]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: Move modeset state verifier calls.
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "intel_dsi.h"
40 #include "i915_trace.h"
41 #include <drm/drm_atomic.h>
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_crtc_helper.h>
45 #include <drm/drm_plane_helper.h>
46 #include <drm/drm_rect.h>
47 #include <linux/dma_remapping.h>
48 #include <linux/reservation.h>
49 #include <linux/dma-buf.h>
50
51 /* Primary plane formats for gen <= 3 */
52 static const uint32_t i8xx_primary_formats[] = {
53         DRM_FORMAT_C8,
54         DRM_FORMAT_RGB565,
55         DRM_FORMAT_XRGB1555,
56         DRM_FORMAT_XRGB8888,
57 };
58
59 /* Primary plane formats for gen >= 4 */
60 static const uint32_t i965_primary_formats[] = {
61         DRM_FORMAT_C8,
62         DRM_FORMAT_RGB565,
63         DRM_FORMAT_XRGB8888,
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_XRGB2101010,
66         DRM_FORMAT_XBGR2101010,
67 };
68
69 static const uint32_t skl_primary_formats[] = {
70         DRM_FORMAT_C8,
71         DRM_FORMAT_RGB565,
72         DRM_FORMAT_XRGB8888,
73         DRM_FORMAT_XBGR8888,
74         DRM_FORMAT_ARGB8888,
75         DRM_FORMAT_ABGR8888,
76         DRM_FORMAT_XRGB2101010,
77         DRM_FORMAT_XBGR2101010,
78         DRM_FORMAT_YUYV,
79         DRM_FORMAT_YVYU,
80         DRM_FORMAT_UYVY,
81         DRM_FORMAT_VYUY,
82 };
83
84 /* Cursor formats */
85 static const uint32_t intel_cursor_formats[] = {
86         DRM_FORMAT_ARGB8888,
87 };
88
89 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
90                                 struct intel_crtc_state *pipe_config);
91 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
92                                    struct intel_crtc_state *pipe_config);
93
94 static int intel_framebuffer_init(struct drm_device *dev,
95                                   struct intel_framebuffer *ifb,
96                                   struct drm_mode_fb_cmd2 *mode_cmd,
97                                   struct drm_i915_gem_object *obj);
98 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
100 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
101 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
102                                          struct intel_link_m_n *m_n,
103                                          struct intel_link_m_n *m2_n2);
104 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
105 static void haswell_set_pipeconf(struct drm_crtc *crtc);
106 static void haswell_set_pipemisc(struct drm_crtc *crtc);
107 static void vlv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void chv_prepare_pll(struct intel_crtc *crtc,
110                             const struct intel_crtc_state *pipe_config);
111 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
113 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114         struct intel_crtc_state *crtc_state);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
120
121 typedef struct {
122         int     min, max;
123 } intel_range_t;
124
125 typedef struct {
126         int     dot_limit;
127         int     p2_slow, p2_fast;
128 } intel_p2_t;
129
130 typedef struct intel_limit intel_limit_t;
131 struct intel_limit {
132         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
133         intel_p2_t          p2;
134 };
135
136 /* returns HPLL frequency in kHz */
137 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138 {
139         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141         /* Obtain SKU information */
142         mutex_lock(&dev_priv->sb_lock);
143         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144                 CCK_FUSE_HPLL_FREQ_MASK;
145         mutex_unlock(&dev_priv->sb_lock);
146
147         return vco_freq[hpll_freq] * 1000;
148 }
149
150 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
151                       const char *name, u32 reg, int ref_freq)
152 {
153         u32 val;
154         int divider;
155
156         mutex_lock(&dev_priv->sb_lock);
157         val = vlv_cck_read(dev_priv, reg);
158         mutex_unlock(&dev_priv->sb_lock);
159
160         divider = val & CCK_FREQUENCY_VALUES;
161
162         WARN((val & CCK_FREQUENCY_STATUS) !=
163              (divider << CCK_FREQUENCY_STATUS_SHIFT),
164              "%s change in progress\n", name);
165
166         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
167 }
168
169 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
170                                   const char *name, u32 reg)
171 {
172         if (dev_priv->hpll_freq == 0)
173                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
174
175         return vlv_get_cck_clock(dev_priv, name, reg,
176                                  dev_priv->hpll_freq);
177 }
178
179 static int
180 intel_pch_rawclk(struct drm_i915_private *dev_priv)
181 {
182         return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
183 }
184
185 static int
186 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
187 {
188         return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
189                                       CCK_DISPLAY_REF_CLOCK_CONTROL);
190 }
191
192 static int
193 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
194 {
195         uint32_t clkcfg;
196
197         /* hrawclock is 1/4 the FSB frequency */
198         clkcfg = I915_READ(CLKCFG);
199         switch (clkcfg & CLKCFG_FSB_MASK) {
200         case CLKCFG_FSB_400:
201                 return 100000;
202         case CLKCFG_FSB_533:
203                 return 133333;
204         case CLKCFG_FSB_667:
205                 return 166667;
206         case CLKCFG_FSB_800:
207                 return 200000;
208         case CLKCFG_FSB_1067:
209                 return 266667;
210         case CLKCFG_FSB_1333:
211                 return 333333;
212         /* these two are just a guess; one of them might be right */
213         case CLKCFG_FSB_1600:
214         case CLKCFG_FSB_1600_ALT:
215                 return 400000;
216         default:
217                 return 133333;
218         }
219 }
220
221 static void intel_update_rawclk(struct drm_i915_private *dev_priv)
222 {
223         if (HAS_PCH_SPLIT(dev_priv))
224                 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
225         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
226                 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
227         else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
228                 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
229         else
230                 return; /* no rawclk on other platforms, or no need to know it */
231
232         DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
233 }
234
235 static void intel_update_czclk(struct drm_i915_private *dev_priv)
236 {
237         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
238                 return;
239
240         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
241                                                       CCK_CZ_CLOCK_CONTROL);
242
243         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
244 }
245
246 static inline u32 /* units of 100MHz */
247 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
248                     const struct intel_crtc_state *pipe_config)
249 {
250         if (HAS_DDI(dev_priv))
251                 return pipe_config->port_clock; /* SPLL */
252         else if (IS_GEN5(dev_priv))
253                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
254         else
255                 return 270000;
256 }
257
258 static const intel_limit_t intel_limits_i8xx_dac = {
259         .dot = { .min = 25000, .max = 350000 },
260         .vco = { .min = 908000, .max = 1512000 },
261         .n = { .min = 2, .max = 16 },
262         .m = { .min = 96, .max = 140 },
263         .m1 = { .min = 18, .max = 26 },
264         .m2 = { .min = 6, .max = 16 },
265         .p = { .min = 4, .max = 128 },
266         .p1 = { .min = 2, .max = 33 },
267         .p2 = { .dot_limit = 165000,
268                 .p2_slow = 4, .p2_fast = 2 },
269 };
270
271 static const intel_limit_t intel_limits_i8xx_dvo = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 908000, .max = 1512000 },
274         .n = { .min = 2, .max = 16 },
275         .m = { .min = 96, .max = 140 },
276         .m1 = { .min = 18, .max = 26 },
277         .m2 = { .min = 6, .max = 16 },
278         .p = { .min = 4, .max = 128 },
279         .p1 = { .min = 2, .max = 33 },
280         .p2 = { .dot_limit = 165000,
281                 .p2_slow = 4, .p2_fast = 4 },
282 };
283
284 static const intel_limit_t intel_limits_i8xx_lvds = {
285         .dot = { .min = 25000, .max = 350000 },
286         .vco = { .min = 908000, .max = 1512000 },
287         .n = { .min = 2, .max = 16 },
288         .m = { .min = 96, .max = 140 },
289         .m1 = { .min = 18, .max = 26 },
290         .m2 = { .min = 6, .max = 16 },
291         .p = { .min = 4, .max = 128 },
292         .p1 = { .min = 1, .max = 6 },
293         .p2 = { .dot_limit = 165000,
294                 .p2_slow = 14, .p2_fast = 7 },
295 };
296
297 static const intel_limit_t intel_limits_i9xx_sdvo = {
298         .dot = { .min = 20000, .max = 400000 },
299         .vco = { .min = 1400000, .max = 2800000 },
300         .n = { .min = 1, .max = 6 },
301         .m = { .min = 70, .max = 120 },
302         .m1 = { .min = 8, .max = 18 },
303         .m2 = { .min = 3, .max = 7 },
304         .p = { .min = 5, .max = 80 },
305         .p1 = { .min = 1, .max = 8 },
306         .p2 = { .dot_limit = 200000,
307                 .p2_slow = 10, .p2_fast = 5 },
308 };
309
310 static const intel_limit_t intel_limits_i9xx_lvds = {
311         .dot = { .min = 20000, .max = 400000 },
312         .vco = { .min = 1400000, .max = 2800000 },
313         .n = { .min = 1, .max = 6 },
314         .m = { .min = 70, .max = 120 },
315         .m1 = { .min = 8, .max = 18 },
316         .m2 = { .min = 3, .max = 7 },
317         .p = { .min = 7, .max = 98 },
318         .p1 = { .min = 1, .max = 8 },
319         .p2 = { .dot_limit = 112000,
320                 .p2_slow = 14, .p2_fast = 7 },
321 };
322
323
324 static const intel_limit_t intel_limits_g4x_sdvo = {
325         .dot = { .min = 25000, .max = 270000 },
326         .vco = { .min = 1750000, .max = 3500000},
327         .n = { .min = 1, .max = 4 },
328         .m = { .min = 104, .max = 138 },
329         .m1 = { .min = 17, .max = 23 },
330         .m2 = { .min = 5, .max = 11 },
331         .p = { .min = 10, .max = 30 },
332         .p1 = { .min = 1, .max = 3},
333         .p2 = { .dot_limit = 270000,
334                 .p2_slow = 10,
335                 .p2_fast = 10
336         },
337 };
338
339 static const intel_limit_t intel_limits_g4x_hdmi = {
340         .dot = { .min = 22000, .max = 400000 },
341         .vco = { .min = 1750000, .max = 3500000},
342         .n = { .min = 1, .max = 4 },
343         .m = { .min = 104, .max = 138 },
344         .m1 = { .min = 16, .max = 23 },
345         .m2 = { .min = 5, .max = 11 },
346         .p = { .min = 5, .max = 80 },
347         .p1 = { .min = 1, .max = 8},
348         .p2 = { .dot_limit = 165000,
349                 .p2_slow = 10, .p2_fast = 5 },
350 };
351
352 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
353         .dot = { .min = 20000, .max = 115000 },
354         .vco = { .min = 1750000, .max = 3500000 },
355         .n = { .min = 1, .max = 3 },
356         .m = { .min = 104, .max = 138 },
357         .m1 = { .min = 17, .max = 23 },
358         .m2 = { .min = 5, .max = 11 },
359         .p = { .min = 28, .max = 112 },
360         .p1 = { .min = 2, .max = 8 },
361         .p2 = { .dot_limit = 0,
362                 .p2_slow = 14, .p2_fast = 14
363         },
364 };
365
366 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
367         .dot = { .min = 80000, .max = 224000 },
368         .vco = { .min = 1750000, .max = 3500000 },
369         .n = { .min = 1, .max = 3 },
370         .m = { .min = 104, .max = 138 },
371         .m1 = { .min = 17, .max = 23 },
372         .m2 = { .min = 5, .max = 11 },
373         .p = { .min = 14, .max = 42 },
374         .p1 = { .min = 2, .max = 6 },
375         .p2 = { .dot_limit = 0,
376                 .p2_slow = 7, .p2_fast = 7
377         },
378 };
379
380 static const intel_limit_t intel_limits_pineview_sdvo = {
381         .dot = { .min = 20000, .max = 400000},
382         .vco = { .min = 1700000, .max = 3500000 },
383         /* Pineview's Ncounter is a ring counter */
384         .n = { .min = 3, .max = 6 },
385         .m = { .min = 2, .max = 256 },
386         /* Pineview only has one combined m divider, which we treat as m2. */
387         .m1 = { .min = 0, .max = 0 },
388         .m2 = { .min = 0, .max = 254 },
389         .p = { .min = 5, .max = 80 },
390         .p1 = { .min = 1, .max = 8 },
391         .p2 = { .dot_limit = 200000,
392                 .p2_slow = 10, .p2_fast = 5 },
393 };
394
395 static const intel_limit_t intel_limits_pineview_lvds = {
396         .dot = { .min = 20000, .max = 400000 },
397         .vco = { .min = 1700000, .max = 3500000 },
398         .n = { .min = 3, .max = 6 },
399         .m = { .min = 2, .max = 256 },
400         .m1 = { .min = 0, .max = 0 },
401         .m2 = { .min = 0, .max = 254 },
402         .p = { .min = 7, .max = 112 },
403         .p1 = { .min = 1, .max = 8 },
404         .p2 = { .dot_limit = 112000,
405                 .p2_slow = 14, .p2_fast = 14 },
406 };
407
408 /* Ironlake / Sandybridge
409  *
410  * We calculate clock using (register_value + 2) for N/M1/M2, so here
411  * the range value for them is (actual_value - 2).
412  */
413 static const intel_limit_t intel_limits_ironlake_dac = {
414         .dot = { .min = 25000, .max = 350000 },
415         .vco = { .min = 1760000, .max = 3510000 },
416         .n = { .min = 1, .max = 5 },
417         .m = { .min = 79, .max = 127 },
418         .m1 = { .min = 12, .max = 22 },
419         .m2 = { .min = 5, .max = 9 },
420         .p = { .min = 5, .max = 80 },
421         .p1 = { .min = 1, .max = 8 },
422         .p2 = { .dot_limit = 225000,
423                 .p2_slow = 10, .p2_fast = 5 },
424 };
425
426 static const intel_limit_t intel_limits_ironlake_single_lvds = {
427         .dot = { .min = 25000, .max = 350000 },
428         .vco = { .min = 1760000, .max = 3510000 },
429         .n = { .min = 1, .max = 3 },
430         .m = { .min = 79, .max = 118 },
431         .m1 = { .min = 12, .max = 22 },
432         .m2 = { .min = 5, .max = 9 },
433         .p = { .min = 28, .max = 112 },
434         .p1 = { .min = 2, .max = 8 },
435         .p2 = { .dot_limit = 225000,
436                 .p2_slow = 14, .p2_fast = 14 },
437 };
438
439 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
440         .dot = { .min = 25000, .max = 350000 },
441         .vco = { .min = 1760000, .max = 3510000 },
442         .n = { .min = 1, .max = 3 },
443         .m = { .min = 79, .max = 127 },
444         .m1 = { .min = 12, .max = 22 },
445         .m2 = { .min = 5, .max = 9 },
446         .p = { .min = 14, .max = 56 },
447         .p1 = { .min = 2, .max = 8 },
448         .p2 = { .dot_limit = 225000,
449                 .p2_slow = 7, .p2_fast = 7 },
450 };
451
452 /* LVDS 100mhz refclk limits. */
453 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
454         .dot = { .min = 25000, .max = 350000 },
455         .vco = { .min = 1760000, .max = 3510000 },
456         .n = { .min = 1, .max = 2 },
457         .m = { .min = 79, .max = 126 },
458         .m1 = { .min = 12, .max = 22 },
459         .m2 = { .min = 5, .max = 9 },
460         .p = { .min = 28, .max = 112 },
461         .p1 = { .min = 2, .max = 8 },
462         .p2 = { .dot_limit = 225000,
463                 .p2_slow = 14, .p2_fast = 14 },
464 };
465
466 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
467         .dot = { .min = 25000, .max = 350000 },
468         .vco = { .min = 1760000, .max = 3510000 },
469         .n = { .min = 1, .max = 3 },
470         .m = { .min = 79, .max = 126 },
471         .m1 = { .min = 12, .max = 22 },
472         .m2 = { .min = 5, .max = 9 },
473         .p = { .min = 14, .max = 42 },
474         .p1 = { .min = 2, .max = 6 },
475         .p2 = { .dot_limit = 225000,
476                 .p2_slow = 7, .p2_fast = 7 },
477 };
478
479 static const intel_limit_t intel_limits_vlv = {
480          /*
481           * These are the data rate limits (measured in fast clocks)
482           * since those are the strictest limits we have. The fast
483           * clock and actual rate limits are more relaxed, so checking
484           * them would make no difference.
485           */
486         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
487         .vco = { .min = 4000000, .max = 6000000 },
488         .n = { .min = 1, .max = 7 },
489         .m1 = { .min = 2, .max = 3 },
490         .m2 = { .min = 11, .max = 156 },
491         .p1 = { .min = 2, .max = 3 },
492         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
493 };
494
495 static const intel_limit_t intel_limits_chv = {
496         /*
497          * These are the data rate limits (measured in fast clocks)
498          * since those are the strictest limits we have.  The fast
499          * clock and actual rate limits are more relaxed, so checking
500          * them would make no difference.
501          */
502         .dot = { .min = 25000 * 5, .max = 540000 * 5},
503         .vco = { .min = 4800000, .max = 6480000 },
504         .n = { .min = 1, .max = 1 },
505         .m1 = { .min = 2, .max = 2 },
506         .m2 = { .min = 24 << 22, .max = 175 << 22 },
507         .p1 = { .min = 2, .max = 4 },
508         .p2 = { .p2_slow = 1, .p2_fast = 14 },
509 };
510
511 static const intel_limit_t intel_limits_bxt = {
512         /* FIXME: find real dot limits */
513         .dot = { .min = 0, .max = INT_MAX },
514         .vco = { .min = 4800000, .max = 6700000 },
515         .n = { .min = 1, .max = 1 },
516         .m1 = { .min = 2, .max = 2 },
517         /* FIXME: find real m2 limits */
518         .m2 = { .min = 2 << 22, .max = 255 << 22 },
519         .p1 = { .min = 2, .max = 4 },
520         .p2 = { .p2_slow = 1, .p2_fast = 20 },
521 };
522
523 static bool
524 needs_modeset(struct drm_crtc_state *state)
525 {
526         return drm_atomic_crtc_needs_modeset(state);
527 }
528
529 /**
530  * Returns whether any output on the specified pipe is of the specified type
531  */
532 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
533 {
534         struct drm_device *dev = crtc->base.dev;
535         struct intel_encoder *encoder;
536
537         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
538                 if (encoder->type == type)
539                         return true;
540
541         return false;
542 }
543
544 /**
545  * Returns whether any output on the specified pipe will have the specified
546  * type after a staged modeset is complete, i.e., the same as
547  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
548  * encoder->crtc.
549  */
550 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
551                                       int type)
552 {
553         struct drm_atomic_state *state = crtc_state->base.state;
554         struct drm_connector *connector;
555         struct drm_connector_state *connector_state;
556         struct intel_encoder *encoder;
557         int i, num_connectors = 0;
558
559         for_each_connector_in_state(state, connector, connector_state, i) {
560                 if (connector_state->crtc != crtc_state->base.crtc)
561                         continue;
562
563                 num_connectors++;
564
565                 encoder = to_intel_encoder(connector_state->best_encoder);
566                 if (encoder->type == type)
567                         return true;
568         }
569
570         WARN_ON(num_connectors == 0);
571
572         return false;
573 }
574
575 /*
576  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
577  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
578  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
579  * The helpers' return value is the rate of the clock that is fed to the
580  * display engine's pipe which can be the above fast dot clock rate or a
581  * divided-down version of it.
582  */
583 /* m1 is reserved as 0 in Pineview, n is a ring counter */
584 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         if (WARN_ON(clock->n == 0 || clock->p == 0))
589                 return 0;
590         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
591         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
592
593         return clock->dot;
594 }
595
596 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
597 {
598         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
599 }
600
601 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
602 {
603         clock->m = i9xx_dpll_compute_m(clock);
604         clock->p = clock->p1 * clock->p2;
605         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
606                 return 0;
607         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
608         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
609
610         return clock->dot;
611 }
612
613 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
614 {
615         clock->m = clock->m1 * clock->m2;
616         clock->p = clock->p1 * clock->p2;
617         if (WARN_ON(clock->n == 0 || clock->p == 0))
618                 return 0;
619         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
620         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
621
622         return clock->dot / 5;
623 }
624
625 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
626 {
627         clock->m = clock->m1 * clock->m2;
628         clock->p = clock->p1 * clock->p2;
629         if (WARN_ON(clock->n == 0 || clock->p == 0))
630                 return 0;
631         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
632                         clock->n << 22);
633         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
634
635         return clock->dot / 5;
636 }
637
638 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
639 /**
640  * Returns whether the given set of divisors are valid for a given refclk with
641  * the given connectors.
642  */
643
644 static bool intel_PLL_is_valid(struct drm_device *dev,
645                                const intel_limit_t *limit,
646                                const intel_clock_t *clock)
647 {
648         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
649                 INTELPllInvalid("n out of range\n");
650         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
651                 INTELPllInvalid("p1 out of range\n");
652         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
653                 INTELPllInvalid("m2 out of range\n");
654         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
655                 INTELPllInvalid("m1 out of range\n");
656
657         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
658             !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
659                 if (clock->m1 <= clock->m2)
660                         INTELPllInvalid("m1 <= m2\n");
661
662         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
663                 if (clock->p < limit->p.min || limit->p.max < clock->p)
664                         INTELPllInvalid("p out of range\n");
665                 if (clock->m < limit->m.min || limit->m.max < clock->m)
666                         INTELPllInvalid("m out of range\n");
667         }
668
669         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
670                 INTELPllInvalid("vco out of range\n");
671         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
672          * connector, etc., rather than just a single range.
673          */
674         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
675                 INTELPllInvalid("dot out of range\n");
676
677         return true;
678 }
679
680 static int
681 i9xx_select_p2_div(const intel_limit_t *limit,
682                    const struct intel_crtc_state *crtc_state,
683                    int target)
684 {
685         struct drm_device *dev = crtc_state->base.crtc->dev;
686
687         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
688                 /*
689                  * For LVDS just rely on its current settings for dual-channel.
690                  * We haven't figured out how to reliably set up different
691                  * single/dual channel state, if we even can.
692                  */
693                 if (intel_is_dual_link_lvds(dev))
694                         return limit->p2.p2_fast;
695                 else
696                         return limit->p2.p2_slow;
697         } else {
698                 if (target < limit->p2.dot_limit)
699                         return limit->p2.p2_slow;
700                 else
701                         return limit->p2.p2_fast;
702         }
703 }
704
705 /*
706  * Returns a set of divisors for the desired target clock with the given
707  * refclk, or FALSE.  The returned values represent the clock equation:
708  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
709  *
710  * Target and reference clocks are specified in kHz.
711  *
712  * If match_clock is provided, then best_clock P divider must match the P
713  * divider from @match_clock used for LVDS downclocking.
714  */
715 static bool
716 i9xx_find_best_dpll(const intel_limit_t *limit,
717                     struct intel_crtc_state *crtc_state,
718                     int target, int refclk, intel_clock_t *match_clock,
719                     intel_clock_t *best_clock)
720 {
721         struct drm_device *dev = crtc_state->base.crtc->dev;
722         intel_clock_t clock;
723         int err = target;
724
725         memset(best_clock, 0, sizeof(*best_clock));
726
727         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
728
729         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
730              clock.m1++) {
731                 for (clock.m2 = limit->m2.min;
732                      clock.m2 <= limit->m2.max; clock.m2++) {
733                         if (clock.m2 >= clock.m1)
734                                 break;
735                         for (clock.n = limit->n.min;
736                              clock.n <= limit->n.max; clock.n++) {
737                                 for (clock.p1 = limit->p1.min;
738                                         clock.p1 <= limit->p1.max; clock.p1++) {
739                                         int this_err;
740
741                                         i9xx_calc_dpll_params(refclk, &clock);
742                                         if (!intel_PLL_is_valid(dev, limit,
743                                                                 &clock))
744                                                 continue;
745                                         if (match_clock &&
746                                             clock.p != match_clock->p)
747                                                 continue;
748
749                                         this_err = abs(clock.dot - target);
750                                         if (this_err < err) {
751                                                 *best_clock = clock;
752                                                 err = this_err;
753                                         }
754                                 }
755                         }
756                 }
757         }
758
759         return (err != target);
760 }
761
762 /*
763  * Returns a set of divisors for the desired target clock with the given
764  * refclk, or FALSE.  The returned values represent the clock equation:
765  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
766  *
767  * Target and reference clocks are specified in kHz.
768  *
769  * If match_clock is provided, then best_clock P divider must match the P
770  * divider from @match_clock used for LVDS downclocking.
771  */
772 static bool
773 pnv_find_best_dpll(const intel_limit_t *limit,
774                    struct intel_crtc_state *crtc_state,
775                    int target, int refclk, intel_clock_t *match_clock,
776                    intel_clock_t *best_clock)
777 {
778         struct drm_device *dev = crtc_state->base.crtc->dev;
779         intel_clock_t clock;
780         int err = target;
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
787              clock.m1++) {
788                 for (clock.m2 = limit->m2.min;
789                      clock.m2 <= limit->m2.max; clock.m2++) {
790                         for (clock.n = limit->n.min;
791                              clock.n <= limit->n.max; clock.n++) {
792                                 for (clock.p1 = limit->p1.min;
793                                         clock.p1 <= limit->p1.max; clock.p1++) {
794                                         int this_err;
795
796                                         pnv_calc_dpll_params(refclk, &clock);
797                                         if (!intel_PLL_is_valid(dev, limit,
798                                                                 &clock))
799                                                 continue;
800                                         if (match_clock &&
801                                             clock.p != match_clock->p)
802                                                 continue;
803
804                                         this_err = abs(clock.dot - target);
805                                         if (this_err < err) {
806                                                 *best_clock = clock;
807                                                 err = this_err;
808                                         }
809                                 }
810                         }
811                 }
812         }
813
814         return (err != target);
815 }
816
817 /*
818  * Returns a set of divisors for the desired target clock with the given
819  * refclk, or FALSE.  The returned values represent the clock equation:
820  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
821  *
822  * Target and reference clocks are specified in kHz.
823  *
824  * If match_clock is provided, then best_clock P divider must match the P
825  * divider from @match_clock used for LVDS downclocking.
826  */
827 static bool
828 g4x_find_best_dpll(const intel_limit_t *limit,
829                    struct intel_crtc_state *crtc_state,
830                    int target, int refclk, intel_clock_t *match_clock,
831                    intel_clock_t *best_clock)
832 {
833         struct drm_device *dev = crtc_state->base.crtc->dev;
834         intel_clock_t clock;
835         int max_n;
836         bool found = false;
837         /* approximately equals target * 0.00585 */
838         int err_most = (target >> 8) + (target >> 9);
839
840         memset(best_clock, 0, sizeof(*best_clock));
841
842         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
843
844         max_n = limit->n.max;
845         /* based on hardware requirement, prefer smaller n to precision */
846         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
847                 /* based on hardware requirement, prefere larger m1,m2 */
848                 for (clock.m1 = limit->m1.max;
849                      clock.m1 >= limit->m1.min; clock.m1--) {
850                         for (clock.m2 = limit->m2.max;
851                              clock.m2 >= limit->m2.min; clock.m2--) {
852                                 for (clock.p1 = limit->p1.max;
853                                      clock.p1 >= limit->p1.min; clock.p1--) {
854                                         int this_err;
855
856                                         i9xx_calc_dpll_params(refclk, &clock);
857                                         if (!intel_PLL_is_valid(dev, limit,
858                                                                 &clock))
859                                                 continue;
860
861                                         this_err = abs(clock.dot - target);
862                                         if (this_err < err_most) {
863                                                 *best_clock = clock;
864                                                 err_most = this_err;
865                                                 max_n = clock.n;
866                                                 found = true;
867                                         }
868                                 }
869                         }
870                 }
871         }
872         return found;
873 }
874
875 /*
876  * Check if the calculated PLL configuration is more optimal compared to the
877  * best configuration and error found so far. Return the calculated error.
878  */
879 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
880                                const intel_clock_t *calculated_clock,
881                                const intel_clock_t *best_clock,
882                                unsigned int best_error_ppm,
883                                unsigned int *error_ppm)
884 {
885         /*
886          * For CHV ignore the error and consider only the P value.
887          * Prefer a bigger P value based on HW requirements.
888          */
889         if (IS_CHERRYVIEW(dev)) {
890                 *error_ppm = 0;
891
892                 return calculated_clock->p > best_clock->p;
893         }
894
895         if (WARN_ON_ONCE(!target_freq))
896                 return false;
897
898         *error_ppm = div_u64(1000000ULL *
899                                 abs(target_freq - calculated_clock->dot),
900                              target_freq);
901         /*
902          * Prefer a better P value over a better (smaller) error if the error
903          * is small. Ensure this preference for future configurations too by
904          * setting the error to 0.
905          */
906         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
907                 *error_ppm = 0;
908
909                 return true;
910         }
911
912         return *error_ppm + 10 < best_error_ppm;
913 }
914
915 /*
916  * Returns a set of divisors for the desired target clock with the given
917  * refclk, or FALSE.  The returned values represent the clock equation:
918  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
919  */
920 static bool
921 vlv_find_best_dpll(const intel_limit_t *limit,
922                    struct intel_crtc_state *crtc_state,
923                    int target, int refclk, intel_clock_t *match_clock,
924                    intel_clock_t *best_clock)
925 {
926         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
927         struct drm_device *dev = crtc->base.dev;
928         intel_clock_t clock;
929         unsigned int bestppm = 1000000;
930         /* min update 19.2 MHz */
931         int max_n = min(limit->n.max, refclk / 19200);
932         bool found = false;
933
934         target *= 5; /* fast clock */
935
936         memset(best_clock, 0, sizeof(*best_clock));
937
938         /* based on hardware requirement, prefer smaller n to precision */
939         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
940                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
941                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
942                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
943                                 clock.p = clock.p1 * clock.p2;
944                                 /* based on hardware requirement, prefer bigger m1,m2 values */
945                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
946                                         unsigned int ppm;
947
948                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
949                                                                      refclk * clock.m1);
950
951                                         vlv_calc_dpll_params(refclk, &clock);
952
953                                         if (!intel_PLL_is_valid(dev, limit,
954                                                                 &clock))
955                                                 continue;
956
957                                         if (!vlv_PLL_is_optimal(dev, target,
958                                                                 &clock,
959                                                                 best_clock,
960                                                                 bestppm, &ppm))
961                                                 continue;
962
963                                         *best_clock = clock;
964                                         bestppm = ppm;
965                                         found = true;
966                                 }
967                         }
968                 }
969         }
970
971         return found;
972 }
973
974 /*
975  * Returns a set of divisors for the desired target clock with the given
976  * refclk, or FALSE.  The returned values represent the clock equation:
977  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
978  */
979 static bool
980 chv_find_best_dpll(const intel_limit_t *limit,
981                    struct intel_crtc_state *crtc_state,
982                    int target, int refclk, intel_clock_t *match_clock,
983                    intel_clock_t *best_clock)
984 {
985         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
986         struct drm_device *dev = crtc->base.dev;
987         unsigned int best_error_ppm;
988         intel_clock_t clock;
989         uint64_t m2;
990         int found = false;
991
992         memset(best_clock, 0, sizeof(*best_clock));
993         best_error_ppm = 1000000;
994
995         /*
996          * Based on hardware doc, the n always set to 1, and m1 always
997          * set to 2.  If requires to support 200Mhz refclk, we need to
998          * revisit this because n may not 1 anymore.
999          */
1000         clock.n = 1, clock.m1 = 2;
1001         target *= 5;    /* fast clock */
1002
1003         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1004                 for (clock.p2 = limit->p2.p2_fast;
1005                                 clock.p2 >= limit->p2.p2_slow;
1006                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1007                         unsigned int error_ppm;
1008
1009                         clock.p = clock.p1 * clock.p2;
1010
1011                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1012                                         clock.n) << 22, refclk * clock.m1);
1013
1014                         if (m2 > INT_MAX/clock.m1)
1015                                 continue;
1016
1017                         clock.m2 = m2;
1018
1019                         chv_calc_dpll_params(refclk, &clock);
1020
1021                         if (!intel_PLL_is_valid(dev, limit, &clock))
1022                                 continue;
1023
1024                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1025                                                 best_error_ppm, &error_ppm))
1026                                 continue;
1027
1028                         *best_clock = clock;
1029                         best_error_ppm = error_ppm;
1030                         found = true;
1031                 }
1032         }
1033
1034         return found;
1035 }
1036
1037 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1038                         intel_clock_t *best_clock)
1039 {
1040         int refclk = 100000;
1041         const intel_limit_t *limit = &intel_limits_bxt;
1042
1043         return chv_find_best_dpll(limit, crtc_state,
1044                                   target_clock, refclk, NULL, best_clock);
1045 }
1046
1047 bool intel_crtc_active(struct drm_crtc *crtc)
1048 {
1049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1050
1051         /* Be paranoid as we can arrive here with only partial
1052          * state retrieved from the hardware during setup.
1053          *
1054          * We can ditch the adjusted_mode.crtc_clock check as soon
1055          * as Haswell has gained clock readout/fastboot support.
1056          *
1057          * We can ditch the crtc->primary->fb check as soon as we can
1058          * properly reconstruct framebuffers.
1059          *
1060          * FIXME: The intel_crtc->active here should be switched to
1061          * crtc->state->active once we have proper CRTC states wired up
1062          * for atomic.
1063          */
1064         return intel_crtc->active && crtc->primary->state->fb &&
1065                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1066 }
1067
1068 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1069                                              enum pipe pipe)
1070 {
1071         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1072         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1073
1074         return intel_crtc->config->cpu_transcoder;
1075 }
1076
1077 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1078 {
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         i915_reg_t reg = PIPEDSL(pipe);
1081         u32 line1, line2;
1082         u32 line_mask;
1083
1084         if (IS_GEN2(dev))
1085                 line_mask = DSL_LINEMASK_GEN2;
1086         else
1087                 line_mask = DSL_LINEMASK_GEN3;
1088
1089         line1 = I915_READ(reg) & line_mask;
1090         msleep(5);
1091         line2 = I915_READ(reg) & line_mask;
1092
1093         return line1 == line2;
1094 }
1095
1096 /*
1097  * intel_wait_for_pipe_off - wait for pipe to turn off
1098  * @crtc: crtc whose pipe to wait for
1099  *
1100  * After disabling a pipe, we can't wait for vblank in the usual way,
1101  * spinning on the vblank interrupt status bit, since we won't actually
1102  * see an interrupt when the pipe is disabled.
1103  *
1104  * On Gen4 and above:
1105  *   wait for the pipe register state bit to turn off
1106  *
1107  * Otherwise:
1108  *   wait for the display line value to settle (it usually
1109  *   ends up stopping at the start of the next frame).
1110  *
1111  */
1112 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1113 {
1114         struct drm_device *dev = crtc->base.dev;
1115         struct drm_i915_private *dev_priv = dev->dev_private;
1116         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1117         enum pipe pipe = crtc->pipe;
1118
1119         if (INTEL_INFO(dev)->gen >= 4) {
1120                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1121
1122                 /* Wait for the Pipe State to go off */
1123                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1124                              100))
1125                         WARN(1, "pipe_off wait timed out\n");
1126         } else {
1127                 /* Wait for the display line to settle */
1128                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1129                         WARN(1, "pipe_off wait timed out\n");
1130         }
1131 }
1132
1133 /* Only for pre-ILK configs */
1134 void assert_pll(struct drm_i915_private *dev_priv,
1135                 enum pipe pipe, bool state)
1136 {
1137         u32 val;
1138         bool cur_state;
1139
1140         val = I915_READ(DPLL(pipe));
1141         cur_state = !!(val & DPLL_VCO_ENABLE);
1142         I915_STATE_WARN(cur_state != state,
1143              "PLL state assertion failure (expected %s, current %s)\n",
1144                         onoff(state), onoff(cur_state));
1145 }
1146
1147 /* XXX: the dsi pll is shared between MIPI DSI ports */
1148 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1149 {
1150         u32 val;
1151         bool cur_state;
1152
1153         mutex_lock(&dev_priv->sb_lock);
1154         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1155         mutex_unlock(&dev_priv->sb_lock);
1156
1157         cur_state = val & DSI_PLL_VCO_EN;
1158         I915_STATE_WARN(cur_state != state,
1159              "DSI PLL state assertion failure (expected %s, current %s)\n",
1160                         onoff(state), onoff(cur_state));
1161 }
1162
1163 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1164                           enum pipe pipe, bool state)
1165 {
1166         bool cur_state;
1167         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1168                                                                       pipe);
1169
1170         if (HAS_DDI(dev_priv)) {
1171                 /* DDI does not have a specific FDI_TX register */
1172                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1173                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1174         } else {
1175                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1176                 cur_state = !!(val & FDI_TX_ENABLE);
1177         }
1178         I915_STATE_WARN(cur_state != state,
1179              "FDI TX state assertion failure (expected %s, current %s)\n",
1180                         onoff(state), onoff(cur_state));
1181 }
1182 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1183 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1184
1185 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         u32 val;
1189         bool cur_state;
1190
1191         val = I915_READ(FDI_RX_CTL(pipe));
1192         cur_state = !!(val & FDI_RX_ENABLE);
1193         I915_STATE_WARN(cur_state != state,
1194              "FDI RX state assertion failure (expected %s, current %s)\n",
1195                         onoff(state), onoff(cur_state));
1196 }
1197 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1198 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1199
1200 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1201                                       enum pipe pipe)
1202 {
1203         u32 val;
1204
1205         /* ILK FDI PLL is always enabled */
1206         if (INTEL_INFO(dev_priv)->gen == 5)
1207                 return;
1208
1209         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1210         if (HAS_DDI(dev_priv))
1211                 return;
1212
1213         val = I915_READ(FDI_TX_CTL(pipe));
1214         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215 }
1216
1217 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218                        enum pipe pipe, bool state)
1219 {
1220         u32 val;
1221         bool cur_state;
1222
1223         val = I915_READ(FDI_RX_CTL(pipe));
1224         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1225         I915_STATE_WARN(cur_state != state,
1226              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1227                         onoff(state), onoff(cur_state));
1228 }
1229
1230 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1231                            enum pipe pipe)
1232 {
1233         struct drm_device *dev = dev_priv->dev;
1234         i915_reg_t pp_reg;
1235         u32 val;
1236         enum pipe panel_pipe = PIPE_A;
1237         bool locked = true;
1238
1239         if (WARN_ON(HAS_DDI(dev)))
1240                 return;
1241
1242         if (HAS_PCH_SPLIT(dev)) {
1243                 u32 port_sel;
1244
1245                 pp_reg = PCH_PP_CONTROL;
1246                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1247
1248                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1249                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1250                         panel_pipe = PIPE_B;
1251                 /* XXX: else fix for eDP */
1252         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1253                 /* presumably write lock depends on pipe, not port select */
1254                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1255                 panel_pipe = pipe;
1256         } else {
1257                 pp_reg = PP_CONTROL;
1258                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1259                         panel_pipe = PIPE_B;
1260         }
1261
1262         val = I915_READ(pp_reg);
1263         if (!(val & PANEL_POWER_ON) ||
1264             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1265                 locked = false;
1266
1267         I915_STATE_WARN(panel_pipe == pipe && locked,
1268              "panel assertion failure, pipe %c regs locked\n",
1269              pipe_name(pipe));
1270 }
1271
1272 static void assert_cursor(struct drm_i915_private *dev_priv,
1273                           enum pipe pipe, bool state)
1274 {
1275         struct drm_device *dev = dev_priv->dev;
1276         bool cur_state;
1277
1278         if (IS_845G(dev) || IS_I865G(dev))
1279                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1280         else
1281                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1282
1283         I915_STATE_WARN(cur_state != state,
1284              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1285                         pipe_name(pipe), onoff(state), onoff(cur_state));
1286 }
1287 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1288 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1289
1290 void assert_pipe(struct drm_i915_private *dev_priv,
1291                  enum pipe pipe, bool state)
1292 {
1293         bool cur_state;
1294         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1295                                                                       pipe);
1296         enum intel_display_power_domain power_domain;
1297
1298         /* if we need the pipe quirk it must be always on */
1299         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1300             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1301                 state = true;
1302
1303         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1304         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1305                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1306                 cur_state = !!(val & PIPECONF_ENABLE);
1307
1308                 intel_display_power_put(dev_priv, power_domain);
1309         } else {
1310                 cur_state = false;
1311         }
1312
1313         I915_STATE_WARN(cur_state != state,
1314              "pipe %c assertion failure (expected %s, current %s)\n",
1315                         pipe_name(pipe), onoff(state), onoff(cur_state));
1316 }
1317
1318 static void assert_plane(struct drm_i915_private *dev_priv,
1319                          enum plane plane, bool state)
1320 {
1321         u32 val;
1322         bool cur_state;
1323
1324         val = I915_READ(DSPCNTR(plane));
1325         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1326         I915_STATE_WARN(cur_state != state,
1327              "plane %c assertion failure (expected %s, current %s)\n",
1328                         plane_name(plane), onoff(state), onoff(cur_state));
1329 }
1330
1331 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1332 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1333
1334 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1335                                    enum pipe pipe)
1336 {
1337         struct drm_device *dev = dev_priv->dev;
1338         int i;
1339
1340         /* Primary planes are fixed to pipes on gen4+ */
1341         if (INTEL_INFO(dev)->gen >= 4) {
1342                 u32 val = I915_READ(DSPCNTR(pipe));
1343                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1344                      "plane %c assertion failure, should be disabled but not\n",
1345                      plane_name(pipe));
1346                 return;
1347         }
1348
1349         /* Need to check both planes against the pipe */
1350         for_each_pipe(dev_priv, i) {
1351                 u32 val = I915_READ(DSPCNTR(i));
1352                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1353                         DISPPLANE_SEL_PIPE_SHIFT;
1354                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1355                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1356                      plane_name(i), pipe_name(pipe));
1357         }
1358 }
1359
1360 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1361                                     enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int sprite;
1365
1366         if (INTEL_INFO(dev)->gen >= 9) {
1367                 for_each_sprite(dev_priv, pipe, sprite) {
1368                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1369                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1370                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1371                              sprite, pipe_name(pipe));
1372                 }
1373         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1374                 for_each_sprite(dev_priv, pipe, sprite) {
1375                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1376                         I915_STATE_WARN(val & SP_ENABLE,
1377                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1378                              sprite_name(pipe, sprite), pipe_name(pipe));
1379                 }
1380         } else if (INTEL_INFO(dev)->gen >= 7) {
1381                 u32 val = I915_READ(SPRCTL(pipe));
1382                 I915_STATE_WARN(val & SPRITE_ENABLE,
1383                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1384                      plane_name(pipe), pipe_name(pipe));
1385         } else if (INTEL_INFO(dev)->gen >= 5) {
1386                 u32 val = I915_READ(DVSCNTR(pipe));
1387                 I915_STATE_WARN(val & DVS_ENABLE,
1388                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1389                      plane_name(pipe), pipe_name(pipe));
1390         }
1391 }
1392
1393 static void assert_vblank_disabled(struct drm_crtc *crtc)
1394 {
1395         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1396                 drm_crtc_vblank_put(crtc);
1397 }
1398
1399 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1400                                     enum pipe pipe)
1401 {
1402         u32 val;
1403         bool enabled;
1404
1405         val = I915_READ(PCH_TRANSCONF(pipe));
1406         enabled = !!(val & TRANS_ENABLE);
1407         I915_STATE_WARN(enabled,
1408              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1409              pipe_name(pipe));
1410 }
1411
1412 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1413                             enum pipe pipe, u32 port_sel, u32 val)
1414 {
1415         if ((val & DP_PORT_EN) == 0)
1416                 return false;
1417
1418         if (HAS_PCH_CPT(dev_priv)) {
1419                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1420                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421                         return false;
1422         } else if (IS_CHERRYVIEW(dev_priv)) {
1423                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424                         return false;
1425         } else {
1426                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427                         return false;
1428         }
1429         return true;
1430 }
1431
1432 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433                               enum pipe pipe, u32 val)
1434 {
1435         if ((val & SDVO_ENABLE) == 0)
1436                 return false;
1437
1438         if (HAS_PCH_CPT(dev_priv)) {
1439                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440                         return false;
1441         } else if (IS_CHERRYVIEW(dev_priv)) {
1442                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443                         return false;
1444         } else {
1445                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446                         return false;
1447         }
1448         return true;
1449 }
1450
1451 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452                               enum pipe pipe, u32 val)
1453 {
1454         if ((val & LVDS_PORT_EN) == 0)
1455                 return false;
1456
1457         if (HAS_PCH_CPT(dev_priv)) {
1458                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459                         return false;
1460         } else {
1461                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462                         return false;
1463         }
1464         return true;
1465 }
1466
1467 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468                               enum pipe pipe, u32 val)
1469 {
1470         if ((val & ADPA_DAC_ENABLE) == 0)
1471                 return false;
1472         if (HAS_PCH_CPT(dev_priv)) {
1473                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483                                    enum pipe pipe, i915_reg_t reg,
1484                                    u32 port_sel)
1485 {
1486         u32 val = I915_READ(reg);
1487         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1488              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1489              i915_mmio_reg_offset(reg), pipe_name(pipe));
1490
1491         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1492              && (val & DP_PIPEB_SELECT),
1493              "IBX PCH dp port still using transcoder B\n");
1494 }
1495
1496 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1497                                      enum pipe pipe, i915_reg_t reg)
1498 {
1499         u32 val = I915_READ(reg);
1500         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1501              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1502              i915_mmio_reg_offset(reg), pipe_name(pipe));
1503
1504         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1505              && (val & SDVO_PIPE_B_SELECT),
1506              "IBX PCH hdmi port still using transcoder B\n");
1507 }
1508
1509 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1510                                       enum pipe pipe)
1511 {
1512         u32 val;
1513
1514         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518         val = I915_READ(PCH_ADPA);
1519         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520              "PCH VGA enabled on transcoder %c, should be disabled\n",
1521              pipe_name(pipe));
1522
1523         val = I915_READ(PCH_LVDS);
1524         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1525              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1526              pipe_name(pipe));
1527
1528         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1529         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1530         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1531 }
1532
1533 static void vlv_enable_pll(struct intel_crtc *crtc,
1534                            const struct intel_crtc_state *pipe_config)
1535 {
1536         struct drm_device *dev = crtc->base.dev;
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         enum pipe pipe = crtc->pipe;
1539         i915_reg_t reg = DPLL(pipe);
1540         u32 dpll = pipe_config->dpll_hw_state.dpll;
1541
1542         assert_pipe_disabled(dev_priv, pipe);
1543
1544         /* PLL is protected by panel, make sure we can write it */
1545         assert_panel_unlocked(dev_priv, pipe);
1546
1547         I915_WRITE(reg, dpll);
1548         POSTING_READ(reg);
1549         udelay(150);
1550
1551         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1552                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1553
1554         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1555         POSTING_READ(DPLL_MD(pipe));
1556 }
1557
1558 static void chv_enable_pll(struct intel_crtc *crtc,
1559                            const struct intel_crtc_state *pipe_config)
1560 {
1561         struct drm_device *dev = crtc->base.dev;
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563         enum pipe pipe = crtc->pipe;
1564         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1565         u32 tmp;
1566
1567         assert_pipe_disabled(dev_priv, pipe);
1568
1569         /* PLL is protected by panel, make sure we can write it */
1570         assert_panel_unlocked(dev_priv, pipe);
1571
1572         mutex_lock(&dev_priv->sb_lock);
1573
1574         /* Enable back the 10bit clock to display controller */
1575         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1576         tmp |= DPIO_DCLKP_EN;
1577         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1578
1579         mutex_unlock(&dev_priv->sb_lock);
1580
1581         /*
1582          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1583          */
1584         udelay(1);
1585
1586         /* Enable PLL */
1587         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1588
1589         /* Check PLL is locked */
1590         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1591                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1592
1593         if (pipe != PIPE_A) {
1594                 /*
1595                  * WaPixelRepeatModeFixForC0:chv
1596                  *
1597                  * DPLLCMD is AWOL. Use chicken bits to propagate
1598                  * the value from DPLLBMD to either pipe B or C.
1599                  */
1600                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1601                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1602                 I915_WRITE(CBR4_VLV, 0);
1603                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1604
1605                 /*
1606                  * DPLLB VGA mode also seems to cause problems.
1607                  * We should always have it disabled.
1608                  */
1609                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1610         } else {
1611                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1612                 POSTING_READ(DPLL_MD(pipe));
1613         }
1614 }
1615
1616 static int intel_num_dvo_pipes(struct drm_device *dev)
1617 {
1618         struct intel_crtc *crtc;
1619         int count = 0;
1620
1621         for_each_intel_crtc(dev, crtc)
1622                 count += crtc->base.state->active &&
1623                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1624
1625         return count;
1626 }
1627
1628 static void i9xx_enable_pll(struct intel_crtc *crtc)
1629 {
1630         struct drm_device *dev = crtc->base.dev;
1631         struct drm_i915_private *dev_priv = dev->dev_private;
1632         i915_reg_t reg = DPLL(crtc->pipe);
1633         u32 dpll = crtc->config->dpll_hw_state.dpll;
1634
1635         assert_pipe_disabled(dev_priv, crtc->pipe);
1636
1637         /* PLL is protected by panel, make sure we can write it */
1638         if (IS_MOBILE(dev) && !IS_I830(dev))
1639                 assert_panel_unlocked(dev_priv, crtc->pipe);
1640
1641         /* Enable DVO 2x clock on both PLLs if necessary */
1642         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1643                 /*
1644                  * It appears to be important that we don't enable this
1645                  * for the current pipe before otherwise configuring the
1646                  * PLL. No idea how this should be handled if multiple
1647                  * DVO outputs are enabled simultaneosly.
1648                  */
1649                 dpll |= DPLL_DVO_2X_MODE;
1650                 I915_WRITE(DPLL(!crtc->pipe),
1651                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1652         }
1653
1654         /*
1655          * Apparently we need to have VGA mode enabled prior to changing
1656          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1657          * dividers, even though the register value does change.
1658          */
1659         I915_WRITE(reg, 0);
1660
1661         I915_WRITE(reg, dpll);
1662
1663         /* Wait for the clocks to stabilize. */
1664         POSTING_READ(reg);
1665         udelay(150);
1666
1667         if (INTEL_INFO(dev)->gen >= 4) {
1668                 I915_WRITE(DPLL_MD(crtc->pipe),
1669                            crtc->config->dpll_hw_state.dpll_md);
1670         } else {
1671                 /* The pixel multiplier can only be updated once the
1672                  * DPLL is enabled and the clocks are stable.
1673                  *
1674                  * So write it again.
1675                  */
1676                 I915_WRITE(reg, dpll);
1677         }
1678
1679         /* We do this three times for luck */
1680         I915_WRITE(reg, dpll);
1681         POSTING_READ(reg);
1682         udelay(150); /* wait for warmup */
1683         I915_WRITE(reg, dpll);
1684         POSTING_READ(reg);
1685         udelay(150); /* wait for warmup */
1686         I915_WRITE(reg, dpll);
1687         POSTING_READ(reg);
1688         udelay(150); /* wait for warmup */
1689 }
1690
1691 /**
1692  * i9xx_disable_pll - disable a PLL
1693  * @dev_priv: i915 private structure
1694  * @pipe: pipe PLL to disable
1695  *
1696  * Disable the PLL for @pipe, making sure the pipe is off first.
1697  *
1698  * Note!  This is for pre-ILK only.
1699  */
1700 static void i9xx_disable_pll(struct intel_crtc *crtc)
1701 {
1702         struct drm_device *dev = crtc->base.dev;
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704         enum pipe pipe = crtc->pipe;
1705
1706         /* Disable DVO 2x clock on both PLLs if necessary */
1707         if (IS_I830(dev) &&
1708             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1709             !intel_num_dvo_pipes(dev)) {
1710                 I915_WRITE(DPLL(PIPE_B),
1711                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1712                 I915_WRITE(DPLL(PIPE_A),
1713                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1714         }
1715
1716         /* Don't disable pipe or pipe PLLs if needed */
1717         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1718             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1719                 return;
1720
1721         /* Make sure the pipe isn't still relying on us */
1722         assert_pipe_disabled(dev_priv, pipe);
1723
1724         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1725         POSTING_READ(DPLL(pipe));
1726 }
1727
1728 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730         u32 val;
1731
1732         /* Make sure the pipe isn't still relying on us */
1733         assert_pipe_disabled(dev_priv, pipe);
1734
1735         val = DPLL_INTEGRATED_REF_CLK_VLV |
1736                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1737         if (pipe != PIPE_A)
1738                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1739
1740         I915_WRITE(DPLL(pipe), val);
1741         POSTING_READ(DPLL(pipe));
1742 }
1743
1744 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1745 {
1746         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1747         u32 val;
1748
1749         /* Make sure the pipe isn't still relying on us */
1750         assert_pipe_disabled(dev_priv, pipe);
1751
1752         val = DPLL_SSC_REF_CLK_CHV |
1753                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1754         if (pipe != PIPE_A)
1755                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1756
1757         I915_WRITE(DPLL(pipe), val);
1758         POSTING_READ(DPLL(pipe));
1759
1760         mutex_lock(&dev_priv->sb_lock);
1761
1762         /* Disable 10bit clock to display controller */
1763         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1764         val &= ~DPIO_DCLKP_EN;
1765         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1766
1767         mutex_unlock(&dev_priv->sb_lock);
1768 }
1769
1770 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1771                          struct intel_digital_port *dport,
1772                          unsigned int expected_mask)
1773 {
1774         u32 port_mask;
1775         i915_reg_t dpll_reg;
1776
1777         switch (dport->port) {
1778         case PORT_B:
1779                 port_mask = DPLL_PORTB_READY_MASK;
1780                 dpll_reg = DPLL(0);
1781                 break;
1782         case PORT_C:
1783                 port_mask = DPLL_PORTC_READY_MASK;
1784                 dpll_reg = DPLL(0);
1785                 expected_mask <<= 4;
1786                 break;
1787         case PORT_D:
1788                 port_mask = DPLL_PORTD_READY_MASK;
1789                 dpll_reg = DPIO_PHY_STATUS;
1790                 break;
1791         default:
1792                 BUG();
1793         }
1794
1795         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1796                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1797                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1798 }
1799
1800 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1801                                            enum pipe pipe)
1802 {
1803         struct drm_device *dev = dev_priv->dev;
1804         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1805         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1806         i915_reg_t reg;
1807         uint32_t val, pipeconf_val;
1808
1809         /* Make sure PCH DPLL is enabled */
1810         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1811
1812         /* FDI must be feeding us bits for PCH ports */
1813         assert_fdi_tx_enabled(dev_priv, pipe);
1814         assert_fdi_rx_enabled(dev_priv, pipe);
1815
1816         if (HAS_PCH_CPT(dev)) {
1817                 /* Workaround: Set the timing override bit before enabling the
1818                  * pch transcoder. */
1819                 reg = TRANS_CHICKEN2(pipe);
1820                 val = I915_READ(reg);
1821                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1822                 I915_WRITE(reg, val);
1823         }
1824
1825         reg = PCH_TRANSCONF(pipe);
1826         val = I915_READ(reg);
1827         pipeconf_val = I915_READ(PIPECONF(pipe));
1828
1829         if (HAS_PCH_IBX(dev_priv)) {
1830                 /*
1831                  * Make the BPC in transcoder be consistent with
1832                  * that in pipeconf reg. For HDMI we must use 8bpc
1833                  * here for both 8bpc and 12bpc.
1834                  */
1835                 val &= ~PIPECONF_BPC_MASK;
1836                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1837                         val |= PIPECONF_8BPC;
1838                 else
1839                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1840         }
1841
1842         val &= ~TRANS_INTERLACE_MASK;
1843         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1844                 if (HAS_PCH_IBX(dev_priv) &&
1845                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1846                         val |= TRANS_LEGACY_INTERLACED_ILK;
1847                 else
1848                         val |= TRANS_INTERLACED;
1849         else
1850                 val |= TRANS_PROGRESSIVE;
1851
1852         I915_WRITE(reg, val | TRANS_ENABLE);
1853         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1854                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1855 }
1856
1857 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1858                                       enum transcoder cpu_transcoder)
1859 {
1860         u32 val, pipeconf_val;
1861
1862         /* FDI must be feeding us bits for PCH ports */
1863         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1864         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1865
1866         /* Workaround: set timing override bit. */
1867         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1868         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1869         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1870
1871         val = TRANS_ENABLE;
1872         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1873
1874         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1875             PIPECONF_INTERLACED_ILK)
1876                 val |= TRANS_INTERLACED;
1877         else
1878                 val |= TRANS_PROGRESSIVE;
1879
1880         I915_WRITE(LPT_TRANSCONF, val);
1881         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1882                 DRM_ERROR("Failed to enable PCH transcoder\n");
1883 }
1884
1885 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1886                                             enum pipe pipe)
1887 {
1888         struct drm_device *dev = dev_priv->dev;
1889         i915_reg_t reg;
1890         uint32_t val;
1891
1892         /* FDI relies on the transcoder */
1893         assert_fdi_tx_disabled(dev_priv, pipe);
1894         assert_fdi_rx_disabled(dev_priv, pipe);
1895
1896         /* Ports must be off as well */
1897         assert_pch_ports_disabled(dev_priv, pipe);
1898
1899         reg = PCH_TRANSCONF(pipe);
1900         val = I915_READ(reg);
1901         val &= ~TRANS_ENABLE;
1902         I915_WRITE(reg, val);
1903         /* wait for PCH transcoder off, transcoder state */
1904         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1905                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1906
1907         if (HAS_PCH_CPT(dev)) {
1908                 /* Workaround: Clear the timing override chicken bit again. */
1909                 reg = TRANS_CHICKEN2(pipe);
1910                 val = I915_READ(reg);
1911                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1912                 I915_WRITE(reg, val);
1913         }
1914 }
1915
1916 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1917 {
1918         u32 val;
1919
1920         val = I915_READ(LPT_TRANSCONF);
1921         val &= ~TRANS_ENABLE;
1922         I915_WRITE(LPT_TRANSCONF, val);
1923         /* wait for PCH transcoder off, transcoder state */
1924         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1925                 DRM_ERROR("Failed to disable PCH transcoder\n");
1926
1927         /* Workaround: clear timing override bit. */
1928         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1929         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1930         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1931 }
1932
1933 /**
1934  * intel_enable_pipe - enable a pipe, asserting requirements
1935  * @crtc: crtc responsible for the pipe
1936  *
1937  * Enable @crtc's pipe, making sure that various hardware specific requirements
1938  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1939  */
1940 static void intel_enable_pipe(struct intel_crtc *crtc)
1941 {
1942         struct drm_device *dev = crtc->base.dev;
1943         struct drm_i915_private *dev_priv = dev->dev_private;
1944         enum pipe pipe = crtc->pipe;
1945         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1946         enum pipe pch_transcoder;
1947         i915_reg_t reg;
1948         u32 val;
1949
1950         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1951
1952         assert_planes_disabled(dev_priv, pipe);
1953         assert_cursor_disabled(dev_priv, pipe);
1954         assert_sprites_disabled(dev_priv, pipe);
1955
1956         if (HAS_PCH_LPT(dev_priv))
1957                 pch_transcoder = TRANSCODER_A;
1958         else
1959                 pch_transcoder = pipe;
1960
1961         /*
1962          * A pipe without a PLL won't actually be able to drive bits from
1963          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1964          * need the check.
1965          */
1966         if (HAS_GMCH_DISPLAY(dev_priv))
1967                 if (crtc->config->has_dsi_encoder)
1968                         assert_dsi_pll_enabled(dev_priv);
1969                 else
1970                         assert_pll_enabled(dev_priv, pipe);
1971         else {
1972                 if (crtc->config->has_pch_encoder) {
1973                         /* if driving the PCH, we need FDI enabled */
1974                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1975                         assert_fdi_tx_pll_enabled(dev_priv,
1976                                                   (enum pipe) cpu_transcoder);
1977                 }
1978                 /* FIXME: assert CPU port conditions for SNB+ */
1979         }
1980
1981         reg = PIPECONF(cpu_transcoder);
1982         val = I915_READ(reg);
1983         if (val & PIPECONF_ENABLE) {
1984                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1985                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1986                 return;
1987         }
1988
1989         I915_WRITE(reg, val | PIPECONF_ENABLE);
1990         POSTING_READ(reg);
1991
1992         /*
1993          * Until the pipe starts DSL will read as 0, which would cause
1994          * an apparent vblank timestamp jump, which messes up also the
1995          * frame count when it's derived from the timestamps. So let's
1996          * wait for the pipe to start properly before we call
1997          * drm_crtc_vblank_on()
1998          */
1999         if (dev->max_vblank_count == 0 &&
2000             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2001                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2002 }
2003
2004 /**
2005  * intel_disable_pipe - disable a pipe, asserting requirements
2006  * @crtc: crtc whose pipes is to be disabled
2007  *
2008  * Disable the pipe of @crtc, making sure that various hardware
2009  * specific requirements are met, if applicable, e.g. plane
2010  * disabled, panel fitter off, etc.
2011  *
2012  * Will wait until the pipe has shut down before returning.
2013  */
2014 static void intel_disable_pipe(struct intel_crtc *crtc)
2015 {
2016         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2017         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2018         enum pipe pipe = crtc->pipe;
2019         i915_reg_t reg;
2020         u32 val;
2021
2022         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2023
2024         /*
2025          * Make sure planes won't keep trying to pump pixels to us,
2026          * or we might hang the display.
2027          */
2028         assert_planes_disabled(dev_priv, pipe);
2029         assert_cursor_disabled(dev_priv, pipe);
2030         assert_sprites_disabled(dev_priv, pipe);
2031
2032         reg = PIPECONF(cpu_transcoder);
2033         val = I915_READ(reg);
2034         if ((val & PIPECONF_ENABLE) == 0)
2035                 return;
2036
2037         /*
2038          * Double wide has implications for planes
2039          * so best keep it disabled when not needed.
2040          */
2041         if (crtc->config->double_wide)
2042                 val &= ~PIPECONF_DOUBLE_WIDE;
2043
2044         /* Don't disable pipe or pipe PLLs if needed */
2045         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2046             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2047                 val &= ~PIPECONF_ENABLE;
2048
2049         I915_WRITE(reg, val);
2050         if ((val & PIPECONF_ENABLE) == 0)
2051                 intel_wait_for_pipe_off(crtc);
2052 }
2053
2054 static bool need_vtd_wa(struct drm_device *dev)
2055 {
2056 #ifdef CONFIG_INTEL_IOMMU
2057         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2058                 return true;
2059 #endif
2060         return false;
2061 }
2062
2063 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2064 {
2065         return IS_GEN2(dev_priv) ? 2048 : 4096;
2066 }
2067
2068 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2069                                            uint64_t fb_modifier, unsigned int cpp)
2070 {
2071         switch (fb_modifier) {
2072         case DRM_FORMAT_MOD_NONE:
2073                 return cpp;
2074         case I915_FORMAT_MOD_X_TILED:
2075                 if (IS_GEN2(dev_priv))
2076                         return 128;
2077                 else
2078                         return 512;
2079         case I915_FORMAT_MOD_Y_TILED:
2080                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2081                         return 128;
2082                 else
2083                         return 512;
2084         case I915_FORMAT_MOD_Yf_TILED:
2085                 switch (cpp) {
2086                 case 1:
2087                         return 64;
2088                 case 2:
2089                 case 4:
2090                         return 128;
2091                 case 8:
2092                 case 16:
2093                         return 256;
2094                 default:
2095                         MISSING_CASE(cpp);
2096                         return cpp;
2097                 }
2098                 break;
2099         default:
2100                 MISSING_CASE(fb_modifier);
2101                 return cpp;
2102         }
2103 }
2104
2105 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2106                                uint64_t fb_modifier, unsigned int cpp)
2107 {
2108         if (fb_modifier == DRM_FORMAT_MOD_NONE)
2109                 return 1;
2110         else
2111                 return intel_tile_size(dev_priv) /
2112                         intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2113 }
2114
2115 /* Return the tile dimensions in pixel units */
2116 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2117                             unsigned int *tile_width,
2118                             unsigned int *tile_height,
2119                             uint64_t fb_modifier,
2120                             unsigned int cpp)
2121 {
2122         unsigned int tile_width_bytes =
2123                 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2124
2125         *tile_width = tile_width_bytes / cpp;
2126         *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2127 }
2128
2129 unsigned int
2130 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2131                       uint32_t pixel_format, uint64_t fb_modifier)
2132 {
2133         unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2134         unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2135
2136         return ALIGN(height, tile_height);
2137 }
2138
2139 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2140 {
2141         unsigned int size = 0;
2142         int i;
2143
2144         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2145                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2146
2147         return size;
2148 }
2149
2150 static void
2151 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2152                         const struct drm_framebuffer *fb,
2153                         unsigned int rotation)
2154 {
2155         if (intel_rotation_90_or_270(rotation)) {
2156                 *view = i915_ggtt_view_rotated;
2157                 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2158         } else {
2159                 *view = i915_ggtt_view_normal;
2160         }
2161 }
2162
2163 static void
2164 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2165                    struct drm_framebuffer *fb)
2166 {
2167         struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2168         unsigned int tile_size, tile_width, tile_height, cpp;
2169
2170         tile_size = intel_tile_size(dev_priv);
2171
2172         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2173         intel_tile_dims(dev_priv, &tile_width, &tile_height,
2174                         fb->modifier[0], cpp);
2175
2176         info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2177         info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2178
2179         if (info->pixel_format == DRM_FORMAT_NV12) {
2180                 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2181                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2182                                 fb->modifier[1], cpp);
2183
2184                 info->uv_offset = fb->offsets[1];
2185                 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2186                 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2187         }
2188 }
2189
2190 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2191 {
2192         if (INTEL_INFO(dev_priv)->gen >= 9)
2193                 return 256 * 1024;
2194         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2195                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2196                 return 128 * 1024;
2197         else if (INTEL_INFO(dev_priv)->gen >= 4)
2198                 return 4 * 1024;
2199         else
2200                 return 0;
2201 }
2202
2203 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2204                                          uint64_t fb_modifier)
2205 {
2206         switch (fb_modifier) {
2207         case DRM_FORMAT_MOD_NONE:
2208                 return intel_linear_alignment(dev_priv);
2209         case I915_FORMAT_MOD_X_TILED:
2210                 if (INTEL_INFO(dev_priv)->gen >= 9)
2211                         return 256 * 1024;
2212                 return 0;
2213         case I915_FORMAT_MOD_Y_TILED:
2214         case I915_FORMAT_MOD_Yf_TILED:
2215                 return 1 * 1024 * 1024;
2216         default:
2217                 MISSING_CASE(fb_modifier);
2218                 return 0;
2219         }
2220 }
2221
2222 int
2223 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2224                            unsigned int rotation)
2225 {
2226         struct drm_device *dev = fb->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2229         struct i915_ggtt_view view;
2230         u32 alignment;
2231         int ret;
2232
2233         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2234
2235         alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2236
2237         intel_fill_fb_ggtt_view(&view, fb, rotation);
2238
2239         /* Note that the w/a also requires 64 PTE of padding following the
2240          * bo. We currently fill all unused PTE with the shadow page and so
2241          * we should always have valid PTE following the scanout preventing
2242          * the VT-d warning.
2243          */
2244         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2245                 alignment = 256 * 1024;
2246
2247         /*
2248          * Global gtt pte registers are special registers which actually forward
2249          * writes to a chunk of system memory. Which means that there is no risk
2250          * that the register values disappear as soon as we call
2251          * intel_runtime_pm_put(), so it is correct to wrap only the
2252          * pin/unpin/fence and not more.
2253          */
2254         intel_runtime_pm_get(dev_priv);
2255
2256         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2257                                                    &view);
2258         if (ret)
2259                 goto err_pm;
2260
2261         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2262          * fence, whereas 965+ only requires a fence if using
2263          * framebuffer compression.  For simplicity, we always install
2264          * a fence as the cost is not that onerous.
2265          */
2266         if (view.type == I915_GGTT_VIEW_NORMAL) {
2267                 ret = i915_gem_object_get_fence(obj);
2268                 if (ret == -EDEADLK) {
2269                         /*
2270                          * -EDEADLK means there are no free fences
2271                          * no pending flips.
2272                          *
2273                          * This is propagated to atomic, but it uses
2274                          * -EDEADLK to force a locking recovery, so
2275                          * change the returned error to -EBUSY.
2276                          */
2277                         ret = -EBUSY;
2278                         goto err_unpin;
2279                 } else if (ret)
2280                         goto err_unpin;
2281
2282                 i915_gem_object_pin_fence(obj);
2283         }
2284
2285         intel_runtime_pm_put(dev_priv);
2286         return 0;
2287
2288 err_unpin:
2289         i915_gem_object_unpin_from_display_plane(obj, &view);
2290 err_pm:
2291         intel_runtime_pm_put(dev_priv);
2292         return ret;
2293 }
2294
2295 static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2296 {
2297         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2298         struct i915_ggtt_view view;
2299
2300         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2301
2302         intel_fill_fb_ggtt_view(&view, fb, rotation);
2303
2304         if (view.type == I915_GGTT_VIEW_NORMAL)
2305                 i915_gem_object_unpin_fence(obj);
2306
2307         i915_gem_object_unpin_from_display_plane(obj, &view);
2308 }
2309
2310 /*
2311  * Adjust the tile offset by moving the difference into
2312  * the x/y offsets.
2313  *
2314  * Input tile dimensions and pitch must already be
2315  * rotated to match x and y, and in pixel units.
2316  */
2317 static u32 intel_adjust_tile_offset(int *x, int *y,
2318                                     unsigned int tile_width,
2319                                     unsigned int tile_height,
2320                                     unsigned int tile_size,
2321                                     unsigned int pitch_tiles,
2322                                     u32 old_offset,
2323                                     u32 new_offset)
2324 {
2325         unsigned int tiles;
2326
2327         WARN_ON(old_offset & (tile_size - 1));
2328         WARN_ON(new_offset & (tile_size - 1));
2329         WARN_ON(new_offset > old_offset);
2330
2331         tiles = (old_offset - new_offset) / tile_size;
2332
2333         *y += tiles / pitch_tiles * tile_height;
2334         *x += tiles % pitch_tiles * tile_width;
2335
2336         return new_offset;
2337 }
2338
2339 /*
2340  * Computes the linear offset to the base tile and adjusts
2341  * x, y. bytes per pixel is assumed to be a power-of-two.
2342  *
2343  * In the 90/270 rotated case, x and y are assumed
2344  * to be already rotated to match the rotated GTT view, and
2345  * pitch is the tile_height aligned framebuffer height.
2346  */
2347 u32 intel_compute_tile_offset(int *x, int *y,
2348                               const struct drm_framebuffer *fb, int plane,
2349                               unsigned int pitch,
2350                               unsigned int rotation)
2351 {
2352         const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2353         uint64_t fb_modifier = fb->modifier[plane];
2354         unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2355         u32 offset, offset_aligned, alignment;
2356
2357         alignment = intel_surf_alignment(dev_priv, fb_modifier);
2358         if (alignment)
2359                 alignment--;
2360
2361         if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2362                 unsigned int tile_size, tile_width, tile_height;
2363                 unsigned int tile_rows, tiles, pitch_tiles;
2364
2365                 tile_size = intel_tile_size(dev_priv);
2366                 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2367                                 fb_modifier, cpp);
2368
2369                 if (intel_rotation_90_or_270(rotation)) {
2370                         pitch_tiles = pitch / tile_height;
2371                         swap(tile_width, tile_height);
2372                 } else {
2373                         pitch_tiles = pitch / (tile_width * cpp);
2374                 }
2375
2376                 tile_rows = *y / tile_height;
2377                 *y %= tile_height;
2378
2379                 tiles = *x / tile_width;
2380                 *x %= tile_width;
2381
2382                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2383                 offset_aligned = offset & ~alignment;
2384
2385                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2386                                          tile_size, pitch_tiles,
2387                                          offset, offset_aligned);
2388         } else {
2389                 offset = *y * pitch + *x * cpp;
2390                 offset_aligned = offset & ~alignment;
2391
2392                 *y = (offset & alignment) / pitch;
2393                 *x = ((offset & alignment) - *y * pitch) / cpp;
2394         }
2395
2396         return offset_aligned;
2397 }
2398
2399 static int i9xx_format_to_fourcc(int format)
2400 {
2401         switch (format) {
2402         case DISPPLANE_8BPP:
2403                 return DRM_FORMAT_C8;
2404         case DISPPLANE_BGRX555:
2405                 return DRM_FORMAT_XRGB1555;
2406         case DISPPLANE_BGRX565:
2407                 return DRM_FORMAT_RGB565;
2408         default:
2409         case DISPPLANE_BGRX888:
2410                 return DRM_FORMAT_XRGB8888;
2411         case DISPPLANE_RGBX888:
2412                 return DRM_FORMAT_XBGR8888;
2413         case DISPPLANE_BGRX101010:
2414                 return DRM_FORMAT_XRGB2101010;
2415         case DISPPLANE_RGBX101010:
2416                 return DRM_FORMAT_XBGR2101010;
2417         }
2418 }
2419
2420 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2421 {
2422         switch (format) {
2423         case PLANE_CTL_FORMAT_RGB_565:
2424                 return DRM_FORMAT_RGB565;
2425         default:
2426         case PLANE_CTL_FORMAT_XRGB_8888:
2427                 if (rgb_order) {
2428                         if (alpha)
2429                                 return DRM_FORMAT_ABGR8888;
2430                         else
2431                                 return DRM_FORMAT_XBGR8888;
2432                 } else {
2433                         if (alpha)
2434                                 return DRM_FORMAT_ARGB8888;
2435                         else
2436                                 return DRM_FORMAT_XRGB8888;
2437                 }
2438         case PLANE_CTL_FORMAT_XRGB_2101010:
2439                 if (rgb_order)
2440                         return DRM_FORMAT_XBGR2101010;
2441                 else
2442                         return DRM_FORMAT_XRGB2101010;
2443         }
2444 }
2445
2446 static bool
2447 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2448                               struct intel_initial_plane_config *plane_config)
2449 {
2450         struct drm_device *dev = crtc->base.dev;
2451         struct drm_i915_private *dev_priv = to_i915(dev);
2452         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2453         struct drm_i915_gem_object *obj = NULL;
2454         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2455         struct drm_framebuffer *fb = &plane_config->fb->base;
2456         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2457         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2458                                     PAGE_SIZE);
2459
2460         size_aligned -= base_aligned;
2461
2462         if (plane_config->size == 0)
2463                 return false;
2464
2465         /* If the FB is too big, just don't use it since fbdev is not very
2466          * important and we should probably use that space with FBC or other
2467          * features. */
2468         if (size_aligned * 2 > ggtt->stolen_usable_size)
2469                 return false;
2470
2471         mutex_lock(&dev->struct_mutex);
2472
2473         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2474                                                              base_aligned,
2475                                                              base_aligned,
2476                                                              size_aligned);
2477         if (!obj) {
2478                 mutex_unlock(&dev->struct_mutex);
2479                 return false;
2480         }
2481
2482         obj->tiling_mode = plane_config->tiling;
2483         if (obj->tiling_mode == I915_TILING_X)
2484                 obj->stride = fb->pitches[0];
2485
2486         mode_cmd.pixel_format = fb->pixel_format;
2487         mode_cmd.width = fb->width;
2488         mode_cmd.height = fb->height;
2489         mode_cmd.pitches[0] = fb->pitches[0];
2490         mode_cmd.modifier[0] = fb->modifier[0];
2491         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2492
2493         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2494                                    &mode_cmd, obj)) {
2495                 DRM_DEBUG_KMS("intel fb init failed\n");
2496                 goto out_unref_obj;
2497         }
2498
2499         mutex_unlock(&dev->struct_mutex);
2500
2501         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2502         return true;
2503
2504 out_unref_obj:
2505         drm_gem_object_unreference(&obj->base);
2506         mutex_unlock(&dev->struct_mutex);
2507         return false;
2508 }
2509
2510 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2511 static void
2512 update_state_fb(struct drm_plane *plane)
2513 {
2514         if (plane->fb == plane->state->fb)
2515                 return;
2516
2517         if (plane->state->fb)
2518                 drm_framebuffer_unreference(plane->state->fb);
2519         plane->state->fb = plane->fb;
2520         if (plane->state->fb)
2521                 drm_framebuffer_reference(plane->state->fb);
2522 }
2523
2524 static void
2525 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2526                              struct intel_initial_plane_config *plane_config)
2527 {
2528         struct drm_device *dev = intel_crtc->base.dev;
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         struct drm_crtc *c;
2531         struct intel_crtc *i;
2532         struct drm_i915_gem_object *obj;
2533         struct drm_plane *primary = intel_crtc->base.primary;
2534         struct drm_plane_state *plane_state = primary->state;
2535         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2536         struct intel_plane *intel_plane = to_intel_plane(primary);
2537         struct intel_plane_state *intel_state =
2538                 to_intel_plane_state(plane_state);
2539         struct drm_framebuffer *fb;
2540
2541         if (!plane_config->fb)
2542                 return;
2543
2544         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2545                 fb = &plane_config->fb->base;
2546                 goto valid_fb;
2547         }
2548
2549         kfree(plane_config->fb);
2550
2551         /*
2552          * Failed to alloc the obj, check to see if we should share
2553          * an fb with another CRTC instead
2554          */
2555         for_each_crtc(dev, c) {
2556                 i = to_intel_crtc(c);
2557
2558                 if (c == &intel_crtc->base)
2559                         continue;
2560
2561                 if (!i->active)
2562                         continue;
2563
2564                 fb = c->primary->fb;
2565                 if (!fb)
2566                         continue;
2567
2568                 obj = intel_fb_obj(fb);
2569                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2570                         drm_framebuffer_reference(fb);
2571                         goto valid_fb;
2572                 }
2573         }
2574
2575         /*
2576          * We've failed to reconstruct the BIOS FB.  Current display state
2577          * indicates that the primary plane is visible, but has a NULL FB,
2578          * which will lead to problems later if we don't fix it up.  The
2579          * simplest solution is to just disable the primary plane now and
2580          * pretend the BIOS never had it enabled.
2581          */
2582         to_intel_plane_state(plane_state)->visible = false;
2583         crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2584         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2585         intel_plane->disable_plane(primary, &intel_crtc->base);
2586
2587         return;
2588
2589 valid_fb:
2590         plane_state->src_x = 0;
2591         plane_state->src_y = 0;
2592         plane_state->src_w = fb->width << 16;
2593         plane_state->src_h = fb->height << 16;
2594
2595         plane_state->crtc_x = 0;
2596         plane_state->crtc_y = 0;
2597         plane_state->crtc_w = fb->width;
2598         plane_state->crtc_h = fb->height;
2599
2600         intel_state->src.x1 = plane_state->src_x;
2601         intel_state->src.y1 = plane_state->src_y;
2602         intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2603         intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2604         intel_state->dst.x1 = plane_state->crtc_x;
2605         intel_state->dst.y1 = plane_state->crtc_y;
2606         intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2607         intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2608
2609         obj = intel_fb_obj(fb);
2610         if (obj->tiling_mode != I915_TILING_NONE)
2611                 dev_priv->preserve_bios_swizzle = true;
2612
2613         drm_framebuffer_reference(fb);
2614         primary->fb = primary->state->fb = fb;
2615         primary->crtc = primary->state->crtc = &intel_crtc->base;
2616         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2617         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2618 }
2619
2620 static void i9xx_update_primary_plane(struct drm_plane *primary,
2621                                       const struct intel_crtc_state *crtc_state,
2622                                       const struct intel_plane_state *plane_state)
2623 {
2624         struct drm_device *dev = primary->dev;
2625         struct drm_i915_private *dev_priv = dev->dev_private;
2626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2627         struct drm_framebuffer *fb = plane_state->base.fb;
2628         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2629         int plane = intel_crtc->plane;
2630         u32 linear_offset;
2631         u32 dspcntr;
2632         i915_reg_t reg = DSPCNTR(plane);
2633         unsigned int rotation = plane_state->base.rotation;
2634         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2635         int x = plane_state->src.x1 >> 16;
2636         int y = plane_state->src.y1 >> 16;
2637
2638         dspcntr = DISPPLANE_GAMMA_ENABLE;
2639
2640         dspcntr |= DISPLAY_PLANE_ENABLE;
2641
2642         if (INTEL_INFO(dev)->gen < 4) {
2643                 if (intel_crtc->pipe == PIPE_B)
2644                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2645
2646                 /* pipesrc and dspsize control the size that is scaled from,
2647                  * which should always be the user's requested size.
2648                  */
2649                 I915_WRITE(DSPSIZE(plane),
2650                            ((crtc_state->pipe_src_h - 1) << 16) |
2651                            (crtc_state->pipe_src_w - 1));
2652                 I915_WRITE(DSPPOS(plane), 0);
2653         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2654                 I915_WRITE(PRIMSIZE(plane),
2655                            ((crtc_state->pipe_src_h - 1) << 16) |
2656                            (crtc_state->pipe_src_w - 1));
2657                 I915_WRITE(PRIMPOS(plane), 0);
2658                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2659         }
2660
2661         switch (fb->pixel_format) {
2662         case DRM_FORMAT_C8:
2663                 dspcntr |= DISPPLANE_8BPP;
2664                 break;
2665         case DRM_FORMAT_XRGB1555:
2666                 dspcntr |= DISPPLANE_BGRX555;
2667                 break;
2668         case DRM_FORMAT_RGB565:
2669                 dspcntr |= DISPPLANE_BGRX565;
2670                 break;
2671         case DRM_FORMAT_XRGB8888:
2672                 dspcntr |= DISPPLANE_BGRX888;
2673                 break;
2674         case DRM_FORMAT_XBGR8888:
2675                 dspcntr |= DISPPLANE_RGBX888;
2676                 break;
2677         case DRM_FORMAT_XRGB2101010:
2678                 dspcntr |= DISPPLANE_BGRX101010;
2679                 break;
2680         case DRM_FORMAT_XBGR2101010:
2681                 dspcntr |= DISPPLANE_RGBX101010;
2682                 break;
2683         default:
2684                 BUG();
2685         }
2686
2687         if (INTEL_INFO(dev)->gen >= 4 &&
2688             obj->tiling_mode != I915_TILING_NONE)
2689                 dspcntr |= DISPPLANE_TILED;
2690
2691         if (IS_G4X(dev))
2692                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2693
2694         linear_offset = y * fb->pitches[0] + x * cpp;
2695
2696         if (INTEL_INFO(dev)->gen >= 4) {
2697                 intel_crtc->dspaddr_offset =
2698                         intel_compute_tile_offset(&x, &y, fb, 0,
2699                                                   fb->pitches[0], rotation);
2700                 linear_offset -= intel_crtc->dspaddr_offset;
2701         } else {
2702                 intel_crtc->dspaddr_offset = linear_offset;
2703         }
2704
2705         if (rotation == BIT(DRM_ROTATE_180)) {
2706                 dspcntr |= DISPPLANE_ROTATE_180;
2707
2708                 x += (crtc_state->pipe_src_w - 1);
2709                 y += (crtc_state->pipe_src_h - 1);
2710
2711                 /* Finding the last pixel of the last line of the display
2712                 data and adding to linear_offset*/
2713                 linear_offset +=
2714                         (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2715                         (crtc_state->pipe_src_w - 1) * cpp;
2716         }
2717
2718         intel_crtc->adjusted_x = x;
2719         intel_crtc->adjusted_y = y;
2720
2721         I915_WRITE(reg, dspcntr);
2722
2723         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2724         if (INTEL_INFO(dev)->gen >= 4) {
2725                 I915_WRITE(DSPSURF(plane),
2726                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2727                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2728                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2729         } else
2730                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2731         POSTING_READ(reg);
2732 }
2733
2734 static void i9xx_disable_primary_plane(struct drm_plane *primary,
2735                                        struct drm_crtc *crtc)
2736 {
2737         struct drm_device *dev = crtc->dev;
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740         int plane = intel_crtc->plane;
2741
2742         I915_WRITE(DSPCNTR(plane), 0);
2743         if (INTEL_INFO(dev_priv)->gen >= 4)
2744                 I915_WRITE(DSPSURF(plane), 0);
2745         else
2746                 I915_WRITE(DSPADDR(plane), 0);
2747         POSTING_READ(DSPCNTR(plane));
2748 }
2749
2750 static void ironlake_update_primary_plane(struct drm_plane *primary,
2751                                           const struct intel_crtc_state *crtc_state,
2752                                           const struct intel_plane_state *plane_state)
2753 {
2754         struct drm_device *dev = primary->dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2757         struct drm_framebuffer *fb = plane_state->base.fb;
2758         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2759         int plane = intel_crtc->plane;
2760         u32 linear_offset;
2761         u32 dspcntr;
2762         i915_reg_t reg = DSPCNTR(plane);
2763         unsigned int rotation = plane_state->base.rotation;
2764         int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2765         int x = plane_state->src.x1 >> 16;
2766         int y = plane_state->src.y1 >> 16;
2767
2768         dspcntr = DISPPLANE_GAMMA_ENABLE;
2769         dspcntr |= DISPLAY_PLANE_ENABLE;
2770
2771         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2772                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2773
2774         switch (fb->pixel_format) {
2775         case DRM_FORMAT_C8:
2776                 dspcntr |= DISPPLANE_8BPP;
2777                 break;
2778         case DRM_FORMAT_RGB565:
2779                 dspcntr |= DISPPLANE_BGRX565;
2780                 break;
2781         case DRM_FORMAT_XRGB8888:
2782                 dspcntr |= DISPPLANE_BGRX888;
2783                 break;
2784         case DRM_FORMAT_XBGR8888:
2785                 dspcntr |= DISPPLANE_RGBX888;
2786                 break;
2787         case DRM_FORMAT_XRGB2101010:
2788                 dspcntr |= DISPPLANE_BGRX101010;
2789                 break;
2790         case DRM_FORMAT_XBGR2101010:
2791                 dspcntr |= DISPPLANE_RGBX101010;
2792                 break;
2793         default:
2794                 BUG();
2795         }
2796
2797         if (obj->tiling_mode != I915_TILING_NONE)
2798                 dspcntr |= DISPPLANE_TILED;
2799
2800         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2801                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2802
2803         linear_offset = y * fb->pitches[0] + x * cpp;
2804         intel_crtc->dspaddr_offset =
2805                 intel_compute_tile_offset(&x, &y, fb, 0,
2806                                           fb->pitches[0], rotation);
2807         linear_offset -= intel_crtc->dspaddr_offset;
2808         if (rotation == BIT(DRM_ROTATE_180)) {
2809                 dspcntr |= DISPPLANE_ROTATE_180;
2810
2811                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2812                         x += (crtc_state->pipe_src_w - 1);
2813                         y += (crtc_state->pipe_src_h - 1);
2814
2815                         /* Finding the last pixel of the last line of the display
2816                         data and adding to linear_offset*/
2817                         linear_offset +=
2818                                 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2819                                 (crtc_state->pipe_src_w - 1) * cpp;
2820                 }
2821         }
2822
2823         intel_crtc->adjusted_x = x;
2824         intel_crtc->adjusted_y = y;
2825
2826         I915_WRITE(reg, dspcntr);
2827
2828         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2829         I915_WRITE(DSPSURF(plane),
2830                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2831         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2832                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2833         } else {
2834                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2835                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2836         }
2837         POSTING_READ(reg);
2838 }
2839
2840 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2841                               uint64_t fb_modifier, uint32_t pixel_format)
2842 {
2843         if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2844                 return 64;
2845         } else {
2846                 int cpp = drm_format_plane_cpp(pixel_format, 0);
2847
2848                 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2849         }
2850 }
2851
2852 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2853                            struct drm_i915_gem_object *obj,
2854                            unsigned int plane)
2855 {
2856         struct i915_ggtt_view view;
2857         struct i915_vma *vma;
2858         u64 offset;
2859
2860         intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2861                                 intel_plane->base.state->rotation);
2862
2863         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2864         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2865                 view.type))
2866                 return -1;
2867
2868         offset = vma->node.start;
2869
2870         if (plane == 1) {
2871                 offset += vma->ggtt_view.params.rotated.uv_start_page *
2872                           PAGE_SIZE;
2873         }
2874
2875         WARN_ON(upper_32_bits(offset));
2876
2877         return lower_32_bits(offset);
2878 }
2879
2880 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2881 {
2882         struct drm_device *dev = intel_crtc->base.dev;
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884
2885         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2886         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2887         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2888 }
2889
2890 /*
2891  * This function detaches (aka. unbinds) unused scalers in hardware
2892  */
2893 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2894 {
2895         struct intel_crtc_scaler_state *scaler_state;
2896         int i;
2897
2898         scaler_state = &intel_crtc->config->scaler_state;
2899
2900         /* loop through and disable scalers that aren't in use */
2901         for (i = 0; i < intel_crtc->num_scalers; i++) {
2902                 if (!scaler_state->scalers[i].in_use)
2903                         skl_detach_scaler(intel_crtc, i);
2904         }
2905 }
2906
2907 u32 skl_plane_ctl_format(uint32_t pixel_format)
2908 {
2909         switch (pixel_format) {
2910         case DRM_FORMAT_C8:
2911                 return PLANE_CTL_FORMAT_INDEXED;
2912         case DRM_FORMAT_RGB565:
2913                 return PLANE_CTL_FORMAT_RGB_565;
2914         case DRM_FORMAT_XBGR8888:
2915                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2916         case DRM_FORMAT_XRGB8888:
2917                 return PLANE_CTL_FORMAT_XRGB_8888;
2918         /*
2919          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2920          * to be already pre-multiplied. We need to add a knob (or a different
2921          * DRM_FORMAT) for user-space to configure that.
2922          */
2923         case DRM_FORMAT_ABGR8888:
2924                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2925                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2926         case DRM_FORMAT_ARGB8888:
2927                 return PLANE_CTL_FORMAT_XRGB_8888 |
2928                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2929         case DRM_FORMAT_XRGB2101010:
2930                 return PLANE_CTL_FORMAT_XRGB_2101010;
2931         case DRM_FORMAT_XBGR2101010:
2932                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2933         case DRM_FORMAT_YUYV:
2934                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2935         case DRM_FORMAT_YVYU:
2936                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2937         case DRM_FORMAT_UYVY:
2938                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2939         case DRM_FORMAT_VYUY:
2940                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2941         default:
2942                 MISSING_CASE(pixel_format);
2943         }
2944
2945         return 0;
2946 }
2947
2948 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2949 {
2950         switch (fb_modifier) {
2951         case DRM_FORMAT_MOD_NONE:
2952                 break;
2953         case I915_FORMAT_MOD_X_TILED:
2954                 return PLANE_CTL_TILED_X;
2955         case I915_FORMAT_MOD_Y_TILED:
2956                 return PLANE_CTL_TILED_Y;
2957         case I915_FORMAT_MOD_Yf_TILED:
2958                 return PLANE_CTL_TILED_YF;
2959         default:
2960                 MISSING_CASE(fb_modifier);
2961         }
2962
2963         return 0;
2964 }
2965
2966 u32 skl_plane_ctl_rotation(unsigned int rotation)
2967 {
2968         switch (rotation) {
2969         case BIT(DRM_ROTATE_0):
2970                 break;
2971         /*
2972          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2973          * while i915 HW rotation is clockwise, thats why this swapping.
2974          */
2975         case BIT(DRM_ROTATE_90):
2976                 return PLANE_CTL_ROTATE_270;
2977         case BIT(DRM_ROTATE_180):
2978                 return PLANE_CTL_ROTATE_180;
2979         case BIT(DRM_ROTATE_270):
2980                 return PLANE_CTL_ROTATE_90;
2981         default:
2982                 MISSING_CASE(rotation);
2983         }
2984
2985         return 0;
2986 }
2987
2988 static void skylake_update_primary_plane(struct drm_plane *plane,
2989                                          const struct intel_crtc_state *crtc_state,
2990                                          const struct intel_plane_state *plane_state)
2991 {
2992         struct drm_device *dev = plane->dev;
2993         struct drm_i915_private *dev_priv = dev->dev_private;
2994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2995         struct drm_framebuffer *fb = plane_state->base.fb;
2996         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2997         int pipe = intel_crtc->pipe;
2998         u32 plane_ctl, stride_div, stride;
2999         u32 tile_height, plane_offset, plane_size;
3000         unsigned int rotation = plane_state->base.rotation;
3001         int x_offset, y_offset;
3002         u32 surf_addr;
3003         int scaler_id = plane_state->scaler_id;
3004         int src_x = plane_state->src.x1 >> 16;
3005         int src_y = plane_state->src.y1 >> 16;
3006         int src_w = drm_rect_width(&plane_state->src) >> 16;
3007         int src_h = drm_rect_height(&plane_state->src) >> 16;
3008         int dst_x = plane_state->dst.x1;
3009         int dst_y = plane_state->dst.y1;
3010         int dst_w = drm_rect_width(&plane_state->dst);
3011         int dst_h = drm_rect_height(&plane_state->dst);
3012
3013         plane_ctl = PLANE_CTL_ENABLE |
3014                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3015                     PLANE_CTL_PIPE_CSC_ENABLE;
3016
3017         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3018         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3019         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3020         plane_ctl |= skl_plane_ctl_rotation(rotation);
3021
3022         stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3023                                                fb->pixel_format);
3024         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3025
3026         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3027
3028         if (intel_rotation_90_or_270(rotation)) {
3029                 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3030
3031                 /* stride = Surface height in tiles */
3032                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3033                 stride = DIV_ROUND_UP(fb->height, tile_height);
3034                 x_offset = stride * tile_height - src_y - src_h;
3035                 y_offset = src_x;
3036                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3037         } else {
3038                 stride = fb->pitches[0] / stride_div;
3039                 x_offset = src_x;
3040                 y_offset = src_y;
3041                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3042         }
3043         plane_offset = y_offset << 16 | x_offset;
3044
3045         intel_crtc->adjusted_x = x_offset;
3046         intel_crtc->adjusted_y = y_offset;
3047
3048         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3049         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3050         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3051         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3052
3053         if (scaler_id >= 0) {
3054                 uint32_t ps_ctrl = 0;
3055
3056                 WARN_ON(!dst_w || !dst_h);
3057                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3058                         crtc_state->scaler_state.scalers[scaler_id].mode;
3059                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3060                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3061                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3062                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3063                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3064         } else {
3065                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3066         }
3067
3068         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3069
3070         POSTING_READ(PLANE_SURF(pipe, 0));
3071 }
3072
3073 static void skylake_disable_primary_plane(struct drm_plane *primary,
3074                                           struct drm_crtc *crtc)
3075 {
3076         struct drm_device *dev = crtc->dev;
3077         struct drm_i915_private *dev_priv = dev->dev_private;
3078         int pipe = to_intel_crtc(crtc)->pipe;
3079
3080         I915_WRITE(PLANE_CTL(pipe, 0), 0);
3081         I915_WRITE(PLANE_SURF(pipe, 0), 0);
3082         POSTING_READ(PLANE_SURF(pipe, 0));
3083 }
3084
3085 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3086 static int
3087 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3088                            int x, int y, enum mode_set_atomic state)
3089 {
3090         /* Support for kgdboc is disabled, this needs a major rework. */
3091         DRM_ERROR("legacy panic handler not supported any more.\n");
3092
3093         return -ENODEV;
3094 }
3095
3096 static void intel_complete_page_flips(struct drm_device *dev)
3097 {
3098         struct drm_crtc *crtc;
3099
3100         for_each_crtc(dev, crtc) {
3101                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3102                 enum plane plane = intel_crtc->plane;
3103
3104                 intel_prepare_page_flip(dev, plane);
3105                 intel_finish_page_flip_plane(dev, plane);
3106         }
3107 }
3108
3109 static void intel_update_primary_planes(struct drm_device *dev)
3110 {
3111         struct drm_crtc *crtc;
3112
3113         for_each_crtc(dev, crtc) {
3114                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3115                 struct intel_plane_state *plane_state;
3116
3117                 drm_modeset_lock_crtc(crtc, &plane->base);
3118                 plane_state = to_intel_plane_state(plane->base.state);
3119
3120                 if (plane_state->visible)
3121                         plane->update_plane(&plane->base,
3122                                             to_intel_crtc_state(crtc->state),
3123                                             plane_state);
3124
3125                 drm_modeset_unlock_crtc(crtc);
3126         }
3127 }
3128
3129 void intel_prepare_reset(struct drm_device *dev)
3130 {
3131         /* no reset support for gen2 */
3132         if (IS_GEN2(dev))
3133                 return;
3134
3135         /* reset doesn't touch the display */
3136         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3137                 return;
3138
3139         drm_modeset_lock_all(dev);
3140         /*
3141          * Disabling the crtcs gracefully seems nicer. Also the
3142          * g33 docs say we should at least disable all the planes.
3143          */
3144         intel_display_suspend(dev);
3145 }
3146
3147 void intel_finish_reset(struct drm_device *dev)
3148 {
3149         struct drm_i915_private *dev_priv = to_i915(dev);
3150
3151         /*
3152          * Flips in the rings will be nuked by the reset,
3153          * so complete all pending flips so that user space
3154          * will get its events and not get stuck.
3155          */
3156         intel_complete_page_flips(dev);
3157
3158         /* no reset support for gen2 */
3159         if (IS_GEN2(dev))
3160                 return;
3161
3162         /* reset doesn't touch the display */
3163         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3164                 /*
3165                  * Flips in the rings have been nuked by the reset,
3166                  * so update the base address of all primary
3167                  * planes to the the last fb to make sure we're
3168                  * showing the correct fb after a reset.
3169                  *
3170                  * FIXME: Atomic will make this obsolete since we won't schedule
3171                  * CS-based flips (which might get lost in gpu resets) any more.
3172                  */
3173                 intel_update_primary_planes(dev);
3174                 return;
3175         }
3176
3177         /*
3178          * The display has been reset as well,
3179          * so need a full re-initialization.
3180          */
3181         intel_runtime_pm_disable_interrupts(dev_priv);
3182         intel_runtime_pm_enable_interrupts(dev_priv);
3183
3184         intel_modeset_init_hw(dev);
3185
3186         spin_lock_irq(&dev_priv->irq_lock);
3187         if (dev_priv->display.hpd_irq_setup)
3188                 dev_priv->display.hpd_irq_setup(dev);
3189         spin_unlock_irq(&dev_priv->irq_lock);
3190
3191         intel_display_resume(dev);
3192
3193         intel_hpd_init(dev_priv);
3194
3195         drm_modeset_unlock_all(dev);
3196 }
3197
3198 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3199 {
3200         struct drm_device *dev = crtc->dev;
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3203         bool pending;
3204
3205         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3206             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3207                 return false;
3208
3209         spin_lock_irq(&dev->event_lock);
3210         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3211         spin_unlock_irq(&dev->event_lock);
3212
3213         return pending;
3214 }
3215
3216 static void intel_update_pipe_config(struct intel_crtc *crtc,
3217                                      struct intel_crtc_state *old_crtc_state)
3218 {
3219         struct drm_device *dev = crtc->base.dev;
3220         struct drm_i915_private *dev_priv = dev->dev_private;
3221         struct intel_crtc_state *pipe_config =
3222                 to_intel_crtc_state(crtc->base.state);
3223
3224         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3225         crtc->base.mode = crtc->base.state->mode;
3226
3227         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3228                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3229                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3230
3231         /*
3232          * Update pipe size and adjust fitter if needed: the reason for this is
3233          * that in compute_mode_changes we check the native mode (not the pfit
3234          * mode) to see if we can flip rather than do a full mode set. In the
3235          * fastboot case, we'll flip, but if we don't update the pipesrc and
3236          * pfit state, we'll end up with a big fb scanned out into the wrong
3237          * sized surface.
3238          */
3239
3240         I915_WRITE(PIPESRC(crtc->pipe),
3241                    ((pipe_config->pipe_src_w - 1) << 16) |
3242                    (pipe_config->pipe_src_h - 1));
3243
3244         /* on skylake this is done by detaching scalers */
3245         if (INTEL_INFO(dev)->gen >= 9) {
3246                 skl_detach_scalers(crtc);
3247
3248                 if (pipe_config->pch_pfit.enabled)
3249                         skylake_pfit_enable(crtc);
3250         } else if (HAS_PCH_SPLIT(dev)) {
3251                 if (pipe_config->pch_pfit.enabled)
3252                         ironlake_pfit_enable(crtc);
3253                 else if (old_crtc_state->pch_pfit.enabled)
3254                         ironlake_pfit_disable(crtc, true);
3255         }
3256 }
3257
3258 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3259 {
3260         struct drm_device *dev = crtc->dev;
3261         struct drm_i915_private *dev_priv = dev->dev_private;
3262         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263         int pipe = intel_crtc->pipe;
3264         i915_reg_t reg;
3265         u32 temp;
3266
3267         /* enable normal train */
3268         reg = FDI_TX_CTL(pipe);
3269         temp = I915_READ(reg);
3270         if (IS_IVYBRIDGE(dev)) {
3271                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3272                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3273         } else {
3274                 temp &= ~FDI_LINK_TRAIN_NONE;
3275                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3276         }
3277         I915_WRITE(reg, temp);
3278
3279         reg = FDI_RX_CTL(pipe);
3280         temp = I915_READ(reg);
3281         if (HAS_PCH_CPT(dev)) {
3282                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3283                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3284         } else {
3285                 temp &= ~FDI_LINK_TRAIN_NONE;
3286                 temp |= FDI_LINK_TRAIN_NONE;
3287         }
3288         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3289
3290         /* wait one idle pattern time */
3291         POSTING_READ(reg);
3292         udelay(1000);
3293
3294         /* IVB wants error correction enabled */
3295         if (IS_IVYBRIDGE(dev))
3296                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3297                            FDI_FE_ERRC_ENABLE);
3298 }
3299
3300 /* The FDI link training functions for ILK/Ibexpeak. */
3301 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3302 {
3303         struct drm_device *dev = crtc->dev;
3304         struct drm_i915_private *dev_priv = dev->dev_private;
3305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3306         int pipe = intel_crtc->pipe;
3307         i915_reg_t reg;
3308         u32 temp, tries;
3309
3310         /* FDI needs bits from pipe first */
3311         assert_pipe_enabled(dev_priv, pipe);
3312
3313         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3314            for train result */
3315         reg = FDI_RX_IMR(pipe);
3316         temp = I915_READ(reg);
3317         temp &= ~FDI_RX_SYMBOL_LOCK;
3318         temp &= ~FDI_RX_BIT_LOCK;
3319         I915_WRITE(reg, temp);
3320         I915_READ(reg);
3321         udelay(150);
3322
3323         /* enable CPU FDI TX and PCH FDI RX */
3324         reg = FDI_TX_CTL(pipe);
3325         temp = I915_READ(reg);
3326         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3327         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3328         temp &= ~FDI_LINK_TRAIN_NONE;
3329         temp |= FDI_LINK_TRAIN_PATTERN_1;
3330         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3331
3332         reg = FDI_RX_CTL(pipe);
3333         temp = I915_READ(reg);
3334         temp &= ~FDI_LINK_TRAIN_NONE;
3335         temp |= FDI_LINK_TRAIN_PATTERN_1;
3336         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3337
3338         POSTING_READ(reg);
3339         udelay(150);
3340
3341         /* Ironlake workaround, enable clock pointer after FDI enable*/
3342         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3343         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3344                    FDI_RX_PHASE_SYNC_POINTER_EN);
3345
3346         reg = FDI_RX_IIR(pipe);
3347         for (tries = 0; tries < 5; tries++) {
3348                 temp = I915_READ(reg);
3349                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3350
3351                 if ((temp & FDI_RX_BIT_LOCK)) {
3352                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3353                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3354                         break;
3355                 }
3356         }
3357         if (tries == 5)
3358                 DRM_ERROR("FDI train 1 fail!\n");
3359
3360         /* Train 2 */
3361         reg = FDI_TX_CTL(pipe);
3362         temp = I915_READ(reg);
3363         temp &= ~FDI_LINK_TRAIN_NONE;
3364         temp |= FDI_LINK_TRAIN_PATTERN_2;
3365         I915_WRITE(reg, temp);
3366
3367         reg = FDI_RX_CTL(pipe);
3368         temp = I915_READ(reg);
3369         temp &= ~FDI_LINK_TRAIN_NONE;
3370         temp |= FDI_LINK_TRAIN_PATTERN_2;
3371         I915_WRITE(reg, temp);
3372
3373         POSTING_READ(reg);
3374         udelay(150);
3375
3376         reg = FDI_RX_IIR(pipe);
3377         for (tries = 0; tries < 5; tries++) {
3378                 temp = I915_READ(reg);
3379                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3380
3381                 if (temp & FDI_RX_SYMBOL_LOCK) {
3382                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3383                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3384                         break;
3385                 }
3386         }
3387         if (tries == 5)
3388                 DRM_ERROR("FDI train 2 fail!\n");
3389
3390         DRM_DEBUG_KMS("FDI train done\n");
3391
3392 }
3393
3394 static const int snb_b_fdi_train_param[] = {
3395         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3396         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3397         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3398         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3399 };
3400
3401 /* The FDI link training functions for SNB/Cougarpoint. */
3402 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         int pipe = intel_crtc->pipe;
3408         i915_reg_t reg;
3409         u32 temp, i, retry;
3410
3411         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3412            for train result */
3413         reg = FDI_RX_IMR(pipe);
3414         temp = I915_READ(reg);
3415         temp &= ~FDI_RX_SYMBOL_LOCK;
3416         temp &= ~FDI_RX_BIT_LOCK;
3417         I915_WRITE(reg, temp);
3418
3419         POSTING_READ(reg);
3420         udelay(150);
3421
3422         /* enable CPU FDI TX and PCH FDI RX */
3423         reg = FDI_TX_CTL(pipe);
3424         temp = I915_READ(reg);
3425         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3426         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3427         temp &= ~FDI_LINK_TRAIN_NONE;
3428         temp |= FDI_LINK_TRAIN_PATTERN_1;
3429         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3430         /* SNB-B */
3431         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3432         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3433
3434         I915_WRITE(FDI_RX_MISC(pipe),
3435                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3436
3437         reg = FDI_RX_CTL(pipe);
3438         temp = I915_READ(reg);
3439         if (HAS_PCH_CPT(dev)) {
3440                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3441                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3442         } else {
3443                 temp &= ~FDI_LINK_TRAIN_NONE;
3444                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3445         }
3446         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3447
3448         POSTING_READ(reg);
3449         udelay(150);
3450
3451         for (i = 0; i < 4; i++) {
3452                 reg = FDI_TX_CTL(pipe);
3453                 temp = I915_READ(reg);
3454                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3455                 temp |= snb_b_fdi_train_param[i];
3456                 I915_WRITE(reg, temp);
3457
3458                 POSTING_READ(reg);
3459                 udelay(500);
3460
3461                 for (retry = 0; retry < 5; retry++) {
3462                         reg = FDI_RX_IIR(pipe);
3463                         temp = I915_READ(reg);
3464                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3465                         if (temp & FDI_RX_BIT_LOCK) {
3466                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3467                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3468                                 break;
3469                         }
3470                         udelay(50);
3471                 }
3472                 if (retry < 5)
3473                         break;
3474         }
3475         if (i == 4)
3476                 DRM_ERROR("FDI train 1 fail!\n");
3477
3478         /* Train 2 */
3479         reg = FDI_TX_CTL(pipe);
3480         temp = I915_READ(reg);
3481         temp &= ~FDI_LINK_TRAIN_NONE;
3482         temp |= FDI_LINK_TRAIN_PATTERN_2;
3483         if (IS_GEN6(dev)) {
3484                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3485                 /* SNB-B */
3486                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3487         }
3488         I915_WRITE(reg, temp);
3489
3490         reg = FDI_RX_CTL(pipe);
3491         temp = I915_READ(reg);
3492         if (HAS_PCH_CPT(dev)) {
3493                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3494                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3495         } else {
3496                 temp &= ~FDI_LINK_TRAIN_NONE;
3497                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3498         }
3499         I915_WRITE(reg, temp);
3500
3501         POSTING_READ(reg);
3502         udelay(150);
3503
3504         for (i = 0; i < 4; i++) {
3505                 reg = FDI_TX_CTL(pipe);
3506                 temp = I915_READ(reg);
3507                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3508                 temp |= snb_b_fdi_train_param[i];
3509                 I915_WRITE(reg, temp);
3510
3511                 POSTING_READ(reg);
3512                 udelay(500);
3513
3514                 for (retry = 0; retry < 5; retry++) {
3515                         reg = FDI_RX_IIR(pipe);
3516                         temp = I915_READ(reg);
3517                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3518                         if (temp & FDI_RX_SYMBOL_LOCK) {
3519                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3520                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3521                                 break;
3522                         }
3523                         udelay(50);
3524                 }
3525                 if (retry < 5)
3526                         break;
3527         }
3528         if (i == 4)
3529                 DRM_ERROR("FDI train 2 fail!\n");
3530
3531         DRM_DEBUG_KMS("FDI train done.\n");
3532 }
3533
3534 /* Manual link training for Ivy Bridge A0 parts */
3535 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3536 {
3537         struct drm_device *dev = crtc->dev;
3538         struct drm_i915_private *dev_priv = dev->dev_private;
3539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3540         int pipe = intel_crtc->pipe;
3541         i915_reg_t reg;
3542         u32 temp, i, j;
3543
3544         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3545            for train result */
3546         reg = FDI_RX_IMR(pipe);
3547         temp = I915_READ(reg);
3548         temp &= ~FDI_RX_SYMBOL_LOCK;
3549         temp &= ~FDI_RX_BIT_LOCK;
3550         I915_WRITE(reg, temp);
3551
3552         POSTING_READ(reg);
3553         udelay(150);
3554
3555         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3556                       I915_READ(FDI_RX_IIR(pipe)));
3557
3558         /* Try each vswing and preemphasis setting twice before moving on */
3559         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3560                 /* disable first in case we need to retry */
3561                 reg = FDI_TX_CTL(pipe);
3562                 temp = I915_READ(reg);
3563                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3564                 temp &= ~FDI_TX_ENABLE;
3565                 I915_WRITE(reg, temp);
3566
3567                 reg = FDI_RX_CTL(pipe);
3568                 temp = I915_READ(reg);
3569                 temp &= ~FDI_LINK_TRAIN_AUTO;
3570                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3571                 temp &= ~FDI_RX_ENABLE;
3572                 I915_WRITE(reg, temp);
3573
3574                 /* enable CPU FDI TX and PCH FDI RX */
3575                 reg = FDI_TX_CTL(pipe);
3576                 temp = I915_READ(reg);
3577                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3578                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3579                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3580                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3581                 temp |= snb_b_fdi_train_param[j/2];
3582                 temp |= FDI_COMPOSITE_SYNC;
3583                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3584
3585                 I915_WRITE(FDI_RX_MISC(pipe),
3586                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3587
3588                 reg = FDI_RX_CTL(pipe);
3589                 temp = I915_READ(reg);
3590                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3591                 temp |= FDI_COMPOSITE_SYNC;
3592                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3593
3594                 POSTING_READ(reg);
3595                 udelay(1); /* should be 0.5us */
3596
3597                 for (i = 0; i < 4; i++) {
3598                         reg = FDI_RX_IIR(pipe);
3599                         temp = I915_READ(reg);
3600                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3601
3602                         if (temp & FDI_RX_BIT_LOCK ||
3603                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3604                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3605                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3606                                               i);
3607                                 break;
3608                         }
3609                         udelay(1); /* should be 0.5us */
3610                 }
3611                 if (i == 4) {
3612                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3613                         continue;
3614                 }
3615
3616                 /* Train 2 */
3617                 reg = FDI_TX_CTL(pipe);
3618                 temp = I915_READ(reg);
3619                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3620                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3621                 I915_WRITE(reg, temp);
3622
3623                 reg = FDI_RX_CTL(pipe);
3624                 temp = I915_READ(reg);
3625                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3626                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3627                 I915_WRITE(reg, temp);
3628
3629                 POSTING_READ(reg);
3630                 udelay(2); /* should be 1.5us */
3631
3632                 for (i = 0; i < 4; i++) {
3633                         reg = FDI_RX_IIR(pipe);
3634                         temp = I915_READ(reg);
3635                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3636
3637                         if (temp & FDI_RX_SYMBOL_LOCK ||
3638                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3639                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3640                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3641                                               i);
3642                                 goto train_done;
3643                         }
3644                         udelay(2); /* should be 1.5us */
3645                 }
3646                 if (i == 4)
3647                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3648         }
3649
3650 train_done:
3651         DRM_DEBUG_KMS("FDI train done.\n");
3652 }
3653
3654 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3655 {
3656         struct drm_device *dev = intel_crtc->base.dev;
3657         struct drm_i915_private *dev_priv = dev->dev_private;
3658         int pipe = intel_crtc->pipe;
3659         i915_reg_t reg;
3660         u32 temp;
3661
3662         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3663         reg = FDI_RX_CTL(pipe);
3664         temp = I915_READ(reg);
3665         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3666         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3667         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3668         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3669
3670         POSTING_READ(reg);
3671         udelay(200);
3672
3673         /* Switch from Rawclk to PCDclk */
3674         temp = I915_READ(reg);
3675         I915_WRITE(reg, temp | FDI_PCDCLK);
3676
3677         POSTING_READ(reg);
3678         udelay(200);
3679
3680         /* Enable CPU FDI TX PLL, always on for Ironlake */
3681         reg = FDI_TX_CTL(pipe);
3682         temp = I915_READ(reg);
3683         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3684                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3685
3686                 POSTING_READ(reg);
3687                 udelay(100);
3688         }
3689 }
3690
3691 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3692 {
3693         struct drm_device *dev = intel_crtc->base.dev;
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695         int pipe = intel_crtc->pipe;
3696         i915_reg_t reg;
3697         u32 temp;
3698
3699         /* Switch from PCDclk to Rawclk */
3700         reg = FDI_RX_CTL(pipe);
3701         temp = I915_READ(reg);
3702         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3703
3704         /* Disable CPU FDI TX PLL */
3705         reg = FDI_TX_CTL(pipe);
3706         temp = I915_READ(reg);
3707         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3708
3709         POSTING_READ(reg);
3710         udelay(100);
3711
3712         reg = FDI_RX_CTL(pipe);
3713         temp = I915_READ(reg);
3714         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3715
3716         /* Wait for the clocks to turn off. */
3717         POSTING_READ(reg);
3718         udelay(100);
3719 }
3720
3721 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3722 {
3723         struct drm_device *dev = crtc->dev;
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3726         int pipe = intel_crtc->pipe;
3727         i915_reg_t reg;
3728         u32 temp;
3729
3730         /* disable CPU FDI tx and PCH FDI rx */
3731         reg = FDI_TX_CTL(pipe);
3732         temp = I915_READ(reg);
3733         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3734         POSTING_READ(reg);
3735
3736         reg = FDI_RX_CTL(pipe);
3737         temp = I915_READ(reg);
3738         temp &= ~(0x7 << 16);
3739         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3740         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3741
3742         POSTING_READ(reg);
3743         udelay(100);
3744
3745         /* Ironlake workaround, disable clock pointer after downing FDI */
3746         if (HAS_PCH_IBX(dev))
3747                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3748
3749         /* still set train pattern 1 */
3750         reg = FDI_TX_CTL(pipe);
3751         temp = I915_READ(reg);
3752         temp &= ~FDI_LINK_TRAIN_NONE;
3753         temp |= FDI_LINK_TRAIN_PATTERN_1;
3754         I915_WRITE(reg, temp);
3755
3756         reg = FDI_RX_CTL(pipe);
3757         temp = I915_READ(reg);
3758         if (HAS_PCH_CPT(dev)) {
3759                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3760                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3761         } else {
3762                 temp &= ~FDI_LINK_TRAIN_NONE;
3763                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3764         }
3765         /* BPC in FDI rx is consistent with that in PIPECONF */
3766         temp &= ~(0x07 << 16);
3767         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3768         I915_WRITE(reg, temp);
3769
3770         POSTING_READ(reg);
3771         udelay(100);
3772 }
3773
3774 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3775 {
3776         struct intel_crtc *crtc;
3777
3778         /* Note that we don't need to be called with mode_config.lock here
3779          * as our list of CRTC objects is static for the lifetime of the
3780          * device and so cannot disappear as we iterate. Similarly, we can
3781          * happily treat the predicates as racy, atomic checks as userspace
3782          * cannot claim and pin a new fb without at least acquring the
3783          * struct_mutex and so serialising with us.
3784          */
3785         for_each_intel_crtc(dev, crtc) {
3786                 if (atomic_read(&crtc->unpin_work_count) == 0)
3787                         continue;
3788
3789                 if (crtc->unpin_work)
3790                         intel_wait_for_vblank(dev, crtc->pipe);
3791
3792                 return true;
3793         }
3794
3795         return false;
3796 }
3797
3798 static void page_flip_completed(struct intel_crtc *intel_crtc)
3799 {
3800         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3801         struct intel_unpin_work *work = intel_crtc->unpin_work;
3802
3803         /* ensure that the unpin work is consistent wrt ->pending. */
3804         smp_rmb();
3805         intel_crtc->unpin_work = NULL;
3806
3807         if (work->event)
3808                 drm_send_vblank_event(intel_crtc->base.dev,
3809                                       intel_crtc->pipe,
3810                                       work->event);
3811
3812         drm_crtc_vblank_put(&intel_crtc->base);
3813
3814         wake_up_all(&dev_priv->pending_flip_queue);
3815         queue_work(dev_priv->wq, &work->work);
3816
3817         trace_i915_flip_complete(intel_crtc->plane,
3818                                  work->pending_flip_obj);
3819 }
3820
3821 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3822 {
3823         struct drm_device *dev = crtc->dev;
3824         struct drm_i915_private *dev_priv = dev->dev_private;
3825         long ret;
3826
3827         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3828
3829         ret = wait_event_interruptible_timeout(
3830                                         dev_priv->pending_flip_queue,
3831                                         !intel_crtc_has_pending_flip(crtc),
3832                                         60*HZ);
3833
3834         if (ret < 0)
3835                 return ret;
3836
3837         if (ret == 0) {
3838                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3839
3840                 spin_lock_irq(&dev->event_lock);
3841                 if (intel_crtc->unpin_work) {
3842                         WARN_ONCE(1, "Removing stuck page flip\n");
3843                         page_flip_completed(intel_crtc);
3844                 }
3845                 spin_unlock_irq(&dev->event_lock);
3846         }
3847
3848         return 0;
3849 }
3850
3851 static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3852 {
3853         u32 temp;
3854
3855         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3856
3857         mutex_lock(&dev_priv->sb_lock);
3858
3859         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3860         temp |= SBI_SSCCTL_DISABLE;
3861         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3862
3863         mutex_unlock(&dev_priv->sb_lock);
3864 }
3865
3866 /* Program iCLKIP clock to the desired frequency */
3867 static void lpt_program_iclkip(struct drm_crtc *crtc)
3868 {
3869         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3870         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3871         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3872         u32 temp;
3873
3874         lpt_disable_iclkip(dev_priv);
3875
3876         /* The iCLK virtual clock root frequency is in MHz,
3877          * but the adjusted_mode->crtc_clock in in KHz. To get the
3878          * divisors, it is necessary to divide one by another, so we
3879          * convert the virtual clock precision to KHz here for higher
3880          * precision.
3881          */
3882         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3883                 u32 iclk_virtual_root_freq = 172800 * 1000;
3884                 u32 iclk_pi_range = 64;
3885                 u32 desired_divisor;
3886
3887                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3888                                                     clock << auxdiv);
3889                 divsel = (desired_divisor / iclk_pi_range) - 2;
3890                 phaseinc = desired_divisor % iclk_pi_range;
3891
3892                 /*
3893                  * Near 20MHz is a corner case which is
3894                  * out of range for the 7-bit divisor
3895                  */
3896                 if (divsel <= 0x7f)
3897                         break;
3898         }
3899
3900         /* This should not happen with any sane values */
3901         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3902                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3903         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3904                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3905
3906         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3907                         clock,
3908                         auxdiv,
3909                         divsel,
3910                         phasedir,
3911                         phaseinc);
3912
3913         mutex_lock(&dev_priv->sb_lock);
3914
3915         /* Program SSCDIVINTPHASE6 */
3916         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3917         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3918         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3919         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3920         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3921         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3922         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3923         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3924
3925         /* Program SSCAUXDIV */
3926         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3927         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3928         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3929         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3930
3931         /* Enable modulator and associated divider */
3932         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3933         temp &= ~SBI_SSCCTL_DISABLE;
3934         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3935
3936         mutex_unlock(&dev_priv->sb_lock);
3937
3938         /* Wait for initialization time */
3939         udelay(24);
3940
3941         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3942 }
3943
3944 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3945 {
3946         u32 divsel, phaseinc, auxdiv;
3947         u32 iclk_virtual_root_freq = 172800 * 1000;
3948         u32 iclk_pi_range = 64;
3949         u32 desired_divisor;
3950         u32 temp;
3951
3952         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3953                 return 0;
3954
3955         mutex_lock(&dev_priv->sb_lock);
3956
3957         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3958         if (temp & SBI_SSCCTL_DISABLE) {
3959                 mutex_unlock(&dev_priv->sb_lock);
3960                 return 0;
3961         }
3962
3963         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3964         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3965                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3966         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3967                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3968
3969         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3970         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3971                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3972
3973         mutex_unlock(&dev_priv->sb_lock);
3974
3975         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3976
3977         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3978                                  desired_divisor << auxdiv);
3979 }
3980
3981 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3982                                                 enum pipe pch_transcoder)
3983 {
3984         struct drm_device *dev = crtc->base.dev;
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3987
3988         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3989                    I915_READ(HTOTAL(cpu_transcoder)));
3990         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3991                    I915_READ(HBLANK(cpu_transcoder)));
3992         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3993                    I915_READ(HSYNC(cpu_transcoder)));
3994
3995         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3996                    I915_READ(VTOTAL(cpu_transcoder)));
3997         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3998                    I915_READ(VBLANK(cpu_transcoder)));
3999         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4000                    I915_READ(VSYNC(cpu_transcoder)));
4001         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4002                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4003 }
4004
4005 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4006 {
4007         struct drm_i915_private *dev_priv = dev->dev_private;
4008         uint32_t temp;
4009
4010         temp = I915_READ(SOUTH_CHICKEN1);
4011         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4012                 return;
4013
4014         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4015         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4016
4017         temp &= ~FDI_BC_BIFURCATION_SELECT;
4018         if (enable)
4019                 temp |= FDI_BC_BIFURCATION_SELECT;
4020
4021         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4022         I915_WRITE(SOUTH_CHICKEN1, temp);
4023         POSTING_READ(SOUTH_CHICKEN1);
4024 }
4025
4026 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4027 {
4028         struct drm_device *dev = intel_crtc->base.dev;
4029
4030         switch (intel_crtc->pipe) {
4031         case PIPE_A:
4032                 break;
4033         case PIPE_B:
4034                 if (intel_crtc->config->fdi_lanes > 2)
4035                         cpt_set_fdi_bc_bifurcation(dev, false);
4036                 else
4037                         cpt_set_fdi_bc_bifurcation(dev, true);
4038
4039                 break;
4040         case PIPE_C:
4041                 cpt_set_fdi_bc_bifurcation(dev, true);
4042
4043                 break;
4044         default:
4045                 BUG();
4046         }
4047 }
4048
4049 /* Return which DP Port should be selected for Transcoder DP control */
4050 static enum port
4051 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4052 {
4053         struct drm_device *dev = crtc->dev;
4054         struct intel_encoder *encoder;
4055
4056         for_each_encoder_on_crtc(dev, crtc, encoder) {
4057                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4058                     encoder->type == INTEL_OUTPUT_EDP)
4059                         return enc_to_dig_port(&encoder->base)->port;
4060         }
4061
4062         return -1;
4063 }
4064
4065 /*
4066  * Enable PCH resources required for PCH ports:
4067  *   - PCH PLLs
4068  *   - FDI training & RX/TX
4069  *   - update transcoder timings
4070  *   - DP transcoding bits
4071  *   - transcoder
4072  */
4073 static void ironlake_pch_enable(struct drm_crtc *crtc)
4074 {
4075         struct drm_device *dev = crtc->dev;
4076         struct drm_i915_private *dev_priv = dev->dev_private;
4077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4078         int pipe = intel_crtc->pipe;
4079         u32 temp;
4080
4081         assert_pch_transcoder_disabled(dev_priv, pipe);
4082
4083         if (IS_IVYBRIDGE(dev))
4084                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4085
4086         /* Write the TU size bits before fdi link training, so that error
4087          * detection works. */
4088         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4089                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4090
4091         /*
4092          * Sometimes spurious CPU pipe underruns happen during FDI
4093          * training, at least with VGA+HDMI cloning. Suppress them.
4094          */
4095         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4096
4097         /* For PCH output, training FDI link */
4098         dev_priv->display.fdi_link_train(crtc);
4099
4100         /* We need to program the right clock selection before writing the pixel
4101          * mutliplier into the DPLL. */
4102         if (HAS_PCH_CPT(dev)) {
4103                 u32 sel;
4104
4105                 temp = I915_READ(PCH_DPLL_SEL);
4106                 temp |= TRANS_DPLL_ENABLE(pipe);
4107                 sel = TRANS_DPLLB_SEL(pipe);
4108                 if (intel_crtc->config->shared_dpll ==
4109                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4110                         temp |= sel;
4111                 else
4112                         temp &= ~sel;
4113                 I915_WRITE(PCH_DPLL_SEL, temp);
4114         }
4115
4116         /* XXX: pch pll's can be enabled any time before we enable the PCH
4117          * transcoder, and we actually should do this to not upset any PCH
4118          * transcoder that already use the clock when we share it.
4119          *
4120          * Note that enable_shared_dpll tries to do the right thing, but
4121          * get_shared_dpll unconditionally resets the pll - we need that to have
4122          * the right LVDS enable sequence. */
4123         intel_enable_shared_dpll(intel_crtc);
4124
4125         /* set transcoder timing, panel must allow it */
4126         assert_panel_unlocked(dev_priv, pipe);
4127         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4128
4129         intel_fdi_normal_train(crtc);
4130
4131         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4132
4133         /* For PCH DP, enable TRANS_DP_CTL */
4134         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4135                 const struct drm_display_mode *adjusted_mode =
4136                         &intel_crtc->config->base.adjusted_mode;
4137                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4138                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4139                 temp = I915_READ(reg);
4140                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4141                           TRANS_DP_SYNC_MASK |
4142                           TRANS_DP_BPC_MASK);
4143                 temp |= TRANS_DP_OUTPUT_ENABLE;
4144                 temp |= bpc << 9; /* same format but at 11:9 */
4145
4146                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4147                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4148                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4149                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4150
4151                 switch (intel_trans_dp_port_sel(crtc)) {
4152                 case PORT_B:
4153                         temp |= TRANS_DP_PORT_SEL_B;
4154                         break;
4155                 case PORT_C:
4156                         temp |= TRANS_DP_PORT_SEL_C;
4157                         break;
4158                 case PORT_D:
4159                         temp |= TRANS_DP_PORT_SEL_D;
4160                         break;
4161                 default:
4162                         BUG();
4163                 }
4164
4165                 I915_WRITE(reg, temp);
4166         }
4167
4168         ironlake_enable_pch_transcoder(dev_priv, pipe);
4169 }
4170
4171 static void lpt_pch_enable(struct drm_crtc *crtc)
4172 {
4173         struct drm_device *dev = crtc->dev;
4174         struct drm_i915_private *dev_priv = dev->dev_private;
4175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4176         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4177
4178         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4179
4180         lpt_program_iclkip(crtc);
4181
4182         /* Set transcoder timing. */
4183         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4184
4185         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4186 }
4187
4188 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4189 {
4190         struct drm_i915_private *dev_priv = dev->dev_private;
4191         i915_reg_t dslreg = PIPEDSL(pipe);
4192         u32 temp;
4193
4194         temp = I915_READ(dslreg);
4195         udelay(500);
4196         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4197                 if (wait_for(I915_READ(dslreg) != temp, 5))
4198                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4199         }
4200 }
4201
4202 static int
4203 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4204                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4205                   int src_w, int src_h, int dst_w, int dst_h)
4206 {
4207         struct intel_crtc_scaler_state *scaler_state =
4208                 &crtc_state->scaler_state;
4209         struct intel_crtc *intel_crtc =
4210                 to_intel_crtc(crtc_state->base.crtc);
4211         int need_scaling;
4212
4213         need_scaling = intel_rotation_90_or_270(rotation) ?
4214                 (src_h != dst_w || src_w != dst_h):
4215                 (src_w != dst_w || src_h != dst_h);
4216
4217         /*
4218          * if plane is being disabled or scaler is no more required or force detach
4219          *  - free scaler binded to this plane/crtc
4220          *  - in order to do this, update crtc->scaler_usage
4221          *
4222          * Here scaler state in crtc_state is set free so that
4223          * scaler can be assigned to other user. Actual register
4224          * update to free the scaler is done in plane/panel-fit programming.
4225          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4226          */
4227         if (force_detach || !need_scaling) {
4228                 if (*scaler_id >= 0) {
4229                         scaler_state->scaler_users &= ~(1 << scaler_user);
4230                         scaler_state->scalers[*scaler_id].in_use = 0;
4231
4232                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4233                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4234                                 intel_crtc->pipe, scaler_user, *scaler_id,
4235                                 scaler_state->scaler_users);
4236                         *scaler_id = -1;
4237                 }
4238                 return 0;
4239         }
4240
4241         /* range checks */
4242         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4243                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4244
4245                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4246                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4247                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4248                         "size is out of scaler range\n",
4249                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4250                 return -EINVAL;
4251         }
4252
4253         /* mark this plane as a scaler user in crtc_state */
4254         scaler_state->scaler_users |= (1 << scaler_user);
4255         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4256                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4257                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4258                 scaler_state->scaler_users);
4259
4260         return 0;
4261 }
4262
4263 /**
4264  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4265  *
4266  * @state: crtc's scaler state
4267  *
4268  * Return
4269  *     0 - scaler_usage updated successfully
4270  *    error - requested scaling cannot be supported or other error condition
4271  */
4272 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4273 {
4274         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4275         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4276
4277         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4278                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4279
4280         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4281                 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4282                 state->pipe_src_w, state->pipe_src_h,
4283                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4284 }
4285
4286 /**
4287  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4288  *
4289  * @state: crtc's scaler state
4290  * @plane_state: atomic plane state to update
4291  *
4292  * Return
4293  *     0 - scaler_usage updated successfully
4294  *    error - requested scaling cannot be supported or other error condition
4295  */
4296 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4297                                    struct intel_plane_state *plane_state)
4298 {
4299
4300         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4301         struct intel_plane *intel_plane =
4302                 to_intel_plane(plane_state->base.plane);
4303         struct drm_framebuffer *fb = plane_state->base.fb;
4304         int ret;
4305
4306         bool force_detach = !fb || !plane_state->visible;
4307
4308         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4309                       intel_plane->base.base.id, intel_crtc->pipe,
4310                       drm_plane_index(&intel_plane->base));
4311
4312         ret = skl_update_scaler(crtc_state, force_detach,
4313                                 drm_plane_index(&intel_plane->base),
4314                                 &plane_state->scaler_id,
4315                                 plane_state->base.rotation,
4316                                 drm_rect_width(&plane_state->src) >> 16,
4317                                 drm_rect_height(&plane_state->src) >> 16,
4318                                 drm_rect_width(&plane_state->dst),
4319                                 drm_rect_height(&plane_state->dst));
4320
4321         if (ret || plane_state->scaler_id < 0)
4322                 return ret;
4323
4324         /* check colorkey */
4325         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4326                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4327                               intel_plane->base.base.id);
4328                 return -EINVAL;
4329         }
4330
4331         /* Check src format */
4332         switch (fb->pixel_format) {
4333         case DRM_FORMAT_RGB565:
4334         case DRM_FORMAT_XBGR8888:
4335         case DRM_FORMAT_XRGB8888:
4336         case DRM_FORMAT_ABGR8888:
4337         case DRM_FORMAT_ARGB8888:
4338         case DRM_FORMAT_XRGB2101010:
4339         case DRM_FORMAT_XBGR2101010:
4340         case DRM_FORMAT_YUYV:
4341         case DRM_FORMAT_YVYU:
4342         case DRM_FORMAT_UYVY:
4343         case DRM_FORMAT_VYUY:
4344                 break;
4345         default:
4346                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4347                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4348                 return -EINVAL;
4349         }
4350
4351         return 0;
4352 }
4353
4354 static void skylake_scaler_disable(struct intel_crtc *crtc)
4355 {
4356         int i;
4357
4358         for (i = 0; i < crtc->num_scalers; i++)
4359                 skl_detach_scaler(crtc, i);
4360 }
4361
4362 static void skylake_pfit_enable(struct intel_crtc *crtc)
4363 {
4364         struct drm_device *dev = crtc->base.dev;
4365         struct drm_i915_private *dev_priv = dev->dev_private;
4366         int pipe = crtc->pipe;
4367         struct intel_crtc_scaler_state *scaler_state =
4368                 &crtc->config->scaler_state;
4369
4370         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4371
4372         if (crtc->config->pch_pfit.enabled) {
4373                 int id;
4374
4375                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4376                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4377                         return;
4378                 }
4379
4380                 id = scaler_state->scaler_id;
4381                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4382                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4383                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4384                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4385
4386                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4387         }
4388 }
4389
4390 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4391 {
4392         struct drm_device *dev = crtc->base.dev;
4393         struct drm_i915_private *dev_priv = dev->dev_private;
4394         int pipe = crtc->pipe;
4395
4396         if (crtc->config->pch_pfit.enabled) {
4397                 /* Force use of hard-coded filter coefficients
4398                  * as some pre-programmed values are broken,
4399                  * e.g. x201.
4400                  */
4401                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4402                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4403                                                  PF_PIPE_SEL_IVB(pipe));
4404                 else
4405                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4406                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4407                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4408         }
4409 }
4410
4411 void hsw_enable_ips(struct intel_crtc *crtc)
4412 {
4413         struct drm_device *dev = crtc->base.dev;
4414         struct drm_i915_private *dev_priv = dev->dev_private;
4415
4416         if (!crtc->config->ips_enabled)
4417                 return;
4418
4419         /*
4420          * We can only enable IPS after we enable a plane and wait for a vblank
4421          * This function is called from post_plane_update, which is run after
4422          * a vblank wait.
4423          */
4424
4425         assert_plane_enabled(dev_priv, crtc->plane);
4426         if (IS_BROADWELL(dev)) {
4427                 mutex_lock(&dev_priv->rps.hw_lock);
4428                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4429                 mutex_unlock(&dev_priv->rps.hw_lock);
4430                 /* Quoting Art Runyan: "its not safe to expect any particular
4431                  * value in IPS_CTL bit 31 after enabling IPS through the
4432                  * mailbox." Moreover, the mailbox may return a bogus state,
4433                  * so we need to just enable it and continue on.
4434                  */
4435         } else {
4436                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4437                 /* The bit only becomes 1 in the next vblank, so this wait here
4438                  * is essentially intel_wait_for_vblank. If we don't have this
4439                  * and don't wait for vblanks until the end of crtc_enable, then
4440                  * the HW state readout code will complain that the expected
4441                  * IPS_CTL value is not the one we read. */
4442                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4443                         DRM_ERROR("Timed out waiting for IPS enable\n");
4444         }
4445 }
4446
4447 void hsw_disable_ips(struct intel_crtc *crtc)
4448 {
4449         struct drm_device *dev = crtc->base.dev;
4450         struct drm_i915_private *dev_priv = dev->dev_private;
4451
4452         if (!crtc->config->ips_enabled)
4453                 return;
4454
4455         assert_plane_enabled(dev_priv, crtc->plane);
4456         if (IS_BROADWELL(dev)) {
4457                 mutex_lock(&dev_priv->rps.hw_lock);
4458                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4459                 mutex_unlock(&dev_priv->rps.hw_lock);
4460                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4461                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4462                         DRM_ERROR("Timed out waiting for IPS disable\n");
4463         } else {
4464                 I915_WRITE(IPS_CTL, 0);
4465                 POSTING_READ(IPS_CTL);
4466         }
4467
4468         /* We need to wait for a vblank before we can disable the plane. */
4469         intel_wait_for_vblank(dev, crtc->pipe);
4470 }
4471
4472 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4473 {
4474         if (intel_crtc->overlay) {
4475                 struct drm_device *dev = intel_crtc->base.dev;
4476                 struct drm_i915_private *dev_priv = dev->dev_private;
4477
4478                 mutex_lock(&dev->struct_mutex);
4479                 dev_priv->mm.interruptible = false;
4480                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4481                 dev_priv->mm.interruptible = true;
4482                 mutex_unlock(&dev->struct_mutex);
4483         }
4484
4485         /* Let userspace switch the overlay on again. In most cases userspace
4486          * has to recompute where to put it anyway.
4487          */
4488 }
4489
4490 /**
4491  * intel_post_enable_primary - Perform operations after enabling primary plane
4492  * @crtc: the CRTC whose primary plane was just enabled
4493  *
4494  * Performs potentially sleeping operations that must be done after the primary
4495  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4496  * called due to an explicit primary plane update, or due to an implicit
4497  * re-enable that is caused when a sprite plane is updated to no longer
4498  * completely hide the primary plane.
4499  */
4500 static void
4501 intel_post_enable_primary(struct drm_crtc *crtc)
4502 {
4503         struct drm_device *dev = crtc->dev;
4504         struct drm_i915_private *dev_priv = dev->dev_private;
4505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4506         int pipe = intel_crtc->pipe;
4507
4508         /*
4509          * FIXME IPS should be fine as long as one plane is
4510          * enabled, but in practice it seems to have problems
4511          * when going from primary only to sprite only and vice
4512          * versa.
4513          */
4514         hsw_enable_ips(intel_crtc);
4515
4516         /*
4517          * Gen2 reports pipe underruns whenever all planes are disabled.
4518          * So don't enable underrun reporting before at least some planes
4519          * are enabled.
4520          * FIXME: Need to fix the logic to work when we turn off all planes
4521          * but leave the pipe running.
4522          */
4523         if (IS_GEN2(dev))
4524                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4525
4526         /* Underruns don't always raise interrupts, so check manually. */
4527         intel_check_cpu_fifo_underruns(dev_priv);
4528         intel_check_pch_fifo_underruns(dev_priv);
4529 }
4530
4531 /* FIXME move all this to pre_plane_update() with proper state tracking */
4532 static void
4533 intel_pre_disable_primary(struct drm_crtc *crtc)
4534 {
4535         struct drm_device *dev = crtc->dev;
4536         struct drm_i915_private *dev_priv = dev->dev_private;
4537         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538         int pipe = intel_crtc->pipe;
4539
4540         /*
4541          * Gen2 reports pipe underruns whenever all planes are disabled.
4542          * So diasble underrun reporting before all the planes get disabled.
4543          * FIXME: Need to fix the logic to work when we turn off all planes
4544          * but leave the pipe running.
4545          */
4546         if (IS_GEN2(dev))
4547                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4548
4549         /*
4550          * FIXME IPS should be fine as long as one plane is
4551          * enabled, but in practice it seems to have problems
4552          * when going from primary only to sprite only and vice
4553          * versa.
4554          */
4555         hsw_disable_ips(intel_crtc);
4556 }
4557
4558 /* FIXME get rid of this and use pre_plane_update */
4559 static void
4560 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4561 {
4562         struct drm_device *dev = crtc->dev;
4563         struct drm_i915_private *dev_priv = dev->dev_private;
4564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4565         int pipe = intel_crtc->pipe;
4566
4567         intel_pre_disable_primary(crtc);
4568
4569         /*
4570          * Vblank time updates from the shadow to live plane control register
4571          * are blocked if the memory self-refresh mode is active at that
4572          * moment. So to make sure the plane gets truly disabled, disable
4573          * first the self-refresh mode. The self-refresh enable bit in turn
4574          * will be checked/applied by the HW only at the next frame start
4575          * event which is after the vblank start event, so we need to have a
4576          * wait-for-vblank between disabling the plane and the pipe.
4577          */
4578         if (HAS_GMCH_DISPLAY(dev)) {
4579                 intel_set_memory_cxsr(dev_priv, false);
4580                 dev_priv->wm.vlv.cxsr = false;
4581                 intel_wait_for_vblank(dev, pipe);
4582         }
4583 }
4584
4585 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4586 {
4587         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4588         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4589         struct intel_crtc_state *pipe_config =
4590                 to_intel_crtc_state(crtc->base.state);
4591         struct drm_device *dev = crtc->base.dev;
4592         struct drm_plane *primary = crtc->base.primary;
4593         struct drm_plane_state *old_pri_state =
4594                 drm_atomic_get_existing_plane_state(old_state, primary);
4595
4596         intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4597
4598         crtc->wm.cxsr_allowed = true;
4599
4600         if (pipe_config->update_wm_post && pipe_config->base.active)
4601                 intel_update_watermarks(&crtc->base);
4602
4603         if (old_pri_state) {
4604                 struct intel_plane_state *primary_state =
4605                         to_intel_plane_state(primary->state);
4606                 struct intel_plane_state *old_primary_state =
4607                         to_intel_plane_state(old_pri_state);
4608
4609                 intel_fbc_post_update(crtc);
4610
4611                 if (primary_state->visible &&
4612                     (needs_modeset(&pipe_config->base) ||
4613                      !old_primary_state->visible))
4614                         intel_post_enable_primary(&crtc->base);
4615         }
4616 }
4617
4618 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4619 {
4620         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4621         struct drm_device *dev = crtc->base.dev;
4622         struct drm_i915_private *dev_priv = dev->dev_private;
4623         struct intel_crtc_state *pipe_config =
4624                 to_intel_crtc_state(crtc->base.state);
4625         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4626         struct drm_plane *primary = crtc->base.primary;
4627         struct drm_plane_state *old_pri_state =
4628                 drm_atomic_get_existing_plane_state(old_state, primary);
4629         bool modeset = needs_modeset(&pipe_config->base);
4630
4631         if (old_pri_state) {
4632                 struct intel_plane_state *primary_state =
4633                         to_intel_plane_state(primary->state);
4634                 struct intel_plane_state *old_primary_state =
4635                         to_intel_plane_state(old_pri_state);
4636
4637                 intel_fbc_pre_update(crtc);
4638
4639                 if (old_primary_state->visible &&
4640                     (modeset || !primary_state->visible))
4641                         intel_pre_disable_primary(&crtc->base);
4642         }
4643
4644         if (pipe_config->disable_cxsr) {
4645                 crtc->wm.cxsr_allowed = false;
4646
4647                 /*
4648                  * Vblank time updates from the shadow to live plane control register
4649                  * are blocked if the memory self-refresh mode is active at that
4650                  * moment. So to make sure the plane gets truly disabled, disable
4651                  * first the self-refresh mode. The self-refresh enable bit in turn
4652                  * will be checked/applied by the HW only at the next frame start
4653                  * event which is after the vblank start event, so we need to have a
4654                  * wait-for-vblank between disabling the plane and the pipe.
4655                  */
4656                 if (old_crtc_state->base.active) {
4657                         intel_set_memory_cxsr(dev_priv, false);
4658                         dev_priv->wm.vlv.cxsr = false;
4659                         intel_wait_for_vblank(dev, crtc->pipe);
4660                 }
4661         }
4662
4663         /*
4664          * IVB workaround: must disable low power watermarks for at least
4665          * one frame before enabling scaling.  LP watermarks can be re-enabled
4666          * when scaling is disabled.
4667          *
4668          * WaCxSRDisabledForSpriteScaling:ivb
4669          */
4670         if (pipe_config->disable_lp_wm) {
4671                 ilk_disable_lp_wm(dev);
4672                 intel_wait_for_vblank(dev, crtc->pipe);
4673         }
4674
4675         /*
4676          * If we're doing a modeset, we're done.  No need to do any pre-vblank
4677          * watermark programming here.
4678          */
4679         if (needs_modeset(&pipe_config->base))
4680                 return;
4681
4682         /*
4683          * For platforms that support atomic watermarks, program the
4684          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4685          * will be the intermediate values that are safe for both pre- and
4686          * post- vblank; when vblank happens, the 'active' values will be set
4687          * to the final 'target' values and we'll do this again to get the
4688          * optimal watermarks.  For gen9+ platforms, the values we program here
4689          * will be the final target values which will get automatically latched
4690          * at vblank time; no further programming will be necessary.
4691          *
4692          * If a platform hasn't been transitioned to atomic watermarks yet,
4693          * we'll continue to update watermarks the old way, if flags tell
4694          * us to.
4695          */
4696         if (dev_priv->display.initial_watermarks != NULL)
4697                 dev_priv->display.initial_watermarks(pipe_config);
4698         else if (pipe_config->update_wm_pre)
4699                 intel_update_watermarks(&crtc->base);
4700 }
4701
4702 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4703 {
4704         struct drm_device *dev = crtc->dev;
4705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706         struct drm_plane *p;
4707         int pipe = intel_crtc->pipe;
4708
4709         intel_crtc_dpms_overlay_disable(intel_crtc);
4710
4711         drm_for_each_plane_mask(p, dev, plane_mask)
4712                 to_intel_plane(p)->disable_plane(p, crtc);
4713
4714         /*
4715          * FIXME: Once we grow proper nuclear flip support out of this we need
4716          * to compute the mask of flip planes precisely. For the time being
4717          * consider this a flip to a NULL plane.
4718          */
4719         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4720 }
4721
4722 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4723 {
4724         struct drm_device *dev = crtc->dev;
4725         struct drm_i915_private *dev_priv = dev->dev_private;
4726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4727         struct intel_encoder *encoder;
4728         int pipe = intel_crtc->pipe;
4729         struct intel_crtc_state *pipe_config =
4730                 to_intel_crtc_state(crtc->state);
4731
4732         if (WARN_ON(intel_crtc->active))
4733                 return;
4734
4735         if (intel_crtc->config->has_pch_encoder)
4736                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4737
4738         if (intel_crtc->config->has_pch_encoder)
4739                 intel_prepare_shared_dpll(intel_crtc);
4740
4741         if (intel_crtc->config->has_dp_encoder)
4742                 intel_dp_set_m_n(intel_crtc, M1_N1);
4743
4744         intel_set_pipe_timings(intel_crtc);
4745         intel_set_pipe_src_size(intel_crtc);
4746
4747         if (intel_crtc->config->has_pch_encoder) {
4748                 intel_cpu_transcoder_set_m_n(intel_crtc,
4749                                      &intel_crtc->config->fdi_m_n, NULL);
4750         }
4751
4752         ironlake_set_pipeconf(crtc);
4753
4754         intel_crtc->active = true;
4755
4756         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4757
4758         for_each_encoder_on_crtc(dev, crtc, encoder)
4759                 if (encoder->pre_enable)
4760                         encoder->pre_enable(encoder);
4761
4762         if (intel_crtc->config->has_pch_encoder) {
4763                 /* Note: FDI PLL enabling _must_ be done before we enable the
4764                  * cpu pipes, hence this is separate from all the other fdi/pch
4765                  * enabling. */
4766                 ironlake_fdi_pll_enable(intel_crtc);
4767         } else {
4768                 assert_fdi_tx_disabled(dev_priv, pipe);
4769                 assert_fdi_rx_disabled(dev_priv, pipe);
4770         }
4771
4772         ironlake_pfit_enable(intel_crtc);
4773
4774         /*
4775          * On ILK+ LUT must be loaded before the pipe is running but with
4776          * clocks enabled
4777          */
4778         intel_color_load_luts(&pipe_config->base);
4779
4780         if (dev_priv->display.initial_watermarks != NULL)
4781                 dev_priv->display.initial_watermarks(intel_crtc->config);
4782         intel_enable_pipe(intel_crtc);
4783
4784         if (intel_crtc->config->has_pch_encoder)
4785                 ironlake_pch_enable(crtc);
4786
4787         assert_vblank_disabled(crtc);
4788         drm_crtc_vblank_on(crtc);
4789
4790         for_each_encoder_on_crtc(dev, crtc, encoder)
4791                 encoder->enable(encoder);
4792
4793         if (HAS_PCH_CPT(dev))
4794                 cpt_verify_modeset(dev, intel_crtc->pipe);
4795
4796         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4797         if (intel_crtc->config->has_pch_encoder)
4798                 intel_wait_for_vblank(dev, pipe);
4799         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4800 }
4801
4802 /* IPS only exists on ULT machines and is tied to pipe A. */
4803 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4804 {
4805         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4806 }
4807
4808 static void haswell_crtc_enable(struct drm_crtc *crtc)
4809 {
4810         struct drm_device *dev = crtc->dev;
4811         struct drm_i915_private *dev_priv = dev->dev_private;
4812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4813         struct intel_encoder *encoder;
4814         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4815         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4816         struct intel_crtc_state *pipe_config =
4817                 to_intel_crtc_state(crtc->state);
4818
4819         if (WARN_ON(intel_crtc->active))
4820                 return;
4821
4822         if (intel_crtc->config->has_pch_encoder)
4823                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4824                                                       false);
4825
4826         if (intel_crtc->config->shared_dpll)
4827                 intel_enable_shared_dpll(intel_crtc);
4828
4829         if (intel_crtc->config->has_dp_encoder)
4830                 intel_dp_set_m_n(intel_crtc, M1_N1);
4831
4832         if (!intel_crtc->config->has_dsi_encoder)
4833                 intel_set_pipe_timings(intel_crtc);
4834
4835         intel_set_pipe_src_size(intel_crtc);
4836
4837         if (cpu_transcoder != TRANSCODER_EDP &&
4838             !transcoder_is_dsi(cpu_transcoder)) {
4839                 I915_WRITE(PIPE_MULT(cpu_transcoder),
4840                            intel_crtc->config->pixel_multiplier - 1);
4841         }
4842
4843         if (intel_crtc->config->has_pch_encoder) {
4844                 intel_cpu_transcoder_set_m_n(intel_crtc,
4845                                      &intel_crtc->config->fdi_m_n, NULL);
4846         }
4847
4848         if (!intel_crtc->config->has_dsi_encoder)
4849                 haswell_set_pipeconf(crtc);
4850
4851         haswell_set_pipemisc(crtc);
4852
4853         intel_color_set_csc(&pipe_config->base);
4854
4855         intel_crtc->active = true;
4856
4857         if (intel_crtc->config->has_pch_encoder)
4858                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4859         else
4860                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4861
4862         for_each_encoder_on_crtc(dev, crtc, encoder) {
4863                 if (encoder->pre_enable)
4864                         encoder->pre_enable(encoder);
4865         }
4866
4867         if (intel_crtc->config->has_pch_encoder)
4868                 dev_priv->display.fdi_link_train(crtc);
4869
4870         if (!intel_crtc->config->has_dsi_encoder)
4871                 intel_ddi_enable_pipe_clock(intel_crtc);
4872
4873         if (INTEL_INFO(dev)->gen >= 9)
4874                 skylake_pfit_enable(intel_crtc);
4875         else
4876                 ironlake_pfit_enable(intel_crtc);
4877
4878         /*
4879          * On ILK+ LUT must be loaded before the pipe is running but with
4880          * clocks enabled
4881          */
4882         intel_color_load_luts(&pipe_config->base);
4883
4884         intel_ddi_set_pipe_settings(crtc);
4885         if (!intel_crtc->config->has_dsi_encoder)
4886                 intel_ddi_enable_transcoder_func(crtc);
4887
4888         if (dev_priv->display.initial_watermarks != NULL)
4889                 dev_priv->display.initial_watermarks(pipe_config);
4890         else
4891                 intel_update_watermarks(crtc);
4892
4893         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4894         if (!intel_crtc->config->has_dsi_encoder)
4895                 intel_enable_pipe(intel_crtc);
4896
4897         if (intel_crtc->config->has_pch_encoder)
4898                 lpt_pch_enable(crtc);
4899
4900         if (intel_crtc->config->dp_encoder_is_mst)
4901                 intel_ddi_set_vc_payload_alloc(crtc, true);
4902
4903         assert_vblank_disabled(crtc);
4904         drm_crtc_vblank_on(crtc);
4905
4906         for_each_encoder_on_crtc(dev, crtc, encoder) {
4907                 encoder->enable(encoder);
4908                 intel_opregion_notify_encoder(encoder, true);
4909         }
4910
4911         if (intel_crtc->config->has_pch_encoder) {
4912                 intel_wait_for_vblank(dev, pipe);
4913                 intel_wait_for_vblank(dev, pipe);
4914                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4915                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4916                                                       true);
4917         }
4918
4919         /* If we change the relative order between pipe/planes enabling, we need
4920          * to change the workaround. */
4921         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4922         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4923                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4924                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4925         }
4926 }
4927
4928 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4929 {
4930         struct drm_device *dev = crtc->base.dev;
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932         int pipe = crtc->pipe;
4933
4934         /* To avoid upsetting the power well on haswell only disable the pfit if
4935          * it's in use. The hw state code will make sure we get this right. */
4936         if (force || crtc->config->pch_pfit.enabled) {
4937                 I915_WRITE(PF_CTL(pipe), 0);
4938                 I915_WRITE(PF_WIN_POS(pipe), 0);
4939                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4940         }
4941 }
4942
4943 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4944 {
4945         struct drm_device *dev = crtc->dev;
4946         struct drm_i915_private *dev_priv = dev->dev_private;
4947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4948         struct intel_encoder *encoder;
4949         int pipe = intel_crtc->pipe;
4950
4951         if (intel_crtc->config->has_pch_encoder)
4952                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4953
4954         for_each_encoder_on_crtc(dev, crtc, encoder)
4955                 encoder->disable(encoder);
4956
4957         drm_crtc_vblank_off(crtc);
4958         assert_vblank_disabled(crtc);
4959
4960         /*
4961          * Sometimes spurious CPU pipe underruns happen when the
4962          * pipe is already disabled, but FDI RX/TX is still enabled.
4963          * Happens at least with VGA+HDMI cloning. Suppress them.
4964          */
4965         if (intel_crtc->config->has_pch_encoder)
4966                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4967
4968         intel_disable_pipe(intel_crtc);
4969
4970         ironlake_pfit_disable(intel_crtc, false);
4971
4972         if (intel_crtc->config->has_pch_encoder) {
4973                 ironlake_fdi_disable(crtc);
4974                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4975         }
4976
4977         for_each_encoder_on_crtc(dev, crtc, encoder)
4978                 if (encoder->post_disable)
4979                         encoder->post_disable(encoder);
4980
4981         if (intel_crtc->config->has_pch_encoder) {
4982                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4983
4984                 if (HAS_PCH_CPT(dev)) {
4985                         i915_reg_t reg;
4986                         u32 temp;
4987
4988                         /* disable TRANS_DP_CTL */
4989                         reg = TRANS_DP_CTL(pipe);
4990                         temp = I915_READ(reg);
4991                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4992                                   TRANS_DP_PORT_SEL_MASK);
4993                         temp |= TRANS_DP_PORT_SEL_NONE;
4994                         I915_WRITE(reg, temp);
4995
4996                         /* disable DPLL_SEL */
4997                         temp = I915_READ(PCH_DPLL_SEL);
4998                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4999                         I915_WRITE(PCH_DPLL_SEL, temp);
5000                 }
5001
5002                 ironlake_fdi_pll_disable(intel_crtc);
5003         }
5004
5005         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5006 }
5007
5008 static void haswell_crtc_disable(struct drm_crtc *crtc)
5009 {
5010         struct drm_device *dev = crtc->dev;
5011         struct drm_i915_private *dev_priv = dev->dev_private;
5012         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5013         struct intel_encoder *encoder;
5014         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5015
5016         if (intel_crtc->config->has_pch_encoder)
5017                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5018                                                       false);
5019
5020         for_each_encoder_on_crtc(dev, crtc, encoder) {
5021                 intel_opregion_notify_encoder(encoder, false);
5022                 encoder->disable(encoder);
5023         }
5024
5025         drm_crtc_vblank_off(crtc);
5026         assert_vblank_disabled(crtc);
5027
5028         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5029         if (!intel_crtc->config->has_dsi_encoder)
5030                 intel_disable_pipe(intel_crtc);
5031
5032         if (intel_crtc->config->dp_encoder_is_mst)
5033                 intel_ddi_set_vc_payload_alloc(crtc, false);
5034
5035         if (!intel_crtc->config->has_dsi_encoder)
5036                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5037
5038         if (INTEL_INFO(dev)->gen >= 9)
5039                 skylake_scaler_disable(intel_crtc);
5040         else
5041                 ironlake_pfit_disable(intel_crtc, false);
5042
5043         if (!intel_crtc->config->has_dsi_encoder)
5044                 intel_ddi_disable_pipe_clock(intel_crtc);
5045
5046         for_each_encoder_on_crtc(dev, crtc, encoder)
5047                 if (encoder->post_disable)
5048                         encoder->post_disable(encoder);
5049
5050         if (intel_crtc->config->has_pch_encoder) {
5051                 lpt_disable_pch_transcoder(dev_priv);
5052                 lpt_disable_iclkip(dev_priv);
5053                 intel_ddi_fdi_disable(crtc);
5054
5055                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5056                                                       true);
5057         }
5058 }
5059
5060 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5061 {
5062         struct drm_device *dev = crtc->base.dev;
5063         struct drm_i915_private *dev_priv = dev->dev_private;
5064         struct intel_crtc_state *pipe_config = crtc->config;
5065
5066         if (!pipe_config->gmch_pfit.control)
5067                 return;
5068
5069         /*
5070          * The panel fitter should only be adjusted whilst the pipe is disabled,
5071          * according to register description and PRM.
5072          */
5073         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5074         assert_pipe_disabled(dev_priv, crtc->pipe);
5075
5076         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5077         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5078
5079         /* Border color in case we don't scale up to the full screen. Black by
5080          * default, change to something else for debugging. */
5081         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5082 }
5083
5084 static enum intel_display_power_domain port_to_power_domain(enum port port)
5085 {
5086         switch (port) {
5087         case PORT_A:
5088                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5089         case PORT_B:
5090                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5091         case PORT_C:
5092                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5093         case PORT_D:
5094                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5095         case PORT_E:
5096                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5097         default:
5098                 MISSING_CASE(port);
5099                 return POWER_DOMAIN_PORT_OTHER;
5100         }
5101 }
5102
5103 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5104 {
5105         switch (port) {
5106         case PORT_A:
5107                 return POWER_DOMAIN_AUX_A;
5108         case PORT_B:
5109                 return POWER_DOMAIN_AUX_B;
5110         case PORT_C:
5111                 return POWER_DOMAIN_AUX_C;
5112         case PORT_D:
5113                 return POWER_DOMAIN_AUX_D;
5114         case PORT_E:
5115                 /* FIXME: Check VBT for actual wiring of PORT E */
5116                 return POWER_DOMAIN_AUX_D;
5117         default:
5118                 MISSING_CASE(port);
5119                 return POWER_DOMAIN_AUX_A;
5120         }
5121 }
5122
5123 enum intel_display_power_domain
5124 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5125 {
5126         struct drm_device *dev = intel_encoder->base.dev;
5127         struct intel_digital_port *intel_dig_port;
5128
5129         switch (intel_encoder->type) {
5130         case INTEL_OUTPUT_UNKNOWN:
5131                 /* Only DDI platforms should ever use this output type */
5132                 WARN_ON_ONCE(!HAS_DDI(dev));
5133         case INTEL_OUTPUT_DISPLAYPORT:
5134         case INTEL_OUTPUT_HDMI:
5135         case INTEL_OUTPUT_EDP:
5136                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5137                 return port_to_power_domain(intel_dig_port->port);
5138         case INTEL_OUTPUT_DP_MST:
5139                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5140                 return port_to_power_domain(intel_dig_port->port);
5141         case INTEL_OUTPUT_ANALOG:
5142                 return POWER_DOMAIN_PORT_CRT;
5143         case INTEL_OUTPUT_DSI:
5144                 return POWER_DOMAIN_PORT_DSI;
5145         default:
5146                 return POWER_DOMAIN_PORT_OTHER;
5147         }
5148 }
5149
5150 enum intel_display_power_domain
5151 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5152 {
5153         struct drm_device *dev = intel_encoder->base.dev;
5154         struct intel_digital_port *intel_dig_port;
5155
5156         switch (intel_encoder->type) {
5157         case INTEL_OUTPUT_UNKNOWN:
5158         case INTEL_OUTPUT_HDMI:
5159                 /*
5160                  * Only DDI platforms should ever use these output types.
5161                  * We can get here after the HDMI detect code has already set
5162                  * the type of the shared encoder. Since we can't be sure
5163                  * what's the status of the given connectors, play safe and
5164                  * run the DP detection too.
5165                  */
5166                 WARN_ON_ONCE(!HAS_DDI(dev));
5167         case INTEL_OUTPUT_DISPLAYPORT:
5168         case INTEL_OUTPUT_EDP:
5169                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5170                 return port_to_aux_power_domain(intel_dig_port->port);
5171         case INTEL_OUTPUT_DP_MST:
5172                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5173                 return port_to_aux_power_domain(intel_dig_port->port);
5174         default:
5175                 MISSING_CASE(intel_encoder->type);
5176                 return POWER_DOMAIN_AUX_A;
5177         }
5178 }
5179
5180 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5181                                             struct intel_crtc_state *crtc_state)
5182 {
5183         struct drm_device *dev = crtc->dev;
5184         struct drm_encoder *encoder;
5185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5186         enum pipe pipe = intel_crtc->pipe;
5187         unsigned long mask;
5188         enum transcoder transcoder = crtc_state->cpu_transcoder;
5189
5190         if (!crtc_state->base.active)
5191                 return 0;
5192
5193         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5194         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5195         if (crtc_state->pch_pfit.enabled ||
5196             crtc_state->pch_pfit.force_thru)
5197                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5198
5199         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5200                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5201
5202                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5203         }
5204
5205         if (crtc_state->shared_dpll)
5206                 mask |= BIT(POWER_DOMAIN_PLLS);
5207
5208         return mask;
5209 }
5210
5211 static unsigned long
5212 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5213                                struct intel_crtc_state *crtc_state)
5214 {
5215         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5216         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5217         enum intel_display_power_domain domain;
5218         unsigned long domains, new_domains, old_domains;
5219
5220         old_domains = intel_crtc->enabled_power_domains;
5221         intel_crtc->enabled_power_domains = new_domains =
5222                 get_crtc_power_domains(crtc, crtc_state);
5223
5224         domains = new_domains & ~old_domains;
5225
5226         for_each_power_domain(domain, domains)
5227                 intel_display_power_get(dev_priv, domain);
5228
5229         return old_domains & ~new_domains;
5230 }
5231
5232 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5233                                       unsigned long domains)
5234 {
5235         enum intel_display_power_domain domain;
5236
5237         for_each_power_domain(domain, domains)
5238                 intel_display_power_put(dev_priv, domain);
5239 }
5240
5241 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5242 {
5243         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5244
5245         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5246             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5247                 return max_cdclk_freq;
5248         else if (IS_CHERRYVIEW(dev_priv))
5249                 return max_cdclk_freq*95/100;
5250         else if (INTEL_INFO(dev_priv)->gen < 4)
5251                 return 2*max_cdclk_freq*90/100;
5252         else
5253                 return max_cdclk_freq*90/100;
5254 }
5255
5256 static void intel_update_max_cdclk(struct drm_device *dev)
5257 {
5258         struct drm_i915_private *dev_priv = dev->dev_private;
5259
5260         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5261                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5262
5263                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5264                         dev_priv->max_cdclk_freq = 675000;
5265                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5266                         dev_priv->max_cdclk_freq = 540000;
5267                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5268                         dev_priv->max_cdclk_freq = 450000;
5269                 else
5270                         dev_priv->max_cdclk_freq = 337500;
5271         } else if (IS_BROXTON(dev)) {
5272                 dev_priv->max_cdclk_freq = 624000;
5273         } else if (IS_BROADWELL(dev))  {
5274                 /*
5275                  * FIXME with extra cooling we can allow
5276                  * 540 MHz for ULX and 675 Mhz for ULT.
5277                  * How can we know if extra cooling is
5278                  * available? PCI ID, VTB, something else?
5279                  */
5280                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5281                         dev_priv->max_cdclk_freq = 450000;
5282                 else if (IS_BDW_ULX(dev))
5283                         dev_priv->max_cdclk_freq = 450000;
5284                 else if (IS_BDW_ULT(dev))
5285                         dev_priv->max_cdclk_freq = 540000;
5286                 else
5287                         dev_priv->max_cdclk_freq = 675000;
5288         } else if (IS_CHERRYVIEW(dev)) {
5289                 dev_priv->max_cdclk_freq = 320000;
5290         } else if (IS_VALLEYVIEW(dev)) {
5291                 dev_priv->max_cdclk_freq = 400000;
5292         } else {
5293                 /* otherwise assume cdclk is fixed */
5294                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5295         }
5296
5297         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5298
5299         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5300                          dev_priv->max_cdclk_freq);
5301
5302         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5303                          dev_priv->max_dotclk_freq);
5304 }
5305
5306 static void intel_update_cdclk(struct drm_device *dev)
5307 {
5308         struct drm_i915_private *dev_priv = dev->dev_private;
5309
5310         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5311         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5312                          dev_priv->cdclk_freq);
5313
5314         /*
5315          * Program the gmbus_freq based on the cdclk frequency.
5316          * BSpec erroneously claims we should aim for 4MHz, but
5317          * in fact 1MHz is the correct frequency.
5318          */
5319         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5320                 /*
5321                  * Program the gmbus_freq based on the cdclk frequency.
5322                  * BSpec erroneously claims we should aim for 4MHz, but
5323                  * in fact 1MHz is the correct frequency.
5324                  */
5325                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5326         }
5327
5328         if (dev_priv->max_cdclk_freq == 0)
5329                 intel_update_max_cdclk(dev);
5330 }
5331
5332 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5333 {
5334         struct drm_i915_private *dev_priv = dev->dev_private;
5335         uint32_t divider;
5336         uint32_t ratio;
5337         uint32_t current_freq;
5338         int ret;
5339
5340         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5341         switch (frequency) {
5342         case 144000:
5343                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5344                 ratio = BXT_DE_PLL_RATIO(60);
5345                 break;
5346         case 288000:
5347                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5348                 ratio = BXT_DE_PLL_RATIO(60);
5349                 break;
5350         case 384000:
5351                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5352                 ratio = BXT_DE_PLL_RATIO(60);
5353                 break;
5354         case 576000:
5355                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5356                 ratio = BXT_DE_PLL_RATIO(60);
5357                 break;
5358         case 624000:
5359                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5360                 ratio = BXT_DE_PLL_RATIO(65);
5361                 break;
5362         case 19200:
5363                 /*
5364                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5365                  * to suppress GCC warning.
5366                  */
5367                 ratio = 0;
5368                 divider = 0;
5369                 break;
5370         default:
5371                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5372
5373                 return;
5374         }
5375
5376         mutex_lock(&dev_priv->rps.hw_lock);
5377         /* Inform power controller of upcoming frequency change */
5378         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5379                                       0x80000000);
5380         mutex_unlock(&dev_priv->rps.hw_lock);
5381
5382         if (ret) {
5383                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5384                           ret, frequency);
5385                 return;
5386         }
5387
5388         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5389         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5390         current_freq = current_freq * 500 + 1000;
5391
5392         /*
5393          * DE PLL has to be disabled when
5394          * - setting to 19.2MHz (bypass, PLL isn't used)
5395          * - before setting to 624MHz (PLL needs toggling)
5396          * - before setting to any frequency from 624MHz (PLL needs toggling)
5397          */
5398         if (frequency == 19200 || frequency == 624000 ||
5399             current_freq == 624000) {
5400                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5401                 /* Timeout 200us */
5402                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5403                              1))
5404                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5405         }
5406
5407         if (frequency != 19200) {
5408                 uint32_t val;
5409
5410                 val = I915_READ(BXT_DE_PLL_CTL);
5411                 val &= ~BXT_DE_PLL_RATIO_MASK;
5412                 val |= ratio;
5413                 I915_WRITE(BXT_DE_PLL_CTL, val);
5414
5415                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5416                 /* Timeout 200us */
5417                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5418                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5419
5420                 val = I915_READ(CDCLK_CTL);
5421                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5422                 val |= divider;
5423                 /*
5424                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5425                  * enable otherwise.
5426                  */
5427                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5428                 if (frequency >= 500000)
5429                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5430
5431                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5432                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5433                 val |= (frequency - 1000) / 500;
5434                 I915_WRITE(CDCLK_CTL, val);
5435         }
5436
5437         mutex_lock(&dev_priv->rps.hw_lock);
5438         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5439                                       DIV_ROUND_UP(frequency, 25000));
5440         mutex_unlock(&dev_priv->rps.hw_lock);
5441
5442         if (ret) {
5443                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5444                           ret, frequency);
5445                 return;
5446         }
5447
5448         intel_update_cdclk(dev);
5449 }
5450
5451 void broxton_init_cdclk(struct drm_device *dev)
5452 {
5453         struct drm_i915_private *dev_priv = dev->dev_private;
5454         uint32_t val;
5455
5456         /*
5457          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5458          * or else the reset will hang because there is no PCH to respond.
5459          * Move the handshake programming to initialization sequence.
5460          * Previously was left up to BIOS.
5461          */
5462         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5463         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5464         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5465
5466         /* Enable PG1 for cdclk */
5467         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5468
5469         /* check if cd clock is enabled */
5470         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5471                 DRM_DEBUG_KMS("Display already initialized\n");
5472                 return;
5473         }
5474
5475         /*
5476          * FIXME:
5477          * - The initial CDCLK needs to be read from VBT.
5478          *   Need to make this change after VBT has changes for BXT.
5479          * - check if setting the max (or any) cdclk freq is really necessary
5480          *   here, it belongs to modeset time
5481          */
5482         broxton_set_cdclk(dev, 624000);
5483
5484         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5485         POSTING_READ(DBUF_CTL);
5486
5487         udelay(10);
5488
5489         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5490                 DRM_ERROR("DBuf power enable timeout!\n");
5491 }
5492
5493 void broxton_uninit_cdclk(struct drm_device *dev)
5494 {
5495         struct drm_i915_private *dev_priv = dev->dev_private;
5496
5497         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5498         POSTING_READ(DBUF_CTL);
5499
5500         udelay(10);
5501
5502         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5503                 DRM_ERROR("DBuf power disable timeout!\n");
5504
5505         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5506         broxton_set_cdclk(dev, 19200);
5507
5508         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5509 }
5510
5511 static const struct skl_cdclk_entry {
5512         unsigned int freq;
5513         unsigned int vco;
5514 } skl_cdclk_frequencies[] = {
5515         { .freq = 308570, .vco = 8640 },
5516         { .freq = 337500, .vco = 8100 },
5517         { .freq = 432000, .vco = 8640 },
5518         { .freq = 450000, .vco = 8100 },
5519         { .freq = 540000, .vco = 8100 },
5520         { .freq = 617140, .vco = 8640 },
5521         { .freq = 675000, .vco = 8100 },
5522 };
5523
5524 static unsigned int skl_cdclk_decimal(unsigned int freq)
5525 {
5526         return (freq - 1000) / 500;
5527 }
5528
5529 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5530 {
5531         unsigned int i;
5532
5533         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5534                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5535
5536                 if (e->freq == freq)
5537                         return e->vco;
5538         }
5539
5540         return 8100;
5541 }
5542
5543 static void
5544 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5545 {
5546         unsigned int min_freq;
5547         u32 val;
5548
5549         /* select the minimum CDCLK before enabling DPLL 0 */
5550         val = I915_READ(CDCLK_CTL);
5551         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5552         val |= CDCLK_FREQ_337_308;
5553
5554         if (required_vco == 8640)
5555                 min_freq = 308570;
5556         else
5557                 min_freq = 337500;
5558
5559         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5560
5561         I915_WRITE(CDCLK_CTL, val);
5562         POSTING_READ(CDCLK_CTL);
5563
5564         /*
5565          * We always enable DPLL0 with the lowest link rate possible, but still
5566          * taking into account the VCO required to operate the eDP panel at the
5567          * desired frequency. The usual DP link rates operate with a VCO of
5568          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5569          * The modeset code is responsible for the selection of the exact link
5570          * rate later on, with the constraint of choosing a frequency that
5571          * works with required_vco.
5572          */
5573         val = I915_READ(DPLL_CTRL1);
5574
5575         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5576                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5577         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5578         if (required_vco == 8640)
5579                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5580                                             SKL_DPLL0);
5581         else
5582                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5583                                             SKL_DPLL0);
5584
5585         I915_WRITE(DPLL_CTRL1, val);
5586         POSTING_READ(DPLL_CTRL1);
5587
5588         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5589
5590         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5591                 DRM_ERROR("DPLL0 not locked\n");
5592 }
5593
5594 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5595 {
5596         int ret;
5597         u32 val;
5598
5599         /* inform PCU we want to change CDCLK */
5600         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5601         mutex_lock(&dev_priv->rps.hw_lock);
5602         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5603         mutex_unlock(&dev_priv->rps.hw_lock);
5604
5605         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5606 }
5607
5608 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5609 {
5610         unsigned int i;
5611
5612         for (i = 0; i < 15; i++) {
5613                 if (skl_cdclk_pcu_ready(dev_priv))
5614                         return true;
5615                 udelay(10);
5616         }
5617
5618         return false;
5619 }
5620
5621 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5622 {
5623         struct drm_device *dev = dev_priv->dev;
5624         u32 freq_select, pcu_ack;
5625
5626         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5627
5628         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5629                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5630                 return;
5631         }
5632
5633         /* set CDCLK_CTL */
5634         switch(freq) {
5635         case 450000:
5636         case 432000:
5637                 freq_select = CDCLK_FREQ_450_432;
5638                 pcu_ack = 1;
5639                 break;
5640         case 540000:
5641                 freq_select = CDCLK_FREQ_540;
5642                 pcu_ack = 2;
5643                 break;
5644         case 308570:
5645         case 337500:
5646         default:
5647                 freq_select = CDCLK_FREQ_337_308;
5648                 pcu_ack = 0;
5649                 break;
5650         case 617140:
5651         case 675000:
5652                 freq_select = CDCLK_FREQ_675_617;
5653                 pcu_ack = 3;
5654                 break;
5655         }
5656
5657         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5658         POSTING_READ(CDCLK_CTL);
5659
5660         /* inform PCU of the change */
5661         mutex_lock(&dev_priv->rps.hw_lock);
5662         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5663         mutex_unlock(&dev_priv->rps.hw_lock);
5664
5665         intel_update_cdclk(dev);
5666 }
5667
5668 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5669 {
5670         /* disable DBUF power */
5671         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5672         POSTING_READ(DBUF_CTL);
5673
5674         udelay(10);
5675
5676         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5677                 DRM_ERROR("DBuf power disable timeout\n");
5678
5679         /* disable DPLL0 */
5680         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5681         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5682                 DRM_ERROR("Couldn't disable DPLL0\n");
5683 }
5684
5685 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5686 {
5687         unsigned int required_vco;
5688
5689         /* DPLL0 not enabled (happens on early BIOS versions) */
5690         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5691                 /* enable DPLL0 */
5692                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5693                 skl_dpll0_enable(dev_priv, required_vco);
5694         }
5695
5696         /* set CDCLK to the frequency the BIOS chose */
5697         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5698
5699         /* enable DBUF power */
5700         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5701         POSTING_READ(DBUF_CTL);
5702
5703         udelay(10);
5704
5705         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5706                 DRM_ERROR("DBuf power enable timeout\n");
5707 }
5708
5709 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5710 {
5711         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5712         uint32_t cdctl = I915_READ(CDCLK_CTL);
5713         int freq = dev_priv->skl_boot_cdclk;
5714
5715         /*
5716          * check if the pre-os intialized the display
5717          * There is SWF18 scratchpad register defined which is set by the
5718          * pre-os which can be used by the OS drivers to check the status
5719          */
5720         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5721                 goto sanitize;
5722
5723         /* Is PLL enabled and locked ? */
5724         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5725                 goto sanitize;
5726
5727         /* DPLL okay; verify the cdclock
5728          *
5729          * Noticed in some instances that the freq selection is correct but
5730          * decimal part is programmed wrong from BIOS where pre-os does not
5731          * enable display. Verify the same as well.
5732          */
5733         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5734                 /* All well; nothing to sanitize */
5735                 return false;
5736 sanitize:
5737         /*
5738          * As of now initialize with max cdclk till
5739          * we get dynamic cdclk support
5740          * */
5741         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5742         skl_init_cdclk(dev_priv);
5743
5744         /* we did have to sanitize */
5745         return true;
5746 }
5747
5748 /* Adjust CDclk dividers to allow high res or save power if possible */
5749 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5750 {
5751         struct drm_i915_private *dev_priv = dev->dev_private;
5752         u32 val, cmd;
5753
5754         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5755                                         != dev_priv->cdclk_freq);
5756
5757         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5758                 cmd = 2;
5759         else if (cdclk == 266667)
5760                 cmd = 1;
5761         else
5762                 cmd = 0;
5763
5764         mutex_lock(&dev_priv->rps.hw_lock);
5765         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5766         val &= ~DSPFREQGUAR_MASK;
5767         val |= (cmd << DSPFREQGUAR_SHIFT);
5768         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5769         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5770                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5771                      50)) {
5772                 DRM_ERROR("timed out waiting for CDclk change\n");
5773         }
5774         mutex_unlock(&dev_priv->rps.hw_lock);
5775
5776         mutex_lock(&dev_priv->sb_lock);
5777
5778         if (cdclk == 400000) {
5779                 u32 divider;
5780
5781                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5782
5783                 /* adjust cdclk divider */
5784                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5785                 val &= ~CCK_FREQUENCY_VALUES;
5786                 val |= divider;
5787                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5788
5789                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5790                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5791                              50))
5792                         DRM_ERROR("timed out waiting for CDclk change\n");
5793         }
5794
5795         /* adjust self-refresh exit latency value */
5796         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5797         val &= ~0x7f;
5798
5799         /*
5800          * For high bandwidth configs, we set a higher latency in the bunit
5801          * so that the core display fetch happens in time to avoid underruns.
5802          */
5803         if (cdclk == 400000)
5804                 val |= 4500 / 250; /* 4.5 usec */
5805         else
5806                 val |= 3000 / 250; /* 3.0 usec */
5807         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5808
5809         mutex_unlock(&dev_priv->sb_lock);
5810
5811         intel_update_cdclk(dev);
5812 }
5813
5814 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5815 {
5816         struct drm_i915_private *dev_priv = dev->dev_private;
5817         u32 val, cmd;
5818
5819         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5820                                                 != dev_priv->cdclk_freq);
5821
5822         switch (cdclk) {
5823         case 333333:
5824         case 320000:
5825         case 266667:
5826         case 200000:
5827                 break;
5828         default:
5829                 MISSING_CASE(cdclk);
5830                 return;
5831         }
5832
5833         /*
5834          * Specs are full of misinformation, but testing on actual
5835          * hardware has shown that we just need to write the desired
5836          * CCK divider into the Punit register.
5837          */
5838         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5839
5840         mutex_lock(&dev_priv->rps.hw_lock);
5841         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5842         val &= ~DSPFREQGUAR_MASK_CHV;
5843         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5844         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5845         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5846                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5847                      50)) {
5848                 DRM_ERROR("timed out waiting for CDclk change\n");
5849         }
5850         mutex_unlock(&dev_priv->rps.hw_lock);
5851
5852         intel_update_cdclk(dev);
5853 }
5854
5855 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5856                                  int max_pixclk)
5857 {
5858         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5859         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5860
5861         /*
5862          * Really only a few cases to deal with, as only 4 CDclks are supported:
5863          *   200MHz
5864          *   267MHz
5865          *   320/333MHz (depends on HPLL freq)
5866          *   400MHz (VLV only)
5867          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5868          * of the lower bin and adjust if needed.
5869          *
5870          * We seem to get an unstable or solid color picture at 200MHz.
5871          * Not sure what's wrong. For now use 200MHz only when all pipes
5872          * are off.
5873          */
5874         if (!IS_CHERRYVIEW(dev_priv) &&
5875             max_pixclk > freq_320*limit/100)
5876                 return 400000;
5877         else if (max_pixclk > 266667*limit/100)
5878                 return freq_320;
5879         else if (max_pixclk > 0)
5880                 return 266667;
5881         else
5882                 return 200000;
5883 }
5884
5885 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5886                               int max_pixclk)
5887 {
5888         /*
5889          * FIXME:
5890          * - remove the guardband, it's not needed on BXT
5891          * - set 19.2MHz bypass frequency if there are no active pipes
5892          */
5893         if (max_pixclk > 576000*9/10)
5894                 return 624000;
5895         else if (max_pixclk > 384000*9/10)
5896                 return 576000;
5897         else if (max_pixclk > 288000*9/10)
5898                 return 384000;
5899         else if (max_pixclk > 144000*9/10)
5900                 return 288000;
5901         else
5902                 return 144000;
5903 }
5904
5905 /* Compute the max pixel clock for new configuration. */
5906 static int intel_mode_max_pixclk(struct drm_device *dev,
5907                                  struct drm_atomic_state *state)
5908 {
5909         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5910         struct drm_i915_private *dev_priv = dev->dev_private;
5911         struct drm_crtc *crtc;
5912         struct drm_crtc_state *crtc_state;
5913         unsigned max_pixclk = 0, i;
5914         enum pipe pipe;
5915
5916         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5917                sizeof(intel_state->min_pixclk));
5918
5919         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5920                 int pixclk = 0;
5921
5922                 if (crtc_state->enable)
5923                         pixclk = crtc_state->adjusted_mode.crtc_clock;
5924
5925                 intel_state->min_pixclk[i] = pixclk;
5926         }
5927
5928         for_each_pipe(dev_priv, pipe)
5929                 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5930
5931         return max_pixclk;
5932 }
5933
5934 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5935 {
5936         struct drm_device *dev = state->dev;
5937         struct drm_i915_private *dev_priv = dev->dev_private;
5938         int max_pixclk = intel_mode_max_pixclk(dev, state);
5939         struct intel_atomic_state *intel_state =
5940                 to_intel_atomic_state(state);
5941
5942         if (max_pixclk < 0)
5943                 return max_pixclk;
5944
5945         intel_state->cdclk = intel_state->dev_cdclk =
5946                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5947
5948         if (!intel_state->active_crtcs)
5949                 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5950
5951         return 0;
5952 }
5953
5954 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5955 {
5956         struct drm_device *dev = state->dev;
5957         struct drm_i915_private *dev_priv = dev->dev_private;
5958         int max_pixclk = intel_mode_max_pixclk(dev, state);
5959         struct intel_atomic_state *intel_state =
5960                 to_intel_atomic_state(state);
5961
5962         if (max_pixclk < 0)
5963                 return max_pixclk;
5964
5965         intel_state->cdclk = intel_state->dev_cdclk =
5966                 broxton_calc_cdclk(dev_priv, max_pixclk);
5967
5968         if (!intel_state->active_crtcs)
5969                 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5970
5971         return 0;
5972 }
5973
5974 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5975 {
5976         unsigned int credits, default_credits;
5977
5978         if (IS_CHERRYVIEW(dev_priv))
5979                 default_credits = PFI_CREDIT(12);
5980         else
5981                 default_credits = PFI_CREDIT(8);
5982
5983         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
5984                 /* CHV suggested value is 31 or 63 */
5985                 if (IS_CHERRYVIEW(dev_priv))
5986                         credits = PFI_CREDIT_63;
5987                 else
5988                         credits = PFI_CREDIT(15);
5989         } else {
5990                 credits = default_credits;
5991         }
5992
5993         /*
5994          * WA - write default credits before re-programming
5995          * FIXME: should we also set the resend bit here?
5996          */
5997         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5998                    default_credits);
5999
6000         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6001                    credits | PFI_CREDIT_RESEND);
6002
6003         /*
6004          * FIXME is this guaranteed to clear
6005          * immediately or should we poll for it?
6006          */
6007         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6008 }
6009
6010 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6011 {
6012         struct drm_device *dev = old_state->dev;
6013         struct drm_i915_private *dev_priv = dev->dev_private;
6014         struct intel_atomic_state *old_intel_state =
6015                 to_intel_atomic_state(old_state);
6016         unsigned req_cdclk = old_intel_state->dev_cdclk;
6017
6018         /*
6019          * FIXME: We can end up here with all power domains off, yet
6020          * with a CDCLK frequency other than the minimum. To account
6021          * for this take the PIPE-A power domain, which covers the HW
6022          * blocks needed for the following programming. This can be
6023          * removed once it's guaranteed that we get here either with
6024          * the minimum CDCLK set, or the required power domains
6025          * enabled.
6026          */
6027         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6028
6029         if (IS_CHERRYVIEW(dev))
6030                 cherryview_set_cdclk(dev, req_cdclk);
6031         else
6032                 valleyview_set_cdclk(dev, req_cdclk);
6033
6034         vlv_program_pfi_credits(dev_priv);
6035
6036         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6037 }
6038
6039 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6040 {
6041         struct drm_device *dev = crtc->dev;
6042         struct drm_i915_private *dev_priv = to_i915(dev);
6043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044         struct intel_encoder *encoder;
6045         struct intel_crtc_state *pipe_config =
6046                 to_intel_crtc_state(crtc->state);
6047         int pipe = intel_crtc->pipe;
6048
6049         if (WARN_ON(intel_crtc->active))
6050                 return;
6051
6052         if (intel_crtc->config->has_dp_encoder)
6053                 intel_dp_set_m_n(intel_crtc, M1_N1);
6054
6055         intel_set_pipe_timings(intel_crtc);
6056         intel_set_pipe_src_size(intel_crtc);
6057
6058         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6059                 struct drm_i915_private *dev_priv = dev->dev_private;
6060
6061                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6062                 I915_WRITE(CHV_CANVAS(pipe), 0);
6063         }
6064
6065         i9xx_set_pipeconf(intel_crtc);
6066
6067         intel_crtc->active = true;
6068
6069         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6070
6071         for_each_encoder_on_crtc(dev, crtc, encoder)
6072                 if (encoder->pre_pll_enable)
6073                         encoder->pre_pll_enable(encoder);
6074
6075         if (!intel_crtc->config->has_dsi_encoder) {
6076                 if (IS_CHERRYVIEW(dev)) {
6077                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6078                         chv_enable_pll(intel_crtc, intel_crtc->config);
6079                 } else {
6080                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6081                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6082                 }
6083         }
6084
6085         for_each_encoder_on_crtc(dev, crtc, encoder)
6086                 if (encoder->pre_enable)
6087                         encoder->pre_enable(encoder);
6088
6089         i9xx_pfit_enable(intel_crtc);
6090
6091         intel_color_load_luts(&pipe_config->base);
6092
6093         intel_update_watermarks(crtc);
6094         intel_enable_pipe(intel_crtc);
6095
6096         assert_vblank_disabled(crtc);
6097         drm_crtc_vblank_on(crtc);
6098
6099         for_each_encoder_on_crtc(dev, crtc, encoder)
6100                 encoder->enable(encoder);
6101 }
6102
6103 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6104 {
6105         struct drm_device *dev = crtc->base.dev;
6106         struct drm_i915_private *dev_priv = dev->dev_private;
6107
6108         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6109         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6110 }
6111
6112 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6113 {
6114         struct drm_device *dev = crtc->dev;
6115         struct drm_i915_private *dev_priv = to_i915(dev);
6116         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6117         struct intel_encoder *encoder;
6118         struct intel_crtc_state *pipe_config =
6119                 to_intel_crtc_state(crtc->state);
6120         int pipe = intel_crtc->pipe;
6121
6122         if (WARN_ON(intel_crtc->active))
6123                 return;
6124
6125         i9xx_set_pll_dividers(intel_crtc);
6126
6127         if (intel_crtc->config->has_dp_encoder)
6128                 intel_dp_set_m_n(intel_crtc, M1_N1);
6129
6130         intel_set_pipe_timings(intel_crtc);
6131         intel_set_pipe_src_size(intel_crtc);
6132
6133         i9xx_set_pipeconf(intel_crtc);
6134
6135         intel_crtc->active = true;
6136
6137         if (!IS_GEN2(dev))
6138                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6139
6140         for_each_encoder_on_crtc(dev, crtc, encoder)
6141                 if (encoder->pre_enable)
6142                         encoder->pre_enable(encoder);
6143
6144         i9xx_enable_pll(intel_crtc);
6145
6146         i9xx_pfit_enable(intel_crtc);
6147
6148         intel_color_load_luts(&pipe_config->base);
6149
6150         intel_update_watermarks(crtc);
6151         intel_enable_pipe(intel_crtc);
6152
6153         assert_vblank_disabled(crtc);
6154         drm_crtc_vblank_on(crtc);
6155
6156         for_each_encoder_on_crtc(dev, crtc, encoder)
6157                 encoder->enable(encoder);
6158 }
6159
6160 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6161 {
6162         struct drm_device *dev = crtc->base.dev;
6163         struct drm_i915_private *dev_priv = dev->dev_private;
6164
6165         if (!crtc->config->gmch_pfit.control)
6166                 return;
6167
6168         assert_pipe_disabled(dev_priv, crtc->pipe);
6169
6170         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6171                          I915_READ(PFIT_CONTROL));
6172         I915_WRITE(PFIT_CONTROL, 0);
6173 }
6174
6175 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6176 {
6177         struct drm_device *dev = crtc->dev;
6178         struct drm_i915_private *dev_priv = dev->dev_private;
6179         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6180         struct intel_encoder *encoder;
6181         int pipe = intel_crtc->pipe;
6182
6183         /*
6184          * On gen2 planes are double buffered but the pipe isn't, so we must
6185          * wait for planes to fully turn off before disabling the pipe.
6186          */
6187         if (IS_GEN2(dev))
6188                 intel_wait_for_vblank(dev, pipe);
6189
6190         for_each_encoder_on_crtc(dev, crtc, encoder)
6191                 encoder->disable(encoder);
6192
6193         drm_crtc_vblank_off(crtc);
6194         assert_vblank_disabled(crtc);
6195
6196         intel_disable_pipe(intel_crtc);
6197
6198         i9xx_pfit_disable(intel_crtc);
6199
6200         for_each_encoder_on_crtc(dev, crtc, encoder)
6201                 if (encoder->post_disable)
6202                         encoder->post_disable(encoder);
6203
6204         if (!intel_crtc->config->has_dsi_encoder) {
6205                 if (IS_CHERRYVIEW(dev))
6206                         chv_disable_pll(dev_priv, pipe);
6207                 else if (IS_VALLEYVIEW(dev))
6208                         vlv_disable_pll(dev_priv, pipe);
6209                 else
6210                         i9xx_disable_pll(intel_crtc);
6211         }
6212
6213         for_each_encoder_on_crtc(dev, crtc, encoder)
6214                 if (encoder->post_pll_disable)
6215                         encoder->post_pll_disable(encoder);
6216
6217         if (!IS_GEN2(dev))
6218                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6219 }
6220
6221 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6222 {
6223         struct intel_encoder *encoder;
6224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6225         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6226         enum intel_display_power_domain domain;
6227         unsigned long domains;
6228
6229         if (!intel_crtc->active)
6230                 return;
6231
6232         if (to_intel_plane_state(crtc->primary->state)->visible) {
6233                 WARN_ON(intel_crtc->unpin_work);
6234
6235                 intel_pre_disable_primary_noatomic(crtc);
6236
6237                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6238                 to_intel_plane_state(crtc->primary->state)->visible = false;
6239         }
6240
6241         dev_priv->display.crtc_disable(crtc);
6242
6243         DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6244                       crtc->base.id);
6245
6246         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6247         crtc->state->active = false;
6248         intel_crtc->active = false;
6249         crtc->enabled = false;
6250         crtc->state->connector_mask = 0;
6251         crtc->state->encoder_mask = 0;
6252
6253         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6254                 encoder->base.crtc = NULL;
6255
6256         intel_fbc_disable(intel_crtc);
6257         intel_update_watermarks(crtc);
6258         intel_disable_shared_dpll(intel_crtc);
6259
6260         domains = intel_crtc->enabled_power_domains;
6261         for_each_power_domain(domain, domains)
6262                 intel_display_power_put(dev_priv, domain);
6263         intel_crtc->enabled_power_domains = 0;
6264
6265         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6266         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6267 }
6268
6269 /*
6270  * turn all crtc's off, but do not adjust state
6271  * This has to be paired with a call to intel_modeset_setup_hw_state.
6272  */
6273 int intel_display_suspend(struct drm_device *dev)
6274 {
6275         struct drm_i915_private *dev_priv = to_i915(dev);
6276         struct drm_atomic_state *state;
6277         int ret;
6278
6279         state = drm_atomic_helper_suspend(dev);
6280         ret = PTR_ERR_OR_ZERO(state);
6281         if (ret)
6282                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6283         else
6284                 dev_priv->modeset_restore_state = state;
6285         return ret;
6286 }
6287
6288 void intel_encoder_destroy(struct drm_encoder *encoder)
6289 {
6290         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6291
6292         drm_encoder_cleanup(encoder);
6293         kfree(intel_encoder);
6294 }
6295
6296 /* Cross check the actual hw state with our own modeset state tracking (and it's
6297  * internal consistency). */
6298 static void intel_connector_check_state(struct intel_connector *connector)
6299 {
6300         struct drm_crtc *crtc = connector->base.state->crtc;
6301
6302         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6303                       connector->base.base.id,
6304                       connector->base.name);
6305
6306         if (connector->get_hw_state(connector)) {
6307                 struct intel_encoder *encoder = connector->encoder;
6308                 struct drm_connector_state *conn_state = connector->base.state;
6309
6310                 I915_STATE_WARN(!crtc,
6311                          "connector enabled without attached crtc\n");
6312
6313                 if (!crtc)
6314                         return;
6315
6316                 I915_STATE_WARN(!crtc->state->active,
6317                       "connector is active, but attached crtc isn't\n");
6318
6319                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6320                         return;
6321
6322                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6323                         "atomic encoder doesn't match attached encoder\n");
6324
6325                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6326                         "attached encoder crtc differs from connector crtc\n");
6327         } else {
6328                 I915_STATE_WARN(crtc && crtc->state->active,
6329                         "attached crtc is active, but connector isn't\n");
6330                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6331                         "best encoder set without crtc!\n");
6332         }
6333 }
6334
6335 int intel_connector_init(struct intel_connector *connector)
6336 {
6337         drm_atomic_helper_connector_reset(&connector->base);
6338
6339         if (!connector->base.state)
6340                 return -ENOMEM;
6341
6342         return 0;
6343 }
6344
6345 struct intel_connector *intel_connector_alloc(void)
6346 {
6347         struct intel_connector *connector;
6348
6349         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6350         if (!connector)
6351                 return NULL;
6352
6353         if (intel_connector_init(connector) < 0) {
6354                 kfree(connector);
6355                 return NULL;
6356         }
6357
6358         return connector;
6359 }
6360
6361 /* Simple connector->get_hw_state implementation for encoders that support only
6362  * one connector and no cloning and hence the encoder state determines the state
6363  * of the connector. */
6364 bool intel_connector_get_hw_state(struct intel_connector *connector)
6365 {
6366         enum pipe pipe = 0;
6367         struct intel_encoder *encoder = connector->encoder;
6368
6369         return encoder->get_hw_state(encoder, &pipe);
6370 }
6371
6372 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6373 {
6374         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6375                 return crtc_state->fdi_lanes;
6376
6377         return 0;
6378 }
6379
6380 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6381                                      struct intel_crtc_state *pipe_config)
6382 {
6383         struct drm_atomic_state *state = pipe_config->base.state;
6384         struct intel_crtc *other_crtc;
6385         struct intel_crtc_state *other_crtc_state;
6386
6387         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6388                       pipe_name(pipe), pipe_config->fdi_lanes);
6389         if (pipe_config->fdi_lanes > 4) {
6390                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6391                               pipe_name(pipe), pipe_config->fdi_lanes);
6392                 return -EINVAL;
6393         }
6394
6395         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6396                 if (pipe_config->fdi_lanes > 2) {
6397                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6398                                       pipe_config->fdi_lanes);
6399                         return -EINVAL;
6400                 } else {
6401                         return 0;
6402                 }
6403         }
6404
6405         if (INTEL_INFO(dev)->num_pipes == 2)
6406                 return 0;
6407
6408         /* Ivybridge 3 pipe is really complicated */
6409         switch (pipe) {
6410         case PIPE_A:
6411                 return 0;
6412         case PIPE_B:
6413                 if (pipe_config->fdi_lanes <= 2)
6414                         return 0;
6415
6416                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6417                 other_crtc_state =
6418                         intel_atomic_get_crtc_state(state, other_crtc);
6419                 if (IS_ERR(other_crtc_state))
6420                         return PTR_ERR(other_crtc_state);
6421
6422                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6423                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6424                                       pipe_name(pipe), pipe_config->fdi_lanes);
6425                         return -EINVAL;
6426                 }
6427                 return 0;
6428         case PIPE_C:
6429                 if (pipe_config->fdi_lanes > 2) {
6430                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6431                                       pipe_name(pipe), pipe_config->fdi_lanes);
6432                         return -EINVAL;
6433                 }
6434
6435                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6436                 other_crtc_state =
6437                         intel_atomic_get_crtc_state(state, other_crtc);
6438                 if (IS_ERR(other_crtc_state))
6439                         return PTR_ERR(other_crtc_state);
6440
6441                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6442                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6443                         return -EINVAL;
6444                 }
6445                 return 0;
6446         default:
6447                 BUG();
6448         }
6449 }
6450
6451 #define RETRY 1
6452 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6453                                        struct intel_crtc_state *pipe_config)
6454 {
6455         struct drm_device *dev = intel_crtc->base.dev;
6456         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6457         int lane, link_bw, fdi_dotclock, ret;
6458         bool needs_recompute = false;
6459
6460 retry:
6461         /* FDI is a binary signal running at ~2.7GHz, encoding
6462          * each output octet as 10 bits. The actual frequency
6463          * is stored as a divider into a 100MHz clock, and the
6464          * mode pixel clock is stored in units of 1KHz.
6465          * Hence the bw of each lane in terms of the mode signal
6466          * is:
6467          */
6468         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6469
6470         fdi_dotclock = adjusted_mode->crtc_clock;
6471
6472         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6473                                            pipe_config->pipe_bpp);
6474
6475         pipe_config->fdi_lanes = lane;
6476
6477         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6478                                link_bw, &pipe_config->fdi_m_n);
6479
6480         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6481         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6482                 pipe_config->pipe_bpp -= 2*3;
6483                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6484                               pipe_config->pipe_bpp);
6485                 needs_recompute = true;
6486                 pipe_config->bw_constrained = true;
6487
6488                 goto retry;
6489         }
6490
6491         if (needs_recompute)
6492                 return RETRY;
6493
6494         return ret;
6495 }
6496
6497 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6498                                      struct intel_crtc_state *pipe_config)
6499 {
6500         if (pipe_config->pipe_bpp > 24)
6501                 return false;
6502
6503         /* HSW can handle pixel rate up to cdclk? */
6504         if (IS_HASWELL(dev_priv))
6505                 return true;
6506
6507         /*
6508          * We compare against max which means we must take
6509          * the increased cdclk requirement into account when
6510          * calculating the new cdclk.
6511          *
6512          * Should measure whether using a lower cdclk w/o IPS
6513          */
6514         return ilk_pipe_pixel_rate(pipe_config) <=
6515                 dev_priv->max_cdclk_freq * 95 / 100;
6516 }
6517
6518 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6519                                    struct intel_crtc_state *pipe_config)
6520 {
6521         struct drm_device *dev = crtc->base.dev;
6522         struct drm_i915_private *dev_priv = dev->dev_private;
6523
6524         pipe_config->ips_enabled = i915.enable_ips &&
6525                 hsw_crtc_supports_ips(crtc) &&
6526                 pipe_config_supports_ips(dev_priv, pipe_config);
6527 }
6528
6529 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6530 {
6531         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6532
6533         /* GDG double wide on either pipe, otherwise pipe A only */
6534         return INTEL_INFO(dev_priv)->gen < 4 &&
6535                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6536 }
6537
6538 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6539                                      struct intel_crtc_state *pipe_config)
6540 {
6541         struct drm_device *dev = crtc->base.dev;
6542         struct drm_i915_private *dev_priv = dev->dev_private;
6543         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6544
6545         /* FIXME should check pixel clock limits on all platforms */
6546         if (INTEL_INFO(dev)->gen < 4) {
6547                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6548
6549                 /*
6550                  * Enable double wide mode when the dot clock
6551                  * is > 90% of the (display) core speed.
6552                  */
6553                 if (intel_crtc_supports_double_wide(crtc) &&
6554                     adjusted_mode->crtc_clock > clock_limit) {
6555                         clock_limit *= 2;
6556                         pipe_config->double_wide = true;
6557                 }
6558
6559                 if (adjusted_mode->crtc_clock > clock_limit) {
6560                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6561                                       adjusted_mode->crtc_clock, clock_limit,
6562                                       yesno(pipe_config->double_wide));
6563                         return -EINVAL;
6564                 }
6565         }
6566
6567         /*
6568          * Pipe horizontal size must be even in:
6569          * - DVO ganged mode
6570          * - LVDS dual channel mode
6571          * - Double wide pipe
6572          */
6573         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6574              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6575                 pipe_config->pipe_src_w &= ~1;
6576
6577         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6578          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6579          */
6580         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6581                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6582                 return -EINVAL;
6583
6584         if (HAS_IPS(dev))
6585                 hsw_compute_ips_config(crtc, pipe_config);
6586
6587         if (pipe_config->has_pch_encoder)
6588                 return ironlake_fdi_compute_config(crtc, pipe_config);
6589
6590         return 0;
6591 }
6592
6593 static int skylake_get_display_clock_speed(struct drm_device *dev)
6594 {
6595         struct drm_i915_private *dev_priv = to_i915(dev);
6596         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6597         uint32_t cdctl = I915_READ(CDCLK_CTL);
6598         uint32_t linkrate;
6599
6600         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6601                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6602
6603         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6604                 return 540000;
6605
6606         linkrate = (I915_READ(DPLL_CTRL1) &
6607                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6608
6609         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6610             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6611                 /* vco 8640 */
6612                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6613                 case CDCLK_FREQ_450_432:
6614                         return 432000;
6615                 case CDCLK_FREQ_337_308:
6616                         return 308570;
6617                 case CDCLK_FREQ_675_617:
6618                         return 617140;
6619                 default:
6620                         WARN(1, "Unknown cd freq selection\n");
6621                 }
6622         } else {
6623                 /* vco 8100 */
6624                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6625                 case CDCLK_FREQ_450_432:
6626                         return 450000;
6627                 case CDCLK_FREQ_337_308:
6628                         return 337500;
6629                 case CDCLK_FREQ_675_617:
6630                         return 675000;
6631                 default:
6632                         WARN(1, "Unknown cd freq selection\n");
6633                 }
6634         }
6635
6636         /* error case, do as if DPLL0 isn't enabled */
6637         return 24000;
6638 }
6639
6640 static int broxton_get_display_clock_speed(struct drm_device *dev)
6641 {
6642         struct drm_i915_private *dev_priv = to_i915(dev);
6643         uint32_t cdctl = I915_READ(CDCLK_CTL);
6644         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6645         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6646         int cdclk;
6647
6648         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6649                 return 19200;
6650
6651         cdclk = 19200 * pll_ratio / 2;
6652
6653         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6654         case BXT_CDCLK_CD2X_DIV_SEL_1:
6655                 return cdclk;  /* 576MHz or 624MHz */
6656         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6657                 return cdclk * 2 / 3; /* 384MHz */
6658         case BXT_CDCLK_CD2X_DIV_SEL_2:
6659                 return cdclk / 2; /* 288MHz */
6660         case BXT_CDCLK_CD2X_DIV_SEL_4:
6661                 return cdclk / 4; /* 144MHz */
6662         }
6663
6664         /* error case, do as if DE PLL isn't enabled */
6665         return 19200;
6666 }
6667
6668 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6669 {
6670         struct drm_i915_private *dev_priv = dev->dev_private;
6671         uint32_t lcpll = I915_READ(LCPLL_CTL);
6672         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6673
6674         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6675                 return 800000;
6676         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6677                 return 450000;
6678         else if (freq == LCPLL_CLK_FREQ_450)
6679                 return 450000;
6680         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6681                 return 540000;
6682         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6683                 return 337500;
6684         else
6685                 return 675000;
6686 }
6687
6688 static int haswell_get_display_clock_speed(struct drm_device *dev)
6689 {
6690         struct drm_i915_private *dev_priv = dev->dev_private;
6691         uint32_t lcpll = I915_READ(LCPLL_CTL);
6692         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6693
6694         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6695                 return 800000;
6696         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6697                 return 450000;
6698         else if (freq == LCPLL_CLK_FREQ_450)
6699                 return 450000;
6700         else if (IS_HSW_ULT(dev))
6701                 return 337500;
6702         else
6703                 return 540000;
6704 }
6705
6706 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6707 {
6708         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6709                                       CCK_DISPLAY_CLOCK_CONTROL);
6710 }
6711
6712 static int ilk_get_display_clock_speed(struct drm_device *dev)
6713 {
6714         return 450000;
6715 }
6716
6717 static int i945_get_display_clock_speed(struct drm_device *dev)
6718 {
6719         return 400000;
6720 }
6721
6722 static int i915_get_display_clock_speed(struct drm_device *dev)
6723 {
6724         return 333333;
6725 }
6726
6727 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6728 {
6729         return 200000;
6730 }
6731
6732 static int pnv_get_display_clock_speed(struct drm_device *dev)
6733 {
6734         u16 gcfgc = 0;
6735
6736         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6737
6738         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6739         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6740                 return 266667;
6741         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6742                 return 333333;
6743         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6744                 return 444444;
6745         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6746                 return 200000;
6747         default:
6748                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6749         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6750                 return 133333;
6751         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6752                 return 166667;
6753         }
6754 }
6755
6756 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6757 {
6758         u16 gcfgc = 0;
6759
6760         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6761
6762         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6763                 return 133333;
6764         else {
6765                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6766                 case GC_DISPLAY_CLOCK_333_MHZ:
6767                         return 333333;
6768                 default:
6769                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6770                         return 190000;
6771                 }
6772         }
6773 }
6774
6775 static int i865_get_display_clock_speed(struct drm_device *dev)
6776 {
6777         return 266667;
6778 }
6779
6780 static int i85x_get_display_clock_speed(struct drm_device *dev)
6781 {
6782         u16 hpllcc = 0;
6783
6784         /*
6785          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6786          * encoding is different :(
6787          * FIXME is this the right way to detect 852GM/852GMV?
6788          */
6789         if (dev->pdev->revision == 0x1)
6790                 return 133333;
6791
6792         pci_bus_read_config_word(dev->pdev->bus,
6793                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6794
6795         /* Assume that the hardware is in the high speed state.  This
6796          * should be the default.
6797          */
6798         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6799         case GC_CLOCK_133_200:
6800         case GC_CLOCK_133_200_2:
6801         case GC_CLOCK_100_200:
6802                 return 200000;
6803         case GC_CLOCK_166_250:
6804                 return 250000;
6805         case GC_CLOCK_100_133:
6806                 return 133333;
6807         case GC_CLOCK_133_266:
6808         case GC_CLOCK_133_266_2:
6809         case GC_CLOCK_166_266:
6810                 return 266667;
6811         }
6812
6813         /* Shouldn't happen */
6814         return 0;
6815 }
6816
6817 static int i830_get_display_clock_speed(struct drm_device *dev)
6818 {
6819         return 133333;
6820 }
6821
6822 static unsigned int intel_hpll_vco(struct drm_device *dev)
6823 {
6824         struct drm_i915_private *dev_priv = dev->dev_private;
6825         static const unsigned int blb_vco[8] = {
6826                 [0] = 3200000,
6827                 [1] = 4000000,
6828                 [2] = 5333333,
6829                 [3] = 4800000,
6830                 [4] = 6400000,
6831         };
6832         static const unsigned int pnv_vco[8] = {
6833                 [0] = 3200000,
6834                 [1] = 4000000,
6835                 [2] = 5333333,
6836                 [3] = 4800000,
6837                 [4] = 2666667,
6838         };
6839         static const unsigned int cl_vco[8] = {
6840                 [0] = 3200000,
6841                 [1] = 4000000,
6842                 [2] = 5333333,
6843                 [3] = 6400000,
6844                 [4] = 3333333,
6845                 [5] = 3566667,
6846                 [6] = 4266667,
6847         };
6848         static const unsigned int elk_vco[8] = {
6849                 [0] = 3200000,
6850                 [1] = 4000000,
6851                 [2] = 5333333,
6852                 [3] = 4800000,
6853         };
6854         static const unsigned int ctg_vco[8] = {
6855                 [0] = 3200000,
6856                 [1] = 4000000,
6857                 [2] = 5333333,
6858                 [3] = 6400000,
6859                 [4] = 2666667,
6860                 [5] = 4266667,
6861         };
6862         const unsigned int *vco_table;
6863         unsigned int vco;
6864         uint8_t tmp = 0;
6865
6866         /* FIXME other chipsets? */
6867         if (IS_GM45(dev))
6868                 vco_table = ctg_vco;
6869         else if (IS_G4X(dev))
6870                 vco_table = elk_vco;
6871         else if (IS_CRESTLINE(dev))
6872                 vco_table = cl_vco;
6873         else if (IS_PINEVIEW(dev))
6874                 vco_table = pnv_vco;
6875         else if (IS_G33(dev))
6876                 vco_table = blb_vco;
6877         else
6878                 return 0;
6879
6880         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6881
6882         vco = vco_table[tmp & 0x7];
6883         if (vco == 0)
6884                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6885         else
6886                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6887
6888         return vco;
6889 }
6890
6891 static int gm45_get_display_clock_speed(struct drm_device *dev)
6892 {
6893         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6894         uint16_t tmp = 0;
6895
6896         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6897
6898         cdclk_sel = (tmp >> 12) & 0x1;
6899
6900         switch (vco) {
6901         case 2666667:
6902         case 4000000:
6903         case 5333333:
6904                 return cdclk_sel ? 333333 : 222222;
6905         case 3200000:
6906                 return cdclk_sel ? 320000 : 228571;
6907         default:
6908                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6909                 return 222222;
6910         }
6911 }
6912
6913 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6914 {
6915         static const uint8_t div_3200[] = { 16, 10,  8 };
6916         static const uint8_t div_4000[] = { 20, 12, 10 };
6917         static const uint8_t div_5333[] = { 24, 16, 14 };
6918         const uint8_t *div_table;
6919         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6920         uint16_t tmp = 0;
6921
6922         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6923
6924         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6925
6926         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6927                 goto fail;
6928
6929         switch (vco) {
6930         case 3200000:
6931                 div_table = div_3200;
6932                 break;
6933         case 4000000:
6934                 div_table = div_4000;
6935                 break;
6936         case 5333333:
6937                 div_table = div_5333;
6938                 break;
6939         default:
6940                 goto fail;
6941         }
6942
6943         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6944
6945 fail:
6946         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6947         return 200000;
6948 }
6949
6950 static int g33_get_display_clock_speed(struct drm_device *dev)
6951 {
6952         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6953         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6954         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6955         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6956         const uint8_t *div_table;
6957         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6958         uint16_t tmp = 0;
6959
6960         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6961
6962         cdclk_sel = (tmp >> 4) & 0x7;
6963
6964         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6965                 goto fail;
6966
6967         switch (vco) {
6968         case 3200000:
6969                 div_table = div_3200;
6970                 break;
6971         case 4000000:
6972                 div_table = div_4000;
6973                 break;
6974         case 4800000:
6975                 div_table = div_4800;
6976                 break;
6977         case 5333333:
6978                 div_table = div_5333;
6979                 break;
6980         default:
6981                 goto fail;
6982         }
6983
6984         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6985
6986 fail:
6987         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6988         return 190476;
6989 }
6990
6991 static void
6992 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6993 {
6994         while (*num > DATA_LINK_M_N_MASK ||
6995                *den > DATA_LINK_M_N_MASK) {
6996                 *num >>= 1;
6997                 *den >>= 1;
6998         }
6999 }
7000
7001 static void compute_m_n(unsigned int m, unsigned int n,
7002                         uint32_t *ret_m, uint32_t *ret_n)
7003 {
7004         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7005         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7006         intel_reduce_m_n_ratio(ret_m, ret_n);
7007 }
7008
7009 void
7010 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7011                        int pixel_clock, int link_clock,
7012                        struct intel_link_m_n *m_n)
7013 {
7014         m_n->tu = 64;
7015
7016         compute_m_n(bits_per_pixel * pixel_clock,
7017                     link_clock * nlanes * 8,
7018                     &m_n->gmch_m, &m_n->gmch_n);
7019
7020         compute_m_n(pixel_clock, link_clock,
7021                     &m_n->link_m, &m_n->link_n);
7022 }
7023
7024 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7025 {
7026         if (i915.panel_use_ssc >= 0)
7027                 return i915.panel_use_ssc != 0;
7028         return dev_priv->vbt.lvds_use_ssc
7029                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7030 }
7031
7032 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7033 {
7034         return (1 << dpll->n) << 16 | dpll->m2;
7035 }
7036
7037 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7038 {
7039         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7040 }
7041
7042 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7043                                      struct intel_crtc_state *crtc_state,
7044                                      intel_clock_t *reduced_clock)
7045 {
7046         struct drm_device *dev = crtc->base.dev;
7047         u32 fp, fp2 = 0;
7048
7049         if (IS_PINEVIEW(dev)) {
7050                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7051                 if (reduced_clock)
7052                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7053         } else {
7054                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7055                 if (reduced_clock)
7056                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7057         }
7058
7059         crtc_state->dpll_hw_state.fp0 = fp;
7060
7061         crtc->lowfreq_avail = false;
7062         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7063             reduced_clock) {
7064                 crtc_state->dpll_hw_state.fp1 = fp2;
7065                 crtc->lowfreq_avail = true;
7066         } else {
7067                 crtc_state->dpll_hw_state.fp1 = fp;
7068         }
7069 }
7070
7071 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7072                 pipe)
7073 {
7074         u32 reg_val;
7075
7076         /*
7077          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7078          * and set it to a reasonable value instead.
7079          */
7080         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7081         reg_val &= 0xffffff00;
7082         reg_val |= 0x00000030;
7083         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7084
7085         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7086         reg_val &= 0x8cffffff;
7087         reg_val = 0x8c000000;
7088         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7089
7090         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7091         reg_val &= 0xffffff00;
7092         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7093
7094         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7095         reg_val &= 0x00ffffff;
7096         reg_val |= 0xb0000000;
7097         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7098 }
7099
7100 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7101                                          struct intel_link_m_n *m_n)
7102 {
7103         struct drm_device *dev = crtc->base.dev;
7104         struct drm_i915_private *dev_priv = dev->dev_private;
7105         int pipe = crtc->pipe;
7106
7107         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7108         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7109         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7110         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7111 }
7112
7113 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7114                                          struct intel_link_m_n *m_n,
7115                                          struct intel_link_m_n *m2_n2)
7116 {
7117         struct drm_device *dev = crtc->base.dev;
7118         struct drm_i915_private *dev_priv = dev->dev_private;
7119         int pipe = crtc->pipe;
7120         enum transcoder transcoder = crtc->config->cpu_transcoder;
7121
7122         if (INTEL_INFO(dev)->gen >= 5) {
7123                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7124                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7125                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7126                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7127                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7128                  * for gen < 8) and if DRRS is supported (to make sure the
7129                  * registers are not unnecessarily accessed).
7130                  */
7131                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7132                         crtc->config->has_drrs) {
7133                         I915_WRITE(PIPE_DATA_M2(transcoder),
7134                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7135                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7136                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7137                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7138                 }
7139         } else {
7140                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7141                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7142                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7143                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7144         }
7145 }
7146
7147 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7148 {
7149         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7150
7151         if (m_n == M1_N1) {
7152                 dp_m_n = &crtc->config->dp_m_n;
7153                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7154         } else if (m_n == M2_N2) {
7155
7156                 /*
7157                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7158                  * needs to be programmed into M1_N1.
7159                  */
7160                 dp_m_n = &crtc->config->dp_m2_n2;
7161         } else {
7162                 DRM_ERROR("Unsupported divider value\n");
7163                 return;
7164         }
7165
7166         if (crtc->config->has_pch_encoder)
7167                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7168         else
7169                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7170 }
7171
7172 static void vlv_compute_dpll(struct intel_crtc *crtc,
7173                              struct intel_crtc_state *pipe_config)
7174 {
7175         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7176                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7177                 DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV;
7178         if (crtc->pipe != PIPE_A)
7179                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7180
7181         pipe_config->dpll_hw_state.dpll_md =
7182                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7183 }
7184
7185 static void chv_compute_dpll(struct intel_crtc *crtc,
7186                              struct intel_crtc_state *pipe_config)
7187 {
7188         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7189                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7190                 DPLL_VCO_ENABLE;
7191         if (crtc->pipe != PIPE_A)
7192                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7193
7194         pipe_config->dpll_hw_state.dpll_md =
7195                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7196 }
7197
7198 static void vlv_prepare_pll(struct intel_crtc *crtc,
7199                             const struct intel_crtc_state *pipe_config)
7200 {
7201         struct drm_device *dev = crtc->base.dev;
7202         struct drm_i915_private *dev_priv = dev->dev_private;
7203         int pipe = crtc->pipe;
7204         u32 mdiv;
7205         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7206         u32 coreclk, reg_val;
7207
7208         mutex_lock(&dev_priv->sb_lock);
7209
7210         bestn = pipe_config->dpll.n;
7211         bestm1 = pipe_config->dpll.m1;
7212         bestm2 = pipe_config->dpll.m2;
7213         bestp1 = pipe_config->dpll.p1;
7214         bestp2 = pipe_config->dpll.p2;
7215
7216         /* See eDP HDMI DPIO driver vbios notes doc */
7217
7218         /* PLL B needs special handling */
7219         if (pipe == PIPE_B)
7220                 vlv_pllb_recal_opamp(dev_priv, pipe);
7221
7222         /* Set up Tx target for periodic Rcomp update */
7223         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7224
7225         /* Disable target IRef on PLL */
7226         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7227         reg_val &= 0x00ffffff;
7228         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7229
7230         /* Disable fast lock */
7231         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7232
7233         /* Set idtafcrecal before PLL is enabled */
7234         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7235         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7236         mdiv |= ((bestn << DPIO_N_SHIFT));
7237         mdiv |= (1 << DPIO_K_SHIFT);
7238
7239         /*
7240          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7241          * but we don't support that).
7242          * Note: don't use the DAC post divider as it seems unstable.
7243          */
7244         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7245         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7246
7247         mdiv |= DPIO_ENABLE_CALIBRATION;
7248         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7249
7250         /* Set HBR and RBR LPF coefficients */
7251         if (pipe_config->port_clock == 162000 ||
7252             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7253             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7254                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7255                                  0x009f0003);
7256         else
7257                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7258                                  0x00d0000f);
7259
7260         if (pipe_config->has_dp_encoder) {
7261                 /* Use SSC source */
7262                 if (pipe == PIPE_A)
7263                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7264                                          0x0df40000);
7265                 else
7266                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7267                                          0x0df70000);
7268         } else { /* HDMI or VGA */
7269                 /* Use bend source */
7270                 if (pipe == PIPE_A)
7271                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7272                                          0x0df70000);
7273                 else
7274                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7275                                          0x0df40000);
7276         }
7277
7278         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7279         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7280         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7281             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7282                 coreclk |= 0x01000000;
7283         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7284
7285         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7286         mutex_unlock(&dev_priv->sb_lock);
7287 }
7288
7289 static void chv_prepare_pll(struct intel_crtc *crtc,
7290                             const struct intel_crtc_state *pipe_config)
7291 {
7292         struct drm_device *dev = crtc->base.dev;
7293         struct drm_i915_private *dev_priv = dev->dev_private;
7294         int pipe = crtc->pipe;
7295         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7296         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7297         u32 loopfilter, tribuf_calcntr;
7298         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7299         u32 dpio_val;
7300         int vco;
7301
7302         bestn = pipe_config->dpll.n;
7303         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7304         bestm1 = pipe_config->dpll.m1;
7305         bestm2 = pipe_config->dpll.m2 >> 22;
7306         bestp1 = pipe_config->dpll.p1;
7307         bestp2 = pipe_config->dpll.p2;
7308         vco = pipe_config->dpll.vco;
7309         dpio_val = 0;
7310         loopfilter = 0;
7311
7312         /*
7313          * Enable Refclk and SSC
7314          */
7315         I915_WRITE(dpll_reg,
7316                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7317
7318         mutex_lock(&dev_priv->sb_lock);
7319
7320         /* p1 and p2 divider */
7321         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7322                         5 << DPIO_CHV_S1_DIV_SHIFT |
7323                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7324                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7325                         1 << DPIO_CHV_K_DIV_SHIFT);
7326
7327         /* Feedback post-divider - m2 */
7328         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7329
7330         /* Feedback refclk divider - n and m1 */
7331         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7332                         DPIO_CHV_M1_DIV_BY_2 |
7333                         1 << DPIO_CHV_N_DIV_SHIFT);
7334
7335         /* M2 fraction division */
7336         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7337
7338         /* M2 fraction division enable */
7339         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7340         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7341         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7342         if (bestm2_frac)
7343                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7344         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7345
7346         /* Program digital lock detect threshold */
7347         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7348         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7349                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7350         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7351         if (!bestm2_frac)
7352                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7353         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7354
7355         /* Loop filter */
7356         if (vco == 5400000) {
7357                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7358                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7359                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7360                 tribuf_calcntr = 0x9;
7361         } else if (vco <= 6200000) {
7362                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7363                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7364                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7365                 tribuf_calcntr = 0x9;
7366         } else if (vco <= 6480000) {
7367                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7368                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7369                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7370                 tribuf_calcntr = 0x8;
7371         } else {
7372                 /* Not supported. Apply the same limits as in the max case */
7373                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7374                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7375                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7376                 tribuf_calcntr = 0;
7377         }
7378         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7379
7380         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7381         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7382         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7383         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7384
7385         /* AFC Recal */
7386         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7387                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7388                         DPIO_AFC_RECAL);
7389
7390         mutex_unlock(&dev_priv->sb_lock);
7391 }
7392
7393 /**
7394  * vlv_force_pll_on - forcibly enable just the PLL
7395  * @dev_priv: i915 private structure
7396  * @pipe: pipe PLL to enable
7397  * @dpll: PLL configuration
7398  *
7399  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7400  * in cases where we need the PLL enabled even when @pipe is not going to
7401  * be enabled.
7402  */
7403 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7404                      const struct dpll *dpll)
7405 {
7406         struct intel_crtc *crtc =
7407                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7408         struct intel_crtc_state *pipe_config;
7409
7410         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7411         if (!pipe_config)
7412                 return -ENOMEM;
7413
7414         pipe_config->base.crtc = &crtc->base;
7415         pipe_config->pixel_multiplier = 1;
7416         pipe_config->dpll = *dpll;
7417
7418         if (IS_CHERRYVIEW(dev)) {
7419                 chv_compute_dpll(crtc, pipe_config);
7420                 chv_prepare_pll(crtc, pipe_config);
7421                 chv_enable_pll(crtc, pipe_config);
7422         } else {
7423                 vlv_compute_dpll(crtc, pipe_config);
7424                 vlv_prepare_pll(crtc, pipe_config);
7425                 vlv_enable_pll(crtc, pipe_config);
7426         }
7427
7428         kfree(pipe_config);
7429
7430         return 0;
7431 }
7432
7433 /**
7434  * vlv_force_pll_off - forcibly disable just the PLL
7435  * @dev_priv: i915 private structure
7436  * @pipe: pipe PLL to disable
7437  *
7438  * Disable the PLL for @pipe. To be used in cases where we need
7439  * the PLL enabled even when @pipe is not going to be enabled.
7440  */
7441 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7442 {
7443         if (IS_CHERRYVIEW(dev))
7444                 chv_disable_pll(to_i915(dev), pipe);
7445         else
7446                 vlv_disable_pll(to_i915(dev), pipe);
7447 }
7448
7449 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7450                               struct intel_crtc_state *crtc_state,
7451                               intel_clock_t *reduced_clock)
7452 {
7453         struct drm_device *dev = crtc->base.dev;
7454         struct drm_i915_private *dev_priv = dev->dev_private;
7455         u32 dpll;
7456         bool is_sdvo;
7457         struct dpll *clock = &crtc_state->dpll;
7458
7459         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7460
7461         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7462                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7463
7464         dpll = DPLL_VGA_MODE_DIS;
7465
7466         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7467                 dpll |= DPLLB_MODE_LVDS;
7468         else
7469                 dpll |= DPLLB_MODE_DAC_SERIAL;
7470
7471         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7472                 dpll |= (crtc_state->pixel_multiplier - 1)
7473                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7474         }
7475
7476         if (is_sdvo)
7477                 dpll |= DPLL_SDVO_HIGH_SPEED;
7478
7479         if (crtc_state->has_dp_encoder)
7480                 dpll |= DPLL_SDVO_HIGH_SPEED;
7481
7482         /* compute bitmask from p1 value */
7483         if (IS_PINEVIEW(dev))
7484                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7485         else {
7486                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7487                 if (IS_G4X(dev) && reduced_clock)
7488                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7489         }
7490         switch (clock->p2) {
7491         case 5:
7492                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7493                 break;
7494         case 7:
7495                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7496                 break;
7497         case 10:
7498                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7499                 break;
7500         case 14:
7501                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7502                 break;
7503         }
7504         if (INTEL_INFO(dev)->gen >= 4)
7505                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7506
7507         if (crtc_state->sdvo_tv_clock)
7508                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7509         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7510                  intel_panel_use_ssc(dev_priv))
7511                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7512         else
7513                 dpll |= PLL_REF_INPUT_DREFCLK;
7514
7515         dpll |= DPLL_VCO_ENABLE;
7516         crtc_state->dpll_hw_state.dpll = dpll;
7517
7518         if (INTEL_INFO(dev)->gen >= 4) {
7519                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7520                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7521                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7522         }
7523 }
7524
7525 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7526                               struct intel_crtc_state *crtc_state,
7527                               intel_clock_t *reduced_clock)
7528 {
7529         struct drm_device *dev = crtc->base.dev;
7530         struct drm_i915_private *dev_priv = dev->dev_private;
7531         u32 dpll;
7532         struct dpll *clock = &crtc_state->dpll;
7533
7534         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7535
7536         dpll = DPLL_VGA_MODE_DIS;
7537
7538         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7539                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7540         } else {
7541                 if (clock->p1 == 2)
7542                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7543                 else
7544                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7545                 if (clock->p2 == 4)
7546                         dpll |= PLL_P2_DIVIDE_BY_4;
7547         }
7548
7549         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7550                 dpll |= DPLL_DVO_2X_MODE;
7551
7552         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7553             intel_panel_use_ssc(dev_priv))
7554                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7555         else
7556                 dpll |= PLL_REF_INPUT_DREFCLK;
7557
7558         dpll |= DPLL_VCO_ENABLE;
7559         crtc_state->dpll_hw_state.dpll = dpll;
7560 }
7561
7562 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7563 {
7564         struct drm_device *dev = intel_crtc->base.dev;
7565         struct drm_i915_private *dev_priv = dev->dev_private;
7566         enum pipe pipe = intel_crtc->pipe;
7567         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7568         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7569         uint32_t crtc_vtotal, crtc_vblank_end;
7570         int vsyncshift = 0;
7571
7572         /* We need to be careful not to changed the adjusted mode, for otherwise
7573          * the hw state checker will get angry at the mismatch. */
7574         crtc_vtotal = adjusted_mode->crtc_vtotal;
7575         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7576
7577         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7578                 /* the chip adds 2 halflines automatically */
7579                 crtc_vtotal -= 1;
7580                 crtc_vblank_end -= 1;
7581
7582                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7583                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7584                 else
7585                         vsyncshift = adjusted_mode->crtc_hsync_start -
7586                                 adjusted_mode->crtc_htotal / 2;
7587                 if (vsyncshift < 0)
7588                         vsyncshift += adjusted_mode->crtc_htotal;
7589         }
7590
7591         if (INTEL_INFO(dev)->gen > 3)
7592                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7593
7594         I915_WRITE(HTOTAL(cpu_transcoder),
7595                    (adjusted_mode->crtc_hdisplay - 1) |
7596                    ((adjusted_mode->crtc_htotal - 1) << 16));
7597         I915_WRITE(HBLANK(cpu_transcoder),
7598                    (adjusted_mode->crtc_hblank_start - 1) |
7599                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7600         I915_WRITE(HSYNC(cpu_transcoder),
7601                    (adjusted_mode->crtc_hsync_start - 1) |
7602                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7603
7604         I915_WRITE(VTOTAL(cpu_transcoder),
7605                    (adjusted_mode->crtc_vdisplay - 1) |
7606                    ((crtc_vtotal - 1) << 16));
7607         I915_WRITE(VBLANK(cpu_transcoder),
7608                    (adjusted_mode->crtc_vblank_start - 1) |
7609                    ((crtc_vblank_end - 1) << 16));
7610         I915_WRITE(VSYNC(cpu_transcoder),
7611                    (adjusted_mode->crtc_vsync_start - 1) |
7612                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7613
7614         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7615          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7616          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7617          * bits. */
7618         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7619             (pipe == PIPE_B || pipe == PIPE_C))
7620                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7621
7622 }
7623
7624 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7625 {
7626         struct drm_device *dev = intel_crtc->base.dev;
7627         struct drm_i915_private *dev_priv = dev->dev_private;
7628         enum pipe pipe = intel_crtc->pipe;
7629
7630         /* pipesrc controls the size that is scaled from, which should
7631          * always be the user's requested size.
7632          */
7633         I915_WRITE(PIPESRC(pipe),
7634                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7635                    (intel_crtc->config->pipe_src_h - 1));
7636 }
7637
7638 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7639                                    struct intel_crtc_state *pipe_config)
7640 {
7641         struct drm_device *dev = crtc->base.dev;
7642         struct drm_i915_private *dev_priv = dev->dev_private;
7643         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7644         uint32_t tmp;
7645
7646         tmp = I915_READ(HTOTAL(cpu_transcoder));
7647         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7648         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7649         tmp = I915_READ(HBLANK(cpu_transcoder));
7650         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7651         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7652         tmp = I915_READ(HSYNC(cpu_transcoder));
7653         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7654         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7655
7656         tmp = I915_READ(VTOTAL(cpu_transcoder));
7657         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7658         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7659         tmp = I915_READ(VBLANK(cpu_transcoder));
7660         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7661         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7662         tmp = I915_READ(VSYNC(cpu_transcoder));
7663         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7664         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7665
7666         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7667                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7668                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7669                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7670         }
7671 }
7672
7673 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7674                                     struct intel_crtc_state *pipe_config)
7675 {
7676         struct drm_device *dev = crtc->base.dev;
7677         struct drm_i915_private *dev_priv = dev->dev_private;
7678         u32 tmp;
7679
7680         tmp = I915_READ(PIPESRC(crtc->pipe));
7681         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7682         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7683
7684         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7685         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7686 }
7687
7688 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7689                                  struct intel_crtc_state *pipe_config)
7690 {
7691         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7692         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7693         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7694         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7695
7696         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7697         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7698         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7699         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7700
7701         mode->flags = pipe_config->base.adjusted_mode.flags;
7702         mode->type = DRM_MODE_TYPE_DRIVER;
7703
7704         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7705         mode->flags |= pipe_config->base.adjusted_mode.flags;
7706
7707         mode->hsync = drm_mode_hsync(mode);
7708         mode->vrefresh = drm_mode_vrefresh(mode);
7709         drm_mode_set_name(mode);
7710 }
7711
7712 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7713 {
7714         struct drm_device *dev = intel_crtc->base.dev;
7715         struct drm_i915_private *dev_priv = dev->dev_private;
7716         uint32_t pipeconf;
7717
7718         pipeconf = 0;
7719
7720         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7721             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7722                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7723
7724         if (intel_crtc->config->double_wide)
7725                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7726
7727         /* only g4x and later have fancy bpc/dither controls */
7728         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7729                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7730                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7731                         pipeconf |= PIPECONF_DITHER_EN |
7732                                     PIPECONF_DITHER_TYPE_SP;
7733
7734                 switch (intel_crtc->config->pipe_bpp) {
7735                 case 18:
7736                         pipeconf |= PIPECONF_6BPC;
7737                         break;
7738                 case 24:
7739                         pipeconf |= PIPECONF_8BPC;
7740                         break;
7741                 case 30:
7742                         pipeconf |= PIPECONF_10BPC;
7743                         break;
7744                 default:
7745                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7746                         BUG();
7747                 }
7748         }
7749
7750         if (HAS_PIPE_CXSR(dev)) {
7751                 if (intel_crtc->lowfreq_avail) {
7752                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7753                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7754                 } else {
7755                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7756                 }
7757         }
7758
7759         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7760                 if (INTEL_INFO(dev)->gen < 4 ||
7761                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7762                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7763                 else
7764                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7765         } else
7766                 pipeconf |= PIPECONF_PROGRESSIVE;
7767
7768         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7769              intel_crtc->config->limited_color_range)
7770                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7771
7772         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7773         POSTING_READ(PIPECONF(intel_crtc->pipe));
7774 }
7775
7776 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7777                                    struct intel_crtc_state *crtc_state)
7778 {
7779         struct drm_device *dev = crtc->base.dev;
7780         struct drm_i915_private *dev_priv = dev->dev_private;
7781         const intel_limit_t *limit;
7782         int refclk = 48000;
7783
7784         memset(&crtc_state->dpll_hw_state, 0,
7785                sizeof(crtc_state->dpll_hw_state));
7786
7787         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7788                 if (intel_panel_use_ssc(dev_priv)) {
7789                         refclk = dev_priv->vbt.lvds_ssc_freq;
7790                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7791                 }
7792
7793                 limit = &intel_limits_i8xx_lvds;
7794         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7795                 limit = &intel_limits_i8xx_dvo;
7796         } else {
7797                 limit = &intel_limits_i8xx_dac;
7798         }
7799
7800         if (!crtc_state->clock_set &&
7801             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7802                                  refclk, NULL, &crtc_state->dpll)) {
7803                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7804                 return -EINVAL;
7805         }
7806
7807         i8xx_compute_dpll(crtc, crtc_state, NULL);
7808
7809         return 0;
7810 }
7811
7812 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7813                                   struct intel_crtc_state *crtc_state)
7814 {
7815         struct drm_device *dev = crtc->base.dev;
7816         struct drm_i915_private *dev_priv = dev->dev_private;
7817         const intel_limit_t *limit;
7818         int refclk = 96000;
7819
7820         memset(&crtc_state->dpll_hw_state, 0,
7821                sizeof(crtc_state->dpll_hw_state));
7822
7823         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7824                 if (intel_panel_use_ssc(dev_priv)) {
7825                         refclk = dev_priv->vbt.lvds_ssc_freq;
7826                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7827                 }
7828
7829                 if (intel_is_dual_link_lvds(dev))
7830                         limit = &intel_limits_g4x_dual_channel_lvds;
7831                 else
7832                         limit = &intel_limits_g4x_single_channel_lvds;
7833         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7834                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7835                 limit = &intel_limits_g4x_hdmi;
7836         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7837                 limit = &intel_limits_g4x_sdvo;
7838         } else {
7839                 /* The option is for other outputs */
7840                 limit = &intel_limits_i9xx_sdvo;
7841         }
7842
7843         if (!crtc_state->clock_set &&
7844             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7845                                 refclk, NULL, &crtc_state->dpll)) {
7846                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7847                 return -EINVAL;
7848         }
7849
7850         i9xx_compute_dpll(crtc, crtc_state, NULL);
7851
7852         return 0;
7853 }
7854
7855 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7856                                   struct intel_crtc_state *crtc_state)
7857 {
7858         struct drm_device *dev = crtc->base.dev;
7859         struct drm_i915_private *dev_priv = dev->dev_private;
7860         const intel_limit_t *limit;
7861         int refclk = 96000;
7862
7863         memset(&crtc_state->dpll_hw_state, 0,
7864                sizeof(crtc_state->dpll_hw_state));
7865
7866         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7867                 if (intel_panel_use_ssc(dev_priv)) {
7868                         refclk = dev_priv->vbt.lvds_ssc_freq;
7869                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7870                 }
7871
7872                 limit = &intel_limits_pineview_lvds;
7873         } else {
7874                 limit = &intel_limits_pineview_sdvo;
7875         }
7876
7877         if (!crtc_state->clock_set &&
7878             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7879                                 refclk, NULL, &crtc_state->dpll)) {
7880                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7881                 return -EINVAL;
7882         }
7883
7884         i9xx_compute_dpll(crtc, crtc_state, NULL);
7885
7886         return 0;
7887 }
7888
7889 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7890                                    struct intel_crtc_state *crtc_state)
7891 {
7892         struct drm_device *dev = crtc->base.dev;
7893         struct drm_i915_private *dev_priv = dev->dev_private;
7894         const intel_limit_t *limit;
7895         int refclk = 96000;
7896
7897         memset(&crtc_state->dpll_hw_state, 0,
7898                sizeof(crtc_state->dpll_hw_state));
7899
7900         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7901                 if (intel_panel_use_ssc(dev_priv)) {
7902                         refclk = dev_priv->vbt.lvds_ssc_freq;
7903                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7904                 }
7905
7906                 limit = &intel_limits_i9xx_lvds;
7907         } else {
7908                 limit = &intel_limits_i9xx_sdvo;
7909         }
7910
7911         if (!crtc_state->clock_set &&
7912             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7913                                  refclk, NULL, &crtc_state->dpll)) {
7914                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7915                 return -EINVAL;
7916         }
7917
7918         i9xx_compute_dpll(crtc, crtc_state, NULL);
7919
7920         return 0;
7921 }
7922
7923 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7924                                   struct intel_crtc_state *crtc_state)
7925 {
7926         int refclk = 100000;
7927         const intel_limit_t *limit = &intel_limits_chv;
7928
7929         memset(&crtc_state->dpll_hw_state, 0,
7930                sizeof(crtc_state->dpll_hw_state));
7931
7932         if (crtc_state->has_dsi_encoder)
7933                 return 0;
7934
7935         if (!crtc_state->clock_set &&
7936             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7937                                 refclk, NULL, &crtc_state->dpll)) {
7938                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7939                 return -EINVAL;
7940         }
7941
7942         chv_compute_dpll(crtc, crtc_state);
7943
7944         return 0;
7945 }
7946
7947 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7948                                   struct intel_crtc_state *crtc_state)
7949 {
7950         int refclk = 100000;
7951         const intel_limit_t *limit = &intel_limits_vlv;
7952
7953         memset(&crtc_state->dpll_hw_state, 0,
7954                sizeof(crtc_state->dpll_hw_state));
7955
7956         if (crtc_state->has_dsi_encoder)
7957                 return 0;
7958
7959         if (!crtc_state->clock_set &&
7960             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7961                                 refclk, NULL, &crtc_state->dpll)) {
7962                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7963                 return -EINVAL;
7964         }
7965
7966         vlv_compute_dpll(crtc, crtc_state);
7967
7968         return 0;
7969 }
7970
7971 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7972                                  struct intel_crtc_state *pipe_config)
7973 {
7974         struct drm_device *dev = crtc->base.dev;
7975         struct drm_i915_private *dev_priv = dev->dev_private;
7976         uint32_t tmp;
7977
7978         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7979                 return;
7980
7981         tmp = I915_READ(PFIT_CONTROL);
7982         if (!(tmp & PFIT_ENABLE))
7983                 return;
7984
7985         /* Check whether the pfit is attached to our pipe. */
7986         if (INTEL_INFO(dev)->gen < 4) {
7987                 if (crtc->pipe != PIPE_B)
7988                         return;
7989         } else {
7990                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7991                         return;
7992         }
7993
7994         pipe_config->gmch_pfit.control = tmp;
7995         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7996         if (INTEL_INFO(dev)->gen < 5)
7997                 pipe_config->gmch_pfit.lvds_border_bits =
7998                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7999 }
8000
8001 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8002                                struct intel_crtc_state *pipe_config)
8003 {
8004         struct drm_device *dev = crtc->base.dev;
8005         struct drm_i915_private *dev_priv = dev->dev_private;
8006         int pipe = pipe_config->cpu_transcoder;
8007         intel_clock_t clock;
8008         u32 mdiv;
8009         int refclk = 100000;
8010
8011         /* In case of MIPI DPLL will not even be used */
8012         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8013                 return;
8014
8015         mutex_lock(&dev_priv->sb_lock);
8016         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8017         mutex_unlock(&dev_priv->sb_lock);
8018
8019         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8020         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8021         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8022         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8023         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8024
8025         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8026 }
8027
8028 static void
8029 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8030                               struct intel_initial_plane_config *plane_config)
8031 {
8032         struct drm_device *dev = crtc->base.dev;
8033         struct drm_i915_private *dev_priv = dev->dev_private;
8034         u32 val, base, offset;
8035         int pipe = crtc->pipe, plane = crtc->plane;
8036         int fourcc, pixel_format;
8037         unsigned int aligned_height;
8038         struct drm_framebuffer *fb;
8039         struct intel_framebuffer *intel_fb;
8040
8041         val = I915_READ(DSPCNTR(plane));
8042         if (!(val & DISPLAY_PLANE_ENABLE))
8043                 return;
8044
8045         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8046         if (!intel_fb) {
8047                 DRM_DEBUG_KMS("failed to alloc fb\n");
8048                 return;
8049         }
8050
8051         fb = &intel_fb->base;
8052
8053         if (INTEL_INFO(dev)->gen >= 4) {
8054                 if (val & DISPPLANE_TILED) {
8055                         plane_config->tiling = I915_TILING_X;
8056                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8057                 }
8058         }
8059
8060         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8061         fourcc = i9xx_format_to_fourcc(pixel_format);
8062         fb->pixel_format = fourcc;
8063         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8064
8065         if (INTEL_INFO(dev)->gen >= 4) {
8066                 if (plane_config->tiling)
8067                         offset = I915_READ(DSPTILEOFF(plane));
8068                 else
8069                         offset = I915_READ(DSPLINOFF(plane));
8070                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8071         } else {
8072                 base = I915_READ(DSPADDR(plane));
8073         }
8074         plane_config->base = base;
8075
8076         val = I915_READ(PIPESRC(pipe));
8077         fb->width = ((val >> 16) & 0xfff) + 1;
8078         fb->height = ((val >> 0) & 0xfff) + 1;
8079
8080         val = I915_READ(DSPSTRIDE(pipe));
8081         fb->pitches[0] = val & 0xffffffc0;
8082
8083         aligned_height = intel_fb_align_height(dev, fb->height,
8084                                                fb->pixel_format,
8085                                                fb->modifier[0]);
8086
8087         plane_config->size = fb->pitches[0] * aligned_height;
8088
8089         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8090                       pipe_name(pipe), plane, fb->width, fb->height,
8091                       fb->bits_per_pixel, base, fb->pitches[0],
8092                       plane_config->size);
8093
8094         plane_config->fb = intel_fb;
8095 }
8096
8097 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8098                                struct intel_crtc_state *pipe_config)
8099 {
8100         struct drm_device *dev = crtc->base.dev;
8101         struct drm_i915_private *dev_priv = dev->dev_private;
8102         int pipe = pipe_config->cpu_transcoder;
8103         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8104         intel_clock_t clock;
8105         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8106         int refclk = 100000;
8107
8108         mutex_lock(&dev_priv->sb_lock);
8109         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8110         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8111         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8112         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8113         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8114         mutex_unlock(&dev_priv->sb_lock);
8115
8116         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8117         clock.m2 = (pll_dw0 & 0xff) << 22;
8118         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8119                 clock.m2 |= pll_dw2 & 0x3fffff;
8120         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8121         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8122         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8123
8124         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8125 }
8126
8127 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8128                                  struct intel_crtc_state *pipe_config)
8129 {
8130         struct drm_device *dev = crtc->base.dev;
8131         struct drm_i915_private *dev_priv = dev->dev_private;
8132         enum intel_display_power_domain power_domain;
8133         uint32_t tmp;
8134         bool ret;
8135
8136         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8137         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8138                 return false;
8139
8140         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8141         pipe_config->shared_dpll = NULL;
8142
8143         ret = false;
8144
8145         tmp = I915_READ(PIPECONF(crtc->pipe));
8146         if (!(tmp & PIPECONF_ENABLE))
8147                 goto out;
8148
8149         if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8150                 switch (tmp & PIPECONF_BPC_MASK) {
8151                 case PIPECONF_6BPC:
8152                         pipe_config->pipe_bpp = 18;
8153                         break;
8154                 case PIPECONF_8BPC:
8155                         pipe_config->pipe_bpp = 24;
8156                         break;
8157                 case PIPECONF_10BPC:
8158                         pipe_config->pipe_bpp = 30;
8159                         break;
8160                 default:
8161                         break;
8162                 }
8163         }
8164
8165         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8166             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8167                 pipe_config->limited_color_range = true;
8168
8169         if (INTEL_INFO(dev)->gen < 4)
8170                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8171
8172         intel_get_pipe_timings(crtc, pipe_config);
8173         intel_get_pipe_src_size(crtc, pipe_config);
8174
8175         i9xx_get_pfit_config(crtc, pipe_config);
8176
8177         if (INTEL_INFO(dev)->gen >= 4) {
8178                 /* No way to read it out on pipes B and C */
8179                 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8180                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8181                 else
8182                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8183                 pipe_config->pixel_multiplier =
8184                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8185                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8186                 pipe_config->dpll_hw_state.dpll_md = tmp;
8187         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8188                 tmp = I915_READ(DPLL(crtc->pipe));
8189                 pipe_config->pixel_multiplier =
8190                         ((tmp & SDVO_MULTIPLIER_MASK)
8191                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8192         } else {
8193                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8194                  * port and will be fixed up in the encoder->get_config
8195                  * function. */
8196                 pipe_config->pixel_multiplier = 1;
8197         }
8198         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8199         if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8200                 /*
8201                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8202                  * on 830. Filter it out here so that we don't
8203                  * report errors due to that.
8204                  */
8205                 if (IS_I830(dev))
8206                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8207
8208                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8209                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8210         } else {
8211                 /* Mask out read-only status bits. */
8212                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8213                                                      DPLL_PORTC_READY_MASK |
8214                                                      DPLL_PORTB_READY_MASK);
8215         }
8216
8217         if (IS_CHERRYVIEW(dev))
8218                 chv_crtc_clock_get(crtc, pipe_config);
8219         else if (IS_VALLEYVIEW(dev))
8220                 vlv_crtc_clock_get(crtc, pipe_config);
8221         else
8222                 i9xx_crtc_clock_get(crtc, pipe_config);
8223
8224         /*
8225          * Normally the dotclock is filled in by the encoder .get_config()
8226          * but in case the pipe is enabled w/o any ports we need a sane
8227          * default.
8228          */
8229         pipe_config->base.adjusted_mode.crtc_clock =
8230                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8231
8232         ret = true;
8233
8234 out:
8235         intel_display_power_put(dev_priv, power_domain);
8236
8237         return ret;
8238 }
8239
8240 static void ironlake_init_pch_refclk(struct drm_device *dev)
8241 {
8242         struct drm_i915_private *dev_priv = dev->dev_private;
8243         struct intel_encoder *encoder;
8244         u32 val, final;
8245         bool has_lvds = false;
8246         bool has_cpu_edp = false;
8247         bool has_panel = false;
8248         bool has_ck505 = false;
8249         bool can_ssc = false;
8250
8251         /* We need to take the global config into account */
8252         for_each_intel_encoder(dev, encoder) {
8253                 switch (encoder->type) {
8254                 case INTEL_OUTPUT_LVDS:
8255                         has_panel = true;
8256                         has_lvds = true;
8257                         break;
8258                 case INTEL_OUTPUT_EDP:
8259                         has_panel = true;
8260                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8261                                 has_cpu_edp = true;
8262                         break;
8263                 default:
8264                         break;
8265                 }
8266         }
8267
8268         if (HAS_PCH_IBX(dev)) {
8269                 has_ck505 = dev_priv->vbt.display_clock_mode;
8270                 can_ssc = has_ck505;
8271         } else {
8272                 has_ck505 = false;
8273                 can_ssc = true;
8274         }
8275
8276         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8277                       has_panel, has_lvds, has_ck505);
8278
8279         /* Ironlake: try to setup display ref clock before DPLL
8280          * enabling. This is only under driver's control after
8281          * PCH B stepping, previous chipset stepping should be
8282          * ignoring this setting.
8283          */
8284         val = I915_READ(PCH_DREF_CONTROL);
8285
8286         /* As we must carefully and slowly disable/enable each source in turn,
8287          * compute the final state we want first and check if we need to
8288          * make any changes at all.
8289          */
8290         final = val;
8291         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8292         if (has_ck505)
8293                 final |= DREF_NONSPREAD_CK505_ENABLE;
8294         else
8295                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8296
8297         final &= ~DREF_SSC_SOURCE_MASK;
8298         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8299         final &= ~DREF_SSC1_ENABLE;
8300
8301         if (has_panel) {
8302                 final |= DREF_SSC_SOURCE_ENABLE;
8303
8304                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8305                         final |= DREF_SSC1_ENABLE;
8306
8307                 if (has_cpu_edp) {
8308                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8309                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8310                         else
8311                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8312                 } else
8313                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8314         } else {
8315                 final |= DREF_SSC_SOURCE_DISABLE;
8316                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8317         }
8318
8319         if (final == val)
8320                 return;
8321
8322         /* Always enable nonspread source */
8323         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8324
8325         if (has_ck505)
8326                 val |= DREF_NONSPREAD_CK505_ENABLE;
8327         else
8328                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8329
8330         if (has_panel) {
8331                 val &= ~DREF_SSC_SOURCE_MASK;
8332                 val |= DREF_SSC_SOURCE_ENABLE;
8333
8334                 /* SSC must be turned on before enabling the CPU output  */
8335                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8336                         DRM_DEBUG_KMS("Using SSC on panel\n");
8337                         val |= DREF_SSC1_ENABLE;
8338                 } else
8339                         val &= ~DREF_SSC1_ENABLE;
8340
8341                 /* Get SSC going before enabling the outputs */
8342                 I915_WRITE(PCH_DREF_CONTROL, val);
8343                 POSTING_READ(PCH_DREF_CONTROL);
8344                 udelay(200);
8345
8346                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8347
8348                 /* Enable CPU source on CPU attached eDP */
8349                 if (has_cpu_edp) {
8350                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8351                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8352                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8353                         } else
8354                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8355                 } else
8356                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8357
8358                 I915_WRITE(PCH_DREF_CONTROL, val);
8359                 POSTING_READ(PCH_DREF_CONTROL);
8360                 udelay(200);
8361         } else {
8362                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8363
8364                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8365
8366                 /* Turn off CPU output */
8367                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8368
8369                 I915_WRITE(PCH_DREF_CONTROL, val);
8370                 POSTING_READ(PCH_DREF_CONTROL);
8371                 udelay(200);
8372
8373                 /* Turn off the SSC source */
8374                 val &= ~DREF_SSC_SOURCE_MASK;
8375                 val |= DREF_SSC_SOURCE_DISABLE;
8376
8377                 /* Turn off SSC1 */
8378                 val &= ~DREF_SSC1_ENABLE;
8379
8380                 I915_WRITE(PCH_DREF_CONTROL, val);
8381                 POSTING_READ(PCH_DREF_CONTROL);
8382                 udelay(200);
8383         }
8384
8385         BUG_ON(val != final);
8386 }
8387
8388 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8389 {
8390         uint32_t tmp;
8391
8392         tmp = I915_READ(SOUTH_CHICKEN2);
8393         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8394         I915_WRITE(SOUTH_CHICKEN2, tmp);
8395
8396         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8397                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8398                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8399
8400         tmp = I915_READ(SOUTH_CHICKEN2);
8401         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8402         I915_WRITE(SOUTH_CHICKEN2, tmp);
8403
8404         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8405                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8406                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8407 }
8408
8409 /* WaMPhyProgramming:hsw */
8410 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8411 {
8412         uint32_t tmp;
8413
8414         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8415         tmp &= ~(0xFF << 24);
8416         tmp |= (0x12 << 24);
8417         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8418
8419         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8420         tmp |= (1 << 11);
8421         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8422
8423         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8424         tmp |= (1 << 11);
8425         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8426
8427         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8428         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8429         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8430
8431         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8432         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8433         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8434
8435         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8436         tmp &= ~(7 << 13);
8437         tmp |= (5 << 13);
8438         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8439
8440         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8441         tmp &= ~(7 << 13);
8442         tmp |= (5 << 13);
8443         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8444
8445         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8446         tmp &= ~0xFF;
8447         tmp |= 0x1C;
8448         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8449
8450         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8451         tmp &= ~0xFF;
8452         tmp |= 0x1C;
8453         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8454
8455         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8456         tmp &= ~(0xFF << 16);
8457         tmp |= (0x1C << 16);
8458         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8459
8460         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8461         tmp &= ~(0xFF << 16);
8462         tmp |= (0x1C << 16);
8463         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8464
8465         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8466         tmp |= (1 << 27);
8467         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8468
8469         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8470         tmp |= (1 << 27);
8471         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8472
8473         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8474         tmp &= ~(0xF << 28);
8475         tmp |= (4 << 28);
8476         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8477
8478         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8479         tmp &= ~(0xF << 28);
8480         tmp |= (4 << 28);
8481         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8482 }
8483
8484 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8485  * Programming" based on the parameters passed:
8486  * - Sequence to enable CLKOUT_DP
8487  * - Sequence to enable CLKOUT_DP without spread
8488  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8489  */
8490 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8491                                  bool with_fdi)
8492 {
8493         struct drm_i915_private *dev_priv = dev->dev_private;
8494         uint32_t reg, tmp;
8495
8496         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8497                 with_spread = true;
8498         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8499                 with_fdi = false;
8500
8501         mutex_lock(&dev_priv->sb_lock);
8502
8503         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8504         tmp &= ~SBI_SSCCTL_DISABLE;
8505         tmp |= SBI_SSCCTL_PATHALT;
8506         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8507
8508         udelay(24);
8509
8510         if (with_spread) {
8511                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8512                 tmp &= ~SBI_SSCCTL_PATHALT;
8513                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8514
8515                 if (with_fdi) {
8516                         lpt_reset_fdi_mphy(dev_priv);
8517                         lpt_program_fdi_mphy(dev_priv);
8518                 }
8519         }
8520
8521         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8522         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8523         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8524         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8525
8526         mutex_unlock(&dev_priv->sb_lock);
8527 }
8528
8529 /* Sequence to disable CLKOUT_DP */
8530 static void lpt_disable_clkout_dp(struct drm_device *dev)
8531 {
8532         struct drm_i915_private *dev_priv = dev->dev_private;
8533         uint32_t reg, tmp;
8534
8535         mutex_lock(&dev_priv->sb_lock);
8536
8537         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8538         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8539         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8540         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8541
8542         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8543         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8544                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8545                         tmp |= SBI_SSCCTL_PATHALT;
8546                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8547                         udelay(32);
8548                 }
8549                 tmp |= SBI_SSCCTL_DISABLE;
8550                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8551         }
8552
8553         mutex_unlock(&dev_priv->sb_lock);
8554 }
8555
8556 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8557
8558 static const uint16_t sscdivintphase[] = {
8559         [BEND_IDX( 50)] = 0x3B23,
8560         [BEND_IDX( 45)] = 0x3B23,
8561         [BEND_IDX( 40)] = 0x3C23,
8562         [BEND_IDX( 35)] = 0x3C23,
8563         [BEND_IDX( 30)] = 0x3D23,
8564         [BEND_IDX( 25)] = 0x3D23,
8565         [BEND_IDX( 20)] = 0x3E23,
8566         [BEND_IDX( 15)] = 0x3E23,
8567         [BEND_IDX( 10)] = 0x3F23,
8568         [BEND_IDX(  5)] = 0x3F23,
8569         [BEND_IDX(  0)] = 0x0025,
8570         [BEND_IDX( -5)] = 0x0025,
8571         [BEND_IDX(-10)] = 0x0125,
8572         [BEND_IDX(-15)] = 0x0125,
8573         [BEND_IDX(-20)] = 0x0225,
8574         [BEND_IDX(-25)] = 0x0225,
8575         [BEND_IDX(-30)] = 0x0325,
8576         [BEND_IDX(-35)] = 0x0325,
8577         [BEND_IDX(-40)] = 0x0425,
8578         [BEND_IDX(-45)] = 0x0425,
8579         [BEND_IDX(-50)] = 0x0525,
8580 };
8581
8582 /*
8583  * Bend CLKOUT_DP
8584  * steps -50 to 50 inclusive, in steps of 5
8585  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8586  * change in clock period = -(steps / 10) * 5.787 ps
8587  */
8588 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8589 {
8590         uint32_t tmp;
8591         int idx = BEND_IDX(steps);
8592
8593         if (WARN_ON(steps % 5 != 0))
8594                 return;
8595
8596         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8597                 return;
8598
8599         mutex_lock(&dev_priv->sb_lock);
8600
8601         if (steps % 10 != 0)
8602                 tmp = 0xAAAAAAAB;
8603         else
8604                 tmp = 0x00000000;
8605         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8606
8607         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8608         tmp &= 0xffff0000;
8609         tmp |= sscdivintphase[idx];
8610         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8611
8612         mutex_unlock(&dev_priv->sb_lock);
8613 }
8614
8615 #undef BEND_IDX
8616
8617 static void lpt_init_pch_refclk(struct drm_device *dev)
8618 {
8619         struct intel_encoder *encoder;
8620         bool has_vga = false;
8621
8622         for_each_intel_encoder(dev, encoder) {
8623                 switch (encoder->type) {
8624                 case INTEL_OUTPUT_ANALOG:
8625                         has_vga = true;
8626                         break;
8627                 default:
8628                         break;
8629                 }
8630         }
8631
8632         if (has_vga) {
8633                 lpt_bend_clkout_dp(to_i915(dev), 0);
8634                 lpt_enable_clkout_dp(dev, true, true);
8635         } else {
8636                 lpt_disable_clkout_dp(dev);
8637         }
8638 }
8639
8640 /*
8641  * Initialize reference clocks when the driver loads
8642  */
8643 void intel_init_pch_refclk(struct drm_device *dev)
8644 {
8645         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8646                 ironlake_init_pch_refclk(dev);
8647         else if (HAS_PCH_LPT(dev))
8648                 lpt_init_pch_refclk(dev);
8649 }
8650
8651 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8652 {
8653         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8655         int pipe = intel_crtc->pipe;
8656         uint32_t val;
8657
8658         val = 0;
8659
8660         switch (intel_crtc->config->pipe_bpp) {
8661         case 18:
8662                 val |= PIPECONF_6BPC;
8663                 break;
8664         case 24:
8665                 val |= PIPECONF_8BPC;
8666                 break;
8667         case 30:
8668                 val |= PIPECONF_10BPC;
8669                 break;
8670         case 36:
8671                 val |= PIPECONF_12BPC;
8672                 break;
8673         default:
8674                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8675                 BUG();
8676         }
8677
8678         if (intel_crtc->config->dither)
8679                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8680
8681         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8682                 val |= PIPECONF_INTERLACED_ILK;
8683         else
8684                 val |= PIPECONF_PROGRESSIVE;
8685
8686         if (intel_crtc->config->limited_color_range)
8687                 val |= PIPECONF_COLOR_RANGE_SELECT;
8688
8689         I915_WRITE(PIPECONF(pipe), val);
8690         POSTING_READ(PIPECONF(pipe));
8691 }
8692
8693 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8694 {
8695         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8696         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8697         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8698         u32 val = 0;
8699
8700         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8701                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8702
8703         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8704                 val |= PIPECONF_INTERLACED_ILK;
8705         else
8706                 val |= PIPECONF_PROGRESSIVE;
8707
8708         I915_WRITE(PIPECONF(cpu_transcoder), val);
8709         POSTING_READ(PIPECONF(cpu_transcoder));
8710 }
8711
8712 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8713 {
8714         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8716
8717         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8718                 u32 val = 0;
8719
8720                 switch (intel_crtc->config->pipe_bpp) {
8721                 case 18:
8722                         val |= PIPEMISC_DITHER_6_BPC;
8723                         break;
8724                 case 24:
8725                         val |= PIPEMISC_DITHER_8_BPC;
8726                         break;
8727                 case 30:
8728                         val |= PIPEMISC_DITHER_10_BPC;
8729                         break;
8730                 case 36:
8731                         val |= PIPEMISC_DITHER_12_BPC;
8732                         break;
8733                 default:
8734                         /* Case prevented by pipe_config_set_bpp. */
8735                         BUG();
8736                 }
8737
8738                 if (intel_crtc->config->dither)
8739                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8740
8741                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8742         }
8743 }
8744
8745 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8746 {
8747         /*
8748          * Account for spread spectrum to avoid
8749          * oversubscribing the link. Max center spread
8750          * is 2.5%; use 5% for safety's sake.
8751          */
8752         u32 bps = target_clock * bpp * 21 / 20;
8753         return DIV_ROUND_UP(bps, link_bw * 8);
8754 }
8755
8756 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8757 {
8758         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8759 }
8760
8761 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8762                                   struct intel_crtc_state *crtc_state,
8763                                   intel_clock_t *reduced_clock)
8764 {
8765         struct drm_crtc *crtc = &intel_crtc->base;
8766         struct drm_device *dev = crtc->dev;
8767         struct drm_i915_private *dev_priv = dev->dev_private;
8768         struct drm_atomic_state *state = crtc_state->base.state;
8769         struct drm_connector *connector;
8770         struct drm_connector_state *connector_state;
8771         struct intel_encoder *encoder;
8772         u32 dpll, fp, fp2;
8773         int factor, i;
8774         bool is_lvds = false, is_sdvo = false;
8775
8776         for_each_connector_in_state(state, connector, connector_state, i) {
8777                 if (connector_state->crtc != crtc_state->base.crtc)
8778                         continue;
8779
8780                 encoder = to_intel_encoder(connector_state->best_encoder);
8781
8782                 switch (encoder->type) {
8783                 case INTEL_OUTPUT_LVDS:
8784                         is_lvds = true;
8785                         break;
8786                 case INTEL_OUTPUT_SDVO:
8787                 case INTEL_OUTPUT_HDMI:
8788                         is_sdvo = true;
8789                         break;
8790                 default:
8791                         break;
8792                 }
8793         }
8794
8795         /* Enable autotuning of the PLL clock (if permissible) */
8796         factor = 21;
8797         if (is_lvds) {
8798                 if ((intel_panel_use_ssc(dev_priv) &&
8799                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8800                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8801                         factor = 25;
8802         } else if (crtc_state->sdvo_tv_clock)
8803                 factor = 20;
8804
8805         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8806
8807         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8808                 fp |= FP_CB_TUNE;
8809
8810         if (reduced_clock) {
8811                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8812
8813                 if (reduced_clock->m < factor * reduced_clock->n)
8814                         fp2 |= FP_CB_TUNE;
8815         } else {
8816                 fp2 = fp;
8817         }
8818
8819         dpll = 0;
8820
8821         if (is_lvds)
8822                 dpll |= DPLLB_MODE_LVDS;
8823         else
8824                 dpll |= DPLLB_MODE_DAC_SERIAL;
8825
8826         dpll |= (crtc_state->pixel_multiplier - 1)
8827                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8828
8829         if (is_sdvo)
8830                 dpll |= DPLL_SDVO_HIGH_SPEED;
8831         if (crtc_state->has_dp_encoder)
8832                 dpll |= DPLL_SDVO_HIGH_SPEED;
8833
8834         /* compute bitmask from p1 value */
8835         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8836         /* also FPA1 */
8837         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8838
8839         switch (crtc_state->dpll.p2) {
8840         case 5:
8841                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8842                 break;
8843         case 7:
8844                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8845                 break;
8846         case 10:
8847                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8848                 break;
8849         case 14:
8850                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8851                 break;
8852         }
8853
8854         if (is_lvds && intel_panel_use_ssc(dev_priv))
8855                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8856         else
8857                 dpll |= PLL_REF_INPUT_DREFCLK;
8858
8859         dpll |= DPLL_VCO_ENABLE;
8860
8861         crtc_state->dpll_hw_state.dpll = dpll;
8862         crtc_state->dpll_hw_state.fp0 = fp;
8863         crtc_state->dpll_hw_state.fp1 = fp2;
8864 }
8865
8866 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8867                                        struct intel_crtc_state *crtc_state)
8868 {
8869         struct drm_device *dev = crtc->base.dev;
8870         struct drm_i915_private *dev_priv = dev->dev_private;
8871         intel_clock_t reduced_clock;
8872         bool has_reduced_clock = false;
8873         struct intel_shared_dpll *pll;
8874         const intel_limit_t *limit;
8875         int refclk = 120000;
8876
8877         memset(&crtc_state->dpll_hw_state, 0,
8878                sizeof(crtc_state->dpll_hw_state));
8879
8880         crtc->lowfreq_avail = false;
8881
8882         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8883         if (!crtc_state->has_pch_encoder)
8884                 return 0;
8885
8886         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8887                 if (intel_panel_use_ssc(dev_priv)) {
8888                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8889                                       dev_priv->vbt.lvds_ssc_freq);
8890                         refclk = dev_priv->vbt.lvds_ssc_freq;
8891                 }
8892
8893                 if (intel_is_dual_link_lvds(dev)) {
8894                         if (refclk == 100000)
8895                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8896                         else
8897                                 limit = &intel_limits_ironlake_dual_lvds;
8898                 } else {
8899                         if (refclk == 100000)
8900                                 limit = &intel_limits_ironlake_single_lvds_100m;
8901                         else
8902                                 limit = &intel_limits_ironlake_single_lvds;
8903                 }
8904         } else {
8905                 limit = &intel_limits_ironlake_dac;
8906         }
8907
8908         if (!crtc_state->clock_set &&
8909             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8910                                 refclk, NULL, &crtc_state->dpll)) {
8911                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8912                 return -EINVAL;
8913         }
8914
8915         ironlake_compute_dpll(crtc, crtc_state,
8916                               has_reduced_clock ? &reduced_clock : NULL);
8917
8918         pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8919         if (pll == NULL) {
8920                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8921                                  pipe_name(crtc->pipe));
8922                 return -EINVAL;
8923         }
8924
8925         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8926             has_reduced_clock)
8927                 crtc->lowfreq_avail = true;
8928
8929         return 0;
8930 }
8931
8932 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8933                                          struct intel_link_m_n *m_n)
8934 {
8935         struct drm_device *dev = crtc->base.dev;
8936         struct drm_i915_private *dev_priv = dev->dev_private;
8937         enum pipe pipe = crtc->pipe;
8938
8939         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8940         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8941         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8942                 & ~TU_SIZE_MASK;
8943         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8944         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8945                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8946 }
8947
8948 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8949                                          enum transcoder transcoder,
8950                                          struct intel_link_m_n *m_n,
8951                                          struct intel_link_m_n *m2_n2)
8952 {
8953         struct drm_device *dev = crtc->base.dev;
8954         struct drm_i915_private *dev_priv = dev->dev_private;
8955         enum pipe pipe = crtc->pipe;
8956
8957         if (INTEL_INFO(dev)->gen >= 5) {
8958                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8959                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8960                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8961                         & ~TU_SIZE_MASK;
8962                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8963                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8964                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8965                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8966                  * gen < 8) and if DRRS is supported (to make sure the
8967                  * registers are not unnecessarily read).
8968                  */
8969                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8970                         crtc->config->has_drrs) {
8971                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8972                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8973                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8974                                         & ~TU_SIZE_MASK;
8975                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8976                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8977                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8978                 }
8979         } else {
8980                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8981                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8982                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8983                         & ~TU_SIZE_MASK;
8984                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8985                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8986                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8987         }
8988 }
8989
8990 void intel_dp_get_m_n(struct intel_crtc *crtc,
8991                       struct intel_crtc_state *pipe_config)
8992 {
8993         if (pipe_config->has_pch_encoder)
8994                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8995         else
8996                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8997                                              &pipe_config->dp_m_n,
8998                                              &pipe_config->dp_m2_n2);
8999 }
9000
9001 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9002                                         struct intel_crtc_state *pipe_config)
9003 {
9004         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9005                                      &pipe_config->fdi_m_n, NULL);
9006 }
9007
9008 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9009                                     struct intel_crtc_state *pipe_config)
9010 {
9011         struct drm_device *dev = crtc->base.dev;
9012         struct drm_i915_private *dev_priv = dev->dev_private;
9013         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9014         uint32_t ps_ctrl = 0;
9015         int id = -1;
9016         int i;
9017
9018         /* find scaler attached to this pipe */
9019         for (i = 0; i < crtc->num_scalers; i++) {
9020                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9021                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9022                         id = i;
9023                         pipe_config->pch_pfit.enabled = true;
9024                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9025                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9026                         break;
9027                 }
9028         }
9029
9030         scaler_state->scaler_id = id;
9031         if (id >= 0) {
9032                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9033         } else {
9034                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9035         }
9036 }
9037
9038 static void
9039 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9040                                  struct intel_initial_plane_config *plane_config)
9041 {
9042         struct drm_device *dev = crtc->base.dev;
9043         struct drm_i915_private *dev_priv = dev->dev_private;
9044         u32 val, base, offset, stride_mult, tiling;
9045         int pipe = crtc->pipe;
9046         int fourcc, pixel_format;
9047         unsigned int aligned_height;
9048         struct drm_framebuffer *fb;
9049         struct intel_framebuffer *intel_fb;
9050
9051         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9052         if (!intel_fb) {
9053                 DRM_DEBUG_KMS("failed to alloc fb\n");
9054                 return;
9055         }
9056
9057         fb = &intel_fb->base;
9058
9059         val = I915_READ(PLANE_CTL(pipe, 0));
9060         if (!(val & PLANE_CTL_ENABLE))
9061                 goto error;
9062
9063         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9064         fourcc = skl_format_to_fourcc(pixel_format,
9065                                       val & PLANE_CTL_ORDER_RGBX,
9066                                       val & PLANE_CTL_ALPHA_MASK);
9067         fb->pixel_format = fourcc;
9068         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9069
9070         tiling = val & PLANE_CTL_TILED_MASK;
9071         switch (tiling) {
9072         case PLANE_CTL_TILED_LINEAR:
9073                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9074                 break;
9075         case PLANE_CTL_TILED_X:
9076                 plane_config->tiling = I915_TILING_X;
9077                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9078                 break;
9079         case PLANE_CTL_TILED_Y:
9080                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9081                 break;
9082         case PLANE_CTL_TILED_YF:
9083                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9084                 break;
9085         default:
9086                 MISSING_CASE(tiling);
9087                 goto error;
9088         }
9089
9090         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9091         plane_config->base = base;
9092
9093         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9094
9095         val = I915_READ(PLANE_SIZE(pipe, 0));
9096         fb->height = ((val >> 16) & 0xfff) + 1;
9097         fb->width = ((val >> 0) & 0x1fff) + 1;
9098
9099         val = I915_READ(PLANE_STRIDE(pipe, 0));
9100         stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9101                                                 fb->pixel_format);
9102         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9103
9104         aligned_height = intel_fb_align_height(dev, fb->height,
9105                                                fb->pixel_format,
9106                                                fb->modifier[0]);
9107
9108         plane_config->size = fb->pitches[0] * aligned_height;
9109
9110         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9111                       pipe_name(pipe), fb->width, fb->height,
9112                       fb->bits_per_pixel, base, fb->pitches[0],
9113                       plane_config->size);
9114
9115         plane_config->fb = intel_fb;
9116         return;
9117
9118 error:
9119         kfree(fb);
9120 }
9121
9122 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9123                                      struct intel_crtc_state *pipe_config)
9124 {
9125         struct drm_device *dev = crtc->base.dev;
9126         struct drm_i915_private *dev_priv = dev->dev_private;
9127         uint32_t tmp;
9128
9129         tmp = I915_READ(PF_CTL(crtc->pipe));
9130
9131         if (tmp & PF_ENABLE) {
9132                 pipe_config->pch_pfit.enabled = true;
9133                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9134                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9135
9136                 /* We currently do not free assignements of panel fitters on
9137                  * ivb/hsw (since we don't use the higher upscaling modes which
9138                  * differentiates them) so just WARN about this case for now. */
9139                 if (IS_GEN7(dev)) {
9140                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9141                                 PF_PIPE_SEL_IVB(crtc->pipe));
9142                 }
9143         }
9144 }
9145
9146 static void
9147 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9148                                   struct intel_initial_plane_config *plane_config)
9149 {
9150         struct drm_device *dev = crtc->base.dev;
9151         struct drm_i915_private *dev_priv = dev->dev_private;
9152         u32 val, base, offset;
9153         int pipe = crtc->pipe;
9154         int fourcc, pixel_format;
9155         unsigned int aligned_height;
9156         struct drm_framebuffer *fb;
9157         struct intel_framebuffer *intel_fb;
9158
9159         val = I915_READ(DSPCNTR(pipe));
9160         if (!(val & DISPLAY_PLANE_ENABLE))
9161                 return;
9162
9163         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9164         if (!intel_fb) {
9165                 DRM_DEBUG_KMS("failed to alloc fb\n");
9166                 return;
9167         }
9168
9169         fb = &intel_fb->base;
9170
9171         if (INTEL_INFO(dev)->gen >= 4) {
9172                 if (val & DISPPLANE_TILED) {
9173                         plane_config->tiling = I915_TILING_X;
9174                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9175                 }
9176         }
9177
9178         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9179         fourcc = i9xx_format_to_fourcc(pixel_format);
9180         fb->pixel_format = fourcc;
9181         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9182
9183         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9184         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9185                 offset = I915_READ(DSPOFFSET(pipe));
9186         } else {
9187                 if (plane_config->tiling)
9188                         offset = I915_READ(DSPTILEOFF(pipe));
9189                 else
9190                         offset = I915_READ(DSPLINOFF(pipe));
9191         }
9192         plane_config->base = base;
9193
9194         val = I915_READ(PIPESRC(pipe));
9195         fb->width = ((val >> 16) & 0xfff) + 1;
9196         fb->height = ((val >> 0) & 0xfff) + 1;
9197
9198         val = I915_READ(DSPSTRIDE(pipe));
9199         fb->pitches[0] = val & 0xffffffc0;
9200
9201         aligned_height = intel_fb_align_height(dev, fb->height,
9202                                                fb->pixel_format,
9203                                                fb->modifier[0]);
9204
9205         plane_config->size = fb->pitches[0] * aligned_height;
9206
9207         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9208                       pipe_name(pipe), fb->width, fb->height,
9209                       fb->bits_per_pixel, base, fb->pitches[0],
9210                       plane_config->size);
9211
9212         plane_config->fb = intel_fb;
9213 }
9214
9215 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9216                                      struct intel_crtc_state *pipe_config)
9217 {
9218         struct drm_device *dev = crtc->base.dev;
9219         struct drm_i915_private *dev_priv = dev->dev_private;
9220         enum intel_display_power_domain power_domain;
9221         uint32_t tmp;
9222         bool ret;
9223
9224         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9225         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9226                 return false;
9227
9228         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9229         pipe_config->shared_dpll = NULL;
9230
9231         ret = false;
9232         tmp = I915_READ(PIPECONF(crtc->pipe));
9233         if (!(tmp & PIPECONF_ENABLE))
9234                 goto out;
9235
9236         switch (tmp & PIPECONF_BPC_MASK) {
9237         case PIPECONF_6BPC:
9238                 pipe_config->pipe_bpp = 18;
9239                 break;
9240         case PIPECONF_8BPC:
9241                 pipe_config->pipe_bpp = 24;
9242                 break;
9243         case PIPECONF_10BPC:
9244                 pipe_config->pipe_bpp = 30;
9245                 break;
9246         case PIPECONF_12BPC:
9247                 pipe_config->pipe_bpp = 36;
9248                 break;
9249         default:
9250                 break;
9251         }
9252
9253         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9254                 pipe_config->limited_color_range = true;
9255
9256         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9257                 struct intel_shared_dpll *pll;
9258                 enum intel_dpll_id pll_id;
9259
9260                 pipe_config->has_pch_encoder = true;
9261
9262                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9263                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9264                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9265
9266                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9267
9268                 if (HAS_PCH_IBX(dev_priv)) {
9269                         pll_id = (enum intel_dpll_id) crtc->pipe;
9270                 } else {
9271                         tmp = I915_READ(PCH_DPLL_SEL);
9272                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9273                                 pll_id = DPLL_ID_PCH_PLL_B;
9274                         else
9275                                 pll_id= DPLL_ID_PCH_PLL_A;
9276                 }
9277
9278                 pipe_config->shared_dpll =
9279                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
9280                 pll = pipe_config->shared_dpll;
9281
9282                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9283                                                  &pipe_config->dpll_hw_state));
9284
9285                 tmp = pipe_config->dpll_hw_state.dpll;
9286                 pipe_config->pixel_multiplier =
9287                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9288                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9289
9290                 ironlake_pch_clock_get(crtc, pipe_config);
9291         } else {
9292                 pipe_config->pixel_multiplier = 1;
9293         }
9294
9295         intel_get_pipe_timings(crtc, pipe_config);
9296         intel_get_pipe_src_size(crtc, pipe_config);
9297
9298         ironlake_get_pfit_config(crtc, pipe_config);
9299
9300         ret = true;
9301
9302 out:
9303         intel_display_power_put(dev_priv, power_domain);
9304
9305         return ret;
9306 }
9307
9308 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9309 {
9310         struct drm_device *dev = dev_priv->dev;
9311         struct intel_crtc *crtc;
9312
9313         for_each_intel_crtc(dev, crtc)
9314                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9315                      pipe_name(crtc->pipe));
9316
9317         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9318         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9319         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9320         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9321         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9322         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9323              "CPU PWM1 enabled\n");
9324         if (IS_HASWELL(dev))
9325                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9326                      "CPU PWM2 enabled\n");
9327         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9328              "PCH PWM1 enabled\n");
9329         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9330              "Utility pin enabled\n");
9331         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9332
9333         /*
9334          * In theory we can still leave IRQs enabled, as long as only the HPD
9335          * interrupts remain enabled. We used to check for that, but since it's
9336          * gen-specific and since we only disable LCPLL after we fully disable
9337          * the interrupts, the check below should be enough.
9338          */
9339         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9340 }
9341
9342 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9343 {
9344         struct drm_device *dev = dev_priv->dev;
9345
9346         if (IS_HASWELL(dev))
9347                 return I915_READ(D_COMP_HSW);
9348         else
9349                 return I915_READ(D_COMP_BDW);
9350 }
9351
9352 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9353 {
9354         struct drm_device *dev = dev_priv->dev;
9355
9356         if (IS_HASWELL(dev)) {
9357                 mutex_lock(&dev_priv->rps.hw_lock);
9358                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9359                                             val))
9360                         DRM_ERROR("Failed to write to D_COMP\n");
9361                 mutex_unlock(&dev_priv->rps.hw_lock);
9362         } else {
9363                 I915_WRITE(D_COMP_BDW, val);
9364                 POSTING_READ(D_COMP_BDW);
9365         }
9366 }
9367
9368 /*
9369  * This function implements pieces of two sequences from BSpec:
9370  * - Sequence for display software to disable LCPLL
9371  * - Sequence for display software to allow package C8+
9372  * The steps implemented here are just the steps that actually touch the LCPLL
9373  * register. Callers should take care of disabling all the display engine
9374  * functions, doing the mode unset, fixing interrupts, etc.
9375  */
9376 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9377                               bool switch_to_fclk, bool allow_power_down)
9378 {
9379         uint32_t val;
9380
9381         assert_can_disable_lcpll(dev_priv);
9382
9383         val = I915_READ(LCPLL_CTL);
9384
9385         if (switch_to_fclk) {
9386                 val |= LCPLL_CD_SOURCE_FCLK;
9387                 I915_WRITE(LCPLL_CTL, val);
9388
9389                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9390                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9391                         DRM_ERROR("Switching to FCLK failed\n");
9392
9393                 val = I915_READ(LCPLL_CTL);
9394         }
9395
9396         val |= LCPLL_PLL_DISABLE;
9397         I915_WRITE(LCPLL_CTL, val);
9398         POSTING_READ(LCPLL_CTL);
9399
9400         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9401                 DRM_ERROR("LCPLL still locked\n");
9402
9403         val = hsw_read_dcomp(dev_priv);
9404         val |= D_COMP_COMP_DISABLE;
9405         hsw_write_dcomp(dev_priv, val);
9406         ndelay(100);
9407
9408         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9409                      1))
9410                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9411
9412         if (allow_power_down) {
9413                 val = I915_READ(LCPLL_CTL);
9414                 val |= LCPLL_POWER_DOWN_ALLOW;
9415                 I915_WRITE(LCPLL_CTL, val);
9416                 POSTING_READ(LCPLL_CTL);
9417         }
9418 }
9419
9420 /*
9421  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9422  * source.
9423  */
9424 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9425 {
9426         uint32_t val;
9427
9428         val = I915_READ(LCPLL_CTL);
9429
9430         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9431                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9432                 return;
9433
9434         /*
9435          * Make sure we're not on PC8 state before disabling PC8, otherwise
9436          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9437          */
9438         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9439
9440         if (val & LCPLL_POWER_DOWN_ALLOW) {
9441                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9442                 I915_WRITE(LCPLL_CTL, val);
9443                 POSTING_READ(LCPLL_CTL);
9444         }
9445
9446         val = hsw_read_dcomp(dev_priv);
9447         val |= D_COMP_COMP_FORCE;
9448         val &= ~D_COMP_COMP_DISABLE;
9449         hsw_write_dcomp(dev_priv, val);
9450
9451         val = I915_READ(LCPLL_CTL);
9452         val &= ~LCPLL_PLL_DISABLE;
9453         I915_WRITE(LCPLL_CTL, val);
9454
9455         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9456                 DRM_ERROR("LCPLL not locked yet\n");
9457
9458         if (val & LCPLL_CD_SOURCE_FCLK) {
9459                 val = I915_READ(LCPLL_CTL);
9460                 val &= ~LCPLL_CD_SOURCE_FCLK;
9461                 I915_WRITE(LCPLL_CTL, val);
9462
9463                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9464                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9465                         DRM_ERROR("Switching back to LCPLL failed\n");
9466         }
9467
9468         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9469         intel_update_cdclk(dev_priv->dev);
9470 }
9471
9472 /*
9473  * Package states C8 and deeper are really deep PC states that can only be
9474  * reached when all the devices on the system allow it, so even if the graphics
9475  * device allows PC8+, it doesn't mean the system will actually get to these
9476  * states. Our driver only allows PC8+ when going into runtime PM.
9477  *
9478  * The requirements for PC8+ are that all the outputs are disabled, the power
9479  * well is disabled and most interrupts are disabled, and these are also
9480  * requirements for runtime PM. When these conditions are met, we manually do
9481  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9482  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9483  * hang the machine.
9484  *
9485  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9486  * the state of some registers, so when we come back from PC8+ we need to
9487  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9488  * need to take care of the registers kept by RC6. Notice that this happens even
9489  * if we don't put the device in PCI D3 state (which is what currently happens
9490  * because of the runtime PM support).
9491  *
9492  * For more, read "Display Sequences for Package C8" on the hardware
9493  * documentation.
9494  */
9495 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9496 {
9497         struct drm_device *dev = dev_priv->dev;
9498         uint32_t val;
9499
9500         DRM_DEBUG_KMS("Enabling package C8+\n");
9501
9502         if (HAS_PCH_LPT_LP(dev)) {
9503                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9504                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9505                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9506         }
9507
9508         lpt_disable_clkout_dp(dev);
9509         hsw_disable_lcpll(dev_priv, true, true);
9510 }
9511
9512 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9513 {
9514         struct drm_device *dev = dev_priv->dev;
9515         uint32_t val;
9516
9517         DRM_DEBUG_KMS("Disabling package C8+\n");
9518
9519         hsw_restore_lcpll(dev_priv);
9520         lpt_init_pch_refclk(dev);
9521
9522         if (HAS_PCH_LPT_LP(dev)) {
9523                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9524                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9525                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9526         }
9527 }
9528
9529 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9530 {
9531         struct drm_device *dev = old_state->dev;
9532         struct intel_atomic_state *old_intel_state =
9533                 to_intel_atomic_state(old_state);
9534         unsigned int req_cdclk = old_intel_state->dev_cdclk;
9535
9536         broxton_set_cdclk(dev, req_cdclk);
9537 }
9538
9539 /* compute the max rate for new configuration */
9540 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9541 {
9542         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9543         struct drm_i915_private *dev_priv = state->dev->dev_private;
9544         struct drm_crtc *crtc;
9545         struct drm_crtc_state *cstate;
9546         struct intel_crtc_state *crtc_state;
9547         unsigned max_pixel_rate = 0, i;
9548         enum pipe pipe;
9549
9550         memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9551                sizeof(intel_state->min_pixclk));
9552
9553         for_each_crtc_in_state(state, crtc, cstate, i) {
9554                 int pixel_rate;
9555
9556                 crtc_state = to_intel_crtc_state(cstate);
9557                 if (!crtc_state->base.enable) {
9558                         intel_state->min_pixclk[i] = 0;
9559                         continue;
9560                 }
9561
9562                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9563
9564                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9565                 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9566                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9567
9568                 intel_state->min_pixclk[i] = pixel_rate;
9569         }
9570
9571         for_each_pipe(dev_priv, pipe)
9572                 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9573
9574         return max_pixel_rate;
9575 }
9576
9577 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9578 {
9579         struct drm_i915_private *dev_priv = dev->dev_private;
9580         uint32_t val, data;
9581         int ret;
9582
9583         if (WARN((I915_READ(LCPLL_CTL) &
9584                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9585                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9586                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9587                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9588                  "trying to change cdclk frequency with cdclk not enabled\n"))
9589                 return;
9590
9591         mutex_lock(&dev_priv->rps.hw_lock);
9592         ret = sandybridge_pcode_write(dev_priv,
9593                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9594         mutex_unlock(&dev_priv->rps.hw_lock);
9595         if (ret) {
9596                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9597                 return;
9598         }
9599
9600         val = I915_READ(LCPLL_CTL);
9601         val |= LCPLL_CD_SOURCE_FCLK;
9602         I915_WRITE(LCPLL_CTL, val);
9603
9604         if (wait_for_us(I915_READ(LCPLL_CTL) &
9605                         LCPLL_CD_SOURCE_FCLK_DONE, 1))
9606                 DRM_ERROR("Switching to FCLK failed\n");
9607
9608         val = I915_READ(LCPLL_CTL);
9609         val &= ~LCPLL_CLK_FREQ_MASK;
9610
9611         switch (cdclk) {
9612         case 450000:
9613                 val |= LCPLL_CLK_FREQ_450;
9614                 data = 0;
9615                 break;
9616         case 540000:
9617                 val |= LCPLL_CLK_FREQ_54O_BDW;
9618                 data = 1;
9619                 break;
9620         case 337500:
9621                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9622                 data = 2;
9623                 break;
9624         case 675000:
9625                 val |= LCPLL_CLK_FREQ_675_BDW;
9626                 data = 3;
9627                 break;
9628         default:
9629                 WARN(1, "invalid cdclk frequency\n");
9630                 return;
9631         }
9632
9633         I915_WRITE(LCPLL_CTL, val);
9634
9635         val = I915_READ(LCPLL_CTL);
9636         val &= ~LCPLL_CD_SOURCE_FCLK;
9637         I915_WRITE(LCPLL_CTL, val);
9638
9639         if (wait_for_us((I915_READ(LCPLL_CTL) &
9640                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9641                 DRM_ERROR("Switching back to LCPLL failed\n");
9642
9643         mutex_lock(&dev_priv->rps.hw_lock);
9644         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9645         mutex_unlock(&dev_priv->rps.hw_lock);
9646
9647         intel_update_cdclk(dev);
9648
9649         WARN(cdclk != dev_priv->cdclk_freq,
9650              "cdclk requested %d kHz but got %d kHz\n",
9651              cdclk, dev_priv->cdclk_freq);
9652 }
9653
9654 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9655 {
9656         struct drm_i915_private *dev_priv = to_i915(state->dev);
9657         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9658         int max_pixclk = ilk_max_pixel_rate(state);
9659         int cdclk;
9660
9661         /*
9662          * FIXME should also account for plane ratio
9663          * once 64bpp pixel formats are supported.
9664          */
9665         if (max_pixclk > 540000)
9666                 cdclk = 675000;
9667         else if (max_pixclk > 450000)
9668                 cdclk = 540000;
9669         else if (max_pixclk > 337500)
9670                 cdclk = 450000;
9671         else
9672                 cdclk = 337500;
9673
9674         if (cdclk > dev_priv->max_cdclk_freq) {
9675                 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9676                               cdclk, dev_priv->max_cdclk_freq);
9677                 return -EINVAL;
9678         }
9679
9680         intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9681         if (!intel_state->active_crtcs)
9682                 intel_state->dev_cdclk = 337500;
9683
9684         return 0;
9685 }
9686
9687 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9688 {
9689         struct drm_device *dev = old_state->dev;
9690         struct intel_atomic_state *old_intel_state =
9691                 to_intel_atomic_state(old_state);
9692         unsigned req_cdclk = old_intel_state->dev_cdclk;
9693
9694         broadwell_set_cdclk(dev, req_cdclk);
9695 }
9696
9697 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9698                                       struct intel_crtc_state *crtc_state)
9699 {
9700         struct intel_encoder *intel_encoder =
9701                 intel_ddi_get_crtc_new_encoder(crtc_state);
9702
9703         if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9704                 if (!intel_ddi_pll_select(crtc, crtc_state))
9705                         return -EINVAL;
9706         }
9707
9708         crtc->lowfreq_avail = false;
9709
9710         return 0;
9711 }
9712
9713 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9714                                 enum port port,
9715                                 struct intel_crtc_state *pipe_config)
9716 {
9717         enum intel_dpll_id id;
9718
9719         switch (port) {
9720         case PORT_A:
9721                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9722                 id = DPLL_ID_SKL_DPLL0;
9723                 break;
9724         case PORT_B:
9725                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9726                 id = DPLL_ID_SKL_DPLL1;
9727                 break;
9728         case PORT_C:
9729                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9730                 id = DPLL_ID_SKL_DPLL2;
9731                 break;
9732         default:
9733                 DRM_ERROR("Incorrect port type\n");
9734                 return;
9735         }
9736
9737         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9738 }
9739
9740 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9741                                 enum port port,
9742                                 struct intel_crtc_state *pipe_config)
9743 {
9744         enum intel_dpll_id id;
9745         u32 temp;
9746
9747         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9748         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9749
9750         switch (pipe_config->ddi_pll_sel) {
9751         case SKL_DPLL0:
9752                 id = DPLL_ID_SKL_DPLL0;
9753                 break;
9754         case SKL_DPLL1:
9755                 id = DPLL_ID_SKL_DPLL1;
9756                 break;
9757         case SKL_DPLL2:
9758                 id = DPLL_ID_SKL_DPLL2;
9759                 break;
9760         case SKL_DPLL3:
9761                 id = DPLL_ID_SKL_DPLL3;
9762                 break;
9763         default:
9764                 MISSING_CASE(pipe_config->ddi_pll_sel);
9765                 return;
9766         }
9767
9768         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9769 }
9770
9771 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9772                                 enum port port,
9773                                 struct intel_crtc_state *pipe_config)
9774 {
9775         enum intel_dpll_id id;
9776
9777         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9778
9779         switch (pipe_config->ddi_pll_sel) {
9780         case PORT_CLK_SEL_WRPLL1:
9781                 id = DPLL_ID_WRPLL1;
9782                 break;
9783         case PORT_CLK_SEL_WRPLL2:
9784                 id = DPLL_ID_WRPLL2;
9785                 break;
9786         case PORT_CLK_SEL_SPLL:
9787                 id = DPLL_ID_SPLL;
9788                 break;
9789         case PORT_CLK_SEL_LCPLL_810:
9790                 id = DPLL_ID_LCPLL_810;
9791                 break;
9792         case PORT_CLK_SEL_LCPLL_1350:
9793                 id = DPLL_ID_LCPLL_1350;
9794                 break;
9795         case PORT_CLK_SEL_LCPLL_2700:
9796                 id = DPLL_ID_LCPLL_2700;
9797                 break;
9798         default:
9799                 MISSING_CASE(pipe_config->ddi_pll_sel);
9800                 /* fall through */
9801         case PORT_CLK_SEL_NONE:
9802                 return;
9803         }
9804
9805         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9806 }
9807
9808 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9809                                      struct intel_crtc_state *pipe_config,
9810                                      unsigned long *power_domain_mask)
9811 {
9812         struct drm_device *dev = crtc->base.dev;
9813         struct drm_i915_private *dev_priv = dev->dev_private;
9814         enum intel_display_power_domain power_domain;
9815         u32 tmp;
9816
9817         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9818
9819         /*
9820          * XXX: Do intel_display_power_get_if_enabled before reading this (for
9821          * consistency and less surprising code; it's in always on power).
9822          */
9823         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9824         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9825                 enum pipe trans_edp_pipe;
9826                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9827                 default:
9828                         WARN(1, "unknown pipe linked to edp transcoder\n");
9829                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9830                 case TRANS_DDI_EDP_INPUT_A_ON:
9831                         trans_edp_pipe = PIPE_A;
9832                         break;
9833                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9834                         trans_edp_pipe = PIPE_B;
9835                         break;
9836                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9837                         trans_edp_pipe = PIPE_C;
9838                         break;
9839                 }
9840
9841                 if (trans_edp_pipe == crtc->pipe)
9842                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9843         }
9844
9845         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9846         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9847                 return false;
9848         *power_domain_mask |= BIT(power_domain);
9849
9850         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9851
9852         return tmp & PIPECONF_ENABLE;
9853 }
9854
9855 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9856                                          struct intel_crtc_state *pipe_config,
9857                                          unsigned long *power_domain_mask)
9858 {
9859         struct drm_device *dev = crtc->base.dev;
9860         struct drm_i915_private *dev_priv = dev->dev_private;
9861         enum intel_display_power_domain power_domain;
9862         enum port port;
9863         enum transcoder cpu_transcoder;
9864         u32 tmp;
9865
9866         pipe_config->has_dsi_encoder = false;
9867
9868         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9869                 if (port == PORT_A)
9870                         cpu_transcoder = TRANSCODER_DSI_A;
9871                 else
9872                         cpu_transcoder = TRANSCODER_DSI_C;
9873
9874                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9875                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9876                         continue;
9877                 *power_domain_mask |= BIT(power_domain);
9878
9879                 /*
9880                  * The PLL needs to be enabled with a valid divider
9881                  * configuration, otherwise accessing DSI registers will hang
9882                  * the machine. See BSpec North Display Engine
9883                  * registers/MIPI[BXT]. We can break out here early, since we
9884                  * need the same DSI PLL to be enabled for both DSI ports.
9885                  */
9886                 if (!intel_dsi_pll_is_enabled(dev_priv))
9887                         break;
9888
9889                 /* XXX: this works for video mode only */
9890                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9891                 if (!(tmp & DPI_ENABLE))
9892                         continue;
9893
9894                 tmp = I915_READ(MIPI_CTRL(port));
9895                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9896                         continue;
9897
9898                 pipe_config->cpu_transcoder = cpu_transcoder;
9899                 pipe_config->has_dsi_encoder = true;
9900                 break;
9901         }
9902
9903         return pipe_config->has_dsi_encoder;
9904 }
9905
9906 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9907                                        struct intel_crtc_state *pipe_config)
9908 {
9909         struct drm_device *dev = crtc->base.dev;
9910         struct drm_i915_private *dev_priv = dev->dev_private;
9911         struct intel_shared_dpll *pll;
9912         enum port port;
9913         uint32_t tmp;
9914
9915         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9916
9917         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9918
9919         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9920                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9921         else if (IS_BROXTON(dev))
9922                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9923         else
9924                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9925
9926         pll = pipe_config->shared_dpll;
9927         if (pll) {
9928                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9929                                                  &pipe_config->dpll_hw_state));
9930         }
9931
9932         /*
9933          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9934          * DDI E. So just check whether this pipe is wired to DDI E and whether
9935          * the PCH transcoder is on.
9936          */
9937         if (INTEL_INFO(dev)->gen < 9 &&
9938             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9939                 pipe_config->has_pch_encoder = true;
9940
9941                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9942                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9943                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9944
9945                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9946         }
9947 }
9948
9949 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9950                                     struct intel_crtc_state *pipe_config)
9951 {
9952         struct drm_device *dev = crtc->base.dev;
9953         struct drm_i915_private *dev_priv = dev->dev_private;
9954         enum intel_display_power_domain power_domain;
9955         unsigned long power_domain_mask;
9956         bool active;
9957
9958         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9959         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9960                 return false;
9961         power_domain_mask = BIT(power_domain);
9962
9963         pipe_config->shared_dpll = NULL;
9964
9965         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9966
9967         if (IS_BROXTON(dev_priv)) {
9968                 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9969                                              &power_domain_mask);
9970                 WARN_ON(active && pipe_config->has_dsi_encoder);
9971                 if (pipe_config->has_dsi_encoder)
9972                         active = true;
9973         }
9974
9975         if (!active)
9976                 goto out;
9977
9978         if (!pipe_config->has_dsi_encoder) {
9979                 haswell_get_ddi_port_state(crtc, pipe_config);
9980                 intel_get_pipe_timings(crtc, pipe_config);
9981         }
9982
9983         intel_get_pipe_src_size(crtc, pipe_config);
9984
9985         pipe_config->gamma_mode =
9986                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9987
9988         if (INTEL_INFO(dev)->gen >= 9) {
9989                 skl_init_scalers(dev, crtc, pipe_config);
9990         }
9991
9992         if (INTEL_INFO(dev)->gen >= 9) {
9993                 pipe_config->scaler_state.scaler_id = -1;
9994                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9995         }
9996
9997         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9998         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9999                 power_domain_mask |= BIT(power_domain);
10000                 if (INTEL_INFO(dev)->gen >= 9)
10001                         skylake_get_pfit_config(crtc, pipe_config);
10002                 else
10003                         ironlake_get_pfit_config(crtc, pipe_config);
10004         }
10005
10006         if (IS_HASWELL(dev))
10007                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10008                         (I915_READ(IPS_CTL) & IPS_ENABLE);
10009
10010         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10011             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10012                 pipe_config->pixel_multiplier =
10013                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10014         } else {
10015                 pipe_config->pixel_multiplier = 1;
10016         }
10017
10018 out:
10019         for_each_power_domain(power_domain, power_domain_mask)
10020                 intel_display_power_put(dev_priv, power_domain);
10021
10022         return active;
10023 }
10024
10025 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10026                                const struct intel_plane_state *plane_state)
10027 {
10028         struct drm_device *dev = crtc->dev;
10029         struct drm_i915_private *dev_priv = dev->dev_private;
10030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10031         uint32_t cntl = 0, size = 0;
10032
10033         if (plane_state && plane_state->visible) {
10034                 unsigned int width = plane_state->base.crtc_w;
10035                 unsigned int height = plane_state->base.crtc_h;
10036                 unsigned int stride = roundup_pow_of_two(width) * 4;
10037
10038                 switch (stride) {
10039                 default:
10040                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10041                                   width, stride);
10042                         stride = 256;
10043                         /* fallthrough */
10044                 case 256:
10045                 case 512:
10046                 case 1024:
10047                 case 2048:
10048                         break;
10049                 }
10050
10051                 cntl |= CURSOR_ENABLE |
10052                         CURSOR_GAMMA_ENABLE |
10053                         CURSOR_FORMAT_ARGB |
10054                         CURSOR_STRIDE(stride);
10055
10056                 size = (height << 12) | width;
10057         }
10058
10059         if (intel_crtc->cursor_cntl != 0 &&
10060             (intel_crtc->cursor_base != base ||
10061              intel_crtc->cursor_size != size ||
10062              intel_crtc->cursor_cntl != cntl)) {
10063                 /* On these chipsets we can only modify the base/size/stride
10064                  * whilst the cursor is disabled.
10065                  */
10066                 I915_WRITE(CURCNTR(PIPE_A), 0);
10067                 POSTING_READ(CURCNTR(PIPE_A));
10068                 intel_crtc->cursor_cntl = 0;
10069         }
10070
10071         if (intel_crtc->cursor_base != base) {
10072                 I915_WRITE(CURBASE(PIPE_A), base);
10073                 intel_crtc->cursor_base = base;
10074         }
10075
10076         if (intel_crtc->cursor_size != size) {
10077                 I915_WRITE(CURSIZE, size);
10078                 intel_crtc->cursor_size = size;
10079         }
10080
10081         if (intel_crtc->cursor_cntl != cntl) {
10082                 I915_WRITE(CURCNTR(PIPE_A), cntl);
10083                 POSTING_READ(CURCNTR(PIPE_A));
10084                 intel_crtc->cursor_cntl = cntl;
10085         }
10086 }
10087
10088 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10089                                const struct intel_plane_state *plane_state)
10090 {
10091         struct drm_device *dev = crtc->dev;
10092         struct drm_i915_private *dev_priv = dev->dev_private;
10093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10094         int pipe = intel_crtc->pipe;
10095         uint32_t cntl = 0;
10096
10097         if (plane_state && plane_state->visible) {
10098                 cntl = MCURSOR_GAMMA_ENABLE;
10099                 switch (plane_state->base.crtc_w) {
10100                         case 64:
10101                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10102                                 break;
10103                         case 128:
10104                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10105                                 break;
10106                         case 256:
10107                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10108                                 break;
10109                         default:
10110                                 MISSING_CASE(plane_state->base.crtc_w);
10111                                 return;
10112                 }
10113                 cntl |= pipe << 28; /* Connect to correct pipe */
10114
10115                 if (HAS_DDI(dev))
10116                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10117
10118                 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10119                         cntl |= CURSOR_ROTATE_180;
10120         }
10121
10122         if (intel_crtc->cursor_cntl != cntl) {
10123                 I915_WRITE(CURCNTR(pipe), cntl);
10124                 POSTING_READ(CURCNTR(pipe));
10125                 intel_crtc->cursor_cntl = cntl;
10126         }
10127
10128         /* and commit changes on next vblank */
10129         I915_WRITE(CURBASE(pipe), base);
10130         POSTING_READ(CURBASE(pipe));
10131
10132         intel_crtc->cursor_base = base;
10133 }
10134
10135 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10136 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10137                                      const struct intel_plane_state *plane_state)
10138 {
10139         struct drm_device *dev = crtc->dev;
10140         struct drm_i915_private *dev_priv = dev->dev_private;
10141         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10142         int pipe = intel_crtc->pipe;
10143         u32 base = intel_crtc->cursor_addr;
10144         u32 pos = 0;
10145
10146         if (plane_state) {
10147                 int x = plane_state->base.crtc_x;
10148                 int y = plane_state->base.crtc_y;
10149
10150                 if (x < 0) {
10151                         pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10152                         x = -x;
10153                 }
10154                 pos |= x << CURSOR_X_SHIFT;
10155
10156                 if (y < 0) {
10157                         pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10158                         y = -y;
10159                 }
10160                 pos |= y << CURSOR_Y_SHIFT;
10161
10162                 /* ILK+ do this automagically */
10163                 if (HAS_GMCH_DISPLAY(dev) &&
10164                     plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10165                         base += (plane_state->base.crtc_h *
10166                                  plane_state->base.crtc_w - 1) * 4;
10167                 }
10168         }
10169
10170         I915_WRITE(CURPOS(pipe), pos);
10171
10172         if (IS_845G(dev) || IS_I865G(dev))
10173                 i845_update_cursor(crtc, base, plane_state);
10174         else
10175                 i9xx_update_cursor(crtc, base, plane_state);
10176 }
10177
10178 static bool cursor_size_ok(struct drm_device *dev,
10179                            uint32_t width, uint32_t height)
10180 {
10181         if (width == 0 || height == 0)
10182                 return false;
10183
10184         /*
10185          * 845g/865g are special in that they are only limited by
10186          * the width of their cursors, the height is arbitrary up to
10187          * the precision of the register. Everything else requires
10188          * square cursors, limited to a few power-of-two sizes.
10189          */
10190         if (IS_845G(dev) || IS_I865G(dev)) {
10191                 if ((width & 63) != 0)
10192                         return false;
10193
10194                 if (width > (IS_845G(dev) ? 64 : 512))
10195                         return false;
10196
10197                 if (height > 1023)
10198                         return false;
10199         } else {
10200                 switch (width | height) {
10201                 case 256:
10202                 case 128:
10203                         if (IS_GEN2(dev))
10204                                 return false;
10205                 case 64:
10206                         break;
10207                 default:
10208                         return false;
10209                 }
10210         }
10211
10212         return true;
10213 }
10214
10215 /* VESA 640x480x72Hz mode to set on the pipe */
10216 static struct drm_display_mode load_detect_mode = {
10217         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10218                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10219 };
10220
10221 struct drm_framebuffer *
10222 __intel_framebuffer_create(struct drm_device *dev,
10223                            struct drm_mode_fb_cmd2 *mode_cmd,
10224                            struct drm_i915_gem_object *obj)
10225 {
10226         struct intel_framebuffer *intel_fb;
10227         int ret;
10228
10229         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10230         if (!intel_fb)
10231                 return ERR_PTR(-ENOMEM);
10232
10233         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10234         if (ret)
10235                 goto err;
10236
10237         return &intel_fb->base;
10238
10239 err:
10240         kfree(intel_fb);
10241         return ERR_PTR(ret);
10242 }
10243
10244 static struct drm_framebuffer *
10245 intel_framebuffer_create(struct drm_device *dev,
10246                          struct drm_mode_fb_cmd2 *mode_cmd,
10247                          struct drm_i915_gem_object *obj)
10248 {
10249         struct drm_framebuffer *fb;
10250         int ret;
10251
10252         ret = i915_mutex_lock_interruptible(dev);
10253         if (ret)
10254                 return ERR_PTR(ret);
10255         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10256         mutex_unlock(&dev->struct_mutex);
10257
10258         return fb;
10259 }
10260
10261 static u32
10262 intel_framebuffer_pitch_for_width(int width, int bpp)
10263 {
10264         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10265         return ALIGN(pitch, 64);
10266 }
10267
10268 static u32
10269 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10270 {
10271         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10272         return PAGE_ALIGN(pitch * mode->vdisplay);
10273 }
10274
10275 static struct drm_framebuffer *
10276 intel_framebuffer_create_for_mode(struct drm_device *dev,
10277                                   struct drm_display_mode *mode,
10278                                   int depth, int bpp)
10279 {
10280         struct drm_framebuffer *fb;
10281         struct drm_i915_gem_object *obj;
10282         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10283
10284         obj = i915_gem_alloc_object(dev,
10285                                     intel_framebuffer_size_for_mode(mode, bpp));
10286         if (obj == NULL)
10287                 return ERR_PTR(-ENOMEM);
10288
10289         mode_cmd.width = mode->hdisplay;
10290         mode_cmd.height = mode->vdisplay;
10291         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10292                                                                 bpp);
10293         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10294
10295         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10296         if (IS_ERR(fb))
10297                 drm_gem_object_unreference_unlocked(&obj->base);
10298
10299         return fb;
10300 }
10301
10302 static struct drm_framebuffer *
10303 mode_fits_in_fbdev(struct drm_device *dev,
10304                    struct drm_display_mode *mode)
10305 {
10306 #ifdef CONFIG_DRM_FBDEV_EMULATION
10307         struct drm_i915_private *dev_priv = dev->dev_private;
10308         struct drm_i915_gem_object *obj;
10309         struct drm_framebuffer *fb;
10310
10311         if (!dev_priv->fbdev)
10312                 return NULL;
10313
10314         if (!dev_priv->fbdev->fb)
10315                 return NULL;
10316
10317         obj = dev_priv->fbdev->fb->obj;
10318         BUG_ON(!obj);
10319
10320         fb = &dev_priv->fbdev->fb->base;
10321         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10322                                                                fb->bits_per_pixel))
10323                 return NULL;
10324
10325         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10326                 return NULL;
10327
10328         drm_framebuffer_reference(fb);
10329         return fb;
10330 #else
10331         return NULL;
10332 #endif
10333 }
10334
10335 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10336                                            struct drm_crtc *crtc,
10337                                            struct drm_display_mode *mode,
10338                                            struct drm_framebuffer *fb,
10339                                            int x, int y)
10340 {
10341         struct drm_plane_state *plane_state;
10342         int hdisplay, vdisplay;
10343         int ret;
10344
10345         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10346         if (IS_ERR(plane_state))
10347                 return PTR_ERR(plane_state);
10348
10349         if (mode)
10350                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10351         else
10352                 hdisplay = vdisplay = 0;
10353
10354         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10355         if (ret)
10356                 return ret;
10357         drm_atomic_set_fb_for_plane(plane_state, fb);
10358         plane_state->crtc_x = 0;
10359         plane_state->crtc_y = 0;
10360         plane_state->crtc_w = hdisplay;
10361         plane_state->crtc_h = vdisplay;
10362         plane_state->src_x = x << 16;
10363         plane_state->src_y = y << 16;
10364         plane_state->src_w = hdisplay << 16;
10365         plane_state->src_h = vdisplay << 16;
10366
10367         return 0;
10368 }
10369
10370 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10371                                 struct drm_display_mode *mode,
10372                                 struct intel_load_detect_pipe *old,
10373                                 struct drm_modeset_acquire_ctx *ctx)
10374 {
10375         struct intel_crtc *intel_crtc;
10376         struct intel_encoder *intel_encoder =
10377                 intel_attached_encoder(connector);
10378         struct drm_crtc *possible_crtc;
10379         struct drm_encoder *encoder = &intel_encoder->base;
10380         struct drm_crtc *crtc = NULL;
10381         struct drm_device *dev = encoder->dev;
10382         struct drm_framebuffer *fb;
10383         struct drm_mode_config *config = &dev->mode_config;
10384         struct drm_atomic_state *state = NULL, *restore_state = NULL;
10385         struct drm_connector_state *connector_state;
10386         struct intel_crtc_state *crtc_state;
10387         int ret, i = -1;
10388
10389         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10390                       connector->base.id, connector->name,
10391                       encoder->base.id, encoder->name);
10392
10393         old->restore_state = NULL;
10394
10395 retry:
10396         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10397         if (ret)
10398                 goto fail;
10399
10400         /*
10401          * Algorithm gets a little messy:
10402          *
10403          *   - if the connector already has an assigned crtc, use it (but make
10404          *     sure it's on first)
10405          *
10406          *   - try to find the first unused crtc that can drive this connector,
10407          *     and use that if we find one
10408          */
10409
10410         /* See if we already have a CRTC for this connector */
10411         if (connector->state->crtc) {
10412                 crtc = connector->state->crtc;
10413
10414                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10415                 if (ret)
10416                         goto fail;
10417
10418                 /* Make sure the crtc and connector are running */
10419                 goto found;
10420         }
10421
10422         /* Find an unused one (if possible) */
10423         for_each_crtc(dev, possible_crtc) {
10424                 i++;
10425                 if (!(encoder->possible_crtcs & (1 << i)))
10426                         continue;
10427
10428                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10429                 if (ret)
10430                         goto fail;
10431
10432                 if (possible_crtc->state->enable) {
10433                         drm_modeset_unlock(&possible_crtc->mutex);
10434                         continue;
10435                 }
10436
10437                 crtc = possible_crtc;
10438                 break;
10439         }
10440
10441         /*
10442          * If we didn't find an unused CRTC, don't use any.
10443          */
10444         if (!crtc) {
10445                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10446                 goto fail;
10447         }
10448
10449 found:
10450         intel_crtc = to_intel_crtc(crtc);
10451
10452         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10453         if (ret)
10454                 goto fail;
10455
10456         state = drm_atomic_state_alloc(dev);
10457         restore_state = drm_atomic_state_alloc(dev);
10458         if (!state || !restore_state) {
10459                 ret = -ENOMEM;
10460                 goto fail;
10461         }
10462
10463         state->acquire_ctx = ctx;
10464         restore_state->acquire_ctx = ctx;
10465
10466         connector_state = drm_atomic_get_connector_state(state, connector);
10467         if (IS_ERR(connector_state)) {
10468                 ret = PTR_ERR(connector_state);
10469                 goto fail;
10470         }
10471
10472         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10473         if (ret)
10474                 goto fail;
10475
10476         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10477         if (IS_ERR(crtc_state)) {
10478                 ret = PTR_ERR(crtc_state);
10479                 goto fail;
10480         }
10481
10482         crtc_state->base.active = crtc_state->base.enable = true;
10483
10484         if (!mode)
10485                 mode = &load_detect_mode;
10486
10487         /* We need a framebuffer large enough to accommodate all accesses
10488          * that the plane may generate whilst we perform load detection.
10489          * We can not rely on the fbcon either being present (we get called
10490          * during its initialisation to detect all boot displays, or it may
10491          * not even exist) or that it is large enough to satisfy the
10492          * requested mode.
10493          */
10494         fb = mode_fits_in_fbdev(dev, mode);
10495         if (fb == NULL) {
10496                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10497                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10498         } else
10499                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10500         if (IS_ERR(fb)) {
10501                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10502                 goto fail;
10503         }
10504
10505         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10506         if (ret)
10507                 goto fail;
10508
10509         drm_framebuffer_unreference(fb);
10510
10511         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10512         if (ret)
10513                 goto fail;
10514
10515         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10516         if (!ret)
10517                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10518         if (!ret)
10519                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10520         if (ret) {
10521                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10522                 goto fail;
10523         }
10524
10525         ret = drm_atomic_commit(state);
10526         if (ret) {
10527                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10528                 goto fail;
10529         }
10530
10531         old->restore_state = restore_state;
10532
10533         /* let the connector get through one full cycle before testing */
10534         intel_wait_for_vblank(dev, intel_crtc->pipe);
10535         return true;
10536
10537 fail:
10538         drm_atomic_state_free(state);
10539         drm_atomic_state_free(restore_state);
10540         restore_state = state = NULL;
10541
10542         if (ret == -EDEADLK) {
10543                 drm_modeset_backoff(ctx);
10544                 goto retry;
10545         }
10546
10547         return false;
10548 }
10549
10550 void intel_release_load_detect_pipe(struct drm_connector *connector,
10551                                     struct intel_load_detect_pipe *old,
10552                                     struct drm_modeset_acquire_ctx *ctx)
10553 {
10554         struct intel_encoder *intel_encoder =
10555                 intel_attached_encoder(connector);
10556         struct drm_encoder *encoder = &intel_encoder->base;
10557         struct drm_atomic_state *state = old->restore_state;
10558         int ret;
10559
10560         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10561                       connector->base.id, connector->name,
10562                       encoder->base.id, encoder->name);
10563
10564         if (!state)
10565                 return;
10566
10567         ret = drm_atomic_commit(state);
10568         if (ret) {
10569                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10570                 drm_atomic_state_free(state);
10571         }
10572 }
10573
10574 static int i9xx_pll_refclk(struct drm_device *dev,
10575                            const struct intel_crtc_state *pipe_config)
10576 {
10577         struct drm_i915_private *dev_priv = dev->dev_private;
10578         u32 dpll = pipe_config->dpll_hw_state.dpll;
10579
10580         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10581                 return dev_priv->vbt.lvds_ssc_freq;
10582         else if (HAS_PCH_SPLIT(dev))
10583                 return 120000;
10584         else if (!IS_GEN2(dev))
10585                 return 96000;
10586         else
10587                 return 48000;
10588 }
10589
10590 /* Returns the clock of the currently programmed mode of the given pipe. */
10591 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10592                                 struct intel_crtc_state *pipe_config)
10593 {
10594         struct drm_device *dev = crtc->base.dev;
10595         struct drm_i915_private *dev_priv = dev->dev_private;
10596         int pipe = pipe_config->cpu_transcoder;
10597         u32 dpll = pipe_config->dpll_hw_state.dpll;
10598         u32 fp;
10599         intel_clock_t clock;
10600         int port_clock;
10601         int refclk = i9xx_pll_refclk(dev, pipe_config);
10602
10603         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10604                 fp = pipe_config->dpll_hw_state.fp0;
10605         else
10606                 fp = pipe_config->dpll_hw_state.fp1;
10607
10608         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10609         if (IS_PINEVIEW(dev)) {
10610                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10611                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10612         } else {
10613                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10614                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10615         }
10616
10617         if (!IS_GEN2(dev)) {
10618                 if (IS_PINEVIEW(dev))
10619                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10620                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10621                 else
10622                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10623                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10624
10625                 switch (dpll & DPLL_MODE_MASK) {
10626                 case DPLLB_MODE_DAC_SERIAL:
10627                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10628                                 5 : 10;
10629                         break;
10630                 case DPLLB_MODE_LVDS:
10631                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10632                                 7 : 14;
10633                         break;
10634                 default:
10635                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10636                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10637                         return;
10638                 }
10639
10640                 if (IS_PINEVIEW(dev))
10641                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10642                 else
10643                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10644         } else {
10645                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10646                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10647
10648                 if (is_lvds) {
10649                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10650                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10651
10652                         if (lvds & LVDS_CLKB_POWER_UP)
10653                                 clock.p2 = 7;
10654                         else
10655                                 clock.p2 = 14;
10656                 } else {
10657                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10658                                 clock.p1 = 2;
10659                         else {
10660                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10661                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10662                         }
10663                         if (dpll & PLL_P2_DIVIDE_BY_4)
10664                                 clock.p2 = 4;
10665                         else
10666                                 clock.p2 = 2;
10667                 }
10668
10669                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10670         }
10671
10672         /*
10673          * This value includes pixel_multiplier. We will use
10674          * port_clock to compute adjusted_mode.crtc_clock in the
10675          * encoder's get_config() function.
10676          */
10677         pipe_config->port_clock = port_clock;
10678 }
10679
10680 int intel_dotclock_calculate(int link_freq,
10681                              const struct intel_link_m_n *m_n)
10682 {
10683         /*
10684          * The calculation for the data clock is:
10685          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10686          * But we want to avoid losing precison if possible, so:
10687          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10688          *
10689          * and the link clock is simpler:
10690          * link_clock = (m * link_clock) / n
10691          */
10692
10693         if (!m_n->link_n)
10694                 return 0;
10695
10696         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10697 }
10698
10699 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10700                                    struct intel_crtc_state *pipe_config)
10701 {
10702         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10703
10704         /* read out port_clock from the DPLL */
10705         i9xx_crtc_clock_get(crtc, pipe_config);
10706
10707         /*
10708          * In case there is an active pipe without active ports,
10709          * we may need some idea for the dotclock anyway.
10710          * Calculate one based on the FDI configuration.
10711          */
10712         pipe_config->base.adjusted_mode.crtc_clock =
10713                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10714                                          &pipe_config->fdi_m_n);
10715 }
10716
10717 /** Returns the currently programmed mode of the given pipe. */
10718 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10719                                              struct drm_crtc *crtc)
10720 {
10721         struct drm_i915_private *dev_priv = dev->dev_private;
10722         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10723         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10724         struct drm_display_mode *mode;
10725         struct intel_crtc_state *pipe_config;
10726         int htot = I915_READ(HTOTAL(cpu_transcoder));
10727         int hsync = I915_READ(HSYNC(cpu_transcoder));
10728         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10729         int vsync = I915_READ(VSYNC(cpu_transcoder));
10730         enum pipe pipe = intel_crtc->pipe;
10731
10732         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10733         if (!mode)
10734                 return NULL;
10735
10736         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10737         if (!pipe_config) {
10738                 kfree(mode);
10739                 return NULL;
10740         }
10741
10742         /*
10743          * Construct a pipe_config sufficient for getting the clock info
10744          * back out of crtc_clock_get.
10745          *
10746          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10747          * to use a real value here instead.
10748          */
10749         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10750         pipe_config->pixel_multiplier = 1;
10751         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10752         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10753         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10754         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10755
10756         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10757         mode->hdisplay = (htot & 0xffff) + 1;
10758         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10759         mode->hsync_start = (hsync & 0xffff) + 1;
10760         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10761         mode->vdisplay = (vtot & 0xffff) + 1;
10762         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10763         mode->vsync_start = (vsync & 0xffff) + 1;
10764         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10765
10766         drm_mode_set_name(mode);
10767
10768         kfree(pipe_config);
10769
10770         return mode;
10771 }
10772
10773 void intel_mark_busy(struct drm_device *dev)
10774 {
10775         struct drm_i915_private *dev_priv = dev->dev_private;
10776
10777         if (dev_priv->mm.busy)
10778                 return;
10779
10780         intel_runtime_pm_get(dev_priv);
10781         i915_update_gfx_val(dev_priv);
10782         if (INTEL_INFO(dev)->gen >= 6)
10783                 gen6_rps_busy(dev_priv);
10784         dev_priv->mm.busy = true;
10785 }
10786
10787 void intel_mark_idle(struct drm_device *dev)
10788 {
10789         struct drm_i915_private *dev_priv = dev->dev_private;
10790
10791         if (!dev_priv->mm.busy)
10792                 return;
10793
10794         dev_priv->mm.busy = false;
10795
10796         if (INTEL_INFO(dev)->gen >= 6)
10797                 gen6_rps_idle(dev->dev_private);
10798
10799         intel_runtime_pm_put(dev_priv);
10800 }
10801
10802 static void intel_crtc_destroy(struct drm_crtc *crtc)
10803 {
10804         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10805         struct drm_device *dev = crtc->dev;
10806         struct intel_unpin_work *work;
10807
10808         spin_lock_irq(&dev->event_lock);
10809         work = intel_crtc->unpin_work;
10810         intel_crtc->unpin_work = NULL;
10811         spin_unlock_irq(&dev->event_lock);
10812
10813         if (work) {
10814                 cancel_work_sync(&work->work);
10815                 kfree(work);
10816         }
10817
10818         drm_crtc_cleanup(crtc);
10819
10820         kfree(intel_crtc);
10821 }
10822
10823 static void intel_unpin_work_fn(struct work_struct *__work)
10824 {
10825         struct intel_unpin_work *work =
10826                 container_of(__work, struct intel_unpin_work, work);
10827         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10828         struct drm_device *dev = crtc->base.dev;
10829         struct drm_plane *primary = crtc->base.primary;
10830
10831         mutex_lock(&dev->struct_mutex);
10832         intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10833         drm_gem_object_unreference(&work->pending_flip_obj->base);
10834
10835         if (work->flip_queued_req)
10836                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10837         mutex_unlock(&dev->struct_mutex);
10838
10839         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10840         intel_fbc_post_update(crtc);
10841         drm_framebuffer_unreference(work->old_fb);
10842
10843         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10844         atomic_dec(&crtc->unpin_work_count);
10845
10846         kfree(work);
10847 }
10848
10849 static void do_intel_finish_page_flip(struct drm_device *dev,
10850                                       struct drm_crtc *crtc)
10851 {
10852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10853         struct intel_unpin_work *work;
10854         unsigned long flags;
10855
10856         /* Ignore early vblank irqs */
10857         if (intel_crtc == NULL)
10858                 return;
10859
10860         /*
10861          * This is called both by irq handlers and the reset code (to complete
10862          * lost pageflips) so needs the full irqsave spinlocks.
10863          */
10864         spin_lock_irqsave(&dev->event_lock, flags);
10865         work = intel_crtc->unpin_work;
10866
10867         /* Ensure we don't miss a work->pending update ... */
10868         smp_rmb();
10869
10870         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10871                 spin_unlock_irqrestore(&dev->event_lock, flags);
10872                 return;
10873         }
10874
10875         page_flip_completed(intel_crtc);
10876
10877         spin_unlock_irqrestore(&dev->event_lock, flags);
10878 }
10879
10880 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10881 {
10882         struct drm_i915_private *dev_priv = dev->dev_private;
10883         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10884
10885         do_intel_finish_page_flip(dev, crtc);
10886 }
10887
10888 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10889 {
10890         struct drm_i915_private *dev_priv = dev->dev_private;
10891         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10892
10893         do_intel_finish_page_flip(dev, crtc);
10894 }
10895
10896 /* Is 'a' after or equal to 'b'? */
10897 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10898 {
10899         return !((a - b) & 0x80000000);
10900 }
10901
10902 static bool page_flip_finished(struct intel_crtc *crtc)
10903 {
10904         struct drm_device *dev = crtc->base.dev;
10905         struct drm_i915_private *dev_priv = dev->dev_private;
10906
10907         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10908             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10909                 return true;
10910
10911         /*
10912          * The relevant registers doen't exist on pre-ctg.
10913          * As the flip done interrupt doesn't trigger for mmio
10914          * flips on gmch platforms, a flip count check isn't
10915          * really needed there. But since ctg has the registers,
10916          * include it in the check anyway.
10917          */
10918         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10919                 return true;
10920
10921         /*
10922          * BDW signals flip done immediately if the plane
10923          * is disabled, even if the plane enable is already
10924          * armed to occur at the next vblank :(
10925          */
10926
10927         /*
10928          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10929          * used the same base address. In that case the mmio flip might
10930          * have completed, but the CS hasn't even executed the flip yet.
10931          *
10932          * A flip count check isn't enough as the CS might have updated
10933          * the base address just after start of vblank, but before we
10934          * managed to process the interrupt. This means we'd complete the
10935          * CS flip too soon.
10936          *
10937          * Combining both checks should get us a good enough result. It may
10938          * still happen that the CS flip has been executed, but has not
10939          * yet actually completed. But in case the base address is the same
10940          * anyway, we don't really care.
10941          */
10942         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10943                 crtc->unpin_work->gtt_offset &&
10944                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10945                                     crtc->unpin_work->flip_count);
10946 }
10947
10948 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10949 {
10950         struct drm_i915_private *dev_priv = dev->dev_private;
10951         struct intel_crtc *intel_crtc =
10952                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10953         unsigned long flags;
10954
10955
10956         /*
10957          * This is called both by irq handlers and the reset code (to complete
10958          * lost pageflips) so needs the full irqsave spinlocks.
10959          *
10960          * NB: An MMIO update of the plane base pointer will also
10961          * generate a page-flip completion irq, i.e. every modeset
10962          * is also accompanied by a spurious intel_prepare_page_flip().
10963          */
10964         spin_lock_irqsave(&dev->event_lock, flags);
10965         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10966                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10967         spin_unlock_irqrestore(&dev->event_lock, flags);
10968 }
10969
10970 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10971 {
10972         /* Ensure that the work item is consistent when activating it ... */
10973         smp_wmb();
10974         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10975         /* and that it is marked active as soon as the irq could fire. */
10976         smp_wmb();
10977 }
10978
10979 static int intel_gen2_queue_flip(struct drm_device *dev,
10980                                  struct drm_crtc *crtc,
10981                                  struct drm_framebuffer *fb,
10982                                  struct drm_i915_gem_object *obj,
10983                                  struct drm_i915_gem_request *req,
10984                                  uint32_t flags)
10985 {
10986         struct intel_engine_cs *engine = req->engine;
10987         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10988         u32 flip_mask;
10989         int ret;
10990
10991         ret = intel_ring_begin(req, 6);
10992         if (ret)
10993                 return ret;
10994
10995         /* Can't queue multiple flips, so wait for the previous
10996          * one to finish before executing the next.
10997          */
10998         if (intel_crtc->plane)
10999                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11000         else
11001                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11002         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11003         intel_ring_emit(engine, MI_NOOP);
11004         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11005                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11006         intel_ring_emit(engine, fb->pitches[0]);
11007         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11008         intel_ring_emit(engine, 0); /* aux display base address, unused */
11009
11010         intel_mark_page_flip_active(intel_crtc->unpin_work);
11011         return 0;
11012 }
11013
11014 static int intel_gen3_queue_flip(struct drm_device *dev,
11015                                  struct drm_crtc *crtc,
11016                                  struct drm_framebuffer *fb,
11017                                  struct drm_i915_gem_object *obj,
11018                                  struct drm_i915_gem_request *req,
11019                                  uint32_t flags)
11020 {
11021         struct intel_engine_cs *engine = req->engine;
11022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11023         u32 flip_mask;
11024         int ret;
11025
11026         ret = intel_ring_begin(req, 6);
11027         if (ret)
11028                 return ret;
11029
11030         if (intel_crtc->plane)
11031                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11032         else
11033                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11034         intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11035         intel_ring_emit(engine, MI_NOOP);
11036         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11037                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11038         intel_ring_emit(engine, fb->pitches[0]);
11039         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11040         intel_ring_emit(engine, MI_NOOP);
11041
11042         intel_mark_page_flip_active(intel_crtc->unpin_work);
11043         return 0;
11044 }
11045
11046 static int intel_gen4_queue_flip(struct drm_device *dev,
11047                                  struct drm_crtc *crtc,
11048                                  struct drm_framebuffer *fb,
11049                                  struct drm_i915_gem_object *obj,
11050                                  struct drm_i915_gem_request *req,
11051                                  uint32_t flags)
11052 {
11053         struct intel_engine_cs *engine = req->engine;
11054         struct drm_i915_private *dev_priv = dev->dev_private;
11055         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11056         uint32_t pf, pipesrc;
11057         int ret;
11058
11059         ret = intel_ring_begin(req, 4);
11060         if (ret)
11061                 return ret;
11062
11063         /* i965+ uses the linear or tiled offsets from the
11064          * Display Registers (which do not change across a page-flip)
11065          * so we need only reprogram the base address.
11066          */
11067         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11068                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11069         intel_ring_emit(engine, fb->pitches[0]);
11070         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11071                         obj->tiling_mode);
11072
11073         /* XXX Enabling the panel-fitter across page-flip is so far
11074          * untested on non-native modes, so ignore it for now.
11075          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11076          */
11077         pf = 0;
11078         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11079         intel_ring_emit(engine, pf | pipesrc);
11080
11081         intel_mark_page_flip_active(intel_crtc->unpin_work);
11082         return 0;
11083 }
11084
11085 static int intel_gen6_queue_flip(struct drm_device *dev,
11086                                  struct drm_crtc *crtc,
11087                                  struct drm_framebuffer *fb,
11088                                  struct drm_i915_gem_object *obj,
11089                                  struct drm_i915_gem_request *req,
11090                                  uint32_t flags)
11091 {
11092         struct intel_engine_cs *engine = req->engine;
11093         struct drm_i915_private *dev_priv = dev->dev_private;
11094         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11095         uint32_t pf, pipesrc;
11096         int ret;
11097
11098         ret = intel_ring_begin(req, 4);
11099         if (ret)
11100                 return ret;
11101
11102         intel_ring_emit(engine, MI_DISPLAY_FLIP |
11103                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11104         intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11105         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11106
11107         /* Contrary to the suggestions in the documentation,
11108          * "Enable Panel Fitter" does not seem to be required when page
11109          * flipping with a non-native mode, and worse causes a normal
11110          * modeset to fail.
11111          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11112          */
11113         pf = 0;
11114         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11115         intel_ring_emit(engine, pf | pipesrc);
11116
11117         intel_mark_page_flip_active(intel_crtc->unpin_work);
11118         return 0;
11119 }
11120
11121 static int intel_gen7_queue_flip(struct drm_device *dev,
11122                                  struct drm_crtc *crtc,
11123                                  struct drm_framebuffer *fb,
11124                                  struct drm_i915_gem_object *obj,
11125                                  struct drm_i915_gem_request *req,
11126                                  uint32_t flags)
11127 {
11128         struct intel_engine_cs *engine = req->engine;
11129         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11130         uint32_t plane_bit = 0;
11131         int len, ret;
11132
11133         switch (intel_crtc->plane) {
11134         case PLANE_A:
11135                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11136                 break;
11137         case PLANE_B:
11138                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11139                 break;
11140         case PLANE_C:
11141                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11142                 break;
11143         default:
11144                 WARN_ONCE(1, "unknown plane in flip command\n");
11145                 return -ENODEV;
11146         }
11147
11148         len = 4;
11149         if (engine->id == RCS) {
11150                 len += 6;
11151                 /*
11152                  * On Gen 8, SRM is now taking an extra dword to accommodate
11153                  * 48bits addresses, and we need a NOOP for the batch size to
11154                  * stay even.
11155                  */
11156                 if (IS_GEN8(dev))
11157                         len += 2;
11158         }
11159
11160         /*
11161          * BSpec MI_DISPLAY_FLIP for IVB:
11162          * "The full packet must be contained within the same cache line."
11163          *
11164          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11165          * cacheline, if we ever start emitting more commands before
11166          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11167          * then do the cacheline alignment, and finally emit the
11168          * MI_DISPLAY_FLIP.
11169          */
11170         ret = intel_ring_cacheline_align(req);
11171         if (ret)
11172                 return ret;
11173
11174         ret = intel_ring_begin(req, len);
11175         if (ret)
11176                 return ret;
11177
11178         /* Unmask the flip-done completion message. Note that the bspec says that
11179          * we should do this for both the BCS and RCS, and that we must not unmask
11180          * more than one flip event at any time (or ensure that one flip message
11181          * can be sent by waiting for flip-done prior to queueing new flips).
11182          * Experimentation says that BCS works despite DERRMR masking all
11183          * flip-done completion events and that unmasking all planes at once
11184          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11185          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11186          */
11187         if (engine->id == RCS) {
11188                 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11189                 intel_ring_emit_reg(engine, DERRMR);
11190                 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11191                                           DERRMR_PIPEB_PRI_FLIP_DONE |
11192                                           DERRMR_PIPEC_PRI_FLIP_DONE));
11193                 if (IS_GEN8(dev))
11194                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11195                                               MI_SRM_LRM_GLOBAL_GTT);
11196                 else
11197                         intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11198                                               MI_SRM_LRM_GLOBAL_GTT);
11199                 intel_ring_emit_reg(engine, DERRMR);
11200                 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11201                 if (IS_GEN8(dev)) {
11202                         intel_ring_emit(engine, 0);
11203                         intel_ring_emit(engine, MI_NOOP);
11204                 }
11205         }
11206
11207         intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11208         intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11209         intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11210         intel_ring_emit(engine, (MI_NOOP));
11211
11212         intel_mark_page_flip_active(intel_crtc->unpin_work);
11213         return 0;
11214 }
11215
11216 static bool use_mmio_flip(struct intel_engine_cs *engine,
11217                           struct drm_i915_gem_object *obj)
11218 {
11219         /*
11220          * This is not being used for older platforms, because
11221          * non-availability of flip done interrupt forces us to use
11222          * CS flips. Older platforms derive flip done using some clever
11223          * tricks involving the flip_pending status bits and vblank irqs.
11224          * So using MMIO flips there would disrupt this mechanism.
11225          */
11226
11227         if (engine == NULL)
11228                 return true;
11229
11230         if (INTEL_INFO(engine->dev)->gen < 5)
11231                 return false;
11232
11233         if (i915.use_mmio_flip < 0)
11234                 return false;
11235         else if (i915.use_mmio_flip > 0)
11236                 return true;
11237         else if (i915.enable_execlists)
11238                 return true;
11239         else if (obj->base.dma_buf &&
11240                  !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11241                                                        false))
11242                 return true;
11243         else
11244                 return engine != i915_gem_request_get_engine(obj->last_write_req);
11245 }
11246
11247 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11248                              unsigned int rotation,
11249                              struct intel_unpin_work *work)
11250 {
11251         struct drm_device *dev = intel_crtc->base.dev;
11252         struct drm_i915_private *dev_priv = dev->dev_private;
11253         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11254         const enum pipe pipe = intel_crtc->pipe;
11255         u32 ctl, stride, tile_height;
11256
11257         ctl = I915_READ(PLANE_CTL(pipe, 0));
11258         ctl &= ~PLANE_CTL_TILED_MASK;
11259         switch (fb->modifier[0]) {
11260         case DRM_FORMAT_MOD_NONE:
11261                 break;
11262         case I915_FORMAT_MOD_X_TILED:
11263                 ctl |= PLANE_CTL_TILED_X;
11264                 break;
11265         case I915_FORMAT_MOD_Y_TILED:
11266                 ctl |= PLANE_CTL_TILED_Y;
11267                 break;
11268         case I915_FORMAT_MOD_Yf_TILED:
11269                 ctl |= PLANE_CTL_TILED_YF;
11270                 break;
11271         default:
11272                 MISSING_CASE(fb->modifier[0]);
11273         }
11274
11275         /*
11276          * The stride is either expressed as a multiple of 64 bytes chunks for
11277          * linear buffers or in number of tiles for tiled buffers.
11278          */
11279         if (intel_rotation_90_or_270(rotation)) {
11280                 /* stride = Surface height in tiles */
11281                 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11282                 stride = DIV_ROUND_UP(fb->height, tile_height);
11283         } else {
11284                 stride = fb->pitches[0] /
11285                         intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11286                                                   fb->pixel_format);
11287         }
11288
11289         /*
11290          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11291          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11292          */
11293         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11294         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11295
11296         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11297         POSTING_READ(PLANE_SURF(pipe, 0));
11298 }
11299
11300 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11301                              struct intel_unpin_work *work)
11302 {
11303         struct drm_device *dev = intel_crtc->base.dev;
11304         struct drm_i915_private *dev_priv = dev->dev_private;
11305         struct intel_framebuffer *intel_fb =
11306                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11307         struct drm_i915_gem_object *obj = intel_fb->obj;
11308         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11309         u32 dspcntr;
11310
11311         dspcntr = I915_READ(reg);
11312
11313         if (obj->tiling_mode != I915_TILING_NONE)
11314                 dspcntr |= DISPPLANE_TILED;
11315         else
11316                 dspcntr &= ~DISPPLANE_TILED;
11317
11318         I915_WRITE(reg, dspcntr);
11319
11320         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11321         POSTING_READ(DSPSURF(intel_crtc->plane));
11322 }
11323
11324 /*
11325  * XXX: This is the temporary way to update the plane registers until we get
11326  * around to using the usual plane update functions for MMIO flips
11327  */
11328 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11329 {
11330         struct intel_crtc *crtc = mmio_flip->crtc;
11331         struct intel_unpin_work *work;
11332
11333         spin_lock_irq(&crtc->base.dev->event_lock);
11334         work = crtc->unpin_work;
11335         spin_unlock_irq(&crtc->base.dev->event_lock);
11336         if (work == NULL)
11337                 return;
11338
11339         intel_mark_page_flip_active(work);
11340
11341         intel_pipe_update_start(crtc);
11342
11343         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11344                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11345         else
11346                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11347                 ilk_do_mmio_flip(crtc, work);
11348
11349         intel_pipe_update_end(crtc);
11350 }
11351
11352 static void intel_mmio_flip_work_func(struct work_struct *work)
11353 {
11354         struct intel_mmio_flip *mmio_flip =
11355                 container_of(work, struct intel_mmio_flip, work);
11356         struct intel_framebuffer *intel_fb =
11357                 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11358         struct drm_i915_gem_object *obj = intel_fb->obj;
11359
11360         if (mmio_flip->req) {
11361                 WARN_ON(__i915_wait_request(mmio_flip->req,
11362                                             mmio_flip->crtc->reset_counter,
11363                                             false, NULL,
11364                                             &mmio_flip->i915->rps.mmioflips));
11365                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11366         }
11367
11368         /* For framebuffer backed by dmabuf, wait for fence */
11369         if (obj->base.dma_buf)
11370                 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11371                                                             false, false,
11372                                                             MAX_SCHEDULE_TIMEOUT) < 0);
11373
11374         intel_do_mmio_flip(mmio_flip);
11375         kfree(mmio_flip);
11376 }
11377
11378 static int intel_queue_mmio_flip(struct drm_device *dev,
11379                                  struct drm_crtc *crtc,
11380                                  struct drm_i915_gem_object *obj)
11381 {
11382         struct intel_mmio_flip *mmio_flip;
11383
11384         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11385         if (mmio_flip == NULL)
11386                 return -ENOMEM;
11387
11388         mmio_flip->i915 = to_i915(dev);
11389         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11390         mmio_flip->crtc = to_intel_crtc(crtc);
11391         mmio_flip->rotation = crtc->primary->state->rotation;
11392
11393         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11394         schedule_work(&mmio_flip->work);
11395
11396         return 0;
11397 }
11398
11399 static int intel_default_queue_flip(struct drm_device *dev,
11400                                     struct drm_crtc *crtc,
11401                                     struct drm_framebuffer *fb,
11402                                     struct drm_i915_gem_object *obj,
11403                                     struct drm_i915_gem_request *req,
11404                                     uint32_t flags)
11405 {
11406         return -ENODEV;
11407 }
11408
11409 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11410                                          struct drm_crtc *crtc)
11411 {
11412         struct drm_i915_private *dev_priv = dev->dev_private;
11413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11414         struct intel_unpin_work *work = intel_crtc->unpin_work;
11415         u32 addr;
11416
11417         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11418                 return true;
11419
11420         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11421                 return false;
11422
11423         if (!work->enable_stall_check)
11424                 return false;
11425
11426         if (work->flip_ready_vblank == 0) {
11427                 if (work->flip_queued_req &&
11428                     !i915_gem_request_completed(work->flip_queued_req, true))
11429                         return false;
11430
11431                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11432         }
11433
11434         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11435                 return false;
11436
11437         /* Potential stall - if we see that the flip has happened,
11438          * assume a missed interrupt. */
11439         if (INTEL_INFO(dev)->gen >= 4)
11440                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11441         else
11442                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11443
11444         /* There is a potential issue here with a false positive after a flip
11445          * to the same address. We could address this by checking for a
11446          * non-incrementing frame counter.
11447          */
11448         return addr == work->gtt_offset;
11449 }
11450
11451 void intel_check_page_flip(struct drm_device *dev, int pipe)
11452 {
11453         struct drm_i915_private *dev_priv = dev->dev_private;
11454         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11455         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11456         struct intel_unpin_work *work;
11457
11458         WARN_ON(!in_interrupt());
11459
11460         if (crtc == NULL)
11461                 return;
11462
11463         spin_lock(&dev->event_lock);
11464         work = intel_crtc->unpin_work;
11465         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11466                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11467                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11468                 page_flip_completed(intel_crtc);
11469                 work = NULL;
11470         }
11471         if (work != NULL &&
11472             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11473                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11474         spin_unlock(&dev->event_lock);
11475 }
11476
11477 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11478                                 struct drm_framebuffer *fb,
11479                                 struct drm_pending_vblank_event *event,
11480                                 uint32_t page_flip_flags)
11481 {
11482         struct drm_device *dev = crtc->dev;
11483         struct drm_i915_private *dev_priv = dev->dev_private;
11484         struct drm_framebuffer *old_fb = crtc->primary->fb;
11485         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11487         struct drm_plane *primary = crtc->primary;
11488         enum pipe pipe = intel_crtc->pipe;
11489         struct intel_unpin_work *work;
11490         struct intel_engine_cs *engine;
11491         bool mmio_flip;
11492         struct drm_i915_gem_request *request = NULL;
11493         int ret;
11494
11495         /*
11496          * drm_mode_page_flip_ioctl() should already catch this, but double
11497          * check to be safe.  In the future we may enable pageflipping from
11498          * a disabled primary plane.
11499          */
11500         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11501                 return -EBUSY;
11502
11503         /* Can't change pixel format via MI display flips. */
11504         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11505                 return -EINVAL;
11506
11507         /*
11508          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11509          * Note that pitch changes could also affect these register.
11510          */
11511         if (INTEL_INFO(dev)->gen > 3 &&
11512             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11513              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11514                 return -EINVAL;
11515
11516         if (i915_terminally_wedged(&dev_priv->gpu_error))
11517                 goto out_hang;
11518
11519         work = kzalloc(sizeof(*work), GFP_KERNEL);
11520         if (work == NULL)
11521                 return -ENOMEM;
11522
11523         work->event = event;
11524         work->crtc = crtc;
11525         work->old_fb = old_fb;
11526         INIT_WORK(&work->work, intel_unpin_work_fn);
11527
11528         ret = drm_crtc_vblank_get(crtc);
11529         if (ret)
11530                 goto free_work;
11531
11532         /* We borrow the event spin lock for protecting unpin_work */
11533         spin_lock_irq(&dev->event_lock);
11534         if (intel_crtc->unpin_work) {
11535                 /* Before declaring the flip queue wedged, check if
11536                  * the hardware completed the operation behind our backs.
11537                  */
11538                 if (__intel_pageflip_stall_check(dev, crtc)) {
11539                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11540                         page_flip_completed(intel_crtc);
11541                 } else {
11542                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11543                         spin_unlock_irq(&dev->event_lock);
11544
11545                         drm_crtc_vblank_put(crtc);
11546                         kfree(work);
11547                         return -EBUSY;
11548                 }
11549         }
11550         intel_crtc->unpin_work = work;
11551         spin_unlock_irq(&dev->event_lock);
11552
11553         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11554                 flush_workqueue(dev_priv->wq);
11555
11556         /* Reference the objects for the scheduled work. */
11557         drm_framebuffer_reference(work->old_fb);
11558         drm_gem_object_reference(&obj->base);
11559
11560         crtc->primary->fb = fb;
11561         update_state_fb(crtc->primary);
11562         intel_fbc_pre_update(intel_crtc);
11563
11564         work->pending_flip_obj = obj;
11565
11566         ret = i915_mutex_lock_interruptible(dev);
11567         if (ret)
11568                 goto cleanup;
11569
11570         atomic_inc(&intel_crtc->unpin_work_count);
11571         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11572
11573         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11574                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11575
11576         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11577                 engine = &dev_priv->engine[BCS];
11578                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11579                         /* vlv: DISPLAY_FLIP fails to change tiling */
11580                         engine = NULL;
11581         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11582                 engine = &dev_priv->engine[BCS];
11583         } else if (INTEL_INFO(dev)->gen >= 7) {
11584                 engine = i915_gem_request_get_engine(obj->last_write_req);
11585                 if (engine == NULL || engine->id != RCS)
11586                         engine = &dev_priv->engine[BCS];
11587         } else {
11588                 engine = &dev_priv->engine[RCS];
11589         }
11590
11591         mmio_flip = use_mmio_flip(engine, obj);
11592
11593         /* When using CS flips, we want to emit semaphores between rings.
11594          * However, when using mmio flips we will create a task to do the
11595          * synchronisation, so all we want here is to pin the framebuffer
11596          * into the display plane and skip any waits.
11597          */
11598         if (!mmio_flip) {
11599                 ret = i915_gem_object_sync(obj, engine, &request);
11600                 if (ret)
11601                         goto cleanup_pending;
11602         }
11603
11604         ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11605         if (ret)
11606                 goto cleanup_pending;
11607
11608         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11609                                                   obj, 0);
11610         work->gtt_offset += intel_crtc->dspaddr_offset;
11611
11612         if (mmio_flip) {
11613                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11614                 if (ret)
11615                         goto cleanup_unpin;
11616
11617                 i915_gem_request_assign(&work->flip_queued_req,
11618                                         obj->last_write_req);
11619         } else {
11620                 if (!request) {
11621                         request = i915_gem_request_alloc(engine, NULL);
11622                         if (IS_ERR(request)) {
11623                                 ret = PTR_ERR(request);
11624                                 goto cleanup_unpin;
11625                         }
11626                 }
11627
11628                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11629                                                    page_flip_flags);
11630                 if (ret)
11631                         goto cleanup_unpin;
11632
11633                 i915_gem_request_assign(&work->flip_queued_req, request);
11634         }
11635
11636         if (request)
11637                 i915_add_request_no_flush(request);
11638
11639         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11640         work->enable_stall_check = true;
11641
11642         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11643                           to_intel_plane(primary)->frontbuffer_bit);
11644         mutex_unlock(&dev->struct_mutex);
11645
11646         intel_frontbuffer_flip_prepare(dev,
11647                                        to_intel_plane(primary)->frontbuffer_bit);
11648
11649         trace_i915_flip_request(intel_crtc->plane, obj);
11650
11651         return 0;
11652
11653 cleanup_unpin:
11654         intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11655 cleanup_pending:
11656         if (!IS_ERR_OR_NULL(request))
11657                 i915_gem_request_cancel(request);
11658         atomic_dec(&intel_crtc->unpin_work_count);
11659         mutex_unlock(&dev->struct_mutex);
11660 cleanup:
11661         crtc->primary->fb = old_fb;
11662         update_state_fb(crtc->primary);
11663
11664         drm_gem_object_unreference_unlocked(&obj->base);
11665         drm_framebuffer_unreference(work->old_fb);
11666
11667         spin_lock_irq(&dev->event_lock);
11668         intel_crtc->unpin_work = NULL;
11669         spin_unlock_irq(&dev->event_lock);
11670
11671         drm_crtc_vblank_put(crtc);
11672 free_work:
11673         kfree(work);
11674
11675         if (ret == -EIO) {
11676                 struct drm_atomic_state *state;
11677                 struct drm_plane_state *plane_state;
11678
11679 out_hang:
11680                 state = drm_atomic_state_alloc(dev);
11681                 if (!state)
11682                         return -ENOMEM;
11683                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11684
11685 retry:
11686                 plane_state = drm_atomic_get_plane_state(state, primary);
11687                 ret = PTR_ERR_OR_ZERO(plane_state);
11688                 if (!ret) {
11689                         drm_atomic_set_fb_for_plane(plane_state, fb);
11690
11691                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11692                         if (!ret)
11693                                 ret = drm_atomic_commit(state);
11694                 }
11695
11696                 if (ret == -EDEADLK) {
11697                         drm_modeset_backoff(state->acquire_ctx);
11698                         drm_atomic_state_clear(state);
11699                         goto retry;
11700                 }
11701
11702                 if (ret)
11703                         drm_atomic_state_free(state);
11704
11705                 if (ret == 0 && event) {
11706                         spin_lock_irq(&dev->event_lock);
11707                         drm_send_vblank_event(dev, pipe, event);
11708                         spin_unlock_irq(&dev->event_lock);
11709                 }
11710         }
11711         return ret;
11712 }
11713
11714
11715 /**
11716  * intel_wm_need_update - Check whether watermarks need updating
11717  * @plane: drm plane
11718  * @state: new plane state
11719  *
11720  * Check current plane state versus the new one to determine whether
11721  * watermarks need to be recalculated.
11722  *
11723  * Returns true or false.
11724  */
11725 static bool intel_wm_need_update(struct drm_plane *plane,
11726                                  struct drm_plane_state *state)
11727 {
11728         struct intel_plane_state *new = to_intel_plane_state(state);
11729         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11730
11731         /* Update watermarks on tiling or size changes. */
11732         if (new->visible != cur->visible)
11733                 return true;
11734
11735         if (!cur->base.fb || !new->base.fb)
11736                 return false;
11737
11738         if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11739             cur->base.rotation != new->base.rotation ||
11740             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11741             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11742             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11743             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11744                 return true;
11745
11746         return false;
11747 }
11748
11749 static bool needs_scaling(struct intel_plane_state *state)
11750 {
11751         int src_w = drm_rect_width(&state->src) >> 16;
11752         int src_h = drm_rect_height(&state->src) >> 16;
11753         int dst_w = drm_rect_width(&state->dst);
11754         int dst_h = drm_rect_height(&state->dst);
11755
11756         return (src_w != dst_w || src_h != dst_h);
11757 }
11758
11759 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11760                                     struct drm_plane_state *plane_state)
11761 {
11762         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11763         struct drm_crtc *crtc = crtc_state->crtc;
11764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11765         struct drm_plane *plane = plane_state->plane;
11766         struct drm_device *dev = crtc->dev;
11767         struct drm_i915_private *dev_priv = to_i915(dev);
11768         struct intel_plane_state *old_plane_state =
11769                 to_intel_plane_state(plane->state);
11770         int idx = intel_crtc->base.base.id, ret;
11771         bool mode_changed = needs_modeset(crtc_state);
11772         bool was_crtc_enabled = crtc->state->active;
11773         bool is_crtc_enabled = crtc_state->active;
11774         bool turn_off, turn_on, visible, was_visible;
11775         struct drm_framebuffer *fb = plane_state->fb;
11776
11777         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11778             plane->type != DRM_PLANE_TYPE_CURSOR) {
11779                 ret = skl_update_scaler_plane(
11780                         to_intel_crtc_state(crtc_state),
11781                         to_intel_plane_state(plane_state));
11782                 if (ret)
11783                         return ret;
11784         }
11785
11786         was_visible = old_plane_state->visible;
11787         visible = to_intel_plane_state(plane_state)->visible;
11788
11789         if (!was_crtc_enabled && WARN_ON(was_visible))
11790                 was_visible = false;
11791
11792         /*
11793          * Visibility is calculated as if the crtc was on, but
11794          * after scaler setup everything depends on it being off
11795          * when the crtc isn't active.
11796          */
11797         if (!is_crtc_enabled)
11798                 to_intel_plane_state(plane_state)->visible = visible = false;
11799
11800         if (!was_visible && !visible)
11801                 return 0;
11802
11803         if (fb != old_plane_state->base.fb)
11804                 pipe_config->fb_changed = true;
11805
11806         turn_off = was_visible && (!visible || mode_changed);
11807         turn_on = visible && (!was_visible || mode_changed);
11808
11809         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11810                          plane->base.id, fb ? fb->base.id : -1);
11811
11812         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11813                          plane->base.id, was_visible, visible,
11814                          turn_off, turn_on, mode_changed);
11815
11816         if (turn_on) {
11817                 pipe_config->update_wm_pre = true;
11818
11819                 /* must disable cxsr around plane enable/disable */
11820                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11821                         pipe_config->disable_cxsr = true;
11822         } else if (turn_off) {
11823                 pipe_config->update_wm_post = true;
11824
11825                 /* must disable cxsr around plane enable/disable */
11826                 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11827                         pipe_config->disable_cxsr = true;
11828         } else if (intel_wm_need_update(plane, plane_state)) {
11829                 /* FIXME bollocks */
11830                 pipe_config->update_wm_pre = true;
11831                 pipe_config->update_wm_post = true;
11832         }
11833
11834         /* Pre-gen9 platforms need two-step watermark updates */
11835         if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11836             INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11837                 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11838
11839         if (visible || was_visible)
11840                 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11841
11842         /*
11843          * WaCxSRDisabledForSpriteScaling:ivb
11844          *
11845          * cstate->update_wm was already set above, so this flag will
11846          * take effect when we commit and program watermarks.
11847          */
11848         if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11849             needs_scaling(to_intel_plane_state(plane_state)) &&
11850             !needs_scaling(old_plane_state))
11851                 pipe_config->disable_lp_wm = true;
11852
11853         return 0;
11854 }
11855
11856 static bool encoders_cloneable(const struct intel_encoder *a,
11857                                const struct intel_encoder *b)
11858 {
11859         /* masks could be asymmetric, so check both ways */
11860         return a == b || (a->cloneable & (1 << b->type) &&
11861                           b->cloneable & (1 << a->type));
11862 }
11863
11864 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11865                                          struct intel_crtc *crtc,
11866                                          struct intel_encoder *encoder)
11867 {
11868         struct intel_encoder *source_encoder;
11869         struct drm_connector *connector;
11870         struct drm_connector_state *connector_state;
11871         int i;
11872
11873         for_each_connector_in_state(state, connector, connector_state, i) {
11874                 if (connector_state->crtc != &crtc->base)
11875                         continue;
11876
11877                 source_encoder =
11878                         to_intel_encoder(connector_state->best_encoder);
11879                 if (!encoders_cloneable(encoder, source_encoder))
11880                         return false;
11881         }
11882
11883         return true;
11884 }
11885
11886 static bool check_encoder_cloning(struct drm_atomic_state *state,
11887                                   struct intel_crtc *crtc)
11888 {
11889         struct intel_encoder *encoder;
11890         struct drm_connector *connector;
11891         struct drm_connector_state *connector_state;
11892         int i;
11893
11894         for_each_connector_in_state(state, connector, connector_state, i) {
11895                 if (connector_state->crtc != &crtc->base)
11896                         continue;
11897
11898                 encoder = to_intel_encoder(connector_state->best_encoder);
11899                 if (!check_single_encoder_cloning(state, crtc, encoder))
11900                         return false;
11901         }
11902
11903         return true;
11904 }
11905
11906 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11907                                    struct drm_crtc_state *crtc_state)
11908 {
11909         struct drm_device *dev = crtc->dev;
11910         struct drm_i915_private *dev_priv = dev->dev_private;
11911         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11912         struct intel_crtc_state *pipe_config =
11913                 to_intel_crtc_state(crtc_state);
11914         struct drm_atomic_state *state = crtc_state->state;
11915         int ret;
11916         bool mode_changed = needs_modeset(crtc_state);
11917
11918         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11919                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11920                 return -EINVAL;
11921         }
11922
11923         if (mode_changed && !crtc_state->active)
11924                 pipe_config->update_wm_post = true;
11925
11926         if (mode_changed && crtc_state->enable &&
11927             dev_priv->display.crtc_compute_clock &&
11928             !WARN_ON(pipe_config->shared_dpll)) {
11929                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11930                                                            pipe_config);
11931                 if (ret)
11932                         return ret;
11933         }
11934
11935         if (crtc_state->color_mgmt_changed) {
11936                 ret = intel_color_check(crtc, crtc_state);
11937                 if (ret)
11938                         return ret;
11939         }
11940
11941         ret = 0;
11942         if (dev_priv->display.compute_pipe_wm) {
11943                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11944                 if (ret) {
11945                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11946                         return ret;
11947                 }
11948         }
11949
11950         if (dev_priv->display.compute_intermediate_wm &&
11951             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11952                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11953                         return 0;
11954
11955                 /*
11956                  * Calculate 'intermediate' watermarks that satisfy both the
11957                  * old state and the new state.  We can program these
11958                  * immediately.
11959                  */
11960                 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11961                                                                 intel_crtc,
11962                                                                 pipe_config);
11963                 if (ret) {
11964                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11965                         return ret;
11966                 }
11967         }
11968
11969         if (INTEL_INFO(dev)->gen >= 9) {
11970                 if (mode_changed)
11971                         ret = skl_update_scaler_crtc(pipe_config);
11972
11973                 if (!ret)
11974                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11975                                                          pipe_config);
11976         }
11977
11978         return ret;
11979 }
11980
11981 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11982         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11983         .atomic_begin = intel_begin_crtc_commit,
11984         .atomic_flush = intel_finish_crtc_commit,
11985         .atomic_check = intel_crtc_atomic_check,
11986 };
11987
11988 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11989 {
11990         struct intel_connector *connector;
11991
11992         for_each_intel_connector(dev, connector) {
11993                 if (connector->base.encoder) {
11994                         connector->base.state->best_encoder =
11995                                 connector->base.encoder;
11996                         connector->base.state->crtc =
11997                                 connector->base.encoder->crtc;
11998                 } else {
11999                         connector->base.state->best_encoder = NULL;
12000                         connector->base.state->crtc = NULL;
12001                 }
12002         }
12003 }
12004
12005 static void
12006 connected_sink_compute_bpp(struct intel_connector *connector,
12007                            struct intel_crtc_state *pipe_config)
12008 {
12009         int bpp = pipe_config->pipe_bpp;
12010
12011         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12012                 connector->base.base.id,
12013                 connector->base.name);
12014
12015         /* Don't use an invalid EDID bpc value */
12016         if (connector->base.display_info.bpc &&
12017             connector->base.display_info.bpc * 3 < bpp) {
12018                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12019                               bpp, connector->base.display_info.bpc*3);
12020                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12021         }
12022
12023         /* Clamp bpp to default limit on screens without EDID 1.4 */
12024         if (connector->base.display_info.bpc == 0) {
12025                 int type = connector->base.connector_type;
12026                 int clamp_bpp = 24;
12027
12028                 /* Fall back to 18 bpp when DP sink capability is unknown. */
12029                 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12030                     type == DRM_MODE_CONNECTOR_eDP)
12031                         clamp_bpp = 18;
12032
12033                 if (bpp > clamp_bpp) {
12034                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12035                                       bpp, clamp_bpp);
12036                         pipe_config->pipe_bpp = clamp_bpp;
12037                 }
12038         }
12039 }
12040
12041 static int
12042 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12043                           struct intel_crtc_state *pipe_config)
12044 {
12045         struct drm_device *dev = crtc->base.dev;
12046         struct drm_atomic_state *state;
12047         struct drm_connector *connector;
12048         struct drm_connector_state *connector_state;
12049         int bpp, i;
12050
12051         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12052                 bpp = 10*3;
12053         else if (INTEL_INFO(dev)->gen >= 5)
12054                 bpp = 12*3;
12055         else
12056                 bpp = 8*3;
12057
12058
12059         pipe_config->pipe_bpp = bpp;
12060
12061         state = pipe_config->base.state;
12062
12063         /* Clamp display bpp to EDID value */
12064         for_each_connector_in_state(state, connector, connector_state, i) {
12065                 if (connector_state->crtc != &crtc->base)
12066                         continue;
12067
12068                 connected_sink_compute_bpp(to_intel_connector(connector),
12069                                            pipe_config);
12070         }
12071
12072         return bpp;
12073 }
12074
12075 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12076 {
12077         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12078                         "type: 0x%x flags: 0x%x\n",
12079                 mode->crtc_clock,
12080                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12081                 mode->crtc_hsync_end, mode->crtc_htotal,
12082                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12083                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12084 }
12085
12086 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12087                                    struct intel_crtc_state *pipe_config,
12088                                    const char *context)
12089 {
12090         struct drm_device *dev = crtc->base.dev;
12091         struct drm_plane *plane;
12092         struct intel_plane *intel_plane;
12093         struct intel_plane_state *state;
12094         struct drm_framebuffer *fb;
12095
12096         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12097                       context, pipe_config, pipe_name(crtc->pipe));
12098
12099         DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12100         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12101                       pipe_config->pipe_bpp, pipe_config->dither);
12102         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12103                       pipe_config->has_pch_encoder,
12104                       pipe_config->fdi_lanes,
12105                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12106                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12107                       pipe_config->fdi_m_n.tu);
12108         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12109                       pipe_config->has_dp_encoder,
12110                       pipe_config->lane_count,
12111                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12112                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12113                       pipe_config->dp_m_n.tu);
12114
12115         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12116                       pipe_config->has_dp_encoder,
12117                       pipe_config->lane_count,
12118                       pipe_config->dp_m2_n2.gmch_m,
12119                       pipe_config->dp_m2_n2.gmch_n,
12120                       pipe_config->dp_m2_n2.link_m,
12121                       pipe_config->dp_m2_n2.link_n,
12122                       pipe_config->dp_m2_n2.tu);
12123
12124         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12125                       pipe_config->has_audio,
12126                       pipe_config->has_infoframe);
12127
12128         DRM_DEBUG_KMS("requested mode:\n");
12129         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12130         DRM_DEBUG_KMS("adjusted mode:\n");
12131         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12132         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12133         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12134         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12135                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12136         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12137                       crtc->num_scalers,
12138                       pipe_config->scaler_state.scaler_users,
12139                       pipe_config->scaler_state.scaler_id);
12140         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12141                       pipe_config->gmch_pfit.control,
12142                       pipe_config->gmch_pfit.pgm_ratios,
12143                       pipe_config->gmch_pfit.lvds_border_bits);
12144         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12145                       pipe_config->pch_pfit.pos,
12146                       pipe_config->pch_pfit.size,
12147                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12148         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12149         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12150
12151         if (IS_BROXTON(dev)) {
12152                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12153                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12154                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12155                               pipe_config->ddi_pll_sel,
12156                               pipe_config->dpll_hw_state.ebb0,
12157                               pipe_config->dpll_hw_state.ebb4,
12158                               pipe_config->dpll_hw_state.pll0,
12159                               pipe_config->dpll_hw_state.pll1,
12160                               pipe_config->dpll_hw_state.pll2,
12161                               pipe_config->dpll_hw_state.pll3,
12162                               pipe_config->dpll_hw_state.pll6,
12163                               pipe_config->dpll_hw_state.pll8,
12164                               pipe_config->dpll_hw_state.pll9,
12165                               pipe_config->dpll_hw_state.pll10,
12166                               pipe_config->dpll_hw_state.pcsdw12);
12167         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12168                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12169                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12170                               pipe_config->ddi_pll_sel,
12171                               pipe_config->dpll_hw_state.ctrl1,
12172                               pipe_config->dpll_hw_state.cfgcr1,
12173                               pipe_config->dpll_hw_state.cfgcr2);
12174         } else if (HAS_DDI(dev)) {
12175                 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12176                               pipe_config->ddi_pll_sel,
12177                               pipe_config->dpll_hw_state.wrpll,
12178                               pipe_config->dpll_hw_state.spll);
12179         } else {
12180                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12181                               "fp0: 0x%x, fp1: 0x%x\n",
12182                               pipe_config->dpll_hw_state.dpll,
12183                               pipe_config->dpll_hw_state.dpll_md,
12184                               pipe_config->dpll_hw_state.fp0,
12185                               pipe_config->dpll_hw_state.fp1);
12186         }
12187
12188         DRM_DEBUG_KMS("planes on this crtc\n");
12189         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12190                 intel_plane = to_intel_plane(plane);
12191                 if (intel_plane->pipe != crtc->pipe)
12192                         continue;
12193
12194                 state = to_intel_plane_state(plane->state);
12195                 fb = state->base.fb;
12196                 if (!fb) {
12197                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12198                                 "disabled, scaler_id = %d\n",
12199                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12200                                 plane->base.id, intel_plane->pipe,
12201                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12202                                 drm_plane_index(plane), state->scaler_id);
12203                         continue;
12204                 }
12205
12206                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12207                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12208                         plane->base.id, intel_plane->pipe,
12209                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12210                         drm_plane_index(plane));
12211                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12212                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12213                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12214                         state->scaler_id,
12215                         state->src.x1 >> 16, state->src.y1 >> 16,
12216                         drm_rect_width(&state->src) >> 16,
12217                         drm_rect_height(&state->src) >> 16,
12218                         state->dst.x1, state->dst.y1,
12219                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12220         }
12221 }
12222
12223 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12224 {
12225         struct drm_device *dev = state->dev;
12226         struct drm_connector *connector;
12227         unsigned int used_ports = 0;
12228
12229         /*
12230          * Walk the connector list instead of the encoder
12231          * list to detect the problem on ddi platforms
12232          * where there's just one encoder per digital port.
12233          */
12234         drm_for_each_connector(connector, dev) {
12235                 struct drm_connector_state *connector_state;
12236                 struct intel_encoder *encoder;
12237
12238                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12239                 if (!connector_state)
12240                         connector_state = connector->state;
12241
12242                 if (!connector_state->best_encoder)
12243                         continue;
12244
12245                 encoder = to_intel_encoder(connector_state->best_encoder);
12246
12247                 WARN_ON(!connector_state->crtc);
12248
12249                 switch (encoder->type) {
12250                         unsigned int port_mask;
12251                 case INTEL_OUTPUT_UNKNOWN:
12252                         if (WARN_ON(!HAS_DDI(dev)))
12253                                 break;
12254                 case INTEL_OUTPUT_DISPLAYPORT:
12255                 case INTEL_OUTPUT_HDMI:
12256                 case INTEL_OUTPUT_EDP:
12257                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12258
12259                         /* the same port mustn't appear more than once */
12260                         if (used_ports & port_mask)
12261                                 return false;
12262
12263                         used_ports |= port_mask;
12264                 default:
12265                         break;
12266                 }
12267         }
12268
12269         return true;
12270 }
12271
12272 static void
12273 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12274 {
12275         struct drm_crtc_state tmp_state;
12276         struct intel_crtc_scaler_state scaler_state;
12277         struct intel_dpll_hw_state dpll_hw_state;
12278         struct intel_shared_dpll *shared_dpll;
12279         uint32_t ddi_pll_sel;
12280         bool force_thru;
12281
12282         /* FIXME: before the switch to atomic started, a new pipe_config was
12283          * kzalloc'd. Code that depends on any field being zero should be
12284          * fixed, so that the crtc_state can be safely duplicated. For now,
12285          * only fields that are know to not cause problems are preserved. */
12286
12287         tmp_state = crtc_state->base;
12288         scaler_state = crtc_state->scaler_state;
12289         shared_dpll = crtc_state->shared_dpll;
12290         dpll_hw_state = crtc_state->dpll_hw_state;
12291         ddi_pll_sel = crtc_state->ddi_pll_sel;
12292         force_thru = crtc_state->pch_pfit.force_thru;
12293
12294         memset(crtc_state, 0, sizeof *crtc_state);
12295
12296         crtc_state->base = tmp_state;
12297         crtc_state->scaler_state = scaler_state;
12298         crtc_state->shared_dpll = shared_dpll;
12299         crtc_state->dpll_hw_state = dpll_hw_state;
12300         crtc_state->ddi_pll_sel = ddi_pll_sel;
12301         crtc_state->pch_pfit.force_thru = force_thru;
12302 }
12303
12304 static int
12305 intel_modeset_pipe_config(struct drm_crtc *crtc,
12306                           struct intel_crtc_state *pipe_config)
12307 {
12308         struct drm_atomic_state *state = pipe_config->base.state;
12309         struct intel_encoder *encoder;
12310         struct drm_connector *connector;
12311         struct drm_connector_state *connector_state;
12312         int base_bpp, ret = -EINVAL;
12313         int i;
12314         bool retry = true;
12315
12316         clear_intel_crtc_state(pipe_config);
12317
12318         pipe_config->cpu_transcoder =
12319                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12320
12321         /*
12322          * Sanitize sync polarity flags based on requested ones. If neither
12323          * positive or negative polarity is requested, treat this as meaning
12324          * negative polarity.
12325          */
12326         if (!(pipe_config->base.adjusted_mode.flags &
12327               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12328                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12329
12330         if (!(pipe_config->base.adjusted_mode.flags &
12331               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12332                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12333
12334         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12335                                              pipe_config);
12336         if (base_bpp < 0)
12337                 goto fail;
12338
12339         /*
12340          * Determine the real pipe dimensions. Note that stereo modes can
12341          * increase the actual pipe size due to the frame doubling and
12342          * insertion of additional space for blanks between the frame. This
12343          * is stored in the crtc timings. We use the requested mode to do this
12344          * computation to clearly distinguish it from the adjusted mode, which
12345          * can be changed by the connectors in the below retry loop.
12346          */
12347         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12348                                &pipe_config->pipe_src_w,
12349                                &pipe_config->pipe_src_h);
12350
12351 encoder_retry:
12352         /* Ensure the port clock defaults are reset when retrying. */
12353         pipe_config->port_clock = 0;
12354         pipe_config->pixel_multiplier = 1;
12355
12356         /* Fill in default crtc timings, allow encoders to overwrite them. */
12357         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12358                               CRTC_STEREO_DOUBLE);
12359
12360         /* Pass our mode to the connectors and the CRTC to give them a chance to
12361          * adjust it according to limitations or connector properties, and also
12362          * a chance to reject the mode entirely.
12363          */
12364         for_each_connector_in_state(state, connector, connector_state, i) {
12365                 if (connector_state->crtc != crtc)
12366                         continue;
12367
12368                 encoder = to_intel_encoder(connector_state->best_encoder);
12369
12370                 if (!(encoder->compute_config(encoder, pipe_config))) {
12371                         DRM_DEBUG_KMS("Encoder config failure\n");
12372                         goto fail;
12373                 }
12374         }
12375
12376         /* Set default port clock if not overwritten by the encoder. Needs to be
12377          * done afterwards in case the encoder adjusts the mode. */
12378         if (!pipe_config->port_clock)
12379                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12380                         * pipe_config->pixel_multiplier;
12381
12382         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12383         if (ret < 0) {
12384                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12385                 goto fail;
12386         }
12387
12388         if (ret == RETRY) {
12389                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12390                         ret = -EINVAL;
12391                         goto fail;
12392                 }
12393
12394                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12395                 retry = false;
12396                 goto encoder_retry;
12397         }
12398
12399         /* Dithering seems to not pass-through bits correctly when it should, so
12400          * only enable it on 6bpc panels. */
12401         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12402         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12403                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12404
12405 fail:
12406         return ret;
12407 }
12408
12409 static void
12410 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12411 {
12412         struct drm_crtc *crtc;
12413         struct drm_crtc_state *crtc_state;
12414         int i;
12415
12416         /* Double check state. */
12417         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12418                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12419
12420                 /* Update hwmode for vblank functions */
12421                 if (crtc->state->active)
12422                         crtc->hwmode = crtc->state->adjusted_mode;
12423                 else
12424                         crtc->hwmode.crtc_clock = 0;
12425
12426                 /*
12427                  * Update legacy state to satisfy fbc code. This can
12428                  * be removed when fbc uses the atomic state.
12429                  */
12430                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12431                         struct drm_plane_state *plane_state = crtc->primary->state;
12432
12433                         crtc->primary->fb = plane_state->fb;
12434                         crtc->x = plane_state->src_x >> 16;
12435                         crtc->y = plane_state->src_y >> 16;
12436                 }
12437         }
12438 }
12439
12440 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12441 {
12442         int diff;
12443
12444         if (clock1 == clock2)
12445                 return true;
12446
12447         if (!clock1 || !clock2)
12448                 return false;
12449
12450         diff = abs(clock1 - clock2);
12451
12452         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12453                 return true;
12454
12455         return false;
12456 }
12457
12458 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12459         list_for_each_entry((intel_crtc), \
12460                             &(dev)->mode_config.crtc_list, \
12461                             base.head) \
12462                 for_each_if (mask & (1 <<(intel_crtc)->pipe))
12463
12464 static bool
12465 intel_compare_m_n(unsigned int m, unsigned int n,
12466                   unsigned int m2, unsigned int n2,
12467                   bool exact)
12468 {
12469         if (m == m2 && n == n2)
12470                 return true;
12471
12472         if (exact || !m || !n || !m2 || !n2)
12473                 return false;
12474
12475         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12476
12477         if (n > n2) {
12478                 while (n > n2) {
12479                         m2 <<= 1;
12480                         n2 <<= 1;
12481                 }
12482         } else if (n < n2) {
12483                 while (n < n2) {
12484                         m <<= 1;
12485                         n <<= 1;
12486                 }
12487         }
12488
12489         if (n != n2)
12490                 return false;
12491
12492         return intel_fuzzy_clock_check(m, m2);
12493 }
12494
12495 static bool
12496 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12497                        struct intel_link_m_n *m2_n2,
12498                        bool adjust)
12499 {
12500         if (m_n->tu == m2_n2->tu &&
12501             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12502                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12503             intel_compare_m_n(m_n->link_m, m_n->link_n,
12504                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12505                 if (adjust)
12506                         *m2_n2 = *m_n;
12507
12508                 return true;
12509         }
12510
12511         return false;
12512 }
12513
12514 static bool
12515 intel_pipe_config_compare(struct drm_device *dev,
12516                           struct intel_crtc_state *current_config,
12517                           struct intel_crtc_state *pipe_config,
12518                           bool adjust)
12519 {
12520         bool ret = true;
12521
12522 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12523         do { \
12524                 if (!adjust) \
12525                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12526                 else \
12527                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12528         } while (0)
12529
12530 #define PIPE_CONF_CHECK_X(name) \
12531         if (current_config->name != pipe_config->name) { \
12532                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12533                           "(expected 0x%08x, found 0x%08x)\n", \
12534                           current_config->name, \
12535                           pipe_config->name); \
12536                 ret = false; \
12537         }
12538
12539 #define PIPE_CONF_CHECK_I(name) \
12540         if (current_config->name != pipe_config->name) { \
12541                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12542                           "(expected %i, found %i)\n", \
12543                           current_config->name, \
12544                           pipe_config->name); \
12545                 ret = false; \
12546         }
12547
12548 #define PIPE_CONF_CHECK_P(name) \
12549         if (current_config->name != pipe_config->name) { \
12550                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12551                           "(expected %p, found %p)\n", \
12552                           current_config->name, \
12553                           pipe_config->name); \
12554                 ret = false; \
12555         }
12556
12557 #define PIPE_CONF_CHECK_M_N(name) \
12558         if (!intel_compare_link_m_n(&current_config->name, \
12559                                     &pipe_config->name,\
12560                                     adjust)) { \
12561                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12562                           "(expected tu %i gmch %i/%i link %i/%i, " \
12563                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12564                           current_config->name.tu, \
12565                           current_config->name.gmch_m, \
12566                           current_config->name.gmch_n, \
12567                           current_config->name.link_m, \
12568                           current_config->name.link_n, \
12569                           pipe_config->name.tu, \
12570                           pipe_config->name.gmch_m, \
12571                           pipe_config->name.gmch_n, \
12572                           pipe_config->name.link_m, \
12573                           pipe_config->name.link_n); \
12574                 ret = false; \
12575         }
12576
12577 /* This is required for BDW+ where there is only one set of registers for
12578  * switching between high and low RR.
12579  * This macro can be used whenever a comparison has to be made between one
12580  * hw state and multiple sw state variables.
12581  */
12582 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12583         if (!intel_compare_link_m_n(&current_config->name, \
12584                                     &pipe_config->name, adjust) && \
12585             !intel_compare_link_m_n(&current_config->alt_name, \
12586                                     &pipe_config->name, adjust)) { \
12587                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12588                           "(expected tu %i gmch %i/%i link %i/%i, " \
12589                           "or tu %i gmch %i/%i link %i/%i, " \
12590                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12591                           current_config->name.tu, \
12592                           current_config->name.gmch_m, \
12593                           current_config->name.gmch_n, \
12594                           current_config->name.link_m, \
12595                           current_config->name.link_n, \
12596                           current_config->alt_name.tu, \
12597                           current_config->alt_name.gmch_m, \
12598                           current_config->alt_name.gmch_n, \
12599                           current_config->alt_name.link_m, \
12600                           current_config->alt_name.link_n, \
12601                           pipe_config->name.tu, \
12602                           pipe_config->name.gmch_m, \
12603                           pipe_config->name.gmch_n, \
12604                           pipe_config->name.link_m, \
12605                           pipe_config->name.link_n); \
12606                 ret = false; \
12607         }
12608
12609 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12610         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12611                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12612                           "(expected %i, found %i)\n", \
12613                           current_config->name & (mask), \
12614                           pipe_config->name & (mask)); \
12615                 ret = false; \
12616         }
12617
12618 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12619         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12620                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12621                           "(expected %i, found %i)\n", \
12622                           current_config->name, \
12623                           pipe_config->name); \
12624                 ret = false; \
12625         }
12626
12627 #define PIPE_CONF_QUIRK(quirk)  \
12628         ((current_config->quirks | pipe_config->quirks) & (quirk))
12629
12630         PIPE_CONF_CHECK_I(cpu_transcoder);
12631
12632         PIPE_CONF_CHECK_I(has_pch_encoder);
12633         PIPE_CONF_CHECK_I(fdi_lanes);
12634         PIPE_CONF_CHECK_M_N(fdi_m_n);
12635
12636         PIPE_CONF_CHECK_I(has_dp_encoder);
12637         PIPE_CONF_CHECK_I(lane_count);
12638
12639         if (INTEL_INFO(dev)->gen < 8) {
12640                 PIPE_CONF_CHECK_M_N(dp_m_n);
12641
12642                 if (current_config->has_drrs)
12643                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12644         } else
12645                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12646
12647         PIPE_CONF_CHECK_I(has_dsi_encoder);
12648
12649         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12650         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12651         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12652         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12653         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12654         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12655
12656         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12657         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12658         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12659         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12660         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12661         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12662
12663         PIPE_CONF_CHECK_I(pixel_multiplier);
12664         PIPE_CONF_CHECK_I(has_hdmi_sink);
12665         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12666             IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12667                 PIPE_CONF_CHECK_I(limited_color_range);
12668         PIPE_CONF_CHECK_I(has_infoframe);
12669
12670         PIPE_CONF_CHECK_I(has_audio);
12671
12672         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12673                               DRM_MODE_FLAG_INTERLACE);
12674
12675         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12676                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12677                                       DRM_MODE_FLAG_PHSYNC);
12678                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12679                                       DRM_MODE_FLAG_NHSYNC);
12680                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12681                                       DRM_MODE_FLAG_PVSYNC);
12682                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12683                                       DRM_MODE_FLAG_NVSYNC);
12684         }
12685
12686         PIPE_CONF_CHECK_X(gmch_pfit.control);
12687         /* pfit ratios are autocomputed by the hw on gen4+ */
12688         if (INTEL_INFO(dev)->gen < 4)
12689                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12690         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12691
12692         if (!adjust) {
12693                 PIPE_CONF_CHECK_I(pipe_src_w);
12694                 PIPE_CONF_CHECK_I(pipe_src_h);
12695
12696                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12697                 if (current_config->pch_pfit.enabled) {
12698                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12699                         PIPE_CONF_CHECK_X(pch_pfit.size);
12700                 }
12701
12702                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12703         }
12704
12705         /* BDW+ don't expose a synchronous way to read the state */
12706         if (IS_HASWELL(dev))
12707                 PIPE_CONF_CHECK_I(ips_enabled);
12708
12709         PIPE_CONF_CHECK_I(double_wide);
12710
12711         PIPE_CONF_CHECK_X(ddi_pll_sel);
12712
12713         PIPE_CONF_CHECK_P(shared_dpll);
12714         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12715         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12716         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12717         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12718         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12719         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12720         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12721         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12722         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12723
12724         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12725                 PIPE_CONF_CHECK_I(pipe_bpp);
12726
12727         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12728         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12729
12730 #undef PIPE_CONF_CHECK_X
12731 #undef PIPE_CONF_CHECK_I
12732 #undef PIPE_CONF_CHECK_P
12733 #undef PIPE_CONF_CHECK_FLAGS
12734 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12735 #undef PIPE_CONF_QUIRK
12736 #undef INTEL_ERR_OR_DBG_KMS
12737
12738         return ret;
12739 }
12740
12741 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12742                                            const struct intel_crtc_state *pipe_config)
12743 {
12744         if (pipe_config->has_pch_encoder) {
12745                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12746                                                             &pipe_config->fdi_m_n);
12747                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12748
12749                 /*
12750                  * FDI already provided one idea for the dotclock.
12751                  * Yell if the encoder disagrees.
12752                  */
12753                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12754                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12755                      fdi_dotclock, dotclock);
12756         }
12757 }
12758
12759 static void check_wm_state(struct drm_crtc *crtc,
12760                            struct drm_crtc_state *new_state)
12761 {
12762         struct drm_device *dev = crtc->dev;
12763         struct drm_i915_private *dev_priv = dev->dev_private;
12764         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12765         struct skl_ddb_entry *hw_entry, *sw_entry;
12766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12767         const enum pipe pipe = intel_crtc->pipe;
12768         int plane;
12769
12770         if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12771                 return;
12772
12773         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12774         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12775
12776         /* planes */
12777         for_each_plane(dev_priv, pipe, plane) {
12778                 hw_entry = &hw_ddb.plane[pipe][plane];
12779                 sw_entry = &sw_ddb->plane[pipe][plane];
12780
12781                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12782                         continue;
12783
12784                 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12785                           "(expected (%u,%u), found (%u,%u))\n",
12786                           pipe_name(pipe), plane + 1,
12787                           sw_entry->start, sw_entry->end,
12788                           hw_entry->start, hw_entry->end);
12789         }
12790
12791         /* cursor */
12792         hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12793         sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12794
12795         if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12796                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12797                           "(expected (%u,%u), found (%u,%u))\n",
12798                           pipe_name(pipe),
12799                           sw_entry->start, sw_entry->end,
12800                           hw_entry->start, hw_entry->end);
12801         }
12802 }
12803
12804 static void
12805 check_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12806 {
12807         struct drm_connector *connector;
12808
12809         drm_for_each_connector(connector, dev) {
12810                 struct drm_encoder *encoder = connector->encoder;
12811                 struct drm_connector_state *state = connector->state;
12812
12813                 if (state->crtc != crtc)
12814                         continue;
12815
12816                 intel_connector_check_state(to_intel_connector(connector));
12817
12818                 I915_STATE_WARN(state->best_encoder != encoder,
12819                      "connector's atomic encoder doesn't match legacy encoder\n");
12820         }
12821 }
12822
12823 static void
12824 check_encoder_state(struct drm_device *dev)
12825 {
12826         struct intel_encoder *encoder;
12827         struct intel_connector *connector;
12828
12829         for_each_intel_encoder(dev, encoder) {
12830                 bool enabled = false;
12831                 enum pipe pipe;
12832
12833                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12834                               encoder->base.base.id,
12835                               encoder->base.name);
12836
12837                 for_each_intel_connector(dev, connector) {
12838                         if (connector->base.state->best_encoder != &encoder->base)
12839                                 continue;
12840                         enabled = true;
12841
12842                         I915_STATE_WARN(connector->base.state->crtc !=
12843                                         encoder->base.crtc,
12844                              "connector's crtc doesn't match encoder crtc\n");
12845                 }
12846
12847                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12848                      "encoder's enabled state mismatch "
12849                      "(expected %i, found %i)\n",
12850                      !!encoder->base.crtc, enabled);
12851
12852                 if (!encoder->base.crtc) {
12853                         bool active;
12854
12855                         active = encoder->get_hw_state(encoder, &pipe);
12856                         I915_STATE_WARN(active,
12857                              "encoder detached but still enabled on pipe %c.\n",
12858                              pipe_name(pipe));
12859                 }
12860         }
12861 }
12862
12863 static void
12864 check_crtc_state(struct drm_crtc *crtc,
12865                  struct drm_crtc_state *old_crtc_state,
12866                  struct drm_crtc_state *new_crtc_state)
12867 {
12868         struct drm_device *dev = crtc->dev;
12869         struct drm_i915_private *dev_priv = dev->dev_private;
12870         struct intel_encoder *encoder;
12871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12872         struct intel_crtc_state *pipe_config, *sw_config;
12873         struct drm_atomic_state *old_state;
12874         bool active;
12875
12876         old_state = old_crtc_state->state;
12877         __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12878         pipe_config = to_intel_crtc_state(old_crtc_state);
12879         memset(pipe_config, 0, sizeof(*pipe_config));
12880         pipe_config->base.crtc = crtc;
12881         pipe_config->base.state = old_state;
12882
12883         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12884
12885         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12886
12887         /* hw state is inconsistent with the pipe quirk */
12888         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12889             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12890                 active = new_crtc_state->active;
12891
12892         I915_STATE_WARN(new_crtc_state->active != active,
12893              "crtc active state doesn't match with hw state "
12894              "(expected %i, found %i)\n", new_crtc_state->active, active);
12895
12896         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12897              "transitional active state does not match atomic hw state "
12898              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12899
12900         for_each_encoder_on_crtc(dev, crtc, encoder) {
12901                 enum pipe pipe;
12902
12903                 active = encoder->get_hw_state(encoder, &pipe);
12904                 I915_STATE_WARN(active != new_crtc_state->active,
12905                         "[ENCODER:%i] active %i with crtc active %i\n",
12906                         encoder->base.base.id, active, new_crtc_state->active);
12907
12908                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12909                                 "Encoder connected to wrong pipe %c\n",
12910                                 pipe_name(pipe));
12911
12912                 if (active)
12913                         encoder->get_config(encoder, pipe_config);
12914         }
12915
12916         if (!new_crtc_state->active)
12917                 return;
12918
12919         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12920
12921         sw_config = to_intel_crtc_state(crtc->state);
12922         if (!intel_pipe_config_compare(dev, sw_config,
12923                                        pipe_config, false)) {
12924                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12925                 intel_dump_pipe_config(intel_crtc, pipe_config,
12926                                        "[hw state]");
12927                 intel_dump_pipe_config(intel_crtc, sw_config,
12928                                        "[sw state]");
12929         }
12930 }
12931
12932 static void
12933 check_single_dpll_state(struct drm_i915_private *dev_priv,
12934                         struct intel_shared_dpll *pll,
12935                         struct drm_crtc *crtc,
12936                         struct drm_crtc_state *new_state)
12937 {
12938         struct intel_dpll_hw_state dpll_hw_state;
12939         unsigned crtc_mask;
12940         bool active;
12941
12942         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12943
12944         DRM_DEBUG_KMS("%s\n", pll->name);
12945
12946         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12947
12948         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12949                 I915_STATE_WARN(!pll->on && pll->active_mask,
12950                      "pll in active use but not on in sw tracking\n");
12951                 I915_STATE_WARN(pll->on && !pll->active_mask,
12952                      "pll is on but not used by any active crtc\n");
12953                 I915_STATE_WARN(pll->on != active,
12954                      "pll on state mismatch (expected %i, found %i)\n",
12955                      pll->on, active);
12956         }
12957
12958         if (!crtc) {
12959                 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
12960                                 "more active pll users than references: %x vs %x\n",
12961                                 pll->active_mask, pll->config.crtc_mask);
12962
12963                 return;
12964         }
12965
12966         crtc_mask = 1 << drm_crtc_index(crtc);
12967
12968         if (new_state->active)
12969                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12970                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12971                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12972         else
12973                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12974                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12975                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12976
12977         I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
12978                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12979                         crtc_mask, pll->config.crtc_mask);
12980
12981         I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
12982                                           &dpll_hw_state,
12983                                           sizeof(dpll_hw_state)),
12984                         "pll hw state mismatch\n");
12985 }
12986
12987 static void
12988 check_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12989                         struct drm_crtc_state *old_crtc_state,
12990                         struct drm_crtc_state *new_crtc_state)
12991 {
12992         struct drm_i915_private *dev_priv = dev->dev_private;
12993         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12994         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12995
12996         if (new_state->shared_dpll)
12997                 check_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12998
12999         if (old_state->shared_dpll &&
13000             old_state->shared_dpll != new_state->shared_dpll) {
13001                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13002                 struct intel_shared_dpll *pll = old_state->shared_dpll;
13003
13004                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13005                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13006                                 pipe_name(drm_crtc_index(crtc)));
13007                 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13008                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13009                                 pipe_name(drm_crtc_index(crtc)));
13010         }
13011 }
13012
13013 static void
13014 intel_modeset_check_crtc(struct drm_crtc *crtc,
13015                          struct drm_crtc_state *old_state,
13016                          struct drm_crtc_state *new_state)
13017 {
13018         if (!needs_modeset(new_state) &&
13019             !to_intel_crtc_state(new_state)->update_pipe)
13020                 return;
13021
13022         check_wm_state(crtc, new_state);
13023         check_connector_state(crtc->dev, crtc);
13024         check_crtc_state(crtc, old_state, new_state);
13025         check_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13026 }
13027
13028 static void
13029 check_disabled_dpll_state(struct drm_device *dev)
13030 {
13031         struct drm_i915_private *dev_priv = dev->dev_private;
13032         int i;
13033
13034         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13035                 check_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13036 }
13037
13038 static void
13039 intel_modeset_check_disabled(struct drm_device *dev)
13040 {
13041         check_encoder_state(dev);
13042         check_connector_state(dev, NULL);
13043         check_disabled_dpll_state(dev);
13044 }
13045
13046 static void update_scanline_offset(struct intel_crtc *crtc)
13047 {
13048         struct drm_device *dev = crtc->base.dev;
13049
13050         /*
13051          * The scanline counter increments at the leading edge of hsync.
13052          *
13053          * On most platforms it starts counting from vtotal-1 on the
13054          * first active line. That means the scanline counter value is
13055          * always one less than what we would expect. Ie. just after
13056          * start of vblank, which also occurs at start of hsync (on the
13057          * last active line), the scanline counter will read vblank_start-1.
13058          *
13059          * On gen2 the scanline counter starts counting from 1 instead
13060          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13061          * to keep the value positive), instead of adding one.
13062          *
13063          * On HSW+ the behaviour of the scanline counter depends on the output
13064          * type. For DP ports it behaves like most other platforms, but on HDMI
13065          * there's an extra 1 line difference. So we need to add two instead of
13066          * one to the value.
13067          */
13068         if (IS_GEN2(dev)) {
13069                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13070                 int vtotal;
13071
13072                 vtotal = adjusted_mode->crtc_vtotal;
13073                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13074                         vtotal /= 2;
13075
13076                 crtc->scanline_offset = vtotal - 1;
13077         } else if (HAS_DDI(dev) &&
13078                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13079                 crtc->scanline_offset = 2;
13080         } else
13081                 crtc->scanline_offset = 1;
13082 }
13083
13084 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13085 {
13086         struct drm_device *dev = state->dev;
13087         struct drm_i915_private *dev_priv = to_i915(dev);
13088         struct intel_shared_dpll_config *shared_dpll = NULL;
13089         struct drm_crtc *crtc;
13090         struct drm_crtc_state *crtc_state;
13091         int i;
13092
13093         if (!dev_priv->display.crtc_compute_clock)
13094                 return;
13095
13096         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13097                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13098                 struct intel_shared_dpll *old_dpll =
13099                         to_intel_crtc_state(crtc->state)->shared_dpll;
13100
13101                 if (!needs_modeset(crtc_state))
13102                         continue;
13103
13104                 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13105
13106                 if (!old_dpll)
13107                         continue;
13108
13109                 if (!shared_dpll)
13110                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13111
13112                 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13113         }
13114 }
13115
13116 /*
13117  * This implements the workaround described in the "notes" section of the mode
13118  * set sequence documentation. When going from no pipes or single pipe to
13119  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13120  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13121  */
13122 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13123 {
13124         struct drm_crtc_state *crtc_state;
13125         struct intel_crtc *intel_crtc;
13126         struct drm_crtc *crtc;
13127         struct intel_crtc_state *first_crtc_state = NULL;
13128         struct intel_crtc_state *other_crtc_state = NULL;
13129         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13130         int i;
13131
13132         /* look at all crtc's that are going to be enabled in during modeset */
13133         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13134                 intel_crtc = to_intel_crtc(crtc);
13135
13136                 if (!crtc_state->active || !needs_modeset(crtc_state))
13137                         continue;
13138
13139                 if (first_crtc_state) {
13140                         other_crtc_state = to_intel_crtc_state(crtc_state);
13141                         break;
13142                 } else {
13143                         first_crtc_state = to_intel_crtc_state(crtc_state);
13144                         first_pipe = intel_crtc->pipe;
13145                 }
13146         }
13147
13148         /* No workaround needed? */
13149         if (!first_crtc_state)
13150                 return 0;
13151
13152         /* w/a possibly needed, check how many crtc's are already enabled. */
13153         for_each_intel_crtc(state->dev, intel_crtc) {
13154                 struct intel_crtc_state *pipe_config;
13155
13156                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13157                 if (IS_ERR(pipe_config))
13158                         return PTR_ERR(pipe_config);
13159
13160                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13161
13162                 if (!pipe_config->base.active ||
13163                     needs_modeset(&pipe_config->base))
13164                         continue;
13165
13166                 /* 2 or more enabled crtcs means no need for w/a */
13167                 if (enabled_pipe != INVALID_PIPE)
13168                         return 0;
13169
13170                 enabled_pipe = intel_crtc->pipe;
13171         }
13172
13173         if (enabled_pipe != INVALID_PIPE)
13174                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13175         else if (other_crtc_state)
13176                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13177
13178         return 0;
13179 }
13180
13181 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13182 {
13183         struct drm_crtc *crtc;
13184         struct drm_crtc_state *crtc_state;
13185         int ret = 0;
13186
13187         /* add all active pipes to the state */
13188         for_each_crtc(state->dev, crtc) {
13189                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13190                 if (IS_ERR(crtc_state))
13191                         return PTR_ERR(crtc_state);
13192
13193                 if (!crtc_state->active || needs_modeset(crtc_state))
13194                         continue;
13195
13196                 crtc_state->mode_changed = true;
13197
13198                 ret = drm_atomic_add_affected_connectors(state, crtc);
13199                 if (ret)
13200                         break;
13201
13202                 ret = drm_atomic_add_affected_planes(state, crtc);
13203                 if (ret)
13204                         break;
13205         }
13206
13207         return ret;
13208 }
13209
13210 static int intel_modeset_checks(struct drm_atomic_state *state)
13211 {
13212         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13213         struct drm_i915_private *dev_priv = state->dev->dev_private;
13214         struct drm_crtc *crtc;
13215         struct drm_crtc_state *crtc_state;
13216         int ret = 0, i;
13217
13218         if (!check_digital_port_conflicts(state)) {
13219                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13220                 return -EINVAL;
13221         }
13222
13223         intel_state->modeset = true;
13224         intel_state->active_crtcs = dev_priv->active_crtcs;
13225
13226         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13227                 if (crtc_state->active)
13228                         intel_state->active_crtcs |= 1 << i;
13229                 else
13230                         intel_state->active_crtcs &= ~(1 << i);
13231         }
13232
13233         /*
13234          * See if the config requires any additional preparation, e.g.
13235          * to adjust global state with pipes off.  We need to do this
13236          * here so we can get the modeset_pipe updated config for the new
13237          * mode set on this crtc.  For other crtcs we need to use the
13238          * adjusted_mode bits in the crtc directly.
13239          */
13240         if (dev_priv->display.modeset_calc_cdclk) {
13241                 ret = dev_priv->display.modeset_calc_cdclk(state);
13242
13243                 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13244                         ret = intel_modeset_all_pipes(state);
13245
13246                 if (ret < 0)
13247                         return ret;
13248
13249                 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13250                               intel_state->cdclk, intel_state->dev_cdclk);
13251         } else
13252                 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13253
13254         intel_modeset_clear_plls(state);
13255
13256         if (IS_HASWELL(dev_priv))
13257                 return haswell_mode_set_planes_workaround(state);
13258
13259         return 0;
13260 }
13261
13262 /*
13263  * Handle calculation of various watermark data at the end of the atomic check
13264  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13265  * handlers to ensure that all derived state has been updated.
13266  */
13267 static void calc_watermark_data(struct drm_atomic_state *state)
13268 {
13269         struct drm_device *dev = state->dev;
13270         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13271         struct drm_crtc *crtc;
13272         struct drm_crtc_state *cstate;
13273         struct drm_plane *plane;
13274         struct drm_plane_state *pstate;
13275
13276         /*
13277          * Calculate watermark configuration details now that derived
13278          * plane/crtc state is all properly updated.
13279          */
13280         drm_for_each_crtc(crtc, dev) {
13281                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13282                         crtc->state;
13283
13284                 if (cstate->active)
13285                         intel_state->wm_config.num_pipes_active++;
13286         }
13287         drm_for_each_legacy_plane(plane, dev) {
13288                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13289                         plane->state;
13290
13291                 if (!to_intel_plane_state(pstate)->visible)
13292                         continue;
13293
13294                 intel_state->wm_config.sprites_enabled = true;
13295                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13296                     pstate->crtc_h != pstate->src_h >> 16)
13297                         intel_state->wm_config.sprites_scaled = true;
13298         }
13299 }
13300
13301 /**
13302  * intel_atomic_check - validate state object
13303  * @dev: drm device
13304  * @state: state to validate
13305  */
13306 static int intel_atomic_check(struct drm_device *dev,
13307                               struct drm_atomic_state *state)
13308 {
13309         struct drm_i915_private *dev_priv = to_i915(dev);
13310         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13311         struct drm_crtc *crtc;
13312         struct drm_crtc_state *crtc_state;
13313         int ret, i;
13314         bool any_ms = false;
13315
13316         ret = drm_atomic_helper_check_modeset(dev, state);
13317         if (ret)
13318                 return ret;
13319
13320         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13321                 struct intel_crtc_state *pipe_config =
13322                         to_intel_crtc_state(crtc_state);
13323
13324                 /* Catch I915_MODE_FLAG_INHERITED */
13325                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13326                         crtc_state->mode_changed = true;
13327
13328                 if (!crtc_state->enable) {
13329                         if (needs_modeset(crtc_state))
13330                                 any_ms = true;
13331                         continue;
13332                 }
13333
13334                 if (!needs_modeset(crtc_state))
13335                         continue;
13336
13337                 /* FIXME: For only active_changed we shouldn't need to do any
13338                  * state recomputation at all. */
13339
13340                 ret = drm_atomic_add_affected_connectors(state, crtc);
13341                 if (ret)
13342                         return ret;
13343
13344                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13345                 if (ret)
13346                         return ret;
13347
13348                 if (i915.fastboot &&
13349                     intel_pipe_config_compare(dev,
13350                                         to_intel_crtc_state(crtc->state),
13351                                         pipe_config, true)) {
13352                         crtc_state->mode_changed = false;
13353                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13354                 }
13355
13356                 if (needs_modeset(crtc_state)) {
13357                         any_ms = true;
13358
13359                         ret = drm_atomic_add_affected_planes(state, crtc);
13360                         if (ret)
13361                                 return ret;
13362                 }
13363
13364                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13365                                        needs_modeset(crtc_state) ?
13366                                        "[modeset]" : "[fastset]");
13367         }
13368
13369         if (any_ms) {
13370                 ret = intel_modeset_checks(state);
13371
13372                 if (ret)
13373                         return ret;
13374         } else
13375                 intel_state->cdclk = dev_priv->cdclk_freq;
13376
13377         ret = drm_atomic_helper_check_planes(dev, state);
13378         if (ret)
13379                 return ret;
13380
13381         intel_fbc_choose_crtc(dev_priv, state);
13382         calc_watermark_data(state);
13383
13384         return 0;
13385 }
13386
13387 static int intel_atomic_prepare_commit(struct drm_device *dev,
13388                                        struct drm_atomic_state *state,
13389                                        bool async)
13390 {
13391         struct drm_i915_private *dev_priv = dev->dev_private;
13392         struct drm_plane_state *plane_state;
13393         struct drm_crtc_state *crtc_state;
13394         struct drm_plane *plane;
13395         struct drm_crtc *crtc;
13396         int i, ret;
13397
13398         if (async) {
13399                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13400                 return -EINVAL;
13401         }
13402
13403         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13404                 ret = intel_crtc_wait_for_pending_flips(crtc);
13405                 if (ret)
13406                         return ret;
13407
13408                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13409                         flush_workqueue(dev_priv->wq);
13410         }
13411
13412         ret = mutex_lock_interruptible(&dev->struct_mutex);
13413         if (ret)
13414                 return ret;
13415
13416         ret = drm_atomic_helper_prepare_planes(dev, state);
13417         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13418                 u32 reset_counter;
13419
13420                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13421                 mutex_unlock(&dev->struct_mutex);
13422
13423                 for_each_plane_in_state(state, plane, plane_state, i) {
13424                         struct intel_plane_state *intel_plane_state =
13425                                 to_intel_plane_state(plane_state);
13426
13427                         if (!intel_plane_state->wait_req)
13428                                 continue;
13429
13430                         ret = __i915_wait_request(intel_plane_state->wait_req,
13431                                                   reset_counter, true,
13432                                                   NULL, NULL);
13433
13434                         /* Swallow -EIO errors to allow updates during hw lockup. */
13435                         if (ret == -EIO)
13436                                 ret = 0;
13437
13438                         if (ret)
13439                                 break;
13440                 }
13441
13442                 if (!ret)
13443                         return 0;
13444
13445                 mutex_lock(&dev->struct_mutex);
13446                 drm_atomic_helper_cleanup_planes(dev, state);
13447         }
13448
13449         mutex_unlock(&dev->struct_mutex);
13450         return ret;
13451 }
13452
13453 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13454                                           struct drm_i915_private *dev_priv,
13455                                           unsigned crtc_mask)
13456 {
13457         unsigned last_vblank_count[I915_MAX_PIPES];
13458         enum pipe pipe;
13459         int ret;
13460
13461         if (!crtc_mask)
13462                 return;
13463
13464         for_each_pipe(dev_priv, pipe) {
13465                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13466
13467                 if (!((1 << pipe) & crtc_mask))
13468                         continue;
13469
13470                 ret = drm_crtc_vblank_get(crtc);
13471                 if (WARN_ON(ret != 0)) {
13472                         crtc_mask &= ~(1 << pipe);
13473                         continue;
13474                 }
13475
13476                 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13477         }
13478
13479         for_each_pipe(dev_priv, pipe) {
13480                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13481                 long lret;
13482
13483                 if (!((1 << pipe) & crtc_mask))
13484                         continue;
13485
13486                 lret = wait_event_timeout(dev->vblank[pipe].queue,
13487                                 last_vblank_count[pipe] !=
13488                                         drm_crtc_vblank_count(crtc),
13489                                 msecs_to_jiffies(50));
13490
13491                 WARN_ON(!lret);
13492
13493                 drm_crtc_vblank_put(crtc);
13494         }
13495 }
13496
13497 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13498 {
13499         /* fb updated, need to unpin old fb */
13500         if (crtc_state->fb_changed)
13501                 return true;
13502
13503         /* wm changes, need vblank before final wm's */
13504         if (crtc_state->update_wm_post)
13505                 return true;
13506
13507         /*
13508          * cxsr is re-enabled after vblank.
13509          * This is already handled by crtc_state->update_wm_post,
13510          * but added for clarity.
13511          */
13512         if (crtc_state->disable_cxsr)
13513                 return true;
13514
13515         return false;
13516 }
13517
13518 /**
13519  * intel_atomic_commit - commit validated state object
13520  * @dev: DRM device
13521  * @state: the top-level driver state object
13522  * @async: asynchronous commit
13523  *
13524  * This function commits a top-level state object that has been validated
13525  * with drm_atomic_helper_check().
13526  *
13527  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13528  * we can only handle plane-related operations and do not yet support
13529  * asynchronous commit.
13530  *
13531  * RETURNS
13532  * Zero for success or -errno.
13533  */
13534 static int intel_atomic_commit(struct drm_device *dev,
13535                                struct drm_atomic_state *state,
13536                                bool async)
13537 {
13538         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13539         struct drm_i915_private *dev_priv = dev->dev_private;
13540         struct drm_crtc_state *old_crtc_state;
13541         struct drm_crtc *crtc;
13542         struct intel_crtc_state *intel_cstate;
13543         int ret = 0, i;
13544         bool hw_check = intel_state->modeset;
13545         unsigned long put_domains[I915_MAX_PIPES] = {};
13546         unsigned crtc_vblank_mask = 0;
13547
13548         ret = intel_atomic_prepare_commit(dev, state, async);
13549         if (ret) {
13550                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13551                 return ret;
13552         }
13553
13554         drm_atomic_helper_swap_state(dev, state);
13555         dev_priv->wm.config = intel_state->wm_config;
13556         intel_shared_dpll_commit(state);
13557
13558         if (intel_state->modeset) {
13559                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13560                        sizeof(intel_state->min_pixclk));
13561                 dev_priv->active_crtcs = intel_state->active_crtcs;
13562                 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13563
13564                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13565         }
13566
13567         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13568                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13569
13570                 if (needs_modeset(crtc->state) ||
13571                     to_intel_crtc_state(crtc->state)->update_pipe) {
13572                         hw_check = true;
13573
13574                         put_domains[to_intel_crtc(crtc)->pipe] =
13575                                 modeset_get_crtc_power_domains(crtc,
13576                                         to_intel_crtc_state(crtc->state));
13577                 }
13578
13579                 if (!needs_modeset(crtc->state))
13580                         continue;
13581
13582                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13583
13584                 if (old_crtc_state->active) {
13585                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13586                         dev_priv->display.crtc_disable(crtc);
13587                         intel_crtc->active = false;
13588                         intel_fbc_disable(intel_crtc);
13589                         intel_disable_shared_dpll(intel_crtc);
13590
13591                         /*
13592                          * Underruns don't always raise
13593                          * interrupts, so check manually.
13594                          */
13595                         intel_check_cpu_fifo_underruns(dev_priv);
13596                         intel_check_pch_fifo_underruns(dev_priv);
13597
13598                         if (!crtc->state->active)
13599                                 intel_update_watermarks(crtc);
13600                 }
13601         }
13602
13603         /* Only after disabling all output pipelines that will be changed can we
13604          * update the the output configuration. */
13605         intel_modeset_update_crtc_state(state);
13606
13607         if (intel_state->modeset) {
13608                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13609
13610                 if (dev_priv->display.modeset_commit_cdclk &&
13611                     intel_state->dev_cdclk != dev_priv->cdclk_freq)
13612                         dev_priv->display.modeset_commit_cdclk(state);
13613
13614                 intel_modeset_check_disabled(dev);
13615         }
13616
13617         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13618         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13619                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13620                 bool modeset = needs_modeset(crtc->state);
13621                 struct intel_crtc_state *pipe_config =
13622                         to_intel_crtc_state(crtc->state);
13623                 bool update_pipe = !modeset && pipe_config->update_pipe;
13624
13625                 if (modeset && crtc->state->active) {
13626                         update_scanline_offset(to_intel_crtc(crtc));
13627                         dev_priv->display.crtc_enable(crtc);
13628                 }
13629
13630                 if (!modeset)
13631                         intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13632
13633                 if (crtc->state->active &&
13634                     drm_atomic_get_existing_plane_state(state, crtc->primary))
13635                         intel_fbc_enable(intel_crtc);
13636
13637                 if (crtc->state->active &&
13638                     (crtc->state->planes_changed || update_pipe))
13639                         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13640
13641                 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13642                         crtc_vblank_mask |= 1 << i;
13643         }
13644
13645         /* FIXME: add subpixel order */
13646
13647         if (!state->legacy_cursor_update)
13648                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13649
13650         /*
13651          * Now that the vblank has passed, we can go ahead and program the
13652          * optimal watermarks on platforms that need two-step watermark
13653          * programming.
13654          *
13655          * TODO: Move this (and other cleanup) to an async worker eventually.
13656          */
13657         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13658                 intel_cstate = to_intel_crtc_state(crtc->state);
13659
13660                 if (dev_priv->display.optimize_watermarks)
13661                         dev_priv->display.optimize_watermarks(intel_cstate);
13662         }
13663
13664         for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13665                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13666
13667                 if (put_domains[i])
13668                         modeset_put_power_domains(dev_priv, put_domains[i]);
13669
13670                 intel_modeset_check_crtc(crtc, old_crtc_state, crtc->state);
13671         }
13672
13673         if (intel_state->modeset)
13674                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13675
13676         mutex_lock(&dev->struct_mutex);
13677         drm_atomic_helper_cleanup_planes(dev, state);
13678         mutex_unlock(&dev->struct_mutex);
13679
13680         drm_atomic_state_free(state);
13681
13682         /* As one of the primary mmio accessors, KMS has a high likelihood
13683          * of triggering bugs in unclaimed access. After we finish
13684          * modesetting, see if an error has been flagged, and if so
13685          * enable debugging for the next modeset - and hope we catch
13686          * the culprit.
13687          *
13688          * XXX note that we assume display power is on at this point.
13689          * This might hold true now but we need to add pm helper to check
13690          * unclaimed only when the hardware is on, as atomic commits
13691          * can happen also when the device is completely off.
13692          */
13693         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13694
13695         return 0;
13696 }
13697
13698 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13699 {
13700         struct drm_device *dev = crtc->dev;
13701         struct drm_atomic_state *state;
13702         struct drm_crtc_state *crtc_state;
13703         int ret;
13704
13705         state = drm_atomic_state_alloc(dev);
13706         if (!state) {
13707                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13708                               crtc->base.id);
13709                 return;
13710         }
13711
13712         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13713
13714 retry:
13715         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13716         ret = PTR_ERR_OR_ZERO(crtc_state);
13717         if (!ret) {
13718                 if (!crtc_state->active)
13719                         goto out;
13720
13721                 crtc_state->mode_changed = true;
13722                 ret = drm_atomic_commit(state);
13723         }
13724
13725         if (ret == -EDEADLK) {
13726                 drm_atomic_state_clear(state);
13727                 drm_modeset_backoff(state->acquire_ctx);
13728                 goto retry;
13729         }
13730
13731         if (ret)
13732 out:
13733                 drm_atomic_state_free(state);
13734 }
13735
13736 #undef for_each_intel_crtc_masked
13737
13738 static const struct drm_crtc_funcs intel_crtc_funcs = {
13739         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13740         .set_config = drm_atomic_helper_set_config,
13741         .set_property = drm_atomic_helper_crtc_set_property,
13742         .destroy = intel_crtc_destroy,
13743         .page_flip = intel_crtc_page_flip,
13744         .atomic_duplicate_state = intel_crtc_duplicate_state,
13745         .atomic_destroy_state = intel_crtc_destroy_state,
13746 };
13747
13748 /**
13749  * intel_prepare_plane_fb - Prepare fb for usage on plane
13750  * @plane: drm plane to prepare for
13751  * @fb: framebuffer to prepare for presentation
13752  *
13753  * Prepares a framebuffer for usage on a display plane.  Generally this
13754  * involves pinning the underlying object and updating the frontbuffer tracking
13755  * bits.  Some older platforms need special physical address handling for
13756  * cursor planes.
13757  *
13758  * Must be called with struct_mutex held.
13759  *
13760  * Returns 0 on success, negative error code on failure.
13761  */
13762 int
13763 intel_prepare_plane_fb(struct drm_plane *plane,
13764                        const struct drm_plane_state *new_state)
13765 {
13766         struct drm_device *dev = plane->dev;
13767         struct drm_framebuffer *fb = new_state->fb;
13768         struct intel_plane *intel_plane = to_intel_plane(plane);
13769         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13770         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13771         int ret = 0;
13772
13773         if (!obj && !old_obj)
13774                 return 0;
13775
13776         if (old_obj) {
13777                 struct drm_crtc_state *crtc_state =
13778                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13779
13780                 /* Big Hammer, we also need to ensure that any pending
13781                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13782                  * current scanout is retired before unpinning the old
13783                  * framebuffer. Note that we rely on userspace rendering
13784                  * into the buffer attached to the pipe they are waiting
13785                  * on. If not, userspace generates a GPU hang with IPEHR
13786                  * point to the MI_WAIT_FOR_EVENT.
13787                  *
13788                  * This should only fail upon a hung GPU, in which case we
13789                  * can safely continue.
13790                  */
13791                 if (needs_modeset(crtc_state))
13792                         ret = i915_gem_object_wait_rendering(old_obj, true);
13793
13794                 /* Swallow -EIO errors to allow updates during hw lockup. */
13795                 if (ret && ret != -EIO)
13796                         return ret;
13797         }
13798
13799         /* For framebuffer backed by dmabuf, wait for fence */
13800         if (obj && obj->base.dma_buf) {
13801                 long lret;
13802
13803                 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13804                                                            false, true,
13805                                                            MAX_SCHEDULE_TIMEOUT);
13806                 if (lret == -ERESTARTSYS)
13807                         return lret;
13808
13809                 WARN(lret < 0, "waiting returns %li\n", lret);
13810         }
13811
13812         if (!obj) {
13813                 ret = 0;
13814         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13815             INTEL_INFO(dev)->cursor_needs_physical) {
13816                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13817                 ret = i915_gem_object_attach_phys(obj, align);
13818                 if (ret)
13819                         DRM_DEBUG_KMS("failed to attach phys object\n");
13820         } else {
13821                 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13822         }
13823
13824         if (ret == 0) {
13825                 if (obj) {
13826                         struct intel_plane_state *plane_state =
13827                                 to_intel_plane_state(new_state);
13828
13829                         i915_gem_request_assign(&plane_state->wait_req,
13830                                                 obj->last_write_req);
13831                 }
13832
13833                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13834         }
13835
13836         return ret;
13837 }
13838
13839 /**
13840  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13841  * @plane: drm plane to clean up for
13842  * @fb: old framebuffer that was on plane
13843  *
13844  * Cleans up a framebuffer that has just been removed from a plane.
13845  *
13846  * Must be called with struct_mutex held.
13847  */
13848 void
13849 intel_cleanup_plane_fb(struct drm_plane *plane,
13850                        const struct drm_plane_state *old_state)
13851 {
13852         struct drm_device *dev = plane->dev;
13853         struct intel_plane *intel_plane = to_intel_plane(plane);
13854         struct intel_plane_state *old_intel_state;
13855         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13856         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13857
13858         old_intel_state = to_intel_plane_state(old_state);
13859
13860         if (!obj && !old_obj)
13861                 return;
13862
13863         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13864             !INTEL_INFO(dev)->cursor_needs_physical))
13865                 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13866
13867         /* prepare_fb aborted? */
13868         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13869             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13870                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13871
13872         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13873 }
13874
13875 int
13876 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13877 {
13878         int max_scale;
13879         struct drm_device *dev;
13880         struct drm_i915_private *dev_priv;
13881         int crtc_clock, cdclk;
13882
13883         if (!intel_crtc || !crtc_state->base.enable)
13884                 return DRM_PLANE_HELPER_NO_SCALING;
13885
13886         dev = intel_crtc->base.dev;
13887         dev_priv = dev->dev_private;
13888         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13889         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13890
13891         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13892                 return DRM_PLANE_HELPER_NO_SCALING;
13893
13894         /*
13895          * skl max scale is lower of:
13896          *    close to 3 but not 3, -1 is for that purpose
13897          *            or
13898          *    cdclk/crtc_clock
13899          */
13900         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13901
13902         return max_scale;
13903 }
13904
13905 static int
13906 intel_check_primary_plane(struct drm_plane *plane,
13907                           struct intel_crtc_state *crtc_state,
13908                           struct intel_plane_state *state)
13909 {
13910         struct drm_crtc *crtc = state->base.crtc;
13911         struct drm_framebuffer *fb = state->base.fb;
13912         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13913         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13914         bool can_position = false;
13915
13916         if (INTEL_INFO(plane->dev)->gen >= 9) {
13917                 /* use scaler when colorkey is not required */
13918                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13919                         min_scale = 1;
13920                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13921                 }
13922                 can_position = true;
13923         }
13924
13925         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13926                                              &state->dst, &state->clip,
13927                                              min_scale, max_scale,
13928                                              can_position, true,
13929                                              &state->visible);
13930 }
13931
13932 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13933                                     struct drm_crtc_state *old_crtc_state)
13934 {
13935         struct drm_device *dev = crtc->dev;
13936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13937         struct intel_crtc_state *old_intel_state =
13938                 to_intel_crtc_state(old_crtc_state);
13939         bool modeset = needs_modeset(crtc->state);
13940
13941         /* Perform vblank evasion around commit operation */
13942         intel_pipe_update_start(intel_crtc);
13943
13944         if (modeset)
13945                 return;
13946
13947         if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13948                 intel_color_set_csc(crtc->state);
13949                 intel_color_load_luts(crtc->state);
13950         }
13951
13952         if (to_intel_crtc_state(crtc->state)->update_pipe)
13953                 intel_update_pipe_config(intel_crtc, old_intel_state);
13954         else if (INTEL_INFO(dev)->gen >= 9)
13955                 skl_detach_scalers(intel_crtc);
13956 }
13957
13958 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13959                                      struct drm_crtc_state *old_crtc_state)
13960 {
13961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13962
13963         intel_pipe_update_end(intel_crtc);
13964 }
13965
13966 /**
13967  * intel_plane_destroy - destroy a plane
13968  * @plane: plane to destroy
13969  *
13970  * Common destruction function for all types of planes (primary, cursor,
13971  * sprite).
13972  */
13973 void intel_plane_destroy(struct drm_plane *plane)
13974 {
13975         struct intel_plane *intel_plane = to_intel_plane(plane);
13976         drm_plane_cleanup(plane);
13977         kfree(intel_plane);
13978 }
13979
13980 const struct drm_plane_funcs intel_plane_funcs = {
13981         .update_plane = drm_atomic_helper_update_plane,
13982         .disable_plane = drm_atomic_helper_disable_plane,
13983         .destroy = intel_plane_destroy,
13984         .set_property = drm_atomic_helper_plane_set_property,
13985         .atomic_get_property = intel_plane_atomic_get_property,
13986         .atomic_set_property = intel_plane_atomic_set_property,
13987         .atomic_duplicate_state = intel_plane_duplicate_state,
13988         .atomic_destroy_state = intel_plane_destroy_state,
13989
13990 };
13991
13992 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13993                                                     int pipe)
13994 {
13995         struct intel_plane *primary = NULL;
13996         struct intel_plane_state *state = NULL;
13997         const uint32_t *intel_primary_formats;
13998         unsigned int num_formats;
13999         int ret;
14000
14001         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14002         if (!primary)
14003                 goto fail;
14004
14005         state = intel_create_plane_state(&primary->base);
14006         if (!state)
14007                 goto fail;
14008         primary->base.state = &state->base;
14009
14010         primary->can_scale = false;
14011         primary->max_downscale = 1;
14012         if (INTEL_INFO(dev)->gen >= 9) {
14013                 primary->can_scale = true;
14014                 state->scaler_id = -1;
14015         }
14016         primary->pipe = pipe;
14017         primary->plane = pipe;
14018         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14019         primary->check_plane = intel_check_primary_plane;
14020         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14021                 primary->plane = !pipe;
14022
14023         if (INTEL_INFO(dev)->gen >= 9) {
14024                 intel_primary_formats = skl_primary_formats;
14025                 num_formats = ARRAY_SIZE(skl_primary_formats);
14026
14027                 primary->update_plane = skylake_update_primary_plane;
14028                 primary->disable_plane = skylake_disable_primary_plane;
14029         } else if (HAS_PCH_SPLIT(dev)) {
14030                 intel_primary_formats = i965_primary_formats;
14031                 num_formats = ARRAY_SIZE(i965_primary_formats);
14032
14033                 primary->update_plane = ironlake_update_primary_plane;
14034                 primary->disable_plane = i9xx_disable_primary_plane;
14035         } else if (INTEL_INFO(dev)->gen >= 4) {
14036                 intel_primary_formats = i965_primary_formats;
14037                 num_formats = ARRAY_SIZE(i965_primary_formats);
14038
14039                 primary->update_plane = i9xx_update_primary_plane;
14040                 primary->disable_plane = i9xx_disable_primary_plane;
14041         } else {
14042                 intel_primary_formats = i8xx_primary_formats;
14043                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14044
14045                 primary->update_plane = i9xx_update_primary_plane;
14046                 primary->disable_plane = i9xx_disable_primary_plane;
14047         }
14048
14049         ret = drm_universal_plane_init(dev, &primary->base, 0,
14050                                        &intel_plane_funcs,
14051                                        intel_primary_formats, num_formats,
14052                                        DRM_PLANE_TYPE_PRIMARY, NULL);
14053         if (ret)
14054                 goto fail;
14055
14056         if (INTEL_INFO(dev)->gen >= 4)
14057                 intel_create_rotation_property(dev, primary);
14058
14059         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14060
14061         return &primary->base;
14062
14063 fail:
14064         kfree(state);
14065         kfree(primary);
14066
14067         return NULL;
14068 }
14069
14070 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14071 {
14072         if (!dev->mode_config.rotation_property) {
14073                 unsigned long flags = BIT(DRM_ROTATE_0) |
14074                         BIT(DRM_ROTATE_180);
14075
14076                 if (INTEL_INFO(dev)->gen >= 9)
14077                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14078
14079                 dev->mode_config.rotation_property =
14080                         drm_mode_create_rotation_property(dev, flags);
14081         }
14082         if (dev->mode_config.rotation_property)
14083                 drm_object_attach_property(&plane->base.base,
14084                                 dev->mode_config.rotation_property,
14085                                 plane->base.state->rotation);
14086 }
14087
14088 static int
14089 intel_check_cursor_plane(struct drm_plane *plane,
14090                          struct intel_crtc_state *crtc_state,
14091                          struct intel_plane_state *state)
14092 {
14093         struct drm_crtc *crtc = crtc_state->base.crtc;
14094         struct drm_framebuffer *fb = state->base.fb;
14095         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14096         enum pipe pipe = to_intel_plane(plane)->pipe;
14097         unsigned stride;
14098         int ret;
14099
14100         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14101                                             &state->dst, &state->clip,
14102                                             DRM_PLANE_HELPER_NO_SCALING,
14103                                             DRM_PLANE_HELPER_NO_SCALING,
14104                                             true, true, &state->visible);
14105         if (ret)
14106                 return ret;
14107
14108         /* if we want to turn off the cursor ignore width and height */
14109         if (!obj)
14110                 return 0;
14111
14112         /* Check for which cursor types we support */
14113         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14114                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14115                           state->base.crtc_w, state->base.crtc_h);
14116                 return -EINVAL;
14117         }
14118
14119         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14120         if (obj->base.size < stride * state->base.crtc_h) {
14121                 DRM_DEBUG_KMS("buffer is too small\n");
14122                 return -ENOMEM;
14123         }
14124
14125         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14126                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
14127                 return -EINVAL;
14128         }
14129
14130         /*
14131          * There's something wrong with the cursor on CHV pipe C.
14132          * If it straddles the left edge of the screen then
14133          * moving it away from the edge or disabling it often
14134          * results in a pipe underrun, and often that can lead to
14135          * dead pipe (constant underrun reported, and it scans
14136          * out just a solid color). To recover from that, the
14137          * display power well must be turned off and on again.
14138          * Refuse the put the cursor into that compromised position.
14139          */
14140         if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14141             state->visible && state->base.crtc_x < 0) {
14142                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14143                 return -EINVAL;
14144         }
14145
14146         return 0;
14147 }
14148
14149 static void
14150 intel_disable_cursor_plane(struct drm_plane *plane,
14151                            struct drm_crtc *crtc)
14152 {
14153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14154
14155         intel_crtc->cursor_addr = 0;
14156         intel_crtc_update_cursor(crtc, NULL);
14157 }
14158
14159 static void
14160 intel_update_cursor_plane(struct drm_plane *plane,
14161                           const struct intel_crtc_state *crtc_state,
14162                           const struct intel_plane_state *state)
14163 {
14164         struct drm_crtc *crtc = crtc_state->base.crtc;
14165         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14166         struct drm_device *dev = plane->dev;
14167         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14168         uint32_t addr;
14169
14170         if (!obj)
14171                 addr = 0;
14172         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14173                 addr = i915_gem_obj_ggtt_offset(obj);
14174         else
14175                 addr = obj->phys_handle->busaddr;
14176
14177         intel_crtc->cursor_addr = addr;
14178         intel_crtc_update_cursor(crtc, state);
14179 }
14180
14181 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14182                                                    int pipe)
14183 {
14184         struct intel_plane *cursor = NULL;
14185         struct intel_plane_state *state = NULL;
14186         int ret;
14187
14188         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14189         if (!cursor)
14190                 goto fail;
14191
14192         state = intel_create_plane_state(&cursor->base);
14193         if (!state)
14194                 goto fail;
14195         cursor->base.state = &state->base;
14196
14197         cursor->can_scale = false;
14198         cursor->max_downscale = 1;
14199         cursor->pipe = pipe;
14200         cursor->plane = pipe;
14201         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14202         cursor->check_plane = intel_check_cursor_plane;
14203         cursor->update_plane = intel_update_cursor_plane;
14204         cursor->disable_plane = intel_disable_cursor_plane;
14205
14206         ret = drm_universal_plane_init(dev, &cursor->base, 0,
14207                                        &intel_plane_funcs,
14208                                        intel_cursor_formats,
14209                                        ARRAY_SIZE(intel_cursor_formats),
14210                                        DRM_PLANE_TYPE_CURSOR, NULL);
14211         if (ret)
14212                 goto fail;
14213
14214         if (INTEL_INFO(dev)->gen >= 4) {
14215                 if (!dev->mode_config.rotation_property)
14216                         dev->mode_config.rotation_property =
14217                                 drm_mode_create_rotation_property(dev,
14218                                                         BIT(DRM_ROTATE_0) |
14219                                                         BIT(DRM_ROTATE_180));
14220                 if (dev->mode_config.rotation_property)
14221                         drm_object_attach_property(&cursor->base.base,
14222                                 dev->mode_config.rotation_property,
14223                                 state->base.rotation);
14224         }
14225
14226         if (INTEL_INFO(dev)->gen >=9)
14227                 state->scaler_id = -1;
14228
14229         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14230
14231         return &cursor->base;
14232
14233 fail:
14234         kfree(state);
14235         kfree(cursor);
14236
14237         return NULL;
14238 }
14239
14240 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14241         struct intel_crtc_state *crtc_state)
14242 {
14243         int i;
14244         struct intel_scaler *intel_scaler;
14245         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14246
14247         for (i = 0; i < intel_crtc->num_scalers; i++) {
14248                 intel_scaler = &scaler_state->scalers[i];
14249                 intel_scaler->in_use = 0;
14250                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14251         }
14252
14253         scaler_state->scaler_id = -1;
14254 }
14255
14256 static void intel_crtc_init(struct drm_device *dev, int pipe)
14257 {
14258         struct drm_i915_private *dev_priv = dev->dev_private;
14259         struct intel_crtc *intel_crtc;
14260         struct intel_crtc_state *crtc_state = NULL;
14261         struct drm_plane *primary = NULL;
14262         struct drm_plane *cursor = NULL;
14263         int ret;
14264
14265         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14266         if (intel_crtc == NULL)
14267                 return;
14268
14269         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14270         if (!crtc_state)
14271                 goto fail;
14272         intel_crtc->config = crtc_state;
14273         intel_crtc->base.state = &crtc_state->base;
14274         crtc_state->base.crtc = &intel_crtc->base;
14275
14276         /* initialize shared scalers */
14277         if (INTEL_INFO(dev)->gen >= 9) {
14278                 if (pipe == PIPE_C)
14279                         intel_crtc->num_scalers = 1;
14280                 else
14281                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14282
14283                 skl_init_scalers(dev, intel_crtc, crtc_state);
14284         }
14285
14286         primary = intel_primary_plane_create(dev, pipe);
14287         if (!primary)
14288                 goto fail;
14289
14290         cursor = intel_cursor_plane_create(dev, pipe);
14291         if (!cursor)
14292                 goto fail;
14293
14294         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14295                                         cursor, &intel_crtc_funcs, NULL);
14296         if (ret)
14297                 goto fail;
14298
14299         /*
14300          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14301          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14302          */
14303         intel_crtc->pipe = pipe;
14304         intel_crtc->plane = pipe;
14305         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14306                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14307                 intel_crtc->plane = !pipe;
14308         }
14309
14310         intel_crtc->cursor_base = ~0;
14311         intel_crtc->cursor_cntl = ~0;
14312         intel_crtc->cursor_size = ~0;
14313
14314         intel_crtc->wm.cxsr_allowed = true;
14315
14316         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14317                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14318         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14319         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14320
14321         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14322
14323         intel_color_init(&intel_crtc->base);
14324
14325         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14326         return;
14327
14328 fail:
14329         if (primary)
14330                 drm_plane_cleanup(primary);
14331         if (cursor)
14332                 drm_plane_cleanup(cursor);
14333         kfree(crtc_state);
14334         kfree(intel_crtc);
14335 }
14336
14337 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14338 {
14339         struct drm_encoder *encoder = connector->base.encoder;
14340         struct drm_device *dev = connector->base.dev;
14341
14342         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14343
14344         if (!encoder || WARN_ON(!encoder->crtc))
14345                 return INVALID_PIPE;
14346
14347         return to_intel_crtc(encoder->crtc)->pipe;
14348 }
14349
14350 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14351                                 struct drm_file *file)
14352 {
14353         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14354         struct drm_crtc *drmmode_crtc;
14355         struct intel_crtc *crtc;
14356
14357         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14358
14359         if (!drmmode_crtc) {
14360                 DRM_ERROR("no such CRTC id\n");
14361                 return -ENOENT;
14362         }
14363
14364         crtc = to_intel_crtc(drmmode_crtc);
14365         pipe_from_crtc_id->pipe = crtc->pipe;
14366
14367         return 0;
14368 }
14369
14370 static int intel_encoder_clones(struct intel_encoder *encoder)
14371 {
14372         struct drm_device *dev = encoder->base.dev;
14373         struct intel_encoder *source_encoder;
14374         int index_mask = 0;
14375         int entry = 0;
14376
14377         for_each_intel_encoder(dev, source_encoder) {
14378                 if (encoders_cloneable(encoder, source_encoder))
14379                         index_mask |= (1 << entry);
14380
14381                 entry++;
14382         }
14383
14384         return index_mask;
14385 }
14386
14387 static bool has_edp_a(struct drm_device *dev)
14388 {
14389         struct drm_i915_private *dev_priv = dev->dev_private;
14390
14391         if (!IS_MOBILE(dev))
14392                 return false;
14393
14394         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14395                 return false;
14396
14397         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14398                 return false;
14399
14400         return true;
14401 }
14402
14403 static bool intel_crt_present(struct drm_device *dev)
14404 {
14405         struct drm_i915_private *dev_priv = dev->dev_private;
14406
14407         if (INTEL_INFO(dev)->gen >= 9)
14408                 return false;
14409
14410         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14411                 return false;
14412
14413         if (IS_CHERRYVIEW(dev))
14414                 return false;
14415
14416         if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14417                 return false;
14418
14419         /* DDI E can't be used if DDI A requires 4 lanes */
14420         if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14421                 return false;
14422
14423         if (!dev_priv->vbt.int_crt_support)
14424                 return false;
14425
14426         return true;
14427 }
14428
14429 static void intel_setup_outputs(struct drm_device *dev)
14430 {
14431         struct drm_i915_private *dev_priv = dev->dev_private;
14432         struct intel_encoder *encoder;
14433         bool dpd_is_edp = false;
14434
14435         intel_lvds_init(dev);
14436
14437         if (intel_crt_present(dev))
14438                 intel_crt_init(dev);
14439
14440         if (IS_BROXTON(dev)) {
14441                 /*
14442                  * FIXME: Broxton doesn't support port detection via the
14443                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14444                  * detect the ports.
14445                  */
14446                 intel_ddi_init(dev, PORT_A);
14447                 intel_ddi_init(dev, PORT_B);
14448                 intel_ddi_init(dev, PORT_C);
14449
14450                 intel_dsi_init(dev);
14451         } else if (HAS_DDI(dev)) {
14452                 int found;
14453
14454                 /*
14455                  * Haswell uses DDI functions to detect digital outputs.
14456                  * On SKL pre-D0 the strap isn't connected, so we assume
14457                  * it's there.
14458                  */
14459                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14460                 /* WaIgnoreDDIAStrap: skl */
14461                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14462                         intel_ddi_init(dev, PORT_A);
14463
14464                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14465                  * register */
14466                 found = I915_READ(SFUSE_STRAP);
14467
14468                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14469                         intel_ddi_init(dev, PORT_B);
14470                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14471                         intel_ddi_init(dev, PORT_C);
14472                 if (found & SFUSE_STRAP_DDID_DETECTED)
14473                         intel_ddi_init(dev, PORT_D);
14474                 /*
14475                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14476                  */
14477                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14478                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14479                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14480                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14481                         intel_ddi_init(dev, PORT_E);
14482
14483         } else if (HAS_PCH_SPLIT(dev)) {
14484                 int found;
14485                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14486
14487                 if (has_edp_a(dev))
14488                         intel_dp_init(dev, DP_A, PORT_A);
14489
14490                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14491                         /* PCH SDVOB multiplex with HDMIB */
14492                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14493                         if (!found)
14494                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14495                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14496                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14497                 }
14498
14499                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14500                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14501
14502                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14503                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14504
14505                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14506                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14507
14508                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14509                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14510         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14511                 /*
14512                  * The DP_DETECTED bit is the latched state of the DDC
14513                  * SDA pin at boot. However since eDP doesn't require DDC
14514                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14515                  * eDP ports may have been muxed to an alternate function.
14516                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14517                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14518                  * detect eDP ports.
14519                  */
14520                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14521                     !intel_dp_is_edp(dev, PORT_B))
14522                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14523                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14524                     intel_dp_is_edp(dev, PORT_B))
14525                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14526
14527                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14528                     !intel_dp_is_edp(dev, PORT_C))
14529                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14530                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14531                     intel_dp_is_edp(dev, PORT_C))
14532                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14533
14534                 if (IS_CHERRYVIEW(dev)) {
14535                         /* eDP not supported on port D, so don't check VBT */
14536                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14537                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14538                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14539                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14540                 }
14541
14542                 intel_dsi_init(dev);
14543         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14544                 bool found = false;
14545
14546                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14547                         DRM_DEBUG_KMS("probing SDVOB\n");
14548                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14549                         if (!found && IS_G4X(dev)) {
14550                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14551                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14552                         }
14553
14554                         if (!found && IS_G4X(dev))
14555                                 intel_dp_init(dev, DP_B, PORT_B);
14556                 }
14557
14558                 /* Before G4X SDVOC doesn't have its own detect register */
14559
14560                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14561                         DRM_DEBUG_KMS("probing SDVOC\n");
14562                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14563                 }
14564
14565                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14566
14567                         if (IS_G4X(dev)) {
14568                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14569                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14570                         }
14571                         if (IS_G4X(dev))
14572                                 intel_dp_init(dev, DP_C, PORT_C);
14573                 }
14574
14575                 if (IS_G4X(dev) &&
14576                     (I915_READ(DP_D) & DP_DETECTED))
14577                         intel_dp_init(dev, DP_D, PORT_D);
14578         } else if (IS_GEN2(dev))
14579                 intel_dvo_init(dev);
14580
14581         if (SUPPORTS_TV(dev))
14582                 intel_tv_init(dev);
14583
14584         intel_psr_init(dev);
14585
14586         for_each_intel_encoder(dev, encoder) {
14587                 encoder->base.possible_crtcs = encoder->crtc_mask;
14588                 encoder->base.possible_clones =
14589                         intel_encoder_clones(encoder);
14590         }
14591
14592         intel_init_pch_refclk(dev);
14593
14594         drm_helper_move_panel_connectors_to_head(dev);
14595 }
14596
14597 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14598 {
14599         struct drm_device *dev = fb->dev;
14600         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14601
14602         drm_framebuffer_cleanup(fb);
14603         mutex_lock(&dev->struct_mutex);
14604         WARN_ON(!intel_fb->obj->framebuffer_references--);
14605         drm_gem_object_unreference(&intel_fb->obj->base);
14606         mutex_unlock(&dev->struct_mutex);
14607         kfree(intel_fb);
14608 }
14609
14610 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14611                                                 struct drm_file *file,
14612                                                 unsigned int *handle)
14613 {
14614         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14615         struct drm_i915_gem_object *obj = intel_fb->obj;
14616
14617         if (obj->userptr.mm) {
14618                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14619                 return -EINVAL;
14620         }
14621
14622         return drm_gem_handle_create(file, &obj->base, handle);
14623 }
14624
14625 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14626                                         struct drm_file *file,
14627                                         unsigned flags, unsigned color,
14628                                         struct drm_clip_rect *clips,
14629                                         unsigned num_clips)
14630 {
14631         struct drm_device *dev = fb->dev;
14632         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14633         struct drm_i915_gem_object *obj = intel_fb->obj;
14634
14635         mutex_lock(&dev->struct_mutex);
14636         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14637         mutex_unlock(&dev->struct_mutex);
14638
14639         return 0;
14640 }
14641
14642 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14643         .destroy = intel_user_framebuffer_destroy,
14644         .create_handle = intel_user_framebuffer_create_handle,
14645         .dirty = intel_user_framebuffer_dirty,
14646 };
14647
14648 static
14649 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14650                          uint32_t pixel_format)
14651 {
14652         u32 gen = INTEL_INFO(dev)->gen;
14653
14654         if (gen >= 9) {
14655                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14656
14657                 /* "The stride in bytes must not exceed the of the size of 8K
14658                  *  pixels and 32K bytes."
14659                  */
14660                 return min(8192 * cpp, 32768);
14661         } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14662                 return 32*1024;
14663         } else if (gen >= 4) {
14664                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14665                         return 16*1024;
14666                 else
14667                         return 32*1024;
14668         } else if (gen >= 3) {
14669                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14670                         return 8*1024;
14671                 else
14672                         return 16*1024;
14673         } else {
14674                 /* XXX DSPC is limited to 4k tiled */
14675                 return 8*1024;
14676         }
14677 }
14678
14679 static int intel_framebuffer_init(struct drm_device *dev,
14680                                   struct intel_framebuffer *intel_fb,
14681                                   struct drm_mode_fb_cmd2 *mode_cmd,
14682                                   struct drm_i915_gem_object *obj)
14683 {
14684         struct drm_i915_private *dev_priv = to_i915(dev);
14685         unsigned int aligned_height;
14686         int ret;
14687         u32 pitch_limit, stride_alignment;
14688
14689         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14690
14691         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14692                 /* Enforce that fb modifier and tiling mode match, but only for
14693                  * X-tiled. This is needed for FBC. */
14694                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14695                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14696                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14697                         return -EINVAL;
14698                 }
14699         } else {
14700                 if (obj->tiling_mode == I915_TILING_X)
14701                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14702                 else if (obj->tiling_mode == I915_TILING_Y) {
14703                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14704                         return -EINVAL;
14705                 }
14706         }
14707
14708         /* Passed in modifier sanity checking. */
14709         switch (mode_cmd->modifier[0]) {
14710         case I915_FORMAT_MOD_Y_TILED:
14711         case I915_FORMAT_MOD_Yf_TILED:
14712                 if (INTEL_INFO(dev)->gen < 9) {
14713                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14714                                   mode_cmd->modifier[0]);
14715                         return -EINVAL;
14716                 }
14717         case DRM_FORMAT_MOD_NONE:
14718         case I915_FORMAT_MOD_X_TILED:
14719                 break;
14720         default:
14721                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14722                           mode_cmd->modifier[0]);
14723                 return -EINVAL;
14724         }
14725
14726         stride_alignment = intel_fb_stride_alignment(dev_priv,
14727                                                      mode_cmd->modifier[0],
14728                                                      mode_cmd->pixel_format);
14729         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14730                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14731                           mode_cmd->pitches[0], stride_alignment);
14732                 return -EINVAL;
14733         }
14734
14735         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14736                                            mode_cmd->pixel_format);
14737         if (mode_cmd->pitches[0] > pitch_limit) {
14738                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14739                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14740                           "tiled" : "linear",
14741                           mode_cmd->pitches[0], pitch_limit);
14742                 return -EINVAL;
14743         }
14744
14745         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14746             mode_cmd->pitches[0] != obj->stride) {
14747                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14748                           mode_cmd->pitches[0], obj->stride);
14749                 return -EINVAL;
14750         }
14751
14752         /* Reject formats not supported by any plane early. */
14753         switch (mode_cmd->pixel_format) {
14754         case DRM_FORMAT_C8:
14755         case DRM_FORMAT_RGB565:
14756         case DRM_FORMAT_XRGB8888:
14757         case DRM_FORMAT_ARGB8888:
14758                 break;
14759         case DRM_FORMAT_XRGB1555:
14760                 if (INTEL_INFO(dev)->gen > 3) {
14761                         DRM_DEBUG("unsupported pixel format: %s\n",
14762                                   drm_get_format_name(mode_cmd->pixel_format));
14763                         return -EINVAL;
14764                 }
14765                 break;
14766         case DRM_FORMAT_ABGR8888:
14767                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14768                     INTEL_INFO(dev)->gen < 9) {
14769                         DRM_DEBUG("unsupported pixel format: %s\n",
14770                                   drm_get_format_name(mode_cmd->pixel_format));
14771                         return -EINVAL;
14772                 }
14773                 break;
14774         case DRM_FORMAT_XBGR8888:
14775         case DRM_FORMAT_XRGB2101010:
14776         case DRM_FORMAT_XBGR2101010:
14777                 if (INTEL_INFO(dev)->gen < 4) {
14778                         DRM_DEBUG("unsupported pixel format: %s\n",
14779                                   drm_get_format_name(mode_cmd->pixel_format));
14780                         return -EINVAL;
14781                 }
14782                 break;
14783         case DRM_FORMAT_ABGR2101010:
14784                 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14785                         DRM_DEBUG("unsupported pixel format: %s\n",
14786                                   drm_get_format_name(mode_cmd->pixel_format));
14787                         return -EINVAL;
14788                 }
14789                 break;
14790         case DRM_FORMAT_YUYV:
14791         case DRM_FORMAT_UYVY:
14792         case DRM_FORMAT_YVYU:
14793         case DRM_FORMAT_VYUY:
14794                 if (INTEL_INFO(dev)->gen < 5) {
14795                         DRM_DEBUG("unsupported pixel format: %s\n",
14796                                   drm_get_format_name(mode_cmd->pixel_format));
14797                         return -EINVAL;
14798                 }
14799                 break;
14800         default:
14801                 DRM_DEBUG("unsupported pixel format: %s\n",
14802                           drm_get_format_name(mode_cmd->pixel_format));
14803                 return -EINVAL;
14804         }
14805
14806         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14807         if (mode_cmd->offsets[0] != 0)
14808                 return -EINVAL;
14809
14810         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14811                                                mode_cmd->pixel_format,
14812                                                mode_cmd->modifier[0]);
14813         /* FIXME drm helper for size checks (especially planar formats)? */
14814         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14815                 return -EINVAL;
14816
14817         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14818         intel_fb->obj = obj;
14819
14820         intel_fill_fb_info(dev_priv, &intel_fb->base);
14821
14822         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14823         if (ret) {
14824                 DRM_ERROR("framebuffer init failed %d\n", ret);
14825                 return ret;
14826         }
14827
14828         intel_fb->obj->framebuffer_references++;
14829
14830         return 0;
14831 }
14832
14833 static struct drm_framebuffer *
14834 intel_user_framebuffer_create(struct drm_device *dev,
14835                               struct drm_file *filp,
14836                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14837 {
14838         struct drm_framebuffer *fb;
14839         struct drm_i915_gem_object *obj;
14840         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14841
14842         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14843                                                 mode_cmd.handles[0]));
14844         if (&obj->base == NULL)
14845                 return ERR_PTR(-ENOENT);
14846
14847         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14848         if (IS_ERR(fb))
14849                 drm_gem_object_unreference_unlocked(&obj->base);
14850
14851         return fb;
14852 }
14853
14854 #ifndef CONFIG_DRM_FBDEV_EMULATION
14855 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14856 {
14857 }
14858 #endif
14859
14860 static const struct drm_mode_config_funcs intel_mode_funcs = {
14861         .fb_create = intel_user_framebuffer_create,
14862         .output_poll_changed = intel_fbdev_output_poll_changed,
14863         .atomic_check = intel_atomic_check,
14864         .atomic_commit = intel_atomic_commit,
14865         .atomic_state_alloc = intel_atomic_state_alloc,
14866         .atomic_state_clear = intel_atomic_state_clear,
14867 };
14868
14869 /**
14870  * intel_init_display_hooks - initialize the display modesetting hooks
14871  * @dev_priv: device private
14872  */
14873 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14874 {
14875         if (INTEL_INFO(dev_priv)->gen >= 9) {
14876                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14877                 dev_priv->display.get_initial_plane_config =
14878                         skylake_get_initial_plane_config;
14879                 dev_priv->display.crtc_compute_clock =
14880                         haswell_crtc_compute_clock;
14881                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14882                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14883         } else if (HAS_DDI(dev_priv)) {
14884                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14885                 dev_priv->display.get_initial_plane_config =
14886                         ironlake_get_initial_plane_config;
14887                 dev_priv->display.crtc_compute_clock =
14888                         haswell_crtc_compute_clock;
14889                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14890                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14891         } else if (HAS_PCH_SPLIT(dev_priv)) {
14892                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14893                 dev_priv->display.get_initial_plane_config =
14894                         ironlake_get_initial_plane_config;
14895                 dev_priv->display.crtc_compute_clock =
14896                         ironlake_crtc_compute_clock;
14897                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14898                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14899         } else if (IS_CHERRYVIEW(dev_priv)) {
14900                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14901                 dev_priv->display.get_initial_plane_config =
14902                         i9xx_get_initial_plane_config;
14903                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14904                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14905                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14906         } else if (IS_VALLEYVIEW(dev_priv)) {
14907                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14908                 dev_priv->display.get_initial_plane_config =
14909                         i9xx_get_initial_plane_config;
14910                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14911                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14912                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14913         } else if (IS_G4X(dev_priv)) {
14914                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14915                 dev_priv->display.get_initial_plane_config =
14916                         i9xx_get_initial_plane_config;
14917                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14918                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14919                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14920         } else if (IS_PINEVIEW(dev_priv)) {
14921                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14922                 dev_priv->display.get_initial_plane_config =
14923                         i9xx_get_initial_plane_config;
14924                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14925                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14926                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14927         } else if (!IS_GEN2(dev_priv)) {
14928                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14929                 dev_priv->display.get_initial_plane_config =
14930                         i9xx_get_initial_plane_config;
14931                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14932                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14933                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14934         } else {
14935                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14936                 dev_priv->display.get_initial_plane_config =
14937                         i9xx_get_initial_plane_config;
14938                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14939                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14940                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14941         }
14942
14943         /* Returns the core display clock speed */
14944         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
14945                 dev_priv->display.get_display_clock_speed =
14946                         skylake_get_display_clock_speed;
14947         else if (IS_BROXTON(dev_priv))
14948                 dev_priv->display.get_display_clock_speed =
14949                         broxton_get_display_clock_speed;
14950         else if (IS_BROADWELL(dev_priv))
14951                 dev_priv->display.get_display_clock_speed =
14952                         broadwell_get_display_clock_speed;
14953         else if (IS_HASWELL(dev_priv))
14954                 dev_priv->display.get_display_clock_speed =
14955                         haswell_get_display_clock_speed;
14956         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14957                 dev_priv->display.get_display_clock_speed =
14958                         valleyview_get_display_clock_speed;
14959         else if (IS_GEN5(dev_priv))
14960                 dev_priv->display.get_display_clock_speed =
14961                         ilk_get_display_clock_speed;
14962         else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14963                  IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
14964                 dev_priv->display.get_display_clock_speed =
14965                         i945_get_display_clock_speed;
14966         else if (IS_GM45(dev_priv))
14967                 dev_priv->display.get_display_clock_speed =
14968                         gm45_get_display_clock_speed;
14969         else if (IS_CRESTLINE(dev_priv))
14970                 dev_priv->display.get_display_clock_speed =
14971                         i965gm_get_display_clock_speed;
14972         else if (IS_PINEVIEW(dev_priv))
14973                 dev_priv->display.get_display_clock_speed =
14974                         pnv_get_display_clock_speed;
14975         else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
14976                 dev_priv->display.get_display_clock_speed =
14977                         g33_get_display_clock_speed;
14978         else if (IS_I915G(dev_priv))
14979                 dev_priv->display.get_display_clock_speed =
14980                         i915_get_display_clock_speed;
14981         else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
14982                 dev_priv->display.get_display_clock_speed =
14983                         i9xx_misc_get_display_clock_speed;
14984         else if (IS_I915GM(dev_priv))
14985                 dev_priv->display.get_display_clock_speed =
14986                         i915gm_get_display_clock_speed;
14987         else if (IS_I865G(dev_priv))
14988                 dev_priv->display.get_display_clock_speed =
14989                         i865_get_display_clock_speed;
14990         else if (IS_I85X(dev_priv))
14991                 dev_priv->display.get_display_clock_speed =
14992                         i85x_get_display_clock_speed;
14993         else { /* 830 */
14994                 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
14995                 dev_priv->display.get_display_clock_speed =
14996                         i830_get_display_clock_speed;
14997         }
14998
14999         if (IS_GEN5(dev_priv)) {
15000                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15001         } else if (IS_GEN6(dev_priv)) {
15002                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15003         } else if (IS_IVYBRIDGE(dev_priv)) {
15004                 /* FIXME: detect B0+ stepping and use auto training */
15005                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15006         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15007                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15008                 if (IS_BROADWELL(dev_priv)) {
15009                         dev_priv->display.modeset_commit_cdclk =
15010                                 broadwell_modeset_commit_cdclk;
15011                         dev_priv->display.modeset_calc_cdclk =
15012                                 broadwell_modeset_calc_cdclk;
15013                 }
15014         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15015                 dev_priv->display.modeset_commit_cdclk =
15016                         valleyview_modeset_commit_cdclk;
15017                 dev_priv->display.modeset_calc_cdclk =
15018                         valleyview_modeset_calc_cdclk;
15019         } else if (IS_BROXTON(dev_priv)) {
15020                 dev_priv->display.modeset_commit_cdclk =
15021                         broxton_modeset_commit_cdclk;
15022                 dev_priv->display.modeset_calc_cdclk =
15023                         broxton_modeset_calc_cdclk;
15024         }
15025
15026         switch (INTEL_INFO(dev_priv)->gen) {
15027         case 2:
15028                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15029                 break;
15030
15031         case 3:
15032                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15033                 break;
15034
15035         case 4:
15036         case 5:
15037                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15038                 break;
15039
15040         case 6:
15041                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15042                 break;
15043         case 7:
15044         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15045                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15046                 break;
15047         case 9:
15048                 /* Drop through - unsupported since execlist only. */
15049         default:
15050                 /* Default just returns -ENODEV to indicate unsupported */
15051                 dev_priv->display.queue_flip = intel_default_queue_flip;
15052         }
15053 }
15054
15055 /*
15056  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15057  * resume, or other times.  This quirk makes sure that's the case for
15058  * affected systems.
15059  */
15060 static void quirk_pipea_force(struct drm_device *dev)
15061 {
15062         struct drm_i915_private *dev_priv = dev->dev_private;
15063
15064         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15065         DRM_INFO("applying pipe a force quirk\n");
15066 }
15067
15068 static void quirk_pipeb_force(struct drm_device *dev)
15069 {
15070         struct drm_i915_private *dev_priv = dev->dev_private;
15071
15072         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15073         DRM_INFO("applying pipe b force quirk\n");
15074 }
15075
15076 /*
15077  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15078  */
15079 static void quirk_ssc_force_disable(struct drm_device *dev)
15080 {
15081         struct drm_i915_private *dev_priv = dev->dev_private;
15082         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15083         DRM_INFO("applying lvds SSC disable quirk\n");
15084 }
15085
15086 /*
15087  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15088  * brightness value
15089  */
15090 static void quirk_invert_brightness(struct drm_device *dev)
15091 {
15092         struct drm_i915_private *dev_priv = dev->dev_private;
15093         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15094         DRM_INFO("applying inverted panel brightness quirk\n");
15095 }
15096
15097 /* Some VBT's incorrectly indicate no backlight is present */
15098 static void quirk_backlight_present(struct drm_device *dev)
15099 {
15100         struct drm_i915_private *dev_priv = dev->dev_private;
15101         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15102         DRM_INFO("applying backlight present quirk\n");
15103 }
15104
15105 struct intel_quirk {
15106         int device;
15107         int subsystem_vendor;
15108         int subsystem_device;
15109         void (*hook)(struct drm_device *dev);
15110 };
15111
15112 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15113 struct intel_dmi_quirk {
15114         void (*hook)(struct drm_device *dev);
15115         const struct dmi_system_id (*dmi_id_list)[];
15116 };
15117
15118 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15119 {
15120         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15121         return 1;
15122 }
15123
15124 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15125         {
15126                 .dmi_id_list = &(const struct dmi_system_id[]) {
15127                         {
15128                                 .callback = intel_dmi_reverse_brightness,
15129                                 .ident = "NCR Corporation",
15130                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15131                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
15132                                 },
15133                         },
15134                         { }  /* terminating entry */
15135                 },
15136                 .hook = quirk_invert_brightness,
15137         },
15138 };
15139
15140 static struct intel_quirk intel_quirks[] = {
15141         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15142         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15143
15144         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15145         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15146
15147         /* 830 needs to leave pipe A & dpll A up */
15148         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15149
15150         /* 830 needs to leave pipe B & dpll B up */
15151         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15152
15153         /* Lenovo U160 cannot use SSC on LVDS */
15154         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15155
15156         /* Sony Vaio Y cannot use SSC on LVDS */
15157         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15158
15159         /* Acer Aspire 5734Z must invert backlight brightness */
15160         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15161
15162         /* Acer/eMachines G725 */
15163         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15164
15165         /* Acer/eMachines e725 */
15166         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15167
15168         /* Acer/Packard Bell NCL20 */
15169         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15170
15171         /* Acer Aspire 4736Z */
15172         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15173
15174         /* Acer Aspire 5336 */
15175         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15176
15177         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15178         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15179
15180         /* Acer C720 Chromebook (Core i3 4005U) */
15181         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15182
15183         /* Apple Macbook 2,1 (Core 2 T7400) */
15184         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15185
15186         /* Apple Macbook 4,1 */
15187         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15188
15189         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15190         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15191
15192         /* HP Chromebook 14 (Celeron 2955U) */
15193         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15194
15195         /* Dell Chromebook 11 */
15196         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15197
15198         /* Dell Chromebook 11 (2015 version) */
15199         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15200 };
15201
15202 static void intel_init_quirks(struct drm_device *dev)
15203 {
15204         struct pci_dev *d = dev->pdev;
15205         int i;
15206
15207         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15208                 struct intel_quirk *q = &intel_quirks[i];
15209
15210                 if (d->device == q->device &&
15211                     (d->subsystem_vendor == q->subsystem_vendor ||
15212                      q->subsystem_vendor == PCI_ANY_ID) &&
15213                     (d->subsystem_device == q->subsystem_device ||
15214                      q->subsystem_device == PCI_ANY_ID))
15215                         q->hook(dev);
15216         }
15217         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15218                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15219                         intel_dmi_quirks[i].hook(dev);
15220         }
15221 }
15222
15223 /* Disable the VGA plane that we never use */
15224 static void i915_disable_vga(struct drm_device *dev)
15225 {
15226         struct drm_i915_private *dev_priv = dev->dev_private;
15227         u8 sr1;
15228         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15229
15230         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15231         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15232         outb(SR01, VGA_SR_INDEX);
15233         sr1 = inb(VGA_SR_DATA);
15234         outb(sr1 | 1<<5, VGA_SR_DATA);
15235         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15236         udelay(300);
15237
15238         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15239         POSTING_READ(vga_reg);
15240 }
15241
15242 void intel_modeset_init_hw(struct drm_device *dev)
15243 {
15244         struct drm_i915_private *dev_priv = dev->dev_private;
15245
15246         intel_update_cdclk(dev);
15247
15248         dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15249
15250         intel_init_clock_gating(dev);
15251         intel_enable_gt_powersave(dev);
15252 }
15253
15254 /*
15255  * Calculate what we think the watermarks should be for the state we've read
15256  * out of the hardware and then immediately program those watermarks so that
15257  * we ensure the hardware settings match our internal state.
15258  *
15259  * We can calculate what we think WM's should be by creating a duplicate of the
15260  * current state (which was constructed during hardware readout) and running it
15261  * through the atomic check code to calculate new watermark values in the
15262  * state object.
15263  */
15264 static void sanitize_watermarks(struct drm_device *dev)
15265 {
15266         struct drm_i915_private *dev_priv = to_i915(dev);
15267         struct drm_atomic_state *state;
15268         struct drm_crtc *crtc;
15269         struct drm_crtc_state *cstate;
15270         struct drm_modeset_acquire_ctx ctx;
15271         int ret;
15272         int i;
15273
15274         /* Only supported on platforms that use atomic watermark design */
15275         if (!dev_priv->display.optimize_watermarks)
15276                 return;
15277
15278         /*
15279          * We need to hold connection_mutex before calling duplicate_state so
15280          * that the connector loop is protected.
15281          */
15282         drm_modeset_acquire_init(&ctx, 0);
15283 retry:
15284         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15285         if (ret == -EDEADLK) {
15286                 drm_modeset_backoff(&ctx);
15287                 goto retry;
15288         } else if (WARN_ON(ret)) {
15289                 goto fail;
15290         }
15291
15292         state = drm_atomic_helper_duplicate_state(dev, &ctx);
15293         if (WARN_ON(IS_ERR(state)))
15294                 goto fail;
15295
15296         /*
15297          * Hardware readout is the only time we don't want to calculate
15298          * intermediate watermarks (since we don't trust the current
15299          * watermarks).
15300          */
15301         to_intel_atomic_state(state)->skip_intermediate_wm = true;
15302
15303         ret = intel_atomic_check(dev, state);
15304         if (ret) {
15305                 /*
15306                  * If we fail here, it means that the hardware appears to be
15307                  * programmed in a way that shouldn't be possible, given our
15308                  * understanding of watermark requirements.  This might mean a
15309                  * mistake in the hardware readout code or a mistake in the
15310                  * watermark calculations for a given platform.  Raise a WARN
15311                  * so that this is noticeable.
15312                  *
15313                  * If this actually happens, we'll have to just leave the
15314                  * BIOS-programmed watermarks untouched and hope for the best.
15315                  */
15316                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15317                 goto fail;
15318         }
15319
15320         /* Write calculated watermark values back */
15321         to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15322         for_each_crtc_in_state(state, crtc, cstate, i) {
15323                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15324
15325                 cs->wm.need_postvbl_update = true;
15326                 dev_priv->display.optimize_watermarks(cs);
15327         }
15328
15329         drm_atomic_state_free(state);
15330 fail:
15331         drm_modeset_drop_locks(&ctx);
15332         drm_modeset_acquire_fini(&ctx);
15333 }
15334
15335 void intel_modeset_init(struct drm_device *dev)
15336 {
15337         struct drm_i915_private *dev_priv = to_i915(dev);
15338         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15339         int sprite, ret;
15340         enum pipe pipe;
15341         struct intel_crtc *crtc;
15342
15343         drm_mode_config_init(dev);
15344
15345         dev->mode_config.min_width = 0;
15346         dev->mode_config.min_height = 0;
15347
15348         dev->mode_config.preferred_depth = 24;
15349         dev->mode_config.prefer_shadow = 1;
15350
15351         dev->mode_config.allow_fb_modifiers = true;
15352
15353         dev->mode_config.funcs = &intel_mode_funcs;
15354
15355         intel_init_quirks(dev);
15356
15357         intel_init_pm(dev);
15358
15359         if (INTEL_INFO(dev)->num_pipes == 0)
15360                 return;
15361
15362         /*
15363          * There may be no VBT; and if the BIOS enabled SSC we can
15364          * just keep using it to avoid unnecessary flicker.  Whereas if the
15365          * BIOS isn't using it, don't assume it will work even if the VBT
15366          * indicates as much.
15367          */
15368         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15369                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15370                                             DREF_SSC1_ENABLE);
15371
15372                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15373                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15374                                      bios_lvds_use_ssc ? "en" : "dis",
15375                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15376                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15377                 }
15378         }
15379
15380         if (IS_GEN2(dev)) {
15381                 dev->mode_config.max_width = 2048;
15382                 dev->mode_config.max_height = 2048;
15383         } else if (IS_GEN3(dev)) {
15384                 dev->mode_config.max_width = 4096;
15385                 dev->mode_config.max_height = 4096;
15386         } else {
15387                 dev->mode_config.max_width = 8192;
15388                 dev->mode_config.max_height = 8192;
15389         }
15390
15391         if (IS_845G(dev) || IS_I865G(dev)) {
15392                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15393                 dev->mode_config.cursor_height = 1023;
15394         } else if (IS_GEN2(dev)) {
15395                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15396                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15397         } else {
15398                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15399                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15400         }
15401
15402         dev->mode_config.fb_base = ggtt->mappable_base;
15403
15404         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15405                       INTEL_INFO(dev)->num_pipes,
15406                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15407
15408         for_each_pipe(dev_priv, pipe) {
15409                 intel_crtc_init(dev, pipe);
15410                 for_each_sprite(dev_priv, pipe, sprite) {
15411                         ret = intel_plane_init(dev, pipe, sprite);
15412                         if (ret)
15413                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15414                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15415                 }
15416         }
15417
15418         intel_update_czclk(dev_priv);
15419         intel_update_rawclk(dev_priv);
15420         intel_update_cdclk(dev);
15421
15422         intel_shared_dpll_init(dev);
15423
15424         /* Just disable it once at startup */
15425         i915_disable_vga(dev);
15426         intel_setup_outputs(dev);
15427
15428         drm_modeset_lock_all(dev);
15429         intel_modeset_setup_hw_state(dev);
15430         drm_modeset_unlock_all(dev);
15431
15432         for_each_intel_crtc(dev, crtc) {
15433                 struct intel_initial_plane_config plane_config = {};
15434
15435                 if (!crtc->active)
15436                         continue;
15437
15438                 /*
15439                  * Note that reserving the BIOS fb up front prevents us
15440                  * from stuffing other stolen allocations like the ring
15441                  * on top.  This prevents some ugliness at boot time, and
15442                  * can even allow for smooth boot transitions if the BIOS
15443                  * fb is large enough for the active pipe configuration.
15444                  */
15445                 dev_priv->display.get_initial_plane_config(crtc,
15446                                                            &plane_config);
15447
15448                 /*
15449                  * If the fb is shared between multiple heads, we'll
15450                  * just get the first one.
15451                  */
15452                 intel_find_initial_plane_obj(crtc, &plane_config);
15453         }
15454
15455         /*
15456          * Make sure hardware watermarks really match the state we read out.
15457          * Note that we need to do this after reconstructing the BIOS fb's
15458          * since the watermark calculation done here will use pstate->fb.
15459          */
15460         sanitize_watermarks(dev);
15461 }
15462
15463 static void intel_enable_pipe_a(struct drm_device *dev)
15464 {
15465         struct intel_connector *connector;
15466         struct drm_connector *crt = NULL;
15467         struct intel_load_detect_pipe load_detect_temp;
15468         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15469
15470         /* We can't just switch on the pipe A, we need to set things up with a
15471          * proper mode and output configuration. As a gross hack, enable pipe A
15472          * by enabling the load detect pipe once. */
15473         for_each_intel_connector(dev, connector) {
15474                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15475                         crt = &connector->base;
15476                         break;
15477                 }
15478         }
15479
15480         if (!crt)
15481                 return;
15482
15483         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15484                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15485 }
15486
15487 static bool
15488 intel_check_plane_mapping(struct intel_crtc *crtc)
15489 {
15490         struct drm_device *dev = crtc->base.dev;
15491         struct drm_i915_private *dev_priv = dev->dev_private;
15492         u32 val;
15493
15494         if (INTEL_INFO(dev)->num_pipes == 1)
15495                 return true;
15496
15497         val = I915_READ(DSPCNTR(!crtc->plane));
15498
15499         if ((val & DISPLAY_PLANE_ENABLE) &&
15500             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15501                 return false;
15502
15503         return true;
15504 }
15505
15506 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15507 {
15508         struct drm_device *dev = crtc->base.dev;
15509         struct intel_encoder *encoder;
15510
15511         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15512                 return true;
15513
15514         return false;
15515 }
15516
15517 static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15518 {
15519         struct drm_device *dev = encoder->base.dev;
15520         struct intel_connector *connector;
15521
15522         for_each_connector_on_encoder(dev, &encoder->base, connector)
15523                 return true;
15524
15525         return false;
15526 }
15527
15528 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15529 {
15530         struct drm_device *dev = crtc->base.dev;
15531         struct drm_i915_private *dev_priv = dev->dev_private;
15532         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15533
15534         /* Clear any frame start delays used for debugging left by the BIOS */
15535         if (!transcoder_is_dsi(cpu_transcoder)) {
15536                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15537
15538                 I915_WRITE(reg,
15539                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15540         }
15541
15542         /* restore vblank interrupts to correct state */
15543         drm_crtc_vblank_reset(&crtc->base);
15544         if (crtc->active) {
15545                 struct intel_plane *plane;
15546
15547                 drm_crtc_vblank_on(&crtc->base);
15548
15549                 /* Disable everything but the primary plane */
15550                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15551                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15552                                 continue;
15553
15554                         plane->disable_plane(&plane->base, &crtc->base);
15555                 }
15556         }
15557
15558         /* We need to sanitize the plane -> pipe mapping first because this will
15559          * disable the crtc (and hence change the state) if it is wrong. Note
15560          * that gen4+ has a fixed plane -> pipe mapping.  */
15561         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15562                 bool plane;
15563
15564                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15565                               crtc->base.base.id);
15566
15567                 /* Pipe has the wrong plane attached and the plane is active.
15568                  * Temporarily change the plane mapping and disable everything
15569                  * ...  */
15570                 plane = crtc->plane;
15571                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15572                 crtc->plane = !plane;
15573                 intel_crtc_disable_noatomic(&crtc->base);
15574                 crtc->plane = plane;
15575         }
15576
15577         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15578             crtc->pipe == PIPE_A && !crtc->active) {
15579                 /* BIOS forgot to enable pipe A, this mostly happens after
15580                  * resume. Force-enable the pipe to fix this, the update_dpms
15581                  * call below we restore the pipe to the right state, but leave
15582                  * the required bits on. */
15583                 intel_enable_pipe_a(dev);
15584         }
15585
15586         /* Adjust the state of the output pipe according to whether we
15587          * have active connectors/encoders. */
15588         if (crtc->active && !intel_crtc_has_encoders(crtc))
15589                 intel_crtc_disable_noatomic(&crtc->base);
15590
15591         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15592                 /*
15593                  * We start out with underrun reporting disabled to avoid races.
15594                  * For correct bookkeeping mark this on active crtcs.
15595                  *
15596                  * Also on gmch platforms we dont have any hardware bits to
15597                  * disable the underrun reporting. Which means we need to start
15598                  * out with underrun reporting disabled also on inactive pipes,
15599                  * since otherwise we'll complain about the garbage we read when
15600                  * e.g. coming up after runtime pm.
15601                  *
15602                  * No protection against concurrent access is required - at
15603                  * worst a fifo underrun happens which also sets this to false.
15604                  */
15605                 crtc->cpu_fifo_underrun_disabled = true;
15606                 crtc->pch_fifo_underrun_disabled = true;
15607         }
15608 }
15609
15610 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15611 {
15612         struct intel_connector *connector;
15613         struct drm_device *dev = encoder->base.dev;
15614
15615         /* We need to check both for a crtc link (meaning that the
15616          * encoder is active and trying to read from a pipe) and the
15617          * pipe itself being active. */
15618         bool has_active_crtc = encoder->base.crtc &&
15619                 to_intel_crtc(encoder->base.crtc)->active;
15620
15621         if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15622                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15623                               encoder->base.base.id,
15624                               encoder->base.name);
15625
15626                 /* Connector is active, but has no active pipe. This is
15627                  * fallout from our resume register restoring. Disable
15628                  * the encoder manually again. */
15629                 if (encoder->base.crtc) {
15630                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15631                                       encoder->base.base.id,
15632                                       encoder->base.name);
15633                         encoder->disable(encoder);
15634                         if (encoder->post_disable)
15635                                 encoder->post_disable(encoder);
15636                 }
15637                 encoder->base.crtc = NULL;
15638
15639                 /* Inconsistent output/port/pipe state happens presumably due to
15640                  * a bug in one of the get_hw_state functions. Or someplace else
15641                  * in our code, like the register restore mess on resume. Clamp
15642                  * things to off as a safer default. */
15643                 for_each_intel_connector(dev, connector) {
15644                         if (connector->encoder != encoder)
15645                                 continue;
15646                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15647                         connector->base.encoder = NULL;
15648                 }
15649         }
15650         /* Enabled encoders without active connectors will be fixed in
15651          * the crtc fixup. */
15652 }
15653
15654 void i915_redisable_vga_power_on(struct drm_device *dev)
15655 {
15656         struct drm_i915_private *dev_priv = dev->dev_private;
15657         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15658
15659         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15660                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15661                 i915_disable_vga(dev);
15662         }
15663 }
15664
15665 void i915_redisable_vga(struct drm_device *dev)
15666 {
15667         struct drm_i915_private *dev_priv = dev->dev_private;
15668
15669         /* This function can be called both from intel_modeset_setup_hw_state or
15670          * at a very early point in our resume sequence, where the power well
15671          * structures are not yet restored. Since this function is at a very
15672          * paranoid "someone might have enabled VGA while we were not looking"
15673          * level, just check if the power well is enabled instead of trying to
15674          * follow the "don't touch the power well if we don't need it" policy
15675          * the rest of the driver uses. */
15676         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15677                 return;
15678
15679         i915_redisable_vga_power_on(dev);
15680
15681         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15682 }
15683
15684 static bool primary_get_hw_state(struct intel_plane *plane)
15685 {
15686         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15687
15688         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15689 }
15690
15691 /* FIXME read out full plane state for all planes */
15692 static void readout_plane_state(struct intel_crtc *crtc)
15693 {
15694         struct drm_plane *primary = crtc->base.primary;
15695         struct intel_plane_state *plane_state =
15696                 to_intel_plane_state(primary->state);
15697
15698         plane_state->visible = crtc->active &&
15699                 primary_get_hw_state(to_intel_plane(primary));
15700
15701         if (plane_state->visible)
15702                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15703 }
15704
15705 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15706 {
15707         struct drm_i915_private *dev_priv = dev->dev_private;
15708         enum pipe pipe;
15709         struct intel_crtc *crtc;
15710         struct intel_encoder *encoder;
15711         struct intel_connector *connector;
15712         int i;
15713
15714         dev_priv->active_crtcs = 0;
15715
15716         for_each_intel_crtc(dev, crtc) {
15717                 struct intel_crtc_state *crtc_state = crtc->config;
15718                 int pixclk = 0;
15719
15720                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15721                 memset(crtc_state, 0, sizeof(*crtc_state));
15722                 crtc_state->base.crtc = &crtc->base;
15723
15724                 crtc_state->base.active = crtc_state->base.enable =
15725                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15726
15727                 crtc->base.enabled = crtc_state->base.enable;
15728                 crtc->active = crtc_state->base.active;
15729
15730                 if (crtc_state->base.active) {
15731                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15732
15733                         if (IS_BROADWELL(dev_priv)) {
15734                                 pixclk = ilk_pipe_pixel_rate(crtc_state);
15735
15736                                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15737                                 if (crtc_state->ips_enabled)
15738                                         pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15739                         } else if (IS_VALLEYVIEW(dev_priv) ||
15740                                    IS_CHERRYVIEW(dev_priv) ||
15741                                    IS_BROXTON(dev_priv))
15742                                 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15743                         else
15744                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15745                 }
15746
15747                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15748
15749                 readout_plane_state(crtc);
15750
15751                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15752                               crtc->base.base.id,
15753                               crtc->active ? "enabled" : "disabled");
15754         }
15755
15756         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15757                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15758
15759                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15760                                                   &pll->config.hw_state);
15761                 pll->config.crtc_mask = 0;
15762                 for_each_intel_crtc(dev, crtc) {
15763                         if (crtc->active && crtc->config->shared_dpll == pll)
15764                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15765                 }
15766                 pll->active_mask = pll->config.crtc_mask;
15767
15768                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15769                               pll->name, pll->config.crtc_mask, pll->on);
15770         }
15771
15772         for_each_intel_encoder(dev, encoder) {
15773                 pipe = 0;
15774
15775                 if (encoder->get_hw_state(encoder, &pipe)) {
15776                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15777                         encoder->base.crtc = &crtc->base;
15778                         encoder->get_config(encoder, crtc->config);
15779                 } else {
15780                         encoder->base.crtc = NULL;
15781                 }
15782
15783                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15784                               encoder->base.base.id,
15785                               encoder->base.name,
15786                               encoder->base.crtc ? "enabled" : "disabled",
15787                               pipe_name(pipe));
15788         }
15789
15790         for_each_intel_connector(dev, connector) {
15791                 if (connector->get_hw_state(connector)) {
15792                         connector->base.dpms = DRM_MODE_DPMS_ON;
15793
15794                         encoder = connector->encoder;
15795                         connector->base.encoder = &encoder->base;
15796
15797                         if (encoder->base.crtc &&
15798                             encoder->base.crtc->state->active) {
15799                                 /*
15800                                  * This has to be done during hardware readout
15801                                  * because anything calling .crtc_disable may
15802                                  * rely on the connector_mask being accurate.
15803                                  */
15804                                 encoder->base.crtc->state->connector_mask |=
15805                                         1 << drm_connector_index(&connector->base);
15806                                 encoder->base.crtc->state->encoder_mask |=
15807                                         1 << drm_encoder_index(&encoder->base);
15808                         }
15809
15810                 } else {
15811                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15812                         connector->base.encoder = NULL;
15813                 }
15814                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15815                               connector->base.base.id,
15816                               connector->base.name,
15817                               connector->base.encoder ? "enabled" : "disabled");
15818         }
15819
15820         for_each_intel_crtc(dev, crtc) {
15821                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15822
15823                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15824                 if (crtc->base.state->active) {
15825                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15826                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15827                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15828
15829                         /*
15830                          * The initial mode needs to be set in order to keep
15831                          * the atomic core happy. It wants a valid mode if the
15832                          * crtc's enabled, so we do the above call.
15833                          *
15834                          * At this point some state updated by the connectors
15835                          * in their ->detect() callback has not run yet, so
15836                          * no recalculation can be done yet.
15837                          *
15838                          * Even if we could do a recalculation and modeset
15839                          * right now it would cause a double modeset if
15840                          * fbdev or userspace chooses a different initial mode.
15841                          *
15842                          * If that happens, someone indicated they wanted a
15843                          * mode change, which means it's safe to do a full
15844                          * recalculation.
15845                          */
15846                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15847
15848                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15849                         update_scanline_offset(crtc);
15850                 }
15851
15852                 intel_pipe_config_sanity_check(dev_priv, crtc->config);
15853         }
15854 }
15855
15856 /* Scan out the current hw modeset state,
15857  * and sanitizes it to the current state
15858  */
15859 static void
15860 intel_modeset_setup_hw_state(struct drm_device *dev)
15861 {
15862         struct drm_i915_private *dev_priv = dev->dev_private;
15863         enum pipe pipe;
15864         struct intel_crtc *crtc;
15865         struct intel_encoder *encoder;
15866         int i;
15867
15868         intel_modeset_readout_hw_state(dev);
15869
15870         /* HW state is read out, now we need to sanitize this mess. */
15871         for_each_intel_encoder(dev, encoder) {
15872                 intel_sanitize_encoder(encoder);
15873         }
15874
15875         for_each_pipe(dev_priv, pipe) {
15876                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15877                 intel_sanitize_crtc(crtc);
15878                 intel_dump_pipe_config(crtc, crtc->config,
15879                                        "[setup_hw_state]");
15880         }
15881
15882         intel_modeset_update_connector_atomic_state(dev);
15883
15884         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15885                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15886
15887                 if (!pll->on || pll->active_mask)
15888                         continue;
15889
15890                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15891
15892                 pll->funcs.disable(dev_priv, pll);
15893                 pll->on = false;
15894         }
15895
15896         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15897                 vlv_wm_get_hw_state(dev);
15898         else if (IS_GEN9(dev))
15899                 skl_wm_get_hw_state(dev);
15900         else if (HAS_PCH_SPLIT(dev))
15901                 ilk_wm_get_hw_state(dev);
15902
15903         for_each_intel_crtc(dev, crtc) {
15904                 unsigned long put_domains;
15905
15906                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15907                 if (WARN_ON(put_domains))
15908                         modeset_put_power_domains(dev_priv, put_domains);
15909         }
15910         intel_display_set_init_power(dev_priv, false);
15911
15912         intel_fbc_init_pipe_state(dev_priv);
15913 }
15914
15915 void intel_display_resume(struct drm_device *dev)
15916 {
15917         struct drm_i915_private *dev_priv = to_i915(dev);
15918         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15919         struct drm_modeset_acquire_ctx ctx;
15920         int ret;
15921         bool setup = false;
15922
15923         dev_priv->modeset_restore_state = NULL;
15924
15925         /*
15926          * This is a cludge because with real atomic modeset mode_config.mutex
15927          * won't be taken. Unfortunately some probed state like
15928          * audio_codec_enable is still protected by mode_config.mutex, so lock
15929          * it here for now.
15930          */
15931         mutex_lock(&dev->mode_config.mutex);
15932         drm_modeset_acquire_init(&ctx, 0);
15933
15934 retry:
15935         ret = drm_modeset_lock_all_ctx(dev, &ctx);
15936
15937         if (ret == 0 && !setup) {
15938                 setup = true;
15939
15940                 intel_modeset_setup_hw_state(dev);
15941                 i915_redisable_vga(dev);
15942         }
15943
15944         if (ret == 0 && state) {
15945                 struct drm_crtc_state *crtc_state;
15946                 struct drm_crtc *crtc;
15947                 int i;
15948
15949                 state->acquire_ctx = &ctx;
15950
15951                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15952                         /*
15953                          * Force recalculation even if we restore
15954                          * current state. With fast modeset this may not result
15955                          * in a modeset when the state is compatible.
15956                          */
15957                         crtc_state->mode_changed = true;
15958                 }
15959
15960                 ret = drm_atomic_commit(state);
15961         }
15962
15963         if (ret == -EDEADLK) {
15964                 drm_modeset_backoff(&ctx);
15965                 goto retry;
15966         }
15967
15968         drm_modeset_drop_locks(&ctx);
15969         drm_modeset_acquire_fini(&ctx);
15970         mutex_unlock(&dev->mode_config.mutex);
15971
15972         if (ret) {
15973                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15974                 drm_atomic_state_free(state);
15975         }
15976 }
15977
15978 void intel_modeset_gem_init(struct drm_device *dev)
15979 {
15980         struct drm_crtc *c;
15981         struct drm_i915_gem_object *obj;
15982         int ret;
15983
15984         intel_init_gt_powersave(dev);
15985
15986         intel_modeset_init_hw(dev);
15987
15988         intel_setup_overlay(dev);
15989
15990         /*
15991          * Make sure any fbs we allocated at startup are properly
15992          * pinned & fenced.  When we do the allocation it's too early
15993          * for this.
15994          */
15995         for_each_crtc(dev, c) {
15996                 obj = intel_fb_obj(c->primary->fb);
15997                 if (obj == NULL)
15998                         continue;
15999
16000                 mutex_lock(&dev->struct_mutex);
16001                 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16002                                                  c->primary->state->rotation);
16003                 mutex_unlock(&dev->struct_mutex);
16004                 if (ret) {
16005                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
16006                                   to_intel_crtc(c)->pipe);
16007                         drm_framebuffer_unreference(c->primary->fb);
16008                         c->primary->fb = NULL;
16009                         c->primary->crtc = c->primary->state->crtc = NULL;
16010                         update_state_fb(c->primary);
16011                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16012                 }
16013         }
16014
16015         intel_backlight_register(dev);
16016 }
16017
16018 void intel_connector_unregister(struct intel_connector *intel_connector)
16019 {
16020         struct drm_connector *connector = &intel_connector->base;
16021
16022         intel_panel_destroy_backlight(connector);
16023         drm_connector_unregister(connector);
16024 }
16025
16026 void intel_modeset_cleanup(struct drm_device *dev)
16027 {
16028         struct drm_i915_private *dev_priv = dev->dev_private;
16029         struct intel_connector *connector;
16030
16031         intel_disable_gt_powersave(dev);
16032
16033         intel_backlight_unregister(dev);
16034
16035         /*
16036          * Interrupts and polling as the first thing to avoid creating havoc.
16037          * Too much stuff here (turning of connectors, ...) would
16038          * experience fancy races otherwise.
16039          */
16040         intel_irq_uninstall(dev_priv);
16041
16042         /*
16043          * Due to the hpd irq storm handling the hotplug work can re-arm the
16044          * poll handlers. Hence disable polling after hpd handling is shut down.
16045          */
16046         drm_kms_helper_poll_fini(dev);
16047
16048         intel_unregister_dsm_handler();
16049
16050         intel_fbc_global_disable(dev_priv);
16051
16052         /* flush any delayed tasks or pending work */
16053         flush_scheduled_work();
16054
16055         /* destroy the backlight and sysfs files before encoders/connectors */
16056         for_each_intel_connector(dev, connector)
16057                 connector->unregister(connector);
16058
16059         drm_mode_config_cleanup(dev);
16060
16061         intel_cleanup_overlay(dev);
16062
16063         intel_cleanup_gt_powersave(dev);
16064
16065         intel_teardown_gmbus(dev);
16066 }
16067
16068 /*
16069  * Return which encoder is currently attached for connector.
16070  */
16071 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16072 {
16073         return &intel_attached_encoder(connector)->base;
16074 }
16075
16076 void intel_connector_attach_encoder(struct intel_connector *connector,
16077                                     struct intel_encoder *encoder)
16078 {
16079         connector->encoder = encoder;
16080         drm_mode_connector_attach_encoder(&connector->base,
16081                                           &encoder->base);
16082 }
16083
16084 /*
16085  * set vga decode state - true == enable VGA decode
16086  */
16087 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16088 {
16089         struct drm_i915_private *dev_priv = dev->dev_private;
16090         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16091         u16 gmch_ctrl;
16092
16093         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16094                 DRM_ERROR("failed to read control word\n");
16095                 return -EIO;
16096         }
16097
16098         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16099                 return 0;
16100
16101         if (state)
16102                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16103         else
16104                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16105
16106         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16107                 DRM_ERROR("failed to write control word\n");
16108                 return -EIO;
16109         }
16110
16111         return 0;
16112 }
16113
16114 struct intel_display_error_state {
16115
16116         u32 power_well_driver;
16117
16118         int num_transcoders;
16119
16120         struct intel_cursor_error_state {
16121                 u32 control;
16122                 u32 position;
16123                 u32 base;
16124                 u32 size;
16125         } cursor[I915_MAX_PIPES];
16126
16127         struct intel_pipe_error_state {
16128                 bool power_domain_on;
16129                 u32 source;
16130                 u32 stat;
16131         } pipe[I915_MAX_PIPES];
16132
16133         struct intel_plane_error_state {
16134                 u32 control;
16135                 u32 stride;
16136                 u32 size;
16137                 u32 pos;
16138                 u32 addr;
16139                 u32 surface;
16140                 u32 tile_offset;
16141         } plane[I915_MAX_PIPES];
16142
16143         struct intel_transcoder_error_state {
16144                 bool power_domain_on;
16145                 enum transcoder cpu_transcoder;
16146
16147                 u32 conf;
16148
16149                 u32 htotal;
16150                 u32 hblank;
16151                 u32 hsync;
16152                 u32 vtotal;
16153                 u32 vblank;
16154                 u32 vsync;
16155         } transcoder[4];
16156 };
16157
16158 struct intel_display_error_state *
16159 intel_display_capture_error_state(struct drm_device *dev)
16160 {
16161         struct drm_i915_private *dev_priv = dev->dev_private;
16162         struct intel_display_error_state *error;
16163         int transcoders[] = {
16164                 TRANSCODER_A,
16165                 TRANSCODER_B,
16166                 TRANSCODER_C,
16167                 TRANSCODER_EDP,
16168         };
16169         int i;
16170
16171         if (INTEL_INFO(dev)->num_pipes == 0)
16172                 return NULL;
16173
16174         error = kzalloc(sizeof(*error), GFP_ATOMIC);
16175         if (error == NULL)
16176                 return NULL;
16177
16178         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16179                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16180
16181         for_each_pipe(dev_priv, i) {
16182                 error->pipe[i].power_domain_on =
16183                         __intel_display_power_is_enabled(dev_priv,
16184                                                          POWER_DOMAIN_PIPE(i));
16185                 if (!error->pipe[i].power_domain_on)
16186                         continue;
16187
16188                 error->cursor[i].control = I915_READ(CURCNTR(i));
16189                 error->cursor[i].position = I915_READ(CURPOS(i));
16190                 error->cursor[i].base = I915_READ(CURBASE(i));
16191
16192                 error->plane[i].control = I915_READ(DSPCNTR(i));
16193                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16194                 if (INTEL_INFO(dev)->gen <= 3) {
16195                         error->plane[i].size = I915_READ(DSPSIZE(i));
16196                         error->plane[i].pos = I915_READ(DSPPOS(i));
16197                 }
16198                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16199                         error->plane[i].addr = I915_READ(DSPADDR(i));
16200                 if (INTEL_INFO(dev)->gen >= 4) {
16201                         error->plane[i].surface = I915_READ(DSPSURF(i));
16202                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16203                 }
16204
16205                 error->pipe[i].source = I915_READ(PIPESRC(i));
16206
16207                 if (HAS_GMCH_DISPLAY(dev))
16208                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
16209         }
16210
16211         /* Note: this does not include DSI transcoders. */
16212         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16213         if (HAS_DDI(dev_priv))
16214                 error->num_transcoders++; /* Account for eDP. */
16215
16216         for (i = 0; i < error->num_transcoders; i++) {
16217                 enum transcoder cpu_transcoder = transcoders[i];
16218
16219                 error->transcoder[i].power_domain_on =
16220                         __intel_display_power_is_enabled(dev_priv,
16221                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16222                 if (!error->transcoder[i].power_domain_on)
16223                         continue;
16224
16225                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16226
16227                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16228                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16229                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16230                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16231                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16232                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16233                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16234         }
16235
16236         return error;
16237 }
16238
16239 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16240
16241 void
16242 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16243                                 struct drm_device *dev,
16244                                 struct intel_display_error_state *error)
16245 {
16246         struct drm_i915_private *dev_priv = dev->dev_private;
16247         int i;
16248
16249         if (!error)
16250                 return;
16251
16252         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16253         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16254                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
16255                            error->power_well_driver);
16256         for_each_pipe(dev_priv, i) {
16257                 err_printf(m, "Pipe [%d]:\n", i);
16258                 err_printf(m, "  Power: %s\n",
16259                            onoff(error->pipe[i].power_domain_on));
16260                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16261                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16262
16263                 err_printf(m, "Plane [%d]:\n", i);
16264                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16265                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16266                 if (INTEL_INFO(dev)->gen <= 3) {
16267                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16268                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16269                 }
16270                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16271                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16272                 if (INTEL_INFO(dev)->gen >= 4) {
16273                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16274                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16275                 }
16276
16277                 err_printf(m, "Cursor [%d]:\n", i);
16278                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16279                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16280                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16281         }
16282
16283         for (i = 0; i < error->num_transcoders; i++) {
16284                 err_printf(m, "CPU transcoder: %s\n",
16285                            transcoder_name(error->transcoder[i].cpu_transcoder));
16286                 err_printf(m, "  Power: %s\n",
16287                            onoff(error->transcoder[i].power_domain_on));
16288                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16289                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16290                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16291                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16292                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16293                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16294                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16295         }
16296 }