]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge remote-tracking branch 'driver-core/driver-core-next'
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static int
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
408
409         /* dp aux is extremely sensitive to irq latency, hence request the
410          * lowest possible wakeup latency and so prevent the cpu from going into
411          * deep sleep states.
412          */
413         pm_qos_update_request(&dev_priv->pm_qos, 0);
414
415         intel_dp_check_edp(intel_dp);
416
417         if (IS_GEN6(dev))
418                 precharge = 3;
419         else
420                 precharge = 5;
421
422         intel_aux_display_runtime_get(dev_priv);
423
424         /* Try to wait for any previous AUX channel activity */
425         for (try = 0; try < 3; try++) {
426                 status = I915_READ_NOTRACE(ch_ctl);
427                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428                         break;
429                 msleep(1);
430         }
431
432         if (try == 3) {
433                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
434                      I915_READ(ch_ctl));
435                 ret = -EBUSY;
436                 goto out;
437         }
438
439         /* Only 5 data registers! */
440         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
441                 ret = -E2BIG;
442                 goto out;
443         }
444
445         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
446                 /* Must try at least 3 times according to DP spec */
447                 for (try = 0; try < 5; try++) {
448                         /* Load the send data into the aux channel data registers */
449                         for (i = 0; i < send_bytes; i += 4)
450                                 I915_WRITE(ch_data + i,
451                                            pack_aux(send + i, send_bytes - i));
452
453                         /* Send the command and wait for it to complete */
454                         I915_WRITE(ch_ctl,
455                                    DP_AUX_CH_CTL_SEND_BUSY |
456                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
457                                    DP_AUX_CH_CTL_TIME_OUT_400us |
458                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
459                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
460                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
461                                    DP_AUX_CH_CTL_DONE |
462                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
463                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
464
465                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
466
467                         /* Clear done status and any errors */
468                         I915_WRITE(ch_ctl,
469                                    status |
470                                    DP_AUX_CH_CTL_DONE |
471                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
472                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
475                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
476                                 continue;
477                         if (status & DP_AUX_CH_CTL_DONE)
478                                 break;
479                 }
480                 if (status & DP_AUX_CH_CTL_DONE)
481                         break;
482         }
483
484         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
485                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
486                 ret = -EBUSY;
487                 goto out;
488         }
489
490         /* Check for timeout or receive error.
491          * Timeouts occur when the sink is not connected
492          */
493         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
494                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
495                 ret = -EIO;
496                 goto out;
497         }
498
499         /* Timeouts occur when the device isn't connected, so they're
500          * "normal" -- don't fill the kernel log with these */
501         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
502                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
503                 ret = -ETIMEDOUT;
504                 goto out;
505         }
506
507         /* Unload any bytes sent back from the other side */
508         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
509                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
510         if (recv_bytes > recv_size)
511                 recv_bytes = recv_size;
512
513         for (i = 0; i < recv_bytes; i += 4)
514                 unpack_aux(I915_READ(ch_data + i),
515                            recv + i, recv_bytes - i);
516
517         ret = recv_bytes;
518 out:
519         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
520         intel_aux_display_runtime_put(dev_priv);
521
522         return ret;
523 }
524
525 /* Write data to the aux channel in native mode */
526 static int
527 intel_dp_aux_native_write(struct intel_dp *intel_dp,
528                           uint16_t address, uint8_t *send, int send_bytes)
529 {
530         int ret;
531         uint8_t msg[20];
532         int msg_bytes;
533         uint8_t ack;
534
535         if (WARN_ON(send_bytes > 16))
536                 return -E2BIG;
537
538         intel_dp_check_edp(intel_dp);
539         msg[0] = AUX_NATIVE_WRITE << 4;
540         msg[1] = address >> 8;
541         msg[2] = address & 0xff;
542         msg[3] = send_bytes - 1;
543         memcpy(&msg[4], send, send_bytes);
544         msg_bytes = send_bytes + 4;
545         for (;;) {
546                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
547                 if (ret < 0)
548                         return ret;
549                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
550                         break;
551                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552                         udelay(100);
553                 else
554                         return -EIO;
555         }
556         return send_bytes;
557 }
558
559 /* Write a single byte to the aux channel in native mode */
560 static int
561 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
562                             uint16_t address, uint8_t byte)
563 {
564         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
565 }
566
567 /* read bytes from a native aux channel */
568 static int
569 intel_dp_aux_native_read(struct intel_dp *intel_dp,
570                          uint16_t address, uint8_t *recv, int recv_bytes)
571 {
572         uint8_t msg[4];
573         int msg_bytes;
574         uint8_t reply[20];
575         int reply_bytes;
576         uint8_t ack;
577         int ret;
578
579         if (WARN_ON(recv_bytes > 19))
580                 return -E2BIG;
581
582         intel_dp_check_edp(intel_dp);
583         msg[0] = AUX_NATIVE_READ << 4;
584         msg[1] = address >> 8;
585         msg[2] = address & 0xff;
586         msg[3] = recv_bytes - 1;
587
588         msg_bytes = 4;
589         reply_bytes = recv_bytes + 1;
590
591         for (;;) {
592                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
593                                       reply, reply_bytes);
594                 if (ret == 0)
595                         return -EPROTO;
596                 if (ret < 0)
597                         return ret;
598                 ack = reply[0];
599                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
600                         memcpy(recv, reply + 1, ret - 1);
601                         return ret - 1;
602                 }
603                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
604                         udelay(100);
605                 else
606                         return -EIO;
607         }
608 }
609
610 static int
611 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
612                     uint8_t write_byte, uint8_t *read_byte)
613 {
614         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
615         struct intel_dp *intel_dp = container_of(adapter,
616                                                 struct intel_dp,
617                                                 adapter);
618         uint16_t address = algo_data->address;
619         uint8_t msg[5];
620         uint8_t reply[2];
621         unsigned retry;
622         int msg_bytes;
623         int reply_bytes;
624         int ret;
625
626         intel_dp_check_edp(intel_dp);
627         /* Set up the command byte */
628         if (mode & MODE_I2C_READ)
629                 msg[0] = AUX_I2C_READ << 4;
630         else
631                 msg[0] = AUX_I2C_WRITE << 4;
632
633         if (!(mode & MODE_I2C_STOP))
634                 msg[0] |= AUX_I2C_MOT << 4;
635
636         msg[1] = address >> 8;
637         msg[2] = address;
638
639         switch (mode) {
640         case MODE_I2C_WRITE:
641                 msg[3] = 0;
642                 msg[4] = write_byte;
643                 msg_bytes = 5;
644                 reply_bytes = 1;
645                 break;
646         case MODE_I2C_READ:
647                 msg[3] = 0;
648                 msg_bytes = 4;
649                 reply_bytes = 2;
650                 break;
651         default:
652                 msg_bytes = 3;
653                 reply_bytes = 1;
654                 break;
655         }
656
657         /*
658          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
659          * required to retry at least seven times upon receiving AUX_DEFER
660          * before giving up the AUX transaction.
661          */
662         for (retry = 0; retry < 7; retry++) {
663                 ret = intel_dp_aux_ch(intel_dp,
664                                       msg, msg_bytes,
665                                       reply, reply_bytes);
666                 if (ret < 0) {
667                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
668                         return ret;
669                 }
670
671                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
672                 case AUX_NATIVE_REPLY_ACK:
673                         /* I2C-over-AUX Reply field is only valid
674                          * when paired with AUX ACK.
675                          */
676                         break;
677                 case AUX_NATIVE_REPLY_NACK:
678                         DRM_DEBUG_KMS("aux_ch native nack\n");
679                         return -EREMOTEIO;
680                 case AUX_NATIVE_REPLY_DEFER:
681                         /*
682                          * For now, just give more slack to branch devices. We
683                          * could check the DPCD for I2C bit rate capabilities,
684                          * and if available, adjust the interval. We could also
685                          * be more careful with DP-to-Legacy adapters where a
686                          * long legacy cable may force very low I2C bit rates.
687                          */
688                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
689                             DP_DWN_STRM_PORT_PRESENT)
690                                 usleep_range(500, 600);
691                         else
692                                 usleep_range(300, 400);
693                         continue;
694                 default:
695                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
696                                   reply[0]);
697                         return -EREMOTEIO;
698                 }
699
700                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
701                 case AUX_I2C_REPLY_ACK:
702                         if (mode == MODE_I2C_READ) {
703                                 *read_byte = reply[1];
704                         }
705                         return reply_bytes - 1;
706                 case AUX_I2C_REPLY_NACK:
707                         DRM_DEBUG_KMS("aux_i2c nack\n");
708                         return -EREMOTEIO;
709                 case AUX_I2C_REPLY_DEFER:
710                         DRM_DEBUG_KMS("aux_i2c defer\n");
711                         udelay(100);
712                         break;
713                 default:
714                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
715                         return -EREMOTEIO;
716                 }
717         }
718
719         DRM_ERROR("too many retries, giving up\n");
720         return -EREMOTEIO;
721 }
722
723 static int
724 intel_dp_i2c_init(struct intel_dp *intel_dp,
725                   struct intel_connector *intel_connector, const char *name)
726 {
727         int     ret;
728
729         DRM_DEBUG_KMS("i2c_init %s\n", name);
730         intel_dp->algo.running = false;
731         intel_dp->algo.address = 0;
732         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
733
734         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
735         intel_dp->adapter.owner = THIS_MODULE;
736         intel_dp->adapter.class = I2C_CLASS_DDC;
737         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
738         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
739         intel_dp->adapter.algo_data = &intel_dp->algo;
740         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
741
742         ironlake_edp_panel_vdd_on(intel_dp);
743         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
744         ironlake_edp_panel_vdd_off(intel_dp, false);
745         return ret;
746 }
747
748 static void
749 intel_dp_set_clock(struct intel_encoder *encoder,
750                    struct intel_crtc_config *pipe_config, int link_bw)
751 {
752         struct drm_device *dev = encoder->base.dev;
753         const struct dp_link_dpll *divisor = NULL;
754         int i, count = 0;
755
756         if (IS_G4X(dev)) {
757                 divisor = gen4_dpll;
758                 count = ARRAY_SIZE(gen4_dpll);
759         } else if (IS_HASWELL(dev)) {
760                 /* Haswell has special-purpose DP DDI clocks. */
761         } else if (HAS_PCH_SPLIT(dev)) {
762                 divisor = pch_dpll;
763                 count = ARRAY_SIZE(pch_dpll);
764         } else if (IS_VALLEYVIEW(dev)) {
765                 divisor = vlv_dpll;
766                 count = ARRAY_SIZE(vlv_dpll);
767         }
768
769         if (divisor && count) {
770                 for (i = 0; i < count; i++) {
771                         if (link_bw == divisor[i].link_bw) {
772                                 pipe_config->dpll = divisor[i].dpll;
773                                 pipe_config->clock_set = true;
774                                 break;
775                         }
776                 }
777         }
778 }
779
780 bool
781 intel_dp_compute_config(struct intel_encoder *encoder,
782                         struct intel_crtc_config *pipe_config)
783 {
784         struct drm_device *dev = encoder->base.dev;
785         struct drm_i915_private *dev_priv = dev->dev_private;
786         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788         enum port port = dp_to_dig_port(intel_dp)->port;
789         struct intel_crtc *intel_crtc = encoder->new_crtc;
790         struct intel_connector *intel_connector = intel_dp->attached_connector;
791         int lane_count, clock;
792         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
794         int bpp, mode_rate;
795         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
796         int link_avail, link_clock;
797
798         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
799                 pipe_config->has_pch_encoder = true;
800
801         pipe_config->has_dp_encoder = true;
802
803         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
804                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
805                                        adjusted_mode);
806                 if (!HAS_PCH_SPLIT(dev))
807                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
808                                                  intel_connector->panel.fitting_mode);
809                 else
810                         intel_pch_panel_fitting(intel_crtc, pipe_config,
811                                                 intel_connector->panel.fitting_mode);
812         }
813
814         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
815                 return false;
816
817         DRM_DEBUG_KMS("DP link computation with max lane count %i "
818                       "max bw %02x pixel clock %iKHz\n",
819                       max_lane_count, bws[max_clock],
820                       adjusted_mode->crtc_clock);
821
822         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
823          * bpc in between. */
824         bpp = pipe_config->pipe_bpp;
825         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp) {
826                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
827                               dev_priv->vbt.edp_bpp);
828                 bpp = min_t(int, bpp, dev_priv->vbt.edp_bpp);
829         }
830
831         for (; bpp >= 6*3; bpp -= 2*3) {
832                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
833                                                    bpp);
834
835                 for (clock = 0; clock <= max_clock; clock++) {
836                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
837                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
838                                 link_avail = intel_dp_max_data_rate(link_clock,
839                                                                     lane_count);
840
841                                 if (mode_rate <= link_avail) {
842                                         goto found;
843                                 }
844                         }
845                 }
846         }
847
848         return false;
849
850 found:
851         if (intel_dp->color_range_auto) {
852                 /*
853                  * See:
854                  * CEA-861-E - 5.1 Default Encoding Parameters
855                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
856                  */
857                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
858                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
859                 else
860                         intel_dp->color_range = 0;
861         }
862
863         if (intel_dp->color_range)
864                 pipe_config->limited_color_range = true;
865
866         intel_dp->link_bw = bws[clock];
867         intel_dp->lane_count = lane_count;
868         pipe_config->pipe_bpp = bpp;
869         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
870
871         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
872                       intel_dp->link_bw, intel_dp->lane_count,
873                       pipe_config->port_clock, bpp);
874         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
875                       mode_rate, link_avail);
876
877         intel_link_compute_m_n(bpp, lane_count,
878                                adjusted_mode->crtc_clock,
879                                pipe_config->port_clock,
880                                &pipe_config->dp_m_n);
881
882         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
883
884         return true;
885 }
886
887 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
888 {
889         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
890         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
891         struct drm_device *dev = crtc->base.dev;
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         u32 dpa_ctl;
894
895         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
896         dpa_ctl = I915_READ(DP_A);
897         dpa_ctl &= ~DP_PLL_FREQ_MASK;
898
899         if (crtc->config.port_clock == 162000) {
900                 /* For a long time we've carried around a ILK-DevA w/a for the
901                  * 160MHz clock. If we're really unlucky, it's still required.
902                  */
903                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
904                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
905                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
906         } else {
907                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
908                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
909         }
910
911         I915_WRITE(DP_A, dpa_ctl);
912
913         POSTING_READ(DP_A);
914         udelay(500);
915 }
916
917 static void intel_dp_mode_set(struct intel_encoder *encoder)
918 {
919         struct drm_device *dev = encoder->base.dev;
920         struct drm_i915_private *dev_priv = dev->dev_private;
921         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
922         enum port port = dp_to_dig_port(intel_dp)->port;
923         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
924         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
925
926         /*
927          * There are four kinds of DP registers:
928          *
929          *      IBX PCH
930          *      SNB CPU
931          *      IVB CPU
932          *      CPT PCH
933          *
934          * IBX PCH and CPU are the same for almost everything,
935          * except that the CPU DP PLL is configured in this
936          * register
937          *
938          * CPT PCH is quite different, having many bits moved
939          * to the TRANS_DP_CTL register instead. That
940          * configuration happens (oddly) in ironlake_pch_enable
941          */
942
943         /* Preserve the BIOS-computed detected bit. This is
944          * supposed to be read-only.
945          */
946         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
947
948         /* Handle DP bits in common between all three register formats */
949         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
950         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
951
952         if (intel_dp->has_audio) {
953                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
954                                  pipe_name(crtc->pipe));
955                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
956                 intel_write_eld(&encoder->base, adjusted_mode);
957         }
958
959         /* Split out the IBX/CPU vs CPT settings */
960
961         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
962                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
963                         intel_dp->DP |= DP_SYNC_HS_HIGH;
964                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
965                         intel_dp->DP |= DP_SYNC_VS_HIGH;
966                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
967
968                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
969                         intel_dp->DP |= DP_ENHANCED_FRAMING;
970
971                 intel_dp->DP |= crtc->pipe << 29;
972         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
973                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
974                         intel_dp->DP |= intel_dp->color_range;
975
976                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
977                         intel_dp->DP |= DP_SYNC_HS_HIGH;
978                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
979                         intel_dp->DP |= DP_SYNC_VS_HIGH;
980                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
981
982                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
983                         intel_dp->DP |= DP_ENHANCED_FRAMING;
984
985                 if (crtc->pipe == 1)
986                         intel_dp->DP |= DP_PIPEB_SELECT;
987         } else {
988                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
989         }
990
991         if (port == PORT_A && !IS_VALLEYVIEW(dev))
992                 ironlake_set_pll_cpu_edp(intel_dp);
993 }
994
995 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
996 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
997
998 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
999 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1000
1001 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1002 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1003
1004 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1005                                        u32 mask,
1006                                        u32 value)
1007 {
1008         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1009         struct drm_i915_private *dev_priv = dev->dev_private;
1010         u32 pp_stat_reg, pp_ctrl_reg;
1011
1012         pp_stat_reg = _pp_stat_reg(intel_dp);
1013         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1014
1015         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1016                         mask, value,
1017                         I915_READ(pp_stat_reg),
1018                         I915_READ(pp_ctrl_reg));
1019
1020         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1021                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1022                                 I915_READ(pp_stat_reg),
1023                                 I915_READ(pp_ctrl_reg));
1024         }
1025 }
1026
1027 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1028 {
1029         DRM_DEBUG_KMS("Wait for panel power on\n");
1030         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1031 }
1032
1033 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1034 {
1035         DRM_DEBUG_KMS("Wait for panel power off time\n");
1036         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1037 }
1038
1039 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1040 {
1041         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1042         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1043 }
1044
1045
1046 /* Read the current pp_control value, unlocking the register if it
1047  * is locked
1048  */
1049
1050 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1051 {
1052         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1053         struct drm_i915_private *dev_priv = dev->dev_private;
1054         u32 control;
1055
1056         control = I915_READ(_pp_ctrl_reg(intel_dp));
1057         control &= ~PANEL_UNLOCK_MASK;
1058         control |= PANEL_UNLOCK_REGS;
1059         return control;
1060 }
1061
1062 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1063 {
1064         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1065         struct drm_i915_private *dev_priv = dev->dev_private;
1066         u32 pp;
1067         u32 pp_stat_reg, pp_ctrl_reg;
1068
1069         if (!is_edp(intel_dp))
1070                 return;
1071         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1072
1073         WARN(intel_dp->want_panel_vdd,
1074              "eDP VDD already requested on\n");
1075
1076         intel_dp->want_panel_vdd = true;
1077
1078         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1079                 DRM_DEBUG_KMS("eDP VDD already on\n");
1080                 return;
1081         }
1082
1083         if (!ironlake_edp_have_panel_power(intel_dp))
1084                 ironlake_wait_panel_power_cycle(intel_dp);
1085
1086         pp = ironlake_get_pp_control(intel_dp);
1087         pp |= EDP_FORCE_VDD;
1088
1089         pp_stat_reg = _pp_stat_reg(intel_dp);
1090         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1091
1092         I915_WRITE(pp_ctrl_reg, pp);
1093         POSTING_READ(pp_ctrl_reg);
1094         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1095                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1096         /*
1097          * If the panel wasn't on, delay before accessing aux channel
1098          */
1099         if (!ironlake_edp_have_panel_power(intel_dp)) {
1100                 DRM_DEBUG_KMS("eDP was not running\n");
1101                 msleep(intel_dp->panel_power_up_delay);
1102         }
1103 }
1104
1105 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1106 {
1107         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1108         struct drm_i915_private *dev_priv = dev->dev_private;
1109         u32 pp;
1110         u32 pp_stat_reg, pp_ctrl_reg;
1111
1112         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1113
1114         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1115                 pp = ironlake_get_pp_control(intel_dp);
1116                 pp &= ~EDP_FORCE_VDD;
1117
1118                 pp_stat_reg = _pp_ctrl_reg(intel_dp);
1119                 pp_ctrl_reg = _pp_stat_reg(intel_dp);
1120
1121                 I915_WRITE(pp_ctrl_reg, pp);
1122                 POSTING_READ(pp_ctrl_reg);
1123
1124                 /* Make sure sequencer is idle before allowing subsequent activity */
1125                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1126                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1127                 msleep(intel_dp->panel_power_down_delay);
1128         }
1129 }
1130
1131 static void ironlake_panel_vdd_work(struct work_struct *__work)
1132 {
1133         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1134                                                  struct intel_dp, panel_vdd_work);
1135         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1136
1137         mutex_lock(&dev->mode_config.mutex);
1138         ironlake_panel_vdd_off_sync(intel_dp);
1139         mutex_unlock(&dev->mode_config.mutex);
1140 }
1141
1142 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1143 {
1144         if (!is_edp(intel_dp))
1145                 return;
1146
1147         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1148         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1149
1150         intel_dp->want_panel_vdd = false;
1151
1152         if (sync) {
1153                 ironlake_panel_vdd_off_sync(intel_dp);
1154         } else {
1155                 /*
1156                  * Queue the timer to fire a long
1157                  * time from now (relative to the power down delay)
1158                  * to keep the panel power up across a sequence of operations
1159                  */
1160                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1161                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1162         }
1163 }
1164
1165 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1166 {
1167         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1168         struct drm_i915_private *dev_priv = dev->dev_private;
1169         u32 pp;
1170         u32 pp_ctrl_reg;
1171
1172         if (!is_edp(intel_dp))
1173                 return;
1174
1175         DRM_DEBUG_KMS("Turn eDP power on\n");
1176
1177         if (ironlake_edp_have_panel_power(intel_dp)) {
1178                 DRM_DEBUG_KMS("eDP power already on\n");
1179                 return;
1180         }
1181
1182         ironlake_wait_panel_power_cycle(intel_dp);
1183
1184         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1185         pp = ironlake_get_pp_control(intel_dp);
1186         if (IS_GEN5(dev)) {
1187                 /* ILK workaround: disable reset around power sequence */
1188                 pp &= ~PANEL_POWER_RESET;
1189                 I915_WRITE(pp_ctrl_reg, pp);
1190                 POSTING_READ(pp_ctrl_reg);
1191         }
1192
1193         pp |= POWER_TARGET_ON;
1194         if (!IS_GEN5(dev))
1195                 pp |= PANEL_POWER_RESET;
1196
1197         I915_WRITE(pp_ctrl_reg, pp);
1198         POSTING_READ(pp_ctrl_reg);
1199
1200         ironlake_wait_panel_on(intel_dp);
1201
1202         if (IS_GEN5(dev)) {
1203                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1204                 I915_WRITE(pp_ctrl_reg, pp);
1205                 POSTING_READ(pp_ctrl_reg);
1206         }
1207 }
1208
1209 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1210 {
1211         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1212         struct drm_i915_private *dev_priv = dev->dev_private;
1213         u32 pp;
1214         u32 pp_ctrl_reg;
1215
1216         if (!is_edp(intel_dp))
1217                 return;
1218
1219         DRM_DEBUG_KMS("Turn eDP power off\n");
1220
1221         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1222
1223         pp = ironlake_get_pp_control(intel_dp);
1224         /* We need to switch off panel power _and_ force vdd, for otherwise some
1225          * panels get very unhappy and cease to work. */
1226         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1227
1228         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1229
1230         I915_WRITE(pp_ctrl_reg, pp);
1231         POSTING_READ(pp_ctrl_reg);
1232
1233         intel_dp->want_panel_vdd = false;
1234
1235         ironlake_wait_panel_off(intel_dp);
1236 }
1237
1238 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1239 {
1240         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1241         struct drm_device *dev = intel_dig_port->base.base.dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1244         u32 pp;
1245         u32 pp_ctrl_reg;
1246
1247         if (!is_edp(intel_dp))
1248                 return;
1249
1250         DRM_DEBUG_KMS("\n");
1251         /*
1252          * If we enable the backlight right away following a panel power
1253          * on, we may see slight flicker as the panel syncs with the eDP
1254          * link.  So delay a bit to make sure the image is solid before
1255          * allowing it to appear.
1256          */
1257         msleep(intel_dp->backlight_on_delay);
1258         pp = ironlake_get_pp_control(intel_dp);
1259         pp |= EDP_BLC_ENABLE;
1260
1261         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1262
1263         I915_WRITE(pp_ctrl_reg, pp);
1264         POSTING_READ(pp_ctrl_reg);
1265
1266         intel_panel_enable_backlight(dev, pipe);
1267 }
1268
1269 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1270 {
1271         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1272         struct drm_i915_private *dev_priv = dev->dev_private;
1273         u32 pp;
1274         u32 pp_ctrl_reg;
1275
1276         if (!is_edp(intel_dp))
1277                 return;
1278
1279         intel_panel_disable_backlight(dev);
1280
1281         DRM_DEBUG_KMS("\n");
1282         pp = ironlake_get_pp_control(intel_dp);
1283         pp &= ~EDP_BLC_ENABLE;
1284
1285         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1286
1287         I915_WRITE(pp_ctrl_reg, pp);
1288         POSTING_READ(pp_ctrl_reg);
1289         msleep(intel_dp->backlight_off_delay);
1290 }
1291
1292 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1293 {
1294         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1295         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1296         struct drm_device *dev = crtc->dev;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         u32 dpa_ctl;
1299
1300         assert_pipe_disabled(dev_priv,
1301                              to_intel_crtc(crtc)->pipe);
1302
1303         DRM_DEBUG_KMS("\n");
1304         dpa_ctl = I915_READ(DP_A);
1305         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1306         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1307
1308         /* We don't adjust intel_dp->DP while tearing down the link, to
1309          * facilitate link retraining (e.g. after hotplug). Hence clear all
1310          * enable bits here to ensure that we don't enable too much. */
1311         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1312         intel_dp->DP |= DP_PLL_ENABLE;
1313         I915_WRITE(DP_A, intel_dp->DP);
1314         POSTING_READ(DP_A);
1315         udelay(200);
1316 }
1317
1318 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1319 {
1320         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1321         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1322         struct drm_device *dev = crtc->dev;
1323         struct drm_i915_private *dev_priv = dev->dev_private;
1324         u32 dpa_ctl;
1325
1326         assert_pipe_disabled(dev_priv,
1327                              to_intel_crtc(crtc)->pipe);
1328
1329         dpa_ctl = I915_READ(DP_A);
1330         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1331              "dp pll off, should be on\n");
1332         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1333
1334         /* We can't rely on the value tracked for the DP register in
1335          * intel_dp->DP because link_down must not change that (otherwise link
1336          * re-training will fail. */
1337         dpa_ctl &= ~DP_PLL_ENABLE;
1338         I915_WRITE(DP_A, dpa_ctl);
1339         POSTING_READ(DP_A);
1340         udelay(200);
1341 }
1342
1343 /* If the sink supports it, try to set the power state appropriately */
1344 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1345 {
1346         int ret, i;
1347
1348         /* Should have a valid DPCD by this point */
1349         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1350                 return;
1351
1352         if (mode != DRM_MODE_DPMS_ON) {
1353                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1354                                                   DP_SET_POWER_D3);
1355                 if (ret != 1)
1356                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1357         } else {
1358                 /*
1359                  * When turning on, we need to retry for 1ms to give the sink
1360                  * time to wake up.
1361                  */
1362                 for (i = 0; i < 3; i++) {
1363                         ret = intel_dp_aux_native_write_1(intel_dp,
1364                                                           DP_SET_POWER,
1365                                                           DP_SET_POWER_D0);
1366                         if (ret == 1)
1367                                 break;
1368                         msleep(1);
1369                 }
1370         }
1371 }
1372
1373 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1374                                   enum pipe *pipe)
1375 {
1376         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1377         enum port port = dp_to_dig_port(intel_dp)->port;
1378         struct drm_device *dev = encoder->base.dev;
1379         struct drm_i915_private *dev_priv = dev->dev_private;
1380         u32 tmp = I915_READ(intel_dp->output_reg);
1381
1382         if (!(tmp & DP_PORT_EN))
1383                 return false;
1384
1385         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1386                 *pipe = PORT_TO_PIPE_CPT(tmp);
1387         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1388                 *pipe = PORT_TO_PIPE(tmp);
1389         } else {
1390                 u32 trans_sel;
1391                 u32 trans_dp;
1392                 int i;
1393
1394                 switch (intel_dp->output_reg) {
1395                 case PCH_DP_B:
1396                         trans_sel = TRANS_DP_PORT_SEL_B;
1397                         break;
1398                 case PCH_DP_C:
1399                         trans_sel = TRANS_DP_PORT_SEL_C;
1400                         break;
1401                 case PCH_DP_D:
1402                         trans_sel = TRANS_DP_PORT_SEL_D;
1403                         break;
1404                 default:
1405                         return true;
1406                 }
1407
1408                 for_each_pipe(i) {
1409                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1410                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1411                                 *pipe = i;
1412                                 return true;
1413                         }
1414                 }
1415
1416                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1417                               intel_dp->output_reg);
1418         }
1419
1420         return true;
1421 }
1422
1423 static void intel_dp_get_config(struct intel_encoder *encoder,
1424                                 struct intel_crtc_config *pipe_config)
1425 {
1426         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1427         u32 tmp, flags = 0;
1428         struct drm_device *dev = encoder->base.dev;
1429         struct drm_i915_private *dev_priv = dev->dev_private;
1430         enum port port = dp_to_dig_port(intel_dp)->port;
1431         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1432         int dotclock;
1433
1434         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1435                 tmp = I915_READ(intel_dp->output_reg);
1436                 if (tmp & DP_SYNC_HS_HIGH)
1437                         flags |= DRM_MODE_FLAG_PHSYNC;
1438                 else
1439                         flags |= DRM_MODE_FLAG_NHSYNC;
1440
1441                 if (tmp & DP_SYNC_VS_HIGH)
1442                         flags |= DRM_MODE_FLAG_PVSYNC;
1443                 else
1444                         flags |= DRM_MODE_FLAG_NVSYNC;
1445         } else {
1446                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1447                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1448                         flags |= DRM_MODE_FLAG_PHSYNC;
1449                 else
1450                         flags |= DRM_MODE_FLAG_NHSYNC;
1451
1452                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1453                         flags |= DRM_MODE_FLAG_PVSYNC;
1454                 else
1455                         flags |= DRM_MODE_FLAG_NVSYNC;
1456         }
1457
1458         pipe_config->adjusted_mode.flags |= flags;
1459
1460         pipe_config->has_dp_encoder = true;
1461
1462         intel_dp_get_m_n(crtc, pipe_config);
1463
1464         if (port == PORT_A) {
1465                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1466                         pipe_config->port_clock = 162000;
1467                 else
1468                         pipe_config->port_clock = 270000;
1469         }
1470
1471         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1472                                             &pipe_config->dp_m_n);
1473
1474         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1475                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1476
1477         pipe_config->adjusted_mode.crtc_clock = dotclock;
1478 }
1479
1480 static bool is_edp_psr(struct drm_device *dev)
1481 {
1482         struct drm_i915_private *dev_priv = dev->dev_private;
1483
1484         return dev_priv->psr.sink_support;
1485 }
1486
1487 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1488 {
1489         struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491         if (!HAS_PSR(dev))
1492                 return false;
1493
1494         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1495 }
1496
1497 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1498                                     struct edp_vsc_psr *vsc_psr)
1499 {
1500         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1501         struct drm_device *dev = dig_port->base.base.dev;
1502         struct drm_i915_private *dev_priv = dev->dev_private;
1503         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1504         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1505         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1506         uint32_t *data = (uint32_t *) vsc_psr;
1507         unsigned int i;
1508
1509         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1510            the video DIP being updated before program video DIP data buffer
1511            registers for DIP being updated. */
1512         I915_WRITE(ctl_reg, 0);
1513         POSTING_READ(ctl_reg);
1514
1515         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1516                 if (i < sizeof(struct edp_vsc_psr))
1517                         I915_WRITE(data_reg + i, *data++);
1518                 else
1519                         I915_WRITE(data_reg + i, 0);
1520         }
1521
1522         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1523         POSTING_READ(ctl_reg);
1524 }
1525
1526 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1527 {
1528         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1529         struct drm_i915_private *dev_priv = dev->dev_private;
1530         struct edp_vsc_psr psr_vsc;
1531
1532         if (intel_dp->psr_setup_done)
1533                 return;
1534
1535         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1536         memset(&psr_vsc, 0, sizeof(psr_vsc));
1537         psr_vsc.sdp_header.HB0 = 0;
1538         psr_vsc.sdp_header.HB1 = 0x7;
1539         psr_vsc.sdp_header.HB2 = 0x2;
1540         psr_vsc.sdp_header.HB3 = 0x8;
1541         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1542
1543         /* Avoid continuous PSR exit by masking memup and hpd */
1544         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1545                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1546
1547         intel_dp->psr_setup_done = true;
1548 }
1549
1550 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1551 {
1552         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1555         int precharge = 0x3;
1556         int msg_size = 5;       /* Header(4) + Message(1) */
1557
1558         /* Enable PSR in sink */
1559         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1560                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1561                                             DP_PSR_ENABLE &
1562                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1563         else
1564                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1565                                             DP_PSR_ENABLE |
1566                                             DP_PSR_MAIN_LINK_ACTIVE);
1567
1568         /* Setup AUX registers */
1569         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1570         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1571         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1572                    DP_AUX_CH_CTL_TIME_OUT_400us |
1573                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1574                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1575                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1576 }
1577
1578 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1579 {
1580         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1581         struct drm_i915_private *dev_priv = dev->dev_private;
1582         uint32_t max_sleep_time = 0x1f;
1583         uint32_t idle_frames = 1;
1584         uint32_t val = 0x0;
1585
1586         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1587                 val |= EDP_PSR_LINK_STANDBY;
1588                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1589                 val |= EDP_PSR_TP1_TIME_0us;
1590                 val |= EDP_PSR_SKIP_AUX_EXIT;
1591         } else
1592                 val |= EDP_PSR_LINK_DISABLE;
1593
1594         I915_WRITE(EDP_PSR_CTL(dev), val |
1595                    EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1596                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1597                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1598                    EDP_PSR_ENABLE);
1599 }
1600
1601 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1602 {
1603         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1604         struct drm_device *dev = dig_port->base.base.dev;
1605         struct drm_i915_private *dev_priv = dev->dev_private;
1606         struct drm_crtc *crtc = dig_port->base.base.crtc;
1607         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1608         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1609         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1610
1611         dev_priv->psr.source_ok = false;
1612
1613         if (!HAS_PSR(dev)) {
1614                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1615                 return false;
1616         }
1617
1618         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1619             (dig_port->port != PORT_A)) {
1620                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1621                 return false;
1622         }
1623
1624         if (!i915_enable_psr) {
1625                 DRM_DEBUG_KMS("PSR disable by flag\n");
1626                 return false;
1627         }
1628
1629         crtc = dig_port->base.base.crtc;
1630         if (crtc == NULL) {
1631                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1632                 return false;
1633         }
1634
1635         intel_crtc = to_intel_crtc(crtc);
1636         if (!intel_crtc_active(crtc)) {
1637                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1638                 return false;
1639         }
1640
1641         obj = to_intel_framebuffer(crtc->fb)->obj;
1642         if (obj->tiling_mode != I915_TILING_X ||
1643             obj->fence_reg == I915_FENCE_REG_NONE) {
1644                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1645                 return false;
1646         }
1647
1648         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1649                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1650                 return false;
1651         }
1652
1653         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1654             S3D_ENABLE) {
1655                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1656                 return false;
1657         }
1658
1659         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1660                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1661                 return false;
1662         }
1663
1664         dev_priv->psr.source_ok = true;
1665         return true;
1666 }
1667
1668 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1669 {
1670         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1671
1672         if (!intel_edp_psr_match_conditions(intel_dp) ||
1673             intel_edp_is_psr_enabled(dev))
1674                 return;
1675
1676         /* Setup PSR once */
1677         intel_edp_psr_setup(intel_dp);
1678
1679         /* Enable PSR on the panel */
1680         intel_edp_psr_enable_sink(intel_dp);
1681
1682         /* Enable PSR on the host */
1683         intel_edp_psr_enable_source(intel_dp);
1684 }
1685
1686 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1687 {
1688         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1689
1690         if (intel_edp_psr_match_conditions(intel_dp) &&
1691             !intel_edp_is_psr_enabled(dev))
1692                 intel_edp_psr_do_enable(intel_dp);
1693 }
1694
1695 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1696 {
1697         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699
1700         if (!intel_edp_is_psr_enabled(dev))
1701                 return;
1702
1703         I915_WRITE(EDP_PSR_CTL(dev),
1704                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1705
1706         /* Wait till PSR is idle */
1707         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1708                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1709                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1710 }
1711
1712 void intel_edp_psr_update(struct drm_device *dev)
1713 {
1714         struct intel_encoder *encoder;
1715         struct intel_dp *intel_dp = NULL;
1716
1717         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1718                 if (encoder->type == INTEL_OUTPUT_EDP) {
1719                         intel_dp = enc_to_intel_dp(&encoder->base);
1720
1721                         if (!is_edp_psr(dev))
1722                                 return;
1723
1724                         if (!intel_edp_psr_match_conditions(intel_dp))
1725                                 intel_edp_psr_disable(intel_dp);
1726                         else
1727                                 if (!intel_edp_is_psr_enabled(dev))
1728                                         intel_edp_psr_do_enable(intel_dp);
1729                 }
1730 }
1731
1732 static void intel_disable_dp(struct intel_encoder *encoder)
1733 {
1734         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1735         enum port port = dp_to_dig_port(intel_dp)->port;
1736         struct drm_device *dev = encoder->base.dev;
1737
1738         /* Make sure the panel is off before trying to change the mode. But also
1739          * ensure that we have vdd while we switch off the panel. */
1740         ironlake_edp_panel_vdd_on(intel_dp);
1741         ironlake_edp_backlight_off(intel_dp);
1742         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1743         ironlake_edp_panel_off(intel_dp);
1744
1745         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1746         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1747                 intel_dp_link_down(intel_dp);
1748 }
1749
1750 static void intel_post_disable_dp(struct intel_encoder *encoder)
1751 {
1752         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1753         enum port port = dp_to_dig_port(intel_dp)->port;
1754         struct drm_device *dev = encoder->base.dev;
1755
1756         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1757                 intel_dp_link_down(intel_dp);
1758                 if (!IS_VALLEYVIEW(dev))
1759                         ironlake_edp_pll_off(intel_dp);
1760         }
1761 }
1762
1763 static void intel_enable_dp(struct intel_encoder *encoder)
1764 {
1765         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1766         struct drm_device *dev = encoder->base.dev;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1769
1770         if (WARN_ON(dp_reg & DP_PORT_EN))
1771                 return;
1772
1773         ironlake_edp_panel_vdd_on(intel_dp);
1774         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1775         intel_dp_start_link_train(intel_dp);
1776         ironlake_edp_panel_on(intel_dp);
1777         ironlake_edp_panel_vdd_off(intel_dp, true);
1778         intel_dp_complete_link_train(intel_dp);
1779         intel_dp_stop_link_train(intel_dp);
1780 }
1781
1782 static void g4x_enable_dp(struct intel_encoder *encoder)
1783 {
1784         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1785
1786         intel_enable_dp(encoder);
1787         ironlake_edp_backlight_on(intel_dp);
1788 }
1789
1790 static void vlv_enable_dp(struct intel_encoder *encoder)
1791 {
1792         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1793
1794         ironlake_edp_backlight_on(intel_dp);
1795 }
1796
1797 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1798 {
1799         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1800         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1801
1802         if (dport->port == PORT_A)
1803                 ironlake_edp_pll_on(intel_dp);
1804 }
1805
1806 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1807 {
1808         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1809         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1810         struct drm_device *dev = encoder->base.dev;
1811         struct drm_i915_private *dev_priv = dev->dev_private;
1812         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1813         int port = vlv_dport_to_channel(dport);
1814         int pipe = intel_crtc->pipe;
1815         struct edp_power_seq power_seq;
1816         u32 val;
1817
1818         mutex_lock(&dev_priv->dpio_lock);
1819
1820         val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1821         val = 0;
1822         if (pipe)
1823                 val |= (1<<21);
1824         else
1825                 val &= ~(1<<21);
1826         val |= 0x001000c4;
1827         vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1828         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1829         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1830
1831         mutex_unlock(&dev_priv->dpio_lock);
1832
1833         /* init power sequencer on this pipe and port */
1834         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1835         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1836                                                       &power_seq);
1837
1838         intel_enable_dp(encoder);
1839
1840         vlv_wait_port_ready(dev_priv, port);
1841 }
1842
1843 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1844 {
1845         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1846         struct drm_device *dev = encoder->base.dev;
1847         struct drm_i915_private *dev_priv = dev->dev_private;
1848         struct intel_crtc *intel_crtc =
1849                 to_intel_crtc(encoder->base.crtc);
1850         int port = vlv_dport_to_channel(dport);
1851         int pipe = intel_crtc->pipe;
1852
1853         /* Program Tx lane resets to default */
1854         mutex_lock(&dev_priv->dpio_lock);
1855         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1856                          DPIO_PCS_TX_LANE2_RESET |
1857                          DPIO_PCS_TX_LANE1_RESET);
1858         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1859                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1860                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1861                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1862                                  DPIO_PCS_CLK_SOFT_RESET);
1863
1864         /* Fix up inter-pair skew failure */
1865         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1866         vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1867         vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1868         mutex_unlock(&dev_priv->dpio_lock);
1869 }
1870
1871 /*
1872  * Native read with retry for link status and receiver capability reads for
1873  * cases where the sink may still be asleep.
1874  */
1875 static bool
1876 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1877                                uint8_t *recv, int recv_bytes)
1878 {
1879         int ret, i;
1880
1881         /*
1882          * Sinks are *supposed* to come up within 1ms from an off state,
1883          * but we're also supposed to retry 3 times per the spec.
1884          */
1885         for (i = 0; i < 3; i++) {
1886                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1887                                                recv_bytes);
1888                 if (ret == recv_bytes)
1889                         return true;
1890                 msleep(1);
1891         }
1892
1893         return false;
1894 }
1895
1896 /*
1897  * Fetch AUX CH registers 0x202 - 0x207 which contain
1898  * link status information
1899  */
1900 static bool
1901 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1902 {
1903         return intel_dp_aux_native_read_retry(intel_dp,
1904                                               DP_LANE0_1_STATUS,
1905                                               link_status,
1906                                               DP_LINK_STATUS_SIZE);
1907 }
1908
1909 #if 0
1910 static char     *voltage_names[] = {
1911         "0.4V", "0.6V", "0.8V", "1.2V"
1912 };
1913 static char     *pre_emph_names[] = {
1914         "0dB", "3.5dB", "6dB", "9.5dB"
1915 };
1916 static char     *link_train_names[] = {
1917         "pattern 1", "pattern 2", "idle", "off"
1918 };
1919 #endif
1920
1921 /*
1922  * These are source-specific values; current Intel hardware supports
1923  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1924  */
1925
1926 static uint8_t
1927 intel_dp_voltage_max(struct intel_dp *intel_dp)
1928 {
1929         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1930         enum port port = dp_to_dig_port(intel_dp)->port;
1931
1932         if (IS_VALLEYVIEW(dev))
1933                 return DP_TRAIN_VOLTAGE_SWING_1200;
1934         else if (IS_GEN7(dev) && port == PORT_A)
1935                 return DP_TRAIN_VOLTAGE_SWING_800;
1936         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1937                 return DP_TRAIN_VOLTAGE_SWING_1200;
1938         else
1939                 return DP_TRAIN_VOLTAGE_SWING_800;
1940 }
1941
1942 static uint8_t
1943 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1944 {
1945         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1946         enum port port = dp_to_dig_port(intel_dp)->port;
1947
1948         if (HAS_DDI(dev)) {
1949                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1950                 case DP_TRAIN_VOLTAGE_SWING_400:
1951                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1952                 case DP_TRAIN_VOLTAGE_SWING_600:
1953                         return DP_TRAIN_PRE_EMPHASIS_6;
1954                 case DP_TRAIN_VOLTAGE_SWING_800:
1955                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1956                 case DP_TRAIN_VOLTAGE_SWING_1200:
1957                 default:
1958                         return DP_TRAIN_PRE_EMPHASIS_0;
1959                 }
1960         } else if (IS_VALLEYVIEW(dev)) {
1961                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1962                 case DP_TRAIN_VOLTAGE_SWING_400:
1963                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1964                 case DP_TRAIN_VOLTAGE_SWING_600:
1965                         return DP_TRAIN_PRE_EMPHASIS_6;
1966                 case DP_TRAIN_VOLTAGE_SWING_800:
1967                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1968                 case DP_TRAIN_VOLTAGE_SWING_1200:
1969                 default:
1970                         return DP_TRAIN_PRE_EMPHASIS_0;
1971                 }
1972         } else if (IS_GEN7(dev) && port == PORT_A) {
1973                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1974                 case DP_TRAIN_VOLTAGE_SWING_400:
1975                         return DP_TRAIN_PRE_EMPHASIS_6;
1976                 case DP_TRAIN_VOLTAGE_SWING_600:
1977                 case DP_TRAIN_VOLTAGE_SWING_800:
1978                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1979                 default:
1980                         return DP_TRAIN_PRE_EMPHASIS_0;
1981                 }
1982         } else {
1983                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1984                 case DP_TRAIN_VOLTAGE_SWING_400:
1985                         return DP_TRAIN_PRE_EMPHASIS_6;
1986                 case DP_TRAIN_VOLTAGE_SWING_600:
1987                         return DP_TRAIN_PRE_EMPHASIS_6;
1988                 case DP_TRAIN_VOLTAGE_SWING_800:
1989                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1990                 case DP_TRAIN_VOLTAGE_SWING_1200:
1991                 default:
1992                         return DP_TRAIN_PRE_EMPHASIS_0;
1993                 }
1994         }
1995 }
1996
1997 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1998 {
1999         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2000         struct drm_i915_private *dev_priv = dev->dev_private;
2001         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2002         struct intel_crtc *intel_crtc =
2003                 to_intel_crtc(dport->base.base.crtc);
2004         unsigned long demph_reg_value, preemph_reg_value,
2005                 uniqtranscale_reg_value;
2006         uint8_t train_set = intel_dp->train_set[0];
2007         int port = vlv_dport_to_channel(dport);
2008         int pipe = intel_crtc->pipe;
2009
2010         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2011         case DP_TRAIN_PRE_EMPHASIS_0:
2012                 preemph_reg_value = 0x0004000;
2013                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2014                 case DP_TRAIN_VOLTAGE_SWING_400:
2015                         demph_reg_value = 0x2B405555;
2016                         uniqtranscale_reg_value = 0x552AB83A;
2017                         break;
2018                 case DP_TRAIN_VOLTAGE_SWING_600:
2019                         demph_reg_value = 0x2B404040;
2020                         uniqtranscale_reg_value = 0x5548B83A;
2021                         break;
2022                 case DP_TRAIN_VOLTAGE_SWING_800:
2023                         demph_reg_value = 0x2B245555;
2024                         uniqtranscale_reg_value = 0x5560B83A;
2025                         break;
2026                 case DP_TRAIN_VOLTAGE_SWING_1200:
2027                         demph_reg_value = 0x2B405555;
2028                         uniqtranscale_reg_value = 0x5598DA3A;
2029                         break;
2030                 default:
2031                         return 0;
2032                 }
2033                 break;
2034         case DP_TRAIN_PRE_EMPHASIS_3_5:
2035                 preemph_reg_value = 0x0002000;
2036                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2037                 case DP_TRAIN_VOLTAGE_SWING_400:
2038                         demph_reg_value = 0x2B404040;
2039                         uniqtranscale_reg_value = 0x5552B83A;
2040                         break;
2041                 case DP_TRAIN_VOLTAGE_SWING_600:
2042                         demph_reg_value = 0x2B404848;
2043                         uniqtranscale_reg_value = 0x5580B83A;
2044                         break;
2045                 case DP_TRAIN_VOLTAGE_SWING_800:
2046                         demph_reg_value = 0x2B404040;
2047                         uniqtranscale_reg_value = 0x55ADDA3A;
2048                         break;
2049                 default:
2050                         return 0;
2051                 }
2052                 break;
2053         case DP_TRAIN_PRE_EMPHASIS_6:
2054                 preemph_reg_value = 0x0000000;
2055                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2056                 case DP_TRAIN_VOLTAGE_SWING_400:
2057                         demph_reg_value = 0x2B305555;
2058                         uniqtranscale_reg_value = 0x5570B83A;
2059                         break;
2060                 case DP_TRAIN_VOLTAGE_SWING_600:
2061                         demph_reg_value = 0x2B2B4040;
2062                         uniqtranscale_reg_value = 0x55ADDA3A;
2063                         break;
2064                 default:
2065                         return 0;
2066                 }
2067                 break;
2068         case DP_TRAIN_PRE_EMPHASIS_9_5:
2069                 preemph_reg_value = 0x0006000;
2070                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2071                 case DP_TRAIN_VOLTAGE_SWING_400:
2072                         demph_reg_value = 0x1B405555;
2073                         uniqtranscale_reg_value = 0x55ADDA3A;
2074                         break;
2075                 default:
2076                         return 0;
2077                 }
2078                 break;
2079         default:
2080                 return 0;
2081         }
2082
2083         mutex_lock(&dev_priv->dpio_lock);
2084         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2085         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2086         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2087                          uniqtranscale_reg_value);
2088         vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2089         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2090         vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2091         vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2092         mutex_unlock(&dev_priv->dpio_lock);
2093
2094         return 0;
2095 }
2096
2097 static void
2098 intel_get_adjust_train(struct intel_dp *intel_dp,
2099                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2100 {
2101         uint8_t v = 0;
2102         uint8_t p = 0;
2103         int lane;
2104         uint8_t voltage_max;
2105         uint8_t preemph_max;
2106
2107         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2108                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2109                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2110
2111                 if (this_v > v)
2112                         v = this_v;
2113                 if (this_p > p)
2114                         p = this_p;
2115         }
2116
2117         voltage_max = intel_dp_voltage_max(intel_dp);
2118         if (v >= voltage_max)
2119                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2120
2121         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2122         if (p >= preemph_max)
2123                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2124
2125         for (lane = 0; lane < 4; lane++)
2126                 intel_dp->train_set[lane] = v | p;
2127 }
2128
2129 static uint32_t
2130 intel_gen4_signal_levels(uint8_t train_set)
2131 {
2132         uint32_t        signal_levels = 0;
2133
2134         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2135         case DP_TRAIN_VOLTAGE_SWING_400:
2136         default:
2137                 signal_levels |= DP_VOLTAGE_0_4;
2138                 break;
2139         case DP_TRAIN_VOLTAGE_SWING_600:
2140                 signal_levels |= DP_VOLTAGE_0_6;
2141                 break;
2142         case DP_TRAIN_VOLTAGE_SWING_800:
2143                 signal_levels |= DP_VOLTAGE_0_8;
2144                 break;
2145         case DP_TRAIN_VOLTAGE_SWING_1200:
2146                 signal_levels |= DP_VOLTAGE_1_2;
2147                 break;
2148         }
2149         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2150         case DP_TRAIN_PRE_EMPHASIS_0:
2151         default:
2152                 signal_levels |= DP_PRE_EMPHASIS_0;
2153                 break;
2154         case DP_TRAIN_PRE_EMPHASIS_3_5:
2155                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2156                 break;
2157         case DP_TRAIN_PRE_EMPHASIS_6:
2158                 signal_levels |= DP_PRE_EMPHASIS_6;
2159                 break;
2160         case DP_TRAIN_PRE_EMPHASIS_9_5:
2161                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2162                 break;
2163         }
2164         return signal_levels;
2165 }
2166
2167 /* Gen6's DP voltage swing and pre-emphasis control */
2168 static uint32_t
2169 intel_gen6_edp_signal_levels(uint8_t train_set)
2170 {
2171         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2172                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2173         switch (signal_levels) {
2174         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2175         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2176                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2177         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2178                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2179         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2180         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2181                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2182         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2183         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2184                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2185         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2186         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2187                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2188         default:
2189                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2190                               "0x%x\n", signal_levels);
2191                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2192         }
2193 }
2194
2195 /* Gen7's DP voltage swing and pre-emphasis control */
2196 static uint32_t
2197 intel_gen7_edp_signal_levels(uint8_t train_set)
2198 {
2199         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2200                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2201         switch (signal_levels) {
2202         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2203                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2204         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2205                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2206         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2207                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2208
2209         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2210                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2211         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2212                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2213
2214         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2215                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2216         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2217                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2218
2219         default:
2220                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2221                               "0x%x\n", signal_levels);
2222                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2223         }
2224 }
2225
2226 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2227 static uint32_t
2228 intel_hsw_signal_levels(uint8_t train_set)
2229 {
2230         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2231                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2232         switch (signal_levels) {
2233         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2234                 return DDI_BUF_EMP_400MV_0DB_HSW;
2235         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2236                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2237         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2238                 return DDI_BUF_EMP_400MV_6DB_HSW;
2239         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2240                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2241
2242         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2243                 return DDI_BUF_EMP_600MV_0DB_HSW;
2244         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2245                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2246         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2247                 return DDI_BUF_EMP_600MV_6DB_HSW;
2248
2249         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2250                 return DDI_BUF_EMP_800MV_0DB_HSW;
2251         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2253         default:
2254                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2255                               "0x%x\n", signal_levels);
2256                 return DDI_BUF_EMP_400MV_0DB_HSW;
2257         }
2258 }
2259
2260 /* Properly updates "DP" with the correct signal levels. */
2261 static void
2262 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2263 {
2264         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2265         enum port port = intel_dig_port->port;
2266         struct drm_device *dev = intel_dig_port->base.base.dev;
2267         uint32_t signal_levels, mask;
2268         uint8_t train_set = intel_dp->train_set[0];
2269
2270         if (HAS_DDI(dev)) {
2271                 signal_levels = intel_hsw_signal_levels(train_set);
2272                 mask = DDI_BUF_EMP_MASK;
2273         } else if (IS_VALLEYVIEW(dev)) {
2274                 signal_levels = intel_vlv_signal_levels(intel_dp);
2275                 mask = 0;
2276         } else if (IS_GEN7(dev) && port == PORT_A) {
2277                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2278                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2279         } else if (IS_GEN6(dev) && port == PORT_A) {
2280                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2281                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2282         } else {
2283                 signal_levels = intel_gen4_signal_levels(train_set);
2284                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2285         }
2286
2287         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2288
2289         *DP = (*DP & ~mask) | signal_levels;
2290 }
2291
2292 static bool
2293 intel_dp_set_link_train(struct intel_dp *intel_dp,
2294                         uint32_t *DP,
2295                         uint8_t dp_train_pat)
2296 {
2297         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2298         struct drm_device *dev = intel_dig_port->base.base.dev;
2299         struct drm_i915_private *dev_priv = dev->dev_private;
2300         enum port port = intel_dig_port->port;
2301         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2302         int ret, len;
2303
2304         if (HAS_DDI(dev)) {
2305                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2306
2307                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2308                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2309                 else
2310                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2311
2312                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2313                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2314                 case DP_TRAINING_PATTERN_DISABLE:
2315                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2316
2317                         break;
2318                 case DP_TRAINING_PATTERN_1:
2319                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2320                         break;
2321                 case DP_TRAINING_PATTERN_2:
2322                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2323                         break;
2324                 case DP_TRAINING_PATTERN_3:
2325                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2326                         break;
2327                 }
2328                 I915_WRITE(DP_TP_CTL(port), temp);
2329
2330         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2331                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2332
2333                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2334                 case DP_TRAINING_PATTERN_DISABLE:
2335                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2336                         break;
2337                 case DP_TRAINING_PATTERN_1:
2338                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2339                         break;
2340                 case DP_TRAINING_PATTERN_2:
2341                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2342                         break;
2343                 case DP_TRAINING_PATTERN_3:
2344                         DRM_ERROR("DP training pattern 3 not supported\n");
2345                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2346                         break;
2347                 }
2348
2349         } else {
2350                 *DP &= ~DP_LINK_TRAIN_MASK;
2351
2352                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2353                 case DP_TRAINING_PATTERN_DISABLE:
2354                         *DP |= DP_LINK_TRAIN_OFF;
2355                         break;
2356                 case DP_TRAINING_PATTERN_1:
2357                         *DP |= DP_LINK_TRAIN_PAT_1;
2358                         break;
2359                 case DP_TRAINING_PATTERN_2:
2360                         *DP |= DP_LINK_TRAIN_PAT_2;
2361                         break;
2362                 case DP_TRAINING_PATTERN_3:
2363                         DRM_ERROR("DP training pattern 3 not supported\n");
2364                         *DP |= DP_LINK_TRAIN_PAT_2;
2365                         break;
2366                 }
2367         }
2368
2369         I915_WRITE(intel_dp->output_reg, *DP);
2370         POSTING_READ(intel_dp->output_reg);
2371
2372         buf[0] = dp_train_pat;
2373         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2374             DP_TRAINING_PATTERN_DISABLE) {
2375                 /* don't write DP_TRAINING_LANEx_SET on disable */
2376                 len = 1;
2377         } else {
2378                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2379                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2380                 len = intel_dp->lane_count + 1;
2381         }
2382
2383         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2384                                         buf, len);
2385
2386         return ret == len;
2387 }
2388
2389 static bool
2390 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2391                         uint8_t dp_train_pat)
2392 {
2393         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2394         intel_dp_set_signal_levels(intel_dp, DP);
2395         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2396 }
2397
2398 static bool
2399 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2400                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2401 {
2402         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2403         struct drm_device *dev = intel_dig_port->base.base.dev;
2404         struct drm_i915_private *dev_priv = dev->dev_private;
2405         int ret;
2406
2407         intel_get_adjust_train(intel_dp, link_status);
2408         intel_dp_set_signal_levels(intel_dp, DP);
2409
2410         I915_WRITE(intel_dp->output_reg, *DP);
2411         POSTING_READ(intel_dp->output_reg);
2412
2413         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2414                                         intel_dp->train_set,
2415                                         intel_dp->lane_count);
2416
2417         return ret == intel_dp->lane_count;
2418 }
2419
2420 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2421 {
2422         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2423         struct drm_device *dev = intel_dig_port->base.base.dev;
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         enum port port = intel_dig_port->port;
2426         uint32_t val;
2427
2428         if (!HAS_DDI(dev))
2429                 return;
2430
2431         val = I915_READ(DP_TP_CTL(port));
2432         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2433         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2434         I915_WRITE(DP_TP_CTL(port), val);
2435
2436         /*
2437          * On PORT_A we can have only eDP in SST mode. There the only reason
2438          * we need to set idle transmission mode is to work around a HW issue
2439          * where we enable the pipe while not in idle link-training mode.
2440          * In this case there is requirement to wait for a minimum number of
2441          * idle patterns to be sent.
2442          */
2443         if (port == PORT_A)
2444                 return;
2445
2446         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2447                      1))
2448                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2449 }
2450
2451 /* Enable corresponding port and start training pattern 1 */
2452 void
2453 intel_dp_start_link_train(struct intel_dp *intel_dp)
2454 {
2455         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2456         struct drm_device *dev = encoder->dev;
2457         int i;
2458         uint8_t voltage;
2459         int voltage_tries, loop_tries;
2460         uint32_t DP = intel_dp->DP;
2461         uint8_t link_config[2];
2462
2463         if (HAS_DDI(dev))
2464                 intel_ddi_prepare_link_retrain(encoder);
2465
2466         /* Write the link configuration data */
2467         link_config[0] = intel_dp->link_bw;
2468         link_config[1] = intel_dp->lane_count;
2469         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2470                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2471         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2472
2473         link_config[0] = 0;
2474         link_config[1] = DP_SET_ANSI_8B10B;
2475         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2476
2477         DP |= DP_PORT_EN;
2478
2479         /* clock recovery */
2480         if (!intel_dp_reset_link_train(intel_dp, &DP,
2481                                        DP_TRAINING_PATTERN_1 |
2482                                        DP_LINK_SCRAMBLING_DISABLE)) {
2483                 DRM_ERROR("failed to enable link training\n");
2484                 return;
2485         }
2486
2487         voltage = 0xff;
2488         voltage_tries = 0;
2489         loop_tries = 0;
2490         for (;;) {
2491                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2492
2493                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2494                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2495                         DRM_ERROR("failed to get link status\n");
2496                         break;
2497                 }
2498
2499                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2500                         DRM_DEBUG_KMS("clock recovery OK\n");
2501                         break;
2502                 }
2503
2504                 /* Check to see if we've tried the max voltage */
2505                 for (i = 0; i < intel_dp->lane_count; i++)
2506                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2507                                 break;
2508                 if (i == intel_dp->lane_count) {
2509                         ++loop_tries;
2510                         if (loop_tries == 5) {
2511                                 DRM_ERROR("too many full retries, give up\n");
2512                                 break;
2513                         }
2514                         intel_dp_reset_link_train(intel_dp, &DP,
2515                                                   DP_TRAINING_PATTERN_1 |
2516                                                   DP_LINK_SCRAMBLING_DISABLE);
2517                         voltage_tries = 0;
2518                         continue;
2519                 }
2520
2521                 /* Check to see if we've tried the same voltage 5 times */
2522                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2523                         ++voltage_tries;
2524                         if (voltage_tries == 5) {
2525                                 DRM_ERROR("too many voltage retries, give up\n");
2526                                 break;
2527                         }
2528                 } else
2529                         voltage_tries = 0;
2530                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2531
2532                 /* Update training set as requested by target */
2533                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2534                         DRM_ERROR("failed to update link training\n");
2535                         break;
2536                 }
2537         }
2538
2539         intel_dp->DP = DP;
2540 }
2541
2542 void
2543 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2544 {
2545         bool channel_eq = false;
2546         int tries, cr_tries;
2547         uint32_t DP = intel_dp->DP;
2548
2549         /* channel equalization */
2550         if (!intel_dp_set_link_train(intel_dp, &DP,
2551                                      DP_TRAINING_PATTERN_2 |
2552                                      DP_LINK_SCRAMBLING_DISABLE)) {
2553                 DRM_ERROR("failed to start channel equalization\n");
2554                 return;
2555         }
2556
2557         tries = 0;
2558         cr_tries = 0;
2559         channel_eq = false;
2560         for (;;) {
2561                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2562
2563                 if (cr_tries > 5) {
2564                         DRM_ERROR("failed to train DP, aborting\n");
2565                         intel_dp_link_down(intel_dp);
2566                         break;
2567                 }
2568
2569                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2570                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2571                         DRM_ERROR("failed to get link status\n");
2572                         break;
2573                 }
2574
2575                 /* Make sure clock is still ok */
2576                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2577                         intel_dp_start_link_train(intel_dp);
2578                         intel_dp_set_link_train(intel_dp, &DP,
2579                                                 DP_TRAINING_PATTERN_2 |
2580                                                 DP_LINK_SCRAMBLING_DISABLE);
2581                         cr_tries++;
2582                         continue;
2583                 }
2584
2585                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2586                         channel_eq = true;
2587                         break;
2588                 }
2589
2590                 /* Try 5 times, then try clock recovery if that fails */
2591                 if (tries > 5) {
2592                         intel_dp_link_down(intel_dp);
2593                         intel_dp_start_link_train(intel_dp);
2594                         intel_dp_set_link_train(intel_dp, &DP,
2595                                                 DP_TRAINING_PATTERN_2 |
2596                                                 DP_LINK_SCRAMBLING_DISABLE);
2597                         tries = 0;
2598                         cr_tries++;
2599                         continue;
2600                 }
2601
2602                 /* Update training set as requested by target */
2603                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2604                         DRM_ERROR("failed to update link training\n");
2605                         break;
2606                 }
2607                 ++tries;
2608         }
2609
2610         intel_dp_set_idle_link_train(intel_dp);
2611
2612         intel_dp->DP = DP;
2613
2614         if (channel_eq)
2615                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2616
2617 }
2618
2619 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2620 {
2621         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2622                                 DP_TRAINING_PATTERN_DISABLE);
2623 }
2624
2625 static void
2626 intel_dp_link_down(struct intel_dp *intel_dp)
2627 {
2628         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2629         enum port port = intel_dig_port->port;
2630         struct drm_device *dev = intel_dig_port->base.base.dev;
2631         struct drm_i915_private *dev_priv = dev->dev_private;
2632         struct intel_crtc *intel_crtc =
2633                 to_intel_crtc(intel_dig_port->base.base.crtc);
2634         uint32_t DP = intel_dp->DP;
2635
2636         /*
2637          * DDI code has a strict mode set sequence and we should try to respect
2638          * it, otherwise we might hang the machine in many different ways. So we
2639          * really should be disabling the port only on a complete crtc_disable
2640          * sequence. This function is just called under two conditions on DDI
2641          * code:
2642          * - Link train failed while doing crtc_enable, and on this case we
2643          *   really should respect the mode set sequence and wait for a
2644          *   crtc_disable.
2645          * - Someone turned the monitor off and intel_dp_check_link_status
2646          *   called us. We don't need to disable the whole port on this case, so
2647          *   when someone turns the monitor on again,
2648          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2649          *   train.
2650          */
2651         if (HAS_DDI(dev))
2652                 return;
2653
2654         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2655                 return;
2656
2657         DRM_DEBUG_KMS("\n");
2658
2659         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2660                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2661                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2662         } else {
2663                 DP &= ~DP_LINK_TRAIN_MASK;
2664                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2665         }
2666         POSTING_READ(intel_dp->output_reg);
2667
2668         /* We don't really know why we're doing this */
2669         intel_wait_for_vblank(dev, intel_crtc->pipe);
2670
2671         if (HAS_PCH_IBX(dev) &&
2672             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2673                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2674
2675                 /* Hardware workaround: leaving our transcoder select
2676                  * set to transcoder B while it's off will prevent the
2677                  * corresponding HDMI output on transcoder A.
2678                  *
2679                  * Combine this with another hardware workaround:
2680                  * transcoder select bit can only be cleared while the
2681                  * port is enabled.
2682                  */
2683                 DP &= ~DP_PIPEB_SELECT;
2684                 I915_WRITE(intel_dp->output_reg, DP);
2685
2686                 /* Changes to enable or select take place the vblank
2687                  * after being written.
2688                  */
2689                 if (WARN_ON(crtc == NULL)) {
2690                         /* We should never try to disable a port without a crtc
2691                          * attached. For paranoia keep the code around for a
2692                          * bit. */
2693                         POSTING_READ(intel_dp->output_reg);
2694                         msleep(50);
2695                 } else
2696                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2697         }
2698
2699         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2700         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2701         POSTING_READ(intel_dp->output_reg);
2702         msleep(intel_dp->panel_power_down_delay);
2703 }
2704
2705 static bool
2706 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2707 {
2708         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2709         struct drm_device *dev = dig_port->base.base.dev;
2710         struct drm_i915_private *dev_priv = dev->dev_private;
2711
2712         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2713
2714         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2715                                            sizeof(intel_dp->dpcd)) == 0)
2716                 return false; /* aux transfer failed */
2717
2718         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2719                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2720         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2721
2722         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2723                 return false; /* DPCD not present */
2724
2725         /* Check if the panel supports PSR */
2726         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2727         if (is_edp(intel_dp)) {
2728                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2729                                                intel_dp->psr_dpcd,
2730                                                sizeof(intel_dp->psr_dpcd));
2731                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2732                         dev_priv->psr.sink_support = true;
2733                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2734                 }
2735         }
2736
2737         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2738               DP_DWN_STRM_PORT_PRESENT))
2739                 return true; /* native DP sink */
2740
2741         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2742                 return true; /* no per-port downstream info */
2743
2744         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2745                                            intel_dp->downstream_ports,
2746                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2747                 return false; /* downstream port status fetch failed */
2748
2749         return true;
2750 }
2751
2752 static void
2753 intel_dp_probe_oui(struct intel_dp *intel_dp)
2754 {
2755         u8 buf[3];
2756
2757         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2758                 return;
2759
2760         ironlake_edp_panel_vdd_on(intel_dp);
2761
2762         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2763                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2764                               buf[0], buf[1], buf[2]);
2765
2766         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2767                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2768                               buf[0], buf[1], buf[2]);
2769
2770         ironlake_edp_panel_vdd_off(intel_dp, false);
2771 }
2772
2773 static bool
2774 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2775 {
2776         int ret;
2777
2778         ret = intel_dp_aux_native_read_retry(intel_dp,
2779                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2780                                              sink_irq_vector, 1);
2781         if (!ret)
2782                 return false;
2783
2784         return true;
2785 }
2786
2787 static void
2788 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2789 {
2790         /* NAK by default */
2791         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2792 }
2793
2794 /*
2795  * According to DP spec
2796  * 5.1.2:
2797  *  1. Read DPCD
2798  *  2. Configure link according to Receiver Capabilities
2799  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2800  *  4. Check link status on receipt of hot-plug interrupt
2801  */
2802
2803 void
2804 intel_dp_check_link_status(struct intel_dp *intel_dp)
2805 {
2806         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2807         u8 sink_irq_vector;
2808         u8 link_status[DP_LINK_STATUS_SIZE];
2809
2810         if (!intel_encoder->connectors_active)
2811                 return;
2812
2813         if (WARN_ON(!intel_encoder->base.crtc))
2814                 return;
2815
2816         /* Try to read receiver status if the link appears to be up */
2817         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2818                 intel_dp_link_down(intel_dp);
2819                 return;
2820         }
2821
2822         /* Now read the DPCD to see if it's actually running */
2823         if (!intel_dp_get_dpcd(intel_dp)) {
2824                 intel_dp_link_down(intel_dp);
2825                 return;
2826         }
2827
2828         /* Try to read the source of the interrupt */
2829         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2830             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2831                 /* Clear interrupt source */
2832                 intel_dp_aux_native_write_1(intel_dp,
2833                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2834                                             sink_irq_vector);
2835
2836                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2837                         intel_dp_handle_test_request(intel_dp);
2838                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2839                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2840         }
2841
2842         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2843                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2844                               drm_get_encoder_name(&intel_encoder->base));
2845                 intel_dp_start_link_train(intel_dp);
2846                 intel_dp_complete_link_train(intel_dp);
2847                 intel_dp_stop_link_train(intel_dp);
2848         }
2849 }
2850
2851 /* XXX this is probably wrong for multiple downstream ports */
2852 static enum drm_connector_status
2853 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2854 {
2855         uint8_t *dpcd = intel_dp->dpcd;
2856         uint8_t type;
2857
2858         if (!intel_dp_get_dpcd(intel_dp))
2859                 return connector_status_disconnected;
2860
2861         /* if there's no downstream port, we're done */
2862         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2863                 return connector_status_connected;
2864
2865         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2866         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2867             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2868                 uint8_t reg;
2869                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2870                                                     &reg, 1))
2871                         return connector_status_unknown;
2872                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2873                                               : connector_status_disconnected;
2874         }
2875
2876         /* If no HPD, poke DDC gently */
2877         if (drm_probe_ddc(&intel_dp->adapter))
2878                 return connector_status_connected;
2879
2880         /* Well we tried, say unknown for unreliable port types */
2881         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2882                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2883                 if (type == DP_DS_PORT_TYPE_VGA ||
2884                     type == DP_DS_PORT_TYPE_NON_EDID)
2885                         return connector_status_unknown;
2886         } else {
2887                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2888                         DP_DWN_STRM_PORT_TYPE_MASK;
2889                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2890                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2891                         return connector_status_unknown;
2892         }
2893
2894         /* Anything else is out of spec, warn and ignore */
2895         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2896         return connector_status_disconnected;
2897 }
2898
2899 static enum drm_connector_status
2900 ironlake_dp_detect(struct intel_dp *intel_dp)
2901 {
2902         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2903         struct drm_i915_private *dev_priv = dev->dev_private;
2904         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2905         enum drm_connector_status status;
2906
2907         /* Can't disconnect eDP, but you can close the lid... */
2908         if (is_edp(intel_dp)) {
2909                 status = intel_panel_detect(dev);
2910                 if (status == connector_status_unknown)
2911                         status = connector_status_connected;
2912                 return status;
2913         }
2914
2915         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2916                 return connector_status_disconnected;
2917
2918         return intel_dp_detect_dpcd(intel_dp);
2919 }
2920
2921 static enum drm_connector_status
2922 g4x_dp_detect(struct intel_dp *intel_dp)
2923 {
2924         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2925         struct drm_i915_private *dev_priv = dev->dev_private;
2926         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2927         uint32_t bit;
2928
2929         /* Can't disconnect eDP, but you can close the lid... */
2930         if (is_edp(intel_dp)) {
2931                 enum drm_connector_status status;
2932
2933                 status = intel_panel_detect(dev);
2934                 if (status == connector_status_unknown)
2935                         status = connector_status_connected;
2936                 return status;
2937         }
2938
2939         switch (intel_dig_port->port) {
2940         case PORT_B:
2941                 bit = PORTB_HOTPLUG_LIVE_STATUS;
2942                 break;
2943         case PORT_C:
2944                 bit = PORTC_HOTPLUG_LIVE_STATUS;
2945                 break;
2946         case PORT_D:
2947                 bit = PORTD_HOTPLUG_LIVE_STATUS;
2948                 break;
2949         default:
2950                 return connector_status_unknown;
2951         }
2952
2953         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2954                 return connector_status_disconnected;
2955
2956         return intel_dp_detect_dpcd(intel_dp);
2957 }
2958
2959 static struct edid *
2960 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2961 {
2962         struct intel_connector *intel_connector = to_intel_connector(connector);
2963
2964         /* use cached edid if we have one */
2965         if (intel_connector->edid) {
2966                 /* invalid edid */
2967                 if (IS_ERR(intel_connector->edid))
2968                         return NULL;
2969
2970                 return drm_edid_duplicate(intel_connector->edid);
2971         }
2972
2973         return drm_get_edid(connector, adapter);
2974 }
2975
2976 static int
2977 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2978 {
2979         struct intel_connector *intel_connector = to_intel_connector(connector);
2980
2981         /* use cached edid if we have one */
2982         if (intel_connector->edid) {
2983                 /* invalid edid */
2984                 if (IS_ERR(intel_connector->edid))
2985                         return 0;
2986
2987                 return intel_connector_update_modes(connector,
2988                                                     intel_connector->edid);
2989         }
2990
2991         return intel_ddc_get_modes(connector, adapter);
2992 }
2993
2994 static enum drm_connector_status
2995 intel_dp_detect(struct drm_connector *connector, bool force)
2996 {
2997         struct intel_dp *intel_dp = intel_attached_dp(connector);
2998         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2999         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3000         struct drm_device *dev = connector->dev;
3001         enum drm_connector_status status;
3002         struct edid *edid = NULL;
3003
3004         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3005                       connector->base.id, drm_get_connector_name(connector));
3006
3007         intel_dp->has_audio = false;
3008
3009         if (HAS_PCH_SPLIT(dev))
3010                 status = ironlake_dp_detect(intel_dp);
3011         else
3012                 status = g4x_dp_detect(intel_dp);
3013
3014         if (status != connector_status_connected)
3015                 return status;
3016
3017         intel_dp_probe_oui(intel_dp);
3018
3019         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3020                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3021         } else {
3022                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3023                 if (edid) {
3024                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3025                         kfree(edid);
3026                 }
3027         }
3028
3029         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3030                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3031         return connector_status_connected;
3032 }
3033
3034 static int intel_dp_get_modes(struct drm_connector *connector)
3035 {
3036         struct intel_dp *intel_dp = intel_attached_dp(connector);
3037         struct intel_connector *intel_connector = to_intel_connector(connector);
3038         struct drm_device *dev = connector->dev;
3039         int ret;
3040
3041         /* We should parse the EDID data and find out if it has an audio sink
3042          */
3043
3044         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3045         if (ret)
3046                 return ret;
3047
3048         /* if eDP has no EDID, fall back to fixed mode */
3049         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3050                 struct drm_display_mode *mode;
3051                 mode = drm_mode_duplicate(dev,
3052                                           intel_connector->panel.fixed_mode);
3053                 if (mode) {
3054                         drm_mode_probed_add(connector, mode);
3055                         return 1;
3056                 }
3057         }
3058         return 0;
3059 }
3060
3061 static bool
3062 intel_dp_detect_audio(struct drm_connector *connector)
3063 {
3064         struct intel_dp *intel_dp = intel_attached_dp(connector);
3065         struct edid *edid;
3066         bool has_audio = false;
3067
3068         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3069         if (edid) {
3070                 has_audio = drm_detect_monitor_audio(edid);
3071                 kfree(edid);
3072         }
3073
3074         return has_audio;
3075 }
3076
3077 static int
3078 intel_dp_set_property(struct drm_connector *connector,
3079                       struct drm_property *property,
3080                       uint64_t val)
3081 {
3082         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3083         struct intel_connector *intel_connector = to_intel_connector(connector);
3084         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3085         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3086         int ret;
3087
3088         ret = drm_object_property_set_value(&connector->base, property, val);
3089         if (ret)
3090                 return ret;
3091
3092         if (property == dev_priv->force_audio_property) {
3093                 int i = val;
3094                 bool has_audio;
3095
3096                 if (i == intel_dp->force_audio)
3097                         return 0;
3098
3099                 intel_dp->force_audio = i;
3100
3101                 if (i == HDMI_AUDIO_AUTO)
3102                         has_audio = intel_dp_detect_audio(connector);
3103                 else
3104                         has_audio = (i == HDMI_AUDIO_ON);
3105
3106                 if (has_audio == intel_dp->has_audio)
3107                         return 0;
3108
3109                 intel_dp->has_audio = has_audio;
3110                 goto done;
3111         }
3112
3113         if (property == dev_priv->broadcast_rgb_property) {
3114                 bool old_auto = intel_dp->color_range_auto;
3115                 uint32_t old_range = intel_dp->color_range;
3116
3117                 switch (val) {
3118                 case INTEL_BROADCAST_RGB_AUTO:
3119                         intel_dp->color_range_auto = true;
3120                         break;
3121                 case INTEL_BROADCAST_RGB_FULL:
3122                         intel_dp->color_range_auto = false;
3123                         intel_dp->color_range = 0;
3124                         break;
3125                 case INTEL_BROADCAST_RGB_LIMITED:
3126                         intel_dp->color_range_auto = false;
3127                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3128                         break;
3129                 default:
3130                         return -EINVAL;
3131                 }
3132
3133                 if (old_auto == intel_dp->color_range_auto &&
3134                     old_range == intel_dp->color_range)
3135                         return 0;
3136
3137                 goto done;
3138         }
3139
3140         if (is_edp(intel_dp) &&
3141             property == connector->dev->mode_config.scaling_mode_property) {
3142                 if (val == DRM_MODE_SCALE_NONE) {
3143                         DRM_DEBUG_KMS("no scaling not supported\n");
3144                         return -EINVAL;
3145                 }
3146
3147                 if (intel_connector->panel.fitting_mode == val) {
3148                         /* the eDP scaling property is not changed */
3149                         return 0;
3150                 }
3151                 intel_connector->panel.fitting_mode = val;
3152
3153                 goto done;
3154         }
3155
3156         return -EINVAL;
3157
3158 done:
3159         if (intel_encoder->base.crtc)
3160                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3161
3162         return 0;
3163 }
3164
3165 static void
3166 intel_dp_connector_destroy(struct drm_connector *connector)
3167 {
3168         struct intel_connector *intel_connector = to_intel_connector(connector);
3169
3170         if (!IS_ERR_OR_NULL(intel_connector->edid))
3171                 kfree(intel_connector->edid);
3172
3173         /* Can't call is_edp() since the encoder may have been destroyed
3174          * already. */
3175         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3176                 intel_panel_fini(&intel_connector->panel);
3177
3178         drm_connector_cleanup(connector);
3179         kfree(connector);
3180 }
3181
3182 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3183 {
3184         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3185         struct intel_dp *intel_dp = &intel_dig_port->dp;
3186         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3187
3188         i2c_del_adapter(&intel_dp->adapter);
3189         drm_encoder_cleanup(encoder);
3190         if (is_edp(intel_dp)) {
3191                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3192                 mutex_lock(&dev->mode_config.mutex);
3193                 ironlake_panel_vdd_off_sync(intel_dp);
3194                 mutex_unlock(&dev->mode_config.mutex);
3195         }
3196         kfree(intel_dig_port);
3197 }
3198
3199 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3200         .dpms = intel_connector_dpms,
3201         .detect = intel_dp_detect,
3202         .fill_modes = drm_helper_probe_single_connector_modes,
3203         .set_property = intel_dp_set_property,
3204         .destroy = intel_dp_connector_destroy,
3205 };
3206
3207 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3208         .get_modes = intel_dp_get_modes,
3209         .mode_valid = intel_dp_mode_valid,
3210         .best_encoder = intel_best_encoder,
3211 };
3212
3213 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3214         .destroy = intel_dp_encoder_destroy,
3215 };
3216
3217 static void
3218 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3219 {
3220         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3221
3222         intel_dp_check_link_status(intel_dp);
3223 }
3224
3225 /* Return which DP Port should be selected for Transcoder DP control */
3226 int
3227 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3228 {
3229         struct drm_device *dev = crtc->dev;
3230         struct intel_encoder *intel_encoder;
3231         struct intel_dp *intel_dp;
3232
3233         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3234                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3235
3236                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3237                     intel_encoder->type == INTEL_OUTPUT_EDP)
3238                         return intel_dp->output_reg;
3239         }
3240
3241         return -1;
3242 }
3243
3244 /* check the VBT to see whether the eDP is on DP-D port */
3245 bool intel_dpd_is_edp(struct drm_device *dev)
3246 {
3247         struct drm_i915_private *dev_priv = dev->dev_private;
3248         union child_device_config *p_child;
3249         int i;
3250
3251         if (!dev_priv->vbt.child_dev_num)
3252                 return false;
3253
3254         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3255                 p_child = dev_priv->vbt.child_dev + i;
3256
3257                 if (p_child->common.dvo_port == PORT_IDPD &&
3258                     p_child->common.device_type == DEVICE_TYPE_eDP)
3259                         return true;
3260         }
3261         return false;
3262 }
3263
3264 static void
3265 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3266 {
3267         struct intel_connector *intel_connector = to_intel_connector(connector);
3268
3269         intel_attach_force_audio_property(connector);
3270         intel_attach_broadcast_rgb_property(connector);
3271         intel_dp->color_range_auto = true;
3272
3273         if (is_edp(intel_dp)) {
3274                 drm_mode_create_scaling_mode_property(connector->dev);
3275                 drm_object_attach_property(
3276                         &connector->base,
3277                         connector->dev->mode_config.scaling_mode_property,
3278                         DRM_MODE_SCALE_ASPECT);
3279                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3280         }
3281 }
3282
3283 static void
3284 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3285                                     struct intel_dp *intel_dp,
3286                                     struct edp_power_seq *out)
3287 {
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         struct edp_power_seq cur, vbt, spec, final;
3290         u32 pp_on, pp_off, pp_div, pp;
3291         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3292
3293         if (HAS_PCH_SPLIT(dev)) {
3294                 pp_ctrl_reg = PCH_PP_CONTROL;
3295                 pp_on_reg = PCH_PP_ON_DELAYS;
3296                 pp_off_reg = PCH_PP_OFF_DELAYS;
3297                 pp_div_reg = PCH_PP_DIVISOR;
3298         } else {
3299                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3300
3301                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3302                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3303                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3304                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3305         }
3306
3307         /* Workaround: Need to write PP_CONTROL with the unlock key as
3308          * the very first thing. */
3309         pp = ironlake_get_pp_control(intel_dp);
3310         I915_WRITE(pp_ctrl_reg, pp);
3311
3312         pp_on = I915_READ(pp_on_reg);
3313         pp_off = I915_READ(pp_off_reg);
3314         pp_div = I915_READ(pp_div_reg);
3315
3316         /* Pull timing values out of registers */
3317         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3318                 PANEL_POWER_UP_DELAY_SHIFT;
3319
3320         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3321                 PANEL_LIGHT_ON_DELAY_SHIFT;
3322
3323         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3324                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3325
3326         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3327                 PANEL_POWER_DOWN_DELAY_SHIFT;
3328
3329         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3330                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3331
3332         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3333                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3334
3335         vbt = dev_priv->vbt.edp_pps;
3336
3337         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3338          * our hw here, which are all in 100usec. */
3339         spec.t1_t3 = 210 * 10;
3340         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3341         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3342         spec.t10 = 500 * 10;
3343         /* This one is special and actually in units of 100ms, but zero
3344          * based in the hw (so we need to add 100 ms). But the sw vbt
3345          * table multiplies it with 1000 to make it in units of 100usec,
3346          * too. */
3347         spec.t11_t12 = (510 + 100) * 10;
3348
3349         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3350                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3351
3352         /* Use the max of the register settings and vbt. If both are
3353          * unset, fall back to the spec limits. */
3354 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3355                                        spec.field : \
3356                                        max(cur.field, vbt.field))
3357         assign_final(t1_t3);
3358         assign_final(t8);
3359         assign_final(t9);
3360         assign_final(t10);
3361         assign_final(t11_t12);
3362 #undef assign_final
3363
3364 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3365         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3366         intel_dp->backlight_on_delay = get_delay(t8);
3367         intel_dp->backlight_off_delay = get_delay(t9);
3368         intel_dp->panel_power_down_delay = get_delay(t10);
3369         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3370 #undef get_delay
3371
3372         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3373                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3374                       intel_dp->panel_power_cycle_delay);
3375
3376         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3377                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3378
3379         if (out)
3380                 *out = final;
3381 }
3382
3383 static void
3384 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3385                                               struct intel_dp *intel_dp,
3386                                               struct edp_power_seq *seq)
3387 {
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         u32 pp_on, pp_off, pp_div, port_sel = 0;
3390         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3391         int pp_on_reg, pp_off_reg, pp_div_reg;
3392
3393         if (HAS_PCH_SPLIT(dev)) {
3394                 pp_on_reg = PCH_PP_ON_DELAYS;
3395                 pp_off_reg = PCH_PP_OFF_DELAYS;
3396                 pp_div_reg = PCH_PP_DIVISOR;
3397         } else {
3398                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3399
3400                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3401                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3402                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3403         }
3404
3405         /* And finally store the new values in the power sequencer. */
3406         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3407                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3408         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3409                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3410         /* Compute the divisor for the pp clock, simply match the Bspec
3411          * formula. */
3412         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3413         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3414                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3415
3416         /* Haswell doesn't have any port selection bits for the panel
3417          * power sequencer any more. */
3418         if (IS_VALLEYVIEW(dev)) {
3419                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3420                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3421                 else
3422                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3423         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3424                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3425                         port_sel = PANEL_PORT_SELECT_DPA;
3426                 else
3427                         port_sel = PANEL_PORT_SELECT_DPD;
3428         }
3429
3430         pp_on |= port_sel;
3431
3432         I915_WRITE(pp_on_reg, pp_on);
3433         I915_WRITE(pp_off_reg, pp_off);
3434         I915_WRITE(pp_div_reg, pp_div);
3435
3436         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3437                       I915_READ(pp_on_reg),
3438                       I915_READ(pp_off_reg),
3439                       I915_READ(pp_div_reg));
3440 }
3441
3442 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3443                                      struct intel_connector *intel_connector)
3444 {
3445         struct drm_connector *connector = &intel_connector->base;
3446         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3447         struct drm_device *dev = intel_dig_port->base.base.dev;
3448         struct drm_i915_private *dev_priv = dev->dev_private;
3449         struct drm_display_mode *fixed_mode = NULL;
3450         struct edp_power_seq power_seq = { 0 };
3451         bool has_dpcd;
3452         struct drm_display_mode *scan;
3453         struct edid *edid;
3454
3455         if (!is_edp(intel_dp))
3456                 return true;
3457
3458         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3459
3460         /* Cache DPCD and EDID for edp. */
3461         ironlake_edp_panel_vdd_on(intel_dp);
3462         has_dpcd = intel_dp_get_dpcd(intel_dp);
3463         ironlake_edp_panel_vdd_off(intel_dp, false);
3464
3465         if (has_dpcd) {
3466                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3467                         dev_priv->no_aux_handshake =
3468                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3469                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3470         } else {
3471                 /* if this fails, presume the device is a ghost */
3472                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3473                 return false;
3474         }
3475
3476         /* We now know it's not a ghost, init power sequence regs. */
3477         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3478                                                       &power_seq);
3479
3480         ironlake_edp_panel_vdd_on(intel_dp);
3481         edid = drm_get_edid(connector, &intel_dp->adapter);
3482         if (edid) {
3483                 if (drm_add_edid_modes(connector, edid)) {
3484                         drm_mode_connector_update_edid_property(connector,
3485                                                                 edid);
3486                         drm_edid_to_eld(connector, edid);
3487                 } else {
3488                         kfree(edid);
3489                         edid = ERR_PTR(-EINVAL);
3490                 }
3491         } else {
3492                 edid = ERR_PTR(-ENOENT);
3493         }
3494         intel_connector->edid = edid;
3495
3496         /* prefer fixed mode from EDID if available */
3497         list_for_each_entry(scan, &connector->probed_modes, head) {
3498                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3499                         fixed_mode = drm_mode_duplicate(dev, scan);
3500                         break;
3501                 }
3502         }
3503
3504         /* fallback to VBT if available for eDP */
3505         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3506                 fixed_mode = drm_mode_duplicate(dev,
3507                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3508                 if (fixed_mode)
3509                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3510         }
3511
3512         ironlake_edp_panel_vdd_off(intel_dp, false);
3513
3514         intel_panel_init(&intel_connector->panel, fixed_mode);
3515         intel_panel_setup_backlight(connector);
3516
3517         return true;
3518 }
3519
3520 bool
3521 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3522                         struct intel_connector *intel_connector)
3523 {
3524         struct drm_connector *connector = &intel_connector->base;
3525         struct intel_dp *intel_dp = &intel_dig_port->dp;
3526         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3527         struct drm_device *dev = intel_encoder->base.dev;
3528         struct drm_i915_private *dev_priv = dev->dev_private;
3529         enum port port = intel_dig_port->port;
3530         const char *name = NULL;
3531         int type, error;
3532
3533         /* Preserve the current hw state. */
3534         intel_dp->DP = I915_READ(intel_dp->output_reg);
3535         intel_dp->attached_connector = intel_connector;
3536
3537         type = DRM_MODE_CONNECTOR_DisplayPort;
3538         /*
3539          * FIXME : We need to initialize built-in panels before external panels.
3540          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3541          */
3542         switch (port) {
3543         case PORT_A:
3544                 type = DRM_MODE_CONNECTOR_eDP;
3545                 break;
3546         case PORT_C:
3547                 if (IS_VALLEYVIEW(dev))
3548                         type = DRM_MODE_CONNECTOR_eDP;
3549                 break;
3550         case PORT_D:
3551                 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3552                         type = DRM_MODE_CONNECTOR_eDP;
3553                 break;
3554         default:        /* silence GCC warning */
3555                 break;
3556         }
3557
3558         /*
3559          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3560          * for DP the encoder type can be set by the caller to
3561          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3562          */
3563         if (type == DRM_MODE_CONNECTOR_eDP)
3564                 intel_encoder->type = INTEL_OUTPUT_EDP;
3565
3566         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3567                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3568                         port_name(port));
3569
3570         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3571         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3572
3573         connector->interlace_allowed = true;
3574         connector->doublescan_allowed = 0;
3575
3576         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3577                           ironlake_panel_vdd_work);
3578
3579         intel_connector_attach_encoder(intel_connector, intel_encoder);
3580         drm_sysfs_connector_add(connector);
3581
3582         if (HAS_DDI(dev))
3583                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3584         else
3585                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3586
3587         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3588         if (HAS_DDI(dev)) {
3589                 switch (intel_dig_port->port) {
3590                 case PORT_A:
3591                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3592                         break;
3593                 case PORT_B:
3594                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3595                         break;
3596                 case PORT_C:
3597                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3598                         break;
3599                 case PORT_D:
3600                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3601                         break;
3602                 default:
3603                         BUG();
3604                 }
3605         }
3606
3607         /* Set up the DDC bus. */
3608         switch (port) {
3609         case PORT_A:
3610                 intel_encoder->hpd_pin = HPD_PORT_A;
3611                 name = "DPDDC-A";
3612                 break;
3613         case PORT_B:
3614                 intel_encoder->hpd_pin = HPD_PORT_B;
3615                 name = "DPDDC-B";
3616                 break;
3617         case PORT_C:
3618                 intel_encoder->hpd_pin = HPD_PORT_C;
3619                 name = "DPDDC-C";
3620                 break;
3621         case PORT_D:
3622                 intel_encoder->hpd_pin = HPD_PORT_D;
3623                 name = "DPDDC-D";
3624                 break;
3625         default:
3626                 BUG();
3627         }
3628
3629         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3630         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3631              error, port_name(port));
3632
3633         intel_dp->psr_setup_done = false;
3634
3635         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3636                 i2c_del_adapter(&intel_dp->adapter);
3637                 if (is_edp(intel_dp)) {
3638                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3639                         mutex_lock(&dev->mode_config.mutex);
3640                         ironlake_panel_vdd_off_sync(intel_dp);
3641                         mutex_unlock(&dev->mode_config.mutex);
3642                 }
3643                 drm_sysfs_connector_remove(connector);
3644                 drm_connector_cleanup(connector);
3645                 return false;
3646         }
3647
3648         intel_dp_add_properties(intel_dp, connector);
3649
3650         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3651          * 0xd.  Failure to do so will result in spurious interrupts being
3652          * generated on the port when a cable is not attached.
3653          */
3654         if (IS_G4X(dev) && !IS_GM45(dev)) {
3655                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3656                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3657         }
3658
3659         return true;
3660 }
3661
3662 void
3663 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3664 {
3665         struct intel_digital_port *intel_dig_port;
3666         struct intel_encoder *intel_encoder;
3667         struct drm_encoder *encoder;
3668         struct intel_connector *intel_connector;
3669
3670         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3671         if (!intel_dig_port)
3672                 return;
3673
3674         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3675         if (!intel_connector) {
3676                 kfree(intel_dig_port);
3677                 return;
3678         }
3679
3680         intel_encoder = &intel_dig_port->base;
3681         encoder = &intel_encoder->base;
3682
3683         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3684                          DRM_MODE_ENCODER_TMDS);
3685
3686         intel_encoder->compute_config = intel_dp_compute_config;
3687         intel_encoder->mode_set = intel_dp_mode_set;
3688         intel_encoder->disable = intel_disable_dp;
3689         intel_encoder->post_disable = intel_post_disable_dp;
3690         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3691         intel_encoder->get_config = intel_dp_get_config;
3692         if (IS_VALLEYVIEW(dev)) {
3693                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3694                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3695                 intel_encoder->enable = vlv_enable_dp;
3696         } else {
3697                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3698                 intel_encoder->enable = g4x_enable_dp;
3699         }
3700
3701         intel_dig_port->port = port;
3702         intel_dig_port->dp.output_reg = output_reg;
3703
3704         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3705         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3706         intel_encoder->cloneable = false;
3707         intel_encoder->hot_plug = intel_dp_hot_plug;
3708
3709         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3710                 drm_encoder_cleanup(encoder);
3711                 kfree(intel_dig_port);
3712                 kfree(intel_connector);
3713         }
3714 }