]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915/ddi: Fix eDP VDD handling during booting and suspend/resume
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static unsigned int intel_dp_unused_lane_mask(int lane_count)
135 {
136         return ~((1 << lane_count) - 1) & 0xf;
137 }
138
139 static int
140 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
141 {
142         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
143
144         switch (max_link_bw) {
145         case DP_LINK_BW_1_62:
146         case DP_LINK_BW_2_7:
147         case DP_LINK_BW_5_4:
148                 break;
149         default:
150                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
151                      max_link_bw);
152                 max_link_bw = DP_LINK_BW_1_62;
153                 break;
154         }
155         return max_link_bw;
156 }
157
158 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
159 {
160         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
161         u8 source_max, sink_max;
162
163         source_max = intel_dig_port->max_lanes;
164         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166         return min(source_max, sink_max);
167 }
168
169 /*
170  * The units on the numbers in the next two are... bizarre.  Examples will
171  * make it clearer; this one parallels an example in the eDP spec.
172  *
173  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174  *
175  *     270000 * 1 * 8 / 10 == 216000
176  *
177  * The actual data capacity of that configuration is 2.16Gbit/s, so the
178  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
179  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180  * 119000.  At 18bpp that's 2142000 kilobits per second.
181  *
182  * Thus the strange-looking division by 10 in intel_dp_link_required, to
183  * get the result in decakilobits instead of kilobits.
184  */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189         return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195         return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200                     struct drm_display_mode *mode)
201 {
202         struct intel_dp *intel_dp = intel_attached_dp(connector);
203         struct intel_connector *intel_connector = to_intel_connector(connector);
204         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205         int target_clock = mode->clock;
206         int max_rate, mode_rate, max_lanes, max_link_clock;
207         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
208
209         if (is_edp(intel_dp) && fixed_mode) {
210                 if (mode->hdisplay > fixed_mode->hdisplay)
211                         return MODE_PANEL;
212
213                 if (mode->vdisplay > fixed_mode->vdisplay)
214                         return MODE_PANEL;
215
216                 target_clock = fixed_mode->clock;
217         }
218
219         max_link_clock = intel_dp_max_link_rate(intel_dp);
220         max_lanes = intel_dp_max_lane_count(intel_dp);
221
222         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
223         mode_rate = intel_dp_link_required(target_clock, 18);
224
225         if (mode_rate > max_rate || target_clock > max_dotclk)
226                 return MODE_CLOCK_HIGH;
227
228         if (mode->clock < 10000)
229                 return MODE_CLOCK_LOW;
230
231         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
232                 return MODE_H_ILLEGAL;
233
234         return MODE_OK;
235 }
236
237 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
238 {
239         int     i;
240         uint32_t v = 0;
241
242         if (src_bytes > 4)
243                 src_bytes = 4;
244         for (i = 0; i < src_bytes; i++)
245                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246         return v;
247 }
248
249 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
250 {
251         int i;
252         if (dst_bytes > 4)
253                 dst_bytes = 4;
254         for (i = 0; i < dst_bytes; i++)
255                 dst[i] = src >> ((3-i) * 8);
256 }
257
258 static void
259 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
260                                     struct intel_dp *intel_dp);
261 static void
262 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
263                                               struct intel_dp *intel_dp);
264
265 static void pps_lock(struct intel_dp *intel_dp)
266 {
267         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
268         struct intel_encoder *encoder = &intel_dig_port->base;
269         struct drm_device *dev = encoder->base.dev;
270         struct drm_i915_private *dev_priv = dev->dev_private;
271         enum intel_display_power_domain power_domain;
272
273         /*
274          * See vlv_power_sequencer_reset() why we need
275          * a power domain reference here.
276          */
277         power_domain = intel_display_port_aux_power_domain(encoder);
278         intel_display_power_get(dev_priv, power_domain);
279
280         mutex_lock(&dev_priv->pps_mutex);
281 }
282
283 static void pps_unlock(struct intel_dp *intel_dp)
284 {
285         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
286         struct intel_encoder *encoder = &intel_dig_port->base;
287         struct drm_device *dev = encoder->base.dev;
288         struct drm_i915_private *dev_priv = dev->dev_private;
289         enum intel_display_power_domain power_domain;
290
291         mutex_unlock(&dev_priv->pps_mutex);
292
293         power_domain = intel_display_port_aux_power_domain(encoder);
294         intel_display_power_put(dev_priv, power_domain);
295 }
296
297 static void
298 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
299 {
300         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301         struct drm_device *dev = intel_dig_port->base.base.dev;
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         enum pipe pipe = intel_dp->pps_pipe;
304         bool pll_enabled, release_cl_override = false;
305         enum dpio_phy phy = DPIO_PHY(pipe);
306         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
307         uint32_t DP;
308
309         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
310                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
311                  pipe_name(pipe), port_name(intel_dig_port->port)))
312                 return;
313
314         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
315                       pipe_name(pipe), port_name(intel_dig_port->port));
316
317         /* Preserve the BIOS-computed detected bit. This is
318          * supposed to be read-only.
319          */
320         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
321         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
322         DP |= DP_PORT_WIDTH(1);
323         DP |= DP_LINK_TRAIN_PAT_1;
324
325         if (IS_CHERRYVIEW(dev))
326                 DP |= DP_PIPE_SELECT_CHV(pipe);
327         else if (pipe == PIPE_B)
328                 DP |= DP_PIPEB_SELECT;
329
330         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
331
332         /*
333          * The DPLL for the pipe must be enabled for this to work.
334          * So enable temporarily it if it's not already enabled.
335          */
336         if (!pll_enabled) {
337                 release_cl_override = IS_CHERRYVIEW(dev) &&
338                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
339
340                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
341                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
342                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
343                                   pipe_name(pipe));
344                         return;
345                 }
346         }
347
348         /*
349          * Similar magic as in intel_dp_enable_port().
350          * We _must_ do this port enable + disable trick
351          * to make this power seqeuencer lock onto the port.
352          * Otherwise even VDD force bit won't work.
353          */
354         I915_WRITE(intel_dp->output_reg, DP);
355         POSTING_READ(intel_dp->output_reg);
356
357         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
358         POSTING_READ(intel_dp->output_reg);
359
360         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
361         POSTING_READ(intel_dp->output_reg);
362
363         if (!pll_enabled) {
364                 vlv_force_pll_off(dev, pipe);
365
366                 if (release_cl_override)
367                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
368         }
369 }
370
371 static enum pipe
372 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
373 {
374         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375         struct drm_device *dev = intel_dig_port->base.base.dev;
376         struct drm_i915_private *dev_priv = dev->dev_private;
377         struct intel_encoder *encoder;
378         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
379         enum pipe pipe;
380
381         lockdep_assert_held(&dev_priv->pps_mutex);
382
383         /* We should never land here with regular DP ports */
384         WARN_ON(!is_edp(intel_dp));
385
386         if (intel_dp->pps_pipe != INVALID_PIPE)
387                 return intel_dp->pps_pipe;
388
389         /*
390          * We don't have power sequencer currently.
391          * Pick one that's not used by other ports.
392          */
393         for_each_intel_encoder(dev, encoder) {
394                 struct intel_dp *tmp;
395
396                 if (encoder->type != INTEL_OUTPUT_EDP)
397                         continue;
398
399                 tmp = enc_to_intel_dp(&encoder->base);
400
401                 if (tmp->pps_pipe != INVALID_PIPE)
402                         pipes &= ~(1 << tmp->pps_pipe);
403         }
404
405         /*
406          * Didn't find one. This should not happen since there
407          * are two power sequencers and up to two eDP ports.
408          */
409         if (WARN_ON(pipes == 0))
410                 pipe = PIPE_A;
411         else
412                 pipe = ffs(pipes) - 1;
413
414         vlv_steal_power_sequencer(dev, pipe);
415         intel_dp->pps_pipe = pipe;
416
417         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418                       pipe_name(intel_dp->pps_pipe),
419                       port_name(intel_dig_port->port));
420
421         /* init power sequencer on this pipe and port */
422         intel_dp_init_panel_power_sequencer(dev, intel_dp);
423         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425         /*
426          * Even vdd force doesn't work until we've made
427          * the power sequencer lock in on the port.
428          */
429         vlv_power_sequencer_kick(intel_dp);
430
431         return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435                                enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438                                enum pipe pipe)
439 {
440         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444                                 enum pipe pipe)
445 {
446         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450                          enum pipe pipe)
451 {
452         return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457                      enum port port,
458                      vlv_pipe_check pipe_check)
459 {
460         enum pipe pipe;
461
462         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464                         PANEL_PORT_SELECT_MASK;
465
466                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467                         continue;
468
469                 if (!pipe_check(dev_priv, pipe))
470                         continue;
471
472                 return pipe;
473         }
474
475         return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482         struct drm_device *dev = intel_dig_port->base.base.dev;
483         struct drm_i915_private *dev_priv = dev->dev_private;
484         enum port port = intel_dig_port->port;
485
486         lockdep_assert_held(&dev_priv->pps_mutex);
487
488         /* try to find a pipe with this port selected */
489         /* first pick one where the panel is on */
490         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491                                                   vlv_pipe_has_pp_on);
492         /* didn't find one? pick one where vdd is on */
493         if (intel_dp->pps_pipe == INVALID_PIPE)
494                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495                                                           vlv_pipe_has_vdd_on);
496         /* didn't find one? pick one with just the correct port */
497         if (intel_dp->pps_pipe == INVALID_PIPE)
498                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499                                                           vlv_pipe_any);
500
501         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502         if (intel_dp->pps_pipe == INVALID_PIPE) {
503                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504                               port_name(port));
505                 return;
506         }
507
508         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509                       port_name(port), pipe_name(intel_dp->pps_pipe));
510
511         intel_dp_init_panel_power_sequencer(dev, intel_dp);
512         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517         struct drm_device *dev = dev_priv->dev;
518         struct intel_encoder *encoder;
519
520         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
521                 return;
522
523         /*
524          * We can't grab pps_mutex here due to deadlock with power_domain
525          * mutex when power_domain functions are called while holding pps_mutex.
526          * That also means that in order to use pps_pipe the code needs to
527          * hold both a power domain reference and pps_mutex, and the power domain
528          * reference get/put must be done while _not_ holding pps_mutex.
529          * pps_{lock,unlock}() do these steps in the correct order, so one
530          * should use them always.
531          */
532
533         for_each_intel_encoder(dev, encoder) {
534                 struct intel_dp *intel_dp;
535
536                 if (encoder->type != INTEL_OUTPUT_EDP)
537                         continue;
538
539                 intel_dp = enc_to_intel_dp(&encoder->base);
540                 intel_dp->pps_pipe = INVALID_PIPE;
541         }
542 }
543
544 static i915_reg_t
545 _pp_ctrl_reg(struct intel_dp *intel_dp)
546 {
547         struct drm_device *dev = intel_dp_to_dev(intel_dp);
548
549         if (IS_BROXTON(dev))
550                 return BXT_PP_CONTROL(0);
551         else if (HAS_PCH_SPLIT(dev))
552                 return PCH_PP_CONTROL;
553         else
554                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
555 }
556
557 static i915_reg_t
558 _pp_stat_reg(struct intel_dp *intel_dp)
559 {
560         struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562         if (IS_BROXTON(dev))
563                 return BXT_PP_STATUS(0);
564         else if (HAS_PCH_SPLIT(dev))
565                 return PCH_PP_STATUS;
566         else
567                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
571    This function only applicable when panel PM state is not to be tracked */
572 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
573                               void *unused)
574 {
575         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
576                                                  edp_notifier);
577         struct drm_device *dev = intel_dp_to_dev(intel_dp);
578         struct drm_i915_private *dev_priv = dev->dev_private;
579
580         if (!is_edp(intel_dp) || code != SYS_RESTART)
581                 return 0;
582
583         pps_lock(intel_dp);
584
585         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
586                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
587                 i915_reg_t pp_ctrl_reg, pp_div_reg;
588                 u32 pp_div;
589
590                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
591                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
592                 pp_div = I915_READ(pp_div_reg);
593                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
594
595                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
596                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
597                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
598                 msleep(intel_dp->panel_power_cycle_delay);
599         }
600
601         pps_unlock(intel_dp);
602
603         return 0;
604 }
605
606 static bool edp_have_panel_power(struct intel_dp *intel_dp)
607 {
608         struct drm_device *dev = intel_dp_to_dev(intel_dp);
609         struct drm_i915_private *dev_priv = dev->dev_private;
610
611         lockdep_assert_held(&dev_priv->pps_mutex);
612
613         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
614             intel_dp->pps_pipe == INVALID_PIPE)
615                 return false;
616
617         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
618 }
619
620 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
621 {
622         struct drm_device *dev = intel_dp_to_dev(intel_dp);
623         struct drm_i915_private *dev_priv = dev->dev_private;
624
625         lockdep_assert_held(&dev_priv->pps_mutex);
626
627         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
628             intel_dp->pps_pipe == INVALID_PIPE)
629                 return false;
630
631         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
632 }
633
634 static void
635 intel_dp_check_edp(struct intel_dp *intel_dp)
636 {
637         struct drm_device *dev = intel_dp_to_dev(intel_dp);
638         struct drm_i915_private *dev_priv = dev->dev_private;
639
640         if (!is_edp(intel_dp))
641                 return;
642
643         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
644                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
645                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
646                               I915_READ(_pp_stat_reg(intel_dp)),
647                               I915_READ(_pp_ctrl_reg(intel_dp)));
648         }
649 }
650
651 static uint32_t
652 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
653 {
654         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
655         struct drm_device *dev = intel_dig_port->base.base.dev;
656         struct drm_i915_private *dev_priv = dev->dev_private;
657         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
658         uint32_t status;
659         bool done;
660
661 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
662         if (has_aux_irq)
663                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
664                                           msecs_to_jiffies_timeout(10));
665         else
666                 done = wait_for_atomic(C, 10) == 0;
667         if (!done)
668                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
669                           has_aux_irq);
670 #undef C
671
672         return status;
673 }
674
675 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
676 {
677         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
678         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
679
680         if (index)
681                 return 0;
682
683         /*
684          * The clock divider is based off the hrawclk, and would like to run at
685          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
686          */
687         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
688 }
689
690 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
691 {
692         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
693         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
694
695         if (index)
696                 return 0;
697
698         /*
699          * The clock divider is based off the cdclk or PCH rawclk, and would
700          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
701          * divide by 2000 and use that
702          */
703         if (intel_dig_port->port == PORT_A)
704                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
705         else
706                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
707 }
708
709 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
710 {
711         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
713
714         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
715                 /* Workaround for non-ULT HSW */
716                 switch (index) {
717                 case 0: return 63;
718                 case 1: return 72;
719                 default: return 0;
720                 }
721         }
722
723         return ilk_get_aux_clock_divider(intel_dp, index);
724 }
725
726 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
727 {
728         /*
729          * SKL doesn't need us to program the AUX clock divider (Hardware will
730          * derive the clock from CDCLK automatically). We still implement the
731          * get_aux_clock_divider vfunc to plug-in into the existing code.
732          */
733         return index ? 0 : 1;
734 }
735
736 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
737                                      bool has_aux_irq,
738                                      int send_bytes,
739                                      uint32_t aux_clock_divider)
740 {
741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742         struct drm_device *dev = intel_dig_port->base.base.dev;
743         uint32_t precharge, timeout;
744
745         if (IS_GEN6(dev))
746                 precharge = 3;
747         else
748                 precharge = 5;
749
750         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
751                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
752         else
753                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
754
755         return DP_AUX_CH_CTL_SEND_BUSY |
756                DP_AUX_CH_CTL_DONE |
757                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
758                DP_AUX_CH_CTL_TIME_OUT_ERROR |
759                timeout |
760                DP_AUX_CH_CTL_RECEIVE_ERROR |
761                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
762                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
763                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
764 }
765
766 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
767                                       bool has_aux_irq,
768                                       int send_bytes,
769                                       uint32_t unused)
770 {
771         return DP_AUX_CH_CTL_SEND_BUSY |
772                DP_AUX_CH_CTL_DONE |
773                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774                DP_AUX_CH_CTL_TIME_OUT_ERROR |
775                DP_AUX_CH_CTL_TIME_OUT_1600us |
776                DP_AUX_CH_CTL_RECEIVE_ERROR |
777                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
779 }
780
781 static int
782 intel_dp_aux_ch(struct intel_dp *intel_dp,
783                 const uint8_t *send, int send_bytes,
784                 uint8_t *recv, int recv_size)
785 {
786         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
787         struct drm_device *dev = intel_dig_port->base.base.dev;
788         struct drm_i915_private *dev_priv = dev->dev_private;
789         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
790         uint32_t aux_clock_divider;
791         int i, ret, recv_bytes;
792         uint32_t status;
793         int try, clock = 0;
794         bool has_aux_irq = HAS_AUX_IRQ(dev);
795         bool vdd;
796
797         pps_lock(intel_dp);
798
799         /*
800          * We will be called with VDD already enabled for dpcd/edid/oui reads.
801          * In such cases we want to leave VDD enabled and it's up to upper layers
802          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
803          * ourselves.
804          */
805         vdd = edp_panel_vdd_on(intel_dp);
806
807         /* dp aux is extremely sensitive to irq latency, hence request the
808          * lowest possible wakeup latency and so prevent the cpu from going into
809          * deep sleep states.
810          */
811         pm_qos_update_request(&dev_priv->pm_qos, 0);
812
813         intel_dp_check_edp(intel_dp);
814
815         /* Try to wait for any previous AUX channel activity */
816         for (try = 0; try < 3; try++) {
817                 status = I915_READ_NOTRACE(ch_ctl);
818                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
819                         break;
820                 msleep(1);
821         }
822
823         if (try == 3) {
824                 static u32 last_status = -1;
825                 const u32 status = I915_READ(ch_ctl);
826
827                 if (status != last_status) {
828                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
829                              status);
830                         last_status = status;
831                 }
832
833                 ret = -EBUSY;
834                 goto out;
835         }
836
837         /* Only 5 data registers! */
838         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
839                 ret = -E2BIG;
840                 goto out;
841         }
842
843         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
844                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
845                                                           has_aux_irq,
846                                                           send_bytes,
847                                                           aux_clock_divider);
848
849                 /* Must try at least 3 times according to DP spec */
850                 for (try = 0; try < 5; try++) {
851                         /* Load the send data into the aux channel data registers */
852                         for (i = 0; i < send_bytes; i += 4)
853                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
854                                            intel_dp_pack_aux(send + i,
855                                                              send_bytes - i));
856
857                         /* Send the command and wait for it to complete */
858                         I915_WRITE(ch_ctl, send_ctl);
859
860                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
861
862                         /* Clear done status and any errors */
863                         I915_WRITE(ch_ctl,
864                                    status |
865                                    DP_AUX_CH_CTL_DONE |
866                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
867                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
868
869                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
870                                 continue;
871
872                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
873                          *   400us delay required for errors and timeouts
874                          *   Timeout errors from the HW already meet this
875                          *   requirement so skip to next iteration
876                          */
877                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
878                                 usleep_range(400, 500);
879                                 continue;
880                         }
881                         if (status & DP_AUX_CH_CTL_DONE)
882                                 goto done;
883                 }
884         }
885
886         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
887                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
888                 ret = -EBUSY;
889                 goto out;
890         }
891
892 done:
893         /* Check for timeout or receive error.
894          * Timeouts occur when the sink is not connected
895          */
896         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
897                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
898                 ret = -EIO;
899                 goto out;
900         }
901
902         /* Timeouts occur when the device isn't connected, so they're
903          * "normal" -- don't fill the kernel log with these */
904         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
905                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
906                 ret = -ETIMEDOUT;
907                 goto out;
908         }
909
910         /* Unload any bytes sent back from the other side */
911         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
912                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
913
914         /*
915          * By BSpec: "Message sizes of 0 or >20 are not allowed."
916          * We have no idea of what happened so we return -EBUSY so
917          * drm layer takes care for the necessary retries.
918          */
919         if (recv_bytes == 0 || recv_bytes > 20) {
920                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
921                               recv_bytes);
922                 /*
923                  * FIXME: This patch was created on top of a series that
924                  * organize the retries at drm level. There EBUSY should
925                  * also take care for 1ms wait before retrying.
926                  * That aux retries re-org is still needed and after that is
927                  * merged we remove this sleep from here.
928                  */
929                 usleep_range(1000, 1500);
930                 ret = -EBUSY;
931                 goto out;
932         }
933
934         if (recv_bytes > recv_size)
935                 recv_bytes = recv_size;
936
937         for (i = 0; i < recv_bytes; i += 4)
938                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
939                                     recv + i, recv_bytes - i);
940
941         ret = recv_bytes;
942 out:
943         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
944
945         if (vdd)
946                 edp_panel_vdd_off(intel_dp, false);
947
948         pps_unlock(intel_dp);
949
950         return ret;
951 }
952
953 #define BARE_ADDRESS_SIZE       3
954 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
955 static ssize_t
956 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
957 {
958         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
959         uint8_t txbuf[20], rxbuf[20];
960         size_t txsize, rxsize;
961         int ret;
962
963         txbuf[0] = (msg->request << 4) |
964                 ((msg->address >> 16) & 0xf);
965         txbuf[1] = (msg->address >> 8) & 0xff;
966         txbuf[2] = msg->address & 0xff;
967         txbuf[3] = msg->size - 1;
968
969         switch (msg->request & ~DP_AUX_I2C_MOT) {
970         case DP_AUX_NATIVE_WRITE:
971         case DP_AUX_I2C_WRITE:
972         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
973                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
974                 rxsize = 2; /* 0 or 1 data bytes */
975
976                 if (WARN_ON(txsize > 20))
977                         return -E2BIG;
978
979                 if (msg->buffer)
980                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
981                 else
982                         WARN_ON(msg->size);
983
984                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
985                 if (ret > 0) {
986                         msg->reply = rxbuf[0] >> 4;
987
988                         if (ret > 1) {
989                                 /* Number of bytes written in a short write. */
990                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
991                         } else {
992                                 /* Return payload size. */
993                                 ret = msg->size;
994                         }
995                 }
996                 break;
997
998         case DP_AUX_NATIVE_READ:
999         case DP_AUX_I2C_READ:
1000                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1001                 rxsize = msg->size + 1;
1002
1003                 if (WARN_ON(rxsize > 20))
1004                         return -E2BIG;
1005
1006                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1007                 if (ret > 0) {
1008                         msg->reply = rxbuf[0] >> 4;
1009                         /*
1010                          * Assume happy day, and copy the data. The caller is
1011                          * expected to check msg->reply before touching it.
1012                          *
1013                          * Return payload size.
1014                          */
1015                         ret--;
1016                         memcpy(msg->buffer, rxbuf + 1, ret);
1017                 }
1018                 break;
1019
1020         default:
1021                 ret = -EINVAL;
1022                 break;
1023         }
1024
1025         return ret;
1026 }
1027
1028 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1029                                        enum port port)
1030 {
1031         switch (port) {
1032         case PORT_B:
1033         case PORT_C:
1034         case PORT_D:
1035                 return DP_AUX_CH_CTL(port);
1036         default:
1037                 MISSING_CASE(port);
1038                 return DP_AUX_CH_CTL(PORT_B);
1039         }
1040 }
1041
1042 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1043                                         enum port port, int index)
1044 {
1045         switch (port) {
1046         case PORT_B:
1047         case PORT_C:
1048         case PORT_D:
1049                 return DP_AUX_CH_DATA(port, index);
1050         default:
1051                 MISSING_CASE(port);
1052                 return DP_AUX_CH_DATA(PORT_B, index);
1053         }
1054 }
1055
1056 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1057                                        enum port port)
1058 {
1059         switch (port) {
1060         case PORT_A:
1061                 return DP_AUX_CH_CTL(port);
1062         case PORT_B:
1063         case PORT_C:
1064         case PORT_D:
1065                 return PCH_DP_AUX_CH_CTL(port);
1066         default:
1067                 MISSING_CASE(port);
1068                 return DP_AUX_CH_CTL(PORT_A);
1069         }
1070 }
1071
1072 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1073                                         enum port port, int index)
1074 {
1075         switch (port) {
1076         case PORT_A:
1077                 return DP_AUX_CH_DATA(port, index);
1078         case PORT_B:
1079         case PORT_C:
1080         case PORT_D:
1081                 return PCH_DP_AUX_CH_DATA(port, index);
1082         default:
1083                 MISSING_CASE(port);
1084                 return DP_AUX_CH_DATA(PORT_A, index);
1085         }
1086 }
1087
1088 /*
1089  * On SKL we don't have Aux for port E so we rely
1090  * on VBT to set a proper alternate aux channel.
1091  */
1092 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1093 {
1094         const struct ddi_vbt_port_info *info =
1095                 &dev_priv->vbt.ddi_port_info[PORT_E];
1096
1097         switch (info->alternate_aux_channel) {
1098         case DP_AUX_A:
1099                 return PORT_A;
1100         case DP_AUX_B:
1101                 return PORT_B;
1102         case DP_AUX_C:
1103                 return PORT_C;
1104         case DP_AUX_D:
1105                 return PORT_D;
1106         default:
1107                 MISSING_CASE(info->alternate_aux_channel);
1108                 return PORT_A;
1109         }
1110 }
1111
1112 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113                                        enum port port)
1114 {
1115         if (port == PORT_E)
1116                 port = skl_porte_aux_port(dev_priv);
1117
1118         switch (port) {
1119         case PORT_A:
1120         case PORT_B:
1121         case PORT_C:
1122         case PORT_D:
1123                 return DP_AUX_CH_CTL(port);
1124         default:
1125                 MISSING_CASE(port);
1126                 return DP_AUX_CH_CTL(PORT_A);
1127         }
1128 }
1129
1130 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1131                                         enum port port, int index)
1132 {
1133         if (port == PORT_E)
1134                 port = skl_porte_aux_port(dev_priv);
1135
1136         switch (port) {
1137         case PORT_A:
1138         case PORT_B:
1139         case PORT_C:
1140         case PORT_D:
1141                 return DP_AUX_CH_DATA(port, index);
1142         default:
1143                 MISSING_CASE(port);
1144                 return DP_AUX_CH_DATA(PORT_A, index);
1145         }
1146 }
1147
1148 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1149                                          enum port port)
1150 {
1151         if (INTEL_INFO(dev_priv)->gen >= 9)
1152                 return skl_aux_ctl_reg(dev_priv, port);
1153         else if (HAS_PCH_SPLIT(dev_priv))
1154                 return ilk_aux_ctl_reg(dev_priv, port);
1155         else
1156                 return g4x_aux_ctl_reg(dev_priv, port);
1157 }
1158
1159 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1160                                           enum port port, int index)
1161 {
1162         if (INTEL_INFO(dev_priv)->gen >= 9)
1163                 return skl_aux_data_reg(dev_priv, port, index);
1164         else if (HAS_PCH_SPLIT(dev_priv))
1165                 return ilk_aux_data_reg(dev_priv, port, index);
1166         else
1167                 return g4x_aux_data_reg(dev_priv, port, index);
1168 }
1169
1170 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1171 {
1172         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1173         enum port port = dp_to_dig_port(intel_dp)->port;
1174         int i;
1175
1176         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1177         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1178                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1179 }
1180
1181 static void
1182 intel_dp_aux_fini(struct intel_dp *intel_dp)
1183 {
1184         drm_dp_aux_unregister(&intel_dp->aux);
1185         kfree(intel_dp->aux.name);
1186 }
1187
1188 static int
1189 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1190 {
1191         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1192         enum port port = intel_dig_port->port;
1193         int ret;
1194
1195         intel_aux_reg_init(intel_dp);
1196
1197         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1198         if (!intel_dp->aux.name)
1199                 return -ENOMEM;
1200
1201         intel_dp->aux.dev = connector->base.kdev;
1202         intel_dp->aux.transfer = intel_dp_aux_transfer;
1203
1204         DRM_DEBUG_KMS("registering %s bus for %s\n",
1205                       intel_dp->aux.name,
1206                       connector->base.kdev->kobj.name);
1207
1208         ret = drm_dp_aux_register(&intel_dp->aux);
1209         if (ret < 0) {
1210                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1211                           intel_dp->aux.name, ret);
1212                 kfree(intel_dp->aux.name);
1213                 return ret;
1214         }
1215
1216         return 0;
1217 }
1218
1219 static void
1220 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1221 {
1222         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1223
1224         intel_dp_aux_fini(intel_dp);
1225         intel_connector_unregister(intel_connector);
1226 }
1227
1228 static int
1229 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1230 {
1231         if (intel_dp->num_sink_rates) {
1232                 *sink_rates = intel_dp->sink_rates;
1233                 return intel_dp->num_sink_rates;
1234         }
1235
1236         *sink_rates = default_rates;
1237
1238         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1239 }
1240
1241 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1242 {
1243         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1244         struct drm_device *dev = dig_port->base.base.dev;
1245
1246         /* WaDisableHBR2:skl */
1247         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1248                 return false;
1249
1250         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1251             (INTEL_INFO(dev)->gen >= 9))
1252                 return true;
1253         else
1254                 return false;
1255 }
1256
1257 static int
1258 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1259 {
1260         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1261         struct drm_device *dev = dig_port->base.base.dev;
1262         int size;
1263
1264         if (IS_BROXTON(dev)) {
1265                 *source_rates = bxt_rates;
1266                 size = ARRAY_SIZE(bxt_rates);
1267         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1268                 *source_rates = skl_rates;
1269                 size = ARRAY_SIZE(skl_rates);
1270         } else {
1271                 *source_rates = default_rates;
1272                 size = ARRAY_SIZE(default_rates);
1273         }
1274
1275         /* This depends on the fact that 5.4 is last value in the array */
1276         if (!intel_dp_source_supports_hbr2(intel_dp))
1277                 size--;
1278
1279         return size;
1280 }
1281
1282 static void
1283 intel_dp_set_clock(struct intel_encoder *encoder,
1284                    struct intel_crtc_state *pipe_config)
1285 {
1286         struct drm_device *dev = encoder->base.dev;
1287         const struct dp_link_dpll *divisor = NULL;
1288         int i, count = 0;
1289
1290         if (IS_G4X(dev)) {
1291                 divisor = gen4_dpll;
1292                 count = ARRAY_SIZE(gen4_dpll);
1293         } else if (HAS_PCH_SPLIT(dev)) {
1294                 divisor = pch_dpll;
1295                 count = ARRAY_SIZE(pch_dpll);
1296         } else if (IS_CHERRYVIEW(dev)) {
1297                 divisor = chv_dpll;
1298                 count = ARRAY_SIZE(chv_dpll);
1299         } else if (IS_VALLEYVIEW(dev)) {
1300                 divisor = vlv_dpll;
1301                 count = ARRAY_SIZE(vlv_dpll);
1302         }
1303
1304         if (divisor && count) {
1305                 for (i = 0; i < count; i++) {
1306                         if (pipe_config->port_clock == divisor[i].clock) {
1307                                 pipe_config->dpll = divisor[i].dpll;
1308                                 pipe_config->clock_set = true;
1309                                 break;
1310                         }
1311                 }
1312         }
1313 }
1314
1315 static int intersect_rates(const int *source_rates, int source_len,
1316                            const int *sink_rates, int sink_len,
1317                            int *common_rates)
1318 {
1319         int i = 0, j = 0, k = 0;
1320
1321         while (i < source_len && j < sink_len) {
1322                 if (source_rates[i] == sink_rates[j]) {
1323                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1324                                 return k;
1325                         common_rates[k] = source_rates[i];
1326                         ++k;
1327                         ++i;
1328                         ++j;
1329                 } else if (source_rates[i] < sink_rates[j]) {
1330                         ++i;
1331                 } else {
1332                         ++j;
1333                 }
1334         }
1335         return k;
1336 }
1337
1338 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1339                                  int *common_rates)
1340 {
1341         const int *source_rates, *sink_rates;
1342         int source_len, sink_len;
1343
1344         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1345         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1346
1347         return intersect_rates(source_rates, source_len,
1348                                sink_rates, sink_len,
1349                                common_rates);
1350 }
1351
1352 static void snprintf_int_array(char *str, size_t len,
1353                                const int *array, int nelem)
1354 {
1355         int i;
1356
1357         str[0] = '\0';
1358
1359         for (i = 0; i < nelem; i++) {
1360                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1361                 if (r >= len)
1362                         return;
1363                 str += r;
1364                 len -= r;
1365         }
1366 }
1367
1368 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1369 {
1370         const int *source_rates, *sink_rates;
1371         int source_len, sink_len, common_len;
1372         int common_rates[DP_MAX_SUPPORTED_RATES];
1373         char str[128]; /* FIXME: too big for stack? */
1374
1375         if ((drm_debug & DRM_UT_KMS) == 0)
1376                 return;
1377
1378         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1379         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1380         DRM_DEBUG_KMS("source rates: %s\n", str);
1381
1382         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1384         DRM_DEBUG_KMS("sink rates: %s\n", str);
1385
1386         common_len = intel_dp_common_rates(intel_dp, common_rates);
1387         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1388         DRM_DEBUG_KMS("common rates: %s\n", str);
1389 }
1390
1391 static int rate_to_index(int find, const int *rates)
1392 {
1393         int i = 0;
1394
1395         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1396                 if (find == rates[i])
1397                         break;
1398
1399         return i;
1400 }
1401
1402 int
1403 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1404 {
1405         int rates[DP_MAX_SUPPORTED_RATES] = {};
1406         int len;
1407
1408         len = intel_dp_common_rates(intel_dp, rates);
1409         if (WARN_ON(len <= 0))
1410                 return 162000;
1411
1412         return rates[rate_to_index(0, rates) - 1];
1413 }
1414
1415 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1416 {
1417         return rate_to_index(rate, intel_dp->sink_rates);
1418 }
1419
1420 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1421                            uint8_t *link_bw, uint8_t *rate_select)
1422 {
1423         if (intel_dp->num_sink_rates) {
1424                 *link_bw = 0;
1425                 *rate_select =
1426                         intel_dp_rate_select(intel_dp, port_clock);
1427         } else {
1428                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1429                 *rate_select = 0;
1430         }
1431 }
1432
1433 bool
1434 intel_dp_compute_config(struct intel_encoder *encoder,
1435                         struct intel_crtc_state *pipe_config)
1436 {
1437         struct drm_device *dev = encoder->base.dev;
1438         struct drm_i915_private *dev_priv = dev->dev_private;
1439         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1440         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441         enum port port = dp_to_dig_port(intel_dp)->port;
1442         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1443         struct intel_connector *intel_connector = intel_dp->attached_connector;
1444         int lane_count, clock;
1445         int min_lane_count = 1;
1446         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1447         /* Conveniently, the link BW constants become indices with a shift...*/
1448         int min_clock = 0;
1449         int max_clock;
1450         int bpp, mode_rate;
1451         int link_avail, link_clock;
1452         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1453         int common_len;
1454         uint8_t link_bw, rate_select;
1455
1456         common_len = intel_dp_common_rates(intel_dp, common_rates);
1457
1458         /* No common link rates between source and sink */
1459         WARN_ON(common_len <= 0);
1460
1461         max_clock = common_len - 1;
1462
1463         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1464                 pipe_config->has_pch_encoder = true;
1465
1466         pipe_config->has_dp_encoder = true;
1467         pipe_config->has_drrs = false;
1468         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1469
1470         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1471                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1472                                        adjusted_mode);
1473
1474                 if (INTEL_INFO(dev)->gen >= 9) {
1475                         int ret;
1476                         ret = skl_update_scaler_crtc(pipe_config);
1477                         if (ret)
1478                                 return ret;
1479                 }
1480
1481                 if (HAS_GMCH_DISPLAY(dev))
1482                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1483                                                  intel_connector->panel.fitting_mode);
1484                 else
1485                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1486                                                 intel_connector->panel.fitting_mode);
1487         }
1488
1489         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1490                 return false;
1491
1492         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1493                       "max bw %d pixel clock %iKHz\n",
1494                       max_lane_count, common_rates[max_clock],
1495                       adjusted_mode->crtc_clock);
1496
1497         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1498          * bpc in between. */
1499         bpp = pipe_config->pipe_bpp;
1500         if (is_edp(intel_dp)) {
1501
1502                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1503                 if (intel_connector->base.display_info.bpc == 0 &&
1504                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1505                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1506                                       dev_priv->vbt.edp.bpp);
1507                         bpp = dev_priv->vbt.edp.bpp;
1508                 }
1509
1510                 /*
1511                  * Use the maximum clock and number of lanes the eDP panel
1512                  * advertizes being capable of. The panels are generally
1513                  * designed to support only a single clock and lane
1514                  * configuration, and typically these values correspond to the
1515                  * native resolution of the panel.
1516                  */
1517                 min_lane_count = max_lane_count;
1518                 min_clock = max_clock;
1519         }
1520
1521         for (; bpp >= 6*3; bpp -= 2*3) {
1522                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1523                                                    bpp);
1524
1525                 for (clock = min_clock; clock <= max_clock; clock++) {
1526                         for (lane_count = min_lane_count;
1527                                 lane_count <= max_lane_count;
1528                                 lane_count <<= 1) {
1529
1530                                 link_clock = common_rates[clock];
1531                                 link_avail = intel_dp_max_data_rate(link_clock,
1532                                                                     lane_count);
1533
1534                                 if (mode_rate <= link_avail) {
1535                                         goto found;
1536                                 }
1537                         }
1538                 }
1539         }
1540
1541         return false;
1542
1543 found:
1544         if (intel_dp->color_range_auto) {
1545                 /*
1546                  * See:
1547                  * CEA-861-E - 5.1 Default Encoding Parameters
1548                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1549                  */
1550                 pipe_config->limited_color_range =
1551                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1552         } else {
1553                 pipe_config->limited_color_range =
1554                         intel_dp->limited_color_range;
1555         }
1556
1557         pipe_config->lane_count = lane_count;
1558
1559         pipe_config->pipe_bpp = bpp;
1560         pipe_config->port_clock = common_rates[clock];
1561
1562         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1563                               &link_bw, &rate_select);
1564
1565         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1566                       link_bw, rate_select, pipe_config->lane_count,
1567                       pipe_config->port_clock, bpp);
1568         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1569                       mode_rate, link_avail);
1570
1571         intel_link_compute_m_n(bpp, lane_count,
1572                                adjusted_mode->crtc_clock,
1573                                pipe_config->port_clock,
1574                                &pipe_config->dp_m_n);
1575
1576         if (intel_connector->panel.downclock_mode != NULL &&
1577                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1578                         pipe_config->has_drrs = true;
1579                         intel_link_compute_m_n(bpp, lane_count,
1580                                 intel_connector->panel.downclock_mode->clock,
1581                                 pipe_config->port_clock,
1582                                 &pipe_config->dp_m2_n2);
1583         }
1584
1585         if (!HAS_DDI(dev))
1586                 intel_dp_set_clock(encoder, pipe_config);
1587
1588         return true;
1589 }
1590
1591 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1592                               const struct intel_crtc_state *pipe_config)
1593 {
1594         intel_dp->link_rate = pipe_config->port_clock;
1595         intel_dp->lane_count = pipe_config->lane_count;
1596 }
1597
1598 static void intel_dp_prepare(struct intel_encoder *encoder)
1599 {
1600         struct drm_device *dev = encoder->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1603         enum port port = dp_to_dig_port(intel_dp)->port;
1604         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1605         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1606
1607         intel_dp_set_link_params(intel_dp, crtc->config);
1608
1609         /*
1610          * There are four kinds of DP registers:
1611          *
1612          *      IBX PCH
1613          *      SNB CPU
1614          *      IVB CPU
1615          *      CPT PCH
1616          *
1617          * IBX PCH and CPU are the same for almost everything,
1618          * except that the CPU DP PLL is configured in this
1619          * register
1620          *
1621          * CPT PCH is quite different, having many bits moved
1622          * to the TRANS_DP_CTL register instead. That
1623          * configuration happens (oddly) in ironlake_pch_enable
1624          */
1625
1626         /* Preserve the BIOS-computed detected bit. This is
1627          * supposed to be read-only.
1628          */
1629         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1630
1631         /* Handle DP bits in common between all three register formats */
1632         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1633         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1634
1635         /* Split out the IBX/CPU vs CPT settings */
1636
1637         if (IS_GEN7(dev) && port == PORT_A) {
1638                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1639                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1640                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1641                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1642                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1643
1644                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1645                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1646
1647                 intel_dp->DP |= crtc->pipe << 29;
1648         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1649                 u32 trans_dp;
1650
1651                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1652
1653                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1654                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1655                         trans_dp |= TRANS_DP_ENH_FRAMING;
1656                 else
1657                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1658                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1659         } else {
1660                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1661                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1662                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1663
1664                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1665                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1666                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1667                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1668                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1669
1670                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1671                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1672
1673                 if (IS_CHERRYVIEW(dev))
1674                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1675                 else if (crtc->pipe == PIPE_B)
1676                         intel_dp->DP |= DP_PIPEB_SELECT;
1677         }
1678 }
1679
1680 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1681 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1682
1683 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1684 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1685
1686 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1687 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1688
1689 static void wait_panel_status(struct intel_dp *intel_dp,
1690                                        u32 mask,
1691                                        u32 value)
1692 {
1693         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694         struct drm_i915_private *dev_priv = dev->dev_private;
1695         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1696
1697         lockdep_assert_held(&dev_priv->pps_mutex);
1698
1699         pp_stat_reg = _pp_stat_reg(intel_dp);
1700         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1701
1702         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1703                         mask, value,
1704                         I915_READ(pp_stat_reg),
1705                         I915_READ(pp_ctrl_reg));
1706
1707         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1708                       5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1709                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1710                                 I915_READ(pp_stat_reg),
1711                                 I915_READ(pp_ctrl_reg));
1712
1713         DRM_DEBUG_KMS("Wait complete\n");
1714 }
1715
1716 static void wait_panel_on(struct intel_dp *intel_dp)
1717 {
1718         DRM_DEBUG_KMS("Wait for panel power on\n");
1719         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1720 }
1721
1722 static void wait_panel_off(struct intel_dp *intel_dp)
1723 {
1724         DRM_DEBUG_KMS("Wait for panel power off time\n");
1725         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1726 }
1727
1728 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1729 {
1730         ktime_t panel_power_on_time;
1731         s64 panel_power_off_duration;
1732
1733         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1734
1735         /* take the difference of currrent time and panel power off time
1736          * and then make panel wait for t11_t12 if needed. */
1737         panel_power_on_time = ktime_get_boottime();
1738         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1739
1740         /* When we disable the VDD override bit last we have to do the manual
1741          * wait. */
1742         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1743                 wait_remaining_ms_from_jiffies(jiffies,
1744                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1745
1746         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1747 }
1748
1749 static void wait_backlight_on(struct intel_dp *intel_dp)
1750 {
1751         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1752                                        intel_dp->backlight_on_delay);
1753 }
1754
1755 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1756 {
1757         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1758                                        intel_dp->backlight_off_delay);
1759 }
1760
1761 /* Read the current pp_control value, unlocking the register if it
1762  * is locked
1763  */
1764
1765 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1766 {
1767         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         u32 control;
1770
1771         lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773         control = I915_READ(_pp_ctrl_reg(intel_dp));
1774         if (!IS_BROXTON(dev)) {
1775                 control &= ~PANEL_UNLOCK_MASK;
1776                 control |= PANEL_UNLOCK_REGS;
1777         }
1778         return control;
1779 }
1780
1781 /*
1782  * Must be paired with edp_panel_vdd_off().
1783  * Must hold pps_mutex around the whole on/off sequence.
1784  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1785  */
1786 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1787 {
1788         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1789         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1790         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1791         struct drm_i915_private *dev_priv = dev->dev_private;
1792         enum intel_display_power_domain power_domain;
1793         u32 pp;
1794         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1795         bool need_to_disable = !intel_dp->want_panel_vdd;
1796
1797         lockdep_assert_held(&dev_priv->pps_mutex);
1798
1799         if (!is_edp(intel_dp))
1800                 return false;
1801
1802         cancel_delayed_work(&intel_dp->panel_vdd_work);
1803         intel_dp->want_panel_vdd = true;
1804
1805         if (edp_have_panel_vdd(intel_dp))
1806                 return need_to_disable;
1807
1808         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1809         intel_display_power_get(dev_priv, power_domain);
1810
1811         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1812                       port_name(intel_dig_port->port));
1813
1814         if (!edp_have_panel_power(intel_dp))
1815                 wait_panel_power_cycle(intel_dp);
1816
1817         pp = ironlake_get_pp_control(intel_dp);
1818         pp |= EDP_FORCE_VDD;
1819
1820         pp_stat_reg = _pp_stat_reg(intel_dp);
1821         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1822
1823         I915_WRITE(pp_ctrl_reg, pp);
1824         POSTING_READ(pp_ctrl_reg);
1825         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1826                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1827         /*
1828          * If the panel wasn't on, delay before accessing aux channel
1829          */
1830         if (!edp_have_panel_power(intel_dp)) {
1831                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1832                               port_name(intel_dig_port->port));
1833                 msleep(intel_dp->panel_power_up_delay);
1834         }
1835
1836         return need_to_disable;
1837 }
1838
1839 /*
1840  * Must be paired with intel_edp_panel_vdd_off() or
1841  * intel_edp_panel_off().
1842  * Nested calls to these functions are not allowed since
1843  * we drop the lock. Caller must use some higher level
1844  * locking to prevent nested calls from other threads.
1845  */
1846 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1847 {
1848         bool vdd;
1849
1850         if (!is_edp(intel_dp))
1851                 return;
1852
1853         pps_lock(intel_dp);
1854         vdd = edp_panel_vdd_on(intel_dp);
1855         pps_unlock(intel_dp);
1856
1857         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1858              port_name(dp_to_dig_port(intel_dp)->port));
1859 }
1860
1861 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1862 {
1863         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864         struct drm_i915_private *dev_priv = dev->dev_private;
1865         struct intel_digital_port *intel_dig_port =
1866                 dp_to_dig_port(intel_dp);
1867         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1868         enum intel_display_power_domain power_domain;
1869         u32 pp;
1870         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1871
1872         lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874         WARN_ON(intel_dp->want_panel_vdd);
1875
1876         if (!edp_have_panel_vdd(intel_dp))
1877                 return;
1878
1879         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1880                       port_name(intel_dig_port->port));
1881
1882         pp = ironlake_get_pp_control(intel_dp);
1883         pp &= ~EDP_FORCE_VDD;
1884
1885         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886         pp_stat_reg = _pp_stat_reg(intel_dp);
1887
1888         I915_WRITE(pp_ctrl_reg, pp);
1889         POSTING_READ(pp_ctrl_reg);
1890
1891         /* Make sure sequencer is idle before allowing subsequent activity */
1892         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1893         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1894
1895         if ((pp & POWER_TARGET_ON) == 0)
1896                 intel_dp->panel_power_off_time = ktime_get_boottime();
1897
1898         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1899         intel_display_power_put(dev_priv, power_domain);
1900 }
1901
1902 static void edp_panel_vdd_work(struct work_struct *__work)
1903 {
1904         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1905                                                  struct intel_dp, panel_vdd_work);
1906
1907         pps_lock(intel_dp);
1908         if (!intel_dp->want_panel_vdd)
1909                 edp_panel_vdd_off_sync(intel_dp);
1910         pps_unlock(intel_dp);
1911 }
1912
1913 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1914 {
1915         unsigned long delay;
1916
1917         /*
1918          * Queue the timer to fire a long time from now (relative to the power
1919          * down delay) to keep the panel power up across a sequence of
1920          * operations.
1921          */
1922         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1923         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1924 }
1925
1926 /*
1927  * Must be paired with edp_panel_vdd_on().
1928  * Must hold pps_mutex around the whole on/off sequence.
1929  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1930  */
1931 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1932 {
1933         struct drm_i915_private *dev_priv =
1934                 intel_dp_to_dev(intel_dp)->dev_private;
1935
1936         lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938         if (!is_edp(intel_dp))
1939                 return;
1940
1941         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1942              port_name(dp_to_dig_port(intel_dp)->port));
1943
1944         intel_dp->want_panel_vdd = false;
1945
1946         if (sync)
1947                 edp_panel_vdd_off_sync(intel_dp);
1948         else
1949                 edp_panel_vdd_schedule_off(intel_dp);
1950 }
1951
1952 static void edp_panel_on(struct intel_dp *intel_dp)
1953 {
1954         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1955         struct drm_i915_private *dev_priv = dev->dev_private;
1956         u32 pp;
1957         i915_reg_t pp_ctrl_reg;
1958
1959         lockdep_assert_held(&dev_priv->pps_mutex);
1960
1961         if (!is_edp(intel_dp))
1962                 return;
1963
1964         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1965                       port_name(dp_to_dig_port(intel_dp)->port));
1966
1967         if (WARN(edp_have_panel_power(intel_dp),
1968                  "eDP port %c panel power already on\n",
1969                  port_name(dp_to_dig_port(intel_dp)->port)))
1970                 return;
1971
1972         wait_panel_power_cycle(intel_dp);
1973
1974         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1975         pp = ironlake_get_pp_control(intel_dp);
1976         if (IS_GEN5(dev)) {
1977                 /* ILK workaround: disable reset around power sequence */
1978                 pp &= ~PANEL_POWER_RESET;
1979                 I915_WRITE(pp_ctrl_reg, pp);
1980                 POSTING_READ(pp_ctrl_reg);
1981         }
1982
1983         pp |= POWER_TARGET_ON;
1984         if (!IS_GEN5(dev))
1985                 pp |= PANEL_POWER_RESET;
1986
1987         I915_WRITE(pp_ctrl_reg, pp);
1988         POSTING_READ(pp_ctrl_reg);
1989
1990         wait_panel_on(intel_dp);
1991         intel_dp->last_power_on = jiffies;
1992
1993         if (IS_GEN5(dev)) {
1994                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1995                 I915_WRITE(pp_ctrl_reg, pp);
1996                 POSTING_READ(pp_ctrl_reg);
1997         }
1998 }
1999
2000 void intel_edp_panel_on(struct intel_dp *intel_dp)
2001 {
2002         if (!is_edp(intel_dp))
2003                 return;
2004
2005         pps_lock(intel_dp);
2006         edp_panel_on(intel_dp);
2007         pps_unlock(intel_dp);
2008 }
2009
2010
2011 static void edp_panel_off(struct intel_dp *intel_dp)
2012 {
2013         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2014         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2015         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016         struct drm_i915_private *dev_priv = dev->dev_private;
2017         enum intel_display_power_domain power_domain;
2018         u32 pp;
2019         i915_reg_t pp_ctrl_reg;
2020
2021         lockdep_assert_held(&dev_priv->pps_mutex);
2022
2023         if (!is_edp(intel_dp))
2024                 return;
2025
2026         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2027                       port_name(dp_to_dig_port(intel_dp)->port));
2028
2029         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2030              port_name(dp_to_dig_port(intel_dp)->port));
2031
2032         pp = ironlake_get_pp_control(intel_dp);
2033         /* We need to switch off panel power _and_ force vdd, for otherwise some
2034          * panels get very unhappy and cease to work. */
2035         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2036                 EDP_BLC_ENABLE);
2037
2038         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039
2040         intel_dp->want_panel_vdd = false;
2041
2042         I915_WRITE(pp_ctrl_reg, pp);
2043         POSTING_READ(pp_ctrl_reg);
2044
2045         intel_dp->panel_power_off_time = ktime_get_boottime();
2046         wait_panel_off(intel_dp);
2047
2048         /* We got a reference when we enabled the VDD. */
2049         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2050         intel_display_power_put(dev_priv, power_domain);
2051 }
2052
2053 void intel_edp_panel_off(struct intel_dp *intel_dp)
2054 {
2055         if (!is_edp(intel_dp))
2056                 return;
2057
2058         pps_lock(intel_dp);
2059         edp_panel_off(intel_dp);
2060         pps_unlock(intel_dp);
2061 }
2062
2063 /* Enable backlight in the panel power control. */
2064 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2065 {
2066         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2067         struct drm_device *dev = intel_dig_port->base.base.dev;
2068         struct drm_i915_private *dev_priv = dev->dev_private;
2069         u32 pp;
2070         i915_reg_t pp_ctrl_reg;
2071
2072         /*
2073          * If we enable the backlight right away following a panel power
2074          * on, we may see slight flicker as the panel syncs with the eDP
2075          * link.  So delay a bit to make sure the image is solid before
2076          * allowing it to appear.
2077          */
2078         wait_backlight_on(intel_dp);
2079
2080         pps_lock(intel_dp);
2081
2082         pp = ironlake_get_pp_control(intel_dp);
2083         pp |= EDP_BLC_ENABLE;
2084
2085         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2086
2087         I915_WRITE(pp_ctrl_reg, pp);
2088         POSTING_READ(pp_ctrl_reg);
2089
2090         pps_unlock(intel_dp);
2091 }
2092
2093 /* Enable backlight PWM and backlight PP control. */
2094 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2095 {
2096         if (!is_edp(intel_dp))
2097                 return;
2098
2099         DRM_DEBUG_KMS("\n");
2100
2101         intel_panel_enable_backlight(intel_dp->attached_connector);
2102         _intel_edp_backlight_on(intel_dp);
2103 }
2104
2105 /* Disable backlight in the panel power control. */
2106 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2107 {
2108         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110         u32 pp;
2111         i915_reg_t pp_ctrl_reg;
2112
2113         if (!is_edp(intel_dp))
2114                 return;
2115
2116         pps_lock(intel_dp);
2117
2118         pp = ironlake_get_pp_control(intel_dp);
2119         pp &= ~EDP_BLC_ENABLE;
2120
2121         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122
2123         I915_WRITE(pp_ctrl_reg, pp);
2124         POSTING_READ(pp_ctrl_reg);
2125
2126         pps_unlock(intel_dp);
2127
2128         intel_dp->last_backlight_off = jiffies;
2129         edp_wait_backlight_off(intel_dp);
2130 }
2131
2132 /* Disable backlight PP control and backlight PWM. */
2133 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2134 {
2135         if (!is_edp(intel_dp))
2136                 return;
2137
2138         DRM_DEBUG_KMS("\n");
2139
2140         _intel_edp_backlight_off(intel_dp);
2141         intel_panel_disable_backlight(intel_dp->attached_connector);
2142 }
2143
2144 /*
2145  * Hook for controlling the panel power control backlight through the bl_power
2146  * sysfs attribute. Take care to handle multiple calls.
2147  */
2148 static void intel_edp_backlight_power(struct intel_connector *connector,
2149                                       bool enable)
2150 {
2151         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2152         bool is_enabled;
2153
2154         pps_lock(intel_dp);
2155         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2156         pps_unlock(intel_dp);
2157
2158         if (is_enabled == enable)
2159                 return;
2160
2161         DRM_DEBUG_KMS("panel power control backlight %s\n",
2162                       enable ? "enable" : "disable");
2163
2164         if (enable)
2165                 _intel_edp_backlight_on(intel_dp);
2166         else
2167                 _intel_edp_backlight_off(intel_dp);
2168 }
2169
2170 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2171 {
2172         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2173         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2174         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2175
2176         I915_STATE_WARN(cur_state != state,
2177                         "DP port %c state assertion failure (expected %s, current %s)\n",
2178                         port_name(dig_port->port),
2179                         onoff(state), onoff(cur_state));
2180 }
2181 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2182
2183 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2184 {
2185         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2186
2187         I915_STATE_WARN(cur_state != state,
2188                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2189                         onoff(state), onoff(cur_state));
2190 }
2191 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2192 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2193
2194 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2195 {
2196         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2197         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2198         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2199
2200         assert_pipe_disabled(dev_priv, crtc->pipe);
2201         assert_dp_port_disabled(intel_dp);
2202         assert_edp_pll_disabled(dev_priv);
2203
2204         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2205                       crtc->config->port_clock);
2206
2207         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2208
2209         if (crtc->config->port_clock == 162000)
2210                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2211         else
2212                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2213
2214         I915_WRITE(DP_A, intel_dp->DP);
2215         POSTING_READ(DP_A);
2216         udelay(500);
2217
2218         /*
2219          * [DevILK] Work around required when enabling DP PLL
2220          * while a pipe is enabled going to FDI:
2221          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2222          * 2. Program DP PLL enable
2223          */
2224         if (IS_GEN5(dev_priv))
2225                 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2226
2227         intel_dp->DP |= DP_PLL_ENABLE;
2228
2229         I915_WRITE(DP_A, intel_dp->DP);
2230         POSTING_READ(DP_A);
2231         udelay(200);
2232 }
2233
2234 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2235 {
2236         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2237         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2238         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2239
2240         assert_pipe_disabled(dev_priv, crtc->pipe);
2241         assert_dp_port_disabled(intel_dp);
2242         assert_edp_pll_enabled(dev_priv);
2243
2244         DRM_DEBUG_KMS("disabling eDP PLL\n");
2245
2246         intel_dp->DP &= ~DP_PLL_ENABLE;
2247
2248         I915_WRITE(DP_A, intel_dp->DP);
2249         POSTING_READ(DP_A);
2250         udelay(200);
2251 }
2252
2253 /* If the sink supports it, try to set the power state appropriately */
2254 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2255 {
2256         int ret, i;
2257
2258         /* Should have a valid DPCD by this point */
2259         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2260                 return;
2261
2262         if (mode != DRM_MODE_DPMS_ON) {
2263                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2264                                          DP_SET_POWER_D3);
2265         } else {
2266                 /*
2267                  * When turning on, we need to retry for 1ms to give the sink
2268                  * time to wake up.
2269                  */
2270                 for (i = 0; i < 3; i++) {
2271                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2272                                                  DP_SET_POWER_D0);
2273                         if (ret == 1)
2274                                 break;
2275                         msleep(1);
2276                 }
2277         }
2278
2279         if (ret != 1)
2280                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2281                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2282 }
2283
2284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2285                                   enum pipe *pipe)
2286 {
2287         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2288         enum port port = dp_to_dig_port(intel_dp)->port;
2289         struct drm_device *dev = encoder->base.dev;
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         enum intel_display_power_domain power_domain;
2292         u32 tmp;
2293         bool ret;
2294
2295         power_domain = intel_display_port_power_domain(encoder);
2296         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2297                 return false;
2298
2299         ret = false;
2300
2301         tmp = I915_READ(intel_dp->output_reg);
2302
2303         if (!(tmp & DP_PORT_EN))
2304                 goto out;
2305
2306         if (IS_GEN7(dev) && port == PORT_A) {
2307                 *pipe = PORT_TO_PIPE_CPT(tmp);
2308         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2309                 enum pipe p;
2310
2311                 for_each_pipe(dev_priv, p) {
2312                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2313                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2314                                 *pipe = p;
2315                                 ret = true;
2316
2317                                 goto out;
2318                         }
2319                 }
2320
2321                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2322                               i915_mmio_reg_offset(intel_dp->output_reg));
2323         } else if (IS_CHERRYVIEW(dev)) {
2324                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2325         } else {
2326                 *pipe = PORT_TO_PIPE(tmp);
2327         }
2328
2329         ret = true;
2330
2331 out:
2332         intel_display_power_put(dev_priv, power_domain);
2333
2334         return ret;
2335 }
2336
2337 static void intel_dp_get_config(struct intel_encoder *encoder,
2338                                 struct intel_crtc_state *pipe_config)
2339 {
2340         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341         u32 tmp, flags = 0;
2342         struct drm_device *dev = encoder->base.dev;
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         enum port port = dp_to_dig_port(intel_dp)->port;
2345         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2346
2347         tmp = I915_READ(intel_dp->output_reg);
2348
2349         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2350
2351         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2352                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2353
2354                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2355                         flags |= DRM_MODE_FLAG_PHSYNC;
2356                 else
2357                         flags |= DRM_MODE_FLAG_NHSYNC;
2358
2359                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2360                         flags |= DRM_MODE_FLAG_PVSYNC;
2361                 else
2362                         flags |= DRM_MODE_FLAG_NVSYNC;
2363         } else {
2364                 if (tmp & DP_SYNC_HS_HIGH)
2365                         flags |= DRM_MODE_FLAG_PHSYNC;
2366                 else
2367                         flags |= DRM_MODE_FLAG_NHSYNC;
2368
2369                 if (tmp & DP_SYNC_VS_HIGH)
2370                         flags |= DRM_MODE_FLAG_PVSYNC;
2371                 else
2372                         flags |= DRM_MODE_FLAG_NVSYNC;
2373         }
2374
2375         pipe_config->base.adjusted_mode.flags |= flags;
2376
2377         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2378             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2379                 pipe_config->limited_color_range = true;
2380
2381         pipe_config->has_dp_encoder = true;
2382
2383         pipe_config->lane_count =
2384                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2385
2386         intel_dp_get_m_n(crtc, pipe_config);
2387
2388         if (port == PORT_A) {
2389                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2390                         pipe_config->port_clock = 162000;
2391                 else
2392                         pipe_config->port_clock = 270000;
2393         }
2394
2395         pipe_config->base.adjusted_mode.crtc_clock =
2396                 intel_dotclock_calculate(pipe_config->port_clock,
2397                                          &pipe_config->dp_m_n);
2398
2399         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2400             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2401                 /*
2402                  * This is a big fat ugly hack.
2403                  *
2404                  * Some machines in UEFI boot mode provide us a VBT that has 18
2405                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2406                  * unknown we fail to light up. Yet the same BIOS boots up with
2407                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2408                  * max, not what it tells us to use.
2409                  *
2410                  * Note: This will still be broken if the eDP panel is not lit
2411                  * up by the BIOS, and thus we can't get the mode at module
2412                  * load.
2413                  */
2414                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2415                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2416                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2417         }
2418 }
2419
2420 static void intel_disable_dp(struct intel_encoder *encoder)
2421 {
2422         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2423         struct drm_device *dev = encoder->base.dev;
2424         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2425
2426         if (crtc->config->has_audio)
2427                 intel_audio_codec_disable(encoder);
2428
2429         if (HAS_PSR(dev) && !HAS_DDI(dev))
2430                 intel_psr_disable(intel_dp);
2431
2432         /* Make sure the panel is off before trying to change the mode. But also
2433          * ensure that we have vdd while we switch off the panel. */
2434         intel_edp_panel_vdd_on(intel_dp);
2435         intel_edp_backlight_off(intel_dp);
2436         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2437         intel_edp_panel_off(intel_dp);
2438
2439         /* disable the port before the pipe on g4x */
2440         if (INTEL_INFO(dev)->gen < 5)
2441                 intel_dp_link_down(intel_dp);
2442 }
2443
2444 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2445 {
2446         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2447         enum port port = dp_to_dig_port(intel_dp)->port;
2448
2449         intel_dp_link_down(intel_dp);
2450
2451         /* Only ilk+ has port A */
2452         if (port == PORT_A)
2453                 ironlake_edp_pll_off(intel_dp);
2454 }
2455
2456 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2457 {
2458         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2459
2460         intel_dp_link_down(intel_dp);
2461 }
2462
2463 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2464                                      bool reset)
2465 {
2466         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2467         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2468         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2469         enum pipe pipe = crtc->pipe;
2470         uint32_t val;
2471
2472         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2473         if (reset)
2474                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2475         else
2476                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2477         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2478
2479         if (crtc->config->lane_count > 2) {
2480                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2481                 if (reset)
2482                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2483                 else
2484                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2485                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2486         }
2487
2488         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2489         val |= CHV_PCS_REQ_SOFTRESET_EN;
2490         if (reset)
2491                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2492         else
2493                 val |= DPIO_PCS_CLK_SOFT_RESET;
2494         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2495
2496         if (crtc->config->lane_count > 2) {
2497                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2498                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2499                 if (reset)
2500                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2501                 else
2502                         val |= DPIO_PCS_CLK_SOFT_RESET;
2503                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2504         }
2505 }
2506
2507 static void chv_post_disable_dp(struct intel_encoder *encoder)
2508 {
2509         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2510         struct drm_device *dev = encoder->base.dev;
2511         struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513         intel_dp_link_down(intel_dp);
2514
2515         mutex_lock(&dev_priv->sb_lock);
2516
2517         /* Assert data lane reset */
2518         chv_data_lane_soft_reset(encoder, true);
2519
2520         mutex_unlock(&dev_priv->sb_lock);
2521 }
2522
2523 static void
2524 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2525                          uint32_t *DP,
2526                          uint8_t dp_train_pat)
2527 {
2528         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529         struct drm_device *dev = intel_dig_port->base.base.dev;
2530         struct drm_i915_private *dev_priv = dev->dev_private;
2531         enum port port = intel_dig_port->port;
2532
2533         if (HAS_DDI(dev)) {
2534                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2535
2536                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2537                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2538                 else
2539                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2540
2541                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2542                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543                 case DP_TRAINING_PATTERN_DISABLE:
2544                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2545
2546                         break;
2547                 case DP_TRAINING_PATTERN_1:
2548                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2549                         break;
2550                 case DP_TRAINING_PATTERN_2:
2551                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2552                         break;
2553                 case DP_TRAINING_PATTERN_3:
2554                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2555                         break;
2556                 }
2557                 I915_WRITE(DP_TP_CTL(port), temp);
2558
2559         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2560                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2561                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2562
2563                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2564                 case DP_TRAINING_PATTERN_DISABLE:
2565                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2566                         break;
2567                 case DP_TRAINING_PATTERN_1:
2568                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2569                         break;
2570                 case DP_TRAINING_PATTERN_2:
2571                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2572                         break;
2573                 case DP_TRAINING_PATTERN_3:
2574                         DRM_ERROR("DP training pattern 3 not supported\n");
2575                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2576                         break;
2577                 }
2578
2579         } else {
2580                 if (IS_CHERRYVIEW(dev))
2581                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2582                 else
2583                         *DP &= ~DP_LINK_TRAIN_MASK;
2584
2585                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2586                 case DP_TRAINING_PATTERN_DISABLE:
2587                         *DP |= DP_LINK_TRAIN_OFF;
2588                         break;
2589                 case DP_TRAINING_PATTERN_1:
2590                         *DP |= DP_LINK_TRAIN_PAT_1;
2591                         break;
2592                 case DP_TRAINING_PATTERN_2:
2593                         *DP |= DP_LINK_TRAIN_PAT_2;
2594                         break;
2595                 case DP_TRAINING_PATTERN_3:
2596                         if (IS_CHERRYVIEW(dev)) {
2597                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2598                         } else {
2599                                 DRM_ERROR("DP training pattern 3 not supported\n");
2600                                 *DP |= DP_LINK_TRAIN_PAT_2;
2601                         }
2602                         break;
2603                 }
2604         }
2605 }
2606
2607 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2608 {
2609         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2610         struct drm_i915_private *dev_priv = dev->dev_private;
2611         struct intel_crtc *crtc =
2612                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2613
2614         /* enable with pattern 1 (as per spec) */
2615         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2616                                  DP_TRAINING_PATTERN_1);
2617
2618         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2619         POSTING_READ(intel_dp->output_reg);
2620
2621         /*
2622          * Magic for VLV/CHV. We _must_ first set up the register
2623          * without actually enabling the port, and then do another
2624          * write to enable the port. Otherwise link training will
2625          * fail when the power sequencer is freshly used for this port.
2626          */
2627         intel_dp->DP |= DP_PORT_EN;
2628         if (crtc->config->has_audio)
2629                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2630
2631         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2632         POSTING_READ(intel_dp->output_reg);
2633 }
2634
2635 static void intel_enable_dp(struct intel_encoder *encoder)
2636 {
2637         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2638         struct drm_device *dev = encoder->base.dev;
2639         struct drm_i915_private *dev_priv = dev->dev_private;
2640         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2641         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2642         enum pipe pipe = crtc->pipe;
2643
2644         if (WARN_ON(dp_reg & DP_PORT_EN))
2645                 return;
2646
2647         pps_lock(intel_dp);
2648
2649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2650                 vlv_init_panel_power_sequencer(intel_dp);
2651
2652         intel_dp_enable_port(intel_dp);
2653
2654         edp_panel_vdd_on(intel_dp);
2655         edp_panel_on(intel_dp);
2656         edp_panel_vdd_off(intel_dp, true);
2657
2658         pps_unlock(intel_dp);
2659
2660         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2661                 unsigned int lane_mask = 0x0;
2662
2663                 if (IS_CHERRYVIEW(dev))
2664                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2665
2666                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2667                                     lane_mask);
2668         }
2669
2670         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2671         intel_dp_start_link_train(intel_dp);
2672         intel_dp_stop_link_train(intel_dp);
2673
2674         if (crtc->config->has_audio) {
2675                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2676                                  pipe_name(pipe));
2677                 intel_audio_codec_enable(encoder);
2678         }
2679 }
2680
2681 static void g4x_enable_dp(struct intel_encoder *encoder)
2682 {
2683         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2684
2685         intel_enable_dp(encoder);
2686         intel_edp_backlight_on(intel_dp);
2687 }
2688
2689 static void vlv_enable_dp(struct intel_encoder *encoder)
2690 {
2691         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2692
2693         intel_edp_backlight_on(intel_dp);
2694         intel_psr_enable(intel_dp);
2695 }
2696
2697 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2698 {
2699         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2700         enum port port = dp_to_dig_port(intel_dp)->port;
2701
2702         intel_dp_prepare(encoder);
2703
2704         /* Only ilk+ has port A */
2705         if (port == PORT_A)
2706                 ironlake_edp_pll_on(intel_dp);
2707 }
2708
2709 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2710 {
2711         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2712         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2713         enum pipe pipe = intel_dp->pps_pipe;
2714         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2715
2716         edp_panel_vdd_off_sync(intel_dp);
2717
2718         /*
2719          * VLV seems to get confused when multiple power seqeuencers
2720          * have the same port selected (even if only one has power/vdd
2721          * enabled). The failure manifests as vlv_wait_port_ready() failing
2722          * CHV on the other hand doesn't seem to mind having the same port
2723          * selected in multiple power seqeuencers, but let's clear the
2724          * port select always when logically disconnecting a power sequencer
2725          * from a port.
2726          */
2727         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2728                       pipe_name(pipe), port_name(intel_dig_port->port));
2729         I915_WRITE(pp_on_reg, 0);
2730         POSTING_READ(pp_on_reg);
2731
2732         intel_dp->pps_pipe = INVALID_PIPE;
2733 }
2734
2735 static void vlv_steal_power_sequencer(struct drm_device *dev,
2736                                       enum pipe pipe)
2737 {
2738         struct drm_i915_private *dev_priv = dev->dev_private;
2739         struct intel_encoder *encoder;
2740
2741         lockdep_assert_held(&dev_priv->pps_mutex);
2742
2743         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2744                 return;
2745
2746         for_each_intel_encoder(dev, encoder) {
2747                 struct intel_dp *intel_dp;
2748                 enum port port;
2749
2750                 if (encoder->type != INTEL_OUTPUT_EDP)
2751                         continue;
2752
2753                 intel_dp = enc_to_intel_dp(&encoder->base);
2754                 port = dp_to_dig_port(intel_dp)->port;
2755
2756                 if (intel_dp->pps_pipe != pipe)
2757                         continue;
2758
2759                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2760                               pipe_name(pipe), port_name(port));
2761
2762                 WARN(encoder->base.crtc,
2763                      "stealing pipe %c power sequencer from active eDP port %c\n",
2764                      pipe_name(pipe), port_name(port));
2765
2766                 /* make sure vdd is off before we steal it */
2767                 vlv_detach_power_sequencer(intel_dp);
2768         }
2769 }
2770
2771 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2772 {
2773         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2774         struct intel_encoder *encoder = &intel_dig_port->base;
2775         struct drm_device *dev = encoder->base.dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2778
2779         lockdep_assert_held(&dev_priv->pps_mutex);
2780
2781         if (!is_edp(intel_dp))
2782                 return;
2783
2784         if (intel_dp->pps_pipe == crtc->pipe)
2785                 return;
2786
2787         /*
2788          * If another power sequencer was being used on this
2789          * port previously make sure to turn off vdd there while
2790          * we still have control of it.
2791          */
2792         if (intel_dp->pps_pipe != INVALID_PIPE)
2793                 vlv_detach_power_sequencer(intel_dp);
2794
2795         /*
2796          * We may be stealing the power
2797          * sequencer from another port.
2798          */
2799         vlv_steal_power_sequencer(dev, crtc->pipe);
2800
2801         /* now it's all ours */
2802         intel_dp->pps_pipe = crtc->pipe;
2803
2804         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2805                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2806
2807         /* init power sequencer on this pipe and port */
2808         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2809         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2810 }
2811
2812 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2813 {
2814         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2816         struct drm_device *dev = encoder->base.dev;
2817         struct drm_i915_private *dev_priv = dev->dev_private;
2818         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2819         enum dpio_channel port = vlv_dport_to_channel(dport);
2820         int pipe = intel_crtc->pipe;
2821         u32 val;
2822
2823         mutex_lock(&dev_priv->sb_lock);
2824
2825         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2826         val = 0;
2827         if (pipe)
2828                 val |= (1<<21);
2829         else
2830                 val &= ~(1<<21);
2831         val |= 0x001000c4;
2832         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2833         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2834         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2835
2836         mutex_unlock(&dev_priv->sb_lock);
2837
2838         intel_enable_dp(encoder);
2839 }
2840
2841 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2842 {
2843         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2844         struct drm_device *dev = encoder->base.dev;
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         struct intel_crtc *intel_crtc =
2847                 to_intel_crtc(encoder->base.crtc);
2848         enum dpio_channel port = vlv_dport_to_channel(dport);
2849         int pipe = intel_crtc->pipe;
2850
2851         intel_dp_prepare(encoder);
2852
2853         /* Program Tx lane resets to default */
2854         mutex_lock(&dev_priv->sb_lock);
2855         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2856                          DPIO_PCS_TX_LANE2_RESET |
2857                          DPIO_PCS_TX_LANE1_RESET);
2858         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2859                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2860                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2861                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2862                                  DPIO_PCS_CLK_SOFT_RESET);
2863
2864         /* Fix up inter-pair skew failure */
2865         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2866         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2867         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2868         mutex_unlock(&dev_priv->sb_lock);
2869 }
2870
2871 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2872 {
2873         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2874         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2875         struct drm_device *dev = encoder->base.dev;
2876         struct drm_i915_private *dev_priv = dev->dev_private;
2877         struct intel_crtc *intel_crtc =
2878                 to_intel_crtc(encoder->base.crtc);
2879         enum dpio_channel ch = vlv_dport_to_channel(dport);
2880         int pipe = intel_crtc->pipe;
2881         int data, i, stagger;
2882         u32 val;
2883
2884         mutex_lock(&dev_priv->sb_lock);
2885
2886         /* allow hardware to manage TX FIFO reset source */
2887         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2888         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2889         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2890
2891         if (intel_crtc->config->lane_count > 2) {
2892                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2893                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2894                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2895         }
2896
2897         /* Program Tx lane latency optimal setting*/
2898         for (i = 0; i < intel_crtc->config->lane_count; i++) {
2899                 /* Set the upar bit */
2900                 if (intel_crtc->config->lane_count == 1)
2901                         data = 0x0;
2902                 else
2903                         data = (i == 1) ? 0x0 : 0x1;
2904                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2905                                 data << DPIO_UPAR_SHIFT);
2906         }
2907
2908         /* Data lane stagger programming */
2909         if (intel_crtc->config->port_clock > 270000)
2910                 stagger = 0x18;
2911         else if (intel_crtc->config->port_clock > 135000)
2912                 stagger = 0xd;
2913         else if (intel_crtc->config->port_clock > 67500)
2914                 stagger = 0x7;
2915         else if (intel_crtc->config->port_clock > 33750)
2916                 stagger = 0x4;
2917         else
2918                 stagger = 0x2;
2919
2920         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2921         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2922         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2923
2924         if (intel_crtc->config->lane_count > 2) {
2925                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2926                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2927                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2928         }
2929
2930         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2931                        DPIO_LANESTAGGER_STRAP(stagger) |
2932                        DPIO_LANESTAGGER_STRAP_OVRD |
2933                        DPIO_TX1_STAGGER_MASK(0x1f) |
2934                        DPIO_TX1_STAGGER_MULT(6) |
2935                        DPIO_TX2_STAGGER_MULT(0));
2936
2937         if (intel_crtc->config->lane_count > 2) {
2938                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2939                                DPIO_LANESTAGGER_STRAP(stagger) |
2940                                DPIO_LANESTAGGER_STRAP_OVRD |
2941                                DPIO_TX1_STAGGER_MASK(0x1f) |
2942                                DPIO_TX1_STAGGER_MULT(7) |
2943                                DPIO_TX2_STAGGER_MULT(5));
2944         }
2945
2946         /* Deassert data lane reset */
2947         chv_data_lane_soft_reset(encoder, false);
2948
2949         mutex_unlock(&dev_priv->sb_lock);
2950
2951         intel_enable_dp(encoder);
2952
2953         /* Second common lane will stay alive on its own now */
2954         if (dport->release_cl2_override) {
2955                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2956                 dport->release_cl2_override = false;
2957         }
2958 }
2959
2960 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2961 {
2962         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2963         struct drm_device *dev = encoder->base.dev;
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         struct intel_crtc *intel_crtc =
2966                 to_intel_crtc(encoder->base.crtc);
2967         enum dpio_channel ch = vlv_dport_to_channel(dport);
2968         enum pipe pipe = intel_crtc->pipe;
2969         unsigned int lane_mask =
2970                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2971         u32 val;
2972
2973         intel_dp_prepare(encoder);
2974
2975         /*
2976          * Must trick the second common lane into life.
2977          * Otherwise we can't even access the PLL.
2978          */
2979         if (ch == DPIO_CH0 && pipe == PIPE_B)
2980                 dport->release_cl2_override =
2981                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2982
2983         chv_phy_powergate_lanes(encoder, true, lane_mask);
2984
2985         mutex_lock(&dev_priv->sb_lock);
2986
2987         /* Assert data lane reset */
2988         chv_data_lane_soft_reset(encoder, true);
2989
2990         /* program left/right clock distribution */
2991         if (pipe != PIPE_B) {
2992                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2993                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2994                 if (ch == DPIO_CH0)
2995                         val |= CHV_BUFLEFTENA1_FORCE;
2996                 if (ch == DPIO_CH1)
2997                         val |= CHV_BUFRIGHTENA1_FORCE;
2998                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2999         } else {
3000                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3001                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3002                 if (ch == DPIO_CH0)
3003                         val |= CHV_BUFLEFTENA2_FORCE;
3004                 if (ch == DPIO_CH1)
3005                         val |= CHV_BUFRIGHTENA2_FORCE;
3006                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3007         }
3008
3009         /* program clock channel usage */
3010         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3011         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3012         if (pipe != PIPE_B)
3013                 val &= ~CHV_PCS_USEDCLKCHANNEL;
3014         else
3015                 val |= CHV_PCS_USEDCLKCHANNEL;
3016         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3017
3018         if (intel_crtc->config->lane_count > 2) {
3019                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3020                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3021                 if (pipe != PIPE_B)
3022                         val &= ~CHV_PCS_USEDCLKCHANNEL;
3023                 else
3024                         val |= CHV_PCS_USEDCLKCHANNEL;
3025                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3026         }
3027
3028         /*
3029          * This a a bit weird since generally CL
3030          * matches the pipe, but here we need to
3031          * pick the CL based on the port.
3032          */
3033         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3034         if (pipe != PIPE_B)
3035                 val &= ~CHV_CMN_USEDCLKCHANNEL;
3036         else
3037                 val |= CHV_CMN_USEDCLKCHANNEL;
3038         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3039
3040         mutex_unlock(&dev_priv->sb_lock);
3041 }
3042
3043 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3044 {
3045         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3046         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3047         u32 val;
3048
3049         mutex_lock(&dev_priv->sb_lock);
3050
3051         /* disable left/right clock distribution */
3052         if (pipe != PIPE_B) {
3053                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3054                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3055                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3056         } else {
3057                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3058                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3059                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3060         }
3061
3062         mutex_unlock(&dev_priv->sb_lock);
3063
3064         /*
3065          * Leave the power down bit cleared for at least one
3066          * lane so that chv_powergate_phy_ch() will power
3067          * on something when the channel is otherwise unused.
3068          * When the port is off and the override is removed
3069          * the lanes power down anyway, so otherwise it doesn't
3070          * really matter what the state of power down bits is
3071          * after this.
3072          */
3073         chv_phy_powergate_lanes(encoder, false, 0x0);
3074 }
3075
3076 /*
3077  * Native read with retry for link status and receiver capability reads for
3078  * cases where the sink may still be asleep.
3079  *
3080  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3081  * supposed to retry 3 times per the spec.
3082  */
3083 static ssize_t
3084 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3085                         void *buffer, size_t size)
3086 {
3087         ssize_t ret;
3088         int i;
3089
3090         /*
3091          * Sometime we just get the same incorrect byte repeated
3092          * over the entire buffer. Doing just one throw away read
3093          * initially seems to "solve" it.
3094          */
3095         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3096
3097         for (i = 0; i < 3; i++) {
3098                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3099                 if (ret == size)
3100                         return ret;
3101                 msleep(1);
3102         }
3103
3104         return ret;
3105 }
3106
3107 /*
3108  * Fetch AUX CH registers 0x202 - 0x207 which contain
3109  * link status information
3110  */
3111 bool
3112 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3113 {
3114         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3115                                        DP_LANE0_1_STATUS,
3116                                        link_status,
3117                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3118 }
3119
3120 /* These are source-specific values. */
3121 uint8_t
3122 intel_dp_voltage_max(struct intel_dp *intel_dp)
3123 {
3124         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3125         struct drm_i915_private *dev_priv = dev->dev_private;
3126         enum port port = dp_to_dig_port(intel_dp)->port;
3127
3128         if (IS_BROXTON(dev))
3129                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3130         else if (INTEL_INFO(dev)->gen >= 9) {
3131                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3132                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3133                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3134         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3135                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3136         else if (IS_GEN7(dev) && port == PORT_A)
3137                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3138         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3139                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3140         else
3141                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3142 }
3143
3144 uint8_t
3145 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3146 {
3147         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3148         enum port port = dp_to_dig_port(intel_dp)->port;
3149
3150         if (INTEL_INFO(dev)->gen >= 9) {
3151                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3152                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3153                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3154                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3155                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3156                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3157                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3158                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3159                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3160                 default:
3161                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3162                 }
3163         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3164                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3165                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3166                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3167                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3168                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3169                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3170                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3171                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3172                 default:
3173                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3174                 }
3175         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3176                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3177                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3178                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3179                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3180                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3181                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3182                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3183                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3184                 default:
3185                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3186                 }
3187         } else if (IS_GEN7(dev) && port == PORT_A) {
3188                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3189                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3190                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3191                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3192                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3193                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3194                 default:
3195                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3196                 }
3197         } else {
3198                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3199                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3200                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3201                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3202                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3203                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3204                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3205                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3206                 default:
3207                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3208                 }
3209         }
3210 }
3211
3212 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3213 {
3214         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3215         struct drm_i915_private *dev_priv = dev->dev_private;
3216         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3217         struct intel_crtc *intel_crtc =
3218                 to_intel_crtc(dport->base.base.crtc);
3219         unsigned long demph_reg_value, preemph_reg_value,
3220                 uniqtranscale_reg_value;
3221         uint8_t train_set = intel_dp->train_set[0];
3222         enum dpio_channel port = vlv_dport_to_channel(dport);
3223         int pipe = intel_crtc->pipe;
3224
3225         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3226         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3227                 preemph_reg_value = 0x0004000;
3228                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3229                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3230                         demph_reg_value = 0x2B405555;
3231                         uniqtranscale_reg_value = 0x552AB83A;
3232                         break;
3233                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3234                         demph_reg_value = 0x2B404040;
3235                         uniqtranscale_reg_value = 0x5548B83A;
3236                         break;
3237                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3238                         demph_reg_value = 0x2B245555;
3239                         uniqtranscale_reg_value = 0x5560B83A;
3240                         break;
3241                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3242                         demph_reg_value = 0x2B405555;
3243                         uniqtranscale_reg_value = 0x5598DA3A;
3244                         break;
3245                 default:
3246                         return 0;
3247                 }
3248                 break;
3249         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3250                 preemph_reg_value = 0x0002000;
3251                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3252                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3253                         demph_reg_value = 0x2B404040;
3254                         uniqtranscale_reg_value = 0x5552B83A;
3255                         break;
3256                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3257                         demph_reg_value = 0x2B404848;
3258                         uniqtranscale_reg_value = 0x5580B83A;
3259                         break;
3260                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3261                         demph_reg_value = 0x2B404040;
3262                         uniqtranscale_reg_value = 0x55ADDA3A;
3263                         break;
3264                 default:
3265                         return 0;
3266                 }
3267                 break;
3268         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3269                 preemph_reg_value = 0x0000000;
3270                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3271                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3272                         demph_reg_value = 0x2B305555;
3273                         uniqtranscale_reg_value = 0x5570B83A;
3274                         break;
3275                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3276                         demph_reg_value = 0x2B2B4040;
3277                         uniqtranscale_reg_value = 0x55ADDA3A;
3278                         break;
3279                 default:
3280                         return 0;
3281                 }
3282                 break;
3283         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3284                 preemph_reg_value = 0x0006000;
3285                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3286                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3287                         demph_reg_value = 0x1B405555;
3288                         uniqtranscale_reg_value = 0x55ADDA3A;
3289                         break;
3290                 default:
3291                         return 0;
3292                 }
3293                 break;
3294         default:
3295                 return 0;
3296         }
3297
3298         mutex_lock(&dev_priv->sb_lock);
3299         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3300         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3301         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3302                          uniqtranscale_reg_value);
3303         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3304         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3305         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3306         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3307         mutex_unlock(&dev_priv->sb_lock);
3308
3309         return 0;
3310 }
3311
3312 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3313 {
3314         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3315                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3316 }
3317
3318 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3319 {
3320         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3323         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3324         u32 deemph_reg_value, margin_reg_value, val;
3325         uint8_t train_set = intel_dp->train_set[0];
3326         enum dpio_channel ch = vlv_dport_to_channel(dport);
3327         enum pipe pipe = intel_crtc->pipe;
3328         int i;
3329
3330         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3331         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3332                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3333                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3334                         deemph_reg_value = 128;
3335                         margin_reg_value = 52;
3336                         break;
3337                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3338                         deemph_reg_value = 128;
3339                         margin_reg_value = 77;
3340                         break;
3341                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3342                         deemph_reg_value = 128;
3343                         margin_reg_value = 102;
3344                         break;
3345                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3346                         deemph_reg_value = 128;
3347                         margin_reg_value = 154;
3348                         /* FIXME extra to set for 1200 */
3349                         break;
3350                 default:
3351                         return 0;
3352                 }
3353                 break;
3354         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3355                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3356                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3357                         deemph_reg_value = 85;
3358                         margin_reg_value = 78;
3359                         break;
3360                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3361                         deemph_reg_value = 85;
3362                         margin_reg_value = 116;
3363                         break;
3364                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3365                         deemph_reg_value = 85;
3366                         margin_reg_value = 154;
3367                         break;
3368                 default:
3369                         return 0;
3370                 }
3371                 break;
3372         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3373                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3374                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3375                         deemph_reg_value = 64;
3376                         margin_reg_value = 104;
3377                         break;
3378                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3379                         deemph_reg_value = 64;
3380                         margin_reg_value = 154;
3381                         break;
3382                 default:
3383                         return 0;
3384                 }
3385                 break;
3386         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3387                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3388                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3389                         deemph_reg_value = 43;
3390                         margin_reg_value = 154;
3391                         break;
3392                 default:
3393                         return 0;
3394                 }
3395                 break;
3396         default:
3397                 return 0;
3398         }
3399
3400         mutex_lock(&dev_priv->sb_lock);
3401
3402         /* Clear calc init */
3403         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3404         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3405         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3406         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3407         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3408
3409         if (intel_crtc->config->lane_count > 2) {
3410                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3411                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3412                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3413                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3414                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3415         }
3416
3417         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3418         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3419         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3420         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3421
3422         if (intel_crtc->config->lane_count > 2) {
3423                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3424                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3425                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3426                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3427         }
3428
3429         /* Program swing deemph */
3430         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3431                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3432                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3433                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3434                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3435         }
3436
3437         /* Program swing margin */
3438         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3439                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3440
3441                 val &= ~DPIO_SWING_MARGIN000_MASK;
3442                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3443
3444                 /*
3445                  * Supposedly this value shouldn't matter when unique transition
3446                  * scale is disabled, but in fact it does matter. Let's just
3447                  * always program the same value and hope it's OK.
3448                  */
3449                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3450                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3451
3452                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3453         }
3454
3455         /*
3456          * The document said it needs to set bit 27 for ch0 and bit 26
3457          * for ch1. Might be a typo in the doc.
3458          * For now, for this unique transition scale selection, set bit
3459          * 27 for ch0 and ch1.
3460          */
3461         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3462                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3463                 if (chv_need_uniq_trans_scale(train_set))
3464                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3465                 else
3466                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3467                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3468         }
3469
3470         /* Start swing calculation */
3471         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3472         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3473         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3474
3475         if (intel_crtc->config->lane_count > 2) {
3476                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3477                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3478                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3479         }
3480
3481         mutex_unlock(&dev_priv->sb_lock);
3482
3483         return 0;
3484 }
3485
3486 static uint32_t
3487 gen4_signal_levels(uint8_t train_set)
3488 {
3489         uint32_t        signal_levels = 0;
3490
3491         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3492         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3493         default:
3494                 signal_levels |= DP_VOLTAGE_0_4;
3495                 break;
3496         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3497                 signal_levels |= DP_VOLTAGE_0_6;
3498                 break;
3499         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3500                 signal_levels |= DP_VOLTAGE_0_8;
3501                 break;
3502         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3503                 signal_levels |= DP_VOLTAGE_1_2;
3504                 break;
3505         }
3506         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3507         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3508         default:
3509                 signal_levels |= DP_PRE_EMPHASIS_0;
3510                 break;
3511         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3512                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3513                 break;
3514         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3515                 signal_levels |= DP_PRE_EMPHASIS_6;
3516                 break;
3517         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3518                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3519                 break;
3520         }
3521         return signal_levels;
3522 }
3523
3524 /* Gen6's DP voltage swing and pre-emphasis control */
3525 static uint32_t
3526 gen6_edp_signal_levels(uint8_t train_set)
3527 {
3528         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3529                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3530         switch (signal_levels) {
3531         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3532         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3533                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3534         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3535                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3536         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3537         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3538                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3539         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3540         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3541                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3542         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3543         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3544                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3545         default:
3546                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3547                               "0x%x\n", signal_levels);
3548                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3549         }
3550 }
3551
3552 /* Gen7's DP voltage swing and pre-emphasis control */
3553 static uint32_t
3554 gen7_edp_signal_levels(uint8_t train_set)
3555 {
3556         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3557                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3558         switch (signal_levels) {
3559         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3560                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3561         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3562                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3563         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3564                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3565
3566         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3567                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3568         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3569                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3570
3571         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3572                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3573         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3574                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3575
3576         default:
3577                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3578                               "0x%x\n", signal_levels);
3579                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3580         }
3581 }
3582
3583 void
3584 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3585 {
3586         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3587         enum port port = intel_dig_port->port;
3588         struct drm_device *dev = intel_dig_port->base.base.dev;
3589         struct drm_i915_private *dev_priv = to_i915(dev);
3590         uint32_t signal_levels, mask = 0;
3591         uint8_t train_set = intel_dp->train_set[0];
3592
3593         if (HAS_DDI(dev)) {
3594                 signal_levels = ddi_signal_levels(intel_dp);
3595
3596                 if (IS_BROXTON(dev))
3597                         signal_levels = 0;
3598                 else
3599                         mask = DDI_BUF_EMP_MASK;
3600         } else if (IS_CHERRYVIEW(dev)) {
3601                 signal_levels = chv_signal_levels(intel_dp);
3602         } else if (IS_VALLEYVIEW(dev)) {
3603                 signal_levels = vlv_signal_levels(intel_dp);
3604         } else if (IS_GEN7(dev) && port == PORT_A) {
3605                 signal_levels = gen7_edp_signal_levels(train_set);
3606                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3607         } else if (IS_GEN6(dev) && port == PORT_A) {
3608                 signal_levels = gen6_edp_signal_levels(train_set);
3609                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3610         } else {
3611                 signal_levels = gen4_signal_levels(train_set);
3612                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3613         }
3614
3615         if (mask)
3616                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3617
3618         DRM_DEBUG_KMS("Using vswing level %d\n",
3619                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3620         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3621                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3622                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3623
3624         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3625
3626         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3627         POSTING_READ(intel_dp->output_reg);
3628 }
3629
3630 void
3631 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3632                                        uint8_t dp_train_pat)
3633 {
3634         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3635         struct drm_i915_private *dev_priv =
3636                 to_i915(intel_dig_port->base.base.dev);
3637
3638         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3639
3640         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3641         POSTING_READ(intel_dp->output_reg);
3642 }
3643
3644 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3645 {
3646         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3647         struct drm_device *dev = intel_dig_port->base.base.dev;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         enum port port = intel_dig_port->port;
3650         uint32_t val;
3651
3652         if (!HAS_DDI(dev))
3653                 return;
3654
3655         val = I915_READ(DP_TP_CTL(port));
3656         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3657         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3658         I915_WRITE(DP_TP_CTL(port), val);
3659
3660         /*
3661          * On PORT_A we can have only eDP in SST mode. There the only reason
3662          * we need to set idle transmission mode is to work around a HW issue
3663          * where we enable the pipe while not in idle link-training mode.
3664          * In this case there is requirement to wait for a minimum number of
3665          * idle patterns to be sent.
3666          */
3667         if (port == PORT_A)
3668                 return;
3669
3670         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3671                      1))
3672                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3673 }
3674
3675 static void
3676 intel_dp_link_down(struct intel_dp *intel_dp)
3677 {
3678         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3679         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3680         enum port port = intel_dig_port->port;
3681         struct drm_device *dev = intel_dig_port->base.base.dev;
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         uint32_t DP = intel_dp->DP;
3684
3685         if (WARN_ON(HAS_DDI(dev)))
3686                 return;
3687
3688         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3689                 return;
3690
3691         DRM_DEBUG_KMS("\n");
3692
3693         if ((IS_GEN7(dev) && port == PORT_A) ||
3694             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3695                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3696                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3697         } else {
3698                 if (IS_CHERRYVIEW(dev))
3699                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3700                 else
3701                         DP &= ~DP_LINK_TRAIN_MASK;
3702                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3703         }
3704         I915_WRITE(intel_dp->output_reg, DP);
3705         POSTING_READ(intel_dp->output_reg);
3706
3707         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3708         I915_WRITE(intel_dp->output_reg, DP);
3709         POSTING_READ(intel_dp->output_reg);
3710
3711         /*
3712          * HW workaround for IBX, we need to move the port
3713          * to transcoder A after disabling it to allow the
3714          * matching HDMI port to be enabled on transcoder A.
3715          */
3716         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3717                 /*
3718                  * We get CPU/PCH FIFO underruns on the other pipe when
3719                  * doing the workaround. Sweep them under the rug.
3720                  */
3721                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3722                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3723
3724                 /* always enable with pattern 1 (as per spec) */
3725                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3726                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3727                 I915_WRITE(intel_dp->output_reg, DP);
3728                 POSTING_READ(intel_dp->output_reg);
3729
3730                 DP &= ~DP_PORT_EN;
3731                 I915_WRITE(intel_dp->output_reg, DP);
3732                 POSTING_READ(intel_dp->output_reg);
3733
3734                 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3735                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3736                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3737         }
3738
3739         msleep(intel_dp->panel_power_down_delay);
3740
3741         intel_dp->DP = DP;
3742 }
3743
3744 static bool
3745 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3746 {
3747         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3748         struct drm_device *dev = dig_port->base.base.dev;
3749         struct drm_i915_private *dev_priv = dev->dev_private;
3750         uint8_t rev;
3751
3752         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3753                                     sizeof(intel_dp->dpcd)) < 0)
3754                 return false; /* aux transfer failed */
3755
3756         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3757
3758         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3759                 return false; /* DPCD not present */
3760
3761         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3762                                     &intel_dp->sink_count, 1) < 0)
3763                 return false;
3764
3765         /*
3766          * Sink count can change between short pulse hpd hence
3767          * a member variable in intel_dp will track any changes
3768          * between short pulse interrupts.
3769          */
3770         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3771
3772         /*
3773          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3774          * a dongle is present but no display. Unless we require to know
3775          * if a dongle is present or not, we don't need to update
3776          * downstream port information. So, an early return here saves
3777          * time from performing other operations which are not required.
3778          */
3779         if (!intel_dp->sink_count)
3780                 return false;
3781
3782         /* Check if the panel supports PSR */
3783         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3784         if (is_edp(intel_dp)) {
3785                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3786                                         intel_dp->psr_dpcd,
3787                                         sizeof(intel_dp->psr_dpcd));
3788                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3789                         dev_priv->psr.sink_support = true;
3790                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3791                 }
3792
3793                 if (INTEL_INFO(dev)->gen >= 9 &&
3794                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3795                         uint8_t frame_sync_cap;
3796
3797                         dev_priv->psr.sink_support = true;
3798                         intel_dp_dpcd_read_wake(&intel_dp->aux,
3799                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3800                                         &frame_sync_cap, 1);
3801                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3802                         /* PSR2 needs frame sync as well */
3803                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3804                         DRM_DEBUG_KMS("PSR2 %s on sink",
3805                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3806                 }
3807         }
3808
3809         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3810                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
3811                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3812
3813         /* Intermediate frequency support */
3814         if (is_edp(intel_dp) &&
3815             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3816             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3817             (rev >= 0x03)) { /* eDp v1.4 or higher */
3818                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3819                 int i;
3820
3821                 intel_dp_dpcd_read_wake(&intel_dp->aux,
3822                                 DP_SUPPORTED_LINK_RATES,
3823                                 sink_rates,
3824                                 sizeof(sink_rates));
3825
3826                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3827                         int val = le16_to_cpu(sink_rates[i]);
3828
3829                         if (val == 0)
3830                                 break;
3831
3832                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3833                         intel_dp->sink_rates[i] = (val * 200) / 10;
3834                 }
3835                 intel_dp->num_sink_rates = i;
3836         }
3837
3838         intel_dp_print_rates(intel_dp);
3839
3840         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3841               DP_DWN_STRM_PORT_PRESENT))
3842                 return true; /* native DP sink */
3843
3844         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3845                 return true; /* no per-port downstream info */
3846
3847         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3848                                     intel_dp->downstream_ports,
3849                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3850                 return false; /* downstream port status fetch failed */
3851
3852         return true;
3853 }
3854
3855 static void
3856 intel_dp_probe_oui(struct intel_dp *intel_dp)
3857 {
3858         u8 buf[3];
3859
3860         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3861                 return;
3862
3863         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3864                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3865                               buf[0], buf[1], buf[2]);
3866
3867         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3868                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3869                               buf[0], buf[1], buf[2]);
3870 }
3871
3872 static bool
3873 intel_dp_probe_mst(struct intel_dp *intel_dp)
3874 {
3875         u8 buf[1];
3876
3877         if (!i915.enable_dp_mst)
3878                 return false;
3879
3880         if (!intel_dp->can_mst)
3881                 return false;
3882
3883         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3884                 return false;
3885
3886         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3887                 if (buf[0] & DP_MST_CAP) {
3888                         DRM_DEBUG_KMS("Sink is MST capable\n");
3889                         intel_dp->is_mst = true;
3890                 } else {
3891                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3892                         intel_dp->is_mst = false;
3893                 }
3894         }
3895
3896         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3897         return intel_dp->is_mst;
3898 }
3899
3900 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3901 {
3902         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3903         struct drm_device *dev = dig_port->base.base.dev;
3904         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3905         u8 buf;
3906         int ret = 0;
3907         int count = 0;
3908         int attempts = 10;
3909
3910         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3911                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3912                 ret = -EIO;
3913                 goto out;
3914         }
3915
3916         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3917                                buf & ~DP_TEST_SINK_START) < 0) {
3918                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3919                 ret = -EIO;
3920                 goto out;
3921         }
3922
3923         do {
3924                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3925
3926                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3927                                       DP_TEST_SINK_MISC, &buf) < 0) {
3928                         ret = -EIO;
3929                         goto out;
3930                 }
3931                 count = buf & DP_TEST_COUNT_MASK;
3932         } while (--attempts && count);
3933
3934         if (attempts == 0) {
3935                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3936                 ret = -ETIMEDOUT;
3937         }
3938
3939  out:
3940         hsw_enable_ips(intel_crtc);
3941         return ret;
3942 }
3943
3944 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3945 {
3946         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3947         struct drm_device *dev = dig_port->base.base.dev;
3948         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3949         u8 buf;
3950         int ret;
3951
3952         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3953                 return -EIO;
3954
3955         if (!(buf & DP_TEST_CRC_SUPPORTED))
3956                 return -ENOTTY;
3957
3958         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3959                 return -EIO;
3960
3961         if (buf & DP_TEST_SINK_START) {
3962                 ret = intel_dp_sink_crc_stop(intel_dp);
3963                 if (ret)
3964                         return ret;
3965         }
3966
3967         hsw_disable_ips(intel_crtc);
3968
3969         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3970                                buf | DP_TEST_SINK_START) < 0) {
3971                 hsw_enable_ips(intel_crtc);
3972                 return -EIO;
3973         }
3974
3975         intel_wait_for_vblank(dev, intel_crtc->pipe);
3976         return 0;
3977 }
3978
3979 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3980 {
3981         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3982         struct drm_device *dev = dig_port->base.base.dev;
3983         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3984         u8 buf;
3985         int count, ret;
3986         int attempts = 6;
3987
3988         ret = intel_dp_sink_crc_start(intel_dp);
3989         if (ret)
3990                 return ret;
3991
3992         do {
3993                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3994
3995                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3996                                       DP_TEST_SINK_MISC, &buf) < 0) {
3997                         ret = -EIO;
3998                         goto stop;
3999                 }
4000                 count = buf & DP_TEST_COUNT_MASK;
4001
4002         } while (--attempts && count == 0);
4003
4004         if (attempts == 0) {
4005                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4006                 ret = -ETIMEDOUT;
4007                 goto stop;
4008         }
4009
4010         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4011                 ret = -EIO;
4012                 goto stop;
4013         }
4014
4015 stop:
4016         intel_dp_sink_crc_stop(intel_dp);
4017         return ret;
4018 }
4019
4020 static bool
4021 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4022 {
4023         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4024                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4025                                        sink_irq_vector, 1) == 1;
4026 }
4027
4028 static bool
4029 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4030 {
4031         int ret;
4032
4033         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4034                                              DP_SINK_COUNT_ESI,
4035                                              sink_irq_vector, 14);
4036         if (ret != 14)
4037                 return false;
4038
4039         return true;
4040 }
4041
4042 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4043 {
4044         uint8_t test_result = DP_TEST_ACK;
4045         return test_result;
4046 }
4047
4048 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4049 {
4050         uint8_t test_result = DP_TEST_NAK;
4051         return test_result;
4052 }
4053
4054 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4055 {
4056         uint8_t test_result = DP_TEST_NAK;
4057         struct intel_connector *intel_connector = intel_dp->attached_connector;
4058         struct drm_connector *connector = &intel_connector->base;
4059
4060         if (intel_connector->detect_edid == NULL ||
4061             connector->edid_corrupt ||
4062             intel_dp->aux.i2c_defer_count > 6) {
4063                 /* Check EDID read for NACKs, DEFERs and corruption
4064                  * (DP CTS 1.2 Core r1.1)
4065                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4066                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4067                  *    4.2.2.6 : EDID corruption detected
4068                  * Use failsafe mode for all cases
4069                  */
4070                 if (intel_dp->aux.i2c_nack_count > 0 ||
4071                         intel_dp->aux.i2c_defer_count > 0)
4072                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4073                                       intel_dp->aux.i2c_nack_count,
4074                                       intel_dp->aux.i2c_defer_count);
4075                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4076         } else {
4077                 struct edid *block = intel_connector->detect_edid;
4078
4079                 /* We have to write the checksum
4080                  * of the last block read
4081                  */
4082                 block += intel_connector->detect_edid->extensions;
4083
4084                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4085                                         DP_TEST_EDID_CHECKSUM,
4086                                         &block->checksum,
4087                                         1))
4088                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4089
4090                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4091                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4092         }
4093
4094         /* Set test active flag here so userspace doesn't interrupt things */
4095         intel_dp->compliance_test_active = 1;
4096
4097         return test_result;
4098 }
4099
4100 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4101 {
4102         uint8_t test_result = DP_TEST_NAK;
4103         return test_result;
4104 }
4105
4106 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4107 {
4108         uint8_t response = DP_TEST_NAK;
4109         uint8_t rxdata = 0;
4110         int status = 0;
4111
4112         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4113         if (status <= 0) {
4114                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4115                 goto update_status;
4116         }
4117
4118         switch (rxdata) {
4119         case DP_TEST_LINK_TRAINING:
4120                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4121                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4122                 response = intel_dp_autotest_link_training(intel_dp);
4123                 break;
4124         case DP_TEST_LINK_VIDEO_PATTERN:
4125                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4126                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4127                 response = intel_dp_autotest_video_pattern(intel_dp);
4128                 break;
4129         case DP_TEST_LINK_EDID_READ:
4130                 DRM_DEBUG_KMS("EDID test requested\n");
4131                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4132                 response = intel_dp_autotest_edid(intel_dp);
4133                 break;
4134         case DP_TEST_LINK_PHY_TEST_PATTERN:
4135                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4136                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4137                 response = intel_dp_autotest_phy_pattern(intel_dp);
4138                 break;
4139         default:
4140                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4141                 break;
4142         }
4143
4144 update_status:
4145         status = drm_dp_dpcd_write(&intel_dp->aux,
4146                                    DP_TEST_RESPONSE,
4147                                    &response, 1);
4148         if (status <= 0)
4149                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4150 }
4151
4152 static int
4153 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4154 {
4155         bool bret;
4156
4157         if (intel_dp->is_mst) {
4158                 u8 esi[16] = { 0 };
4159                 int ret = 0;
4160                 int retry;
4161                 bool handled;
4162                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4163 go_again:
4164                 if (bret == true) {
4165
4166                         /* check link status - esi[10] = 0x200c */
4167                         if (intel_dp->active_mst_links &&
4168                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4169                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4170                                 intel_dp_start_link_train(intel_dp);
4171                                 intel_dp_stop_link_train(intel_dp);
4172                         }
4173
4174                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4175                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4176
4177                         if (handled) {
4178                                 for (retry = 0; retry < 3; retry++) {
4179                                         int wret;
4180                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4181                                                                  DP_SINK_COUNT_ESI+1,
4182                                                                  &esi[1], 3);
4183                                         if (wret == 3) {
4184                                                 break;
4185                                         }
4186                                 }
4187
4188                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4189                                 if (bret == true) {
4190                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4191                                         goto go_again;
4192                                 }
4193                         } else
4194                                 ret = 0;
4195
4196                         return ret;
4197                 } else {
4198                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4199                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4200                         intel_dp->is_mst = false;
4201                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4202                         /* send a hotplug event */
4203                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4204                 }
4205         }
4206         return -EINVAL;
4207 }
4208
4209 static void
4210 intel_dp_check_link_status(struct intel_dp *intel_dp)
4211 {
4212         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4213         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4214         u8 link_status[DP_LINK_STATUS_SIZE];
4215
4216         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4217
4218         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4219                 DRM_ERROR("Failed to get link status\n");
4220                 return;
4221         }
4222
4223         if (!intel_encoder->base.crtc)
4224                 return;
4225
4226         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4227                 return;
4228
4229         /* if link training is requested we should perform it always */
4230         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4231             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4232                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4233                               intel_encoder->base.name);
4234                 intel_dp_start_link_train(intel_dp);
4235                 intel_dp_stop_link_train(intel_dp);
4236         }
4237 }
4238
4239 /*
4240  * According to DP spec
4241  * 5.1.2:
4242  *  1. Read DPCD
4243  *  2. Configure link according to Receiver Capabilities
4244  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4245  *  4. Check link status on receipt of hot-plug interrupt
4246  *
4247  * intel_dp_short_pulse -  handles short pulse interrupts
4248  * when full detection is not required.
4249  * Returns %true if short pulse is handled and full detection
4250  * is NOT required and %false otherwise.
4251  */
4252 static bool
4253 intel_dp_short_pulse(struct intel_dp *intel_dp)
4254 {
4255         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4256         u8 sink_irq_vector;
4257         u8 old_sink_count = intel_dp->sink_count;
4258         bool ret;
4259
4260         /*
4261          * Clearing compliance test variables to allow capturing
4262          * of values for next automated test request.
4263          */
4264         intel_dp->compliance_test_active = 0;
4265         intel_dp->compliance_test_type = 0;
4266         intel_dp->compliance_test_data = 0;
4267
4268         /*
4269          * Now read the DPCD to see if it's actually running
4270          * If the current value of sink count doesn't match with
4271          * the value that was stored earlier or dpcd read failed
4272          * we need to do full detection
4273          */
4274         ret = intel_dp_get_dpcd(intel_dp);
4275
4276         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4277                 /* No need to proceed if we are going to do full detect */
4278                 return false;
4279         }
4280
4281         /* Try to read the source of the interrupt */
4282         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4283             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4284                 /* Clear interrupt source */
4285                 drm_dp_dpcd_writeb(&intel_dp->aux,
4286                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4287                                    sink_irq_vector);
4288
4289                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4290                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4291                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4292                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4293         }
4294
4295         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4296         intel_dp_check_link_status(intel_dp);
4297         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4298
4299         return true;
4300 }
4301
4302 /* XXX this is probably wrong for multiple downstream ports */
4303 static enum drm_connector_status
4304 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4305 {
4306         uint8_t *dpcd = intel_dp->dpcd;
4307         uint8_t type;
4308
4309         if (!intel_dp_get_dpcd(intel_dp))
4310                 return connector_status_disconnected;
4311
4312         /* if there's no downstream port, we're done */
4313         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4314                 return connector_status_connected;
4315
4316         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4317         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4318             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4319
4320                 return intel_dp->sink_count ?
4321                 connector_status_connected : connector_status_disconnected;
4322         }
4323
4324         /* If no HPD, poke DDC gently */
4325         if (drm_probe_ddc(&intel_dp->aux.ddc))
4326                 return connector_status_connected;
4327
4328         /* Well we tried, say unknown for unreliable port types */
4329         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4330                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4331                 if (type == DP_DS_PORT_TYPE_VGA ||
4332                     type == DP_DS_PORT_TYPE_NON_EDID)
4333                         return connector_status_unknown;
4334         } else {
4335                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4336                         DP_DWN_STRM_PORT_TYPE_MASK;
4337                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4338                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4339                         return connector_status_unknown;
4340         }
4341
4342         /* Anything else is out of spec, warn and ignore */
4343         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4344         return connector_status_disconnected;
4345 }
4346
4347 static enum drm_connector_status
4348 edp_detect(struct intel_dp *intel_dp)
4349 {
4350         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4351         enum drm_connector_status status;
4352
4353         status = intel_panel_detect(dev);
4354         if (status == connector_status_unknown)
4355                 status = connector_status_connected;
4356
4357         return status;
4358 }
4359
4360 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4361                                        struct intel_digital_port *port)
4362 {
4363         u32 bit;
4364
4365         switch (port->port) {
4366         case PORT_A:
4367                 return true;
4368         case PORT_B:
4369                 bit = SDE_PORTB_HOTPLUG;
4370                 break;
4371         case PORT_C:
4372                 bit = SDE_PORTC_HOTPLUG;
4373                 break;
4374         case PORT_D:
4375                 bit = SDE_PORTD_HOTPLUG;
4376                 break;
4377         default:
4378                 MISSING_CASE(port->port);
4379                 return false;
4380         }
4381
4382         return I915_READ(SDEISR) & bit;
4383 }
4384
4385 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4386                                        struct intel_digital_port *port)
4387 {
4388         u32 bit;
4389
4390         switch (port->port) {
4391         case PORT_A:
4392                 return true;
4393         case PORT_B:
4394                 bit = SDE_PORTB_HOTPLUG_CPT;
4395                 break;
4396         case PORT_C:
4397                 bit = SDE_PORTC_HOTPLUG_CPT;
4398                 break;
4399         case PORT_D:
4400                 bit = SDE_PORTD_HOTPLUG_CPT;
4401                 break;
4402         case PORT_E:
4403                 bit = SDE_PORTE_HOTPLUG_SPT;
4404                 break;
4405         default:
4406                 MISSING_CASE(port->port);
4407                 return false;
4408         }
4409
4410         return I915_READ(SDEISR) & bit;
4411 }
4412
4413 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4414                                        struct intel_digital_port *port)
4415 {
4416         u32 bit;
4417
4418         switch (port->port) {
4419         case PORT_B:
4420                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4421                 break;
4422         case PORT_C:
4423                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4424                 break;
4425         case PORT_D:
4426                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4427                 break;
4428         default:
4429                 MISSING_CASE(port->port);
4430                 return false;
4431         }
4432
4433         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4434 }
4435
4436 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4437                                         struct intel_digital_port *port)
4438 {
4439         u32 bit;
4440
4441         switch (port->port) {
4442         case PORT_B:
4443                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4444                 break;
4445         case PORT_C:
4446                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4447                 break;
4448         case PORT_D:
4449                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4450                 break;
4451         default:
4452                 MISSING_CASE(port->port);
4453                 return false;
4454         }
4455
4456         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4457 }
4458
4459 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4460                                        struct intel_digital_port *intel_dig_port)
4461 {
4462         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4463         enum port port;
4464         u32 bit;
4465
4466         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4467         switch (port) {
4468         case PORT_A:
4469                 bit = BXT_DE_PORT_HP_DDIA;
4470                 break;
4471         case PORT_B:
4472                 bit = BXT_DE_PORT_HP_DDIB;
4473                 break;
4474         case PORT_C:
4475                 bit = BXT_DE_PORT_HP_DDIC;
4476                 break;
4477         default:
4478                 MISSING_CASE(port);
4479                 return false;
4480         }
4481
4482         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4483 }
4484
4485 /*
4486  * intel_digital_port_connected - is the specified port connected?
4487  * @dev_priv: i915 private structure
4488  * @port: the port to test
4489  *
4490  * Return %true if @port is connected, %false otherwise.
4491  */
4492 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4493                                          struct intel_digital_port *port)
4494 {
4495         if (HAS_PCH_IBX(dev_priv))
4496                 return ibx_digital_port_connected(dev_priv, port);
4497         else if (HAS_PCH_SPLIT(dev_priv))
4498                 return cpt_digital_port_connected(dev_priv, port);
4499         else if (IS_BROXTON(dev_priv))
4500                 return bxt_digital_port_connected(dev_priv, port);
4501         else if (IS_GM45(dev_priv))
4502                 return gm45_digital_port_connected(dev_priv, port);
4503         else
4504                 return g4x_digital_port_connected(dev_priv, port);
4505 }
4506
4507 static struct edid *
4508 intel_dp_get_edid(struct intel_dp *intel_dp)
4509 {
4510         struct intel_connector *intel_connector = intel_dp->attached_connector;
4511
4512         /* use cached edid if we have one */
4513         if (intel_connector->edid) {
4514                 /* invalid edid */
4515                 if (IS_ERR(intel_connector->edid))
4516                         return NULL;
4517
4518                 return drm_edid_duplicate(intel_connector->edid);
4519         } else
4520                 return drm_get_edid(&intel_connector->base,
4521                                     &intel_dp->aux.ddc);
4522 }
4523
4524 static void
4525 intel_dp_set_edid(struct intel_dp *intel_dp)
4526 {
4527         struct intel_connector *intel_connector = intel_dp->attached_connector;
4528         struct edid *edid;
4529
4530         intel_dp_unset_edid(intel_dp);
4531         edid = intel_dp_get_edid(intel_dp);
4532         intel_connector->detect_edid = edid;
4533
4534         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4535                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4536         else
4537                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4538 }
4539
4540 static void
4541 intel_dp_unset_edid(struct intel_dp *intel_dp)
4542 {
4543         struct intel_connector *intel_connector = intel_dp->attached_connector;
4544
4545         kfree(intel_connector->detect_edid);
4546         intel_connector->detect_edid = NULL;
4547
4548         intel_dp->has_audio = false;
4549 }
4550
4551 static void
4552 intel_dp_long_pulse(struct intel_connector *intel_connector)
4553 {
4554         struct drm_connector *connector = &intel_connector->base;
4555         struct intel_dp *intel_dp = intel_attached_dp(connector);
4556         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4557         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4558         struct drm_device *dev = connector->dev;
4559         enum drm_connector_status status;
4560         enum intel_display_power_domain power_domain;
4561         bool ret;
4562         u8 sink_irq_vector;
4563
4564         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4565         intel_display_power_get(to_i915(dev), power_domain);
4566
4567         /* Can't disconnect eDP, but you can close the lid... */
4568         if (is_edp(intel_dp))
4569                 status = edp_detect(intel_dp);
4570         else if (intel_digital_port_connected(to_i915(dev),
4571                                               dp_to_dig_port(intel_dp)))
4572                 status = intel_dp_detect_dpcd(intel_dp);
4573         else
4574                 status = connector_status_disconnected;
4575
4576         if (status != connector_status_connected) {
4577                 intel_dp->compliance_test_active = 0;
4578                 intel_dp->compliance_test_type = 0;
4579                 intel_dp->compliance_test_data = 0;
4580
4581                 goto out;
4582         }
4583
4584         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4585                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4586
4587         intel_dp_probe_oui(intel_dp);
4588
4589         ret = intel_dp_probe_mst(intel_dp);
4590         if (ret) {
4591                 /*
4592                  * If we are in MST mode then this connector
4593                  * won't appear connected or have anything
4594                  * with EDID on it
4595                  */
4596                 status = connector_status_disconnected;
4597                 goto out;
4598         } else if (connector->status == connector_status_connected) {
4599                 /*
4600                  * If display was connected already and is still connected
4601                  * check links status, there has been known issues of
4602                  * link loss triggerring long pulse!!!!
4603                  */
4604                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4605                 intel_dp_check_link_status(intel_dp);
4606                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4607                 goto out;
4608         }
4609
4610         /*
4611          * Clearing NACK and defer counts to get their exact values
4612          * while reading EDID which are required by Compliance tests
4613          * 4.2.2.4 and 4.2.2.5
4614          */
4615         intel_dp->aux.i2c_nack_count = 0;
4616         intel_dp->aux.i2c_defer_count = 0;
4617
4618         intel_dp_set_edid(intel_dp);
4619
4620         status = connector_status_connected;
4621         intel_dp->detect_done = true;
4622
4623         /* Try to read the source of the interrupt */
4624         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4625             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4626                 /* Clear interrupt source */
4627                 drm_dp_dpcd_writeb(&intel_dp->aux,
4628                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4629                                    sink_irq_vector);
4630
4631                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4632                         intel_dp_handle_test_request(intel_dp);
4633                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4634                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4635         }
4636
4637 out:
4638         if (status != connector_status_connected) {
4639                 intel_dp_unset_edid(intel_dp);
4640                 /*
4641                  * If we were in MST mode, and device is not there,
4642                  * get out of MST mode
4643                  */
4644                 if (intel_dp->is_mst) {
4645                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4646                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4647                         intel_dp->is_mst = false;
4648                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4649                                                         intel_dp->is_mst);
4650                 }
4651         }
4652
4653         intel_display_power_put(to_i915(dev), power_domain);
4654         return;
4655 }
4656
4657 static enum drm_connector_status
4658 intel_dp_detect(struct drm_connector *connector, bool force)
4659 {
4660         struct intel_dp *intel_dp = intel_attached_dp(connector);
4661         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4662         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4663         struct intel_connector *intel_connector = to_intel_connector(connector);
4664
4665         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4666                       connector->base.id, connector->name);
4667
4668         if (intel_dp->is_mst) {
4669                 /* MST devices are disconnected from a monitor POV */
4670                 intel_dp_unset_edid(intel_dp);
4671                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4672                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4673                 return connector_status_disconnected;
4674         }
4675
4676         /* If full detect is not performed yet, do a full detect */
4677         if (!intel_dp->detect_done)
4678                 intel_dp_long_pulse(intel_dp->attached_connector);
4679
4680         intel_dp->detect_done = false;
4681
4682         if (intel_connector->detect_edid)
4683                 return connector_status_connected;
4684         else
4685                 return connector_status_disconnected;
4686 }
4687
4688 static void
4689 intel_dp_force(struct drm_connector *connector)
4690 {
4691         struct intel_dp *intel_dp = intel_attached_dp(connector);
4692         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4693         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4694         enum intel_display_power_domain power_domain;
4695
4696         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4697                       connector->base.id, connector->name);
4698         intel_dp_unset_edid(intel_dp);
4699
4700         if (connector->status != connector_status_connected)
4701                 return;
4702
4703         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4704         intel_display_power_get(dev_priv, power_domain);
4705
4706         intel_dp_set_edid(intel_dp);
4707
4708         intel_display_power_put(dev_priv, power_domain);
4709
4710         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4711                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4712 }
4713
4714 static int intel_dp_get_modes(struct drm_connector *connector)
4715 {
4716         struct intel_connector *intel_connector = to_intel_connector(connector);
4717         struct edid *edid;
4718
4719         edid = intel_connector->detect_edid;
4720         if (edid) {
4721                 int ret = intel_connector_update_modes(connector, edid);
4722                 if (ret)
4723                         return ret;
4724         }
4725
4726         /* if eDP has no EDID, fall back to fixed mode */
4727         if (is_edp(intel_attached_dp(connector)) &&
4728             intel_connector->panel.fixed_mode) {
4729                 struct drm_display_mode *mode;
4730
4731                 mode = drm_mode_duplicate(connector->dev,
4732                                           intel_connector->panel.fixed_mode);
4733                 if (mode) {
4734                         drm_mode_probed_add(connector, mode);
4735                         return 1;
4736                 }
4737         }
4738
4739         return 0;
4740 }
4741
4742 static bool
4743 intel_dp_detect_audio(struct drm_connector *connector)
4744 {
4745         bool has_audio = false;
4746         struct edid *edid;
4747
4748         edid = to_intel_connector(connector)->detect_edid;
4749         if (edid)
4750                 has_audio = drm_detect_monitor_audio(edid);
4751
4752         return has_audio;
4753 }
4754
4755 static int
4756 intel_dp_set_property(struct drm_connector *connector,
4757                       struct drm_property *property,
4758                       uint64_t val)
4759 {
4760         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4761         struct intel_connector *intel_connector = to_intel_connector(connector);
4762         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4763         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4764         int ret;
4765
4766         ret = drm_object_property_set_value(&connector->base, property, val);
4767         if (ret)
4768                 return ret;
4769
4770         if (property == dev_priv->force_audio_property) {
4771                 int i = val;
4772                 bool has_audio;
4773
4774                 if (i == intel_dp->force_audio)
4775                         return 0;
4776
4777                 intel_dp->force_audio = i;
4778
4779                 if (i == HDMI_AUDIO_AUTO)
4780                         has_audio = intel_dp_detect_audio(connector);
4781                 else
4782                         has_audio = (i == HDMI_AUDIO_ON);
4783
4784                 if (has_audio == intel_dp->has_audio)
4785                         return 0;
4786
4787                 intel_dp->has_audio = has_audio;
4788                 goto done;
4789         }
4790
4791         if (property == dev_priv->broadcast_rgb_property) {
4792                 bool old_auto = intel_dp->color_range_auto;
4793                 bool old_range = intel_dp->limited_color_range;
4794
4795                 switch (val) {
4796                 case INTEL_BROADCAST_RGB_AUTO:
4797                         intel_dp->color_range_auto = true;
4798                         break;
4799                 case INTEL_BROADCAST_RGB_FULL:
4800                         intel_dp->color_range_auto = false;
4801                         intel_dp->limited_color_range = false;
4802                         break;
4803                 case INTEL_BROADCAST_RGB_LIMITED:
4804                         intel_dp->color_range_auto = false;
4805                         intel_dp->limited_color_range = true;
4806                         break;
4807                 default:
4808                         return -EINVAL;
4809                 }
4810
4811                 if (old_auto == intel_dp->color_range_auto &&
4812                     old_range == intel_dp->limited_color_range)
4813                         return 0;
4814
4815                 goto done;
4816         }
4817
4818         if (is_edp(intel_dp) &&
4819             property == connector->dev->mode_config.scaling_mode_property) {
4820                 if (val == DRM_MODE_SCALE_NONE) {
4821                         DRM_DEBUG_KMS("no scaling not supported\n");
4822                         return -EINVAL;
4823                 }
4824                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4825                     val == DRM_MODE_SCALE_CENTER) {
4826                         DRM_DEBUG_KMS("centering not supported\n");
4827                         return -EINVAL;
4828                 }
4829
4830                 if (intel_connector->panel.fitting_mode == val) {
4831                         /* the eDP scaling property is not changed */
4832                         return 0;
4833                 }
4834                 intel_connector->panel.fitting_mode = val;
4835
4836                 goto done;
4837         }
4838
4839         return -EINVAL;
4840
4841 done:
4842         if (intel_encoder->base.crtc)
4843                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4844
4845         return 0;
4846 }
4847
4848 static void
4849 intel_dp_connector_destroy(struct drm_connector *connector)
4850 {
4851         struct intel_connector *intel_connector = to_intel_connector(connector);
4852
4853         kfree(intel_connector->detect_edid);
4854
4855         if (!IS_ERR_OR_NULL(intel_connector->edid))
4856                 kfree(intel_connector->edid);
4857
4858         /* Can't call is_edp() since the encoder may have been destroyed
4859          * already. */
4860         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4861                 intel_panel_fini(&intel_connector->panel);
4862
4863         drm_connector_cleanup(connector);
4864         kfree(connector);
4865 }
4866
4867 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4868 {
4869         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4870         struct intel_dp *intel_dp = &intel_dig_port->dp;
4871
4872         intel_dp_mst_encoder_cleanup(intel_dig_port);
4873         if (is_edp(intel_dp)) {
4874                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4875                 /*
4876                  * vdd might still be enabled do to the delayed vdd off.
4877                  * Make sure vdd is actually turned off here.
4878                  */
4879                 pps_lock(intel_dp);
4880                 edp_panel_vdd_off_sync(intel_dp);
4881                 pps_unlock(intel_dp);
4882
4883                 if (intel_dp->edp_notifier.notifier_call) {
4884                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4885                         intel_dp->edp_notifier.notifier_call = NULL;
4886                 }
4887         }
4888         drm_encoder_cleanup(encoder);
4889         kfree(intel_dig_port);
4890 }
4891
4892 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4893 {
4894         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4895
4896         if (!is_edp(intel_dp))
4897                 return;
4898
4899         /*
4900          * vdd might still be enabled do to the delayed vdd off.
4901          * Make sure vdd is actually turned off here.
4902          */
4903         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4904         pps_lock(intel_dp);
4905         edp_panel_vdd_off_sync(intel_dp);
4906         pps_unlock(intel_dp);
4907 }
4908
4909 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4910 {
4911         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4912         struct drm_device *dev = intel_dig_port->base.base.dev;
4913         struct drm_i915_private *dev_priv = dev->dev_private;
4914         enum intel_display_power_domain power_domain;
4915
4916         lockdep_assert_held(&dev_priv->pps_mutex);
4917
4918         if (!edp_have_panel_vdd(intel_dp))
4919                 return;
4920
4921         /*
4922          * The VDD bit needs a power domain reference, so if the bit is
4923          * already enabled when we boot or resume, grab this reference and
4924          * schedule a vdd off, so we don't hold on to the reference
4925          * indefinitely.
4926          */
4927         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4928         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4929         intel_display_power_get(dev_priv, power_domain);
4930
4931         edp_panel_vdd_schedule_off(intel_dp);
4932 }
4933
4934 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4935 {
4936         struct intel_dp *intel_dp;
4937
4938         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4939                 return;
4940
4941         intel_dp = enc_to_intel_dp(encoder);
4942
4943         pps_lock(intel_dp);
4944
4945         /*
4946          * Read out the current power sequencer assignment,
4947          * in case the BIOS did something with it.
4948          */
4949         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4950                 vlv_initial_power_sequencer_setup(intel_dp);
4951
4952         intel_edp_panel_vdd_sanitize(intel_dp);
4953
4954         pps_unlock(intel_dp);
4955 }
4956
4957 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4958         .dpms = drm_atomic_helper_connector_dpms,
4959         .detect = intel_dp_detect,
4960         .force = intel_dp_force,
4961         .fill_modes = drm_helper_probe_single_connector_modes,
4962         .set_property = intel_dp_set_property,
4963         .atomic_get_property = intel_connector_atomic_get_property,
4964         .destroy = intel_dp_connector_destroy,
4965         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4966         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4967 };
4968
4969 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4970         .get_modes = intel_dp_get_modes,
4971         .mode_valid = intel_dp_mode_valid,
4972         .best_encoder = intel_best_encoder,
4973 };
4974
4975 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4976         .reset = intel_dp_encoder_reset,
4977         .destroy = intel_dp_encoder_destroy,
4978 };
4979
4980 enum irqreturn
4981 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4982 {
4983         struct intel_dp *intel_dp = &intel_dig_port->dp;
4984         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4985         struct drm_device *dev = intel_dig_port->base.base.dev;
4986         struct drm_i915_private *dev_priv = dev->dev_private;
4987         enum intel_display_power_domain power_domain;
4988         enum irqreturn ret = IRQ_NONE;
4989
4990         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4991             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4992                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4993
4994         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4995                 /*
4996                  * vdd off can generate a long pulse on eDP which
4997                  * would require vdd on to handle it, and thus we
4998                  * would end up in an endless cycle of
4999                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5000                  */
5001                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5002                               port_name(intel_dig_port->port));
5003                 return IRQ_HANDLED;
5004         }
5005
5006         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5007                       port_name(intel_dig_port->port),
5008                       long_hpd ? "long" : "short");
5009
5010         power_domain = intel_display_port_aux_power_domain(intel_encoder);
5011         intel_display_power_get(dev_priv, power_domain);
5012
5013         if (long_hpd) {
5014                 /* indicate that we need to restart link training */
5015                 intel_dp->train_set_valid = false;
5016
5017                 intel_dp_long_pulse(intel_dp->attached_connector);
5018                 if (intel_dp->is_mst)
5019                         ret = IRQ_HANDLED;
5020                 goto put_power;
5021
5022         } else {
5023                 if (intel_dp->is_mst) {
5024                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5025                                 /*
5026                                  * If we were in MST mode, and device is not
5027                                  * there, get out of MST mode
5028                                  */
5029                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5030                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5031                                 intel_dp->is_mst = false;
5032                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5033                                                                 intel_dp->is_mst);
5034                                 goto put_power;
5035                         }
5036                 }
5037
5038                 if (!intel_dp->is_mst) {
5039                         if (!intel_dp_short_pulse(intel_dp)) {
5040                                 intel_dp_long_pulse(intel_dp->attached_connector);
5041                                 goto put_power;
5042                         }
5043                 }
5044         }
5045
5046         ret = IRQ_HANDLED;
5047
5048 put_power:
5049         intel_display_power_put(dev_priv, power_domain);
5050
5051         return ret;
5052 }
5053
5054 /* check the VBT to see whether the eDP is on another port */
5055 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5056 {
5057         struct drm_i915_private *dev_priv = dev->dev_private;
5058
5059         /*
5060          * eDP not supported on g4x. so bail out early just
5061          * for a bit extra safety in case the VBT is bonkers.
5062          */
5063         if (INTEL_INFO(dev)->gen < 5)
5064                 return false;
5065
5066         if (port == PORT_A)
5067                 return true;
5068
5069         return intel_bios_is_port_edp(dev_priv, port);
5070 }
5071
5072 void
5073 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5074 {
5075         struct intel_connector *intel_connector = to_intel_connector(connector);
5076
5077         intel_attach_force_audio_property(connector);
5078         intel_attach_broadcast_rgb_property(connector);
5079         intel_dp->color_range_auto = true;
5080
5081         if (is_edp(intel_dp)) {
5082                 drm_mode_create_scaling_mode_property(connector->dev);
5083                 drm_object_attach_property(
5084                         &connector->base,
5085                         connector->dev->mode_config.scaling_mode_property,
5086                         DRM_MODE_SCALE_ASPECT);
5087                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5088         }
5089 }
5090
5091 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5092 {
5093         intel_dp->panel_power_off_time = ktime_get_boottime();
5094         intel_dp->last_power_on = jiffies;
5095         intel_dp->last_backlight_off = jiffies;
5096 }
5097
5098 static void
5099 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5100                                     struct intel_dp *intel_dp)
5101 {
5102         struct drm_i915_private *dev_priv = dev->dev_private;
5103         struct edp_power_seq cur, vbt, spec,
5104                 *final = &intel_dp->pps_delays;
5105         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5106         i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5107
5108         lockdep_assert_held(&dev_priv->pps_mutex);
5109
5110         /* already initialized? */
5111         if (final->t11_t12 != 0)
5112                 return;
5113
5114         if (IS_BROXTON(dev)) {
5115                 /*
5116                  * TODO: BXT has 2 sets of PPS registers.
5117                  * Correct Register for Broxton need to be identified
5118                  * using VBT. hardcoding for now
5119                  */
5120                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5121                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5122                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5123         } else if (HAS_PCH_SPLIT(dev)) {
5124                 pp_ctrl_reg = PCH_PP_CONTROL;
5125                 pp_on_reg = PCH_PP_ON_DELAYS;
5126                 pp_off_reg = PCH_PP_OFF_DELAYS;
5127                 pp_div_reg = PCH_PP_DIVISOR;
5128         } else {
5129                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5130
5131                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5132                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5133                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5134                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5135         }
5136
5137         /* Workaround: Need to write PP_CONTROL with the unlock key as
5138          * the very first thing. */
5139         pp_ctl = ironlake_get_pp_control(intel_dp);
5140
5141         pp_on = I915_READ(pp_on_reg);
5142         pp_off = I915_READ(pp_off_reg);
5143         if (!IS_BROXTON(dev)) {
5144                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5145                 pp_div = I915_READ(pp_div_reg);
5146         }
5147
5148         /* Pull timing values out of registers */
5149         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5150                 PANEL_POWER_UP_DELAY_SHIFT;
5151
5152         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5153                 PANEL_LIGHT_ON_DELAY_SHIFT;
5154
5155         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5156                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5157
5158         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5159                 PANEL_POWER_DOWN_DELAY_SHIFT;
5160
5161         if (IS_BROXTON(dev)) {
5162                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5163                         BXT_POWER_CYCLE_DELAY_SHIFT;
5164                 if (tmp > 0)
5165                         cur.t11_t12 = (tmp - 1) * 1000;
5166                 else
5167                         cur.t11_t12 = 0;
5168         } else {
5169                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5170                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5171         }
5172
5173         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5174                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5175
5176         vbt = dev_priv->vbt.edp.pps;
5177
5178         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5179          * our hw here, which are all in 100usec. */
5180         spec.t1_t3 = 210 * 10;
5181         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5182         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5183         spec.t10 = 500 * 10;
5184         /* This one is special and actually in units of 100ms, but zero
5185          * based in the hw (so we need to add 100 ms). But the sw vbt
5186          * table multiplies it with 1000 to make it in units of 100usec,
5187          * too. */
5188         spec.t11_t12 = (510 + 100) * 10;
5189
5190         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5191                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5192
5193         /* Use the max of the register settings and vbt. If both are
5194          * unset, fall back to the spec limits. */
5195 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5196                                        spec.field : \
5197                                        max(cur.field, vbt.field))
5198         assign_final(t1_t3);
5199         assign_final(t8);
5200         assign_final(t9);
5201         assign_final(t10);
5202         assign_final(t11_t12);
5203 #undef assign_final
5204
5205 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5206         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5207         intel_dp->backlight_on_delay = get_delay(t8);
5208         intel_dp->backlight_off_delay = get_delay(t9);
5209         intel_dp->panel_power_down_delay = get_delay(t10);
5210         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5211 #undef get_delay
5212
5213         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5214                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5215                       intel_dp->panel_power_cycle_delay);
5216
5217         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5218                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5219 }
5220
5221 static void
5222 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5223                                               struct intel_dp *intel_dp)
5224 {
5225         struct drm_i915_private *dev_priv = dev->dev_private;
5226         u32 pp_on, pp_off, pp_div, port_sel = 0;
5227         int div = dev_priv->rawclk_freq / 1000;
5228         i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5229         enum port port = dp_to_dig_port(intel_dp)->port;
5230         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5231
5232         lockdep_assert_held(&dev_priv->pps_mutex);
5233
5234         if (IS_BROXTON(dev)) {
5235                 /*
5236                  * TODO: BXT has 2 sets of PPS registers.
5237                  * Correct Register for Broxton need to be identified
5238                  * using VBT. hardcoding for now
5239                  */
5240                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5241                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5242                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5243
5244         } else if (HAS_PCH_SPLIT(dev)) {
5245                 pp_on_reg = PCH_PP_ON_DELAYS;
5246                 pp_off_reg = PCH_PP_OFF_DELAYS;
5247                 pp_div_reg = PCH_PP_DIVISOR;
5248         } else {
5249                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5250
5251                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5252                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5253                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5254         }
5255
5256         /*
5257          * And finally store the new values in the power sequencer. The
5258          * backlight delays are set to 1 because we do manual waits on them. For
5259          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5260          * we'll end up waiting for the backlight off delay twice: once when we
5261          * do the manual sleep, and once when we disable the panel and wait for
5262          * the PP_STATUS bit to become zero.
5263          */
5264         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5265                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5266         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5267                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5268         /* Compute the divisor for the pp clock, simply match the Bspec
5269          * formula. */
5270         if (IS_BROXTON(dev)) {
5271                 pp_div = I915_READ(pp_ctrl_reg);
5272                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5273                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5274                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5275         } else {
5276                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5277                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5278                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5279         }
5280
5281         /* Haswell doesn't have any port selection bits for the panel
5282          * power sequencer any more. */
5283         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5284                 port_sel = PANEL_PORT_SELECT_VLV(port);
5285         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5286                 if (port == PORT_A)
5287                         port_sel = PANEL_PORT_SELECT_DPA;
5288                 else
5289                         port_sel = PANEL_PORT_SELECT_DPD;
5290         }
5291
5292         pp_on |= port_sel;
5293
5294         I915_WRITE(pp_on_reg, pp_on);
5295         I915_WRITE(pp_off_reg, pp_off);
5296         if (IS_BROXTON(dev))
5297                 I915_WRITE(pp_ctrl_reg, pp_div);
5298         else
5299                 I915_WRITE(pp_div_reg, pp_div);
5300
5301         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5302                       I915_READ(pp_on_reg),
5303                       I915_READ(pp_off_reg),
5304                       IS_BROXTON(dev) ?
5305                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5306                       I915_READ(pp_div_reg));
5307 }
5308
5309 /**
5310  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5311  * @dev: DRM device
5312  * @refresh_rate: RR to be programmed
5313  *
5314  * This function gets called when refresh rate (RR) has to be changed from
5315  * one frequency to another. Switches can be between high and low RR
5316  * supported by the panel or to any other RR based on media playback (in
5317  * this case, RR value needs to be passed from user space).
5318  *
5319  * The caller of this function needs to take a lock on dev_priv->drrs.
5320  */
5321 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5322 {
5323         struct drm_i915_private *dev_priv = dev->dev_private;
5324         struct intel_encoder *encoder;
5325         struct intel_digital_port *dig_port = NULL;
5326         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5327         struct intel_crtc_state *config = NULL;
5328         struct intel_crtc *intel_crtc = NULL;
5329         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5330
5331         if (refresh_rate <= 0) {
5332                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5333                 return;
5334         }
5335
5336         if (intel_dp == NULL) {
5337                 DRM_DEBUG_KMS("DRRS not supported.\n");
5338                 return;
5339         }
5340
5341         /*
5342          * FIXME: This needs proper synchronization with psr state for some
5343          * platforms that cannot have PSR and DRRS enabled at the same time.
5344          */
5345
5346         dig_port = dp_to_dig_port(intel_dp);
5347         encoder = &dig_port->base;
5348         intel_crtc = to_intel_crtc(encoder->base.crtc);
5349
5350         if (!intel_crtc) {
5351                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5352                 return;
5353         }
5354
5355         config = intel_crtc->config;
5356
5357         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5358                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5359                 return;
5360         }
5361
5362         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5363                         refresh_rate)
5364                 index = DRRS_LOW_RR;
5365
5366         if (index == dev_priv->drrs.refresh_rate_type) {
5367                 DRM_DEBUG_KMS(
5368                         "DRRS requested for previously set RR...ignoring\n");
5369                 return;
5370         }
5371
5372         if (!intel_crtc->active) {
5373                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5374                 return;
5375         }
5376
5377         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5378                 switch (index) {
5379                 case DRRS_HIGH_RR:
5380                         intel_dp_set_m_n(intel_crtc, M1_N1);
5381                         break;
5382                 case DRRS_LOW_RR:
5383                         intel_dp_set_m_n(intel_crtc, M2_N2);
5384                         break;
5385                 case DRRS_MAX_RR:
5386                 default:
5387                         DRM_ERROR("Unsupported refreshrate type\n");
5388                 }
5389         } else if (INTEL_INFO(dev)->gen > 6) {
5390                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5391                 u32 val;
5392
5393                 val = I915_READ(reg);
5394                 if (index > DRRS_HIGH_RR) {
5395                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5396                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5397                         else
5398                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5399                 } else {
5400                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5401                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5402                         else
5403                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5404                 }
5405                 I915_WRITE(reg, val);
5406         }
5407
5408         dev_priv->drrs.refresh_rate_type = index;
5409
5410         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5411 }
5412
5413 /**
5414  * intel_edp_drrs_enable - init drrs struct if supported
5415  * @intel_dp: DP struct
5416  *
5417  * Initializes frontbuffer_bits and drrs.dp
5418  */
5419 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5420 {
5421         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5422         struct drm_i915_private *dev_priv = dev->dev_private;
5423         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5424         struct drm_crtc *crtc = dig_port->base.base.crtc;
5425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5426
5427         if (!intel_crtc->config->has_drrs) {
5428                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5429                 return;
5430         }
5431
5432         mutex_lock(&dev_priv->drrs.mutex);
5433         if (WARN_ON(dev_priv->drrs.dp)) {
5434                 DRM_ERROR("DRRS already enabled\n");
5435                 goto unlock;
5436         }
5437
5438         dev_priv->drrs.busy_frontbuffer_bits = 0;
5439
5440         dev_priv->drrs.dp = intel_dp;
5441
5442 unlock:
5443         mutex_unlock(&dev_priv->drrs.mutex);
5444 }
5445
5446 /**
5447  * intel_edp_drrs_disable - Disable DRRS
5448  * @intel_dp: DP struct
5449  *
5450  */
5451 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5452 {
5453         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5454         struct drm_i915_private *dev_priv = dev->dev_private;
5455         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5456         struct drm_crtc *crtc = dig_port->base.base.crtc;
5457         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458
5459         if (!intel_crtc->config->has_drrs)
5460                 return;
5461
5462         mutex_lock(&dev_priv->drrs.mutex);
5463         if (!dev_priv->drrs.dp) {
5464                 mutex_unlock(&dev_priv->drrs.mutex);
5465                 return;
5466         }
5467
5468         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5469                 intel_dp_set_drrs_state(dev_priv->dev,
5470                         intel_dp->attached_connector->panel.
5471                         fixed_mode->vrefresh);
5472
5473         dev_priv->drrs.dp = NULL;
5474         mutex_unlock(&dev_priv->drrs.mutex);
5475
5476         cancel_delayed_work_sync(&dev_priv->drrs.work);
5477 }
5478
5479 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5480 {
5481         struct drm_i915_private *dev_priv =
5482                 container_of(work, typeof(*dev_priv), drrs.work.work);
5483         struct intel_dp *intel_dp;
5484
5485         mutex_lock(&dev_priv->drrs.mutex);
5486
5487         intel_dp = dev_priv->drrs.dp;
5488
5489         if (!intel_dp)
5490                 goto unlock;
5491
5492         /*
5493          * The delayed work can race with an invalidate hence we need to
5494          * recheck.
5495          */
5496
5497         if (dev_priv->drrs.busy_frontbuffer_bits)
5498                 goto unlock;
5499
5500         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5501                 intel_dp_set_drrs_state(dev_priv->dev,
5502                         intel_dp->attached_connector->panel.
5503                         downclock_mode->vrefresh);
5504
5505 unlock:
5506         mutex_unlock(&dev_priv->drrs.mutex);
5507 }
5508
5509 /**
5510  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5511  * @dev: DRM device
5512  * @frontbuffer_bits: frontbuffer plane tracking bits
5513  *
5514  * This function gets called everytime rendering on the given planes start.
5515  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5516  *
5517  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5518  */
5519 void intel_edp_drrs_invalidate(struct drm_device *dev,
5520                 unsigned frontbuffer_bits)
5521 {
5522         struct drm_i915_private *dev_priv = dev->dev_private;
5523         struct drm_crtc *crtc;
5524         enum pipe pipe;
5525
5526         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5527                 return;
5528
5529         cancel_delayed_work(&dev_priv->drrs.work);
5530
5531         mutex_lock(&dev_priv->drrs.mutex);
5532         if (!dev_priv->drrs.dp) {
5533                 mutex_unlock(&dev_priv->drrs.mutex);
5534                 return;
5535         }
5536
5537         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5538         pipe = to_intel_crtc(crtc)->pipe;
5539
5540         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5541         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5542
5543         /* invalidate means busy screen hence upclock */
5544         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5545                 intel_dp_set_drrs_state(dev_priv->dev,
5546                                 dev_priv->drrs.dp->attached_connector->panel.
5547                                 fixed_mode->vrefresh);
5548
5549         mutex_unlock(&dev_priv->drrs.mutex);
5550 }
5551
5552 /**
5553  * intel_edp_drrs_flush - Restart Idleness DRRS
5554  * @dev: DRM device
5555  * @frontbuffer_bits: frontbuffer plane tracking bits
5556  *
5557  * This function gets called every time rendering on the given planes has
5558  * completed or flip on a crtc is completed. So DRRS should be upclocked
5559  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5560  * if no other planes are dirty.
5561  *
5562  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5563  */
5564 void intel_edp_drrs_flush(struct drm_device *dev,
5565                 unsigned frontbuffer_bits)
5566 {
5567         struct drm_i915_private *dev_priv = dev->dev_private;
5568         struct drm_crtc *crtc;
5569         enum pipe pipe;
5570
5571         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5572                 return;
5573
5574         cancel_delayed_work(&dev_priv->drrs.work);
5575
5576         mutex_lock(&dev_priv->drrs.mutex);
5577         if (!dev_priv->drrs.dp) {
5578                 mutex_unlock(&dev_priv->drrs.mutex);
5579                 return;
5580         }
5581
5582         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5583         pipe = to_intel_crtc(crtc)->pipe;
5584
5585         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5586         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5587
5588         /* flush means busy screen hence upclock */
5589         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5590                 intel_dp_set_drrs_state(dev_priv->dev,
5591                                 dev_priv->drrs.dp->attached_connector->panel.
5592                                 fixed_mode->vrefresh);
5593
5594         /*
5595          * flush also means no more activity hence schedule downclock, if all
5596          * other fbs are quiescent too
5597          */
5598         if (!dev_priv->drrs.busy_frontbuffer_bits)
5599                 schedule_delayed_work(&dev_priv->drrs.work,
5600                                 msecs_to_jiffies(1000));
5601         mutex_unlock(&dev_priv->drrs.mutex);
5602 }
5603
5604 /**
5605  * DOC: Display Refresh Rate Switching (DRRS)
5606  *
5607  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5608  * which enables swtching between low and high refresh rates,
5609  * dynamically, based on the usage scenario. This feature is applicable
5610  * for internal panels.
5611  *
5612  * Indication that the panel supports DRRS is given by the panel EDID, which
5613  * would list multiple refresh rates for one resolution.
5614  *
5615  * DRRS is of 2 types - static and seamless.
5616  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5617  * (may appear as a blink on screen) and is used in dock-undock scenario.
5618  * Seamless DRRS involves changing RR without any visual effect to the user
5619  * and can be used during normal system usage. This is done by programming
5620  * certain registers.
5621  *
5622  * Support for static/seamless DRRS may be indicated in the VBT based on
5623  * inputs from the panel spec.
5624  *
5625  * DRRS saves power by switching to low RR based on usage scenarios.
5626  *
5627  * eDP DRRS:-
5628  *        The implementation is based on frontbuffer tracking implementation.
5629  * When there is a disturbance on the screen triggered by user activity or a
5630  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5631  * When there is no movement on screen, after a timeout of 1 second, a switch
5632  * to low RR is made.
5633  *        For integration with frontbuffer tracking code,
5634  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5635  *
5636  * DRRS can be further extended to support other internal panels and also
5637  * the scenario of video playback wherein RR is set based on the rate
5638  * requested by userspace.
5639  */
5640
5641 /**
5642  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5643  * @intel_connector: eDP connector
5644  * @fixed_mode: preferred mode of panel
5645  *
5646  * This function is  called only once at driver load to initialize basic
5647  * DRRS stuff.
5648  *
5649  * Returns:
5650  * Downclock mode if panel supports it, else return NULL.
5651  * DRRS support is determined by the presence of downclock mode (apart
5652  * from VBT setting).
5653  */
5654 static struct drm_display_mode *
5655 intel_dp_drrs_init(struct intel_connector *intel_connector,
5656                 struct drm_display_mode *fixed_mode)
5657 {
5658         struct drm_connector *connector = &intel_connector->base;
5659         struct drm_device *dev = connector->dev;
5660         struct drm_i915_private *dev_priv = dev->dev_private;
5661         struct drm_display_mode *downclock_mode = NULL;
5662
5663         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5664         mutex_init(&dev_priv->drrs.mutex);
5665
5666         if (INTEL_INFO(dev)->gen <= 6) {
5667                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5668                 return NULL;
5669         }
5670
5671         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5672                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5673                 return NULL;
5674         }
5675
5676         downclock_mode = intel_find_panel_downclock
5677                                         (dev, fixed_mode, connector);
5678
5679         if (!downclock_mode) {
5680                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5681                 return NULL;
5682         }
5683
5684         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5685
5686         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5687         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5688         return downclock_mode;
5689 }
5690
5691 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5692                                      struct intel_connector *intel_connector)
5693 {
5694         struct drm_connector *connector = &intel_connector->base;
5695         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5696         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5697         struct drm_device *dev = intel_encoder->base.dev;
5698         struct drm_i915_private *dev_priv = dev->dev_private;
5699         struct drm_display_mode *fixed_mode = NULL;
5700         struct drm_display_mode *downclock_mode = NULL;
5701         bool has_dpcd;
5702         struct drm_display_mode *scan;
5703         struct edid *edid;
5704         enum pipe pipe = INVALID_PIPE;
5705
5706         if (!is_edp(intel_dp))
5707                 return true;
5708
5709         pps_lock(intel_dp);
5710         intel_edp_panel_vdd_sanitize(intel_dp);
5711         pps_unlock(intel_dp);
5712
5713         /* Cache DPCD and EDID for edp. */
5714         has_dpcd = intel_dp_get_dpcd(intel_dp);
5715
5716         if (has_dpcd) {
5717                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5718                         dev_priv->no_aux_handshake =
5719                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5720                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5721         } else {
5722                 /* if this fails, presume the device is a ghost */
5723                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5724                 return false;
5725         }
5726
5727         /* We now know it's not a ghost, init power sequence regs. */
5728         pps_lock(intel_dp);
5729         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5730         pps_unlock(intel_dp);
5731
5732         mutex_lock(&dev->mode_config.mutex);
5733         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5734         if (edid) {
5735                 if (drm_add_edid_modes(connector, edid)) {
5736                         drm_mode_connector_update_edid_property(connector,
5737                                                                 edid);
5738                         drm_edid_to_eld(connector, edid);
5739                 } else {
5740                         kfree(edid);
5741                         edid = ERR_PTR(-EINVAL);
5742                 }
5743         } else {
5744                 edid = ERR_PTR(-ENOENT);
5745         }
5746         intel_connector->edid = edid;
5747
5748         /* prefer fixed mode from EDID if available */
5749         list_for_each_entry(scan, &connector->probed_modes, head) {
5750                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5751                         fixed_mode = drm_mode_duplicate(dev, scan);
5752                         downclock_mode = intel_dp_drrs_init(
5753                                                 intel_connector, fixed_mode);
5754                         break;
5755                 }
5756         }
5757
5758         /* fallback to VBT if available for eDP */
5759         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5760                 fixed_mode = drm_mode_duplicate(dev,
5761                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5762                 if (fixed_mode)
5763                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5764         }
5765         mutex_unlock(&dev->mode_config.mutex);
5766
5767         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5768                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5769                 register_reboot_notifier(&intel_dp->edp_notifier);
5770
5771                 /*
5772                  * Figure out the current pipe for the initial backlight setup.
5773                  * If the current pipe isn't valid, try the PPS pipe, and if that
5774                  * fails just assume pipe A.
5775                  */
5776                 if (IS_CHERRYVIEW(dev))
5777                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5778                 else
5779                         pipe = PORT_TO_PIPE(intel_dp->DP);
5780
5781                 if (pipe != PIPE_A && pipe != PIPE_B)
5782                         pipe = intel_dp->pps_pipe;
5783
5784                 if (pipe != PIPE_A && pipe != PIPE_B)
5785                         pipe = PIPE_A;
5786
5787                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5788                               pipe_name(pipe));
5789         }
5790
5791         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5792         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5793         intel_panel_setup_backlight(connector, pipe);
5794
5795         return true;
5796 }
5797
5798 bool
5799 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5800                         struct intel_connector *intel_connector)
5801 {
5802         struct drm_connector *connector = &intel_connector->base;
5803         struct intel_dp *intel_dp = &intel_dig_port->dp;
5804         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5805         struct drm_device *dev = intel_encoder->base.dev;
5806         struct drm_i915_private *dev_priv = dev->dev_private;
5807         enum port port = intel_dig_port->port;
5808         int type, ret;
5809
5810         if (WARN(intel_dig_port->max_lanes < 1,
5811                  "Not enough lanes (%d) for DP on port %c\n",
5812                  intel_dig_port->max_lanes, port_name(port)))
5813                 return false;
5814
5815         intel_dp->pps_pipe = INVALID_PIPE;
5816
5817         /* intel_dp vfuncs */
5818         if (INTEL_INFO(dev)->gen >= 9)
5819                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5820         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5821                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5822         else if (HAS_PCH_SPLIT(dev))
5823                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5824         else
5825                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5826
5827         if (INTEL_INFO(dev)->gen >= 9)
5828                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5829         else
5830                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5831
5832         if (HAS_DDI(dev))
5833                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5834
5835         /* Preserve the current hw state. */
5836         intel_dp->DP = I915_READ(intel_dp->output_reg);
5837         intel_dp->attached_connector = intel_connector;
5838
5839         if (intel_dp_is_edp(dev, port))
5840                 type = DRM_MODE_CONNECTOR_eDP;
5841         else
5842                 type = DRM_MODE_CONNECTOR_DisplayPort;
5843
5844         /*
5845          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5846          * for DP the encoder type can be set by the caller to
5847          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5848          */
5849         if (type == DRM_MODE_CONNECTOR_eDP)
5850                 intel_encoder->type = INTEL_OUTPUT_EDP;
5851
5852         /* eDP only on port B and/or C on vlv/chv */
5853         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5854                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5855                 return false;
5856
5857         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5858                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5859                         port_name(port));
5860
5861         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5862         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5863
5864         connector->interlace_allowed = true;
5865         connector->doublescan_allowed = 0;
5866
5867         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5868                           edp_panel_vdd_work);
5869
5870         intel_connector_attach_encoder(intel_connector, intel_encoder);
5871         drm_connector_register(connector);
5872
5873         if (HAS_DDI(dev))
5874                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5875         else
5876                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5877         intel_connector->unregister = intel_dp_connector_unregister;
5878
5879         /* Set up the hotplug pin. */
5880         switch (port) {
5881         case PORT_A:
5882                 intel_encoder->hpd_pin = HPD_PORT_A;
5883                 break;
5884         case PORT_B:
5885                 intel_encoder->hpd_pin = HPD_PORT_B;
5886                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5887                         intel_encoder->hpd_pin = HPD_PORT_A;
5888                 break;
5889         case PORT_C:
5890                 intel_encoder->hpd_pin = HPD_PORT_C;
5891                 break;
5892         case PORT_D:
5893                 intel_encoder->hpd_pin = HPD_PORT_D;
5894                 break;
5895         case PORT_E:
5896                 intel_encoder->hpd_pin = HPD_PORT_E;
5897                 break;
5898         default:
5899                 BUG();
5900         }
5901
5902         if (is_edp(intel_dp)) {
5903                 pps_lock(intel_dp);
5904                 intel_dp_init_panel_power_timestamps(intel_dp);
5905                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5906                         vlv_initial_power_sequencer_setup(intel_dp);
5907                 else
5908                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5909                 pps_unlock(intel_dp);
5910         }
5911
5912         ret = intel_dp_aux_init(intel_dp, intel_connector);
5913         if (ret)
5914                 goto fail;
5915
5916         /* init MST on ports that can support it */
5917         if (HAS_DP_MST(dev) &&
5918             (port == PORT_B || port == PORT_C || port == PORT_D))
5919                 intel_dp_mst_encoder_init(intel_dig_port,
5920                                           intel_connector->base.base.id);
5921
5922         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5923                 intel_dp_aux_fini(intel_dp);
5924                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5925                 goto fail;
5926         }
5927
5928         intel_dp_add_properties(intel_dp, connector);
5929
5930         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5931          * 0xd.  Failure to do so will result in spurious interrupts being
5932          * generated on the port when a cable is not attached.
5933          */
5934         if (IS_G4X(dev) && !IS_GM45(dev)) {
5935                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5936                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5937         }
5938
5939         i915_debugfs_connector_add(connector);
5940
5941         return true;
5942
5943 fail:
5944         if (is_edp(intel_dp)) {
5945                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5946                 /*
5947                  * vdd might still be enabled do to the delayed vdd off.
5948                  * Make sure vdd is actually turned off here.
5949                  */
5950                 pps_lock(intel_dp);
5951                 edp_panel_vdd_off_sync(intel_dp);
5952                 pps_unlock(intel_dp);
5953         }
5954         drm_connector_unregister(connector);
5955         drm_connector_cleanup(connector);
5956
5957         return false;
5958 }
5959
5960 void
5961 intel_dp_init(struct drm_device *dev,
5962               i915_reg_t output_reg, enum port port)
5963 {
5964         struct drm_i915_private *dev_priv = dev->dev_private;
5965         struct intel_digital_port *intel_dig_port;
5966         struct intel_encoder *intel_encoder;
5967         struct drm_encoder *encoder;
5968         struct intel_connector *intel_connector;
5969
5970         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5971         if (!intel_dig_port)
5972                 return;
5973
5974         intel_connector = intel_connector_alloc();
5975         if (!intel_connector)
5976                 goto err_connector_alloc;
5977
5978         intel_encoder = &intel_dig_port->base;
5979         encoder = &intel_encoder->base;
5980
5981         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5982                              DRM_MODE_ENCODER_TMDS, NULL))
5983                 goto err_encoder_init;
5984
5985         intel_encoder->compute_config = intel_dp_compute_config;
5986         intel_encoder->disable = intel_disable_dp;
5987         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5988         intel_encoder->get_config = intel_dp_get_config;
5989         intel_encoder->suspend = intel_dp_encoder_suspend;
5990         if (IS_CHERRYVIEW(dev)) {
5991                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5992                 intel_encoder->pre_enable = chv_pre_enable_dp;
5993                 intel_encoder->enable = vlv_enable_dp;
5994                 intel_encoder->post_disable = chv_post_disable_dp;
5995                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5996         } else if (IS_VALLEYVIEW(dev)) {
5997                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5998                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5999                 intel_encoder->enable = vlv_enable_dp;
6000                 intel_encoder->post_disable = vlv_post_disable_dp;
6001         } else {
6002                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6003                 intel_encoder->enable = g4x_enable_dp;
6004                 if (INTEL_INFO(dev)->gen >= 5)
6005                         intel_encoder->post_disable = ilk_post_disable_dp;
6006         }
6007
6008         intel_dig_port->port = port;
6009         intel_dig_port->dp.output_reg = output_reg;
6010         intel_dig_port->max_lanes = 4;
6011
6012         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6013         if (IS_CHERRYVIEW(dev)) {
6014                 if (port == PORT_D)
6015                         intel_encoder->crtc_mask = 1 << 2;
6016                 else
6017                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6018         } else {
6019                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6020         }
6021         intel_encoder->cloneable = 0;
6022
6023         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6024         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6025
6026         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6027                 goto err_init_connector;
6028
6029         return;
6030
6031 err_init_connector:
6032         drm_encoder_cleanup(encoder);
6033 err_encoder_init:
6034         kfree(intel_connector);
6035 err_connector_alloc:
6036         kfree(intel_dig_port);
6037
6038         return;
6039 }
6040
6041 void intel_dp_mst_suspend(struct drm_device *dev)
6042 {
6043         struct drm_i915_private *dev_priv = dev->dev_private;
6044         int i;
6045
6046         /* disable MST */
6047         for (i = 0; i < I915_MAX_PORTS; i++) {
6048                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6049                 if (!intel_dig_port)
6050                         continue;
6051
6052                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6053                         if (!intel_dig_port->dp.can_mst)
6054                                 continue;
6055                         if (intel_dig_port->dp.is_mst)
6056                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6057                 }
6058         }
6059 }
6060
6061 void intel_dp_mst_resume(struct drm_device *dev)
6062 {
6063         struct drm_i915_private *dev_priv = dev->dev_private;
6064         int i;
6065
6066         for (i = 0; i < I915_MAX_PORTS; i++) {
6067                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6068                 if (!intel_dig_port)
6069                         continue;
6070                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6071                         int ret;
6072
6073                         if (!intel_dig_port->dp.can_mst)
6074                                 continue;
6075
6076                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6077                         if (ret != 0) {
6078                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6079                         }
6080                 }
6081         }
6082 }