]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
iommu/exynos: Fix checkpatch warning
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101         struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103         switch (max_link_bw) {
104         case DP_LINK_BW_1_62:
105         case DP_LINK_BW_2_7:
106                 break;
107         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
109                      INTEL_INFO(dev)->gen >= 8) &&
110                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
111                         max_link_bw = DP_LINK_BW_5_4;
112                 else
113                         max_link_bw = DP_LINK_BW_2_7;
114                 break;
115         default:
116                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
117                      max_link_bw);
118                 max_link_bw = DP_LINK_BW_1_62;
119                 break;
120         }
121         return max_link_bw;
122 }
123
124 /*
125  * The units on the numbers in the next two are... bizarre.  Examples will
126  * make it clearer; this one parallels an example in the eDP spec.
127  *
128  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
129  *
130  *     270000 * 1 * 8 / 10 == 216000
131  *
132  * The actual data capacity of that configuration is 2.16Gbit/s, so the
133  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
134  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
135  * 119000.  At 18bpp that's 2142000 kilobits per second.
136  *
137  * Thus the strange-looking division by 10 in intel_dp_link_required, to
138  * get the result in decakilobits instead of kilobits.
139  */
140
141 static int
142 intel_dp_link_required(int pixel_clock, int bpp)
143 {
144         return (pixel_clock * bpp + 9) / 10;
145 }
146
147 static int
148 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
149 {
150         return (max_link_clock * max_lanes * 8) / 10;
151 }
152
153 static enum drm_mode_status
154 intel_dp_mode_valid(struct drm_connector *connector,
155                     struct drm_display_mode *mode)
156 {
157         struct intel_dp *intel_dp = intel_attached_dp(connector);
158         struct intel_connector *intel_connector = to_intel_connector(connector);
159         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
160         int target_clock = mode->clock;
161         int max_rate, mode_rate, max_lanes, max_link_clock;
162
163         if (is_edp(intel_dp) && fixed_mode) {
164                 if (mode->hdisplay > fixed_mode->hdisplay)
165                         return MODE_PANEL;
166
167                 if (mode->vdisplay > fixed_mode->vdisplay)
168                         return MODE_PANEL;
169
170                 target_clock = fixed_mode->clock;
171         }
172
173         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
174         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
175
176         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
177         mode_rate = intel_dp_link_required(target_clock, 18);
178
179         if (mode_rate > max_rate)
180                 return MODE_CLOCK_HIGH;
181
182         if (mode->clock < 10000)
183                 return MODE_CLOCK_LOW;
184
185         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
186                 return MODE_H_ILLEGAL;
187
188         return MODE_OK;
189 }
190
191 static uint32_t
192 pack_aux(uint8_t *src, int src_bytes)
193 {
194         int     i;
195         uint32_t v = 0;
196
197         if (src_bytes > 4)
198                 src_bytes = 4;
199         for (i = 0; i < src_bytes; i++)
200                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
201         return v;
202 }
203
204 static void
205 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
206 {
207         int i;
208         if (dst_bytes > 4)
209                 dst_bytes = 4;
210         for (i = 0; i < dst_bytes; i++)
211                 dst[i] = src >> ((3-i) * 8);
212 }
213
214 /* hrawclock is 1/4 the FSB frequency */
215 static int
216 intel_hrawclk(struct drm_device *dev)
217 {
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         uint32_t clkcfg;
220
221         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
222         if (IS_VALLEYVIEW(dev))
223                 return 200;
224
225         clkcfg = I915_READ(CLKCFG);
226         switch (clkcfg & CLKCFG_FSB_MASK) {
227         case CLKCFG_FSB_400:
228                 return 100;
229         case CLKCFG_FSB_533:
230                 return 133;
231         case CLKCFG_FSB_667:
232                 return 166;
233         case CLKCFG_FSB_800:
234                 return 200;
235         case CLKCFG_FSB_1067:
236                 return 266;
237         case CLKCFG_FSB_1333:
238                 return 333;
239         /* these two are just a guess; one of them might be right */
240         case CLKCFG_FSB_1600:
241         case CLKCFG_FSB_1600_ALT:
242                 return 400;
243         default:
244                 return 133;
245         }
246 }
247
248 static void
249 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
250                                     struct intel_dp *intel_dp,
251                                     struct edp_power_seq *out);
252 static void
253 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
254                                               struct intel_dp *intel_dp,
255                                               struct edp_power_seq *out);
256
257 static enum pipe
258 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
259 {
260         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
261         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
262         struct drm_device *dev = intel_dig_port->base.base.dev;
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         enum port port = intel_dig_port->port;
265         enum pipe pipe;
266
267         /* modeset should have pipe */
268         if (crtc)
269                 return to_intel_crtc(crtc)->pipe;
270
271         /* init time, try to find a pipe with this port selected */
272         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
273                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
274                         PANEL_PORT_SELECT_MASK;
275                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
276                         return pipe;
277                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
278                         return pipe;
279         }
280
281         /* shrug */
282         return PIPE_A;
283 }
284
285 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
286 {
287         struct drm_device *dev = intel_dp_to_dev(intel_dp);
288
289         if (HAS_PCH_SPLIT(dev))
290                 return PCH_PP_CONTROL;
291         else
292                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
293 }
294
295 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
296 {
297         struct drm_device *dev = intel_dp_to_dev(intel_dp);
298
299         if (HAS_PCH_SPLIT(dev))
300                 return PCH_PP_STATUS;
301         else
302                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
303 }
304
305 static bool edp_have_panel_power(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
311 }
312
313 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
314 {
315         struct drm_device *dev = intel_dp_to_dev(intel_dp);
316         struct drm_i915_private *dev_priv = dev->dev_private;
317
318         return !dev_priv->pm.suspended &&
319                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
320 }
321
322 static void
323 intel_dp_check_edp(struct intel_dp *intel_dp)
324 {
325         struct drm_device *dev = intel_dp_to_dev(intel_dp);
326         struct drm_i915_private *dev_priv = dev->dev_private;
327
328         if (!is_edp(intel_dp))
329                 return;
330
331         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
332                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
333                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
334                               I915_READ(_pp_stat_reg(intel_dp)),
335                               I915_READ(_pp_ctrl_reg(intel_dp)));
336         }
337 }
338
339 static uint32_t
340 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
341 {
342         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
343         struct drm_device *dev = intel_dig_port->base.base.dev;
344         struct drm_i915_private *dev_priv = dev->dev_private;
345         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
346         uint32_t status;
347         bool done;
348
349 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
350         if (has_aux_irq)
351                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
352                                           msecs_to_jiffies_timeout(10));
353         else
354                 done = wait_for_atomic(C, 10) == 0;
355         if (!done)
356                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
357                           has_aux_irq);
358 #undef C
359
360         return status;
361 }
362
363 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
364 {
365         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
366         struct drm_device *dev = intel_dig_port->base.base.dev;
367
368         /*
369          * The clock divider is based off the hrawclk, and would like to run at
370          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
371          */
372         return index ? 0 : intel_hrawclk(dev) / 2;
373 }
374
375 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
376 {
377         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
378         struct drm_device *dev = intel_dig_port->base.base.dev;
379
380         if (index)
381                 return 0;
382
383         if (intel_dig_port->port == PORT_A) {
384                 if (IS_GEN6(dev) || IS_GEN7(dev))
385                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
386                 else
387                         return 225; /* eDP input clock at 450Mhz */
388         } else {
389                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
390         }
391 }
392
393 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
394 {
395         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396         struct drm_device *dev = intel_dig_port->base.base.dev;
397         struct drm_i915_private *dev_priv = dev->dev_private;
398
399         if (intel_dig_port->port == PORT_A) {
400                 if (index)
401                         return 0;
402                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
403         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
404                 /* Workaround for non-ULT HSW */
405                 switch (index) {
406                 case 0: return 63;
407                 case 1: return 72;
408                 default: return 0;
409                 }
410         } else  {
411                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
412         }
413 }
414
415 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
416 {
417         return index ? 0 : 100;
418 }
419
420 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
421                                       bool has_aux_irq,
422                                       int send_bytes,
423                                       uint32_t aux_clock_divider)
424 {
425         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426         struct drm_device *dev = intel_dig_port->base.base.dev;
427         uint32_t precharge, timeout;
428
429         if (IS_GEN6(dev))
430                 precharge = 3;
431         else
432                 precharge = 5;
433
434         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
435                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
436         else
437                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
438
439         return DP_AUX_CH_CTL_SEND_BUSY |
440                DP_AUX_CH_CTL_DONE |
441                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
442                DP_AUX_CH_CTL_TIME_OUT_ERROR |
443                timeout |
444                DP_AUX_CH_CTL_RECEIVE_ERROR |
445                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
446                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
447                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
448 }
449
450 static int
451 intel_dp_aux_ch(struct intel_dp *intel_dp,
452                 uint8_t *send, int send_bytes,
453                 uint8_t *recv, int recv_size)
454 {
455         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
456         struct drm_device *dev = intel_dig_port->base.base.dev;
457         struct drm_i915_private *dev_priv = dev->dev_private;
458         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
459         uint32_t ch_data = ch_ctl + 4;
460         uint32_t aux_clock_divider;
461         int i, ret, recv_bytes;
462         uint32_t status;
463         int try, clock = 0;
464         bool has_aux_irq = HAS_AUX_IRQ(dev);
465         bool vdd;
466
467         vdd = _edp_panel_vdd_on(intel_dp);
468
469         /* dp aux is extremely sensitive to irq latency, hence request the
470          * lowest possible wakeup latency and so prevent the cpu from going into
471          * deep sleep states.
472          */
473         pm_qos_update_request(&dev_priv->pm_qos, 0);
474
475         intel_dp_check_edp(intel_dp);
476
477         intel_aux_display_runtime_get(dev_priv);
478
479         /* Try to wait for any previous AUX channel activity */
480         for (try = 0; try < 3; try++) {
481                 status = I915_READ_NOTRACE(ch_ctl);
482                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
483                         break;
484                 msleep(1);
485         }
486
487         if (try == 3) {
488                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
489                      I915_READ(ch_ctl));
490                 ret = -EBUSY;
491                 goto out;
492         }
493
494         /* Only 5 data registers! */
495         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
496                 ret = -E2BIG;
497                 goto out;
498         }
499
500         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
501                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
502                                                           has_aux_irq,
503                                                           send_bytes,
504                                                           aux_clock_divider);
505
506                 /* Must try at least 3 times according to DP spec */
507                 for (try = 0; try < 5; try++) {
508                         /* Load the send data into the aux channel data registers */
509                         for (i = 0; i < send_bytes; i += 4)
510                                 I915_WRITE(ch_data + i,
511                                            pack_aux(send + i, send_bytes - i));
512
513                         /* Send the command and wait for it to complete */
514                         I915_WRITE(ch_ctl, send_ctl);
515
516                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
517
518                         /* Clear done status and any errors */
519                         I915_WRITE(ch_ctl,
520                                    status |
521                                    DP_AUX_CH_CTL_DONE |
522                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
523                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
524
525                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
526                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
527                                 continue;
528                         if (status & DP_AUX_CH_CTL_DONE)
529                                 break;
530                 }
531                 if (status & DP_AUX_CH_CTL_DONE)
532                         break;
533         }
534
535         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
536                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
537                 ret = -EBUSY;
538                 goto out;
539         }
540
541         /* Check for timeout or receive error.
542          * Timeouts occur when the sink is not connected
543          */
544         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
545                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
546                 ret = -EIO;
547                 goto out;
548         }
549
550         /* Timeouts occur when the device isn't connected, so they're
551          * "normal" -- don't fill the kernel log with these */
552         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
553                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
554                 ret = -ETIMEDOUT;
555                 goto out;
556         }
557
558         /* Unload any bytes sent back from the other side */
559         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
560                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
561         if (recv_bytes > recv_size)
562                 recv_bytes = recv_size;
563
564         for (i = 0; i < recv_bytes; i += 4)
565                 unpack_aux(I915_READ(ch_data + i),
566                            recv + i, recv_bytes - i);
567
568         ret = recv_bytes;
569 out:
570         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
571         intel_aux_display_runtime_put(dev_priv);
572
573         if (vdd)
574                 edp_panel_vdd_off(intel_dp, false);
575
576         return ret;
577 }
578
579 #define BARE_ADDRESS_SIZE       3
580 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
581 static ssize_t
582 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
583 {
584         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
585         uint8_t txbuf[20], rxbuf[20];
586         size_t txsize, rxsize;
587         int ret;
588
589         txbuf[0] = msg->request << 4;
590         txbuf[1] = msg->address >> 8;
591         txbuf[2] = msg->address & 0xff;
592         txbuf[3] = msg->size - 1;
593
594         switch (msg->request & ~DP_AUX_I2C_MOT) {
595         case DP_AUX_NATIVE_WRITE:
596         case DP_AUX_I2C_WRITE:
597                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
598                 rxsize = 1;
599
600                 if (WARN_ON(txsize > 20))
601                         return -E2BIG;
602
603                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
604
605                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
606                 if (ret > 0) {
607                         msg->reply = rxbuf[0] >> 4;
608
609                         /* Return payload size. */
610                         ret = msg->size;
611                 }
612                 break;
613
614         case DP_AUX_NATIVE_READ:
615         case DP_AUX_I2C_READ:
616                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
617                 rxsize = msg->size + 1;
618
619                 if (WARN_ON(rxsize > 20))
620                         return -E2BIG;
621
622                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
623                 if (ret > 0) {
624                         msg->reply = rxbuf[0] >> 4;
625                         /*
626                          * Assume happy day, and copy the data. The caller is
627                          * expected to check msg->reply before touching it.
628                          *
629                          * Return payload size.
630                          */
631                         ret--;
632                         memcpy(msg->buffer, rxbuf + 1, ret);
633                 }
634                 break;
635
636         default:
637                 ret = -EINVAL;
638                 break;
639         }
640
641         return ret;
642 }
643
644 static void
645 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
646 {
647         struct drm_device *dev = intel_dp_to_dev(intel_dp);
648         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
649         enum port port = intel_dig_port->port;
650         const char *name = NULL;
651         int ret;
652
653         switch (port) {
654         case PORT_A:
655                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
656                 name = "DPDDC-A";
657                 break;
658         case PORT_B:
659                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
660                 name = "DPDDC-B";
661                 break;
662         case PORT_C:
663                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
664                 name = "DPDDC-C";
665                 break;
666         case PORT_D:
667                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
668                 name = "DPDDC-D";
669                 break;
670         default:
671                 BUG();
672         }
673
674         if (!HAS_DDI(dev))
675                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
676
677         intel_dp->aux.name = name;
678         intel_dp->aux.dev = dev->dev;
679         intel_dp->aux.transfer = intel_dp_aux_transfer;
680
681         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
682                       connector->base.kdev->kobj.name);
683
684         ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
685         if (ret < 0) {
686                 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
687                           name, ret);
688                 return;
689         }
690
691         ret = sysfs_create_link(&connector->base.kdev->kobj,
692                                 &intel_dp->aux.ddc.dev.kobj,
693                                 intel_dp->aux.ddc.dev.kobj.name);
694         if (ret < 0) {
695                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
696                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
697         }
698 }
699
700 static void
701 intel_dp_connector_unregister(struct intel_connector *intel_connector)
702 {
703         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
704
705         sysfs_remove_link(&intel_connector->base.kdev->kobj,
706                           intel_dp->aux.ddc.dev.kobj.name);
707         intel_connector_unregister(intel_connector);
708 }
709
710 static void
711 intel_dp_set_clock(struct intel_encoder *encoder,
712                    struct intel_crtc_config *pipe_config, int link_bw)
713 {
714         struct drm_device *dev = encoder->base.dev;
715         const struct dp_link_dpll *divisor = NULL;
716         int i, count = 0;
717
718         if (IS_G4X(dev)) {
719                 divisor = gen4_dpll;
720                 count = ARRAY_SIZE(gen4_dpll);
721         } else if (IS_HASWELL(dev)) {
722                 /* Haswell has special-purpose DP DDI clocks. */
723         } else if (HAS_PCH_SPLIT(dev)) {
724                 divisor = pch_dpll;
725                 count = ARRAY_SIZE(pch_dpll);
726         } else if (IS_VALLEYVIEW(dev)) {
727                 divisor = vlv_dpll;
728                 count = ARRAY_SIZE(vlv_dpll);
729         }
730
731         if (divisor && count) {
732                 for (i = 0; i < count; i++) {
733                         if (link_bw == divisor[i].link_bw) {
734                                 pipe_config->dpll = divisor[i].dpll;
735                                 pipe_config->clock_set = true;
736                                 break;
737                         }
738                 }
739         }
740 }
741
742 bool
743 intel_dp_compute_config(struct intel_encoder *encoder,
744                         struct intel_crtc_config *pipe_config)
745 {
746         struct drm_device *dev = encoder->base.dev;
747         struct drm_i915_private *dev_priv = dev->dev_private;
748         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
749         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
750         enum port port = dp_to_dig_port(intel_dp)->port;
751         struct intel_crtc *intel_crtc = encoder->new_crtc;
752         struct intel_connector *intel_connector = intel_dp->attached_connector;
753         int lane_count, clock;
754         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
755         /* Conveniently, the link BW constants become indices with a shift...*/
756         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
757         int bpp, mode_rate;
758         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
759         int link_avail, link_clock;
760
761         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
762                 pipe_config->has_pch_encoder = true;
763
764         pipe_config->has_dp_encoder = true;
765
766         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
767                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
768                                        adjusted_mode);
769                 if (!HAS_PCH_SPLIT(dev))
770                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
771                                                  intel_connector->panel.fitting_mode);
772                 else
773                         intel_pch_panel_fitting(intel_crtc, pipe_config,
774                                                 intel_connector->panel.fitting_mode);
775         }
776
777         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
778                 return false;
779
780         DRM_DEBUG_KMS("DP link computation with max lane count %i "
781                       "max bw %02x pixel clock %iKHz\n",
782                       max_lane_count, bws[max_clock],
783                       adjusted_mode->crtc_clock);
784
785         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
786          * bpc in between. */
787         bpp = pipe_config->pipe_bpp;
788         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
789             dev_priv->vbt.edp_bpp < bpp) {
790                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
791                               dev_priv->vbt.edp_bpp);
792                 bpp = dev_priv->vbt.edp_bpp;
793         }
794
795         for (; bpp >= 6*3; bpp -= 2*3) {
796                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
797                                                    bpp);
798
799                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
800                         for (clock = 0; clock <= max_clock; clock++) {
801                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
802                                 link_avail = intel_dp_max_data_rate(link_clock,
803                                                                     lane_count);
804
805                                 if (mode_rate <= link_avail) {
806                                         goto found;
807                                 }
808                         }
809                 }
810         }
811
812         return false;
813
814 found:
815         if (intel_dp->color_range_auto) {
816                 /*
817                  * See:
818                  * CEA-861-E - 5.1 Default Encoding Parameters
819                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
820                  */
821                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
822                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
823                 else
824                         intel_dp->color_range = 0;
825         }
826
827         if (intel_dp->color_range)
828                 pipe_config->limited_color_range = true;
829
830         intel_dp->link_bw = bws[clock];
831         intel_dp->lane_count = lane_count;
832         pipe_config->pipe_bpp = bpp;
833         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
834
835         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
836                       intel_dp->link_bw, intel_dp->lane_count,
837                       pipe_config->port_clock, bpp);
838         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
839                       mode_rate, link_avail);
840
841         intel_link_compute_m_n(bpp, lane_count,
842                                adjusted_mode->crtc_clock,
843                                pipe_config->port_clock,
844                                &pipe_config->dp_m_n);
845
846         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
847
848         return true;
849 }
850
851 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
852 {
853         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
854         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
855         struct drm_device *dev = crtc->base.dev;
856         struct drm_i915_private *dev_priv = dev->dev_private;
857         u32 dpa_ctl;
858
859         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
860         dpa_ctl = I915_READ(DP_A);
861         dpa_ctl &= ~DP_PLL_FREQ_MASK;
862
863         if (crtc->config.port_clock == 162000) {
864                 /* For a long time we've carried around a ILK-DevA w/a for the
865                  * 160MHz clock. If we're really unlucky, it's still required.
866                  */
867                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
868                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
869                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
870         } else {
871                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
872                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
873         }
874
875         I915_WRITE(DP_A, dpa_ctl);
876
877         POSTING_READ(DP_A);
878         udelay(500);
879 }
880
881 static void intel_dp_mode_set(struct intel_encoder *encoder)
882 {
883         struct drm_device *dev = encoder->base.dev;
884         struct drm_i915_private *dev_priv = dev->dev_private;
885         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
886         enum port port = dp_to_dig_port(intel_dp)->port;
887         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
888         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
889
890         /*
891          * There are four kinds of DP registers:
892          *
893          *      IBX PCH
894          *      SNB CPU
895          *      IVB CPU
896          *      CPT PCH
897          *
898          * IBX PCH and CPU are the same for almost everything,
899          * except that the CPU DP PLL is configured in this
900          * register
901          *
902          * CPT PCH is quite different, having many bits moved
903          * to the TRANS_DP_CTL register instead. That
904          * configuration happens (oddly) in ironlake_pch_enable
905          */
906
907         /* Preserve the BIOS-computed detected bit. This is
908          * supposed to be read-only.
909          */
910         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
911
912         /* Handle DP bits in common between all three register formats */
913         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
914         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
915
916         if (intel_dp->has_audio) {
917                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
918                                  pipe_name(crtc->pipe));
919                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
920                 intel_write_eld(&encoder->base, adjusted_mode);
921         }
922
923         /* Split out the IBX/CPU vs CPT settings */
924
925         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
926                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
927                         intel_dp->DP |= DP_SYNC_HS_HIGH;
928                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
929                         intel_dp->DP |= DP_SYNC_VS_HIGH;
930                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
931
932                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
933                         intel_dp->DP |= DP_ENHANCED_FRAMING;
934
935                 intel_dp->DP |= crtc->pipe << 29;
936         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
937                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
938                         intel_dp->DP |= intel_dp->color_range;
939
940                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
941                         intel_dp->DP |= DP_SYNC_HS_HIGH;
942                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
943                         intel_dp->DP |= DP_SYNC_VS_HIGH;
944                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
945
946                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
947                         intel_dp->DP |= DP_ENHANCED_FRAMING;
948
949                 if (crtc->pipe == 1)
950                         intel_dp->DP |= DP_PIPEB_SELECT;
951         } else {
952                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
953         }
954
955         if (port == PORT_A && !IS_VALLEYVIEW(dev))
956                 ironlake_set_pll_cpu_edp(intel_dp);
957 }
958
959 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
960 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
961
962 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
963 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
964
965 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
966 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
967
968 static void wait_panel_status(struct intel_dp *intel_dp,
969                                        u32 mask,
970                                        u32 value)
971 {
972         struct drm_device *dev = intel_dp_to_dev(intel_dp);
973         struct drm_i915_private *dev_priv = dev->dev_private;
974         u32 pp_stat_reg, pp_ctrl_reg;
975
976         pp_stat_reg = _pp_stat_reg(intel_dp);
977         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
978
979         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
980                         mask, value,
981                         I915_READ(pp_stat_reg),
982                         I915_READ(pp_ctrl_reg));
983
984         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
985                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
986                                 I915_READ(pp_stat_reg),
987                                 I915_READ(pp_ctrl_reg));
988         }
989
990         DRM_DEBUG_KMS("Wait complete\n");
991 }
992
993 static void wait_panel_on(struct intel_dp *intel_dp)
994 {
995         DRM_DEBUG_KMS("Wait for panel power on\n");
996         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
997 }
998
999 static void wait_panel_off(struct intel_dp *intel_dp)
1000 {
1001         DRM_DEBUG_KMS("Wait for panel power off time\n");
1002         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1003 }
1004
1005 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1006 {
1007         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1008
1009         /* When we disable the VDD override bit last we have to do the manual
1010          * wait. */
1011         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1012                                        intel_dp->panel_power_cycle_delay);
1013
1014         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1015 }
1016
1017 static void wait_backlight_on(struct intel_dp *intel_dp)
1018 {
1019         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1020                                        intel_dp->backlight_on_delay);
1021 }
1022
1023 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1024 {
1025         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1026                                        intel_dp->backlight_off_delay);
1027 }
1028
1029 /* Read the current pp_control value, unlocking the register if it
1030  * is locked
1031  */
1032
1033 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1034 {
1035         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1036         struct drm_i915_private *dev_priv = dev->dev_private;
1037         u32 control;
1038
1039         control = I915_READ(_pp_ctrl_reg(intel_dp));
1040         control &= ~PANEL_UNLOCK_MASK;
1041         control |= PANEL_UNLOCK_REGS;
1042         return control;
1043 }
1044
1045 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1046 {
1047         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1048         struct drm_i915_private *dev_priv = dev->dev_private;
1049         u32 pp;
1050         u32 pp_stat_reg, pp_ctrl_reg;
1051         bool need_to_disable = !intel_dp->want_panel_vdd;
1052
1053         if (!is_edp(intel_dp))
1054                 return false;
1055
1056         intel_dp->want_panel_vdd = true;
1057
1058         if (edp_have_panel_vdd(intel_dp))
1059                 return need_to_disable;
1060
1061         intel_runtime_pm_get(dev_priv);
1062
1063         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1064
1065         if (!edp_have_panel_power(intel_dp))
1066                 wait_panel_power_cycle(intel_dp);
1067
1068         pp = ironlake_get_pp_control(intel_dp);
1069         pp |= EDP_FORCE_VDD;
1070
1071         pp_stat_reg = _pp_stat_reg(intel_dp);
1072         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1073
1074         I915_WRITE(pp_ctrl_reg, pp);
1075         POSTING_READ(pp_ctrl_reg);
1076         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1077                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1078         /*
1079          * If the panel wasn't on, delay before accessing aux channel
1080          */
1081         if (!edp_have_panel_power(intel_dp)) {
1082                 DRM_DEBUG_KMS("eDP was not running\n");
1083                 msleep(intel_dp->panel_power_up_delay);
1084         }
1085
1086         return need_to_disable;
1087 }
1088
1089 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1090 {
1091         if (is_edp(intel_dp)) {
1092                 bool vdd = _edp_panel_vdd_on(intel_dp);
1093
1094                 WARN(!vdd, "eDP VDD already requested on\n");
1095         }
1096 }
1097
1098 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1099 {
1100         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         u32 pp;
1103         u32 pp_stat_reg, pp_ctrl_reg;
1104
1105         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1106
1107         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1108                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1109
1110                 pp = ironlake_get_pp_control(intel_dp);
1111                 pp &= ~EDP_FORCE_VDD;
1112
1113                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1114                 pp_stat_reg = _pp_stat_reg(intel_dp);
1115
1116                 I915_WRITE(pp_ctrl_reg, pp);
1117                 POSTING_READ(pp_ctrl_reg);
1118
1119                 /* Make sure sequencer is idle before allowing subsequent activity */
1120                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1121                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1122
1123                 if ((pp & POWER_TARGET_ON) == 0)
1124                         intel_dp->last_power_cycle = jiffies;
1125
1126                 intel_runtime_pm_put(dev_priv);
1127         }
1128 }
1129
1130 static void edp_panel_vdd_work(struct work_struct *__work)
1131 {
1132         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1133                                                  struct intel_dp, panel_vdd_work);
1134         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1135
1136         mutex_lock(&dev->mode_config.mutex);
1137         edp_panel_vdd_off_sync(intel_dp);
1138         mutex_unlock(&dev->mode_config.mutex);
1139 }
1140
1141 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1142 {
1143         if (!is_edp(intel_dp))
1144                 return;
1145
1146         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1147
1148         intel_dp->want_panel_vdd = false;
1149
1150         if (sync) {
1151                 edp_panel_vdd_off_sync(intel_dp);
1152         } else {
1153                 /*
1154                  * Queue the timer to fire a long
1155                  * time from now (relative to the power down delay)
1156                  * to keep the panel power up across a sequence of operations
1157                  */
1158                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1159                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1160         }
1161 }
1162
1163 void intel_edp_panel_on(struct intel_dp *intel_dp)
1164 {
1165         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         u32 pp;
1168         u32 pp_ctrl_reg;
1169
1170         if (!is_edp(intel_dp))
1171                 return;
1172
1173         DRM_DEBUG_KMS("Turn eDP power on\n");
1174
1175         if (edp_have_panel_power(intel_dp)) {
1176                 DRM_DEBUG_KMS("eDP power already on\n");
1177                 return;
1178         }
1179
1180         wait_panel_power_cycle(intel_dp);
1181
1182         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1183         pp = ironlake_get_pp_control(intel_dp);
1184         if (IS_GEN5(dev)) {
1185                 /* ILK workaround: disable reset around power sequence */
1186                 pp &= ~PANEL_POWER_RESET;
1187                 I915_WRITE(pp_ctrl_reg, pp);
1188                 POSTING_READ(pp_ctrl_reg);
1189         }
1190
1191         pp |= POWER_TARGET_ON;
1192         if (!IS_GEN5(dev))
1193                 pp |= PANEL_POWER_RESET;
1194
1195         I915_WRITE(pp_ctrl_reg, pp);
1196         POSTING_READ(pp_ctrl_reg);
1197
1198         wait_panel_on(intel_dp);
1199         intel_dp->last_power_on = jiffies;
1200
1201         if (IS_GEN5(dev)) {
1202                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1203                 I915_WRITE(pp_ctrl_reg, pp);
1204                 POSTING_READ(pp_ctrl_reg);
1205         }
1206 }
1207
1208 void intel_edp_panel_off(struct intel_dp *intel_dp)
1209 {
1210         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1211         struct drm_i915_private *dev_priv = dev->dev_private;
1212         u32 pp;
1213         u32 pp_ctrl_reg;
1214
1215         if (!is_edp(intel_dp))
1216                 return;
1217
1218         DRM_DEBUG_KMS("Turn eDP power off\n");
1219
1220         edp_wait_backlight_off(intel_dp);
1221
1222         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1223
1224         pp = ironlake_get_pp_control(intel_dp);
1225         /* We need to switch off panel power _and_ force vdd, for otherwise some
1226          * panels get very unhappy and cease to work. */
1227         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1228                 EDP_BLC_ENABLE);
1229
1230         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1231
1232         intel_dp->want_panel_vdd = false;
1233
1234         I915_WRITE(pp_ctrl_reg, pp);
1235         POSTING_READ(pp_ctrl_reg);
1236
1237         intel_dp->last_power_cycle = jiffies;
1238         wait_panel_off(intel_dp);
1239
1240         /* We got a reference when we enabled the VDD. */
1241         intel_runtime_pm_put(dev_priv);
1242 }
1243
1244 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1245 {
1246         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1247         struct drm_device *dev = intel_dig_port->base.base.dev;
1248         struct drm_i915_private *dev_priv = dev->dev_private;
1249         u32 pp;
1250         u32 pp_ctrl_reg;
1251
1252         if (!is_edp(intel_dp))
1253                 return;
1254
1255         DRM_DEBUG_KMS("\n");
1256         /*
1257          * If we enable the backlight right away following a panel power
1258          * on, we may see slight flicker as the panel syncs with the eDP
1259          * link.  So delay a bit to make sure the image is solid before
1260          * allowing it to appear.
1261          */
1262         wait_backlight_on(intel_dp);
1263         pp = ironlake_get_pp_control(intel_dp);
1264         pp |= EDP_BLC_ENABLE;
1265
1266         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1267
1268         I915_WRITE(pp_ctrl_reg, pp);
1269         POSTING_READ(pp_ctrl_reg);
1270
1271         intel_panel_enable_backlight(intel_dp->attached_connector);
1272 }
1273
1274 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1275 {
1276         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1277         struct drm_i915_private *dev_priv = dev->dev_private;
1278         u32 pp;
1279         u32 pp_ctrl_reg;
1280
1281         if (!is_edp(intel_dp))
1282                 return;
1283
1284         intel_panel_disable_backlight(intel_dp->attached_connector);
1285
1286         DRM_DEBUG_KMS("\n");
1287         pp = ironlake_get_pp_control(intel_dp);
1288         pp &= ~EDP_BLC_ENABLE;
1289
1290         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1291
1292         I915_WRITE(pp_ctrl_reg, pp);
1293         POSTING_READ(pp_ctrl_reg);
1294         intel_dp->last_backlight_off = jiffies;
1295 }
1296
1297 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1298 {
1299         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1300         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1301         struct drm_device *dev = crtc->dev;
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303         u32 dpa_ctl;
1304
1305         assert_pipe_disabled(dev_priv,
1306                              to_intel_crtc(crtc)->pipe);
1307
1308         DRM_DEBUG_KMS("\n");
1309         dpa_ctl = I915_READ(DP_A);
1310         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1311         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1312
1313         /* We don't adjust intel_dp->DP while tearing down the link, to
1314          * facilitate link retraining (e.g. after hotplug). Hence clear all
1315          * enable bits here to ensure that we don't enable too much. */
1316         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1317         intel_dp->DP |= DP_PLL_ENABLE;
1318         I915_WRITE(DP_A, intel_dp->DP);
1319         POSTING_READ(DP_A);
1320         udelay(200);
1321 }
1322
1323 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1324 {
1325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1327         struct drm_device *dev = crtc->dev;
1328         struct drm_i915_private *dev_priv = dev->dev_private;
1329         u32 dpa_ctl;
1330
1331         assert_pipe_disabled(dev_priv,
1332                              to_intel_crtc(crtc)->pipe);
1333
1334         dpa_ctl = I915_READ(DP_A);
1335         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1336              "dp pll off, should be on\n");
1337         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1338
1339         /* We can't rely on the value tracked for the DP register in
1340          * intel_dp->DP because link_down must not change that (otherwise link
1341          * re-training will fail. */
1342         dpa_ctl &= ~DP_PLL_ENABLE;
1343         I915_WRITE(DP_A, dpa_ctl);
1344         POSTING_READ(DP_A);
1345         udelay(200);
1346 }
1347
1348 /* If the sink supports it, try to set the power state appropriately */
1349 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1350 {
1351         int ret, i;
1352
1353         /* Should have a valid DPCD by this point */
1354         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1355                 return;
1356
1357         if (mode != DRM_MODE_DPMS_ON) {
1358                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1359                                          DP_SET_POWER_D3);
1360                 if (ret != 1)
1361                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1362         } else {
1363                 /*
1364                  * When turning on, we need to retry for 1ms to give the sink
1365                  * time to wake up.
1366                  */
1367                 for (i = 0; i < 3; i++) {
1368                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1369                                                  DP_SET_POWER_D0);
1370                         if (ret == 1)
1371                                 break;
1372                         msleep(1);
1373                 }
1374         }
1375 }
1376
1377 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1378                                   enum pipe *pipe)
1379 {
1380         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1381         enum port port = dp_to_dig_port(intel_dp)->port;
1382         struct drm_device *dev = encoder->base.dev;
1383         struct drm_i915_private *dev_priv = dev->dev_private;
1384         enum intel_display_power_domain power_domain;
1385         u32 tmp;
1386
1387         power_domain = intel_display_port_power_domain(encoder);
1388         if (!intel_display_power_enabled(dev_priv, power_domain))
1389                 return false;
1390
1391         tmp = I915_READ(intel_dp->output_reg);
1392
1393         if (!(tmp & DP_PORT_EN))
1394                 return false;
1395
1396         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1397                 *pipe = PORT_TO_PIPE_CPT(tmp);
1398         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1399                 *pipe = PORT_TO_PIPE(tmp);
1400         } else {
1401                 u32 trans_sel;
1402                 u32 trans_dp;
1403                 int i;
1404
1405                 switch (intel_dp->output_reg) {
1406                 case PCH_DP_B:
1407                         trans_sel = TRANS_DP_PORT_SEL_B;
1408                         break;
1409                 case PCH_DP_C:
1410                         trans_sel = TRANS_DP_PORT_SEL_C;
1411                         break;
1412                 case PCH_DP_D:
1413                         trans_sel = TRANS_DP_PORT_SEL_D;
1414                         break;
1415                 default:
1416                         return true;
1417                 }
1418
1419                 for_each_pipe(i) {
1420                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1421                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1422                                 *pipe = i;
1423                                 return true;
1424                         }
1425                 }
1426
1427                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1428                               intel_dp->output_reg);
1429         }
1430
1431         return true;
1432 }
1433
1434 static void intel_dp_get_config(struct intel_encoder *encoder,
1435                                 struct intel_crtc_config *pipe_config)
1436 {
1437         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1438         u32 tmp, flags = 0;
1439         struct drm_device *dev = encoder->base.dev;
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         enum port port = dp_to_dig_port(intel_dp)->port;
1442         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1443         int dotclock;
1444
1445         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1446                 tmp = I915_READ(intel_dp->output_reg);
1447                 if (tmp & DP_SYNC_HS_HIGH)
1448                         flags |= DRM_MODE_FLAG_PHSYNC;
1449                 else
1450                         flags |= DRM_MODE_FLAG_NHSYNC;
1451
1452                 if (tmp & DP_SYNC_VS_HIGH)
1453                         flags |= DRM_MODE_FLAG_PVSYNC;
1454                 else
1455                         flags |= DRM_MODE_FLAG_NVSYNC;
1456         } else {
1457                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1458                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1459                         flags |= DRM_MODE_FLAG_PHSYNC;
1460                 else
1461                         flags |= DRM_MODE_FLAG_NHSYNC;
1462
1463                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1464                         flags |= DRM_MODE_FLAG_PVSYNC;
1465                 else
1466                         flags |= DRM_MODE_FLAG_NVSYNC;
1467         }
1468
1469         pipe_config->adjusted_mode.flags |= flags;
1470
1471         pipe_config->has_dp_encoder = true;
1472
1473         intel_dp_get_m_n(crtc, pipe_config);
1474
1475         if (port == PORT_A) {
1476                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1477                         pipe_config->port_clock = 162000;
1478                 else
1479                         pipe_config->port_clock = 270000;
1480         }
1481
1482         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1483                                             &pipe_config->dp_m_n);
1484
1485         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1486                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1487
1488         pipe_config->adjusted_mode.crtc_clock = dotclock;
1489
1490         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1491             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1492                 /*
1493                  * This is a big fat ugly hack.
1494                  *
1495                  * Some machines in UEFI boot mode provide us a VBT that has 18
1496                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1497                  * unknown we fail to light up. Yet the same BIOS boots up with
1498                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1499                  * max, not what it tells us to use.
1500                  *
1501                  * Note: This will still be broken if the eDP panel is not lit
1502                  * up by the BIOS, and thus we can't get the mode at module
1503                  * load.
1504                  */
1505                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1506                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1507                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1508         }
1509 }
1510
1511 static bool is_edp_psr(struct drm_device *dev)
1512 {
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514
1515         return dev_priv->psr.sink_support;
1516 }
1517
1518 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1519 {
1520         struct drm_i915_private *dev_priv = dev->dev_private;
1521
1522         if (!HAS_PSR(dev))
1523                 return false;
1524
1525         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1526 }
1527
1528 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1529                                     struct edp_vsc_psr *vsc_psr)
1530 {
1531         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1532         struct drm_device *dev = dig_port->base.base.dev;
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1535         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1536         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1537         uint32_t *data = (uint32_t *) vsc_psr;
1538         unsigned int i;
1539
1540         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1541            the video DIP being updated before program video DIP data buffer
1542            registers for DIP being updated. */
1543         I915_WRITE(ctl_reg, 0);
1544         POSTING_READ(ctl_reg);
1545
1546         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1547                 if (i < sizeof(struct edp_vsc_psr))
1548                         I915_WRITE(data_reg + i, *data++);
1549                 else
1550                         I915_WRITE(data_reg + i, 0);
1551         }
1552
1553         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1554         POSTING_READ(ctl_reg);
1555 }
1556
1557 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1558 {
1559         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct edp_vsc_psr psr_vsc;
1562
1563         if (intel_dp->psr_setup_done)
1564                 return;
1565
1566         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1567         memset(&psr_vsc, 0, sizeof(psr_vsc));
1568         psr_vsc.sdp_header.HB0 = 0;
1569         psr_vsc.sdp_header.HB1 = 0x7;
1570         psr_vsc.sdp_header.HB2 = 0x2;
1571         psr_vsc.sdp_header.HB3 = 0x8;
1572         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1573
1574         /* Avoid continuous PSR exit by masking memup and hpd */
1575         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1576                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1577
1578         intel_dp->psr_setup_done = true;
1579 }
1580
1581 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1582 {
1583         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1584         struct drm_i915_private *dev_priv = dev->dev_private;
1585         uint32_t aux_clock_divider;
1586         int precharge = 0x3;
1587         int msg_size = 5;       /* Header(4) + Message(1) */
1588
1589         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1590
1591         /* Enable PSR in sink */
1592         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1593                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1594                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1595         else
1596                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1597                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1598
1599         /* Setup AUX registers */
1600         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1601         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1602         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1603                    DP_AUX_CH_CTL_TIME_OUT_400us |
1604                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1605                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1606                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1607 }
1608
1609 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1610 {
1611         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1612         struct drm_i915_private *dev_priv = dev->dev_private;
1613         uint32_t max_sleep_time = 0x1f;
1614         uint32_t idle_frames = 1;
1615         uint32_t val = 0x0;
1616         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1617
1618         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1619                 val |= EDP_PSR_LINK_STANDBY;
1620                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1621                 val |= EDP_PSR_TP1_TIME_0us;
1622                 val |= EDP_PSR_SKIP_AUX_EXIT;
1623         } else
1624                 val |= EDP_PSR_LINK_DISABLE;
1625
1626         I915_WRITE(EDP_PSR_CTL(dev), val |
1627                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1628                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1629                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1630                    EDP_PSR_ENABLE);
1631 }
1632
1633 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1634 {
1635         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1636         struct drm_device *dev = dig_port->base.base.dev;
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638         struct drm_crtc *crtc = dig_port->base.base.crtc;
1639         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1640         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1641         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1642
1643         dev_priv->psr.source_ok = false;
1644
1645         if (!HAS_PSR(dev)) {
1646                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1647                 return false;
1648         }
1649
1650         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1651             (dig_port->port != PORT_A)) {
1652                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1653                 return false;
1654         }
1655
1656         if (!i915.enable_psr) {
1657                 DRM_DEBUG_KMS("PSR disable by flag\n");
1658                 return false;
1659         }
1660
1661         crtc = dig_port->base.base.crtc;
1662         if (crtc == NULL) {
1663                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1664                 return false;
1665         }
1666
1667         intel_crtc = to_intel_crtc(crtc);
1668         if (!intel_crtc_active(crtc)) {
1669                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1670                 return false;
1671         }
1672
1673         obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1674         if (obj->tiling_mode != I915_TILING_X ||
1675             obj->fence_reg == I915_FENCE_REG_NONE) {
1676                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1677                 return false;
1678         }
1679
1680         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1681                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1682                 return false;
1683         }
1684
1685         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1686             S3D_ENABLE) {
1687                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1688                 return false;
1689         }
1690
1691         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1692                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1693                 return false;
1694         }
1695
1696         dev_priv->psr.source_ok = true;
1697         return true;
1698 }
1699
1700 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1701 {
1702         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1703
1704         if (!intel_edp_psr_match_conditions(intel_dp) ||
1705             intel_edp_is_psr_enabled(dev))
1706                 return;
1707
1708         /* Setup PSR once */
1709         intel_edp_psr_setup(intel_dp);
1710
1711         /* Enable PSR on the panel */
1712         intel_edp_psr_enable_sink(intel_dp);
1713
1714         /* Enable PSR on the host */
1715         intel_edp_psr_enable_source(intel_dp);
1716 }
1717
1718 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1719 {
1720         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1721
1722         if (intel_edp_psr_match_conditions(intel_dp) &&
1723             !intel_edp_is_psr_enabled(dev))
1724                 intel_edp_psr_do_enable(intel_dp);
1725 }
1726
1727 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1728 {
1729         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1730         struct drm_i915_private *dev_priv = dev->dev_private;
1731
1732         if (!intel_edp_is_psr_enabled(dev))
1733                 return;
1734
1735         I915_WRITE(EDP_PSR_CTL(dev),
1736                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1737
1738         /* Wait till PSR is idle */
1739         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1740                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1741                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1742 }
1743
1744 void intel_edp_psr_update(struct drm_device *dev)
1745 {
1746         struct intel_encoder *encoder;
1747         struct intel_dp *intel_dp = NULL;
1748
1749         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1750                 if (encoder->type == INTEL_OUTPUT_EDP) {
1751                         intel_dp = enc_to_intel_dp(&encoder->base);
1752
1753                         if (!is_edp_psr(dev))
1754                                 return;
1755
1756                         if (!intel_edp_psr_match_conditions(intel_dp))
1757                                 intel_edp_psr_disable(intel_dp);
1758                         else
1759                                 if (!intel_edp_is_psr_enabled(dev))
1760                                         intel_edp_psr_do_enable(intel_dp);
1761                 }
1762 }
1763
1764 static void intel_disable_dp(struct intel_encoder *encoder)
1765 {
1766         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1767         enum port port = dp_to_dig_port(intel_dp)->port;
1768         struct drm_device *dev = encoder->base.dev;
1769
1770         /* Make sure the panel is off before trying to change the mode. But also
1771          * ensure that we have vdd while we switch off the panel. */
1772         intel_edp_panel_vdd_on(intel_dp);
1773         intel_edp_backlight_off(intel_dp);
1774         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1775         intel_edp_panel_off(intel_dp);
1776
1777         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1778         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1779                 intel_dp_link_down(intel_dp);
1780 }
1781
1782 static void intel_post_disable_dp(struct intel_encoder *encoder)
1783 {
1784         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1785         enum port port = dp_to_dig_port(intel_dp)->port;
1786         struct drm_device *dev = encoder->base.dev;
1787
1788         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1789                 intel_dp_link_down(intel_dp);
1790                 if (!IS_VALLEYVIEW(dev))
1791                         ironlake_edp_pll_off(intel_dp);
1792         }
1793 }
1794
1795 static void intel_enable_dp(struct intel_encoder *encoder)
1796 {
1797         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1798         struct drm_device *dev = encoder->base.dev;
1799         struct drm_i915_private *dev_priv = dev->dev_private;
1800         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1801
1802         if (WARN_ON(dp_reg & DP_PORT_EN))
1803                 return;
1804
1805         intel_edp_panel_vdd_on(intel_dp);
1806         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1807         intel_dp_start_link_train(intel_dp);
1808         intel_edp_panel_on(intel_dp);
1809         edp_panel_vdd_off(intel_dp, true);
1810         intel_dp_complete_link_train(intel_dp);
1811         intel_dp_stop_link_train(intel_dp);
1812 }
1813
1814 static void g4x_enable_dp(struct intel_encoder *encoder)
1815 {
1816         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1817
1818         intel_enable_dp(encoder);
1819         intel_edp_backlight_on(intel_dp);
1820 }
1821
1822 static void vlv_enable_dp(struct intel_encoder *encoder)
1823 {
1824         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1825
1826         intel_edp_backlight_on(intel_dp);
1827 }
1828
1829 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1830 {
1831         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1832         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1833
1834         if (dport->port == PORT_A)
1835                 ironlake_edp_pll_on(intel_dp);
1836 }
1837
1838 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1839 {
1840         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1841         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1842         struct drm_device *dev = encoder->base.dev;
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1845         enum dpio_channel port = vlv_dport_to_channel(dport);
1846         int pipe = intel_crtc->pipe;
1847         struct edp_power_seq power_seq;
1848         u32 val;
1849
1850         mutex_lock(&dev_priv->dpio_lock);
1851
1852         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1853         val = 0;
1854         if (pipe)
1855                 val |= (1<<21);
1856         else
1857                 val &= ~(1<<21);
1858         val |= 0x001000c4;
1859         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1860         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1861         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1862
1863         mutex_unlock(&dev_priv->dpio_lock);
1864
1865         if (is_edp(intel_dp)) {
1866                 /* init power sequencer on this pipe and port */
1867                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1868                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1869                                                               &power_seq);
1870         }
1871
1872         intel_enable_dp(encoder);
1873
1874         vlv_wait_port_ready(dev_priv, dport);
1875 }
1876
1877 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1878 {
1879         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1880         struct drm_device *dev = encoder->base.dev;
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct intel_crtc *intel_crtc =
1883                 to_intel_crtc(encoder->base.crtc);
1884         enum dpio_channel port = vlv_dport_to_channel(dport);
1885         int pipe = intel_crtc->pipe;
1886
1887         /* Program Tx lane resets to default */
1888         mutex_lock(&dev_priv->dpio_lock);
1889         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1890                          DPIO_PCS_TX_LANE2_RESET |
1891                          DPIO_PCS_TX_LANE1_RESET);
1892         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1893                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1894                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1895                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1896                                  DPIO_PCS_CLK_SOFT_RESET);
1897
1898         /* Fix up inter-pair skew failure */
1899         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1900         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1901         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1902         mutex_unlock(&dev_priv->dpio_lock);
1903 }
1904
1905 /*
1906  * Native read with retry for link status and receiver capability reads for
1907  * cases where the sink may still be asleep.
1908  *
1909  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1910  * supposed to retry 3 times per the spec.
1911  */
1912 static ssize_t
1913 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1914                         void *buffer, size_t size)
1915 {
1916         ssize_t ret;
1917         int i;
1918
1919         for (i = 0; i < 3; i++) {
1920                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1921                 if (ret == size)
1922                         return ret;
1923                 msleep(1);
1924         }
1925
1926         return ret;
1927 }
1928
1929 /*
1930  * Fetch AUX CH registers 0x202 - 0x207 which contain
1931  * link status information
1932  */
1933 static bool
1934 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1935 {
1936         return intel_dp_dpcd_read_wake(&intel_dp->aux,
1937                                        DP_LANE0_1_STATUS,
1938                                        link_status,
1939                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1940 }
1941
1942 /*
1943  * These are source-specific values; current Intel hardware supports
1944  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1945  */
1946
1947 static uint8_t
1948 intel_dp_voltage_max(struct intel_dp *intel_dp)
1949 {
1950         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1951         enum port port = dp_to_dig_port(intel_dp)->port;
1952
1953         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1954                 return DP_TRAIN_VOLTAGE_SWING_1200;
1955         else if (IS_GEN7(dev) && port == PORT_A)
1956                 return DP_TRAIN_VOLTAGE_SWING_800;
1957         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1958                 return DP_TRAIN_VOLTAGE_SWING_1200;
1959         else
1960                 return DP_TRAIN_VOLTAGE_SWING_800;
1961 }
1962
1963 static uint8_t
1964 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1965 {
1966         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1967         enum port port = dp_to_dig_port(intel_dp)->port;
1968
1969         if (IS_BROADWELL(dev)) {
1970                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1971                 case DP_TRAIN_VOLTAGE_SWING_400:
1972                 case DP_TRAIN_VOLTAGE_SWING_600:
1973                         return DP_TRAIN_PRE_EMPHASIS_6;
1974                 case DP_TRAIN_VOLTAGE_SWING_800:
1975                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1976                 case DP_TRAIN_VOLTAGE_SWING_1200:
1977                 default:
1978                         return DP_TRAIN_PRE_EMPHASIS_0;
1979                 }
1980         } else if (IS_HASWELL(dev)) {
1981                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1982                 case DP_TRAIN_VOLTAGE_SWING_400:
1983                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1984                 case DP_TRAIN_VOLTAGE_SWING_600:
1985                         return DP_TRAIN_PRE_EMPHASIS_6;
1986                 case DP_TRAIN_VOLTAGE_SWING_800:
1987                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1988                 case DP_TRAIN_VOLTAGE_SWING_1200:
1989                 default:
1990                         return DP_TRAIN_PRE_EMPHASIS_0;
1991                 }
1992         } else if (IS_VALLEYVIEW(dev)) {
1993                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1994                 case DP_TRAIN_VOLTAGE_SWING_400:
1995                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1996                 case DP_TRAIN_VOLTAGE_SWING_600:
1997                         return DP_TRAIN_PRE_EMPHASIS_6;
1998                 case DP_TRAIN_VOLTAGE_SWING_800:
1999                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2000                 case DP_TRAIN_VOLTAGE_SWING_1200:
2001                 default:
2002                         return DP_TRAIN_PRE_EMPHASIS_0;
2003                 }
2004         } else if (IS_GEN7(dev) && port == PORT_A) {
2005                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2006                 case DP_TRAIN_VOLTAGE_SWING_400:
2007                         return DP_TRAIN_PRE_EMPHASIS_6;
2008                 case DP_TRAIN_VOLTAGE_SWING_600:
2009                 case DP_TRAIN_VOLTAGE_SWING_800:
2010                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2011                 default:
2012                         return DP_TRAIN_PRE_EMPHASIS_0;
2013                 }
2014         } else {
2015                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2016                 case DP_TRAIN_VOLTAGE_SWING_400:
2017                         return DP_TRAIN_PRE_EMPHASIS_6;
2018                 case DP_TRAIN_VOLTAGE_SWING_600:
2019                         return DP_TRAIN_PRE_EMPHASIS_6;
2020                 case DP_TRAIN_VOLTAGE_SWING_800:
2021                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2022                 case DP_TRAIN_VOLTAGE_SWING_1200:
2023                 default:
2024                         return DP_TRAIN_PRE_EMPHASIS_0;
2025                 }
2026         }
2027 }
2028
2029 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2030 {
2031         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2032         struct drm_i915_private *dev_priv = dev->dev_private;
2033         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2034         struct intel_crtc *intel_crtc =
2035                 to_intel_crtc(dport->base.base.crtc);
2036         unsigned long demph_reg_value, preemph_reg_value,
2037                 uniqtranscale_reg_value;
2038         uint8_t train_set = intel_dp->train_set[0];
2039         enum dpio_channel port = vlv_dport_to_channel(dport);
2040         int pipe = intel_crtc->pipe;
2041
2042         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2043         case DP_TRAIN_PRE_EMPHASIS_0:
2044                 preemph_reg_value = 0x0004000;
2045                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2046                 case DP_TRAIN_VOLTAGE_SWING_400:
2047                         demph_reg_value = 0x2B405555;
2048                         uniqtranscale_reg_value = 0x552AB83A;
2049                         break;
2050                 case DP_TRAIN_VOLTAGE_SWING_600:
2051                         demph_reg_value = 0x2B404040;
2052                         uniqtranscale_reg_value = 0x5548B83A;
2053                         break;
2054                 case DP_TRAIN_VOLTAGE_SWING_800:
2055                         demph_reg_value = 0x2B245555;
2056                         uniqtranscale_reg_value = 0x5560B83A;
2057                         break;
2058                 case DP_TRAIN_VOLTAGE_SWING_1200:
2059                         demph_reg_value = 0x2B405555;
2060                         uniqtranscale_reg_value = 0x5598DA3A;
2061                         break;
2062                 default:
2063                         return 0;
2064                 }
2065                 break;
2066         case DP_TRAIN_PRE_EMPHASIS_3_5:
2067                 preemph_reg_value = 0x0002000;
2068                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2069                 case DP_TRAIN_VOLTAGE_SWING_400:
2070                         demph_reg_value = 0x2B404040;
2071                         uniqtranscale_reg_value = 0x5552B83A;
2072                         break;
2073                 case DP_TRAIN_VOLTAGE_SWING_600:
2074                         demph_reg_value = 0x2B404848;
2075                         uniqtranscale_reg_value = 0x5580B83A;
2076                         break;
2077                 case DP_TRAIN_VOLTAGE_SWING_800:
2078                         demph_reg_value = 0x2B404040;
2079                         uniqtranscale_reg_value = 0x55ADDA3A;
2080                         break;
2081                 default:
2082                         return 0;
2083                 }
2084                 break;
2085         case DP_TRAIN_PRE_EMPHASIS_6:
2086                 preemph_reg_value = 0x0000000;
2087                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2088                 case DP_TRAIN_VOLTAGE_SWING_400:
2089                         demph_reg_value = 0x2B305555;
2090                         uniqtranscale_reg_value = 0x5570B83A;
2091                         break;
2092                 case DP_TRAIN_VOLTAGE_SWING_600:
2093                         demph_reg_value = 0x2B2B4040;
2094                         uniqtranscale_reg_value = 0x55ADDA3A;
2095                         break;
2096                 default:
2097                         return 0;
2098                 }
2099                 break;
2100         case DP_TRAIN_PRE_EMPHASIS_9_5:
2101                 preemph_reg_value = 0x0006000;
2102                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103                 case DP_TRAIN_VOLTAGE_SWING_400:
2104                         demph_reg_value = 0x1B405555;
2105                         uniqtranscale_reg_value = 0x55ADDA3A;
2106                         break;
2107                 default:
2108                         return 0;
2109                 }
2110                 break;
2111         default:
2112                 return 0;
2113         }
2114
2115         mutex_lock(&dev_priv->dpio_lock);
2116         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2117         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2118         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2119                          uniqtranscale_reg_value);
2120         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2121         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2122         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2123         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2124         mutex_unlock(&dev_priv->dpio_lock);
2125
2126         return 0;
2127 }
2128
2129 static void
2130 intel_get_adjust_train(struct intel_dp *intel_dp,
2131                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2132 {
2133         uint8_t v = 0;
2134         uint8_t p = 0;
2135         int lane;
2136         uint8_t voltage_max;
2137         uint8_t preemph_max;
2138
2139         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2140                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2141                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2142
2143                 if (this_v > v)
2144                         v = this_v;
2145                 if (this_p > p)
2146                         p = this_p;
2147         }
2148
2149         voltage_max = intel_dp_voltage_max(intel_dp);
2150         if (v >= voltage_max)
2151                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2152
2153         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2154         if (p >= preemph_max)
2155                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2156
2157         for (lane = 0; lane < 4; lane++)
2158                 intel_dp->train_set[lane] = v | p;
2159 }
2160
2161 static uint32_t
2162 intel_gen4_signal_levels(uint8_t train_set)
2163 {
2164         uint32_t        signal_levels = 0;
2165
2166         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2167         case DP_TRAIN_VOLTAGE_SWING_400:
2168         default:
2169                 signal_levels |= DP_VOLTAGE_0_4;
2170                 break;
2171         case DP_TRAIN_VOLTAGE_SWING_600:
2172                 signal_levels |= DP_VOLTAGE_0_6;
2173                 break;
2174         case DP_TRAIN_VOLTAGE_SWING_800:
2175                 signal_levels |= DP_VOLTAGE_0_8;
2176                 break;
2177         case DP_TRAIN_VOLTAGE_SWING_1200:
2178                 signal_levels |= DP_VOLTAGE_1_2;
2179                 break;
2180         }
2181         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2182         case DP_TRAIN_PRE_EMPHASIS_0:
2183         default:
2184                 signal_levels |= DP_PRE_EMPHASIS_0;
2185                 break;
2186         case DP_TRAIN_PRE_EMPHASIS_3_5:
2187                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2188                 break;
2189         case DP_TRAIN_PRE_EMPHASIS_6:
2190                 signal_levels |= DP_PRE_EMPHASIS_6;
2191                 break;
2192         case DP_TRAIN_PRE_EMPHASIS_9_5:
2193                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2194                 break;
2195         }
2196         return signal_levels;
2197 }
2198
2199 /* Gen6's DP voltage swing and pre-emphasis control */
2200 static uint32_t
2201 intel_gen6_edp_signal_levels(uint8_t train_set)
2202 {
2203         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2204                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2205         switch (signal_levels) {
2206         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2207         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2208                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2209         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2210                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2211         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2212         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2213                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2214         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2215         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2216                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2217         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2218         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2219                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2220         default:
2221                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2222                               "0x%x\n", signal_levels);
2223                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2224         }
2225 }
2226
2227 /* Gen7's DP voltage swing and pre-emphasis control */
2228 static uint32_t
2229 intel_gen7_edp_signal_levels(uint8_t train_set)
2230 {
2231         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2232                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2233         switch (signal_levels) {
2234         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2235                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2236         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2237                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2238         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2239                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2240
2241         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2242                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2243         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2244                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2245
2246         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2247                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2248         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2249                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2250
2251         default:
2252                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2253                               "0x%x\n", signal_levels);
2254                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2255         }
2256 }
2257
2258 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2259 static uint32_t
2260 intel_hsw_signal_levels(uint8_t train_set)
2261 {
2262         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2263                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2264         switch (signal_levels) {
2265         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2266                 return DDI_BUF_EMP_400MV_0DB_HSW;
2267         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2268                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2269         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2270                 return DDI_BUF_EMP_400MV_6DB_HSW;
2271         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2272                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2273
2274         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2275                 return DDI_BUF_EMP_600MV_0DB_HSW;
2276         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2277                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2278         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2279                 return DDI_BUF_EMP_600MV_6DB_HSW;
2280
2281         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2282                 return DDI_BUF_EMP_800MV_0DB_HSW;
2283         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2284                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2285         default:
2286                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2287                               "0x%x\n", signal_levels);
2288                 return DDI_BUF_EMP_400MV_0DB_HSW;
2289         }
2290 }
2291
2292 static uint32_t
2293 intel_bdw_signal_levels(uint8_t train_set)
2294 {
2295         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2296                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2297         switch (signal_levels) {
2298         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2299                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2300         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2301                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2302         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2303                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2304
2305         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2306                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2307         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2308                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2309         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2310                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2311
2312         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2313                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2314         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2315                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2316
2317         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2318                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2319
2320         default:
2321                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2322                               "0x%x\n", signal_levels);
2323                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2324         }
2325 }
2326
2327 /* Properly updates "DP" with the correct signal levels. */
2328 static void
2329 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2330 {
2331         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2332         enum port port = intel_dig_port->port;
2333         struct drm_device *dev = intel_dig_port->base.base.dev;
2334         uint32_t signal_levels, mask;
2335         uint8_t train_set = intel_dp->train_set[0];
2336
2337         if (IS_BROADWELL(dev)) {
2338                 signal_levels = intel_bdw_signal_levels(train_set);
2339                 mask = DDI_BUF_EMP_MASK;
2340         } else if (IS_HASWELL(dev)) {
2341                 signal_levels = intel_hsw_signal_levels(train_set);
2342                 mask = DDI_BUF_EMP_MASK;
2343         } else if (IS_VALLEYVIEW(dev)) {
2344                 signal_levels = intel_vlv_signal_levels(intel_dp);
2345                 mask = 0;
2346         } else if (IS_GEN7(dev) && port == PORT_A) {
2347                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2348                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2349         } else if (IS_GEN6(dev) && port == PORT_A) {
2350                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2351                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2352         } else {
2353                 signal_levels = intel_gen4_signal_levels(train_set);
2354                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2355         }
2356
2357         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2358
2359         *DP = (*DP & ~mask) | signal_levels;
2360 }
2361
2362 static bool
2363 intel_dp_set_link_train(struct intel_dp *intel_dp,
2364                         uint32_t *DP,
2365                         uint8_t dp_train_pat)
2366 {
2367         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2368         struct drm_device *dev = intel_dig_port->base.base.dev;
2369         struct drm_i915_private *dev_priv = dev->dev_private;
2370         enum port port = intel_dig_port->port;
2371         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2372         int ret, len;
2373
2374         if (HAS_DDI(dev)) {
2375                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2376
2377                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2378                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2379                 else
2380                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2381
2382                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2383                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2384                 case DP_TRAINING_PATTERN_DISABLE:
2385                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2386
2387                         break;
2388                 case DP_TRAINING_PATTERN_1:
2389                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2390                         break;
2391                 case DP_TRAINING_PATTERN_2:
2392                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2393                         break;
2394                 case DP_TRAINING_PATTERN_3:
2395                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2396                         break;
2397                 }
2398                 I915_WRITE(DP_TP_CTL(port), temp);
2399
2400         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2401                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2402
2403                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2404                 case DP_TRAINING_PATTERN_DISABLE:
2405                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2406                         break;
2407                 case DP_TRAINING_PATTERN_1:
2408                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2409                         break;
2410                 case DP_TRAINING_PATTERN_2:
2411                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2412                         break;
2413                 case DP_TRAINING_PATTERN_3:
2414                         DRM_ERROR("DP training pattern 3 not supported\n");
2415                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2416                         break;
2417                 }
2418
2419         } else {
2420                 *DP &= ~DP_LINK_TRAIN_MASK;
2421
2422                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2423                 case DP_TRAINING_PATTERN_DISABLE:
2424                         *DP |= DP_LINK_TRAIN_OFF;
2425                         break;
2426                 case DP_TRAINING_PATTERN_1:
2427                         *DP |= DP_LINK_TRAIN_PAT_1;
2428                         break;
2429                 case DP_TRAINING_PATTERN_2:
2430                         *DP |= DP_LINK_TRAIN_PAT_2;
2431                         break;
2432                 case DP_TRAINING_PATTERN_3:
2433                         DRM_ERROR("DP training pattern 3 not supported\n");
2434                         *DP |= DP_LINK_TRAIN_PAT_2;
2435                         break;
2436                 }
2437         }
2438
2439         I915_WRITE(intel_dp->output_reg, *DP);
2440         POSTING_READ(intel_dp->output_reg);
2441
2442         buf[0] = dp_train_pat;
2443         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2444             DP_TRAINING_PATTERN_DISABLE) {
2445                 /* don't write DP_TRAINING_LANEx_SET on disable */
2446                 len = 1;
2447         } else {
2448                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2449                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2450                 len = intel_dp->lane_count + 1;
2451         }
2452
2453         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2454                                 buf, len);
2455
2456         return ret == len;
2457 }
2458
2459 static bool
2460 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2461                         uint8_t dp_train_pat)
2462 {
2463         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2464         intel_dp_set_signal_levels(intel_dp, DP);
2465         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2466 }
2467
2468 static bool
2469 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2470                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2471 {
2472         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2473         struct drm_device *dev = intel_dig_port->base.base.dev;
2474         struct drm_i915_private *dev_priv = dev->dev_private;
2475         int ret;
2476
2477         intel_get_adjust_train(intel_dp, link_status);
2478         intel_dp_set_signal_levels(intel_dp, DP);
2479
2480         I915_WRITE(intel_dp->output_reg, *DP);
2481         POSTING_READ(intel_dp->output_reg);
2482
2483         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2484                                 intel_dp->train_set, intel_dp->lane_count);
2485
2486         return ret == intel_dp->lane_count;
2487 }
2488
2489 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2490 {
2491         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2492         struct drm_device *dev = intel_dig_port->base.base.dev;
2493         struct drm_i915_private *dev_priv = dev->dev_private;
2494         enum port port = intel_dig_port->port;
2495         uint32_t val;
2496
2497         if (!HAS_DDI(dev))
2498                 return;
2499
2500         val = I915_READ(DP_TP_CTL(port));
2501         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2502         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2503         I915_WRITE(DP_TP_CTL(port), val);
2504
2505         /*
2506          * On PORT_A we can have only eDP in SST mode. There the only reason
2507          * we need to set idle transmission mode is to work around a HW issue
2508          * where we enable the pipe while not in idle link-training mode.
2509          * In this case there is requirement to wait for a minimum number of
2510          * idle patterns to be sent.
2511          */
2512         if (port == PORT_A)
2513                 return;
2514
2515         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2516                      1))
2517                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2518 }
2519
2520 /* Enable corresponding port and start training pattern 1 */
2521 void
2522 intel_dp_start_link_train(struct intel_dp *intel_dp)
2523 {
2524         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2525         struct drm_device *dev = encoder->dev;
2526         int i;
2527         uint8_t voltage;
2528         int voltage_tries, loop_tries;
2529         uint32_t DP = intel_dp->DP;
2530         uint8_t link_config[2];
2531
2532         if (HAS_DDI(dev))
2533                 intel_ddi_prepare_link_retrain(encoder);
2534
2535         /* Write the link configuration data */
2536         link_config[0] = intel_dp->link_bw;
2537         link_config[1] = intel_dp->lane_count;
2538         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2539                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2540         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2541
2542         link_config[0] = 0;
2543         link_config[1] = DP_SET_ANSI_8B10B;
2544         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2545
2546         DP |= DP_PORT_EN;
2547
2548         /* clock recovery */
2549         if (!intel_dp_reset_link_train(intel_dp, &DP,
2550                                        DP_TRAINING_PATTERN_1 |
2551                                        DP_LINK_SCRAMBLING_DISABLE)) {
2552                 DRM_ERROR("failed to enable link training\n");
2553                 return;
2554         }
2555
2556         voltage = 0xff;
2557         voltage_tries = 0;
2558         loop_tries = 0;
2559         for (;;) {
2560                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2561
2562                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2563                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2564                         DRM_ERROR("failed to get link status\n");
2565                         break;
2566                 }
2567
2568                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2569                         DRM_DEBUG_KMS("clock recovery OK\n");
2570                         break;
2571                 }
2572
2573                 /* Check to see if we've tried the max voltage */
2574                 for (i = 0; i < intel_dp->lane_count; i++)
2575                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2576                                 break;
2577                 if (i == intel_dp->lane_count) {
2578                         ++loop_tries;
2579                         if (loop_tries == 5) {
2580                                 DRM_ERROR("too many full retries, give up\n");
2581                                 break;
2582                         }
2583                         intel_dp_reset_link_train(intel_dp, &DP,
2584                                                   DP_TRAINING_PATTERN_1 |
2585                                                   DP_LINK_SCRAMBLING_DISABLE);
2586                         voltage_tries = 0;
2587                         continue;
2588                 }
2589
2590                 /* Check to see if we've tried the same voltage 5 times */
2591                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2592                         ++voltage_tries;
2593                         if (voltage_tries == 5) {
2594                                 DRM_ERROR("too many voltage retries, give up\n");
2595                                 break;
2596                         }
2597                 } else
2598                         voltage_tries = 0;
2599                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2600
2601                 /* Update training set as requested by target */
2602                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2603                         DRM_ERROR("failed to update link training\n");
2604                         break;
2605                 }
2606         }
2607
2608         intel_dp->DP = DP;
2609 }
2610
2611 void
2612 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2613 {
2614         bool channel_eq = false;
2615         int tries, cr_tries;
2616         uint32_t DP = intel_dp->DP;
2617         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2618
2619         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2620         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2621                 training_pattern = DP_TRAINING_PATTERN_3;
2622
2623         /* channel equalization */
2624         if (!intel_dp_set_link_train(intel_dp, &DP,
2625                                      training_pattern |
2626                                      DP_LINK_SCRAMBLING_DISABLE)) {
2627                 DRM_ERROR("failed to start channel equalization\n");
2628                 return;
2629         }
2630
2631         tries = 0;
2632         cr_tries = 0;
2633         channel_eq = false;
2634         for (;;) {
2635                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2636
2637                 if (cr_tries > 5) {
2638                         DRM_ERROR("failed to train DP, aborting\n");
2639                         break;
2640                 }
2641
2642                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2643                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2644                         DRM_ERROR("failed to get link status\n");
2645                         break;
2646                 }
2647
2648                 /* Make sure clock is still ok */
2649                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2650                         intel_dp_start_link_train(intel_dp);
2651                         intel_dp_set_link_train(intel_dp, &DP,
2652                                                 training_pattern |
2653                                                 DP_LINK_SCRAMBLING_DISABLE);
2654                         cr_tries++;
2655                         continue;
2656                 }
2657
2658                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2659                         channel_eq = true;
2660                         break;
2661                 }
2662
2663                 /* Try 5 times, then try clock recovery if that fails */
2664                 if (tries > 5) {
2665                         intel_dp_link_down(intel_dp);
2666                         intel_dp_start_link_train(intel_dp);
2667                         intel_dp_set_link_train(intel_dp, &DP,
2668                                                 training_pattern |
2669                                                 DP_LINK_SCRAMBLING_DISABLE);
2670                         tries = 0;
2671                         cr_tries++;
2672                         continue;
2673                 }
2674
2675                 /* Update training set as requested by target */
2676                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2677                         DRM_ERROR("failed to update link training\n");
2678                         break;
2679                 }
2680                 ++tries;
2681         }
2682
2683         intel_dp_set_idle_link_train(intel_dp);
2684
2685         intel_dp->DP = DP;
2686
2687         if (channel_eq)
2688                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2689
2690 }
2691
2692 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2693 {
2694         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2695                                 DP_TRAINING_PATTERN_DISABLE);
2696 }
2697
2698 static void
2699 intel_dp_link_down(struct intel_dp *intel_dp)
2700 {
2701         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2702         enum port port = intel_dig_port->port;
2703         struct drm_device *dev = intel_dig_port->base.base.dev;
2704         struct drm_i915_private *dev_priv = dev->dev_private;
2705         struct intel_crtc *intel_crtc =
2706                 to_intel_crtc(intel_dig_port->base.base.crtc);
2707         uint32_t DP = intel_dp->DP;
2708
2709         /*
2710          * DDI code has a strict mode set sequence and we should try to respect
2711          * it, otherwise we might hang the machine in many different ways. So we
2712          * really should be disabling the port only on a complete crtc_disable
2713          * sequence. This function is just called under two conditions on DDI
2714          * code:
2715          * - Link train failed while doing crtc_enable, and on this case we
2716          *   really should respect the mode set sequence and wait for a
2717          *   crtc_disable.
2718          * - Someone turned the monitor off and intel_dp_check_link_status
2719          *   called us. We don't need to disable the whole port on this case, so
2720          *   when someone turns the monitor on again,
2721          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2722          *   train.
2723          */
2724         if (HAS_DDI(dev))
2725                 return;
2726
2727         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2728                 return;
2729
2730         DRM_DEBUG_KMS("\n");
2731
2732         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2733                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2734                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2735         } else {
2736                 DP &= ~DP_LINK_TRAIN_MASK;
2737                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2738         }
2739         POSTING_READ(intel_dp->output_reg);
2740
2741         /* We don't really know why we're doing this */
2742         intel_wait_for_vblank(dev, intel_crtc->pipe);
2743
2744         if (HAS_PCH_IBX(dev) &&
2745             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2746                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2747
2748                 /* Hardware workaround: leaving our transcoder select
2749                  * set to transcoder B while it's off will prevent the
2750                  * corresponding HDMI output on transcoder A.
2751                  *
2752                  * Combine this with another hardware workaround:
2753                  * transcoder select bit can only be cleared while the
2754                  * port is enabled.
2755                  */
2756                 DP &= ~DP_PIPEB_SELECT;
2757                 I915_WRITE(intel_dp->output_reg, DP);
2758
2759                 /* Changes to enable or select take place the vblank
2760                  * after being written.
2761                  */
2762                 if (WARN_ON(crtc == NULL)) {
2763                         /* We should never try to disable a port without a crtc
2764                          * attached. For paranoia keep the code around for a
2765                          * bit. */
2766                         POSTING_READ(intel_dp->output_reg);
2767                         msleep(50);
2768                 } else
2769                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2770         }
2771
2772         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2773         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2774         POSTING_READ(intel_dp->output_reg);
2775         msleep(intel_dp->panel_power_down_delay);
2776 }
2777
2778 static bool
2779 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2780 {
2781         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2782         struct drm_device *dev = dig_port->base.base.dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784
2785         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2786
2787         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2788                                     sizeof(intel_dp->dpcd)) < 0)
2789                 return false; /* aux transfer failed */
2790
2791         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2792                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2793         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2794
2795         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2796                 return false; /* DPCD not present */
2797
2798         /* Check if the panel supports PSR */
2799         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2800         if (is_edp(intel_dp)) {
2801                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2802                                         intel_dp->psr_dpcd,
2803                                         sizeof(intel_dp->psr_dpcd));
2804                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2805                         dev_priv->psr.sink_support = true;
2806                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2807                 }
2808         }
2809
2810         /* Training Pattern 3 support */
2811         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2812             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2813                 intel_dp->use_tps3 = true;
2814                 DRM_DEBUG_KMS("Displayport TPS3 supported");
2815         } else
2816                 intel_dp->use_tps3 = false;
2817
2818         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2819               DP_DWN_STRM_PORT_PRESENT))
2820                 return true; /* native DP sink */
2821
2822         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2823                 return true; /* no per-port downstream info */
2824
2825         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2826                                     intel_dp->downstream_ports,
2827                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
2828                 return false; /* downstream port status fetch failed */
2829
2830         return true;
2831 }
2832
2833 static void
2834 intel_dp_probe_oui(struct intel_dp *intel_dp)
2835 {
2836         u8 buf[3];
2837
2838         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2839                 return;
2840
2841         intel_edp_panel_vdd_on(intel_dp);
2842
2843         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2844                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2845                               buf[0], buf[1], buf[2]);
2846
2847         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2848                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2849                               buf[0], buf[1], buf[2]);
2850
2851         edp_panel_vdd_off(intel_dp, false);
2852 }
2853
2854 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2855 {
2856         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2857         struct drm_device *dev = intel_dig_port->base.base.dev;
2858         struct intel_crtc *intel_crtc =
2859                 to_intel_crtc(intel_dig_port->base.base.crtc);
2860         u8 buf[1];
2861
2862         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2863                 return -EAGAIN;
2864
2865         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2866                 return -ENOTTY;
2867
2868         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2869                                DP_TEST_SINK_START) < 0)
2870                 return -EAGAIN;
2871
2872         /* Wait 2 vblanks to be sure we will have the correct CRC value */
2873         intel_wait_for_vblank(dev, intel_crtc->pipe);
2874         intel_wait_for_vblank(dev, intel_crtc->pipe);
2875
2876         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2877                 return -EAGAIN;
2878
2879         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2880         return 0;
2881 }
2882
2883 static bool
2884 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2885 {
2886         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2887                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
2888                                        sink_irq_vector, 1) == 1;
2889 }
2890
2891 static void
2892 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2893 {
2894         /* NAK by default */
2895         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2896 }
2897
2898 /*
2899  * According to DP spec
2900  * 5.1.2:
2901  *  1. Read DPCD
2902  *  2. Configure link according to Receiver Capabilities
2903  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2904  *  4. Check link status on receipt of hot-plug interrupt
2905  */
2906
2907 void
2908 intel_dp_check_link_status(struct intel_dp *intel_dp)
2909 {
2910         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2911         u8 sink_irq_vector;
2912         u8 link_status[DP_LINK_STATUS_SIZE];
2913
2914         if (!intel_encoder->connectors_active)
2915                 return;
2916
2917         if (WARN_ON(!intel_encoder->base.crtc))
2918                 return;
2919
2920         /* Try to read receiver status if the link appears to be up */
2921         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2922                 return;
2923         }
2924
2925         /* Now read the DPCD to see if it's actually running */
2926         if (!intel_dp_get_dpcd(intel_dp)) {
2927                 return;
2928         }
2929
2930         /* Try to read the source of the interrupt */
2931         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2932             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2933                 /* Clear interrupt source */
2934                 drm_dp_dpcd_writeb(&intel_dp->aux,
2935                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
2936                                    sink_irq_vector);
2937
2938                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2939                         intel_dp_handle_test_request(intel_dp);
2940                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2941                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2942         }
2943
2944         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2945                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2946                               drm_get_encoder_name(&intel_encoder->base));
2947                 intel_dp_start_link_train(intel_dp);
2948                 intel_dp_complete_link_train(intel_dp);
2949                 intel_dp_stop_link_train(intel_dp);
2950         }
2951 }
2952
2953 /* XXX this is probably wrong for multiple downstream ports */
2954 static enum drm_connector_status
2955 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2956 {
2957         uint8_t *dpcd = intel_dp->dpcd;
2958         uint8_t type;
2959
2960         if (!intel_dp_get_dpcd(intel_dp))
2961                 return connector_status_disconnected;
2962
2963         /* if there's no downstream port, we're done */
2964         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2965                 return connector_status_connected;
2966
2967         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2968         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2969             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2970                 uint8_t reg;
2971
2972                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
2973                                             &reg, 1) < 0)
2974                         return connector_status_unknown;
2975
2976                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2977                                               : connector_status_disconnected;
2978         }
2979
2980         /* If no HPD, poke DDC gently */
2981         if (drm_probe_ddc(&intel_dp->aux.ddc))
2982                 return connector_status_connected;
2983
2984         /* Well we tried, say unknown for unreliable port types */
2985         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2986                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2987                 if (type == DP_DS_PORT_TYPE_VGA ||
2988                     type == DP_DS_PORT_TYPE_NON_EDID)
2989                         return connector_status_unknown;
2990         } else {
2991                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2992                         DP_DWN_STRM_PORT_TYPE_MASK;
2993                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2994                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2995                         return connector_status_unknown;
2996         }
2997
2998         /* Anything else is out of spec, warn and ignore */
2999         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3000         return connector_status_disconnected;
3001 }
3002
3003 static enum drm_connector_status
3004 ironlake_dp_detect(struct intel_dp *intel_dp)
3005 {
3006         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3009         enum drm_connector_status status;
3010
3011         /* Can't disconnect eDP, but you can close the lid... */
3012         if (is_edp(intel_dp)) {
3013                 status = intel_panel_detect(dev);
3014                 if (status == connector_status_unknown)
3015                         status = connector_status_connected;
3016                 return status;
3017         }
3018
3019         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3020                 return connector_status_disconnected;
3021
3022         return intel_dp_detect_dpcd(intel_dp);
3023 }
3024
3025 static enum drm_connector_status
3026 g4x_dp_detect(struct intel_dp *intel_dp)
3027 {
3028         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3031         uint32_t bit;
3032
3033         /* Can't disconnect eDP, but you can close the lid... */
3034         if (is_edp(intel_dp)) {
3035                 enum drm_connector_status status;
3036
3037                 status = intel_panel_detect(dev);
3038                 if (status == connector_status_unknown)
3039                         status = connector_status_connected;
3040                 return status;
3041         }
3042
3043         if (IS_VALLEYVIEW(dev)) {
3044                 switch (intel_dig_port->port) {
3045                 case PORT_B:
3046                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3047                         break;
3048                 case PORT_C:
3049                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3050                         break;
3051                 case PORT_D:
3052                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3053                         break;
3054                 default:
3055                         return connector_status_unknown;
3056                 }
3057         } else {
3058                 switch (intel_dig_port->port) {
3059                 case PORT_B:
3060                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3061                         break;
3062                 case PORT_C:
3063                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3064                         break;
3065                 case PORT_D:
3066                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3067                         break;
3068                 default:
3069                         return connector_status_unknown;
3070                 }
3071         }
3072
3073         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3074                 return connector_status_disconnected;
3075
3076         return intel_dp_detect_dpcd(intel_dp);
3077 }
3078
3079 static struct edid *
3080 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3081 {
3082         struct intel_connector *intel_connector = to_intel_connector(connector);
3083
3084         /* use cached edid if we have one */
3085         if (intel_connector->edid) {
3086                 /* invalid edid */
3087                 if (IS_ERR(intel_connector->edid))
3088                         return NULL;
3089
3090                 return drm_edid_duplicate(intel_connector->edid);
3091         }
3092
3093         return drm_get_edid(connector, adapter);
3094 }
3095
3096 static int
3097 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3098 {
3099         struct intel_connector *intel_connector = to_intel_connector(connector);
3100
3101         /* use cached edid if we have one */
3102         if (intel_connector->edid) {
3103                 /* invalid edid */
3104                 if (IS_ERR(intel_connector->edid))
3105                         return 0;
3106
3107                 return intel_connector_update_modes(connector,
3108                                                     intel_connector->edid);
3109         }
3110
3111         return intel_ddc_get_modes(connector, adapter);
3112 }
3113
3114 static enum drm_connector_status
3115 intel_dp_detect(struct drm_connector *connector, bool force)
3116 {
3117         struct intel_dp *intel_dp = intel_attached_dp(connector);
3118         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3119         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3120         struct drm_device *dev = connector->dev;
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122         enum drm_connector_status status;
3123         enum intel_display_power_domain power_domain;
3124         struct edid *edid = NULL;
3125
3126         intel_runtime_pm_get(dev_priv);
3127
3128         power_domain = intel_display_port_power_domain(intel_encoder);
3129         intel_display_power_get(dev_priv, power_domain);
3130
3131         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3132                       connector->base.id, drm_get_connector_name(connector));
3133
3134         intel_dp->has_audio = false;
3135
3136         if (HAS_PCH_SPLIT(dev))
3137                 status = ironlake_dp_detect(intel_dp);
3138         else
3139                 status = g4x_dp_detect(intel_dp);
3140
3141         if (status != connector_status_connected)
3142                 goto out;
3143
3144         intel_dp_probe_oui(intel_dp);
3145
3146         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3147                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3148         } else {
3149                 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3150                 if (edid) {
3151                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3152                         kfree(edid);
3153                 }
3154         }
3155
3156         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3157                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3158         status = connector_status_connected;
3159
3160 out:
3161         intel_display_power_put(dev_priv, power_domain);
3162
3163         intel_runtime_pm_put(dev_priv);
3164
3165         return status;
3166 }
3167
3168 static int intel_dp_get_modes(struct drm_connector *connector)
3169 {
3170         struct intel_dp *intel_dp = intel_attached_dp(connector);
3171         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3172         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3173         struct intel_connector *intel_connector = to_intel_connector(connector);
3174         struct drm_device *dev = connector->dev;
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176         enum intel_display_power_domain power_domain;
3177         int ret;
3178
3179         /* We should parse the EDID data and find out if it has an audio sink
3180          */
3181
3182         power_domain = intel_display_port_power_domain(intel_encoder);
3183         intel_display_power_get(dev_priv, power_domain);
3184
3185         ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3186         intel_display_power_put(dev_priv, power_domain);
3187         if (ret)
3188                 return ret;
3189
3190         /* if eDP has no EDID, fall back to fixed mode */
3191         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3192                 struct drm_display_mode *mode;
3193                 mode = drm_mode_duplicate(dev,
3194                                           intel_connector->panel.fixed_mode);
3195                 if (mode) {
3196                         drm_mode_probed_add(connector, mode);
3197                         return 1;
3198                 }
3199         }
3200         return 0;
3201 }
3202
3203 static bool
3204 intel_dp_detect_audio(struct drm_connector *connector)
3205 {
3206         struct intel_dp *intel_dp = intel_attached_dp(connector);
3207         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3208         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3209         struct drm_device *dev = connector->dev;
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211         enum intel_display_power_domain power_domain;
3212         struct edid *edid;
3213         bool has_audio = false;
3214
3215         power_domain = intel_display_port_power_domain(intel_encoder);
3216         intel_display_power_get(dev_priv, power_domain);
3217
3218         edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3219         if (edid) {
3220                 has_audio = drm_detect_monitor_audio(edid);
3221                 kfree(edid);
3222         }
3223
3224         intel_display_power_put(dev_priv, power_domain);
3225
3226         return has_audio;
3227 }
3228
3229 static int
3230 intel_dp_set_property(struct drm_connector *connector,
3231                       struct drm_property *property,
3232                       uint64_t val)
3233 {
3234         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3235         struct intel_connector *intel_connector = to_intel_connector(connector);
3236         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3237         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3238         int ret;
3239
3240         ret = drm_object_property_set_value(&connector->base, property, val);
3241         if (ret)
3242                 return ret;
3243
3244         if (property == dev_priv->force_audio_property) {
3245                 int i = val;
3246                 bool has_audio;
3247
3248                 if (i == intel_dp->force_audio)
3249                         return 0;
3250
3251                 intel_dp->force_audio = i;
3252
3253                 if (i == HDMI_AUDIO_AUTO)
3254                         has_audio = intel_dp_detect_audio(connector);
3255                 else
3256                         has_audio = (i == HDMI_AUDIO_ON);
3257
3258                 if (has_audio == intel_dp->has_audio)
3259                         return 0;
3260
3261                 intel_dp->has_audio = has_audio;
3262                 goto done;
3263         }
3264
3265         if (property == dev_priv->broadcast_rgb_property) {
3266                 bool old_auto = intel_dp->color_range_auto;
3267                 uint32_t old_range = intel_dp->color_range;
3268
3269                 switch (val) {
3270                 case INTEL_BROADCAST_RGB_AUTO:
3271                         intel_dp->color_range_auto = true;
3272                         break;
3273                 case INTEL_BROADCAST_RGB_FULL:
3274                         intel_dp->color_range_auto = false;
3275                         intel_dp->color_range = 0;
3276                         break;
3277                 case INTEL_BROADCAST_RGB_LIMITED:
3278                         intel_dp->color_range_auto = false;
3279                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3280                         break;
3281                 default:
3282                         return -EINVAL;
3283                 }
3284
3285                 if (old_auto == intel_dp->color_range_auto &&
3286                     old_range == intel_dp->color_range)
3287                         return 0;
3288
3289                 goto done;
3290         }
3291
3292         if (is_edp(intel_dp) &&
3293             property == connector->dev->mode_config.scaling_mode_property) {
3294                 if (val == DRM_MODE_SCALE_NONE) {
3295                         DRM_DEBUG_KMS("no scaling not supported\n");
3296                         return -EINVAL;
3297                 }
3298
3299                 if (intel_connector->panel.fitting_mode == val) {
3300                         /* the eDP scaling property is not changed */
3301                         return 0;
3302                 }
3303                 intel_connector->panel.fitting_mode = val;
3304
3305                 goto done;
3306         }
3307
3308         return -EINVAL;
3309
3310 done:
3311         if (intel_encoder->base.crtc)
3312                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3313
3314         return 0;
3315 }
3316
3317 static void
3318 intel_dp_connector_destroy(struct drm_connector *connector)
3319 {
3320         struct intel_connector *intel_connector = to_intel_connector(connector);
3321
3322         if (!IS_ERR_OR_NULL(intel_connector->edid))
3323                 kfree(intel_connector->edid);
3324
3325         /* Can't call is_edp() since the encoder may have been destroyed
3326          * already. */
3327         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3328                 intel_panel_fini(&intel_connector->panel);
3329
3330         drm_connector_cleanup(connector);
3331         kfree(connector);
3332 }
3333
3334 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3335 {
3336         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3337         struct intel_dp *intel_dp = &intel_dig_port->dp;
3338         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3339
3340         drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3341         drm_encoder_cleanup(encoder);
3342         if (is_edp(intel_dp)) {
3343                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3344                 mutex_lock(&dev->mode_config.mutex);
3345                 edp_panel_vdd_off_sync(intel_dp);
3346                 mutex_unlock(&dev->mode_config.mutex);
3347         }
3348         kfree(intel_dig_port);
3349 }
3350
3351 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3352         .dpms = intel_connector_dpms,
3353         .detect = intel_dp_detect,
3354         .fill_modes = drm_helper_probe_single_connector_modes,
3355         .set_property = intel_dp_set_property,
3356         .destroy = intel_dp_connector_destroy,
3357 };
3358
3359 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3360         .get_modes = intel_dp_get_modes,
3361         .mode_valid = intel_dp_mode_valid,
3362         .best_encoder = intel_best_encoder,
3363 };
3364
3365 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3366         .destroy = intel_dp_encoder_destroy,
3367 };
3368
3369 static void
3370 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3371 {
3372         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3373
3374         intel_dp_check_link_status(intel_dp);
3375 }
3376
3377 /* Return which DP Port should be selected for Transcoder DP control */
3378 int
3379 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3380 {
3381         struct drm_device *dev = crtc->dev;
3382         struct intel_encoder *intel_encoder;
3383         struct intel_dp *intel_dp;
3384
3385         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3386                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3387
3388                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3389                     intel_encoder->type == INTEL_OUTPUT_EDP)
3390                         return intel_dp->output_reg;
3391         }
3392
3393         return -1;
3394 }
3395
3396 /* check the VBT to see whether the eDP is on DP-D port */
3397 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3398 {
3399         struct drm_i915_private *dev_priv = dev->dev_private;
3400         union child_device_config *p_child;
3401         int i;
3402         static const short port_mapping[] = {
3403                 [PORT_B] = PORT_IDPB,
3404                 [PORT_C] = PORT_IDPC,
3405                 [PORT_D] = PORT_IDPD,
3406         };
3407
3408         if (port == PORT_A)
3409                 return true;
3410
3411         if (!dev_priv->vbt.child_dev_num)
3412                 return false;
3413
3414         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3415                 p_child = dev_priv->vbt.child_dev + i;
3416
3417                 if (p_child->common.dvo_port == port_mapping[port] &&
3418                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3419                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3420                         return true;
3421         }
3422         return false;
3423 }
3424
3425 static void
3426 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3427 {
3428         struct intel_connector *intel_connector = to_intel_connector(connector);
3429
3430         intel_attach_force_audio_property(connector);
3431         intel_attach_broadcast_rgb_property(connector);
3432         intel_dp->color_range_auto = true;
3433
3434         if (is_edp(intel_dp)) {
3435                 drm_mode_create_scaling_mode_property(connector->dev);
3436                 drm_object_attach_property(
3437                         &connector->base,
3438                         connector->dev->mode_config.scaling_mode_property,
3439                         DRM_MODE_SCALE_ASPECT);
3440                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3441         }
3442 }
3443
3444 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3445 {
3446         intel_dp->last_power_cycle = jiffies;
3447         intel_dp->last_power_on = jiffies;
3448         intel_dp->last_backlight_off = jiffies;
3449 }
3450
3451 static void
3452 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3453                                     struct intel_dp *intel_dp,
3454                                     struct edp_power_seq *out)
3455 {
3456         struct drm_i915_private *dev_priv = dev->dev_private;
3457         struct edp_power_seq cur, vbt, spec, final;
3458         u32 pp_on, pp_off, pp_div, pp;
3459         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3460
3461         if (HAS_PCH_SPLIT(dev)) {
3462                 pp_ctrl_reg = PCH_PP_CONTROL;
3463                 pp_on_reg = PCH_PP_ON_DELAYS;
3464                 pp_off_reg = PCH_PP_OFF_DELAYS;
3465                 pp_div_reg = PCH_PP_DIVISOR;
3466         } else {
3467                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3468
3469                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3470                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3471                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3472                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3473         }
3474
3475         /* Workaround: Need to write PP_CONTROL with the unlock key as
3476          * the very first thing. */
3477         pp = ironlake_get_pp_control(intel_dp);
3478         I915_WRITE(pp_ctrl_reg, pp);
3479
3480         pp_on = I915_READ(pp_on_reg);
3481         pp_off = I915_READ(pp_off_reg);
3482         pp_div = I915_READ(pp_div_reg);
3483
3484         /* Pull timing values out of registers */
3485         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3486                 PANEL_POWER_UP_DELAY_SHIFT;
3487
3488         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3489                 PANEL_LIGHT_ON_DELAY_SHIFT;
3490
3491         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3492                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3493
3494         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3495                 PANEL_POWER_DOWN_DELAY_SHIFT;
3496
3497         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3498                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3499
3500         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3501                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3502
3503         vbt = dev_priv->vbt.edp_pps;
3504
3505         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3506          * our hw here, which are all in 100usec. */
3507         spec.t1_t3 = 210 * 10;
3508         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3509         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3510         spec.t10 = 500 * 10;
3511         /* This one is special and actually in units of 100ms, but zero
3512          * based in the hw (so we need to add 100 ms). But the sw vbt
3513          * table multiplies it with 1000 to make it in units of 100usec,
3514          * too. */
3515         spec.t11_t12 = (510 + 100) * 10;
3516
3517         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3518                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3519
3520         /* Use the max of the register settings and vbt. If both are
3521          * unset, fall back to the spec limits. */
3522 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3523                                        spec.field : \
3524                                        max(cur.field, vbt.field))
3525         assign_final(t1_t3);
3526         assign_final(t8);
3527         assign_final(t9);
3528         assign_final(t10);
3529         assign_final(t11_t12);
3530 #undef assign_final
3531
3532 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3533         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3534         intel_dp->backlight_on_delay = get_delay(t8);
3535         intel_dp->backlight_off_delay = get_delay(t9);
3536         intel_dp->panel_power_down_delay = get_delay(t10);
3537         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3538 #undef get_delay
3539
3540         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3541                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3542                       intel_dp->panel_power_cycle_delay);
3543
3544         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3545                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3546
3547         if (out)
3548                 *out = final;
3549 }
3550
3551 static void
3552 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3553                                               struct intel_dp *intel_dp,
3554                                               struct edp_power_seq *seq)
3555 {
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557         u32 pp_on, pp_off, pp_div, port_sel = 0;
3558         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3559         int pp_on_reg, pp_off_reg, pp_div_reg;
3560
3561         if (HAS_PCH_SPLIT(dev)) {
3562                 pp_on_reg = PCH_PP_ON_DELAYS;
3563                 pp_off_reg = PCH_PP_OFF_DELAYS;
3564                 pp_div_reg = PCH_PP_DIVISOR;
3565         } else {
3566                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3567
3568                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3569                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3570                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3571         }
3572
3573         /*
3574          * And finally store the new values in the power sequencer. The
3575          * backlight delays are set to 1 because we do manual waits on them. For
3576          * T8, even BSpec recommends doing it. For T9, if we don't do this,
3577          * we'll end up waiting for the backlight off delay twice: once when we
3578          * do the manual sleep, and once when we disable the panel and wait for
3579          * the PP_STATUS bit to become zero.
3580          */
3581         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3582                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3583         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3584                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3585         /* Compute the divisor for the pp clock, simply match the Bspec
3586          * formula. */
3587         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3588         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3589                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3590
3591         /* Haswell doesn't have any port selection bits for the panel
3592          * power sequencer any more. */
3593         if (IS_VALLEYVIEW(dev)) {
3594                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3595                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3596                 else
3597                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3598         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3599                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3600                         port_sel = PANEL_PORT_SELECT_DPA;
3601                 else
3602                         port_sel = PANEL_PORT_SELECT_DPD;
3603         }
3604
3605         pp_on |= port_sel;
3606
3607         I915_WRITE(pp_on_reg, pp_on);
3608         I915_WRITE(pp_off_reg, pp_off);
3609         I915_WRITE(pp_div_reg, pp_div);
3610
3611         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3612                       I915_READ(pp_on_reg),
3613                       I915_READ(pp_off_reg),
3614                       I915_READ(pp_div_reg));
3615 }
3616
3617 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3618                                      struct intel_connector *intel_connector,
3619                                      struct edp_power_seq *power_seq)
3620 {
3621         struct drm_connector *connector = &intel_connector->base;
3622         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3623         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3624         struct drm_device *dev = intel_encoder->base.dev;
3625         struct drm_i915_private *dev_priv = dev->dev_private;
3626         struct drm_display_mode *fixed_mode = NULL;
3627         bool has_dpcd;
3628         struct drm_display_mode *scan;
3629         struct edid *edid;
3630
3631         if (!is_edp(intel_dp))
3632                 return true;
3633
3634         /* The VDD bit needs a power domain reference, so if the bit is already
3635          * enabled when we boot, grab this reference. */
3636         if (edp_have_panel_vdd(intel_dp)) {
3637                 enum intel_display_power_domain power_domain;
3638                 power_domain = intel_display_port_power_domain(intel_encoder);
3639                 intel_display_power_get(dev_priv, power_domain);
3640         }
3641
3642         /* Cache DPCD and EDID for edp. */
3643         intel_edp_panel_vdd_on(intel_dp);
3644         has_dpcd = intel_dp_get_dpcd(intel_dp);
3645         edp_panel_vdd_off(intel_dp, false);
3646
3647         if (has_dpcd) {
3648                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3649                         dev_priv->no_aux_handshake =
3650                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3651                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3652         } else {
3653                 /* if this fails, presume the device is a ghost */
3654                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3655                 return false;
3656         }
3657
3658         /* We now know it's not a ghost, init power sequence regs. */
3659         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3660
3661         mutex_lock(&dev->mode_config.mutex);
3662         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3663         if (edid) {
3664                 if (drm_add_edid_modes(connector, edid)) {
3665                         drm_mode_connector_update_edid_property(connector,
3666                                                                 edid);
3667                         drm_edid_to_eld(connector, edid);
3668                 } else {
3669                         kfree(edid);
3670                         edid = ERR_PTR(-EINVAL);
3671                 }
3672         } else {
3673                 edid = ERR_PTR(-ENOENT);
3674         }
3675         intel_connector->edid = edid;
3676
3677         /* prefer fixed mode from EDID if available */
3678         list_for_each_entry(scan, &connector->probed_modes, head) {
3679                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3680                         fixed_mode = drm_mode_duplicate(dev, scan);
3681                         break;
3682                 }
3683         }
3684
3685         /* fallback to VBT if available for eDP */
3686         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3687                 fixed_mode = drm_mode_duplicate(dev,
3688                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3689                 if (fixed_mode)
3690                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3691         }
3692         mutex_unlock(&dev->mode_config.mutex);
3693
3694         intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3695         intel_panel_setup_backlight(connector);
3696
3697         return true;
3698 }
3699
3700 bool
3701 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3702                         struct intel_connector *intel_connector)
3703 {
3704         struct drm_connector *connector = &intel_connector->base;
3705         struct intel_dp *intel_dp = &intel_dig_port->dp;
3706         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3707         struct drm_device *dev = intel_encoder->base.dev;
3708         struct drm_i915_private *dev_priv = dev->dev_private;
3709         enum port port = intel_dig_port->port;
3710         struct edp_power_seq power_seq = { 0 };
3711         int type;
3712
3713         /* intel_dp vfuncs */
3714         if (IS_VALLEYVIEW(dev))
3715                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3716         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3717                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3718         else if (HAS_PCH_SPLIT(dev))
3719                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3720         else
3721                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3722
3723         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3724
3725         /* Preserve the current hw state. */
3726         intel_dp->DP = I915_READ(intel_dp->output_reg);
3727         intel_dp->attached_connector = intel_connector;
3728
3729         if (intel_dp_is_edp(dev, port))
3730                 type = DRM_MODE_CONNECTOR_eDP;
3731         else
3732                 type = DRM_MODE_CONNECTOR_DisplayPort;
3733
3734         /*
3735          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3736          * for DP the encoder type can be set by the caller to
3737          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3738          */
3739         if (type == DRM_MODE_CONNECTOR_eDP)
3740                 intel_encoder->type = INTEL_OUTPUT_EDP;
3741
3742         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3743                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3744                         port_name(port));
3745
3746         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3747         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3748
3749         connector->interlace_allowed = true;
3750         connector->doublescan_allowed = 0;
3751
3752         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3753                           edp_panel_vdd_work);
3754
3755         intel_connector_attach_encoder(intel_connector, intel_encoder);
3756         drm_sysfs_connector_add(connector);
3757
3758         if (HAS_DDI(dev))
3759                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3760         else
3761                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3762         intel_connector->unregister = intel_dp_connector_unregister;
3763
3764         /* Set up the hotplug pin. */
3765         switch (port) {
3766         case PORT_A:
3767                 intel_encoder->hpd_pin = HPD_PORT_A;
3768                 break;
3769         case PORT_B:
3770                 intel_encoder->hpd_pin = HPD_PORT_B;
3771                 break;
3772         case PORT_C:
3773                 intel_encoder->hpd_pin = HPD_PORT_C;
3774                 break;
3775         case PORT_D:
3776                 intel_encoder->hpd_pin = HPD_PORT_D;
3777                 break;
3778         default:
3779                 BUG();
3780         }
3781
3782         if (is_edp(intel_dp)) {
3783                 intel_dp_init_panel_power_timestamps(intel_dp);
3784                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3785         }
3786
3787         intel_dp_aux_init(intel_dp, intel_connector);
3788
3789         intel_dp->psr_setup_done = false;
3790
3791         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3792                 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3793                 if (is_edp(intel_dp)) {
3794                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3795                         mutex_lock(&dev->mode_config.mutex);
3796                         edp_panel_vdd_off_sync(intel_dp);
3797                         mutex_unlock(&dev->mode_config.mutex);
3798                 }
3799                 drm_sysfs_connector_remove(connector);
3800                 drm_connector_cleanup(connector);
3801                 return false;
3802         }
3803
3804         intel_dp_add_properties(intel_dp, connector);
3805
3806         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3807          * 0xd.  Failure to do so will result in spurious interrupts being
3808          * generated on the port when a cable is not attached.
3809          */
3810         if (IS_G4X(dev) && !IS_GM45(dev)) {
3811                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3812                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3813         }
3814
3815         return true;
3816 }
3817
3818 void
3819 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3820 {
3821         struct intel_digital_port *intel_dig_port;
3822         struct intel_encoder *intel_encoder;
3823         struct drm_encoder *encoder;
3824         struct intel_connector *intel_connector;
3825
3826         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3827         if (!intel_dig_port)
3828                 return;
3829
3830         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3831         if (!intel_connector) {
3832                 kfree(intel_dig_port);
3833                 return;
3834         }
3835
3836         intel_encoder = &intel_dig_port->base;
3837         encoder = &intel_encoder->base;
3838
3839         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3840                          DRM_MODE_ENCODER_TMDS);
3841
3842         intel_encoder->compute_config = intel_dp_compute_config;
3843         intel_encoder->mode_set = intel_dp_mode_set;
3844         intel_encoder->disable = intel_disable_dp;
3845         intel_encoder->post_disable = intel_post_disable_dp;
3846         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3847         intel_encoder->get_config = intel_dp_get_config;
3848         if (IS_VALLEYVIEW(dev)) {
3849                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3850                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3851                 intel_encoder->enable = vlv_enable_dp;
3852         } else {
3853                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3854                 intel_encoder->enable = g4x_enable_dp;
3855         }
3856
3857         intel_dig_port->port = port;
3858         intel_dig_port->dp.output_reg = output_reg;
3859
3860         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3861         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3862         intel_encoder->cloneable = 0;
3863         intel_encoder->hot_plug = intel_dp_hot_plug;
3864
3865         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3866                 drm_encoder_cleanup(encoder);
3867                 kfree(intel_dig_port);
3868                 kfree(intel_connector);
3869         }
3870 }