]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
Merge tag 'drm-intel-next-2012-12-21' of git://people.freedesktop.org/~danvet/drm...
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 /**
42  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43  * @intel_dp: DP struct
44  *
45  * If a CPU or PCH DP output is attached to an eDP panel, this function
46  * will return true, and false otherwise.
47  */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57  * @intel_dp: DP struct
58  *
59  * Returns true if the given DP struct corresponds to a PCH DP port attached
60  * to an eDP panel, false otherwise.  Helpful for determining whether we
61  * may need FDI resources for a given DP output or not.
62  */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65         return intel_dp->is_pch_edp;
66 }
67
68 /**
69  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70  * @intel_dp: DP struct
71  *
72  * Returns true if the given DP struct corresponds to a CPU eDP port.
73  */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83         return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93  * @encoder: DRM encoder
94  *
95  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
96  * by intel_display.c.
97  */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100         struct intel_dp *intel_dp;
101
102         if (!encoder)
103                 return false;
104
105         intel_dp = enc_to_intel_dp(encoder);
106
107         return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114                        int *lane_num, int *link_bw)
115 {
116         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118         *lane_num = intel_dp->lane_count;
119         *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124                        struct drm_display_mode *mode)
125 {
126         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127         struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129         if (intel_connector->panel.fixed_mode)
130                 return intel_connector->panel.fixed_mode->clock;
131         else
132                 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140         switch (max_link_bw) {
141         case DP_LINK_BW_1_62:
142         case DP_LINK_BW_2_7:
143                 break;
144         default:
145                 max_link_bw = DP_LINK_BW_1_62;
146                 break;
147         }
148         return max_link_bw;
149 }
150
151 /*
152  * The units on the numbers in the next two are... bizarre.  Examples will
153  * make it clearer; this one parallels an example in the eDP spec.
154  *
155  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156  *
157  *     270000 * 1 * 8 / 10 == 216000
158  *
159  * The actual data capacity of that configuration is 2.16Gbit/s, so the
160  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
161  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162  * 119000.  At 18bpp that's 2142000 kilobits per second.
163  *
164  * Thus the strange-looking division by 10 in intel_dp_link_required, to
165  * get the result in decakilobits instead of kilobits.
166  */
167
168 static int
169 intel_dp_link_required(int pixel_clock, int bpp)
170 {
171         return (pixel_clock * bpp + 9) / 10;
172 }
173
174 static int
175 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176 {
177         return (max_link_clock * max_lanes * 8) / 10;
178 }
179
180 static bool
181 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182                           struct drm_display_mode *mode,
183                           bool adjust_mode)
184 {
185         int max_link_clock =
186                 drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187         int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188         int max_rate, mode_rate;
189
190         mode_rate = intel_dp_link_required(mode->clock, 24);
191         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193         if (mode_rate > max_rate) {
194                 mode_rate = intel_dp_link_required(mode->clock, 18);
195                 if (mode_rate > max_rate)
196                         return false;
197
198                 if (adjust_mode)
199                         mode->private_flags
200                                 |= INTEL_MODE_DP_FORCE_6BPC;
201
202                 return true;
203         }
204
205         return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210                     struct drm_display_mode *mode)
211 {
212         struct intel_dp *intel_dp = intel_attached_dp(connector);
213         struct intel_connector *intel_connector = to_intel_connector(connector);
214         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216         if (is_edp(intel_dp) && fixed_mode) {
217                 if (mode->hdisplay > fixed_mode->hdisplay)
218                         return MODE_PANEL;
219
220                 if (mode->vdisplay > fixed_mode->vdisplay)
221                         return MODE_PANEL;
222         }
223
224         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225                 return MODE_CLOCK_HIGH;
226
227         if (mode->clock < 10000)
228                 return MODE_CLOCK_LOW;
229
230         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231                 return MODE_H_ILLEGAL;
232
233         return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239         int     i;
240         uint32_t v = 0;
241
242         if (src_bytes > 4)
243                 src_bytes = 4;
244         for (i = 0; i < src_bytes; i++)
245                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246         return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252         int i;
253         if (dst_bytes > 4)
254                 dst_bytes = 4;
255         for (i = 0; i < dst_bytes; i++)
256                 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263         struct drm_i915_private *dev_priv = dev->dev_private;
264         uint32_t clkcfg;
265
266         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267         if (IS_VALLEYVIEW(dev))
268                 return 200;
269
270         clkcfg = I915_READ(CLKCFG);
271         switch (clkcfg & CLKCFG_FSB_MASK) {
272         case CLKCFG_FSB_400:
273                 return 100;
274         case CLKCFG_FSB_533:
275                 return 133;
276         case CLKCFG_FSB_667:
277                 return 166;
278         case CLKCFG_FSB_800:
279                 return 200;
280         case CLKCFG_FSB_1067:
281                 return 266;
282         case CLKCFG_FSB_1333:
283                 return 333;
284         /* these two are just a guess; one of them might be right */
285         case CLKCFG_FSB_1600:
286         case CLKCFG_FSB_1600_ALT:
287                 return 400;
288         default:
289                 return 133;
290         }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295         struct drm_device *dev = intel_dp_to_dev(intel_dp);
296         struct drm_i915_private *dev_priv = dev->dev_private;
297
298         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303         struct drm_device *dev = intel_dp_to_dev(intel_dp);
304         struct drm_i915_private *dev_priv = dev->dev_private;
305
306         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp_to_dev(intel_dp);
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         if (!is_edp(intel_dp))
316                 return;
317         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320                               I915_READ(PCH_PP_STATUS),
321                               I915_READ(PCH_PP_CONTROL));
322         }
323 }
324
325 static uint32_t
326 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327 {
328         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329         struct drm_device *dev = intel_dig_port->base.base.dev;
330         struct drm_i915_private *dev_priv = dev->dev_private;
331         uint32_t ch_ctl = intel_dp->output_reg + 0x10;
332         uint32_t status;
333         bool done;
334
335         if (IS_HASWELL(dev)) {
336                 switch (intel_dig_port->port) {
337                 case PORT_A:
338                         ch_ctl = DPA_AUX_CH_CTL;
339                         break;
340                 case PORT_B:
341                         ch_ctl = PCH_DPB_AUX_CH_CTL;
342                         break;
343                 case PORT_C:
344                         ch_ctl = PCH_DPC_AUX_CH_CTL;
345                         break;
346                 case PORT_D:
347                         ch_ctl = PCH_DPD_AUX_CH_CTL;
348                         break;
349                 default:
350                         BUG();
351                 }
352         }
353
354 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
355         if (has_aux_irq)
356                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, 10);
357         else
358                 done = wait_for_atomic(C, 10) == 0;
359         if (!done)
360                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
361                           has_aux_irq);
362 #undef C
363
364         return status;
365 }
366
367 static int
368 intel_dp_aux_ch(struct intel_dp *intel_dp,
369                 uint8_t *send, int send_bytes,
370                 uint8_t *recv, int recv_size)
371 {
372         uint32_t output_reg = intel_dp->output_reg;
373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374         struct drm_device *dev = intel_dig_port->base.base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         uint32_t ch_ctl = output_reg + 0x10;
377         uint32_t ch_data = ch_ctl + 4;
378         int i, ret, recv_bytes;
379         uint32_t status;
380         uint32_t aux_clock_divider;
381         int try, precharge;
382         bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
383
384         /* dp aux is extremely sensitive to irq latency, hence request the
385          * lowest possible wakeup latency and so prevent the cpu from going into
386          * deep sleep states.
387          */
388         pm_qos_update_request(&dev_priv->pm_qos, 0);
389
390         if (IS_HASWELL(dev)) {
391                 switch (intel_dig_port->port) {
392                 case PORT_A:
393                         ch_ctl = DPA_AUX_CH_CTL;
394                         ch_data = DPA_AUX_CH_DATA1;
395                         break;
396                 case PORT_B:
397                         ch_ctl = PCH_DPB_AUX_CH_CTL;
398                         ch_data = PCH_DPB_AUX_CH_DATA1;
399                         break;
400                 case PORT_C:
401                         ch_ctl = PCH_DPC_AUX_CH_CTL;
402                         ch_data = PCH_DPC_AUX_CH_DATA1;
403                         break;
404                 case PORT_D:
405                         ch_ctl = PCH_DPD_AUX_CH_CTL;
406                         ch_data = PCH_DPD_AUX_CH_DATA1;
407                         break;
408                 default:
409                         BUG();
410                 }
411         }
412
413         intel_dp_check_edp(intel_dp);
414         /* The clock divider is based off the hrawclk,
415          * and would like to run at 2MHz. So, take the
416          * hrawclk value and divide by 2 and use that
417          *
418          * Note that PCH attached eDP panels should use a 125MHz input
419          * clock divider.
420          */
421         if (is_cpu_edp(intel_dp)) {
422                 if (HAS_DDI(dev))
423                         aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
424                 else if (IS_VALLEYVIEW(dev))
425                         aux_clock_divider = 100;
426                 else if (IS_GEN6(dev) || IS_GEN7(dev))
427                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
428                 else
429                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
430         } else if (HAS_PCH_SPLIT(dev))
431                 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
432         else
433                 aux_clock_divider = intel_hrawclk(dev) / 2;
434
435         if (IS_GEN6(dev))
436                 precharge = 3;
437         else
438                 precharge = 5;
439
440         /* Try to wait for any previous AUX channel activity */
441         for (try = 0; try < 3; try++) {
442                 status = I915_READ_NOTRACE(ch_ctl);
443                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
444                         break;
445                 msleep(1);
446         }
447
448         if (try == 3) {
449                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
450                      I915_READ(ch_ctl));
451                 ret = -EBUSY;
452                 goto out;
453         }
454
455         /* Must try at least 3 times according to DP spec */
456         for (try = 0; try < 5; try++) {
457                 /* Load the send data into the aux channel data registers */
458                 for (i = 0; i < send_bytes; i += 4)
459                         I915_WRITE(ch_data + i,
460                                    pack_aux(send + i, send_bytes - i));
461
462                 /* Send the command and wait for it to complete */
463                 I915_WRITE(ch_ctl,
464                            DP_AUX_CH_CTL_SEND_BUSY |
465                            (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
466                            DP_AUX_CH_CTL_TIME_OUT_400us |
467                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
468                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
469                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
470                            DP_AUX_CH_CTL_DONE |
471                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
472                            DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474                 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
475
476                 /* Clear done status and any errors */
477                 I915_WRITE(ch_ctl,
478                            status |
479                            DP_AUX_CH_CTL_DONE |
480                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                            DP_AUX_CH_CTL_RECEIVE_ERROR);
482
483                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
484                               DP_AUX_CH_CTL_RECEIVE_ERROR))
485                         continue;
486                 if (status & DP_AUX_CH_CTL_DONE)
487                         break;
488         }
489
490         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492                 ret = -EBUSY;
493                 goto out;
494         }
495
496         /* Check for timeout or receive error.
497          * Timeouts occur when the sink is not connected
498          */
499         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501                 ret = -EIO;
502                 goto out;
503         }
504
505         /* Timeouts occur when the device isn't connected, so they're
506          * "normal" -- don't fill the kernel log with these */
507         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509                 ret = -ETIMEDOUT;
510                 goto out;
511         }
512
513         /* Unload any bytes sent back from the other side */
514         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516         if (recv_bytes > recv_size)
517                 recv_bytes = recv_size;
518
519         for (i = 0; i < recv_bytes; i += 4)
520                 unpack_aux(I915_READ(ch_data + i),
521                            recv + i, recv_bytes - i);
522
523         ret = recv_bytes;
524 out:
525         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526
527         return ret;
528 }
529
530 /* Write data to the aux channel in native mode */
531 static int
532 intel_dp_aux_native_write(struct intel_dp *intel_dp,
533                           uint16_t address, uint8_t *send, int send_bytes)
534 {
535         int ret;
536         uint8_t msg[20];
537         int msg_bytes;
538         uint8_t ack;
539
540         intel_dp_check_edp(intel_dp);
541         if (send_bytes > 16)
542                 return -1;
543         msg[0] = AUX_NATIVE_WRITE << 4;
544         msg[1] = address >> 8;
545         msg[2] = address & 0xff;
546         msg[3] = send_bytes - 1;
547         memcpy(&msg[4], send, send_bytes);
548         msg_bytes = send_bytes + 4;
549         for (;;) {
550                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
551                 if (ret < 0)
552                         return ret;
553                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
554                         break;
555                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
556                         udelay(100);
557                 else
558                         return -EIO;
559         }
560         return send_bytes;
561 }
562
563 /* Write a single byte to the aux channel in native mode */
564 static int
565 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
566                             uint16_t address, uint8_t byte)
567 {
568         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
569 }
570
571 /* read bytes from a native aux channel */
572 static int
573 intel_dp_aux_native_read(struct intel_dp *intel_dp,
574                          uint16_t address, uint8_t *recv, int recv_bytes)
575 {
576         uint8_t msg[4];
577         int msg_bytes;
578         uint8_t reply[20];
579         int reply_bytes;
580         uint8_t ack;
581         int ret;
582
583         intel_dp_check_edp(intel_dp);
584         msg[0] = AUX_NATIVE_READ << 4;
585         msg[1] = address >> 8;
586         msg[2] = address & 0xff;
587         msg[3] = recv_bytes - 1;
588
589         msg_bytes = 4;
590         reply_bytes = recv_bytes + 1;
591
592         for (;;) {
593                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
594                                       reply, reply_bytes);
595                 if (ret == 0)
596                         return -EPROTO;
597                 if (ret < 0)
598                         return ret;
599                 ack = reply[0];
600                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
601                         memcpy(recv, reply + 1, ret - 1);
602                         return ret - 1;
603                 }
604                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
605                         udelay(100);
606                 else
607                         return -EIO;
608         }
609 }
610
611 static int
612 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
613                     uint8_t write_byte, uint8_t *read_byte)
614 {
615         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
616         struct intel_dp *intel_dp = container_of(adapter,
617                                                 struct intel_dp,
618                                                 adapter);
619         uint16_t address = algo_data->address;
620         uint8_t msg[5];
621         uint8_t reply[2];
622         unsigned retry;
623         int msg_bytes;
624         int reply_bytes;
625         int ret;
626
627         intel_dp_check_edp(intel_dp);
628         /* Set up the command byte */
629         if (mode & MODE_I2C_READ)
630                 msg[0] = AUX_I2C_READ << 4;
631         else
632                 msg[0] = AUX_I2C_WRITE << 4;
633
634         if (!(mode & MODE_I2C_STOP))
635                 msg[0] |= AUX_I2C_MOT << 4;
636
637         msg[1] = address >> 8;
638         msg[2] = address;
639
640         switch (mode) {
641         case MODE_I2C_WRITE:
642                 msg[3] = 0;
643                 msg[4] = write_byte;
644                 msg_bytes = 5;
645                 reply_bytes = 1;
646                 break;
647         case MODE_I2C_READ:
648                 msg[3] = 0;
649                 msg_bytes = 4;
650                 reply_bytes = 2;
651                 break;
652         default:
653                 msg_bytes = 3;
654                 reply_bytes = 1;
655                 break;
656         }
657
658         for (retry = 0; retry < 5; retry++) {
659                 ret = intel_dp_aux_ch(intel_dp,
660                                       msg, msg_bytes,
661                                       reply, reply_bytes);
662                 if (ret < 0) {
663                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
664                         return ret;
665                 }
666
667                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
668                 case AUX_NATIVE_REPLY_ACK:
669                         /* I2C-over-AUX Reply field is only valid
670                          * when paired with AUX ACK.
671                          */
672                         break;
673                 case AUX_NATIVE_REPLY_NACK:
674                         DRM_DEBUG_KMS("aux_ch native nack\n");
675                         return -EREMOTEIO;
676                 case AUX_NATIVE_REPLY_DEFER:
677                         udelay(100);
678                         continue;
679                 default:
680                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
681                                   reply[0]);
682                         return -EREMOTEIO;
683                 }
684
685                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
686                 case AUX_I2C_REPLY_ACK:
687                         if (mode == MODE_I2C_READ) {
688                                 *read_byte = reply[1];
689                         }
690                         return reply_bytes - 1;
691                 case AUX_I2C_REPLY_NACK:
692                         DRM_DEBUG_KMS("aux_i2c nack\n");
693                         return -EREMOTEIO;
694                 case AUX_I2C_REPLY_DEFER:
695                         DRM_DEBUG_KMS("aux_i2c defer\n");
696                         udelay(100);
697                         break;
698                 default:
699                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
700                         return -EREMOTEIO;
701                 }
702         }
703
704         DRM_ERROR("too many retries, giving up\n");
705         return -EREMOTEIO;
706 }
707
708 static int
709 intel_dp_i2c_init(struct intel_dp *intel_dp,
710                   struct intel_connector *intel_connector, const char *name)
711 {
712         int     ret;
713
714         DRM_DEBUG_KMS("i2c_init %s\n", name);
715         intel_dp->algo.running = false;
716         intel_dp->algo.address = 0;
717         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
718
719         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
720         intel_dp->adapter.owner = THIS_MODULE;
721         intel_dp->adapter.class = I2C_CLASS_DDC;
722         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
723         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
724         intel_dp->adapter.algo_data = &intel_dp->algo;
725         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
726
727         ironlake_edp_panel_vdd_on(intel_dp);
728         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
729         ironlake_edp_panel_vdd_off(intel_dp, false);
730         return ret;
731 }
732
733 bool
734 intel_dp_mode_fixup(struct drm_encoder *encoder,
735                     const struct drm_display_mode *mode,
736                     struct drm_display_mode *adjusted_mode)
737 {
738         struct drm_device *dev = encoder->dev;
739         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
740         struct intel_connector *intel_connector = intel_dp->attached_connector;
741         int lane_count, clock;
742         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
743         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
744         int bpp, mode_rate;
745         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
746
747         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
748                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
749                                        adjusted_mode);
750                 intel_pch_panel_fitting(dev,
751                                         intel_connector->panel.fitting_mode,
752                                         mode, adjusted_mode);
753         }
754
755         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
756                 return false;
757
758         DRM_DEBUG_KMS("DP link computation with max lane count %i "
759                       "max bw %02x pixel clock %iKHz\n",
760                       max_lane_count, bws[max_clock], adjusted_mode->clock);
761
762         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
763                 return false;
764
765         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
766         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
767
768         for (clock = 0; clock <= max_clock; clock++) {
769                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
770                         int link_bw_clock =
771                                 drm_dp_bw_code_to_link_rate(bws[clock]);
772                         int link_avail = intel_dp_max_data_rate(link_bw_clock,
773                                                                 lane_count);
774
775                         if (mode_rate <= link_avail) {
776                                 intel_dp->link_bw = bws[clock];
777                                 intel_dp->lane_count = lane_count;
778                                 adjusted_mode->clock = link_bw_clock;
779                                 DRM_DEBUG_KMS("DP link bw %02x lane "
780                                                 "count %d clock %d bpp %d\n",
781                                        intel_dp->link_bw, intel_dp->lane_count,
782                                        adjusted_mode->clock, bpp);
783                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
784                                               mode_rate, link_avail);
785                                 return true;
786                         }
787                 }
788         }
789
790         return false;
791 }
792
793 void
794 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
795                  struct drm_display_mode *adjusted_mode)
796 {
797         struct drm_device *dev = crtc->dev;
798         struct intel_encoder *intel_encoder;
799         struct intel_dp *intel_dp;
800         struct drm_i915_private *dev_priv = dev->dev_private;
801         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
802         int lane_count = 4;
803         struct intel_link_m_n m_n;
804         int pipe = intel_crtc->pipe;
805         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
806
807         /*
808          * Find the lane count in the intel_encoder private
809          */
810         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
811                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
812
813                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
814                     intel_encoder->type == INTEL_OUTPUT_EDP)
815                 {
816                         lane_count = intel_dp->lane_count;
817                         break;
818                 }
819         }
820
821         /*
822          * Compute the GMCH and Link ratios. The '3' here is
823          * the number of bytes_per_pixel post-LUT, which we always
824          * set up for 8-bits of R/G/B, or 3 bytes total.
825          */
826         intel_link_compute_m_n(intel_crtc->bpp, lane_count,
827                                mode->clock, adjusted_mode->clock, &m_n);
828
829         if (IS_HASWELL(dev)) {
830                 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
831                            TU_SIZE(m_n.tu) | m_n.gmch_m);
832                 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
833                 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
834                 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
835         } else if (HAS_PCH_SPLIT(dev)) {
836                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
837                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
838                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
839                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
840         } else if (IS_VALLEYVIEW(dev)) {
841                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
842                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
843                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
844                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
845         } else {
846                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
847                            TU_SIZE(m_n.tu) | m_n.gmch_m);
848                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
849                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
850                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
851         }
852 }
853
854 void intel_dp_init_link_config(struct intel_dp *intel_dp)
855 {
856         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
857         intel_dp->link_configuration[0] = intel_dp->link_bw;
858         intel_dp->link_configuration[1] = intel_dp->lane_count;
859         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
860         /*
861          * Check for DPCD version > 1.1 and enhanced framing support
862          */
863         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
864             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
865                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
866         }
867 }
868
869 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
870 {
871         struct drm_device *dev = crtc->dev;
872         struct drm_i915_private *dev_priv = dev->dev_private;
873         u32 dpa_ctl;
874
875         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
876         dpa_ctl = I915_READ(DP_A);
877         dpa_ctl &= ~DP_PLL_FREQ_MASK;
878
879         if (clock < 200000) {
880                 /* For a long time we've carried around a ILK-DevA w/a for the
881                  * 160MHz clock. If we're really unlucky, it's still required.
882                  */
883                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
884                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
885         } else {
886                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
887         }
888
889         I915_WRITE(DP_A, dpa_ctl);
890
891         POSTING_READ(DP_A);
892         udelay(500);
893 }
894
895 static void
896 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
897                   struct drm_display_mode *adjusted_mode)
898 {
899         struct drm_device *dev = encoder->dev;
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
902         struct drm_crtc *crtc = encoder->crtc;
903         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
904
905         /*
906          * There are four kinds of DP registers:
907          *
908          *      IBX PCH
909          *      SNB CPU
910          *      IVB CPU
911          *      CPT PCH
912          *
913          * IBX PCH and CPU are the same for almost everything,
914          * except that the CPU DP PLL is configured in this
915          * register
916          *
917          * CPT PCH is quite different, having many bits moved
918          * to the TRANS_DP_CTL register instead. That
919          * configuration happens (oddly) in ironlake_pch_enable
920          */
921
922         /* Preserve the BIOS-computed detected bit. This is
923          * supposed to be read-only.
924          */
925         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
926
927         /* Handle DP bits in common between all three register formats */
928         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
929
930         switch (intel_dp->lane_count) {
931         case 1:
932                 intel_dp->DP |= DP_PORT_WIDTH_1;
933                 break;
934         case 2:
935                 intel_dp->DP |= DP_PORT_WIDTH_2;
936                 break;
937         case 4:
938                 intel_dp->DP |= DP_PORT_WIDTH_4;
939                 break;
940         }
941         if (intel_dp->has_audio) {
942                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
943                                  pipe_name(intel_crtc->pipe));
944                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
945                 intel_write_eld(encoder, adjusted_mode);
946         }
947
948         intel_dp_init_link_config(intel_dp);
949
950         /* Split out the IBX/CPU vs CPT settings */
951
952         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
953                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
954                         intel_dp->DP |= DP_SYNC_HS_HIGH;
955                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
956                         intel_dp->DP |= DP_SYNC_VS_HIGH;
957                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
958
959                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
960                         intel_dp->DP |= DP_ENHANCED_FRAMING;
961
962                 intel_dp->DP |= intel_crtc->pipe << 29;
963
964                 /* don't miss out required setting for eDP */
965                 if (adjusted_mode->clock < 200000)
966                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
967                 else
968                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
969         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
970                 intel_dp->DP |= intel_dp->color_range;
971
972                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
973                         intel_dp->DP |= DP_SYNC_HS_HIGH;
974                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
975                         intel_dp->DP |= DP_SYNC_VS_HIGH;
976                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
977
978                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
979                         intel_dp->DP |= DP_ENHANCED_FRAMING;
980
981                 if (intel_crtc->pipe == 1)
982                         intel_dp->DP |= DP_PIPEB_SELECT;
983
984                 if (is_cpu_edp(intel_dp)) {
985                         /* don't miss out required setting for eDP */
986                         if (adjusted_mode->clock < 200000)
987                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
988                         else
989                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
990                 }
991         } else {
992                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
993         }
994
995         if (is_cpu_edp(intel_dp))
996                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
997 }
998
999 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1000 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1001
1002 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1003 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1006 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1007
1008 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1009                                        u32 mask,
1010                                        u32 value)
1011 {
1012         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1013         struct drm_i915_private *dev_priv = dev->dev_private;
1014
1015         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1016                       mask, value,
1017                       I915_READ(PCH_PP_STATUS),
1018                       I915_READ(PCH_PP_CONTROL));
1019
1020         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
1021                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1022                           I915_READ(PCH_PP_STATUS),
1023                           I915_READ(PCH_PP_CONTROL));
1024         }
1025 }
1026
1027 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1028 {
1029         DRM_DEBUG_KMS("Wait for panel power on\n");
1030         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1031 }
1032
1033 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1034 {
1035         DRM_DEBUG_KMS("Wait for panel power off time\n");
1036         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1037 }
1038
1039 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1040 {
1041         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1042         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1043 }
1044
1045
1046 /* Read the current pp_control value, unlocking the register if it
1047  * is locked
1048  */
1049
1050 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1051 {
1052         u32     control = I915_READ(PCH_PP_CONTROL);
1053
1054         control &= ~PANEL_UNLOCK_MASK;
1055         control |= PANEL_UNLOCK_REGS;
1056         return control;
1057 }
1058
1059 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1060 {
1061         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063         u32 pp;
1064
1065         if (!is_edp(intel_dp))
1066                 return;
1067         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1068
1069         WARN(intel_dp->want_panel_vdd,
1070              "eDP VDD already requested on\n");
1071
1072         intel_dp->want_panel_vdd = true;
1073
1074         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1075                 DRM_DEBUG_KMS("eDP VDD already on\n");
1076                 return;
1077         }
1078
1079         if (!ironlake_edp_have_panel_power(intel_dp))
1080                 ironlake_wait_panel_power_cycle(intel_dp);
1081
1082         pp = ironlake_get_pp_control(dev_priv);
1083         pp |= EDP_FORCE_VDD;
1084         I915_WRITE(PCH_PP_CONTROL, pp);
1085         POSTING_READ(PCH_PP_CONTROL);
1086         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1087                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1088
1089         /*
1090          * If the panel wasn't on, delay before accessing aux channel
1091          */
1092         if (!ironlake_edp_have_panel_power(intel_dp)) {
1093                 DRM_DEBUG_KMS("eDP was not running\n");
1094                 msleep(intel_dp->panel_power_up_delay);
1095         }
1096 }
1097
1098 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1099 {
1100         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1101         struct drm_i915_private *dev_priv = dev->dev_private;
1102         u32 pp;
1103
1104         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1105                 pp = ironlake_get_pp_control(dev_priv);
1106                 pp &= ~EDP_FORCE_VDD;
1107                 I915_WRITE(PCH_PP_CONTROL, pp);
1108                 POSTING_READ(PCH_PP_CONTROL);
1109
1110                 /* Make sure sequencer is idle before allowing subsequent activity */
1111                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1112                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1113
1114                 msleep(intel_dp->panel_power_down_delay);
1115         }
1116 }
1117
1118 static void ironlake_panel_vdd_work(struct work_struct *__work)
1119 {
1120         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1121                                                  struct intel_dp, panel_vdd_work);
1122         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1123
1124         mutex_lock(&dev->mode_config.mutex);
1125         ironlake_panel_vdd_off_sync(intel_dp);
1126         mutex_unlock(&dev->mode_config.mutex);
1127 }
1128
1129 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1130 {
1131         if (!is_edp(intel_dp))
1132                 return;
1133
1134         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1135         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1136
1137         intel_dp->want_panel_vdd = false;
1138
1139         if (sync) {
1140                 ironlake_panel_vdd_off_sync(intel_dp);
1141         } else {
1142                 /*
1143                  * Queue the timer to fire a long
1144                  * time from now (relative to the power down delay)
1145                  * to keep the panel power up across a sequence of operations
1146                  */
1147                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1148                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1149         }
1150 }
1151
1152 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1153 {
1154         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156         u32 pp;
1157
1158         if (!is_edp(intel_dp))
1159                 return;
1160
1161         DRM_DEBUG_KMS("Turn eDP power on\n");
1162
1163         if (ironlake_edp_have_panel_power(intel_dp)) {
1164                 DRM_DEBUG_KMS("eDP power already on\n");
1165                 return;
1166         }
1167
1168         ironlake_wait_panel_power_cycle(intel_dp);
1169
1170         pp = ironlake_get_pp_control(dev_priv);
1171         if (IS_GEN5(dev)) {
1172                 /* ILK workaround: disable reset around power sequence */
1173                 pp &= ~PANEL_POWER_RESET;
1174                 I915_WRITE(PCH_PP_CONTROL, pp);
1175                 POSTING_READ(PCH_PP_CONTROL);
1176         }
1177
1178         pp |= POWER_TARGET_ON;
1179         if (!IS_GEN5(dev))
1180                 pp |= PANEL_POWER_RESET;
1181
1182         I915_WRITE(PCH_PP_CONTROL, pp);
1183         POSTING_READ(PCH_PP_CONTROL);
1184
1185         ironlake_wait_panel_on(intel_dp);
1186
1187         if (IS_GEN5(dev)) {
1188                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1189                 I915_WRITE(PCH_PP_CONTROL, pp);
1190                 POSTING_READ(PCH_PP_CONTROL);
1191         }
1192 }
1193
1194 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1195 {
1196         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         u32 pp;
1199
1200         if (!is_edp(intel_dp))
1201                 return;
1202
1203         DRM_DEBUG_KMS("Turn eDP power off\n");
1204
1205         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1206
1207         pp = ironlake_get_pp_control(dev_priv);
1208         /* We need to switch off panel power _and_ force vdd, for otherwise some
1209          * panels get very unhappy and cease to work. */
1210         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1211         I915_WRITE(PCH_PP_CONTROL, pp);
1212         POSTING_READ(PCH_PP_CONTROL);
1213
1214         intel_dp->want_panel_vdd = false;
1215
1216         ironlake_wait_panel_off(intel_dp);
1217 }
1218
1219 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1220 {
1221         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1222         struct drm_device *dev = intel_dig_port->base.base.dev;
1223         struct drm_i915_private *dev_priv = dev->dev_private;
1224         int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1225         u32 pp;
1226
1227         if (!is_edp(intel_dp))
1228                 return;
1229
1230         DRM_DEBUG_KMS("\n");
1231         /*
1232          * If we enable the backlight right away following a panel power
1233          * on, we may see slight flicker as the panel syncs with the eDP
1234          * link.  So delay a bit to make sure the image is solid before
1235          * allowing it to appear.
1236          */
1237         msleep(intel_dp->backlight_on_delay);
1238         pp = ironlake_get_pp_control(dev_priv);
1239         pp |= EDP_BLC_ENABLE;
1240         I915_WRITE(PCH_PP_CONTROL, pp);
1241         POSTING_READ(PCH_PP_CONTROL);
1242
1243         intel_panel_enable_backlight(dev, pipe);
1244 }
1245
1246 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1247 {
1248         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         u32 pp;
1251
1252         if (!is_edp(intel_dp))
1253                 return;
1254
1255         intel_panel_disable_backlight(dev);
1256
1257         DRM_DEBUG_KMS("\n");
1258         pp = ironlake_get_pp_control(dev_priv);
1259         pp &= ~EDP_BLC_ENABLE;
1260         I915_WRITE(PCH_PP_CONTROL, pp);
1261         POSTING_READ(PCH_PP_CONTROL);
1262         msleep(intel_dp->backlight_off_delay);
1263 }
1264
1265 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1266 {
1267         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1268         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1269         struct drm_device *dev = crtc->dev;
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         u32 dpa_ctl;
1272
1273         assert_pipe_disabled(dev_priv,
1274                              to_intel_crtc(crtc)->pipe);
1275
1276         DRM_DEBUG_KMS("\n");
1277         dpa_ctl = I915_READ(DP_A);
1278         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1279         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1280
1281         /* We don't adjust intel_dp->DP while tearing down the link, to
1282          * facilitate link retraining (e.g. after hotplug). Hence clear all
1283          * enable bits here to ensure that we don't enable too much. */
1284         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1285         intel_dp->DP |= DP_PLL_ENABLE;
1286         I915_WRITE(DP_A, intel_dp->DP);
1287         POSTING_READ(DP_A);
1288         udelay(200);
1289 }
1290
1291 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1292 {
1293         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1294         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1295         struct drm_device *dev = crtc->dev;
1296         struct drm_i915_private *dev_priv = dev->dev_private;
1297         u32 dpa_ctl;
1298
1299         assert_pipe_disabled(dev_priv,
1300                              to_intel_crtc(crtc)->pipe);
1301
1302         dpa_ctl = I915_READ(DP_A);
1303         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1304              "dp pll off, should be on\n");
1305         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1306
1307         /* We can't rely on the value tracked for the DP register in
1308          * intel_dp->DP because link_down must not change that (otherwise link
1309          * re-training will fail. */
1310         dpa_ctl &= ~DP_PLL_ENABLE;
1311         I915_WRITE(DP_A, dpa_ctl);
1312         POSTING_READ(DP_A);
1313         udelay(200);
1314 }
1315
1316 /* If the sink supports it, try to set the power state appropriately */
1317 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1318 {
1319         int ret, i;
1320
1321         /* Should have a valid DPCD by this point */
1322         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1323                 return;
1324
1325         if (mode != DRM_MODE_DPMS_ON) {
1326                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1327                                                   DP_SET_POWER_D3);
1328                 if (ret != 1)
1329                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1330         } else {
1331                 /*
1332                  * When turning on, we need to retry for 1ms to give the sink
1333                  * time to wake up.
1334                  */
1335                 for (i = 0; i < 3; i++) {
1336                         ret = intel_dp_aux_native_write_1(intel_dp,
1337                                                           DP_SET_POWER,
1338                                                           DP_SET_POWER_D0);
1339                         if (ret == 1)
1340                                 break;
1341                         msleep(1);
1342                 }
1343         }
1344 }
1345
1346 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1347                                   enum pipe *pipe)
1348 {
1349         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1350         struct drm_device *dev = encoder->base.dev;
1351         struct drm_i915_private *dev_priv = dev->dev_private;
1352         u32 tmp = I915_READ(intel_dp->output_reg);
1353
1354         if (!(tmp & DP_PORT_EN))
1355                 return false;
1356
1357         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1358                 *pipe = PORT_TO_PIPE_CPT(tmp);
1359         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1360                 *pipe = PORT_TO_PIPE(tmp);
1361         } else {
1362                 u32 trans_sel;
1363                 u32 trans_dp;
1364                 int i;
1365
1366                 switch (intel_dp->output_reg) {
1367                 case PCH_DP_B:
1368                         trans_sel = TRANS_DP_PORT_SEL_B;
1369                         break;
1370                 case PCH_DP_C:
1371                         trans_sel = TRANS_DP_PORT_SEL_C;
1372                         break;
1373                 case PCH_DP_D:
1374                         trans_sel = TRANS_DP_PORT_SEL_D;
1375                         break;
1376                 default:
1377                         return true;
1378                 }
1379
1380                 for_each_pipe(i) {
1381                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1382                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1383                                 *pipe = i;
1384                                 return true;
1385                         }
1386                 }
1387
1388                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1389                               intel_dp->output_reg);
1390         }
1391
1392         return true;
1393 }
1394
1395 static void intel_disable_dp(struct intel_encoder *encoder)
1396 {
1397         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1398
1399         /* Make sure the panel is off before trying to change the mode. But also
1400          * ensure that we have vdd while we switch off the panel. */
1401         ironlake_edp_panel_vdd_on(intel_dp);
1402         ironlake_edp_backlight_off(intel_dp);
1403         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1404         ironlake_edp_panel_off(intel_dp);
1405
1406         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1407         if (!is_cpu_edp(intel_dp))
1408                 intel_dp_link_down(intel_dp);
1409 }
1410
1411 static void intel_post_disable_dp(struct intel_encoder *encoder)
1412 {
1413         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1414
1415         if (is_cpu_edp(intel_dp)) {
1416                 intel_dp_link_down(intel_dp);
1417                 ironlake_edp_pll_off(intel_dp);
1418         }
1419 }
1420
1421 static void intel_enable_dp(struct intel_encoder *encoder)
1422 {
1423         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1424         struct drm_device *dev = encoder->base.dev;
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1427
1428         if (WARN_ON(dp_reg & DP_PORT_EN))
1429                 return;
1430
1431         ironlake_edp_panel_vdd_on(intel_dp);
1432         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1433         intel_dp_start_link_train(intel_dp);
1434         ironlake_edp_panel_on(intel_dp);
1435         ironlake_edp_panel_vdd_off(intel_dp, true);
1436         intel_dp_complete_link_train(intel_dp);
1437         ironlake_edp_backlight_on(intel_dp);
1438 }
1439
1440 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1441 {
1442         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443
1444         if (is_cpu_edp(intel_dp))
1445                 ironlake_edp_pll_on(intel_dp);
1446 }
1447
1448 /*
1449  * Native read with retry for link status and receiver capability reads for
1450  * cases where the sink may still be asleep.
1451  */
1452 static bool
1453 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1454                                uint8_t *recv, int recv_bytes)
1455 {
1456         int ret, i;
1457
1458         /*
1459          * Sinks are *supposed* to come up within 1ms from an off state,
1460          * but we're also supposed to retry 3 times per the spec.
1461          */
1462         for (i = 0; i < 3; i++) {
1463                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1464                                                recv_bytes);
1465                 if (ret == recv_bytes)
1466                         return true;
1467                 msleep(1);
1468         }
1469
1470         return false;
1471 }
1472
1473 /*
1474  * Fetch AUX CH registers 0x202 - 0x207 which contain
1475  * link status information
1476  */
1477 static bool
1478 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1479 {
1480         return intel_dp_aux_native_read_retry(intel_dp,
1481                                               DP_LANE0_1_STATUS,
1482                                               link_status,
1483                                               DP_LINK_STATUS_SIZE);
1484 }
1485
1486 #if 0
1487 static char     *voltage_names[] = {
1488         "0.4V", "0.6V", "0.8V", "1.2V"
1489 };
1490 static char     *pre_emph_names[] = {
1491         "0dB", "3.5dB", "6dB", "9.5dB"
1492 };
1493 static char     *link_train_names[] = {
1494         "pattern 1", "pattern 2", "idle", "off"
1495 };
1496 #endif
1497
1498 /*
1499  * These are source-specific values; current Intel hardware supports
1500  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1501  */
1502
1503 static uint8_t
1504 intel_dp_voltage_max(struct intel_dp *intel_dp)
1505 {
1506         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1507
1508         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1509                 return DP_TRAIN_VOLTAGE_SWING_800;
1510         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1511                 return DP_TRAIN_VOLTAGE_SWING_1200;
1512         else
1513                 return DP_TRAIN_VOLTAGE_SWING_800;
1514 }
1515
1516 static uint8_t
1517 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1518 {
1519         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1520
1521         if (IS_HASWELL(dev)) {
1522                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1523                 case DP_TRAIN_VOLTAGE_SWING_400:
1524                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1525                 case DP_TRAIN_VOLTAGE_SWING_600:
1526                         return DP_TRAIN_PRE_EMPHASIS_6;
1527                 case DP_TRAIN_VOLTAGE_SWING_800:
1528                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1529                 case DP_TRAIN_VOLTAGE_SWING_1200:
1530                 default:
1531                         return DP_TRAIN_PRE_EMPHASIS_0;
1532                 }
1533         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1534                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1535                 case DP_TRAIN_VOLTAGE_SWING_400:
1536                         return DP_TRAIN_PRE_EMPHASIS_6;
1537                 case DP_TRAIN_VOLTAGE_SWING_600:
1538                 case DP_TRAIN_VOLTAGE_SWING_800:
1539                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1540                 default:
1541                         return DP_TRAIN_PRE_EMPHASIS_0;
1542                 }
1543         } else {
1544                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1545                 case DP_TRAIN_VOLTAGE_SWING_400:
1546                         return DP_TRAIN_PRE_EMPHASIS_6;
1547                 case DP_TRAIN_VOLTAGE_SWING_600:
1548                         return DP_TRAIN_PRE_EMPHASIS_6;
1549                 case DP_TRAIN_VOLTAGE_SWING_800:
1550                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1551                 case DP_TRAIN_VOLTAGE_SWING_1200:
1552                 default:
1553                         return DP_TRAIN_PRE_EMPHASIS_0;
1554                 }
1555         }
1556 }
1557
1558 static void
1559 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1560 {
1561         uint8_t v = 0;
1562         uint8_t p = 0;
1563         int lane;
1564         uint8_t voltage_max;
1565         uint8_t preemph_max;
1566
1567         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1568                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1569                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1570
1571                 if (this_v > v)
1572                         v = this_v;
1573                 if (this_p > p)
1574                         p = this_p;
1575         }
1576
1577         voltage_max = intel_dp_voltage_max(intel_dp);
1578         if (v >= voltage_max)
1579                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1580
1581         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1582         if (p >= preemph_max)
1583                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1584
1585         for (lane = 0; lane < 4; lane++)
1586                 intel_dp->train_set[lane] = v | p;
1587 }
1588
1589 static uint32_t
1590 intel_gen4_signal_levels(uint8_t train_set)
1591 {
1592         uint32_t        signal_levels = 0;
1593
1594         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1595         case DP_TRAIN_VOLTAGE_SWING_400:
1596         default:
1597                 signal_levels |= DP_VOLTAGE_0_4;
1598                 break;
1599         case DP_TRAIN_VOLTAGE_SWING_600:
1600                 signal_levels |= DP_VOLTAGE_0_6;
1601                 break;
1602         case DP_TRAIN_VOLTAGE_SWING_800:
1603                 signal_levels |= DP_VOLTAGE_0_8;
1604                 break;
1605         case DP_TRAIN_VOLTAGE_SWING_1200:
1606                 signal_levels |= DP_VOLTAGE_1_2;
1607                 break;
1608         }
1609         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1610         case DP_TRAIN_PRE_EMPHASIS_0:
1611         default:
1612                 signal_levels |= DP_PRE_EMPHASIS_0;
1613                 break;
1614         case DP_TRAIN_PRE_EMPHASIS_3_5:
1615                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1616                 break;
1617         case DP_TRAIN_PRE_EMPHASIS_6:
1618                 signal_levels |= DP_PRE_EMPHASIS_6;
1619                 break;
1620         case DP_TRAIN_PRE_EMPHASIS_9_5:
1621                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1622                 break;
1623         }
1624         return signal_levels;
1625 }
1626
1627 /* Gen6's DP voltage swing and pre-emphasis control */
1628 static uint32_t
1629 intel_gen6_edp_signal_levels(uint8_t train_set)
1630 {
1631         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1632                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1633         switch (signal_levels) {
1634         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1635         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1636                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1637         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1638                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1639         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1640         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1641                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1642         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1643         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1644                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1645         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1646         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1647                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1648         default:
1649                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1650                               "0x%x\n", signal_levels);
1651                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1652         }
1653 }
1654
1655 /* Gen7's DP voltage swing and pre-emphasis control */
1656 static uint32_t
1657 intel_gen7_edp_signal_levels(uint8_t train_set)
1658 {
1659         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1660                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1661         switch (signal_levels) {
1662         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1663                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1664         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1665                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1666         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1667                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1668
1669         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1670                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1671         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1672                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1673
1674         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1675                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1676         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1677                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1678
1679         default:
1680                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1681                               "0x%x\n", signal_levels);
1682                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1683         }
1684 }
1685
1686 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1687 static uint32_t
1688 intel_hsw_signal_levels(uint8_t train_set)
1689 {
1690         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1691                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1692         switch (signal_levels) {
1693         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1694                 return DDI_BUF_EMP_400MV_0DB_HSW;
1695         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1696                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1697         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1698                 return DDI_BUF_EMP_400MV_6DB_HSW;
1699         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1700                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1701
1702         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1703                 return DDI_BUF_EMP_600MV_0DB_HSW;
1704         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1705                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1706         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1707                 return DDI_BUF_EMP_600MV_6DB_HSW;
1708
1709         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1710                 return DDI_BUF_EMP_800MV_0DB_HSW;
1711         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1712                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1713         default:
1714                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1715                               "0x%x\n", signal_levels);
1716                 return DDI_BUF_EMP_400MV_0DB_HSW;
1717         }
1718 }
1719
1720 /* Properly updates "DP" with the correct signal levels. */
1721 static void
1722 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1723 {
1724         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1725         struct drm_device *dev = intel_dig_port->base.base.dev;
1726         uint32_t signal_levels, mask;
1727         uint8_t train_set = intel_dp->train_set[0];
1728
1729         if (IS_HASWELL(dev)) {
1730                 signal_levels = intel_hsw_signal_levels(train_set);
1731                 mask = DDI_BUF_EMP_MASK;
1732         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1733                 signal_levels = intel_gen7_edp_signal_levels(train_set);
1734                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1735         } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1736                 signal_levels = intel_gen6_edp_signal_levels(train_set);
1737                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1738         } else {
1739                 signal_levels = intel_gen4_signal_levels(train_set);
1740                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1741         }
1742
1743         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1744
1745         *DP = (*DP & ~mask) | signal_levels;
1746 }
1747
1748 static bool
1749 intel_dp_set_link_train(struct intel_dp *intel_dp,
1750                         uint32_t dp_reg_value,
1751                         uint8_t dp_train_pat)
1752 {
1753         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1754         struct drm_device *dev = intel_dig_port->base.base.dev;
1755         struct drm_i915_private *dev_priv = dev->dev_private;
1756         enum port port = intel_dig_port->port;
1757         int ret;
1758         uint32_t temp;
1759
1760         if (IS_HASWELL(dev)) {
1761                 temp = I915_READ(DP_TP_CTL(port));
1762
1763                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1764                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1765                 else
1766                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1767
1768                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1769                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1770                 case DP_TRAINING_PATTERN_DISABLE:
1771                         temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1772                         I915_WRITE(DP_TP_CTL(port), temp);
1773
1774                         if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1775                                       DP_TP_STATUS_IDLE_DONE), 1))
1776                                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1777
1778                         temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1779                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1780
1781                         break;
1782                 case DP_TRAINING_PATTERN_1:
1783                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1784                         break;
1785                 case DP_TRAINING_PATTERN_2:
1786                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1787                         break;
1788                 case DP_TRAINING_PATTERN_3:
1789                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1790                         break;
1791                 }
1792                 I915_WRITE(DP_TP_CTL(port), temp);
1793
1794         } else if (HAS_PCH_CPT(dev) &&
1795                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1796                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1797
1798                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1799                 case DP_TRAINING_PATTERN_DISABLE:
1800                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1801                         break;
1802                 case DP_TRAINING_PATTERN_1:
1803                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1804                         break;
1805                 case DP_TRAINING_PATTERN_2:
1806                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1807                         break;
1808                 case DP_TRAINING_PATTERN_3:
1809                         DRM_ERROR("DP training pattern 3 not supported\n");
1810                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1811                         break;
1812                 }
1813
1814         } else {
1815                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1816
1817                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1818                 case DP_TRAINING_PATTERN_DISABLE:
1819                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1820                         break;
1821                 case DP_TRAINING_PATTERN_1:
1822                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1823                         break;
1824                 case DP_TRAINING_PATTERN_2:
1825                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1826                         break;
1827                 case DP_TRAINING_PATTERN_3:
1828                         DRM_ERROR("DP training pattern 3 not supported\n");
1829                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1830                         break;
1831                 }
1832         }
1833
1834         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1835         POSTING_READ(intel_dp->output_reg);
1836
1837         intel_dp_aux_native_write_1(intel_dp,
1838                                     DP_TRAINING_PATTERN_SET,
1839                                     dp_train_pat);
1840
1841         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1842             DP_TRAINING_PATTERN_DISABLE) {
1843                 ret = intel_dp_aux_native_write(intel_dp,
1844                                                 DP_TRAINING_LANE0_SET,
1845                                                 intel_dp->train_set,
1846                                                 intel_dp->lane_count);
1847                 if (ret != intel_dp->lane_count)
1848                         return false;
1849         }
1850
1851         return true;
1852 }
1853
1854 /* Enable corresponding port and start training pattern 1 */
1855 void
1856 intel_dp_start_link_train(struct intel_dp *intel_dp)
1857 {
1858         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1859         struct drm_device *dev = encoder->dev;
1860         int i;
1861         uint8_t voltage;
1862         bool clock_recovery = false;
1863         int voltage_tries, loop_tries;
1864         uint32_t DP = intel_dp->DP;
1865
1866         if (HAS_DDI(dev))
1867                 intel_ddi_prepare_link_retrain(encoder);
1868
1869         /* Write the link configuration data */
1870         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1871                                   intel_dp->link_configuration,
1872                                   DP_LINK_CONFIGURATION_SIZE);
1873
1874         DP |= DP_PORT_EN;
1875
1876         memset(intel_dp->train_set, 0, 4);
1877         voltage = 0xff;
1878         voltage_tries = 0;
1879         loop_tries = 0;
1880         clock_recovery = false;
1881         for (;;) {
1882                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1883                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1884
1885                 intel_dp_set_signal_levels(intel_dp, &DP);
1886
1887                 /* Set training pattern 1 */
1888                 if (!intel_dp_set_link_train(intel_dp, DP,
1889                                              DP_TRAINING_PATTERN_1 |
1890                                              DP_LINK_SCRAMBLING_DISABLE))
1891                         break;
1892
1893                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1894                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1895                         DRM_ERROR("failed to get link status\n");
1896                         break;
1897                 }
1898
1899                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1900                         DRM_DEBUG_KMS("clock recovery OK\n");
1901                         clock_recovery = true;
1902                         break;
1903                 }
1904
1905                 /* Check to see if we've tried the max voltage */
1906                 for (i = 0; i < intel_dp->lane_count; i++)
1907                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1908                                 break;
1909                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1910                         ++loop_tries;
1911                         if (loop_tries == 5) {
1912                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1913                                 break;
1914                         }
1915                         memset(intel_dp->train_set, 0, 4);
1916                         voltage_tries = 0;
1917                         continue;
1918                 }
1919
1920                 /* Check to see if we've tried the same voltage 5 times */
1921                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1922                         ++voltage_tries;
1923                         if (voltage_tries == 5) {
1924                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1925                                 break;
1926                         }
1927                 } else
1928                         voltage_tries = 0;
1929                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1930
1931                 /* Compute new intel_dp->train_set as requested by target */
1932                 intel_get_adjust_train(intel_dp, link_status);
1933         }
1934
1935         intel_dp->DP = DP;
1936 }
1937
1938 void
1939 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1940 {
1941         bool channel_eq = false;
1942         int tries, cr_tries;
1943         uint32_t DP = intel_dp->DP;
1944
1945         /* channel equalization */
1946         tries = 0;
1947         cr_tries = 0;
1948         channel_eq = false;
1949         for (;;) {
1950                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1951
1952                 if (cr_tries > 5) {
1953                         DRM_ERROR("failed to train DP, aborting\n");
1954                         intel_dp_link_down(intel_dp);
1955                         break;
1956                 }
1957
1958                 intel_dp_set_signal_levels(intel_dp, &DP);
1959
1960                 /* channel eq pattern */
1961                 if (!intel_dp_set_link_train(intel_dp, DP,
1962                                              DP_TRAINING_PATTERN_2 |
1963                                              DP_LINK_SCRAMBLING_DISABLE))
1964                         break;
1965
1966                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1967                 if (!intel_dp_get_link_status(intel_dp, link_status))
1968                         break;
1969
1970                 /* Make sure clock is still ok */
1971                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1972                         intel_dp_start_link_train(intel_dp);
1973                         cr_tries++;
1974                         continue;
1975                 }
1976
1977                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1978                         channel_eq = true;
1979                         break;
1980                 }
1981
1982                 /* Try 5 times, then try clock recovery if that fails */
1983                 if (tries > 5) {
1984                         intel_dp_link_down(intel_dp);
1985                         intel_dp_start_link_train(intel_dp);
1986                         tries = 0;
1987                         cr_tries++;
1988                         continue;
1989                 }
1990
1991                 /* Compute new intel_dp->train_set as requested by target */
1992                 intel_get_adjust_train(intel_dp, link_status);
1993                 ++tries;
1994         }
1995
1996         if (channel_eq)
1997                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1998
1999         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
2000 }
2001
2002 static void
2003 intel_dp_link_down(struct intel_dp *intel_dp)
2004 {
2005         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2006         struct drm_device *dev = intel_dig_port->base.base.dev;
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         struct intel_crtc *intel_crtc =
2009                 to_intel_crtc(intel_dig_port->base.base.crtc);
2010         uint32_t DP = intel_dp->DP;
2011
2012         /*
2013          * DDI code has a strict mode set sequence and we should try to respect
2014          * it, otherwise we might hang the machine in many different ways. So we
2015          * really should be disabling the port only on a complete crtc_disable
2016          * sequence. This function is just called under two conditions on DDI
2017          * code:
2018          * - Link train failed while doing crtc_enable, and on this case we
2019          *   really should respect the mode set sequence and wait for a
2020          *   crtc_disable.
2021          * - Someone turned the monitor off and intel_dp_check_link_status
2022          *   called us. We don't need to disable the whole port on this case, so
2023          *   when someone turns the monitor on again,
2024          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2025          *   train.
2026          */
2027         if (HAS_DDI(dev))
2028                 return;
2029
2030         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2031                 return;
2032
2033         DRM_DEBUG_KMS("\n");
2034
2035         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2036                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2037                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2038         } else {
2039                 DP &= ~DP_LINK_TRAIN_MASK;
2040                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2041         }
2042         POSTING_READ(intel_dp->output_reg);
2043
2044         /* We don't really know why we're doing this */
2045         intel_wait_for_vblank(dev, intel_crtc->pipe);
2046
2047         if (HAS_PCH_IBX(dev) &&
2048             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2049                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2050
2051                 /* Hardware workaround: leaving our transcoder select
2052                  * set to transcoder B while it's off will prevent the
2053                  * corresponding HDMI output on transcoder A.
2054                  *
2055                  * Combine this with another hardware workaround:
2056                  * transcoder select bit can only be cleared while the
2057                  * port is enabled.
2058                  */
2059                 DP &= ~DP_PIPEB_SELECT;
2060                 I915_WRITE(intel_dp->output_reg, DP);
2061
2062                 /* Changes to enable or select take place the vblank
2063                  * after being written.
2064                  */
2065                 if (WARN_ON(crtc == NULL)) {
2066                         /* We should never try to disable a port without a crtc
2067                          * attached. For paranoia keep the code around for a
2068                          * bit. */
2069                         POSTING_READ(intel_dp->output_reg);
2070                         msleep(50);
2071                 } else
2072                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2073         }
2074
2075         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2076         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2077         POSTING_READ(intel_dp->output_reg);
2078         msleep(intel_dp->panel_power_down_delay);
2079 }
2080
2081 static bool
2082 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2083 {
2084         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2085
2086         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2087                                            sizeof(intel_dp->dpcd)) == 0)
2088                 return false; /* aux transfer failed */
2089
2090         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2091                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2092         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2093
2094         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2095                 return false; /* DPCD not present */
2096
2097         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2098               DP_DWN_STRM_PORT_PRESENT))
2099                 return true; /* native DP sink */
2100
2101         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2102                 return true; /* no per-port downstream info */
2103
2104         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2105                                            intel_dp->downstream_ports,
2106                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2107                 return false; /* downstream port status fetch failed */
2108
2109         return true;
2110 }
2111
2112 static void
2113 intel_dp_probe_oui(struct intel_dp *intel_dp)
2114 {
2115         u8 buf[3];
2116
2117         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2118                 return;
2119
2120         ironlake_edp_panel_vdd_on(intel_dp);
2121
2122         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2123                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2124                               buf[0], buf[1], buf[2]);
2125
2126         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2127                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2128                               buf[0], buf[1], buf[2]);
2129
2130         ironlake_edp_panel_vdd_off(intel_dp, false);
2131 }
2132
2133 static bool
2134 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2135 {
2136         int ret;
2137
2138         ret = intel_dp_aux_native_read_retry(intel_dp,
2139                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2140                                              sink_irq_vector, 1);
2141         if (!ret)
2142                 return false;
2143
2144         return true;
2145 }
2146
2147 static void
2148 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2149 {
2150         /* NAK by default */
2151         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2152 }
2153
2154 /*
2155  * According to DP spec
2156  * 5.1.2:
2157  *  1. Read DPCD
2158  *  2. Configure link according to Receiver Capabilities
2159  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2160  *  4. Check link status on receipt of hot-plug interrupt
2161  */
2162
2163 void
2164 intel_dp_check_link_status(struct intel_dp *intel_dp)
2165 {
2166         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2167         u8 sink_irq_vector;
2168         u8 link_status[DP_LINK_STATUS_SIZE];
2169
2170         if (!intel_encoder->connectors_active)
2171                 return;
2172
2173         if (WARN_ON(!intel_encoder->base.crtc))
2174                 return;
2175
2176         /* Try to read receiver status if the link appears to be up */
2177         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2178                 intel_dp_link_down(intel_dp);
2179                 return;
2180         }
2181
2182         /* Now read the DPCD to see if it's actually running */
2183         if (!intel_dp_get_dpcd(intel_dp)) {
2184                 intel_dp_link_down(intel_dp);
2185                 return;
2186         }
2187
2188         /* Try to read the source of the interrupt */
2189         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2190             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2191                 /* Clear interrupt source */
2192                 intel_dp_aux_native_write_1(intel_dp,
2193                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2194                                             sink_irq_vector);
2195
2196                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2197                         intel_dp_handle_test_request(intel_dp);
2198                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2199                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2200         }
2201
2202         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2203                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2204                               drm_get_encoder_name(&intel_encoder->base));
2205                 intel_dp_start_link_train(intel_dp);
2206                 intel_dp_complete_link_train(intel_dp);
2207         }
2208 }
2209
2210 /* XXX this is probably wrong for multiple downstream ports */
2211 static enum drm_connector_status
2212 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2213 {
2214         uint8_t *dpcd = intel_dp->dpcd;
2215         bool hpd;
2216         uint8_t type;
2217
2218         if (!intel_dp_get_dpcd(intel_dp))
2219                 return connector_status_disconnected;
2220
2221         /* if there's no downstream port, we're done */
2222         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2223                 return connector_status_connected;
2224
2225         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2226         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2227         if (hpd) {
2228                 uint8_t reg;
2229                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2230                                                     &reg, 1))
2231                         return connector_status_unknown;
2232                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2233                                               : connector_status_disconnected;
2234         }
2235
2236         /* If no HPD, poke DDC gently */
2237         if (drm_probe_ddc(&intel_dp->adapter))
2238                 return connector_status_connected;
2239
2240         /* Well we tried, say unknown for unreliable port types */
2241         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2242         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2243                 return connector_status_unknown;
2244
2245         /* Anything else is out of spec, warn and ignore */
2246         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2247         return connector_status_disconnected;
2248 }
2249
2250 static enum drm_connector_status
2251 ironlake_dp_detect(struct intel_dp *intel_dp)
2252 {
2253         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2254         struct drm_i915_private *dev_priv = dev->dev_private;
2255         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2256         enum drm_connector_status status;
2257
2258         /* Can't disconnect eDP, but you can close the lid... */
2259         if (is_edp(intel_dp)) {
2260                 status = intel_panel_detect(dev);
2261                 if (status == connector_status_unknown)
2262                         status = connector_status_connected;
2263                 return status;
2264         }
2265
2266         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2267                 return connector_status_disconnected;
2268
2269         return intel_dp_detect_dpcd(intel_dp);
2270 }
2271
2272 static enum drm_connector_status
2273 g4x_dp_detect(struct intel_dp *intel_dp)
2274 {
2275         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2276         struct drm_i915_private *dev_priv = dev->dev_private;
2277         uint32_t bit;
2278
2279         switch (intel_dp->output_reg) {
2280         case DP_B:
2281                 bit = DPB_HOTPLUG_LIVE_STATUS;
2282                 break;
2283         case DP_C:
2284                 bit = DPC_HOTPLUG_LIVE_STATUS;
2285                 break;
2286         case DP_D:
2287                 bit = DPD_HOTPLUG_LIVE_STATUS;
2288                 break;
2289         default:
2290                 return connector_status_unknown;
2291         }
2292
2293         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2294                 return connector_status_disconnected;
2295
2296         return intel_dp_detect_dpcd(intel_dp);
2297 }
2298
2299 static struct edid *
2300 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2301 {
2302         struct intel_connector *intel_connector = to_intel_connector(connector);
2303
2304         /* use cached edid if we have one */
2305         if (intel_connector->edid) {
2306                 struct edid *edid;
2307                 int size;
2308
2309                 /* invalid edid */
2310                 if (IS_ERR(intel_connector->edid))
2311                         return NULL;
2312
2313                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2314                 edid = kmalloc(size, GFP_KERNEL);
2315                 if (!edid)
2316                         return NULL;
2317
2318                 memcpy(edid, intel_connector->edid, size);
2319                 return edid;
2320         }
2321
2322         return drm_get_edid(connector, adapter);
2323 }
2324
2325 static int
2326 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2327 {
2328         struct intel_connector *intel_connector = to_intel_connector(connector);
2329
2330         /* use cached edid if we have one */
2331         if (intel_connector->edid) {
2332                 /* invalid edid */
2333                 if (IS_ERR(intel_connector->edid))
2334                         return 0;
2335
2336                 return intel_connector_update_modes(connector,
2337                                                     intel_connector->edid);
2338         }
2339
2340         return intel_ddc_get_modes(connector, adapter);
2341 }
2342
2343 static enum drm_connector_status
2344 intel_dp_detect(struct drm_connector *connector, bool force)
2345 {
2346         struct intel_dp *intel_dp = intel_attached_dp(connector);
2347         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2348         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2349         struct drm_device *dev = connector->dev;
2350         enum drm_connector_status status;
2351         struct edid *edid = NULL;
2352
2353         intel_dp->has_audio = false;
2354
2355         if (HAS_PCH_SPLIT(dev))
2356                 status = ironlake_dp_detect(intel_dp);
2357         else
2358                 status = g4x_dp_detect(intel_dp);
2359
2360         if (status != connector_status_connected)
2361                 return status;
2362
2363         intel_dp_probe_oui(intel_dp);
2364
2365         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2366                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2367         } else {
2368                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2369                 if (edid) {
2370                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2371                         kfree(edid);
2372                 }
2373         }
2374
2375         if (intel_encoder->type != INTEL_OUTPUT_EDP)
2376                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2377         return connector_status_connected;
2378 }
2379
2380 static int intel_dp_get_modes(struct drm_connector *connector)
2381 {
2382         struct intel_dp *intel_dp = intel_attached_dp(connector);
2383         struct intel_connector *intel_connector = to_intel_connector(connector);
2384         struct drm_device *dev = connector->dev;
2385         int ret;
2386
2387         /* We should parse the EDID data and find out if it has an audio sink
2388          */
2389
2390         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2391         if (ret)
2392                 return ret;
2393
2394         /* if eDP has no EDID, fall back to fixed mode */
2395         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2396                 struct drm_display_mode *mode;
2397                 mode = drm_mode_duplicate(dev,
2398                                           intel_connector->panel.fixed_mode);
2399                 if (mode) {
2400                         drm_mode_probed_add(connector, mode);
2401                         return 1;
2402                 }
2403         }
2404         return 0;
2405 }
2406
2407 static bool
2408 intel_dp_detect_audio(struct drm_connector *connector)
2409 {
2410         struct intel_dp *intel_dp = intel_attached_dp(connector);
2411         struct edid *edid;
2412         bool has_audio = false;
2413
2414         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2415         if (edid) {
2416                 has_audio = drm_detect_monitor_audio(edid);
2417                 kfree(edid);
2418         }
2419
2420         return has_audio;
2421 }
2422
2423 static int
2424 intel_dp_set_property(struct drm_connector *connector,
2425                       struct drm_property *property,
2426                       uint64_t val)
2427 {
2428         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2429         struct intel_connector *intel_connector = to_intel_connector(connector);
2430         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2431         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2432         int ret;
2433
2434         ret = drm_object_property_set_value(&connector->base, property, val);
2435         if (ret)
2436                 return ret;
2437
2438         if (property == dev_priv->force_audio_property) {
2439                 int i = val;
2440                 bool has_audio;
2441
2442                 if (i == intel_dp->force_audio)
2443                         return 0;
2444
2445                 intel_dp->force_audio = i;
2446
2447                 if (i == HDMI_AUDIO_AUTO)
2448                         has_audio = intel_dp_detect_audio(connector);
2449                 else
2450                         has_audio = (i == HDMI_AUDIO_ON);
2451
2452                 if (has_audio == intel_dp->has_audio)
2453                         return 0;
2454
2455                 intel_dp->has_audio = has_audio;
2456                 goto done;
2457         }
2458
2459         if (property == dev_priv->broadcast_rgb_property) {
2460                 if (val == !!intel_dp->color_range)
2461                         return 0;
2462
2463                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2464                 goto done;
2465         }
2466
2467         if (is_edp(intel_dp) &&
2468             property == connector->dev->mode_config.scaling_mode_property) {
2469                 if (val == DRM_MODE_SCALE_NONE) {
2470                         DRM_DEBUG_KMS("no scaling not supported\n");
2471                         return -EINVAL;
2472                 }
2473
2474                 if (intel_connector->panel.fitting_mode == val) {
2475                         /* the eDP scaling property is not changed */
2476                         return 0;
2477                 }
2478                 intel_connector->panel.fitting_mode = val;
2479
2480                 goto done;
2481         }
2482
2483         return -EINVAL;
2484
2485 done:
2486         if (intel_encoder->base.crtc)
2487                 intel_crtc_restore_mode(intel_encoder->base.crtc);
2488
2489         return 0;
2490 }
2491
2492 static void
2493 intel_dp_destroy(struct drm_connector *connector)
2494 {
2495         struct drm_device *dev = connector->dev;
2496         struct intel_dp *intel_dp = intel_attached_dp(connector);
2497         struct intel_connector *intel_connector = to_intel_connector(connector);
2498
2499         if (!IS_ERR_OR_NULL(intel_connector->edid))
2500                 kfree(intel_connector->edid);
2501
2502         if (is_edp(intel_dp)) {
2503                 intel_panel_destroy_backlight(dev);
2504                 intel_panel_fini(&intel_connector->panel);
2505         }
2506
2507         drm_sysfs_connector_remove(connector);
2508         drm_connector_cleanup(connector);
2509         kfree(connector);
2510 }
2511
2512 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2513 {
2514         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2515         struct intel_dp *intel_dp = &intel_dig_port->dp;
2516
2517         i2c_del_adapter(&intel_dp->adapter);
2518         drm_encoder_cleanup(encoder);
2519         if (is_edp(intel_dp)) {
2520                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2521                 ironlake_panel_vdd_off_sync(intel_dp);
2522         }
2523         kfree(intel_dig_port);
2524 }
2525
2526 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2527         .mode_fixup = intel_dp_mode_fixup,
2528         .mode_set = intel_dp_mode_set,
2529         .disable = intel_encoder_noop,
2530 };
2531
2532 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2533         .dpms = intel_connector_dpms,
2534         .detect = intel_dp_detect,
2535         .fill_modes = drm_helper_probe_single_connector_modes,
2536         .set_property = intel_dp_set_property,
2537         .destroy = intel_dp_destroy,
2538 };
2539
2540 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2541         .get_modes = intel_dp_get_modes,
2542         .mode_valid = intel_dp_mode_valid,
2543         .best_encoder = intel_best_encoder,
2544 };
2545
2546 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2547         .destroy = intel_dp_encoder_destroy,
2548 };
2549
2550 static void
2551 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2552 {
2553         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2554
2555         intel_dp_check_link_status(intel_dp);
2556 }
2557
2558 /* Return which DP Port should be selected for Transcoder DP control */
2559 int
2560 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2561 {
2562         struct drm_device *dev = crtc->dev;
2563         struct intel_encoder *intel_encoder;
2564         struct intel_dp *intel_dp;
2565
2566         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2567                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2568
2569                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2570                     intel_encoder->type == INTEL_OUTPUT_EDP)
2571                         return intel_dp->output_reg;
2572         }
2573
2574         return -1;
2575 }
2576
2577 /* check the VBT to see whether the eDP is on DP-D port */
2578 bool intel_dpd_is_edp(struct drm_device *dev)
2579 {
2580         struct drm_i915_private *dev_priv = dev->dev_private;
2581         struct child_device_config *p_child;
2582         int i;
2583
2584         if (!dev_priv->child_dev_num)
2585                 return false;
2586
2587         for (i = 0; i < dev_priv->child_dev_num; i++) {
2588                 p_child = dev_priv->child_dev + i;
2589
2590                 if (p_child->dvo_port == PORT_IDPD &&
2591                     p_child->device_type == DEVICE_TYPE_eDP)
2592                         return true;
2593         }
2594         return false;
2595 }
2596
2597 static void
2598 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2599 {
2600         struct intel_connector *intel_connector = to_intel_connector(connector);
2601
2602         intel_attach_force_audio_property(connector);
2603         intel_attach_broadcast_rgb_property(connector);
2604
2605         if (is_edp(intel_dp)) {
2606                 drm_mode_create_scaling_mode_property(connector->dev);
2607                 drm_object_attach_property(
2608                         &connector->base,
2609                         connector->dev->mode_config.scaling_mode_property,
2610                         DRM_MODE_SCALE_ASPECT);
2611                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2612         }
2613 }
2614
2615 static void
2616 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2617                                     struct intel_dp *intel_dp)
2618 {
2619         struct drm_i915_private *dev_priv = dev->dev_private;
2620         struct edp_power_seq cur, vbt, spec, final;
2621         u32 pp_on, pp_off, pp_div, pp;
2622
2623         /* Workaround: Need to write PP_CONTROL with the unlock key as
2624          * the very first thing. */
2625         pp = ironlake_get_pp_control(dev_priv);
2626         I915_WRITE(PCH_PP_CONTROL, pp);
2627
2628         pp_on = I915_READ(PCH_PP_ON_DELAYS);
2629         pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2630         pp_div = I915_READ(PCH_PP_DIVISOR);
2631
2632         /* Pull timing values out of registers */
2633         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2634                 PANEL_POWER_UP_DELAY_SHIFT;
2635
2636         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2637                 PANEL_LIGHT_ON_DELAY_SHIFT;
2638
2639         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2640                 PANEL_LIGHT_OFF_DELAY_SHIFT;
2641
2642         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2643                 PANEL_POWER_DOWN_DELAY_SHIFT;
2644
2645         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2646                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2647
2648         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2649                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2650
2651         vbt = dev_priv->edp.pps;
2652
2653         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2654          * our hw here, which are all in 100usec. */
2655         spec.t1_t3 = 210 * 10;
2656         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2657         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2658         spec.t10 = 500 * 10;
2659         /* This one is special and actually in units of 100ms, but zero
2660          * based in the hw (so we need to add 100 ms). But the sw vbt
2661          * table multiplies it with 1000 to make it in units of 100usec,
2662          * too. */
2663         spec.t11_t12 = (510 + 100) * 10;
2664
2665         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2666                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2667
2668         /* Use the max of the register settings and vbt. If both are
2669          * unset, fall back to the spec limits. */
2670 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
2671                                        spec.field : \
2672                                        max(cur.field, vbt.field))
2673         assign_final(t1_t3);
2674         assign_final(t8);
2675         assign_final(t9);
2676         assign_final(t10);
2677         assign_final(t11_t12);
2678 #undef assign_final
2679
2680 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
2681         intel_dp->panel_power_up_delay = get_delay(t1_t3);
2682         intel_dp->backlight_on_delay = get_delay(t8);
2683         intel_dp->backlight_off_delay = get_delay(t9);
2684         intel_dp->panel_power_down_delay = get_delay(t10);
2685         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2686 #undef get_delay
2687
2688         /* And finally store the new values in the power sequencer. */
2689         pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2690                 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2691         pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2692                  (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2693         /* Compute the divisor for the pp clock, simply match the Bspec
2694          * formula. */
2695         pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2696                         << PP_REFERENCE_DIVIDER_SHIFT;
2697         pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2698                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
2699
2700         /* Haswell doesn't have any port selection bits for the panel
2701          * power sequencer any more. */
2702         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2703                 if (is_cpu_edp(intel_dp))
2704                         pp_on |= PANEL_POWER_PORT_DP_A;
2705                 else
2706                         pp_on |= PANEL_POWER_PORT_DP_D;
2707         }
2708
2709         I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2710         I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2711         I915_WRITE(PCH_PP_DIVISOR, pp_div);
2712
2713
2714         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2715                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2716                       intel_dp->panel_power_cycle_delay);
2717
2718         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2719                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2720
2721         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2722                       I915_READ(PCH_PP_ON_DELAYS),
2723                       I915_READ(PCH_PP_OFF_DELAYS),
2724                       I915_READ(PCH_PP_DIVISOR));
2725 }
2726
2727 void
2728 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2729                         struct intel_connector *intel_connector)
2730 {
2731         struct drm_connector *connector = &intel_connector->base;
2732         struct intel_dp *intel_dp = &intel_dig_port->dp;
2733         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2734         struct drm_device *dev = intel_encoder->base.dev;
2735         struct drm_i915_private *dev_priv = dev->dev_private;
2736         struct drm_display_mode *fixed_mode = NULL;
2737         enum port port = intel_dig_port->port;
2738         const char *name = NULL;
2739         int type;
2740
2741         /* Preserve the current hw state. */
2742         intel_dp->DP = I915_READ(intel_dp->output_reg);
2743         intel_dp->attached_connector = intel_connector;
2744
2745         if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2746                 if (intel_dpd_is_edp(dev))
2747                         intel_dp->is_pch_edp = true;
2748
2749         /*
2750          * FIXME : We need to initialize built-in panels before external panels.
2751          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2752          */
2753         if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2754                 type = DRM_MODE_CONNECTOR_eDP;
2755                 intel_encoder->type = INTEL_OUTPUT_EDP;
2756         } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2757                 type = DRM_MODE_CONNECTOR_eDP;
2758                 intel_encoder->type = INTEL_OUTPUT_EDP;
2759         } else {
2760                 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2761                  * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2762                  * rewrite it.
2763                  */
2764                 type = DRM_MODE_CONNECTOR_DisplayPort;
2765         }
2766
2767         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2768         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2769
2770         connector->polled = DRM_CONNECTOR_POLL_HPD;
2771         connector->interlace_allowed = true;
2772         connector->doublescan_allowed = 0;
2773
2774         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2775                           ironlake_panel_vdd_work);
2776
2777         intel_connector_attach_encoder(intel_connector, intel_encoder);
2778         drm_sysfs_connector_add(connector);
2779
2780         if (HAS_DDI(dev))
2781                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2782         else
2783                 intel_connector->get_hw_state = intel_connector_get_hw_state;
2784
2785
2786         /* Set up the DDC bus. */
2787         switch (port) {
2788         case PORT_A:
2789                 name = "DPDDC-A";
2790                 break;
2791         case PORT_B:
2792                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2793                 name = "DPDDC-B";
2794                 break;
2795         case PORT_C:
2796                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2797                 name = "DPDDC-C";
2798                 break;
2799         case PORT_D:
2800                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2801                 name = "DPDDC-D";
2802                 break;
2803         default:
2804                 WARN(1, "Invalid port %c\n", port_name(port));
2805                 break;
2806         }
2807
2808         if (is_edp(intel_dp))
2809                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2810
2811         intel_dp_i2c_init(intel_dp, intel_connector, name);
2812
2813         /* Cache DPCD and EDID for edp. */
2814         if (is_edp(intel_dp)) {
2815                 bool ret;
2816                 struct drm_display_mode *scan;
2817                 struct edid *edid;
2818
2819                 ironlake_edp_panel_vdd_on(intel_dp);
2820                 ret = intel_dp_get_dpcd(intel_dp);
2821                 ironlake_edp_panel_vdd_off(intel_dp, false);
2822
2823                 if (ret) {
2824                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2825                                 dev_priv->no_aux_handshake =
2826                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2827                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2828                 } else {
2829                         /* if this fails, presume the device is a ghost */
2830                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2831                         intel_dp_encoder_destroy(&intel_encoder->base);
2832                         intel_dp_destroy(connector);
2833                         return;
2834                 }
2835
2836                 ironlake_edp_panel_vdd_on(intel_dp);
2837                 edid = drm_get_edid(connector, &intel_dp->adapter);
2838                 if (edid) {
2839                         if (drm_add_edid_modes(connector, edid)) {
2840                                 drm_mode_connector_update_edid_property(connector, edid);
2841                                 drm_edid_to_eld(connector, edid);
2842                         } else {
2843                                 kfree(edid);
2844                                 edid = ERR_PTR(-EINVAL);
2845                         }
2846                 } else {
2847                         edid = ERR_PTR(-ENOENT);
2848                 }
2849                 intel_connector->edid = edid;
2850
2851                 /* prefer fixed mode from EDID if available */
2852                 list_for_each_entry(scan, &connector->probed_modes, head) {
2853                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2854                                 fixed_mode = drm_mode_duplicate(dev, scan);
2855                                 break;
2856                         }
2857                 }
2858
2859                 /* fallback to VBT if available for eDP */
2860                 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2861                         fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2862                         if (fixed_mode)
2863                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2864                 }
2865
2866                 ironlake_edp_panel_vdd_off(intel_dp, false);
2867         }
2868
2869         if (is_edp(intel_dp)) {
2870                 intel_panel_init(&intel_connector->panel, fixed_mode);
2871                 intel_panel_setup_backlight(connector);
2872         }
2873
2874         intel_dp_add_properties(intel_dp, connector);
2875
2876         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2877          * 0xd.  Failure to do so will result in spurious interrupts being
2878          * generated on the port when a cable is not attached.
2879          */
2880         if (IS_G4X(dev) && !IS_GM45(dev)) {
2881                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2882                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2883         }
2884 }
2885
2886 void
2887 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2888 {
2889         struct intel_digital_port *intel_dig_port;
2890         struct intel_encoder *intel_encoder;
2891         struct drm_encoder *encoder;
2892         struct intel_connector *intel_connector;
2893
2894         intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2895         if (!intel_dig_port)
2896                 return;
2897
2898         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2899         if (!intel_connector) {
2900                 kfree(intel_dig_port);
2901                 return;
2902         }
2903
2904         intel_encoder = &intel_dig_port->base;
2905         encoder = &intel_encoder->base;
2906
2907         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2908                          DRM_MODE_ENCODER_TMDS);
2909         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2910
2911         intel_encoder->enable = intel_enable_dp;
2912         intel_encoder->pre_enable = intel_pre_enable_dp;
2913         intel_encoder->disable = intel_disable_dp;
2914         intel_encoder->post_disable = intel_post_disable_dp;
2915         intel_encoder->get_hw_state = intel_dp_get_hw_state;
2916
2917         intel_dig_port->port = port;
2918         intel_dig_port->dp.output_reg = output_reg;
2919
2920         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2921         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2922         intel_encoder->cloneable = false;
2923         intel_encoder->hot_plug = intel_dp_hot_plug;
2924
2925         intel_dp_init_connector(intel_dig_port, intel_connector);
2926 }