTIBLE |
1545                                    (write_domain ? I915_WAIT_ALL : 0),
1546                                    MAX_SCHEDULE_TIMEOUT,
1547                                    to_rps_client(file));
1548         if (err)
1549                 goto out;
1550
1551         /* Flush and acquire obj->pages so that we are coherent through
1552          * direct access in memory with previous cached writes through
1553          * shmemfs and that our cache domain tracking remains valid.
1554          * For example, if the obj->filp was moved to swap without us
1555          * being notified and releasing the pages, we would mistakenly
1556          * continue to assume that the obj remained out of the CPU cached
1557          * domain.
1558          */
1559         err = i915_gem_object_pin_pages(obj);
1560         if (err)
1561                 goto out;
1562
1563         err = i915_mutex_lock_interruptible(dev);
1564         if (err)
1565                 goto out_unpin;
1566
1567         if (read_domains & I915_GEM_DOMAIN_GTT)
1568                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569         else
1570                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571
1572         /* And bump the LRU for this access */
1573         i915_gem_object_bump_inactive_ggtt(obj);
1574
1575         mutex_unlock(&dev->struct_mutex);
1576
1577         if (write_domain != 0)
1578                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1579
1580 out_unpin:
1581         i915_gem_object_unpin_pages(obj);
1582 out:
1583         i915_gem_object_put(obj);
1584         return err;
1585 }
1586
1587 /**
1588  * Called when user space has done writes to this buffer
1589  * @dev: drm device
1590  * @data: ioctl data blob
1591  * @file: drm file
1592  */
1593 int
1594 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595                          struct drm_file *file)
1596 {
1597         struct drm_i915_gem_sw_finish *args = data;
1598         struct drm_i915_gem_object *obj;
1599         int err = 0;
1600
1601         obj = i915_gem_object_lookup(file, args->handle);
1602         if (!obj)
1603                 return -ENOENT;
1604
1605         /* Pinned buffers may be scanout, so flush the cache */
1606         if (READ_ONCE(obj->pin_display)) {
1607                 err = i915_mutex_lock_interruptible(dev);
1608                 if (!err) {
1609                         i915_gem_object_flush_cpu_write_domain(obj);
1610                         mutex_unlock(&dev->struct_mutex);
1611                 }
1612         }
1613
1614         i915_gem_object_put(obj);
1615         return err;
1616 }
1617
1618 /**
1619  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1620  *                       it is mapped to.
1621  * @dev: drm device
1622  * @data: ioctl data blob
1623  * @file: drm file
1624  *
1625  * While the mapping holds a reference on the contents of the object, it doesn't
1626  * imply a ref on the object itself.
1627  *
1628  * IMPORTANT:
1629  *
1630  * DRM driver writers who look a this function as an example for how to do GEM
1631  * mmap support, please don't implement mmap support like here. The modern way
1632  * to implement DRM mmap support is with an mmap offset ioctl (like
1633  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1634  * That way debug tooling like valgrind will understand what's going on, hiding
1635  * the mmap call in a driver private ioctl will break that. The i915 driver only
1636  * does cpu mmaps this way because we didn't know better.
1637  */
1638 int
1639 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640                     struct drm_file *file)
1641 {
1642         struct drm_i915_gem_mmap *args = data;
1643         struct drm_i915_gem_object *obj;
1644         unsigned long addr;
1645
1646         if (args->flags & ~(I915_MMAP_WC))
1647                 return -EINVAL;
1648
1649         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650                 return -ENODEV;
1651
1652         obj = i915_gem_object_lookup(file, args->handle);
1653         if (!obj)
1654                 return -ENOENT;
1655
1656         /* prime objects have no backing filp to GEM mmap
1657          * pages from.
1658          */
1659         if (!obj->base.filp) {
1660                 i915_gem_object_put(obj);
1661                 return -EINVAL;
1662         }
1663
1664         addr = vm_mmap(obj->base.filp, 0, args->size,
1665                        PROT_READ | PROT_WRITE, MAP_SHARED,
1666                        args->offset);
1667         if (args->flags & I915_MMAP_WC) {
1668                 struct mm_struct *mm = current->mm;
1669                 struct vm_area_struct *vma;
1670
1671                 if (down_write_killable(&mm->mmap_sem)) {
1672                         i915_gem_object_put(obj);
1673                         return -EINTR;
1674                 }
1675                 vma = find_vma(mm, addr);
1676                 if (vma)
1677                         vma->vm_page_prot =
1678                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1679                 else
1680                         addr = -ENOMEM;
1681                 up_write(&mm->mmap_sem);
1682
1683                 /* This may race, but that's ok, it only gets set */
1684                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685         }
1686         i915_gem_object_put(obj);
1687         if (IS_ERR((void *)addr))
1688                 return addr;
1689
1690         args->addr_ptr = (uint64_t) addr;
1691
1692         return 0;
1693 }
1694
1695 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1696 {
1697         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 }
1699
1700 /**
1701  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1702  *
1703  * A history of the GTT mmap interface:
1704  *
1705  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1706  *     aligned and suitable for fencing, and still fit into the available
1707  *     mappable space left by the pinned display objects. A classic problem
1708  *     we called the page-fault-of-doom where we would ping-pong between
1709  *     two objects that could not fit inside the GTT and so the memcpy
1710  *     would page one object in at the expense of the other between every
1711  *     single byte.
1712  *
1713  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1714  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1715  *     object is too large for the available space (or simply too large
1716  *     for the mappable aperture!), a view is created instead and faulted
1717  *     into userspace. (This view is aligned and sized appropriately for
1718  *     fenced access.)
1719  *
1720  * Restrictions:
1721  *
1722  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1723  *    hangs on some architectures, corruption on others. An attempt to service
1724  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1725  *
1726  *  * the object must be able to fit into RAM (physical memory, though no
1727  *    limited to the mappable aperture).
1728  *
1729  *
1730  * Caveats:
1731  *
1732  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1733  *    all data to system memory. Subsequent access will not be synchronized.
1734  *
1735  *  * all mappings are revoked on runtime device suspend.
1736  *
1737  *  * there are only 8, 16 or 32 fence registers to share between all users
1738  *    (older machines require fence register for display and blitter access
1739  *    as well). Contention of the fence registers will cause the previous users
1740  *    to be unmapped and any new access will generate new page faults.
1741  *
1742  *  * running out of memory while servicing a fault may generate a SIGBUS,
1743  *    rather than the expected SIGSEGV.
1744  */
1745 int i915_gem_mmap_gtt_version(void)
1746 {
1747         return 1;
1748 }
1749
1750 static inline struct i915_ggtt_view
1751 compute_partial_view(struct drm_i915_gem_object *obj,
1752                      pgoff_t page_offset,
1753                      unsigned int chunk)
1754 {
1755         struct i915_ggtt_view view;
1756
1757         if (i915_gem_object_is_tiled(obj))
1758                 chunk = roundup(chunk, tile_row_pages(obj));
1759
1760         view.type = I915_GGTT_VIEW_PARTIAL;
1761         view.partial.offset = rounddown(page_offset, chunk);
1762         view.partial.size =
1763                 min_t(unsigned int, chunk,
1764                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765
1766         /* If the partial covers the entire object, just create a normal VMA. */
1767         if (chunk >= obj->base.size >> PAGE_SHIFT)
1768                 view.type = I915_GGTT_VIEW_NORMAL;
1769
1770         return view;
1771 }
1772
1773 /**
1774  * i915_gem_fault - fault a page into the GTT
1775  * @vmf: fault info
1776  *
1777  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1778  * from userspace.  The fault handler takes care of binding the object to
1779  * the GTT (if needed), allocating and programming a fence register (again,
1780  * only if needed based on whether the old reg is still valid or the object
1781  * is tiled) and inserting a new PTE into the faulting process.
1782  *
1783  * Note that the faulting process may involve evicting existing objects
1784  * from the GTT and/or fence registers to make room.  So performance may
1785  * suffer if the GTT working set is large or there are few fence registers
1786  * left.
1787  *
1788  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1789  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1790  */
1791 int i915_gem_fault(struct vm_fault *vmf)
1792 {
1793 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1794         struct vm_area_struct *area = vmf->vma;
1795         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796         struct drm_device *dev = obj->base.dev;
1797         struct drm_i915_private *dev_priv = to_i915(dev);
1798         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1800         struct i915_vma *vma;
1801         pgoff_t page_offset;
1802         unsigned int flags;
1803         int ret;
1804
1805         /* We don't use vmf->pgoff since that has the fake offset */
1806         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807
1808         trace_i915_gem_object_fault(obj, page_offset, true, write);
1809
1810         /* Try to flush the object off the GPU first without holding the lock.
1811          * Upon acquiring the lock, we will perform our sanity checks and then
1812          * repeat the flush holding the lock in the normal manner to catch cases
1813          * where we are gazumped.
1814          */
1815         ret = i915_gem_object_wait(obj,
1816                                    I915_WAIT_INTERRUPTIBLE,
1817                                    MAX_SCHEDULE_TIMEOUT,
1818                                    NULL);
1819         if (ret)
1820                 goto err;
1821
1822         ret = i915_gem_object_pin_pages(obj);
1823         if (ret)
1824                 goto err;
1825
1826         intel_runtime_pm_get(dev_priv);
1827
1828         ret = i915_mutex_lock_interruptible(dev);
1829         if (ret)
1830                 goto err_rpm;
1831
1832         /* Access to snoopable pages through the GTT is incoherent. */
1833         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834                 ret = -EFAULT;
1835                 goto err_unlock;
1836         }
1837
1838         /* If the object is smaller than a couple of partial vma, it is
1839          * not worth only creating a single partial vma - we may as well
1840          * clear enough space for the full object.
1841          */
1842         flags = PIN_MAPPABLE;
1843         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1844                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1845
1846         /* Now pin it into the GTT as needed */
1847         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848         if (IS_ERR(vma)) {
1849                 /* Use a partial view if it is bigger than available space */
1850                 struct i915_ggtt_view view =
1851                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852
1853                 /* Userspace is now writing through an untracked VMA, abandon
1854                  * all hope that the hardware is able to track future writes.
1855                  */
1856                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1857
1858                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1859         }
1860         if (IS_ERR(vma)) {
1861                 ret = PTR_ERR(vma);
1862                 goto err_unlock;
1863         }
1864
1865         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1866         if (ret)
1867                 goto err_unpin;
1868
1869         ret = i915_vma_get_fence(vma);
1870         if (ret)
1871                 goto err_unpin;
1872
1873         /* Mark as being mmapped into userspace for later revocation */
1874         assert_rpm_wakelock_held(dev_priv);
1875         if (list_empty(&obj->userfault_link))
1876                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1877
1878         /* Finally, remap it using the new GTT offset */
1879         ret = remap_io_mapping(area,
1880                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1882                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1883                                &ggtt->mappable);
1884
1885 err_unpin:
1886         __i915_vma_unpin(vma);
1887 err_unlock:
1888         mutex_unlock(&dev->struct_mutex);
1889 err_rpm:
1890         intel_runtime_pm_put(dev_priv);
1891         i915_gem_object_unpin_pages(obj);
1892 err:
1893         switch (ret) {
1894         case -EIO:
1895                 /*
1896                  * We eat errors when the gpu is terminally wedged to avoid
1897                  * userspace unduly crashing (gl has no provisions for mmaps to
1898                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1899                  * and so needs to be reported.
1900                  */
1901                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902                         ret = VM_FAULT_SIGBUS;
1903                         break;
1904                 }
1905         case -EAGAIN:
1906                 /*
1907                  * EAGAIN means the gpu is hung and we'll wait for the error
1908                  * handler to reset everything when re-faulting in
1909                  * i915_mutex_lock_interruptible.
1910                  */
1911         case 0:
1912         case -ERESTARTSYS:
1913         case -EINTR:
1914         case -EBUSY:
1915                 /*
1916                  * EBUSY is ok: this just means that another thread
1917                  * already did the job.
1918                  */
1919                 ret = VM_FAULT_NOPAGE;
1920                 break;
1921         case -ENOMEM:
1922                 ret = VM_FAULT_OOM;
1923                 break;
1924         case -ENOSPC:
1925         case -EFAULT:
1926                 ret = VM_FAULT_SIGBUS;
1927                 break;
1928         default:
1929                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930                 ret = VM_FAULT_SIGBUS;
1931                 break;
1932         }
1933         return ret;
1934 }
1935
1936 /**
1937  * i915_gem_release_mmap - remove physical page mappings
1938  * @obj: obj in question
1939  *
1940  * Preserve the reservation of the mmapping with the DRM core code, but
1941  * relinquish ownership of the pages back to the system.
1942  *
1943  * It is vital that we remove the page mapping if we have mapped a tiled
1944  * object through the GTT and then lose the fence register due to
1945  * resource pressure. Similarly if the object has been moved out of the
1946  * aperture, than pages mapped into userspace must be revoked. Removing the
1947  * mapping will then trigger a page fault on the next user access, allowing
1948  * fixup by i915_gem_fault().
1949  */
1950 void
1951 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952 {
1953         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1954
1955         /* Serialisation between user GTT access and our code depends upon
1956          * revoking the CPU's PTE whilst the mutex is held. The next user
1957          * pagefault then has to wait until we release the mutex.
1958          *
1959          * Note that RPM complicates somewhat by adding an additional
1960          * requirement that operations to the GGTT be made holding the RPM
1961          * wakeref.
1962          */
1963         lockdep_assert_held(&i915->drm.struct_mutex);
1964         intel_runtime_pm_get(i915);
1965
1966         if (list_empty(&obj->userfault_link))
1967                 goto out;
1968
1969         list_del_init(&obj->userfault_link);
1970         drm_vma_node_unmap(&obj->base.vma_node,
1971                            obj->base.dev->anon_inode->i_mapping);
1972
1973         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1974          * memory transactions from userspace before we return. The TLB
1975          * flushing implied above by changing the PTE above *should* be
1976          * sufficient, an extra barrier here just provides us with a bit
1977          * of paranoid documentation about our requirement to serialise
1978          * memory writes before touching registers / GSM.
1979          */
1980         wmb();
1981
1982 out:
1983         intel_runtime_pm_put(i915);
1984 }
1985
1986 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987 {
1988         struct drm_i915_gem_object *obj, *on;
1989         int i;
1990
1991         /*
1992          * Only called during RPM suspend. All users of the userfault_list
1993          * must be holding an RPM wakeref to ensure that this can not
1994          * run concurrently with themselves (and use the struct_mutex for
1995          * protection between themselves).
1996          */
1997
1998         list_for_each_entry_safe(obj, on,
1999                                  &dev_priv->mm.userfault_list, userfault_link) {
2000                 list_del_init(&obj->userfault_link);
2001                 drm_vma_node_unmap(&obj->base.vma_node,
2002                                    obj->base.dev->anon_inode->i_mapping);
2003         }
2004
2005         /* The fence will be lost when the device powers down. If any were
2006          * in use by hardware (i.e. they are pinned), we should not be powering
2007          * down! All other fences will be reacquired by the user upon waking.
2008          */
2009         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2011
2012                 /* Ideally we want to assert that the fence register is not
2013                  * live at this point (i.e. that no piece of code will be
2014                  * trying to write through fence + GTT, as that both violates
2015                  * our tracking of activity and associated locking/barriers,
2016                  * but also is illegal given that the hw is powered down).
2017                  *
2018                  * Previously we used reg->pin_count as a "liveness" indicator.
2019                  * That is not sufficient, and we need a more fine-grained
2020                  * tool if we want to have a sanity check here.
2021                  */
2022
2023                 if (!reg->vma)
2024                         continue;
2025
2026                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2027                 reg->dirty = true;
2028         }
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2034         int err;
2035
2036         err = drm_gem_create_mmap_offset(&obj->base);
2037         if (likely(!err))
2038                 return 0;
2039
2040         /* Attempt to reap some mmap space from dead objects */
2041         do {
2042                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043                 if (err)
2044                         break;
2045
2046                 i915_gem_drain_freed_objects(dev_priv);
2047                 err = drm_gem_create_mmap_offset(&obj->base);
2048                 if (!err)
2049                         break;
2050
2051         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2052
2053         return err;
2054 }
2055
2056 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057 {
2058         drm_gem_free_mmap_offset(&obj->base);
2059 }
2060
2061 int
2062 i915_gem_mmap_gtt(struct drm_file *file,
2063                   struct drm_device *dev,
2064                   uint32_t handle,
2065                   uint64_t *offset)
2066 {
2067         struct drm_i915_gem_object *obj;
2068         int ret;
2069
2070         obj = i915_gem_object_lookup(file, handle);
2071         if (!obj)
2072                 return -ENOENT;
2073
2074         ret = i915_gem_object_create_mmap_offset(obj);
2075         if (ret == 0)
2076                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077
2078         i915_gem_object_put(obj);
2079         return ret;
2080 }
2081
2082 /**
2083  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084  * @dev: DRM device
2085  * @data: GTT mapping ioctl data
2086  * @file: GEM object info
2087  *
2088  * Simply returns the fake offset to userspace so it can mmap it.
2089  * The mmap call will end up in drm_gem_mmap(), which will set things
2090  * up so we can get faults in the handler above.
2091  *
2092  * The fault handler will take care of binding the object into the GTT
2093  * (since it may have been evicted to make room for something), allocating
2094  * a fence register, and mapping the appropriate aperture address into
2095  * userspace.
2096  */
2097 int
2098 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099                         struct drm_file *file)
2100 {
2101         struct drm_i915_gem_mmap_gtt *args = data;
2102
2103         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 }
2105
2106 /* Immediately discard the backing storage */
2107 static void
2108 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109 {
2110         i915_gem_object_free_mmap_offset(obj);
2111
2112         if (obj->base.filp == NULL)
2113                 return;
2114
2115         /* Our goal here is to return as much of the memory as
2116          * is possible back to the system as we are called from OOM.
2117          * To do this we must instruct the shmfs to drop all of its
2118          * backing pages, *now*.
2119          */
2120         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2121         obj->mm.madv = __I915_MADV_PURGED;
2122 }
2123
2124 /* Try to discard unwanted pages */
2125 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2126 {
2127         struct address_space *mapping;
2128
2129         lockdep_assert_held(&obj->mm.lock);
2130         GEM_BUG_ON(obj->mm.pages);
2131
2132         switch (obj->mm.madv) {
2133         case I915_MADV_DONTNEED:
2134                 i915_gem_object_truncate(obj);
2135         case __I915_MADV_PURGED:
2136                 return;
2137         }
2138
2139         if (obj->base.filp == NULL)
2140                 return;
2141
2142         mapping = obj->base.filp->f_mapping,
2143         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 }
2145
2146 static void
2147 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148                               struct sg_table *pages)
2149 {
2150         struct sgt_iter sgt_iter;
2151         struct page *page;
2152
2153         __i915_gem_object_release_shmem(obj, pages, true);
2154
2155         i915_gem_gtt_finish_pages(obj, pages);
2156
2157         if (i915_gem_object_needs_bit17_swizzle(obj))
2158                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2159
2160         for_each_sgt_page(page, sgt_iter, pages) {
2161                 if (obj->mm.dirty)
2162                         set_page_dirty(page);
2163
2164                 if (obj->mm.madv == I915_MADV_WILLNEED)
2165                         mark_page_accessed(page);
2166
2167                 put_page(page);
2168         }
2169         obj->mm.dirty = false;
2170
2171         sg_free_table(pages);
2172         kfree(pages);
2173 }
2174
2175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176 {
2177         struct radix_tree_iter iter;
2178         void **slot;
2179
2180         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 }
2183
2184 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2185                                  enum i915_mm_subclass subclass)
2186 {
2187         struct sg_table *pages;
2188
2189         if (i915_gem_object_has_pinned_pages(obj))
2190                 return;
2191
2192         GEM_BUG_ON(obj->bind_count);
2193         if (!READ_ONCE(obj->mm.pages))
2194                 return;
2195
2196         /* May be called by shrinker from within get_pages() (on another bo) */
2197         mutex_lock_nested(&obj->mm.lock, subclass);
2198         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2199                 goto unlock;
2200
2201         /* ->put_pages might need to allocate memory for the bit17 swizzle
2202          * array, hence protect them from being reaped by removing them from gtt
2203          * lists early. */
2204         pages = fetch_and_zero(&obj->mm.pages);
2205         GEM_BUG_ON(!pages);
2206
2207         if (obj->mm.mapping) {
2208                 void *ptr;
2209
2210                 ptr = ptr_mask_bits(obj->mm.mapping);
2211                 if (is_vmalloc_addr(ptr))
2212                         vunmap(ptr);
2213                 else
2214                         kunmap(kmap_to_page(ptr));
2215
2216                 obj->mm.mapping = NULL;
2217         }
2218
2219         __i915_gem_object_reset_page_iter(obj);
2220
2221         obj->ops->put_pages(obj, pages);
2222 unlock:
2223         mutex_unlock(&obj->mm.lock);
2224 }
2225
2226 static void i915_sg_trim(struct sg_table *orig_st)
2227 {
2228         struct sg_table new_st;
2229         struct scatterlist *sg, *new_sg;
2230         unsigned int i;
2231
2232         if (orig_st->nents == orig_st->orig_nents)
2233                 return;
2234
2235         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2236                 return;
2237
2238         new_sg = new_st.sgl;
2239         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2240                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2241                 /* called before being DMA mapped, no need to copy sg->dma_* */
2242                 new_sg = sg_next(new_sg);
2243         }
2244         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2245
2246         sg_free_table(orig_st);
2247
2248         *orig_st = new_st;
2249 }
2250
2251 static struct sg_table *
2252 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253 {
2254         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2255         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2256         unsigned long i;
2257         struct address_space *mapping;
2258         struct sg_table *st;
2259         struct scatterlist *sg;
2260         struct sgt_iter sgt_iter;
2261         struct page *page;
2262         unsigned long last_pfn = 0;     /* suppress gcc warning */
2263         unsigned int max_segment;
2264         int ret;
2265         gfp_t gfp;
2266
2267         /* Assert that the object is not currently in any GPU domain. As it
2268          * wasn't in the GTT, there shouldn't be any way it could have been in
2269          * a GPU cache
2270          */
2271         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2272         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2273
2274         max_segment = swiotlb_max_segment();
2275         if (!max_segment)
2276                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2277
2278         st = kmalloc(sizeof(*st), GFP_KERNEL);
2279         if (st == NULL)
2280                 return ERR_PTR(-ENOMEM);
2281
2282 rebuild_st:
2283         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2284                 kfree(st);
2285                 return ERR_PTR(-ENOMEM);
2286         }
2287
2288         /* Get the list of pages out of our struct file.  They'll be pinned
2289          * at this point until we release them.
2290          *
2291          * Fail silently without starting the shrinker
2292          */
2293         mapping = obj->base.filp->f_mapping;
2294         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2295         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2296         sg = st->sgl;
2297         st->nents = 0;
2298         for (i = 0; i < page_count; i++) {
2299                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2300                 if (IS_ERR(page)) {
2301                         i915_gem_shrink(dev_priv,
2302                                         page_count,
2303                                         I915_SHRINK_BOUND |
2304                                         I915_SHRINK_UNBOUND |
2305                                         I915_SHRINK_PURGEABLE);
2306                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2307                 }
2308                 if (IS_ERR(page)) {
2309                         /* We've tried hard to allocate the memory by reaping
2310                          * our own buffer, now let the real VM do its job and
2311                          * go down in flames if truly OOM.
2312                          */
2313                         page = shmem_read_mapping_page(mapping, i);
2314                         if (IS_ERR(page)) {
2315                                 ret = PTR_ERR(page);
2316                                 goto err_sg;
2317                         }
2318                 }
2319                 if (!i ||
2320                     sg->length >= max_segment ||
2321                     page_to_pfn(page) != last_pfn + 1) {
2322                         if (i)
2323                                 sg = sg_next(sg);
2324                         st->nents++;
2325                         sg_set_page(sg, page, PAGE_SIZE, 0);
2326                 } else {
2327                         sg->length += PAGE_SIZE;
2328                 }
2329                 last_pfn = page_to_pfn(page);
2330
2331                 /* Check that the i965g/gm workaround works. */
2332                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2333         }
2334         if (sg) /* loop terminated early; short sg table */
2335                 sg_mark_end(sg);
2336
2337         /* Trim unused sg entries to avoid wasting memory. */
2338         i915_sg_trim(st);
2339
2340         ret = i915_gem_gtt_prepare_pages(obj, st);
2341         if (ret) {
2342                 /* DMA remapping failed? One possible cause is that
2343                  * it could not reserve enough large entries, asking
2344                  * for PAGE_SIZE chunks instead may be helpful.
2345                  */
2346                 if (max_segment > PAGE_SIZE) {
2347                         for_each_sgt_page(page, sgt_iter, st)
2348                                 put_page(page);
2349                         sg_free_table(st);
2350
2351                         max_segment = PAGE_SIZE;
2352                         goto rebuild_st;
2353                 } else {
2354                         dev_warn(&dev_priv->drm.pdev->dev,
2355                                  "Failed to DMA remap %lu pages\n",
2356                                  page_count);
2357                         goto err_pages;
2358                 }
2359         }
2360
2361         if (i915_gem_object_needs_bit17_swizzle(obj))
2362                 i915_gem_object_do_bit_17_swizzle(obj, st);
2363
2364         return st;
2365
2366 err_sg:
2367         sg_mark_end(sg);
2368 err_pages:
2369         for_each_sgt_page(page, sgt_iter, st)
2370                 put_page(page);
2371         sg_free_table(st);
2372         kfree(st);
2373
2374         /* shmemfs first checks if there is enough memory to allocate the page
2375          * and reports ENOSPC should there be insufficient, along with the usual
2376          * ENOMEM for a genuine allocation failure.
2377          *
2378          * We use ENOSPC in our driver to mean that we have run out of aperture
2379          * space and so want to translate the error from shmemfs back to our
2380          * usual understanding of ENOMEM.
2381          */
2382         if (ret == -ENOSPC)
2383                 ret = -ENOMEM;
2384
2385         return ERR_PTR(ret);
2386 }
2387
2388 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2389                                  struct sg_table *pages)
2390 {
2391         lockdep_assert_held(&obj->mm.lock);
2392
2393         obj->mm.get_page.sg_pos = pages->sgl;
2394         obj->mm.get_page.sg_idx = 0;
2395
2396         obj->mm.pages = pages;
2397
2398         if (i915_gem_object_is_tiled(obj) &&
2399             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2400                 GEM_BUG_ON(obj->mm.quirked);
2401                 __i915_gem_object_pin_pages(obj);
2402                 obj->mm.quirked = true;
2403         }
2404 }
2405
2406 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2407 {
2408         struct sg_table *pages;
2409
2410         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2411
2412         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2413                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2414                 return -EFAULT;
2415         }
2416
2417         pages = obj->ops->get_pages(obj);
2418         if (unlikely(IS_ERR(pages)))
2419                 return PTR_ERR(pages);
2420
2421         __i915_gem_object_set_pages(obj, pages);
2422         return 0;
2423 }
2424
2425 /* Ensure that the associated pages are gathered from the backing storage
2426  * and pinned into our object. i915_gem_object_pin_pages() may be called
2427  * multiple times before they are released by a single call to
2428  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2429  * either as a result of memory pressure (reaping pages under the shrinker)
2430  * or as the object is itself released.
2431  */
2432 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2433 {
2434         int err;
2435
2436         err = mutex_lock_interruptible(&obj->mm.lock);
2437         if (err)
2438                 return err;
2439
2440         if (unlikely(!obj->mm.pages)) {
2441                 err = ____i915_gem_object_get_pages(obj);
2442                 if (err)
2443                         goto unlock;
2444
2445                 smp_mb__before_atomic();
2446         }
2447         atomic_inc(&obj->mm.pages_pin_count);
2448
2449 unlock:
2450         mutex_unlock(&obj->mm.lock);
2451         return err;
2452 }
2453
2454 /* The 'mapping' part of i915_gem_object_pin_map() below */
2455 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2456                                  enum i915_map_type type)
2457 {
2458         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2459         struct sg_table *sgt = obj->mm.pages;
2460         struct sgt_iter sgt_iter;
2461         struct page *page;
2462         struct page *stack_pages[32];
2463         struct page **pages = stack_pages;
2464         unsigned long i = 0;
2465         pgprot_t pgprot;
2466         void *addr;
2467
2468         /* A single page can always be kmapped */
2469         if (n_pages == 1 && type == I915_MAP_WB)
2470                 return kmap(sg_page(sgt->sgl));
2471
2472         if (n_pages > ARRAY_SIZE(stack_pages)) {
2473                 /* Too big for stack -- allocate temporary array instead */
2474                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2475                 if (!pages)
2476                         return NULL;
2477         }
2478
2479         for_each_sgt_page(page, sgt_iter, sgt)
2480                 pages[i++] = page;
2481
2482         /* Check that we have the expected number of pages */
2483         GEM_BUG_ON(i != n_pages);
2484
2485         switch (type) {
2486         case I915_MAP_WB:
2487                 pgprot = PAGE_KERNEL;
2488                 break;
2489         case I915_MAP_WC:
2490                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2491                 break;
2492         }
2493         addr = vmap(pages, n_pages, 0, pgprot);
2494
2495         if (pages != stack_pages)
2496                 drm_free_large(pages);
2497
2498         return addr;
2499 }
2500
2501 /* get, pin, and map the pages of the object into kernel space */
2502 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2503                               enum i915_map_type type)
2504 {
2505         enum i915_map_type has_type;
2506         bool pinned;
2507         void *ptr;
2508         int ret;
2509
2510         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2511
2512         ret = mutex_lock_interruptible(&obj->mm.lock);
2513         if (ret)
2514                 return ERR_PTR(ret);
2515
2516         pinned = true;
2517         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2518                 if (unlikely(!obj->mm.pages)) {
2519                         ret = ____i915_gem_object_get_pages(obj);
2520                         if (ret)
2521                                 goto err_unlock;
2522
2523                         smp_mb__before_atomic();
2524                 }
2525                 atomic_inc(&obj->mm.pages_pin_count);
2526                 pinned = false;
2527         }
2528         GEM_BUG_ON(!obj->mm.pages);
2529
2530         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2531         if (ptr && has_type != type) {
2532                 if (pinned) {
2533                         ret = -EBUSY;
2534                         goto err_unpin;
2535                 }
2536
2537                 if (is_vmalloc_addr(ptr))
2538                         vunmap(ptr);
2539                 else
2540                         kunmap(kmap_to_page(ptr));
2541
2542                 ptr = obj->mm.mapping = NULL;
2543         }
2544
2545         if (!ptr) {
2546                 ptr = i915_gem_object_map(obj, type);
2547                 if (!ptr) {
2548                         ret = -ENOMEM;
2549                         goto err_unpin;
2550                 }
2551
2552                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2553         }
2554
2555 out_unlock:
2556         mutex_unlock(&obj->mm.lock);
2557         return ptr;
2558
2559 err_unpin:
2560         atomic_dec(&obj->mm.pages_pin_count);
2561 err_unlock:
2562         ptr = ERR_PTR(ret);
2563         goto out_unlock;
2564 }
2565
2566 static bool ban_context(const struct i915_gem_context *ctx)
2567 {
2568         return (i915_gem_context_is_bannable(ctx) &&
2569                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2570 }
2571
2572 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2573 {
2574         ctx->guilty_count++;
2575         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2576         if (ban_context(ctx))
2577                 i915_gem_context_set_banned(ctx);
2578
2579         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2580                          ctx->name, ctx->ban_score,
2581                          yesno(i915_gem_context_is_banned(ctx)));
2582
2583         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2584                 return;
2585
2586         ctx->file_priv->context_bans++;
2587         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2588                          ctx->name, ctx->file_priv->context_bans);
2589 }
2590
2591 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2592 {
2593         ctx->active_count++;
2594 }
2595
2596 struct drm_i915_gem_request *
2597 i915_gem_find_active_request(struct intel_engine_cs *engine)
2598 {
2599         struct drm_i915_gem_request *request;
2600
2601         /* We are called by the error capture and reset at a random
2602          * point in time. In particular, note that neither is crucially
2603          * ordered with an interrupt. After a hang, the GPU is dead and we
2604          * assume that no more writes can happen (we waited long enough for
2605          * all writes that were in transaction to be flushed) - adding an
2606          * extra delay for a recent interrupt is pointless. Hence, we do
2607          * not need an engine->irq_seqno_barrier() before the seqno reads.
2608          */
2609         list_for_each_entry(request, &engine->timeline->requests, link) {
2610                 if (__i915_gem_request_completed(request))
2611                         continue;
2612
2613                 GEM_BUG_ON(request->engine != engine);
2614                 return request;
2615         }
2616
2617         return NULL;
2618 }
2619
2620 static bool engine_stalled(struct intel_engine_cs *engine)
2621 {
2622         if (!engine->hangcheck.stalled)
2623                 return false;
2624
2625         /* Check for possible seqno movement after hang declaration */
2626         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2627                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2628                 return false;
2629         }
2630
2631         return true;
2632 }
2633
2634 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2635 {
2636         struct intel_engine_cs *engine;
2637         enum intel_engine_id id;
2638         int err = 0;
2639
2640         /* Ensure irq handler finishes, and not run again. */
2641         for_each_engine(engine, dev_priv, id) {
2642                 struct drm_i915_gem_request *request;
2643
2644                 tasklet_kill(&engine->irq_tasklet);
2645
2646                 if (engine_stalled(engine)) {
2647                         request = i915_gem_find_active_request(engine);
2648                         if (request && request->fence.error == -EIO)
2649                                 err = -EIO; /* Previous reset failed! */
2650                 }
2651         }
2652
2653         i915_gem_revoke_fences(dev_priv);
2654
2655         return err;
2656 }
2657
2658 static void skip_request(struct drm_i915_gem_request *request)
2659 {
2660         void *vaddr = request->ring->vaddr;
2661         u32 head;
2662
2663         /* As this request likely depends on state from the lost
2664          * context, clear out all the user operations leaving the
2665          * breadcrumb at the end (so we get the fence notifications).
2666          */
2667         head = request->head;
2668         if (request->postfix < head) {
2669                 memset(vaddr + head, 0, request->ring->size - head);
2670                 head = 0;
2671         }
2672         memset(vaddr + head, 0, request->postfix - head);
2673
2674         dma_fence_set_error(&request->fence, -EIO);
2675 }
2676
2677 static void engine_skip_context(struct drm_i915_gem_request *request)
2678 {
2679         struct intel_engine_cs *engine = request->engine;
2680         struct i915_gem_context *hung_ctx = request->ctx;
2681         struct intel_timeline *timeline;
2682         unsigned long flags;
2683
2684         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2685
2686         spin_lock_irqsave(&engine->timeline->lock, flags);
2687         spin_lock(&timeline->lock);
2688
2689         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2690                 if (request->ctx == hung_ctx)
2691                         skip_request(request);
2692
2693         list_for_each_entry(request, &timeline->requests, link)
2694                 skip_request(request);
2695
2696         spin_unlock(&timeline->lock);
2697         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2698 }
2699
2700 /* Returns true if the request was guilty of hang */
2701 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2702 {
2703         /* Read once and return the resolution */
2704         const bool guilty = engine_stalled(request->engine);
2705
2706         /* The guilty request will get skipped on a hung engine.
2707          *
2708          * Users of client default contexts do not rely on logical
2709          * state preserved between batches so it is safe to execute
2710          * queued requests following the hang. Non default contexts
2711          * rely on preserved state, so skipping a batch loses the
2712          * evolution of the state and it needs to be considered corrupted.
2713          * Executing more queued batches on top of corrupted state is
2714          * risky. But we take the risk by trying to advance through
2715          * the queued requests in order to make the client behaviour
2716          * more predictable around resets, by not throwing away random
2717          * amount of batches it has prepared for execution. Sophisticated
2718          * clients can use gem_reset_stats_ioctl and dma fence status
2719          * (exported via sync_file info ioctl on explicit fences) to observe
2720          * when it loses the context state and should rebuild accordingly.
2721          *
2722          * The context ban, and ultimately the client ban, mechanism are safety
2723          * valves if client submission ends up resulting in nothing more than
2724          * subsequent hangs.
2725          */
2726
2727         if (guilty) {
2728                 i915_gem_context_mark_guilty(request->ctx);
2729                 skip_request(request);
2730         } else {
2731                 i915_gem_context_mark_innocent(request->ctx);
2732                 dma_fence_set_error(&request->fence, -EAGAIN);
2733         }
2734
2735         return guilty;
2736 }
2737
2738 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2739 {
2740         struct drm_i915_gem_request *request;
2741
2742         if (engine->irq_seqno_barrier)
2743                 engine->irq_seqno_barrier(engine);
2744
2745         request = i915_gem_find_active_request(engine);
2746         if (request && i915_gem_reset_request(request)) {
2747                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2748                                  engine->name, request->global_seqno);
2749
2750                 /* If this context is now banned, skip all pending requests. */
2751                 if (i915_gem_context_is_banned(request->ctx))
2752                         engine_skip_context(request);
2753         }
2754
2755         /* Setup the CS to resume from the breadcrumb of the hung request */
2756         engine->reset_hw(engine, request);
2757 }
2758
2759 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2760 {
2761         struct intel_engine_cs *engine;
2762         enum intel_engine_id id;
2763
2764         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2765
2766         i915_gem_retire_requests(dev_priv);
2767
2768         for_each_engine(engine, dev_priv, id)
2769                 i915_gem_reset_engine(engine);
2770
2771         i915_gem_restore_fences(dev_priv);
2772
2773         if (dev_priv->gt.awake) {
2774                 intel_sanitize_gt_powersave(dev_priv);
2775                 intel_enable_gt_powersave(dev_priv);
2776                 if (INTEL_GEN(dev_priv) >= 6)
2777                         gen6_rps_busy(dev_priv);
2778         }
2779 }
2780
2781 static void nop_submit_request(struct drm_i915_gem_request *request)
2782 {
2783         dma_fence_set_error(&request->fence, -EIO);
2784         i915_gem_request_submit(request);
2785         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2786 }
2787
2788 static void engine_set_wedged(struct intel_engine_cs *engine)
2789 {
2790         struct drm_i915_gem_request *request;
2791         unsigned long flags;
2792
2793         /* We need to be sure that no thread is running the old callback as
2794          * we install the nop handler (otherwise we would submit a request
2795          * to hardware that will never complete). In order to prevent this
2796          * race, we wait until the machine is idle before making the swap
2797          * (using stop_machine()).
2798          */
2799         engine->submit_request = nop_submit_request;
2800
2801         /* Mark all executing requests as skipped */
2802         spin_lock_irqsave(&engine->timeline->lock, flags);
2803         list_for_each_entry(request, &engine->timeline->requests, link)
2804                 dma_fence_set_error(&request->fence, -EIO);
2805         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2806
2807         /* Mark all pending requests as complete so that any concurrent
2808          * (lockless) lookup doesn't try and wait upon the request as we
2809          * reset it.
2810          */
2811         intel_engine_init_global_seqno(engine,
2812                                        intel_engine_last_submit(engine));
2813
2814         /*
2815          * Clear the execlists queue up before freeing the requests, as those
2816          * are the ones that keep the context and ringbuffer backing objects
2817          * pinned in place.
2818          */
2819
2820         if (i915.enable_execlists) {
2821                 unsigned long flags;
2822
2823                 spin_lock_irqsave(&engine->timeline->lock, flags);
2824
2825                 i915_gem_request_put(engine->execlist_port[0].request);
2826                 i915_gem_request_put(engine->execlist_port[1].request);
2827                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2828                 engine->execlist_queue = RB_ROOT;
2829                 engine->execlist_first = NULL;
2830
2831                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2832         }
2833 }
2834
2835 static int __i915_gem_set_wedged_BKL(void *data)
2836 {
2837         struct drm_i915_private *i915 = data;
2838         struct intel_engine_cs *engine;
2839         enum intel_engine_id id;
2840
2841         for_each_engine(engine, i915, id)
2842                 engine_set_wedged(engine);
2843
2844         return 0;
2845 }
2846
2847 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2848 {
2849         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2850         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2851
2852         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2853
2854         i915_gem_context_lost(dev_priv);
2855         i915_gem_retire_requests(dev_priv);
2856
2857         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2858 }
2859
2860 static void
2861 i915_gem_retire_work_handler(struct work_struct *work)
2862 {
2863         struct drm_i915_private *dev_priv =
2864                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2865         struct drm_device *dev = &dev_priv->drm;
2866
2867         /* Come back later if the device is busy... */
2868         if (mutex_trylock(&dev->struct_mutex)) {
2869                 i915_gem_retire_requests(dev_priv);
2870                 mutex_unlock(&dev->struct_mutex);
2871         }
2872
2873         /* Keep the retire handler running until we are finally idle.
2874          * We do not need to do this test under locking as in the worst-case
2875          * we queue the retire worker once too often.
2876          */
2877         if (READ_ONCE(dev_priv->gt.awake)) {
2878                 i915_queue_hangcheck(dev_priv);
2879                 queue_delayed_work(dev_priv->wq,
2880                                    &dev_priv->gt.retire_work,
2881                                    round_jiffies_up_relative(HZ));
2882         }
2883 }
2884
2885 static void
2886 i915_gem_idle_work_handler(struct work_struct *work)
2887 {
2888         struct drm_i915_private *dev_priv =
2889                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2890         struct drm_device *dev = &dev_priv->drm;
2891         struct intel_engine_cs *engine;
2892         enum intel_engine_id id;
2893         bool rearm_hangcheck;
2894
2895         if (!READ_ONCE(dev_priv->gt.awake))
2896                 return;
2897
2898         /*
2899          * Wait for last execlists context complete, but bail out in case a
2900          * new request is submitted.
2901          */
2902         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2903                  intel_execlists_idle(dev_priv), 10);
2904
2905         if (READ_ONCE(dev_priv->gt.active_requests))
2906                 return;
2907
2908         rearm_hangcheck =
2909                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2910
2911         if (!mutex_trylock(&dev->struct_mutex)) {
2912                 /* Currently busy, come back later */
2913                 mod_delayed_work(dev_priv->wq,
2914                                  &dev_priv->gt.idle_work,
2915                                  msecs_to_jiffies(50));
2916                 goto out_rearm;
2917         }
2918
2919         /*
2920          * New request retired after this work handler started, extend active
2921          * period until next instance of the work.
2922          */
2923         if (work_pending(work))
2924                 goto out_unlock;
2925
2926         if (dev_priv->gt.active_requests)
2927                 goto out_unlock;
2928
2929         if (wait_for(intel_execlists_idle(dev_priv), 10))
2930                 DRM_ERROR("Timeout waiting for engines to idle\n");
2931
2932         for_each_engine(engine, dev_priv, id)
2933                 i915_gem_batch_pool_fini(&engine->batch_pool);
2934
2935         GEM_BUG_ON(!dev_priv->gt.awake);
2936         dev_priv->gt.awake = false;
2937         rearm_hangcheck = false;
2938
2939         if (INTEL_GEN(dev_priv) >= 6)
2940                 gen6_rps_idle(dev_priv);
2941         intel_runtime_pm_put(dev_priv);
2942 out_unlock:
2943         mutex_unlock(&dev->struct_mutex);
2944
2945 out_rearm:
2946         if (rearm_hangcheck) {
2947                 GEM_BUG_ON(!dev_priv->gt.awake);
2948                 i915_queue_hangcheck(dev_priv);
2949         }
2950 }
2951
2952 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2953 {
2954         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2955         struct drm_i915_file_private *fpriv = file->driver_priv;
2956         struct i915_vma *vma, *vn;
2957
2958         mutex_lock(&obj->base.dev->struct_mutex);
2959         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2960                 if (vma->vm->file == fpriv)
2961                         i915_vma_close(vma);
2962
2963         if (i915_gem_object_is_active(obj) &&
2964             !i915_gem_object_has_active_reference(obj)) {
2965                 i915_gem_object_set_active_reference(obj);
2966                 i915_gem_object_get(obj);
2967         }
2968         mutex_unlock(&obj->base.dev->struct_mutex);
2969 }
2970
2971 static unsigned long to_wait_timeout(s64 timeout_ns)
2972 {
2973         if (timeout_ns < 0)
2974                 return MAX_SCHEDULE_TIMEOUT;
2975
2976         if (timeout_ns == 0)
2977                 return 0;
2978
2979         return nsecs_to_jiffies_timeout(timeout_ns);
2980 }
2981
2982 /**
2983  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2984  * @dev: drm device pointer
2985  * @data: ioctl data blob
2986  * @file: drm file pointer
2987  *
2988  * Returns 0 if successful, else an error is returned with the remaining time in
2989  * the timeout parameter.
2990  *  -ETIME: object is still busy after timeout
2991  *  -ERESTARTSYS: signal interrupted the wait
2992  *  -ENONENT: object doesn't exist
2993  * Also possible, but rare:
2994  *  -EAGAIN: GPU wedged
2995  *  -ENOMEM: damn
2996  *  -ENODEV: Internal IRQ fail
2997  *  -E?: The add request failed
2998  *
2999  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3000  * non-zero timeout parameter the wait ioctl will wait for the given number of
3001  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3002  * without holding struct_mutex the object may become re-busied before this
3003  * function completes. A similar but shorter * race condition exists in the busy
3004  * ioctl
3005  */
3006 int
3007 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3008 {
3009         struct drm_i915_gem_wait *args = data;
3010         struct drm_i915_gem_object *obj;
3011         ktime_t start;
3012         long ret;
3013
3014         if (args->flags != 0)
3015                 return -EINVAL;
3016
3017         obj = i915_gem_object_lookup(file, args->bo_handle);
3018         if (!obj)
3019                 return -ENOENT;
3020
3021         start = ktime_get();
3022
3023         ret = i915_gem_object_wait(obj,
3024                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3025                                    to_wait_timeout(args->timeout_ns),
3026                                    to_rps_client(file));
3027
3028         if (args->timeout_ns > 0) {
3029                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3030                 if (args->timeout_ns < 0)
3031                         args->timeout_ns = 0;
3032         }
3033
3034         i915_gem_object_put(obj);
3035         return ret;
3036 }
3037
3038 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3039 {
3040         int ret, i;
3041
3042         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3043                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3044                 if (ret)
3045                         return ret;
3046         }
3047
3048         return 0;
3049 }
3050
3051 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3052 {
3053         int ret;
3054
3055         if (flags & I915_WAIT_LOCKED) {
3056                 struct i915_gem_timeline *tl;
3057
3058                 lockdep_assert_held(&i915->drm.struct_mutex);
3059
3060                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3061                         ret = wait_for_timeline(tl, flags);
3062                         if (ret)
3063                                 return ret;
3064                 }
3065         } else {
3066                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3067                 if (ret)
3068                         return ret;
3069         }
3070
3071         return 0;
3072 }
3073
3074 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3075                              bool force)
3076 {
3077         /* If we don't have a page list set up, then we're not pinned
3078          * to GPU, and we can ignore the cache flush because it'll happen
3079          * again at bind time.
3080          */
3081         if (!obj->mm.pages)
3082                 return;
3083
3084         /*
3085          * Stolen memory is always coherent with the GPU as it is explicitly
3086          * marked as wc by the system, or the system is cache-coherent.
3087          */
3088         if (obj->stolen || obj->phys_handle)
3089                 return;
3090
3091         /* If the GPU is snooping the contents of the CPU cache,
3092          * we do not need to manually clear the CPU cache lines.  However,
3093          * the caches are only snooped when the render cache is
3094          * flushed/invalidated.  As we always have to emit invalidations
3095          * and flushes when moving into and out of the RENDER domain, correct
3096          * snooping behaviour occurs naturally as the result of our domain
3097          * tracking.
3098          */
3099         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3100                 obj->cache_dirty = true;
3101                 return;
3102         }
3103
3104         trace_i915_gem_object_clflush(obj);
3105         drm_clflush_sg(obj->mm.pages);
3106         obj->cache_dirty = false;
3107 }
3108
3109 /** Flushes the GTT write domain for the object if it's dirty. */
3110 static void
3111 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3112 {
3113         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3114
3115         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3116                 return;
3117
3118         /* No actual flushing is required for the GTT write domain.  Writes
3119          * to it "immediately" go to main memory as far as we know, so there's
3120          * no chipset flush.  It also doesn't land in render cache.
3121          *
3122          * However, we do have to enforce the order so that all writes through
3123          * the GTT land before any writes to the device, such as updates to
3124          * the GATT itself.
3125          *
3126          * We also have to wait a bit for the writes to land from the GTT.
3127          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3128          * timing. This issue has only been observed when switching quickly
3129          * between GTT writes and CPU reads from inside the kernel on recent hw,
3130          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3131          * system agents we cannot reproduce this behaviour).
3132          */
3133         wmb();
3134         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3135                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3136
3137         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3138
3139         obj->base.write_domain = 0;
3140         trace_i915_gem_object_change_domain(obj,
3141                                             obj->base.read_domains,
3142                                             I915_GEM_DOMAIN_GTT);
3143 }
3144
3145 /** Flushes the CPU write domain for the object if it's dirty. */
3146 static void
3147 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3148 {
3149         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3150                 return;
3151
3152         i915_gem_clflush_object(obj, obj->pin_display);
3153         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3154
3155         obj->base.write_domain = 0;
3156         trace_i915_gem_object_change_domain(obj,
3157                                             obj->base.read_domains,
3158                                             I915_GEM_DOMAIN_CPU);
3159 }
3160
3161 /**
3162  * Moves a single object to the GTT read, and possibly write domain.
3163  * @obj: object to act on
3164  * @write: ask for write access or read only
3165  *
3166  * This function returns when the move is complete, including waiting on
3167  * flushes to occur.
3168  */
3169 int
3170 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3171 {
3172         uint32_t old_write_domain, old_read_domains;
3173         int ret;
3174
3175         lockdep_assert_held(&obj->base.dev->struct_mutex);
3176
3177         ret = i915_gem_object_wait(obj,
3178                                    I915_WAIT_INTERRUPTIBLE |
3179                                    I915_WAIT_LOCKED |
3180                                    (write ? I915_WAIT_ALL : 0),
3181                                    MAX_SCHEDULE_TIMEOUT,
3182                                    NULL);
3183         if (ret)
3184                 return ret;
3185
3186         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3187                 return 0;
3188
3189         /* Flush and acquire obj->pages so that we are coherent through
3190          * direct access in memory with previous cached writes through
3191          * shmemfs and that our cache domain tracking remains valid.
3192          * For example, if the obj->filp was moved to swap without us
3193          * being notified and releasing the pages, we would mistakenly
3194          * continue to assume that the obj remained out of the CPU cached
3195          * domain.
3196          */
3197         ret = i915_gem_object_pin_pages(obj);
3198         if (ret)
3199                 return ret;
3200
3201         i915_gem_object_flush_cpu_write_domain(obj);
3202
3203         /* Serialise direct access to this object with the barriers for
3204          * coherent writes from the GPU, by effectively invalidating the
3205          * GTT domain upon first access.
3206          */
3207         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3208                 mb();
3209
3210         old_write_domain = obj->base.write_domain;
3211         old_read_domains = obj->base.read_domains;
3212
3213         /* It should now be out of any other write domains, and we can update
3214          * the domain values for our changes.
3215          */
3216         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3217         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3218         if (write) {
3219                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3220                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3221                 obj->mm.dirty = true;
3222         }
3223
3224         trace_i915_gem_object_change_domain(obj,
3225                                             old_read_domains,
3226                                             old_write_domain);
3227
3228         i915_gem_object_unpin_pages(obj);
3229         return 0;
3230 }
3231
3232 /**
3233  * Changes the cache-level of an object across all VMA.
3234  * @obj: object to act on
3235  * @cache_level: new cache level to set for the object
3236  *
3237  * After this function returns, the object will be in the new cache-level
3238  * across all GTT and the contents of the backing storage will be coherent,
3239  * with respect to the new cache-level. In order to keep the backing storage
3240  * coherent for all users, we only allow a single cache level to be set
3241  * globally on the object and prevent it from being changed whilst the
3242  * hardware is reading from the object. That is if the object is currently
3243  * on the scanout it will be set to uncached (or equivalent display
3244  * cache coherency) and all non-MOCS GPU access will also be uncached so
3245  * that all direct access to the scanout remains coherent.
3246  */
3247 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3248                                     enum i915_cache_level cache_level)
3249 {
3250         struct i915_vma *vma;
3251         int ret;
3252
3253         lockdep_assert_held(&obj->base.dev->struct_mutex);
3254
3255         if (obj->cache_level == cache_level)
3256                 return 0;
3257
3258         /* Inspect the list of currently bound VMA and unbind any that would
3259          * be invalid given the new cache-level. This is principally to
3260          * catch the issue of the CS prefetch crossing page boundaries and
3261          * reading an invalid PTE on older architectures.
3262          */
3263 restart:
3264         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3265                 if (!drm_mm_node_allocated(&vma->node))
3266                         continue;
3267
3268                 if (i915_vma_is_pinned(vma)) {
3269                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3270                         return -EBUSY;
3271                 }
3272
3273                 if (i915_gem_valid_gtt_space(vma, cache_level))
3274                         continue;
3275
3276                 ret = i915_vma_unbind(vma);
3277                 if (ret)
3278                         return ret;
3279
3280                 /* As unbinding may affect other elements in the
3281                  * obj->vma_list (due to side-effects from retiring
3282                  * an active vma), play safe and restart the iterator.
3283                  */
3284                 goto restart;
3285         }
3286
3287         /* We can reuse the existing drm_mm nodes but need to change the
3288          * cache-level on the PTE. We could simply unbind them all and
3289          * rebind with the correct cache-level on next use. However since
3290          * we already have a valid slot, dma mapping, pages etc, we may as
3291          * rewrite the PTE in the belief that doing so tramples upon less
3292          * state and so involves less work.
3293          */
3294         if (obj->bind_count) {
3295                 /* Before we change the PTE, the GPU must not be accessing it.
3296                  * If we wait upon the object, we know that all the bound
3297                  * VMA are no longer active.
3298                  */
3299                 ret = i915_gem_object_wait(obj,
3300                                            I915_WAIT_INTERRUPTIBLE |
3301                                            I915_WAIT_LOCKED |
3302                                            I915_WAIT_ALL,
3303                                            MAX_SCHEDULE_TIMEOUT,
3304                                            NULL);
3305                 if (ret)
3306                         return ret;
3307
3308                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3309                     cache_level != I915_CACHE_NONE) {
3310                         /* Access to snoopable pages through the GTT is
3311                          * incoherent and on some machines causes a hard
3312                          * lockup. Relinquish the CPU mmaping to force
3313                          * userspace to refault in the pages and we can
3314                          * then double check if the GTT mapping is still
3315                          * valid for that pointer access.
3316                          */
3317                         i915_gem_release_mmap(obj);
3318
3319                         /* As we no longer need a fence for GTT access,
3320                          * we can relinquish it now (and so prevent having
3321                          * to steal a fence from someone else on the next
3322                          * fence request). Note GPU activity would have
3323                          * dropped the fence as all snoopable access is
3324                          * supposed to be linear.
3325                          */
3326                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3327                                 ret = i915_vma_put_fence(vma);
3328                                 if (ret)
3329                                         return ret;
3330                         }
3331                 } else {
3332                         /* We either have incoherent backing store and
3333                          * so no GTT access or the architecture is fully
3334                          * coherent. In such cases, existing GTT mmaps
3335                          * ignore the cache bit in the PTE and we can
3336                          * rewrite it without confusing the GPU or having
3337                          * to force userspace to fault back in its mmaps.
3338                          */
3339                 }
3340
3341                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3342                         if (!drm_mm_node_allocated(&vma->node))
3343                                 continue;
3344
3345                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3346                         if (ret)
3347                                 return ret;
3348                 }
3349         }
3350
3351         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3352             cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3353                 obj->cache_dirty = true;
3354
3355         list_for_each_entry(vma, &obj->vma_list, obj_link)
3356                 vma->node.color = cache_level;
3357         obj->cache_level = cache_level;
3358
3359         return 0;
3360 }
3361
3362 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3363                                struct drm_file *file)
3364 {
3365         struct drm_i915_gem_caching *args = data;
3366         struct drm_i915_gem_object *obj;
3367         int err = 0;
3368
3369         rcu_read_lock();
3370         obj = i915_gem_object_lookup_rcu(file, args->handle);
3371         if (!obj) {
3372                 err = -ENOENT;
3373                 goto out;
3374         }
3375
3376         switch (obj->cache_level) {
3377         case I915_CACHE_LLC:
3378         case I915_CACHE_L3_LLC:
3379                 args->caching = I915_CACHING_CACHED;
3380                 break;
3381
3382         case I915_CACHE_WT:
3383                 args->caching = I915_CACHING_DISPLAY;
3384                 break;
3385
3386         default:
3387                 args->caching = I915_CACHING_NONE;
3388                 break;
3389         }
3390 out:
3391         rcu_read_unlock();
3392         return err;
3393 }
3394
3395 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3396                                struct drm_file *file)
3397 {
3398         struct drm_i915_private *i915 = to_i915(dev);
3399         struct drm_i915_gem_caching *args = data;
3400         struct drm_i915_gem_object *obj;
3401         enum i915_cache_level level;
3402         int ret = 0;
3403
3404         switch (args->caching) {
3405         case I915_CACHING_NONE:
3406                 level = I915_CACHE_NONE;
3407                 break;
3408         case I915_CACHING_CACHED:
3409                 /*
3410                  * Due to a HW issue on BXT A stepping, GPU stores via a
3411                  * snooped mapping may leave stale data in a corresponding CPU
3412                  * cacheline, whereas normally such cachelines would get
3413                  * invalidated.
3414                  */
3415                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3416                         return -ENODEV;
3417
3418                 level = I915_CACHE_LLC;
3419                 break;
3420         case I915_CACHING_DISPLAY:
3421                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3422                 break;
3423         default:
3424                 return -EINVAL;
3425         }
3426
3427         obj = i915_gem_object_lookup(file, args->handle);
3428         if (!obj)
3429                 return -ENOENT;
3430
3431         if (obj->cache_level == level)
3432                 goto out;
3433
3434         ret = i915_gem_object_wait(obj,
3435                                    I915_WAIT_INTERRUPTIBLE,
3436                                    MAX_SCHEDULE_TIMEOUT,
3437                                    to_rps_client(file));
3438         if (ret)
3439                 goto out;
3440
3441         ret = i915_mutex_lock_interruptible(dev);
3442         if (ret)
3443                 goto out;
3444
3445         ret = i915_gem_object_set_cache_level(obj, level);
3446         mutex_unlock(&dev->struct_mutex);
3447
3448 out:
3449         i915_gem_object_put(obj);
3450         return ret;
3451 }
3452
3453 /*
3454  * Prepare buffer for display plane (scanout, cursors, etc).
3455  * Can be called from an uninterruptible phase (modesetting) and allows
3456  * any flushes to be pipelined (for pageflips).
3457  */
3458 struct i915_vma *
3459 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3460                                      u32 alignment,
3461                                      const struct i915_ggtt_view *view)
3462 {
3463         struct i915_vma *vma;
3464         u32 old_read_domains, old_write_domain;
3465         int ret;
3466
3467         lockdep_assert_held(&obj->base.dev->struct_mutex);
3468
3469         /* Mark the pin_display early so that we account for the
3470          * display coherency whilst setting up the cache domains.
3471          */
3472         obj->pin_display++;
3473
3474         /* The display engine is not coherent with the LLC cache on gen6.  As
3475          * a result, we make sure that the pinning that is about to occur is
3476          * done with uncached PTEs. This is lowest common denominator for all
3477          * chipsets.
3478          *
3479          * However for gen6+, we could do better by using the GFDT bit instead
3480          * of uncaching, which would allow us to flush all the LLC-cached data
3481          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3482          */
3483         ret = i915_gem_object_set_cache_level(obj,
3484                                               HAS_WT(to_i915(obj->base.dev)) ?
3485                                               I915_CACHE_WT : I915_CACHE_NONE);
3486         if (ret) {
3487                 vma = ERR_PTR(ret);
3488                 goto err_unpin_display;
3489         }
3490
3491         /* As the user may map the buffer once pinned in the display plane
3492          * (e.g. libkms for the bootup splash), we have to ensure that we
3493          * always use map_and_fenceable for all scanout buffers. However,
3494          * it may simply be too big to fit into mappable, in which case
3495          * put it anyway and hope that userspace can cope (but always first
3496          * try to preserve the existing ABI).
3497          */
3498         vma = ERR_PTR(-ENOSPC);
3499         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3500                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3501                                                PIN_MAPPABLE | PIN_NONBLOCK);
3502         if (IS_ERR(vma)) {
3503                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3504                 unsigned int flags;
3505
3506                 /* Valleyview is definitely limited to scanning out the first
3507                  * 512MiB. Lets presume this behaviour was inherited from the
3508                  * g4x display engine and that all earlier gen are similarly
3509                  * limited. Testing suggests that it is a little more
3510                  * complicated than this. For example, Cherryview appears quite
3511                  * happy to scanout from anywhere within its global aperture.
3512                  */
3513                 flags = 0;
3514                 if (HAS_GMCH_DISPLAY(i915))
3515                         flags = PIN_MAPPABLE;
3516                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3517         }
3518         if (IS_ERR(vma))
3519                 goto err_unpin_display;
3520
3521         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3522
3523         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3524         if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3525                 i915_gem_clflush_object(obj, true);
3526                 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3527         }
3528
3529         old_write_domain = obj->base.write_domain;
3530         old_read_domains = obj->base.read_domains;
3531
3532         /* It should now be out of any other write domains, and we can update
3533          * the domain values for our changes.
3534          */
3535         obj->base.write_domain = 0;
3536         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3537
3538         trace_i915_gem_object_change_domain(obj,
3539                                             old_read_domains,
3540                                             old_write_domain);
3541
3542         return vma;
3543
3544 err_unpin_display:
3545         obj->pin_display--;
3546         return vma;
3547 }
3548
3549 void
3550 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3551 {
3552         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3553
3554         if (WARN_ON(vma->obj->pin_display == 0))
3555                 return;
3556
3557         if (--vma->obj->pin_display == 0)
3558                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3559
3560         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3561         i915_gem_object_bump_inactive_ggtt(vma->obj);
3562
3563         i915_vma_unpin(vma);
3564 }
3565
3566 /**
3567  * Moves a single object to the CPU read, and possibly write domain.
3568  * @obj: object to act on
3569  * @write: requesting write or read-only access
3570  *
3571  * This function returns when the move is complete, including waiting on
3572  * flushes to occur.
3573  */
3574 int
3575 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577         uint32_t old_write_domain, old_read_domains;
3578         int ret;
3579
3580         lockdep_assert_held(&obj->base.dev->struct_mutex);
3581
3582         ret = i915_gem_object_wait(obj,
3583                                    I915_WAIT_INTERRUPTIBLE |
3584                                    I915_WAIT_LOCKED |
3585                                    (write ? I915_WAIT_ALL : 0),
3586                                    MAX_SCHEDULE_TIMEOUT,
3587                                    NULL);
3588         if (ret)
3589                 return ret;
3590
3591         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3592                 return 0;
3593
3594         i915_gem_object_flush_gtt_write_domain(obj);
3595
3596         old_write_domain = obj->base.write_domain;
3597         old_read_domains = obj->base.read_domains;
3598
3599         /* Flush the CPU cache if it's still invalid. */
3600         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3601                 i915_gem_clflush_object(obj, false);
3602
3603                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3604         }
3605
3606         /* It should now be out of any other write domains, and we can update
3607          * the domain values for our changes.
3608          */
3609         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3610
3611         /* If we're writing through the CPU, then the GPU read domains will
3612          * need to be invalidated at next use.
3613          */
3614         if (write) {
3615                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3616                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3617         }
3618
3619         trace_i915_gem_object_change_domain(obj,
3620                                             old_read_domains,
3621                                             old_write_domain);
3622
3623         return 0;
3624 }
3625
3626 /* Throttle our rendering by waiting until the ring has completed our requests
3627  * emitted over 20 msec ago.
3628  *
3629  * Note that if we were to use the current jiffies each time around the loop,
3630  * we wouldn't escape the function with any frames outstanding if the time to
3631  * render a frame was over 20ms.
3632  *
3633  * This should get us reasonable parallelism between CPU and GPU but also
3634  * relatively low latency when blocking on a particular request to finish.
3635  */
3636 static int
3637 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3638 {
3639         struct drm_i915_private *dev_priv = to_i915(dev);
3640         struct drm_i915_file_private *file_priv = file->driver_priv;
3641         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3642         struct drm_i915_gem_request *request, *target = NULL;
3643         long ret;
3644
3645         /* ABI: return -EIO if already wedged */
3646         if (i915_terminally_wedged(&dev_priv->gpu_error))
3647                 return -EIO;
3648
3649         spin_lock(&file_priv->mm.lock);
3650         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3651                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3652                         break;
3653
3654                 /*
3655                  * Note that the request might not have been submitted yet.
3656                  * In which case emitted_jiffies will be zero.
3657                  */
3658                 if (!request->emitted_jiffies)
3659                         continue;
3660
3661                 target = request;
3662         }
3663         if (target)
3664                 i915_gem_request_get(target);
3665         spin_unlock(&file_priv->mm.lock);
3666
3667         if (target == NULL)
3668                 return 0;
3669
3670         ret = i915_wait_request(target,
3671                                 I915_WAIT_INTERRUPTIBLE,
3672                                 MAX_SCHEDULE_TIMEOUT);
3673         i915_gem_request_put(target);
3674
3675         return ret < 0 ? ret : 0;
3676 }
3677
3678 struct i915_vma *
3679 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3680                          const struct i915_ggtt_view *view,
3681                          u64 size,
3682                          u64 alignment,
3683                          u64 flags)
3684 {
3685         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3686         struct i915_address_space *vm = &dev_priv->ggtt.base;
3687         struct i915_vma *vma;
3688         int ret;
3689
3690         lockdep_assert_held(&obj->base.dev->struct_mutex);
3691
3692         vma = i915_vma_instance(obj, vm, view);
3693         if (unlikely(IS_ERR(vma)))
3694                 return vma;
3695
3696         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3697                 if (flags & PIN_NONBLOCK &&
3698                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3699                         return ERR_PTR(-ENOSPC);
3700
3701                 if (flags & PIN_MAPPABLE) {
3702                         /* If the required space is larger than the available
3703                          * aperture, we will not able to find a slot for the
3704                          * object and unbinding the object now will be in
3705                          * vain. Worse, doing so may cause us to ping-pong
3706                          * the object in and out of the Global GTT and
3707                          * waste a lot of cycles under the mutex.
3708                          */
3709                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3710                                 return ERR_PTR(-E2BIG);
3711
3712                         /* If NONBLOCK is set the caller is optimistically
3713                          * trying to cache the full object within the mappable
3714                          * aperture, and *must* have a fallback in place for
3715                          * situations where we cannot bind the object. We
3716                          * can be a little more lax here and use the fallback
3717                          * more often to avoid costly migrations of ourselves
3718                          * and other objects within the aperture.
3719                          *
3720                          * Half-the-aperture is used as a simple heuristic.
3721                          * More interesting would to do search for a free
3722                          * block prior to making the commitment to unbind.
3723                          * That caters for the self-harm case, and with a
3724                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3725                          * we could try to minimise harm to others.
3726                          */
3727                         if (flags & PIN_NONBLOCK &&
3728                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3729                                 return ERR_PTR(-ENOSPC);
3730                 }
3731
3732                 WARN(i915_vma_is_pinned(vma),
3733                      "bo is already pinned in ggtt with incorrect alignment:"
3734                      " offset=%08x, req.alignment=%llx,"
3735                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3736                      i915_ggtt_offset(vma), alignment,
3737                      !!(flags & PIN_MAPPABLE),
3738                      i915_vma_is_map_and_fenceable(vma));
3739                 ret = i915_vma_unbind(vma);
3740                 if (ret)
3741                         return ERR_PTR(ret);
3742         }
3743
3744         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3745         if (ret)
3746                 return ERR_PTR(ret);
3747
3748         return vma;
3749 }
3750
3751 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3752 {
3753         /* Note that we could alias engines in the execbuf API, but
3754          * that would be very unwise as it prevents userspace from
3755          * fine control over engine selection. Ahem.
3756          *
3757          * This should be something like EXEC_MAX_ENGINE instead of
3758          * I915_NUM_ENGINES.
3759          */
3760         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3761         return 0x10000 << id;
3762 }
3763
3764 static __always_inline unsigned int __busy_write_id(unsigned int id)
3765 {
3766         /* The uABI guarantees an active writer is also amongst the read
3767          * engines. This would be true if we accessed the activity tracking
3768          * under the lock, but as we perform the lookup of the object and
3769          * its activity locklessly we can not guarantee that the last_write
3770          * being active implies that we have set the same engine flag from
3771          * last_read - hence we always set both read and write busy for
3772          * last_write.
3773          */
3774         return id | __busy_read_flag(id);
3775 }
3776
3777 static __always_inline unsigned int
3778 __busy_set_if_active(const struct dma_fence *fence,
3779                      unsigned int (*flag)(unsigned int id))
3780 {
3781         struct drm_i915_gem_request *rq;
3782
3783         /* We have to check the current hw status of the fence as the uABI
3784          * guarantees forward progress. We could rely on the idle worker
3785          * to eventually flush us, but to minimise latency just ask the
3786          * hardware.
3787          *
3788          * Note we only report on the status of native fences.
3789          */
3790         if (!dma_fence_is_i915(fence))
3791                 return 0;
3792
3793         /* opencode to_request() in order to avoid const warnings */
3794         rq = container_of(fence, struct drm_i915_gem_request, fence);
3795         if (i915_gem_request_completed(rq))
3796                 return 0;
3797
3798         return flag(rq->engine->exec_id);
3799 }
3800
3801 static __always_inline unsigned int
3802 busy_check_reader(const struct dma_fence *fence)
3803 {
3804         return __busy_set_if_active(fence, __busy_read_flag);
3805 }
3806
3807 static __always_inline unsigned int
3808 busy_check_writer(const struct dma_fence *fence)
3809 {
3810         if (!fence)
3811                 return 0;
3812
3813         return __busy_set_if_active(fence, __busy_write_id);
3814 }
3815
3816 int
3817 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3818                     struct drm_file *file)
3819 {
3820         struct drm_i915_gem_busy *args = data;
3821         struct drm_i915_gem_object *obj;
3822         struct reservation_object_list *list;
3823         unsigned int seq;
3824         int err;
3825
3826         err = -ENOENT;
3827         rcu_read_lock();
3828         obj = i915_gem_object_lookup_rcu(file, args->handle);
3829         if (!obj)
3830                 goto out;
3831
3832         /* A discrepancy here is that we do not report the status of
3833          * non-i915 fences, i.e. even though we may report the object as idle,
3834          * a call to set-domain may still stall waiting for foreign rendering.
3835          * This also means that wait-ioctl may report an object as busy,
3836          * where busy-ioctl considers it idle.
3837          *
3838          * We trade the ability to warn of foreign fences to report on which
3839          * i915 engines are active for the object.
3840          *
3841          * Alternatively, we can trade that extra information on read/write
3842          * activity with
3843          *      args->busy =
3844          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3845          * to report the overall busyness. This is what the wait-ioctl does.
3846          *
3847          */
3848 retry:
3849         seq = raw_read_seqcount(&obj->resv->seq);
3850
3851         /* Translate the exclusive fence to the READ *and* WRITE engine */
3852         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3853
3854         /* Translate shared fences to READ set of engines */
3855         list = rcu_dereference(obj->resv->fence);
3856         if (list) {
3857                 unsigned int shared_count = list->shared_count, i;
3858
3859                 for (i = 0; i < shared_count; ++i) {
3860                         struct dma_fence *fence =
3861                                 rcu_dereference(list->shared[i]);
3862
3863                         args->busy |= busy_check_reader(fence);
3864                 }
3865         }
3866
3867         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3868                 goto retry;
3869
3870         err = 0;
3871 out:
3872         rcu_read_unlock();
3873         return err;
3874 }
3875
3876 int
3877 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3878                         struct drm_file *file_priv)
3879 {
3880         return i915_gem_ring_throttle(dev, file_priv);
3881 }
3882
3883 int
3884 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3885                        struct drm_file *file_priv)
3886 {
3887         struct drm_i915_private *dev_priv = to_i915(dev);
3888         struct drm_i915_gem_madvise *args = data;
3889         struct drm_i915_gem_object *obj;
3890         int err;
3891
3892         switch (args->madv) {
3893         case I915_MADV_DONTNEED:
3894         case I915_MADV_WILLNEED:
3895             break;
3896         default:
3897             return -EINVAL;
3898         }
3899
3900         obj = i915_gem_object_lookup(file_priv, args->handle);
3901         if (!obj)
3902                 return -ENOENT;
3903
3904         err = mutex_lock_interruptible(&obj->mm.lock);
3905         if (err)
3906                 goto out;
3907
3908         if (obj->mm.pages &&
3909             i915_gem_object_is_tiled(obj) &&
3910             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3911                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3912                         GEM_BUG_ON(!obj->mm.quirked);
3913                         __i915_gem_object_unpin_pages(obj);
3914                         obj->mm.quirked = false;
3915                 }
3916                 if (args->madv == I915_MADV_WILLNEED) {
3917                         GEM_BUG_ON(obj->mm.quirked);
3918                         __i915_gem_object_pin_pages(obj);
3919                         obj->mm.quirked = true;
3920                 }
3921         }
3922
3923         if (obj->mm.madv != __I915_MADV_PURGED)
3924                 obj->mm.madv = args->madv;
3925
3926         /* if the object is no longer attached, discard its backing storage */
3927         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3928                 i915_gem_object_truncate(obj);
3929
3930         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3931         mutex_unlock(&obj->mm.lock);
3932
3933 out:
3934         i915_gem_object_put(obj);
3935         return err;
3936 }
3937
3938 static void
3939 frontbuffer_retire(struct i915_gem_active *active,
3940                    struct drm_i915_gem_request *request)
3941 {
3942         struct drm_i915_gem_object *obj =
3943                 container_of(active, typeof(*obj), frontbuffer_write);
3944
3945         intel_fb_obj_flush(obj, true, ORIGIN_CS);
3946 }
3947
3948 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3949                           const struct drm_i915_gem_object_ops *ops)
3950 {
3951         mutex_init(&obj->mm.lock);
3952
3953         INIT_LIST_HEAD(&obj->global_link);
3954         INIT_LIST_HEAD(&obj->userfault_link);
3955         INIT_LIST_HEAD(&obj->obj_exec_link);
3956         INIT_LIST_HEAD(&obj->vma_list);
3957         INIT_LIST_HEAD(&obj->batch_pool_link);
3958
3959         obj->ops = ops;
3960
3961         reservation_object_init(&obj->__builtin_resv);
3962         obj->resv = &obj->__builtin_resv;
3963
3964         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3965         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3966
3967         obj->mm.madv = I915_MADV_WILLNEED;
3968         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3969         mutex_init(&obj->mm.get_page.lock);
3970
3971         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3972 }
3973
3974 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3975         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3976                  I915_GEM_OBJECT_IS_SHRINKABLE,
3977         .get_pages = i915_gem_object_get_pages_gtt,
3978         .put_pages = i915_gem_object_put_pages_gtt,
3979 };
3980
3981 struct drm_i915_gem_object *
3982 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3983 {
3984         struct drm_i915_gem_object *obj;
3985         struct address_space *mapping;
3986         gfp_t mask;
3987         int ret;
3988
3989         /* There is a prevalence of the assumption that we fit the object's
3990          * page count inside a 32bit _signed_ variable. Let's document this and
3991          * catch if we ever need to fix it. In the meantime, if you do spot
3992          * such a local variable, please consider fixing!
3993          */
3994         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3995                 return ERR_PTR(-E2BIG);
3996
3997         if (overflows_type(size, obj->base.size))
3998                 return ERR_PTR(-E2BIG);
3999
4000         obj = i915_gem_object_alloc(dev_priv);
4001         if (obj == NULL)
4002                 return ERR_PTR(-ENOMEM);
4003
4004         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4005         if (ret)
4006                 goto fail;
4007
4008         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4009         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4010                 /* 965gm cannot relocate objects above 4GiB. */
4011                 mask &= ~__GFP_HIGHMEM;
4012                 mask |= __GFP_DMA32;
4013         }
4014
4015         mapping = obj->base.filp->f_mapping;
4016         mapping_set_gfp_mask(mapping, mask);
4017
4018         i915_gem_object_init(obj, &i915_gem_object_ops);
4019
4020         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4021         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4022
4023         if (HAS_LLC(dev_priv)) {
4024                 /* On some devices, we can have the GPU use the LLC (the CPU
4025                  * cache) for about a 10% performance improvement
4026                  * compared to uncached.  Graphics requests other than
4027                  * display scanout are coherent with the CPU in
4028                  * accessing this cache.  This means in this mode we
4029                  * don't need to clflush on the CPU side, and on the
4030                  * GPU side we only need to flush internal caches to
4031                  * get data visible to the CPU.
4032                  *
4033                  * However, we maintain the display planes as UC, and so
4034                  * need to rebind when first used as such.
4035                  */
4036                 obj->cache_level = I915_CACHE_LLC;
4037         } else
4038                 obj->cache_level = I915_CACHE_NONE;
4039
4040         trace_i915_gem_object_create(obj);
4041
4042         return obj;
4043
4044 fail:
4045         i915_gem_object_free(obj);
4046         return ERR_PTR(ret);
4047 }
4048
4049 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4050 {
4051         /* If we are the last user of the backing storage (be it shmemfs
4052          * pages or stolen etc), we know that the pages are going to be
4053          * immediately released. In this case, we can then skip copying
4054          * back the contents from the GPU.
4055          */
4056
4057         if (obj->mm.madv != I915_MADV_WILLNEED)
4058                 return false;
4059
4060         if (obj->base.filp == NULL)
4061                 return true;
4062
4063         /* At first glance, this looks racy, but then again so would be
4064          * userspace racing mmap against close. However, the first external
4065          * reference to the filp can only be obtained through the
4066          * i915_gem_mmap_ioctl() which safeguards us against the user
4067          * acquiring such a reference whilst we are in the middle of
4068          * freeing the object.
4069          */
4070         return atomic_long_read(&obj->base.filp->f_count) == 1;
4071 }
4072
4073 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4074                                     struct llist_node *freed)
4075 {
4076         struct drm_i915_gem_object *obj, *on;
4077
4078         mutex_lock(&i915->drm.struct_mutex);
4079         intel_runtime_pm_get(i915);
4080         llist_for_each_entry(obj, freed, freed) {
4081                 struct i915_vma *vma, *vn;
4082
4083                 trace_i915_gem_object_destroy(obj);
4084
4085                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4086                 list_for_each_entry_safe(vma, vn,
4087                                          &obj->vma_list, obj_link) {
4088                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4089                         GEM_BUG_ON(i915_vma_is_active(vma));
4090                         vma->flags &= ~I915_VMA_PIN_MASK;
4091                         i915_vma_close(vma);
4092                 }
4093                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4094                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4095
4096                 list_del(&obj->global_link);
4097         }
4098         intel_runtime_pm_put(i915);
4099         mutex_unlock(&i915->drm.struct_mutex);
4100
4101         llist_for_each_entry_safe(obj, on, freed, freed) {
4102                 GEM_BUG_ON(obj->bind_count);
4103                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4104
4105                 if (obj->ops->release)
4106                         obj->ops->release(obj);
4107
4108                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4109                         atomic_set(&obj->mm.pages_pin_count, 0);
4110                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4111                 GEM_BUG_ON(obj->mm.pages);
4112
4113                 if (obj->base.import_attach)
4114                         drm_prime_gem_destroy(&obj->base, NULL);
4115
4116                 reservation_object_fini(&obj->__builtin_resv);
4117                 drm_gem_object_release(&obj->base);
4118                 i915_gem_info_remove_obj(i915, obj->base.size);
4119
4120                 kfree(obj->bit_17);
4121                 i915_gem_object_free(obj);
4122         }
4123 }
4124
4125 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4126 {
4127         struct llist_node *freed;
4128
4129         freed = llist_del_all(&i915->mm.free_list);
4130         if (unlikely(freed))
4131                 __i915_gem_free_objects(i915, freed);
4132 }
4133
4134 static void __i915_gem_free_work(struct work_struct *work)
4135 {
4136         struct drm_i915_private *i915 =
4137                 container_of(work, struct drm_i915_private, mm.free_work);
4138         struct llist_node *freed;
4139
4140         /* All file-owned VMA should have been released by this point through
4141          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4142          * However, the object may also be bound into the global GTT (e.g.
4143          * older GPUs without per-process support, or for direct access through
4144          * the GTT either for the user or for scanout). Those VMA still need to
4145          * unbound now.
4146          */
4147
4148         while ((freed = llist_del_all(&i915->mm.free_list)))
4149                 __i915_gem_free_objects(i915, freed);
4150 }
4151
4152 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4153 {
4154         struct drm_i915_gem_object *obj =
4155                 container_of(head, typeof(*obj), rcu);
4156         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4157
4158         /* We can't simply use call_rcu() from i915_gem_free_object()
4159          * as we need to block whilst unbinding, and the call_rcu
4160          * task may be called from softirq context. So we take a
4161          * detour through a worker.
4162          */
4163         if (llist_add(&obj->freed, &i915->mm.free_list))
4164                 schedule_work(&i915->mm.free_work);
4165 }
4166
4167 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4168 {
4169         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4170
4171         if (obj->mm.quirked)
4172                 __i915_gem_object_unpin_pages(obj);
4173
4174         if (discard_backing_storage(obj))
4175                 obj->mm.madv = I915_MADV_DONTNEED;
4176
4177         /* Before we free the object, make sure any pure RCU-only
4178          * read-side critical sections are complete, e.g.
4179          * i915_gem_busy_ioctl(). For the corresponding synchronized
4180          * lookup see i915_gem_object_lookup_rcu().
4181          */
4182         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4183 }
4184
4185 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4186 {
4187         lockdep_assert_held(&obj->base.dev->struct_mutex);
4188
4189         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4190         if (i915_gem_object_is_active(obj))
4191                 i915_gem_object_set_active_reference(obj);
4192         else
4193                 i915_gem_object_put(obj);
4194 }
4195
4196 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4197 {
4198         struct intel_engine_cs *engine;
4199         enum intel_engine_id id;
4200
4201         for_each_engine(engine, dev_priv, id)
4202                 GEM_BUG_ON(engine->last_retired_context &&
4203                            !i915_gem_context_is_kernel(engine->last_retired_context));
4204 }
4205
4206 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4207 {
4208         struct drm_device *dev = &dev_priv->drm;
4209         int ret;
4210
4211         intel_suspend_gt_powersave(dev_priv);
4212
4213         mutex_lock(&dev->struct_mutex);
4214
4215         /* We have to flush all the executing contexts to main memory so
4216          * that they can saved in the hibernation image. To ensure the last
4217          * context image is coherent, we have to switch away from it. That
4218          * leaves the dev_priv->kernel_context still active when
4219          * we actually suspend, and its image in memory may not match the GPU
4220          * state. Fortunately, the kernel_context is disposable and we do
4221          * not rely on its state.
4222          */
4223         ret = i915_gem_switch_to_kernel_context(dev_priv);
4224         if (ret)
4225                 goto err;
4226
4227         ret = i915_gem_wait_for_idle(dev_priv,
4228                                      I915_WAIT_INTERRUPTIBLE |
4229                                      I915_WAIT_LOCKED);
4230         if (ret)
4231                 goto err;
4232
4233         i915_gem_retire_requests(dev_priv);
4234         GEM_BUG_ON(dev_priv->gt.active_requests);
4235
4236         assert_kernel_context_is_current(dev_priv);
4237         i915_gem_context_lost(dev_priv);
4238         mutex_unlock(&dev->struct_mutex);
4239
4240         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4241         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4242
4243         /* As the idle_work is rearming if it detects a race, play safe and
4244          * repeat the flush until it is definitely idle.
4245          */
4246         while (flush_delayed_work(&dev_priv->gt.idle_work))
4247                 ;
4248
4249         i915_gem_drain_freed_objects(dev_priv);
4250
4251         /* Assert that we sucessfully flushed all the work and
4252          * reset the GPU back to its idle, low power state.
4253          */
4254         WARN_ON(dev_priv->gt.awake);
4255         WARN_ON(!intel_execlists_idle(dev_priv));
4256
4257         /*
4258          * Neither the BIOS, ourselves or any other kernel
4259          * expects the system to be in execlists mode on startup,
4260          * so we need to reset the GPU back to legacy mode. And the only
4261          * known way to disable logical contexts is through a GPU reset.
4262          *
4263          * So in order to leave the system in a known default configuration,
4264          * always reset the GPU upon unload and suspend. Afterwards we then
4265          * clean up the GEM state tracking, flushing off the requests and
4266          * leaving the system in a known idle state.
4267          *
4268          * Note that is of the upmost importance that the GPU is idle and
4269          * all stray writes are flushed *before* we dismantle the backing
4270          * storage for the pinned objects.
4271          *
4272          * However, since we are uncertain that resetting the GPU on older
4273          * machines is a good idea, we don't - just in case it leaves the
4274          * machine in an unusable condition.
4275          */
4276         if (HAS_HW_CONTEXTS(dev_priv)) {
4277                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4278                 WARN_ON(reset && reset != -ENODEV);
4279         }
4280
4281         return 0;
4282
4283 err:
4284         mutex_unlock(&dev->struct_mutex);
4285         return ret;
4286 }
4287
4288 void i915_gem_resume(struct drm_i915_private *dev_priv)
4289 {
4290         struct drm_device *dev = &dev_priv->drm;
4291
4292         WARN_ON(dev_priv->gt.awake);
4293
4294         mutex_lock(&dev->struct_mutex);
4295         i915_gem_restore_gtt_mappings(dev_priv);
4296
4297         /* As we didn't flush the kernel context before suspend, we cannot
4298          * guarantee that the context image is complete. So let's just reset
4299          * it and start again.
4300          */
4301         dev_priv->gt.resume(dev_priv);
4302
4303         mutex_unlock(&dev->struct_mutex);
4304 }
4305
4306 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4307 {
4308         if (INTEL_GEN(dev_priv) < 5 ||
4309             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4310                 return;
4311
4312         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4313                                  DISP_TILE_SURFACE_SWIZZLING);
4314
4315         if (IS_GEN5(dev_priv))
4316                 return;
4317
4318         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4319         if (IS_GEN6(dev_priv))
4320                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4321         else if (IS_GEN7(dev_priv))
4322                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4323         else if (IS_GEN8(dev_priv))
4324                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4325         else
4326                 BUG();
4327 }
4328
4329 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4330 {
4331         I915_WRITE(RING_CTL(base), 0);
4332         I915_WRITE(RING_HEAD(base), 0);
4333         I915_WRITE(RING_TAIL(base), 0);
4334         I915_WRITE(RING_START(base), 0);
4335 }
4336
4337 static void init_unused_rings(struct drm_i915_private *dev_priv)
4338 {
4339         if (IS_I830(dev_priv)) {
4340                 init_unused_ring(dev_priv, PRB1_BASE);
4341                 init_unused_ring(dev_priv, SRB0_BASE);
4342                 init_unused_ring(dev_priv, SRB1_BASE);
4343                 init_unused_ring(dev_priv, SRB2_BASE);
4344                 init_unused_ring(dev_priv, SRB3_BASE);
4345         } else if (IS_GEN2(dev_priv)) {
4346                 init_unused_ring(dev_priv, SRB0_BASE);
4347                 init_unused_ring(dev_priv, SRB1_BASE);
4348         } else if (IS_GEN3(dev_priv)) {
4349                 init_unused_ring(dev_priv, PRB1_BASE);
4350                 init_unused_ring(dev_priv, PRB2_BASE);
4351         }
4352 }
4353
4354 int
4355 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4356 {
4357         struct intel_engine_cs *engine;
4358         enum intel_engine_id id;
4359         int ret;
4360
4361         dev_priv->gt.last_init_time = ktime_get();
4362
4363         /* Double layer security blanket, see i915_gem_init() */
4364         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4365
4366         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4367                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4368
4369         if (IS_HASWELL(dev_priv))
4370                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4371                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4372
4373         if (HAS_PCH_NOP(dev_priv)) {
4374                 if (IS_IVYBRIDGE(dev_priv)) {
4375                         u32 temp = I915_READ(GEN7_MSG_CTL);
4376                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4377                         I915_WRITE(GEN7_MSG_CTL, temp);
4378                 } else if (INTEL_GEN(dev_priv) >= 7) {
4379                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4380                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4381                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4382                 }
4383         }
4384
4385         i915_gem_init_swizzling(dev_priv);
4386
4387         /*
4388          * At least 830 can leave some of the unused rings
4389          * "active" (ie. head != tail) after resume which
4390          * will prevent c3 entry. Makes sure all unused rings
4391          * are totally idle.
4392          */
4393         init_unused_rings(dev_priv);
4394
4395         BUG_ON(!dev_priv->kernel_context);
4396
4397         ret = i915_ppgtt_init_hw(dev_priv);
4398         if (ret) {
4399                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4400                 goto out;
4401         }
4402
4403         /* Need to do basic initialisation of all rings first: */
4404         for_each_engine(engine, dev_priv, id) {
4405                 ret = engine->init_hw(engine);
4406                 if (ret)
4407                         goto out;
4408         }
4409
4410         intel_mocs_init_l3cc_table(dev_priv);
4411
4412         /* We can't enable contexts until all firmware is loaded */
4413         ret = intel_guc_setup(dev_priv);
4414         if (ret)
4415                 goto out;
4416
4417 out:
4418         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419         return ret;
4420 }
4421
4422 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4423 {
4424         if (INTEL_INFO(dev_priv)->gen < 6)
4425                 return false;
4426
4427         /* TODO: make semaphores and Execlists play nicely together */
4428         if (i915.enable_execlists)
4429                 return false;
4430
4431         if (value >= 0)
4432                 return value;
4433
4434 #ifdef CONFIG_INTEL_IOMMU
4435         /* Enable semaphores on SNB when IO remapping is off */
4436         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4437                 return false;
4438 #endif
4439
4440         return true;
4441 }
4442
4443 int i915_gem_init(struct drm_i915_private *dev_priv)
4444 {
4445         int ret;
4446
4447         mutex_lock(&dev_priv->drm.struct_mutex);
4448
4449         if (!i915.enable_execlists) {
4450                 dev_priv->gt.resume = intel_legacy_submission_resume;
4451                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4452         } else {
4453                 dev_priv->gt.resume = intel_lr_context_resume;
4454                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455         }
4456
4457         /* This is just a security blanket to placate dragons.
4458          * On some systems, we very sporadically observe that the first TLBs
4459          * used by the CS may be stale, despite us poking the TLB reset. If
4460          * we hold the forcewake during initialisation these problems
4461          * just magically go away.
4462          */
4463         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4464
4465         i915_gem_init_userptr(dev_priv);
4466
4467         ret = i915_gem_init_ggtt(dev_priv);
4468         if (ret)
4469                 goto out_unlock;
4470
4471         ret = i915_gem_context_init(dev_priv);
4472         if (ret)
4473                 goto out_unlock;
4474
4475         ret = intel_engines_init(dev_priv);
4476         if (ret)
4477                 goto out_unlock;
4478
4479         ret = i915_gem_init_hw(dev_priv);
4480         if (ret == -EIO) {
4481                 /* Allow engine initialisation to fail by marking the GPU as
4482                  * wedged. But we only want to do this where the GPU is angry,
4483                  * for all other failure, such as an allocation failure, bail.
4484                  */
4485                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4486                 i915_gem_set_wedged(dev_priv);
4487                 ret = 0;
4488         }
4489
4490 out_unlock:
4491         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4492         mutex_unlock(&dev_priv->drm.struct_mutex);
4493
4494         return ret;
4495 }
4496
4497 void
4498 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4499 {
4500         struct intel_engine_cs *engine;
4501         enum intel_engine_id id;
4502
4503         for_each_engine(engine, dev_priv, id)
4504                 dev_priv->gt.cleanup_engine(engine);
4505 }
4506
4507 void
4508 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4509 {
4510         int i;
4511
4512         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4513             !IS_CHERRYVIEW(dev_priv))
4514                 dev_priv->num_fence_regs = 32;
4515         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4516                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4517                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4518                 dev_priv->num_fence_regs = 16;
4519         else
4520                 dev_priv->num_fence_regs = 8;
4521
4522         if (intel_vgpu_active(dev_priv))
4523                 dev_priv->num_fence_regs =
4524                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4525
4526         /* Initialize fence registers to zero */
4527         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4528                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4529
4530                 fence->i915 = dev_priv;
4531                 fence->id = i;
4532                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4533         }
4534         i915_gem_restore_fences(dev_priv);
4535
4536         i915_gem_detect_bit_6_swizzle(dev_priv);
4537 }
4538
4539 int
4540 i915_gem_load_init(struct drm_i915_private *dev_priv)
4541 {
4542         int err = -ENOMEM;
4543
4544         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4545         if (!dev_priv->objects)
4546                 goto err_out;
4547
4548         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4549         if (!dev_priv->vmas)
4550                 goto err_objects;
4551
4552         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4553                                         SLAB_HWCACHE_ALIGN |
4554                                         SLAB_RECLAIM_ACCOUNT |
4555                                         SLAB_DESTROY_BY_RCU);
4556         if (!dev_priv->requests)
4557                 goto err_vmas;
4558
4559         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4560                                             SLAB_HWCACHE_ALIGN |
4561                                             SLAB_RECLAIM_ACCOUNT);
4562         if (!dev_priv->dependencies)
4563                 goto err_requests;
4564
4565         mutex_lock(&dev_priv->drm.struct_mutex);
4566         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4567         err = i915_gem_timeline_init__global(dev_priv);
4568         mutex_unlock(&dev_priv->drm.struct_mutex);
4569         if (err)
4570                 goto err_dependencies;
4571
4572         INIT_LIST_HEAD(&dev_priv->context_list);
4573         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4574         init_llist_head(&dev_priv->mm.free_list);
4575         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4576         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4577         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4579         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4580                           i915_gem_retire_work_handler);
4581         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4582                           i915_gem_idle_work_handler);
4583         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4584         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4585
4586         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4587
4588         init_waitqueue_head(&dev_priv->pending_flip_queue);
4589
4590         dev_priv->mm.interruptible = true;
4591
4592         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4593
4594         spin_lock_init(&dev_priv->fb_tracking.lock);
4595
4596         return 0;
4597
4598 err_dependencies:
4599         kmem_cache_destroy(dev_priv->dependencies);
4600 err_requests:
4601         kmem_cache_destroy(dev_priv->requests);
4602 err_vmas:
4603         kmem_cache_destroy(dev_priv->vmas);
4604 err_objects:
4605         kmem_cache_destroy(dev_priv->objects);
4606 err_out:
4607         return err;
4608 }
4609
4610 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4611 {
4612         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4613
4614         mutex_lock(&dev_priv->drm.struct_mutex);
4615         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4616         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4617         mutex_unlock(&dev_priv->drm.struct_mutex);
4618
4619         kmem_cache_destroy(dev_priv->dependencies);
4620         kmem_cache_destroy(dev_priv->requests);
4621         kmem_cache_destroy(dev_priv->vmas);
4622         kmem_cache_destroy(dev_priv->objects);
4623
4624         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4625         rcu_barrier();
4626 }
4627
4628 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4629 {
4630         intel_runtime_pm_get(dev_priv);
4631
4632         mutex_lock(&dev_priv->drm.struct_mutex);
4633         i915_gem_shrink_all(dev_priv);
4634         mutex_unlock(&dev_priv->drm.struct_mutex);
4635
4636         intel_runtime_pm_put(dev_priv);
4637
4638         return 0;
4639 }
4640
4641 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4642 {
4643         struct drm_i915_gem_object *obj;
4644         struct list_head *phases[] = {
4645                 &dev_priv->mm.unbound_list,
4646                 &dev_priv->mm.bound_list,
4647                 NULL
4648         }, **p;
4649
4650         /* Called just before we write the hibernation image.
4651          *
4652          * We need to update the domain tracking to reflect that the CPU
4653          * will be accessing all the pages to create and restore from the
4654          * hibernation, and so upon restoration those pages will be in the
4655          * CPU domain.
4656          *
4657          * To make sure the hibernation image contains the latest state,
4658          * we update that state just before writing out the image.
4659          *
4660          * To try and reduce the hibernation image, we manually shrink
4661          * the objects as well.
4662          */
4663
4664         mutex_lock(&dev_priv->drm.struct_mutex);
4665         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666
4667         for (p = phases; *p; p++) {
4668                 list_for_each_entry(obj, *p, global_link) {
4669                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4670                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671                 }
4672         }
4673         mutex_unlock(&dev_priv->drm.struct_mutex);
4674
4675         return 0;
4676 }
4677
4678 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679 {
4680         struct drm_i915_file_private *file_priv = file->driver_priv;
4681         struct drm_i915_gem_request *request;
4682
4683         /* Clean up our request list when the client is going away, so that
4684          * later retire_requests won't dereference our soon-to-be-gone
4685          * file_priv.
4686          */
4687         spin_lock(&file_priv->mm.lock);
4688         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689                 request->file_priv = NULL;
4690         spin_unlock(&file_priv->mm.lock);
4691
4692         if (!list_empty(&file_priv->rps.link)) {
4693                 spin_lock(&to_i915(dev)->rps.client_lock);
4694                 list_del(&file_priv->rps.link);
4695                 spin_unlock(&to_i915(dev)->rps.client_lock);
4696         }
4697 }
4698
4699 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4700 {
4701         struct drm_i915_file_private *file_priv;
4702         int ret;
4703
4704         DRM_DEBUG("\n");
4705
4706         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4707         if (!file_priv)
4708                 return -ENOMEM;
4709
4710         file->driver_priv = file_priv;
4711         file_priv->dev_priv = to_i915(dev);
4712         file_priv->file = file;
4713         INIT_LIST_HEAD(&file_priv->rps.link);
4714
4715         spin_lock_init(&file_priv->mm.lock);
4716         INIT_LIST_HEAD(&file_priv->mm.request_list);
4717
4718         file_priv->bsd_engine = -1;
4719
4720         ret = i915_gem_context_open(dev, file);
4721         if (ret)
4722                 kfree(file_priv);
4723
4724         return ret;
4725 }
4726
4727 /**
4728  * i915_gem_track_fb - update frontbuffer tracking
4729  * @old: current GEM buffer for the frontbuffer slots
4730  * @new: new GEM buffer for the frontbuffer slots
4731  * @frontbuffer_bits: bitmask of frontbuffer slots
4732  *
4733  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4734  * from @old and setting them in @new. Both @old and @new can be NULL.
4735  */
4736 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4737                        struct drm_i915_gem_object *new,
4738                        unsigned frontbuffer_bits)
4739 {
4740         /* Control of individual bits within the mask are guarded by
4741          * the owning plane->mutex, i.e. we can never see concurrent
4742          * manipulation of individual bits. But since the bitfield as a whole
4743          * is updated using RMW, we need to use atomics in order to update
4744          * the bits.
4745          */
4746         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4747                      sizeof(atomic_t) * BITS_PER_BYTE);
4748
4749         if (old) {
4750                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4751                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752         }
4753
4754         if (new) {
4755                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4756                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757         }
4758 }
4759
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4763                                  const void *data, size_t size)
4764 {
4765         struct drm_i915_gem_object *obj;
4766         struct sg_table *sg;
4767         size_t bytes;
4768         int ret;
4769
4770         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4771         if (IS_ERR(obj))
4772                 return obj;
4773
4774         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775         if (ret)
4776                 goto fail;
4777
4778         ret = i915_gem_object_pin_pages(obj);
4779         if (ret)
4780                 goto fail;
4781
4782         sg = obj->mm.pages;
4783         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4784         obj->mm.dirty = true; /* Backing store is now out of date */
4785         i915_gem_object_unpin_pages(obj);
4786
4787         if (WARN_ON(bytes != size)) {
4788                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4789                 ret = -EFAULT;
4790                 goto fail;
4791         }
4792
4793         return obj;
4794
4795 fail:
4796         i915_gem_object_put(obj);
4797         return ERR_PTR(ret);
4798 }
4799
4800 struct scatterlist *
4801 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4802                        unsigned int n,
4803                        unsigned int *offset)
4804 {
4805         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806         struct scatterlist *sg;
4807         unsigned int idx, count;
4808
4809         might_sleep();
4810         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4811         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812
4813         /* As we iterate forward through the sg, we record each entry in a
4814          * radixtree for quick repeated (backwards) lookups. If we have seen
4815          * this index previously, we will have an entry for it.
4816          *
4817          * Initial lookup is O(N), but this is amortized to O(1) for
4818          * sequential page access (where each new request is consecutive
4819          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4820          * i.e. O(1) with a large constant!
4821          */
4822         if (n < READ_ONCE(iter->sg_idx))
4823                 goto lookup;
4824
4825         mutex_lock(&iter->lock);
4826
4827         /* We prefer to reuse the last sg so that repeated lookup of this
4828          * (or the subsequent) sg are fast - comparing against the last
4829          * sg is faster than going through the radixtree.
4830          */
4831
4832         sg = iter->sg_pos;
4833         idx = iter->sg_idx;
4834         count = __sg_page_count(sg);
4835
4836         while (idx + count <= n) {
4837                 unsigned long exception, i;
4838                 int ret;
4839
4840                 /* If we cannot allocate and insert this entry, or the
4841                  * individual pages from this range, cancel updating the
4842                  * sg_idx so that on this lookup we are forced to linearly
4843                  * scan onwards, but on future lookups we will try the
4844                  * insertion again (in which case we need to be careful of
4845                  * the error return reporting that we have already inserted
4846                  * this index).
4847                  */
4848                 ret = radix_tree_insert(&iter->radix, idx, sg);
4849                 if (ret && ret != -EEXIST)
4850                         goto scan;
4851
4852                 exception =
4853                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4854                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4855                 for (i = 1; i < count; i++) {
4856                         ret = radix_tree_insert(&iter->radix, idx + i,
4857                                                 (void *)exception);
4858                         if (ret && ret != -EEXIST)
4859                                 goto scan;
4860                 }
4861
4862                 idx += count;
4863                 sg = ____sg_next(sg);
4864                 count = __sg_page_count(sg);
4865         }
4866
4867 scan:
4868         iter->sg_pos = sg;
4869         iter->sg_idx = idx;
4870
4871         mutex_unlock(&iter->lock);
4872
4873         if (unlikely(n < idx)) /* insertion completed by another thread */
4874                 goto lookup;
4875
4876         /* In case we failed to insert the entry into the radixtree, we need
4877          * to look beyond the current sg.
4878          */
4879         while (idx + count <= n) {
4880                 idx += count;
4881                 sg = ____sg_next(sg);
4882                 count = __sg_page_count(sg);
4883         }
4884
4885         *offset = n - idx;
4886         return sg;
4887
4888 lookup:
4889         rcu_read_lock();
4890
4891         sg = radix_tree_lookup(&iter->radix, n);
4892         GEM_BUG_ON(!sg);
4893
4894         /* If this index is in the middle of multi-page sg entry,
4895          * the radixtree will contain an exceptional entry that points
4896          * to the start of that range. We will return the pointer to
4897          * the base page and the offset of this page within the
4898          * sg entry's range.
4899          */
4900         *offset = 0;
4901         if (unlikely(radix_tree_exception(sg))) {
4902                 unsigned long base =
4903                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4904
4905                 sg = radix_tree_lookup(&iter->radix, base);
4906                 GEM_BUG_ON(!sg);
4907
4908                 *offset = n - base;
4909         }
4910
4911         rcu_read_unlock();
4912
4913         return sg;
4914 }
4915
4916 struct page *
4917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4918 {
4919         struct scatterlist *sg;
4920         unsigned int offset;
4921
4922         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4923
4924         sg = i915_gem_object_get_sg(obj, n, &offset);
4925         return nth_page(sg_page(sg), offset);
4926 }
4927
4928 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4929 struct page *
4930 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4931                                unsigned int n)
4932 {
4933         struct page *page;
4934
4935         page = i915_gem_object_get_page(obj, n);
4936         if (!obj->mm.dirty)
4937                 set_page_dirty(page);
4938
4939         return page;
4940 }
4941
4942 dma_addr_t
4943 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4944                                 unsigned long n)
4945 {
4946         struct scatterlist *sg;
4947         unsigned int offset;
4948
4949         sg = i915_gem_object_get_sg(obj, n, &offset);
4950         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4951 }