]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Read PSR caps/intermediate freqs/etc. only once on eDP
[karo-tx-linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
136 {
137         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139         switch (max_link_bw) {
140         case DP_LINK_BW_1_62:
141         case DP_LINK_BW_2_7:
142         case DP_LINK_BW_5_4:
143                 break;
144         default:
145                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146                      max_link_bw);
147                 max_link_bw = DP_LINK_BW_1_62;
148                 break;
149         }
150         return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156         u8 source_max, sink_max;
157
158         source_max = intel_dig_port->max_lanes;
159         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161         return min(source_max, sink_max);
162 }
163
164 /*
165  * The units on the numbers in the next two are... bizarre.  Examples will
166  * make it clearer; this one parallels an example in the eDP spec.
167  *
168  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169  *
170  *     270000 * 1 * 8 / 10 == 216000
171  *
172  * The actual data capacity of that configuration is 2.16Gbit/s, so the
173  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
174  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175  * 119000.  At 18bpp that's 2142000 kilobits per second.
176  *
177  * Thus the strange-looking division by 10 in intel_dp_link_required, to
178  * get the result in decakilobits instead of kilobits.
179  */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184         return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190         return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195                     struct drm_display_mode *mode)
196 {
197         struct intel_dp *intel_dp = intel_attached_dp(connector);
198         struct intel_connector *intel_connector = to_intel_connector(connector);
199         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200         int target_clock = mode->clock;
201         int max_rate, mode_rate, max_lanes, max_link_clock;
202         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204         if (is_edp(intel_dp) && fixed_mode) {
205                 if (mode->hdisplay > fixed_mode->hdisplay)
206                         return MODE_PANEL;
207
208                 if (mode->vdisplay > fixed_mode->vdisplay)
209                         return MODE_PANEL;
210
211                 target_clock = fixed_mode->clock;
212         }
213
214         max_link_clock = intel_dp_max_link_rate(intel_dp);
215         max_lanes = intel_dp_max_lane_count(intel_dp);
216
217         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218         mode_rate = intel_dp_link_required(target_clock, 18);
219
220         if (mode_rate > max_rate || target_clock > max_dotclk)
221                 return MODE_CLOCK_HIGH;
222
223         if (mode->clock < 10000)
224                 return MODE_CLOCK_LOW;
225
226         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227                 return MODE_H_ILLEGAL;
228
229         return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234         int     i;
235         uint32_t v = 0;
236
237         if (src_bytes > 4)
238                 src_bytes = 4;
239         for (i = 0; i < src_bytes; i++)
240                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241         return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246         int i;
247         if (dst_bytes > 4)
248                 dst_bytes = 4;
249         for (i = 0; i < dst_bytes; i++)
250                 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255                                     struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258                                               struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263         struct intel_encoder *encoder = &intel_dig_port->base;
264         struct drm_device *dev = encoder->base.dev;
265         struct drm_i915_private *dev_priv = to_i915(dev);
266         enum intel_display_power_domain power_domain;
267
268         /*
269          * See vlv_power_sequencer_reset() why we need
270          * a power domain reference here.
271          */
272         power_domain = intel_display_port_aux_power_domain(encoder);
273         intel_display_power_get(dev_priv, power_domain);
274
275         mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281         struct intel_encoder *encoder = &intel_dig_port->base;
282         struct drm_device *dev = encoder->base.dev;
283         struct drm_i915_private *dev_priv = to_i915(dev);
284         enum intel_display_power_domain power_domain;
285
286         mutex_unlock(&dev_priv->pps_mutex);
287
288         power_domain = intel_display_port_aux_power_domain(encoder);
289         intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296         struct drm_device *dev = intel_dig_port->base.base.dev;
297         struct drm_i915_private *dev_priv = to_i915(dev);
298         enum pipe pipe = intel_dp->pps_pipe;
299         bool pll_enabled, release_cl_override = false;
300         enum dpio_phy phy = DPIO_PHY(pipe);
301         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302         uint32_t DP;
303
304         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306                  pipe_name(pipe), port_name(intel_dig_port->port)))
307                 return;
308
309         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310                       pipe_name(pipe), port_name(intel_dig_port->port));
311
312         /* Preserve the BIOS-computed detected bit. This is
313          * supposed to be read-only.
314          */
315         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317         DP |= DP_PORT_WIDTH(1);
318         DP |= DP_LINK_TRAIN_PAT_1;
319
320         if (IS_CHERRYVIEW(dev))
321                 DP |= DP_PIPE_SELECT_CHV(pipe);
322         else if (pipe == PIPE_B)
323                 DP |= DP_PIPEB_SELECT;
324
325         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327         /*
328          * The DPLL for the pipe must be enabled for this to work.
329          * So enable temporarily it if it's not already enabled.
330          */
331         if (!pll_enabled) {
332                 release_cl_override = IS_CHERRYVIEW(dev) &&
333                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
338                                   pipe_name(pipe));
339                         return;
340                 }
341         }
342
343         /*
344          * Similar magic as in intel_dp_enable_port().
345          * We _must_ do this port enable + disable trick
346          * to make this power seqeuencer lock onto the port.
347          * Otherwise even VDD force bit won't work.
348          */
349         I915_WRITE(intel_dp->output_reg, DP);
350         POSTING_READ(intel_dp->output_reg);
351
352         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353         POSTING_READ(intel_dp->output_reg);
354
355         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356         POSTING_READ(intel_dp->output_reg);
357
358         if (!pll_enabled) {
359                 vlv_force_pll_off(dev, pipe);
360
361                 if (release_cl_override)
362                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
363         }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370         struct drm_device *dev = intel_dig_port->base.base.dev;
371         struct drm_i915_private *dev_priv = to_i915(dev);
372         struct intel_encoder *encoder;
373         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374         enum pipe pipe;
375
376         lockdep_assert_held(&dev_priv->pps_mutex);
377
378         /* We should never land here with regular DP ports */
379         WARN_ON(!is_edp(intel_dp));
380
381         if (intel_dp->pps_pipe != INVALID_PIPE)
382                 return intel_dp->pps_pipe;
383
384         /*
385          * We don't have power sequencer currently.
386          * Pick one that's not used by other ports.
387          */
388         for_each_intel_encoder(dev, encoder) {
389                 struct intel_dp *tmp;
390
391                 if (encoder->type != INTEL_OUTPUT_EDP)
392                         continue;
393
394                 tmp = enc_to_intel_dp(&encoder->base);
395
396                 if (tmp->pps_pipe != INVALID_PIPE)
397                         pipes &= ~(1 << tmp->pps_pipe);
398         }
399
400         /*
401          * Didn't find one. This should not happen since there
402          * are two power sequencers and up to two eDP ports.
403          */
404         if (WARN_ON(pipes == 0))
405                 pipe = PIPE_A;
406         else
407                 pipe = ffs(pipes) - 1;
408
409         vlv_steal_power_sequencer(dev, pipe);
410         intel_dp->pps_pipe = pipe;
411
412         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413                       pipe_name(intel_dp->pps_pipe),
414                       port_name(intel_dig_port->port));
415
416         /* init power sequencer on this pipe and port */
417         intel_dp_init_panel_power_sequencer(dev, intel_dp);
418         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420         /*
421          * Even vdd force doesn't work until we've made
422          * the power sequencer lock in on the port.
423          */
424         vlv_power_sequencer_kick(intel_dp);
425
426         return intel_dp->pps_pipe;
427 }
428
429 static int
430 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
431 {
432         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
433         struct drm_device *dev = intel_dig_port->base.base.dev;
434         struct drm_i915_private *dev_priv = to_i915(dev);
435
436         lockdep_assert_held(&dev_priv->pps_mutex);
437
438         /* We should never land here with regular DP ports */
439         WARN_ON(!is_edp(intel_dp));
440
441         /*
442          * TODO: BXT has 2 PPS instances. The correct port->PPS instance
443          * mapping needs to be retrieved from VBT, for now just hard-code to
444          * use instance #0 always.
445          */
446         if (!intel_dp->pps_reset)
447                 return 0;
448
449         intel_dp->pps_reset = false;
450
451         /*
452          * Only the HW needs to be reprogrammed, the SW state is fixed and
453          * has been setup during connector init.
454          */
455         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
456
457         return 0;
458 }
459
460 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
461                                enum pipe pipe);
462
463 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
464                                enum pipe pipe)
465 {
466         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
467 }
468
469 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
470                                 enum pipe pipe)
471 {
472         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
473 }
474
475 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
476                          enum pipe pipe)
477 {
478         return true;
479 }
480
481 static enum pipe
482 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
483                      enum port port,
484                      vlv_pipe_check pipe_check)
485 {
486         enum pipe pipe;
487
488         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
489                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
490                         PANEL_PORT_SELECT_MASK;
491
492                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
493                         continue;
494
495                 if (!pipe_check(dev_priv, pipe))
496                         continue;
497
498                 return pipe;
499         }
500
501         return INVALID_PIPE;
502 }
503
504 static void
505 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
506 {
507         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
508         struct drm_device *dev = intel_dig_port->base.base.dev;
509         struct drm_i915_private *dev_priv = to_i915(dev);
510         enum port port = intel_dig_port->port;
511
512         lockdep_assert_held(&dev_priv->pps_mutex);
513
514         /* try to find a pipe with this port selected */
515         /* first pick one where the panel is on */
516         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517                                                   vlv_pipe_has_pp_on);
518         /* didn't find one? pick one where vdd is on */
519         if (intel_dp->pps_pipe == INVALID_PIPE)
520                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521                                                           vlv_pipe_has_vdd_on);
522         /* didn't find one? pick one with just the correct port */
523         if (intel_dp->pps_pipe == INVALID_PIPE)
524                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
525                                                           vlv_pipe_any);
526
527         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
528         if (intel_dp->pps_pipe == INVALID_PIPE) {
529                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
530                               port_name(port));
531                 return;
532         }
533
534         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
535                       port_name(port), pipe_name(intel_dp->pps_pipe));
536
537         intel_dp_init_panel_power_sequencer(dev, intel_dp);
538         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
539 }
540
541 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
542 {
543         struct drm_device *dev = &dev_priv->drm;
544         struct intel_encoder *encoder;
545
546         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
547                     !IS_BROXTON(dev)))
548                 return;
549
550         /*
551          * We can't grab pps_mutex here due to deadlock with power_domain
552          * mutex when power_domain functions are called while holding pps_mutex.
553          * That also means that in order to use pps_pipe the code needs to
554          * hold both a power domain reference and pps_mutex, and the power domain
555          * reference get/put must be done while _not_ holding pps_mutex.
556          * pps_{lock,unlock}() do these steps in the correct order, so one
557          * should use them always.
558          */
559
560         for_each_intel_encoder(dev, encoder) {
561                 struct intel_dp *intel_dp;
562
563                 if (encoder->type != INTEL_OUTPUT_EDP)
564                         continue;
565
566                 intel_dp = enc_to_intel_dp(&encoder->base);
567                 if (IS_BROXTON(dev))
568                         intel_dp->pps_reset = true;
569                 else
570                         intel_dp->pps_pipe = INVALID_PIPE;
571         }
572 }
573
574 struct pps_registers {
575         i915_reg_t pp_ctrl;
576         i915_reg_t pp_stat;
577         i915_reg_t pp_on;
578         i915_reg_t pp_off;
579         i915_reg_t pp_div;
580 };
581
582 static void intel_pps_get_registers(struct drm_i915_private *dev_priv,
583                                     struct intel_dp *intel_dp,
584                                     struct pps_registers *regs)
585 {
586         memset(regs, 0, sizeof(*regs));
587
588         if (IS_BROXTON(dev_priv)) {
589                 int idx = bxt_power_sequencer_idx(intel_dp);
590
591                 regs->pp_ctrl = BXT_PP_CONTROL(idx);
592                 regs->pp_stat = BXT_PP_STATUS(idx);
593                 regs->pp_on = BXT_PP_ON_DELAYS(idx);
594                 regs->pp_off = BXT_PP_OFF_DELAYS(idx);
595         } else if (HAS_PCH_SPLIT(dev_priv)) {
596                 regs->pp_ctrl = PCH_PP_CONTROL;
597                 regs->pp_stat = PCH_PP_STATUS;
598                 regs->pp_on = PCH_PP_ON_DELAYS;
599                 regs->pp_off = PCH_PP_OFF_DELAYS;
600                 regs->pp_div = PCH_PP_DIVISOR;
601         } else {
602                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604                 regs->pp_ctrl = VLV_PIPE_PP_CONTROL(pipe);
605                 regs->pp_stat = VLV_PIPE_PP_STATUS(pipe);
606                 regs->pp_on = VLV_PIPE_PP_ON_DELAYS(pipe);
607                 regs->pp_off = VLV_PIPE_PP_OFF_DELAYS(pipe);
608                 regs->pp_div = VLV_PIPE_PP_DIVISOR(pipe);
609         }
610 }
611
612 static i915_reg_t
613 _pp_ctrl_reg(struct intel_dp *intel_dp)
614 {
615         struct pps_registers regs;
616
617         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
618                                 &regs);
619
620         return regs.pp_ctrl;
621 }
622
623 static i915_reg_t
624 _pp_stat_reg(struct intel_dp *intel_dp)
625 {
626         struct pps_registers regs;
627
628         intel_pps_get_registers(to_i915(intel_dp_to_dev(intel_dp)), intel_dp,
629                                 &regs);
630
631         return regs.pp_stat;
632 }
633
634 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
635    This function only applicable when panel PM state is not to be tracked */
636 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
637                               void *unused)
638 {
639         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
640                                                  edp_notifier);
641         struct drm_device *dev = intel_dp_to_dev(intel_dp);
642         struct drm_i915_private *dev_priv = to_i915(dev);
643
644         if (!is_edp(intel_dp) || code != SYS_RESTART)
645                 return 0;
646
647         pps_lock(intel_dp);
648
649         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
650                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
651                 i915_reg_t pp_ctrl_reg, pp_div_reg;
652                 u32 pp_div;
653
654                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
655                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
656                 pp_div = I915_READ(pp_div_reg);
657                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
658
659                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
660                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
661                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
662                 msleep(intel_dp->panel_power_cycle_delay);
663         }
664
665         pps_unlock(intel_dp);
666
667         return 0;
668 }
669
670 static bool edp_have_panel_power(struct intel_dp *intel_dp)
671 {
672         struct drm_device *dev = intel_dp_to_dev(intel_dp);
673         struct drm_i915_private *dev_priv = to_i915(dev);
674
675         lockdep_assert_held(&dev_priv->pps_mutex);
676
677         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
678             intel_dp->pps_pipe == INVALID_PIPE)
679                 return false;
680
681         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
682 }
683
684 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
685 {
686         struct drm_device *dev = intel_dp_to_dev(intel_dp);
687         struct drm_i915_private *dev_priv = to_i915(dev);
688
689         lockdep_assert_held(&dev_priv->pps_mutex);
690
691         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
692             intel_dp->pps_pipe == INVALID_PIPE)
693                 return false;
694
695         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
696 }
697
698 static void
699 intel_dp_check_edp(struct intel_dp *intel_dp)
700 {
701         struct drm_device *dev = intel_dp_to_dev(intel_dp);
702         struct drm_i915_private *dev_priv = to_i915(dev);
703
704         if (!is_edp(intel_dp))
705                 return;
706
707         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
708                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
709                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
710                               I915_READ(_pp_stat_reg(intel_dp)),
711                               I915_READ(_pp_ctrl_reg(intel_dp)));
712         }
713 }
714
715 static uint32_t
716 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
717 {
718         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
719         struct drm_device *dev = intel_dig_port->base.base.dev;
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
722         uint32_t status;
723         bool done;
724
725 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
726         if (has_aux_irq)
727                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
728                                           msecs_to_jiffies_timeout(10));
729         else
730                 done = wait_for(C, 10) == 0;
731         if (!done)
732                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
733                           has_aux_irq);
734 #undef C
735
736         return status;
737 }
738
739 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
743
744         if (index)
745                 return 0;
746
747         /*
748          * The clock divider is based off the hrawclk, and would like to run at
749          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
750          */
751         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
752 }
753
754 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
755 {
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
758
759         if (index)
760                 return 0;
761
762         /*
763          * The clock divider is based off the cdclk or PCH rawclk, and would
764          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
765          * divide by 2000 and use that
766          */
767         if (intel_dig_port->port == PORT_A)
768                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
769         else
770                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
771 }
772
773 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
774 {
775         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
776         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
777
778         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
779                 /* Workaround for non-ULT HSW */
780                 switch (index) {
781                 case 0: return 63;
782                 case 1: return 72;
783                 default: return 0;
784                 }
785         }
786
787         return ilk_get_aux_clock_divider(intel_dp, index);
788 }
789
790 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
791 {
792         /*
793          * SKL doesn't need us to program the AUX clock divider (Hardware will
794          * derive the clock from CDCLK automatically). We still implement the
795          * get_aux_clock_divider vfunc to plug-in into the existing code.
796          */
797         return index ? 0 : 1;
798 }
799
800 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
801                                      bool has_aux_irq,
802                                      int send_bytes,
803                                      uint32_t aux_clock_divider)
804 {
805         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
806         struct drm_device *dev = intel_dig_port->base.base.dev;
807         uint32_t precharge, timeout;
808
809         if (IS_GEN6(dev))
810                 precharge = 3;
811         else
812                 precharge = 5;
813
814         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
815                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
816         else
817                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
818
819         return DP_AUX_CH_CTL_SEND_BUSY |
820                DP_AUX_CH_CTL_DONE |
821                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
822                DP_AUX_CH_CTL_TIME_OUT_ERROR |
823                timeout |
824                DP_AUX_CH_CTL_RECEIVE_ERROR |
825                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
826                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
827                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
828 }
829
830 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
831                                       bool has_aux_irq,
832                                       int send_bytes,
833                                       uint32_t unused)
834 {
835         return DP_AUX_CH_CTL_SEND_BUSY |
836                DP_AUX_CH_CTL_DONE |
837                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
838                DP_AUX_CH_CTL_TIME_OUT_ERROR |
839                DP_AUX_CH_CTL_TIME_OUT_1600us |
840                DP_AUX_CH_CTL_RECEIVE_ERROR |
841                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
842                DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
843                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
844 }
845
846 static int
847 intel_dp_aux_ch(struct intel_dp *intel_dp,
848                 const uint8_t *send, int send_bytes,
849                 uint8_t *recv, int recv_size)
850 {
851         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
852         struct drm_device *dev = intel_dig_port->base.base.dev;
853         struct drm_i915_private *dev_priv = to_i915(dev);
854         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
855         uint32_t aux_clock_divider;
856         int i, ret, recv_bytes;
857         uint32_t status;
858         int try, clock = 0;
859         bool has_aux_irq = HAS_AUX_IRQ(dev);
860         bool vdd;
861
862         pps_lock(intel_dp);
863
864         /*
865          * We will be called with VDD already enabled for dpcd/edid/oui reads.
866          * In such cases we want to leave VDD enabled and it's up to upper layers
867          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
868          * ourselves.
869          */
870         vdd = edp_panel_vdd_on(intel_dp);
871
872         /* dp aux is extremely sensitive to irq latency, hence request the
873          * lowest possible wakeup latency and so prevent the cpu from going into
874          * deep sleep states.
875          */
876         pm_qos_update_request(&dev_priv->pm_qos, 0);
877
878         intel_dp_check_edp(intel_dp);
879
880         /* Try to wait for any previous AUX channel activity */
881         for (try = 0; try < 3; try++) {
882                 status = I915_READ_NOTRACE(ch_ctl);
883                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
884                         break;
885                 msleep(1);
886         }
887
888         if (try == 3) {
889                 static u32 last_status = -1;
890                 const u32 status = I915_READ(ch_ctl);
891
892                 if (status != last_status) {
893                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
894                              status);
895                         last_status = status;
896                 }
897
898                 ret = -EBUSY;
899                 goto out;
900         }
901
902         /* Only 5 data registers! */
903         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
904                 ret = -E2BIG;
905                 goto out;
906         }
907
908         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
909                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
910                                                           has_aux_irq,
911                                                           send_bytes,
912                                                           aux_clock_divider);
913
914                 /* Must try at least 3 times according to DP spec */
915                 for (try = 0; try < 5; try++) {
916                         /* Load the send data into the aux channel data registers */
917                         for (i = 0; i < send_bytes; i += 4)
918                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
919                                            intel_dp_pack_aux(send + i,
920                                                              send_bytes - i));
921
922                         /* Send the command and wait for it to complete */
923                         I915_WRITE(ch_ctl, send_ctl);
924
925                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
926
927                         /* Clear done status and any errors */
928                         I915_WRITE(ch_ctl,
929                                    status |
930                                    DP_AUX_CH_CTL_DONE |
931                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
932                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
933
934                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
935                                 continue;
936
937                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
938                          *   400us delay required for errors and timeouts
939                          *   Timeout errors from the HW already meet this
940                          *   requirement so skip to next iteration
941                          */
942                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
943                                 usleep_range(400, 500);
944                                 continue;
945                         }
946                         if (status & DP_AUX_CH_CTL_DONE)
947                                 goto done;
948                 }
949         }
950
951         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
952                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
953                 ret = -EBUSY;
954                 goto out;
955         }
956
957 done:
958         /* Check for timeout or receive error.
959          * Timeouts occur when the sink is not connected
960          */
961         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
962                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
963                 ret = -EIO;
964                 goto out;
965         }
966
967         /* Timeouts occur when the device isn't connected, so they're
968          * "normal" -- don't fill the kernel log with these */
969         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
970                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
971                 ret = -ETIMEDOUT;
972                 goto out;
973         }
974
975         /* Unload any bytes sent back from the other side */
976         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
977                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
978
979         /*
980          * By BSpec: "Message sizes of 0 or >20 are not allowed."
981          * We have no idea of what happened so we return -EBUSY so
982          * drm layer takes care for the necessary retries.
983          */
984         if (recv_bytes == 0 || recv_bytes > 20) {
985                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
986                               recv_bytes);
987                 /*
988                  * FIXME: This patch was created on top of a series that
989                  * organize the retries at drm level. There EBUSY should
990                  * also take care for 1ms wait before retrying.
991                  * That aux retries re-org is still needed and after that is
992                  * merged we remove this sleep from here.
993                  */
994                 usleep_range(1000, 1500);
995                 ret = -EBUSY;
996                 goto out;
997         }
998
999         if (recv_bytes > recv_size)
1000                 recv_bytes = recv_size;
1001
1002         for (i = 0; i < recv_bytes; i += 4)
1003                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
1004                                     recv + i, recv_bytes - i);
1005
1006         ret = recv_bytes;
1007 out:
1008         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
1009
1010         if (vdd)
1011                 edp_panel_vdd_off(intel_dp, false);
1012
1013         pps_unlock(intel_dp);
1014
1015         return ret;
1016 }
1017
1018 #define BARE_ADDRESS_SIZE       3
1019 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1020 static ssize_t
1021 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1022 {
1023         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1024         uint8_t txbuf[20], rxbuf[20];
1025         size_t txsize, rxsize;
1026         int ret;
1027
1028         txbuf[0] = (msg->request << 4) |
1029                 ((msg->address >> 16) & 0xf);
1030         txbuf[1] = (msg->address >> 8) & 0xff;
1031         txbuf[2] = msg->address & 0xff;
1032         txbuf[3] = msg->size - 1;
1033
1034         switch (msg->request & ~DP_AUX_I2C_MOT) {
1035         case DP_AUX_NATIVE_WRITE:
1036         case DP_AUX_I2C_WRITE:
1037         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1038                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1039                 rxsize = 2; /* 0 or 1 data bytes */
1040
1041                 if (WARN_ON(txsize > 20))
1042                         return -E2BIG;
1043
1044                 WARN_ON(!msg->buffer != !msg->size);
1045
1046                 if (msg->buffer)
1047                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1048
1049                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1050                 if (ret > 0) {
1051                         msg->reply = rxbuf[0] >> 4;
1052
1053                         if (ret > 1) {
1054                                 /* Number of bytes written in a short write. */
1055                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1056                         } else {
1057                                 /* Return payload size. */
1058                                 ret = msg->size;
1059                         }
1060                 }
1061                 break;
1062
1063         case DP_AUX_NATIVE_READ:
1064         case DP_AUX_I2C_READ:
1065                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1066                 rxsize = msg->size + 1;
1067
1068                 if (WARN_ON(rxsize > 20))
1069                         return -E2BIG;
1070
1071                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1072                 if (ret > 0) {
1073                         msg->reply = rxbuf[0] >> 4;
1074                         /*
1075                          * Assume happy day, and copy the data. The caller is
1076                          * expected to check msg->reply before touching it.
1077                          *
1078                          * Return payload size.
1079                          */
1080                         ret--;
1081                         memcpy(msg->buffer, rxbuf + 1, ret);
1082                 }
1083                 break;
1084
1085         default:
1086                 ret = -EINVAL;
1087                 break;
1088         }
1089
1090         return ret;
1091 }
1092
1093 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1094                                        enum port port)
1095 {
1096         switch (port) {
1097         case PORT_B:
1098         case PORT_C:
1099         case PORT_D:
1100                 return DP_AUX_CH_CTL(port);
1101         default:
1102                 MISSING_CASE(port);
1103                 return DP_AUX_CH_CTL(PORT_B);
1104         }
1105 }
1106
1107 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1108                                         enum port port, int index)
1109 {
1110         switch (port) {
1111         case PORT_B:
1112         case PORT_C:
1113         case PORT_D:
1114                 return DP_AUX_CH_DATA(port, index);
1115         default:
1116                 MISSING_CASE(port);
1117                 return DP_AUX_CH_DATA(PORT_B, index);
1118         }
1119 }
1120
1121 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1122                                        enum port port)
1123 {
1124         switch (port) {
1125         case PORT_A:
1126                 return DP_AUX_CH_CTL(port);
1127         case PORT_B:
1128         case PORT_C:
1129         case PORT_D:
1130                 return PCH_DP_AUX_CH_CTL(port);
1131         default:
1132                 MISSING_CASE(port);
1133                 return DP_AUX_CH_CTL(PORT_A);
1134         }
1135 }
1136
1137 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1138                                         enum port port, int index)
1139 {
1140         switch (port) {
1141         case PORT_A:
1142                 return DP_AUX_CH_DATA(port, index);
1143         case PORT_B:
1144         case PORT_C:
1145         case PORT_D:
1146                 return PCH_DP_AUX_CH_DATA(port, index);
1147         default:
1148                 MISSING_CASE(port);
1149                 return DP_AUX_CH_DATA(PORT_A, index);
1150         }
1151 }
1152
1153 /*
1154  * On SKL we don't have Aux for port E so we rely
1155  * on VBT to set a proper alternate aux channel.
1156  */
1157 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1158 {
1159         const struct ddi_vbt_port_info *info =
1160                 &dev_priv->vbt.ddi_port_info[PORT_E];
1161
1162         switch (info->alternate_aux_channel) {
1163         case DP_AUX_A:
1164                 return PORT_A;
1165         case DP_AUX_B:
1166                 return PORT_B;
1167         case DP_AUX_C:
1168                 return PORT_C;
1169         case DP_AUX_D:
1170                 return PORT_D;
1171         default:
1172                 MISSING_CASE(info->alternate_aux_channel);
1173                 return PORT_A;
1174         }
1175 }
1176
1177 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1178                                        enum port port)
1179 {
1180         if (port == PORT_E)
1181                 port = skl_porte_aux_port(dev_priv);
1182
1183         switch (port) {
1184         case PORT_A:
1185         case PORT_B:
1186         case PORT_C:
1187         case PORT_D:
1188                 return DP_AUX_CH_CTL(port);
1189         default:
1190                 MISSING_CASE(port);
1191                 return DP_AUX_CH_CTL(PORT_A);
1192         }
1193 }
1194
1195 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1196                                         enum port port, int index)
1197 {
1198         if (port == PORT_E)
1199                 port = skl_porte_aux_port(dev_priv);
1200
1201         switch (port) {
1202         case PORT_A:
1203         case PORT_B:
1204         case PORT_C:
1205         case PORT_D:
1206                 return DP_AUX_CH_DATA(port, index);
1207         default:
1208                 MISSING_CASE(port);
1209                 return DP_AUX_CH_DATA(PORT_A, index);
1210         }
1211 }
1212
1213 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1214                                          enum port port)
1215 {
1216         if (INTEL_INFO(dev_priv)->gen >= 9)
1217                 return skl_aux_ctl_reg(dev_priv, port);
1218         else if (HAS_PCH_SPLIT(dev_priv))
1219                 return ilk_aux_ctl_reg(dev_priv, port);
1220         else
1221                 return g4x_aux_ctl_reg(dev_priv, port);
1222 }
1223
1224 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1225                                           enum port port, int index)
1226 {
1227         if (INTEL_INFO(dev_priv)->gen >= 9)
1228                 return skl_aux_data_reg(dev_priv, port, index);
1229         else if (HAS_PCH_SPLIT(dev_priv))
1230                 return ilk_aux_data_reg(dev_priv, port, index);
1231         else
1232                 return g4x_aux_data_reg(dev_priv, port, index);
1233 }
1234
1235 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1236 {
1237         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1238         enum port port = dp_to_dig_port(intel_dp)->port;
1239         int i;
1240
1241         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1242         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1243                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1244 }
1245
1246 static void
1247 intel_dp_aux_fini(struct intel_dp *intel_dp)
1248 {
1249         kfree(intel_dp->aux.name);
1250 }
1251
1252 static void
1253 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1254 {
1255         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1256         enum port port = intel_dig_port->port;
1257
1258         intel_aux_reg_init(intel_dp);
1259         drm_dp_aux_init(&intel_dp->aux);
1260
1261         /* Failure to allocate our preferred name is not critical */
1262         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1263         intel_dp->aux.transfer = intel_dp_aux_transfer;
1264 }
1265
1266 static int
1267 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1268 {
1269         if (intel_dp->num_sink_rates) {
1270                 *sink_rates = intel_dp->sink_rates;
1271                 return intel_dp->num_sink_rates;
1272         }
1273
1274         *sink_rates = default_rates;
1275
1276         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1277 }
1278
1279 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1280 {
1281         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1282         struct drm_device *dev = dig_port->base.base.dev;
1283
1284         /* WaDisableHBR2:skl */
1285         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1286                 return false;
1287
1288         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1289             (INTEL_INFO(dev)->gen >= 9))
1290                 return true;
1291         else
1292                 return false;
1293 }
1294
1295 static int
1296 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1297 {
1298         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1299         struct drm_device *dev = dig_port->base.base.dev;
1300         int size;
1301
1302         if (IS_BROXTON(dev)) {
1303                 *source_rates = bxt_rates;
1304                 size = ARRAY_SIZE(bxt_rates);
1305         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1306                 *source_rates = skl_rates;
1307                 size = ARRAY_SIZE(skl_rates);
1308         } else {
1309                 *source_rates = default_rates;
1310                 size = ARRAY_SIZE(default_rates);
1311         }
1312
1313         /* This depends on the fact that 5.4 is last value in the array */
1314         if (!intel_dp_source_supports_hbr2(intel_dp))
1315                 size--;
1316
1317         return size;
1318 }
1319
1320 static void
1321 intel_dp_set_clock(struct intel_encoder *encoder,
1322                    struct intel_crtc_state *pipe_config)
1323 {
1324         struct drm_device *dev = encoder->base.dev;
1325         const struct dp_link_dpll *divisor = NULL;
1326         int i, count = 0;
1327
1328         if (IS_G4X(dev)) {
1329                 divisor = gen4_dpll;
1330                 count = ARRAY_SIZE(gen4_dpll);
1331         } else if (HAS_PCH_SPLIT(dev)) {
1332                 divisor = pch_dpll;
1333                 count = ARRAY_SIZE(pch_dpll);
1334         } else if (IS_CHERRYVIEW(dev)) {
1335                 divisor = chv_dpll;
1336                 count = ARRAY_SIZE(chv_dpll);
1337         } else if (IS_VALLEYVIEW(dev)) {
1338                 divisor = vlv_dpll;
1339                 count = ARRAY_SIZE(vlv_dpll);
1340         }
1341
1342         if (divisor && count) {
1343                 for (i = 0; i < count; i++) {
1344                         if (pipe_config->port_clock == divisor[i].clock) {
1345                                 pipe_config->dpll = divisor[i].dpll;
1346                                 pipe_config->clock_set = true;
1347                                 break;
1348                         }
1349                 }
1350         }
1351 }
1352
1353 static int intersect_rates(const int *source_rates, int source_len,
1354                            const int *sink_rates, int sink_len,
1355                            int *common_rates)
1356 {
1357         int i = 0, j = 0, k = 0;
1358
1359         while (i < source_len && j < sink_len) {
1360                 if (source_rates[i] == sink_rates[j]) {
1361                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1362                                 return k;
1363                         common_rates[k] = source_rates[i];
1364                         ++k;
1365                         ++i;
1366                         ++j;
1367                 } else if (source_rates[i] < sink_rates[j]) {
1368                         ++i;
1369                 } else {
1370                         ++j;
1371                 }
1372         }
1373         return k;
1374 }
1375
1376 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1377                                  int *common_rates)
1378 {
1379         const int *source_rates, *sink_rates;
1380         int source_len, sink_len;
1381
1382         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1384
1385         return intersect_rates(source_rates, source_len,
1386                                sink_rates, sink_len,
1387                                common_rates);
1388 }
1389
1390 static void snprintf_int_array(char *str, size_t len,
1391                                const int *array, int nelem)
1392 {
1393         int i;
1394
1395         str[0] = '\0';
1396
1397         for (i = 0; i < nelem; i++) {
1398                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1399                 if (r >= len)
1400                         return;
1401                 str += r;
1402                 len -= r;
1403         }
1404 }
1405
1406 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1407 {
1408         const int *source_rates, *sink_rates;
1409         int source_len, sink_len, common_len;
1410         int common_rates[DP_MAX_SUPPORTED_RATES];
1411         char str[128]; /* FIXME: too big for stack? */
1412
1413         if ((drm_debug & DRM_UT_KMS) == 0)
1414                 return;
1415
1416         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1417         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1418         DRM_DEBUG_KMS("source rates: %s\n", str);
1419
1420         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1421         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1422         DRM_DEBUG_KMS("sink rates: %s\n", str);
1423
1424         common_len = intel_dp_common_rates(intel_dp, common_rates);
1425         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1426         DRM_DEBUG_KMS("common rates: %s\n", str);
1427 }
1428
1429 static int rate_to_index(int find, const int *rates)
1430 {
1431         int i = 0;
1432
1433         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1434                 if (find == rates[i])
1435                         break;
1436
1437         return i;
1438 }
1439
1440 int
1441 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1442 {
1443         int rates[DP_MAX_SUPPORTED_RATES] = {};
1444         int len;
1445
1446         len = intel_dp_common_rates(intel_dp, rates);
1447         if (WARN_ON(len <= 0))
1448                 return 162000;
1449
1450         return rates[rate_to_index(0, rates) - 1];
1451 }
1452
1453 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1454 {
1455         return rate_to_index(rate, intel_dp->sink_rates);
1456 }
1457
1458 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1459                            uint8_t *link_bw, uint8_t *rate_select)
1460 {
1461         if (intel_dp->num_sink_rates) {
1462                 *link_bw = 0;
1463                 *rate_select =
1464                         intel_dp_rate_select(intel_dp, port_clock);
1465         } else {
1466                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1467                 *rate_select = 0;
1468         }
1469 }
1470
1471 bool
1472 intel_dp_compute_config(struct intel_encoder *encoder,
1473                         struct intel_crtc_state *pipe_config)
1474 {
1475         struct drm_device *dev = encoder->base.dev;
1476         struct drm_i915_private *dev_priv = to_i915(dev);
1477         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1478         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1479         enum port port = dp_to_dig_port(intel_dp)->port;
1480         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1481         struct intel_connector *intel_connector = intel_dp->attached_connector;
1482         int lane_count, clock;
1483         int min_lane_count = 1;
1484         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1485         /* Conveniently, the link BW constants become indices with a shift...*/
1486         int min_clock = 0;
1487         int max_clock;
1488         int bpp, mode_rate;
1489         int link_avail, link_clock;
1490         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1491         int common_len;
1492         uint8_t link_bw, rate_select;
1493
1494         common_len = intel_dp_common_rates(intel_dp, common_rates);
1495
1496         /* No common link rates between source and sink */
1497         WARN_ON(common_len <= 0);
1498
1499         max_clock = common_len - 1;
1500
1501         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1502                 pipe_config->has_pch_encoder = true;
1503
1504         pipe_config->has_drrs = false;
1505         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1506
1507         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1508                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1509                                        adjusted_mode);
1510
1511                 if (INTEL_INFO(dev)->gen >= 9) {
1512                         int ret;
1513                         ret = skl_update_scaler_crtc(pipe_config);
1514                         if (ret)
1515                                 return ret;
1516                 }
1517
1518                 if (HAS_GMCH_DISPLAY(dev))
1519                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1520                                                  intel_connector->panel.fitting_mode);
1521                 else
1522                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1523                                                 intel_connector->panel.fitting_mode);
1524         }
1525
1526         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1527                 return false;
1528
1529         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1530                       "max bw %d pixel clock %iKHz\n",
1531                       max_lane_count, common_rates[max_clock],
1532                       adjusted_mode->crtc_clock);
1533
1534         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1535          * bpc in between. */
1536         bpp = pipe_config->pipe_bpp;
1537         if (is_edp(intel_dp)) {
1538
1539                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1540                 if (intel_connector->base.display_info.bpc == 0 &&
1541                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1542                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1543                                       dev_priv->vbt.edp.bpp);
1544                         bpp = dev_priv->vbt.edp.bpp;
1545                 }
1546
1547                 /*
1548                  * Use the maximum clock and number of lanes the eDP panel
1549                  * advertizes being capable of. The panels are generally
1550                  * designed to support only a single clock and lane
1551                  * configuration, and typically these values correspond to the
1552                  * native resolution of the panel.
1553                  */
1554                 min_lane_count = max_lane_count;
1555                 min_clock = max_clock;
1556         }
1557
1558         for (; bpp >= 6*3; bpp -= 2*3) {
1559                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1560                                                    bpp);
1561
1562                 for (clock = min_clock; clock <= max_clock; clock++) {
1563                         for (lane_count = min_lane_count;
1564                                 lane_count <= max_lane_count;
1565                                 lane_count <<= 1) {
1566
1567                                 link_clock = common_rates[clock];
1568                                 link_avail = intel_dp_max_data_rate(link_clock,
1569                                                                     lane_count);
1570
1571                                 if (mode_rate <= link_avail) {
1572                                         goto found;
1573                                 }
1574                         }
1575                 }
1576         }
1577
1578         return false;
1579
1580 found:
1581         if (intel_dp->color_range_auto) {
1582                 /*
1583                  * See:
1584                  * CEA-861-E - 5.1 Default Encoding Parameters
1585                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1586                  */
1587                 pipe_config->limited_color_range =
1588                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1589         } else {
1590                 pipe_config->limited_color_range =
1591                         intel_dp->limited_color_range;
1592         }
1593
1594         pipe_config->lane_count = lane_count;
1595
1596         pipe_config->pipe_bpp = bpp;
1597         pipe_config->port_clock = common_rates[clock];
1598
1599         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1600                               &link_bw, &rate_select);
1601
1602         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1603                       link_bw, rate_select, pipe_config->lane_count,
1604                       pipe_config->port_clock, bpp);
1605         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1606                       mode_rate, link_avail);
1607
1608         intel_link_compute_m_n(bpp, lane_count,
1609                                adjusted_mode->crtc_clock,
1610                                pipe_config->port_clock,
1611                                &pipe_config->dp_m_n);
1612
1613         if (intel_connector->panel.downclock_mode != NULL &&
1614                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1615                         pipe_config->has_drrs = true;
1616                         intel_link_compute_m_n(bpp, lane_count,
1617                                 intel_connector->panel.downclock_mode->clock,
1618                                 pipe_config->port_clock,
1619                                 &pipe_config->dp_m2_n2);
1620         }
1621
1622         /*
1623          * DPLL0 VCO may need to be adjusted to get the correct
1624          * clock for eDP. This will affect cdclk as well.
1625          */
1626         if (is_edp(intel_dp) &&
1627             (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))) {
1628                 int vco;
1629
1630                 switch (pipe_config->port_clock / 2) {
1631                 case 108000:
1632                 case 216000:
1633                         vco = 8640000;
1634                         break;
1635                 default:
1636                         vco = 8100000;
1637                         break;
1638                 }
1639
1640                 to_intel_atomic_state(pipe_config->base.state)->cdclk_pll_vco = vco;
1641         }
1642
1643         if (!HAS_DDI(dev))
1644                 intel_dp_set_clock(encoder, pipe_config);
1645
1646         return true;
1647 }
1648
1649 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1650                               const struct intel_crtc_state *pipe_config)
1651 {
1652         intel_dp->link_rate = pipe_config->port_clock;
1653         intel_dp->lane_count = pipe_config->lane_count;
1654 }
1655
1656 static void intel_dp_prepare(struct intel_encoder *encoder)
1657 {
1658         struct drm_device *dev = encoder->base.dev;
1659         struct drm_i915_private *dev_priv = to_i915(dev);
1660         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1661         enum port port = dp_to_dig_port(intel_dp)->port;
1662         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1663         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1664
1665         intel_dp_set_link_params(intel_dp, crtc->config);
1666
1667         /*
1668          * There are four kinds of DP registers:
1669          *
1670          *      IBX PCH
1671          *      SNB CPU
1672          *      IVB CPU
1673          *      CPT PCH
1674          *
1675          * IBX PCH and CPU are the same for almost everything,
1676          * except that the CPU DP PLL is configured in this
1677          * register
1678          *
1679          * CPT PCH is quite different, having many bits moved
1680          * to the TRANS_DP_CTL register instead. That
1681          * configuration happens (oddly) in ironlake_pch_enable
1682          */
1683
1684         /* Preserve the BIOS-computed detected bit. This is
1685          * supposed to be read-only.
1686          */
1687         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1688
1689         /* Handle DP bits in common between all three register formats */
1690         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1691         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1692
1693         /* Split out the IBX/CPU vs CPT settings */
1694
1695         if (IS_GEN7(dev) && port == PORT_A) {
1696                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1697                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1698                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1699                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1700                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1701
1702                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1703                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1704
1705                 intel_dp->DP |= crtc->pipe << 29;
1706         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1707                 u32 trans_dp;
1708
1709                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1710
1711                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1712                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1713                         trans_dp |= TRANS_DP_ENH_FRAMING;
1714                 else
1715                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1716                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1717         } else {
1718                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1719                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1720                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1721
1722                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1723                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1724                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1725                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1726                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1727
1728                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1729                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1730
1731                 if (IS_CHERRYVIEW(dev))
1732                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1733                 else if (crtc->pipe == PIPE_B)
1734                         intel_dp->DP |= DP_PIPEB_SELECT;
1735         }
1736 }
1737
1738 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1739 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1740
1741 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1742 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1743
1744 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1745 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1746
1747 static void intel_pps_verify_state(struct drm_i915_private *dev_priv,
1748                                    struct intel_dp *intel_dp);
1749
1750 static void wait_panel_status(struct intel_dp *intel_dp,
1751                                        u32 mask,
1752                                        u32 value)
1753 {
1754         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1755         struct drm_i915_private *dev_priv = to_i915(dev);
1756         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1757
1758         lockdep_assert_held(&dev_priv->pps_mutex);
1759
1760         intel_pps_verify_state(dev_priv, intel_dp);
1761
1762         pp_stat_reg = _pp_stat_reg(intel_dp);
1763         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1764
1765         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1766                         mask, value,
1767                         I915_READ(pp_stat_reg),
1768                         I915_READ(pp_ctrl_reg));
1769
1770         if (intel_wait_for_register(dev_priv,
1771                                     pp_stat_reg, mask, value,
1772                                     5000))
1773                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1774                                 I915_READ(pp_stat_reg),
1775                                 I915_READ(pp_ctrl_reg));
1776
1777         DRM_DEBUG_KMS("Wait complete\n");
1778 }
1779
1780 static void wait_panel_on(struct intel_dp *intel_dp)
1781 {
1782         DRM_DEBUG_KMS("Wait for panel power on\n");
1783         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1784 }
1785
1786 static void wait_panel_off(struct intel_dp *intel_dp)
1787 {
1788         DRM_DEBUG_KMS("Wait for panel power off time\n");
1789         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1790 }
1791
1792 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1793 {
1794         ktime_t panel_power_on_time;
1795         s64 panel_power_off_duration;
1796
1797         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1798
1799         /* take the difference of currrent time and panel power off time
1800          * and then make panel wait for t11_t12 if needed. */
1801         panel_power_on_time = ktime_get_boottime();
1802         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1803
1804         /* When we disable the VDD override bit last we have to do the manual
1805          * wait. */
1806         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1807                 wait_remaining_ms_from_jiffies(jiffies,
1808                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1809
1810         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1811 }
1812
1813 static void wait_backlight_on(struct intel_dp *intel_dp)
1814 {
1815         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1816                                        intel_dp->backlight_on_delay);
1817 }
1818
1819 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1820 {
1821         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1822                                        intel_dp->backlight_off_delay);
1823 }
1824
1825 /* Read the current pp_control value, unlocking the register if it
1826  * is locked
1827  */
1828
1829 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1830 {
1831         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1832         struct drm_i915_private *dev_priv = to_i915(dev);
1833         u32 control;
1834
1835         lockdep_assert_held(&dev_priv->pps_mutex);
1836
1837         control = I915_READ(_pp_ctrl_reg(intel_dp));
1838         if (!IS_BROXTON(dev)) {
1839                 control &= ~PANEL_UNLOCK_MASK;
1840                 control |= PANEL_UNLOCK_REGS;
1841         }
1842         return control;
1843 }
1844
1845 /*
1846  * Must be paired with edp_panel_vdd_off().
1847  * Must hold pps_mutex around the whole on/off sequence.
1848  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1849  */
1850 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1851 {
1852         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1853         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1854         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1855         struct drm_i915_private *dev_priv = to_i915(dev);
1856         enum intel_display_power_domain power_domain;
1857         u32 pp;
1858         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1859         bool need_to_disable = !intel_dp->want_panel_vdd;
1860
1861         lockdep_assert_held(&dev_priv->pps_mutex);
1862
1863         if (!is_edp(intel_dp))
1864                 return false;
1865
1866         cancel_delayed_work(&intel_dp->panel_vdd_work);
1867         intel_dp->want_panel_vdd = true;
1868
1869         if (edp_have_panel_vdd(intel_dp))
1870                 return need_to_disable;
1871
1872         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1873         intel_display_power_get(dev_priv, power_domain);
1874
1875         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1876                       port_name(intel_dig_port->port));
1877
1878         if (!edp_have_panel_power(intel_dp))
1879                 wait_panel_power_cycle(intel_dp);
1880
1881         pp = ironlake_get_pp_control(intel_dp);
1882         pp |= EDP_FORCE_VDD;
1883
1884         pp_stat_reg = _pp_stat_reg(intel_dp);
1885         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886
1887         I915_WRITE(pp_ctrl_reg, pp);
1888         POSTING_READ(pp_ctrl_reg);
1889         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1890                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1891         /*
1892          * If the panel wasn't on, delay before accessing aux channel
1893          */
1894         if (!edp_have_panel_power(intel_dp)) {
1895                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1896                               port_name(intel_dig_port->port));
1897                 msleep(intel_dp->panel_power_up_delay);
1898         }
1899
1900         return need_to_disable;
1901 }
1902
1903 /*
1904  * Must be paired with intel_edp_panel_vdd_off() or
1905  * intel_edp_panel_off().
1906  * Nested calls to these functions are not allowed since
1907  * we drop the lock. Caller must use some higher level
1908  * locking to prevent nested calls from other threads.
1909  */
1910 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1911 {
1912         bool vdd;
1913
1914         if (!is_edp(intel_dp))
1915                 return;
1916
1917         pps_lock(intel_dp);
1918         vdd = edp_panel_vdd_on(intel_dp);
1919         pps_unlock(intel_dp);
1920
1921         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1922              port_name(dp_to_dig_port(intel_dp)->port));
1923 }
1924
1925 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1926 {
1927         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1928         struct drm_i915_private *dev_priv = to_i915(dev);
1929         struct intel_digital_port *intel_dig_port =
1930                 dp_to_dig_port(intel_dp);
1931         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1932         enum intel_display_power_domain power_domain;
1933         u32 pp;
1934         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1935
1936         lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938         WARN_ON(intel_dp->want_panel_vdd);
1939
1940         if (!edp_have_panel_vdd(intel_dp))
1941                 return;
1942
1943         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1944                       port_name(intel_dig_port->port));
1945
1946         pp = ironlake_get_pp_control(intel_dp);
1947         pp &= ~EDP_FORCE_VDD;
1948
1949         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1950         pp_stat_reg = _pp_stat_reg(intel_dp);
1951
1952         I915_WRITE(pp_ctrl_reg, pp);
1953         POSTING_READ(pp_ctrl_reg);
1954
1955         /* Make sure sequencer is idle before allowing subsequent activity */
1956         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1957         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1958
1959         if ((pp & POWER_TARGET_ON) == 0)
1960                 intel_dp->panel_power_off_time = ktime_get_boottime();
1961
1962         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1963         intel_display_power_put(dev_priv, power_domain);
1964 }
1965
1966 static void edp_panel_vdd_work(struct work_struct *__work)
1967 {
1968         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1969                                                  struct intel_dp, panel_vdd_work);
1970
1971         pps_lock(intel_dp);
1972         if (!intel_dp->want_panel_vdd)
1973                 edp_panel_vdd_off_sync(intel_dp);
1974         pps_unlock(intel_dp);
1975 }
1976
1977 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1978 {
1979         unsigned long delay;
1980
1981         /*
1982          * Queue the timer to fire a long time from now (relative to the power
1983          * down delay) to keep the panel power up across a sequence of
1984          * operations.
1985          */
1986         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1987         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1988 }
1989
1990 /*
1991  * Must be paired with edp_panel_vdd_on().
1992  * Must hold pps_mutex around the whole on/off sequence.
1993  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1994  */
1995 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1996 {
1997         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1998
1999         lockdep_assert_held(&dev_priv->pps_mutex);
2000
2001         if (!is_edp(intel_dp))
2002                 return;
2003
2004         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2005              port_name(dp_to_dig_port(intel_dp)->port));
2006
2007         intel_dp->want_panel_vdd = false;
2008
2009         if (sync)
2010                 edp_panel_vdd_off_sync(intel_dp);
2011         else
2012                 edp_panel_vdd_schedule_off(intel_dp);
2013 }
2014
2015 static void edp_panel_on(struct intel_dp *intel_dp)
2016 {
2017         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2018         struct drm_i915_private *dev_priv = to_i915(dev);
2019         u32 pp;
2020         i915_reg_t pp_ctrl_reg;
2021
2022         lockdep_assert_held(&dev_priv->pps_mutex);
2023
2024         if (!is_edp(intel_dp))
2025                 return;
2026
2027         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2028                       port_name(dp_to_dig_port(intel_dp)->port));
2029
2030         if (WARN(edp_have_panel_power(intel_dp),
2031                  "eDP port %c panel power already on\n",
2032                  port_name(dp_to_dig_port(intel_dp)->port)))
2033                 return;
2034
2035         wait_panel_power_cycle(intel_dp);
2036
2037         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2038         pp = ironlake_get_pp_control(intel_dp);
2039         if (IS_GEN5(dev)) {
2040                 /* ILK workaround: disable reset around power sequence */
2041                 pp &= ~PANEL_POWER_RESET;
2042                 I915_WRITE(pp_ctrl_reg, pp);
2043                 POSTING_READ(pp_ctrl_reg);
2044         }
2045
2046         pp |= POWER_TARGET_ON;
2047         if (!IS_GEN5(dev))
2048                 pp |= PANEL_POWER_RESET;
2049
2050         I915_WRITE(pp_ctrl_reg, pp);
2051         POSTING_READ(pp_ctrl_reg);
2052
2053         wait_panel_on(intel_dp);
2054         intel_dp->last_power_on = jiffies;
2055
2056         if (IS_GEN5(dev)) {
2057                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2058                 I915_WRITE(pp_ctrl_reg, pp);
2059                 POSTING_READ(pp_ctrl_reg);
2060         }
2061 }
2062
2063 void intel_edp_panel_on(struct intel_dp *intel_dp)
2064 {
2065         if (!is_edp(intel_dp))
2066                 return;
2067
2068         pps_lock(intel_dp);
2069         edp_panel_on(intel_dp);
2070         pps_unlock(intel_dp);
2071 }
2072
2073
2074 static void edp_panel_off(struct intel_dp *intel_dp)
2075 {
2076         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2077         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2078         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2079         struct drm_i915_private *dev_priv = to_i915(dev);
2080         enum intel_display_power_domain power_domain;
2081         u32 pp;
2082         i915_reg_t pp_ctrl_reg;
2083
2084         lockdep_assert_held(&dev_priv->pps_mutex);
2085
2086         if (!is_edp(intel_dp))
2087                 return;
2088
2089         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2090                       port_name(dp_to_dig_port(intel_dp)->port));
2091
2092         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2093              port_name(dp_to_dig_port(intel_dp)->port));
2094
2095         pp = ironlake_get_pp_control(intel_dp);
2096         /* We need to switch off panel power _and_ force vdd, for otherwise some
2097          * panels get very unhappy and cease to work. */
2098         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2099                 EDP_BLC_ENABLE);
2100
2101         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2102
2103         intel_dp->want_panel_vdd = false;
2104
2105         I915_WRITE(pp_ctrl_reg, pp);
2106         POSTING_READ(pp_ctrl_reg);
2107
2108         intel_dp->panel_power_off_time = ktime_get_boottime();
2109         wait_panel_off(intel_dp);
2110
2111         /* We got a reference when we enabled the VDD. */
2112         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2113         intel_display_power_put(dev_priv, power_domain);
2114 }
2115
2116 void intel_edp_panel_off(struct intel_dp *intel_dp)
2117 {
2118         if (!is_edp(intel_dp))
2119                 return;
2120
2121         pps_lock(intel_dp);
2122         edp_panel_off(intel_dp);
2123         pps_unlock(intel_dp);
2124 }
2125
2126 /* Enable backlight in the panel power control. */
2127 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2128 {
2129         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2130         struct drm_device *dev = intel_dig_port->base.base.dev;
2131         struct drm_i915_private *dev_priv = to_i915(dev);
2132         u32 pp;
2133         i915_reg_t pp_ctrl_reg;
2134
2135         /*
2136          * If we enable the backlight right away following a panel power
2137          * on, we may see slight flicker as the panel syncs with the eDP
2138          * link.  So delay a bit to make sure the image is solid before
2139          * allowing it to appear.
2140          */
2141         wait_backlight_on(intel_dp);
2142
2143         pps_lock(intel_dp);
2144
2145         pp = ironlake_get_pp_control(intel_dp);
2146         pp |= EDP_BLC_ENABLE;
2147
2148         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2149
2150         I915_WRITE(pp_ctrl_reg, pp);
2151         POSTING_READ(pp_ctrl_reg);
2152
2153         pps_unlock(intel_dp);
2154 }
2155
2156 /* Enable backlight PWM and backlight PP control. */
2157 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2158 {
2159         if (!is_edp(intel_dp))
2160                 return;
2161
2162         DRM_DEBUG_KMS("\n");
2163
2164         intel_panel_enable_backlight(intel_dp->attached_connector);
2165         _intel_edp_backlight_on(intel_dp);
2166 }
2167
2168 /* Disable backlight in the panel power control. */
2169 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2170 {
2171         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2172         struct drm_i915_private *dev_priv = to_i915(dev);
2173         u32 pp;
2174         i915_reg_t pp_ctrl_reg;
2175
2176         if (!is_edp(intel_dp))
2177                 return;
2178
2179         pps_lock(intel_dp);
2180
2181         pp = ironlake_get_pp_control(intel_dp);
2182         pp &= ~EDP_BLC_ENABLE;
2183
2184         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2185
2186         I915_WRITE(pp_ctrl_reg, pp);
2187         POSTING_READ(pp_ctrl_reg);
2188
2189         pps_unlock(intel_dp);
2190
2191         intel_dp->last_backlight_off = jiffies;
2192         edp_wait_backlight_off(intel_dp);
2193 }
2194
2195 /* Disable backlight PP control and backlight PWM. */
2196 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2197 {
2198         if (!is_edp(intel_dp))
2199                 return;
2200
2201         DRM_DEBUG_KMS("\n");
2202
2203         _intel_edp_backlight_off(intel_dp);
2204         intel_panel_disable_backlight(intel_dp->attached_connector);
2205 }
2206
2207 /*
2208  * Hook for controlling the panel power control backlight through the bl_power
2209  * sysfs attribute. Take care to handle multiple calls.
2210  */
2211 static void intel_edp_backlight_power(struct intel_connector *connector,
2212                                       bool enable)
2213 {
2214         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2215         bool is_enabled;
2216
2217         pps_lock(intel_dp);
2218         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2219         pps_unlock(intel_dp);
2220
2221         if (is_enabled == enable)
2222                 return;
2223
2224         DRM_DEBUG_KMS("panel power control backlight %s\n",
2225                       enable ? "enable" : "disable");
2226
2227         if (enable)
2228                 _intel_edp_backlight_on(intel_dp);
2229         else
2230                 _intel_edp_backlight_off(intel_dp);
2231 }
2232
2233 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2234 {
2235         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2236         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2237         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2238
2239         I915_STATE_WARN(cur_state != state,
2240                         "DP port %c state assertion failure (expected %s, current %s)\n",
2241                         port_name(dig_port->port),
2242                         onoff(state), onoff(cur_state));
2243 }
2244 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2245
2246 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2247 {
2248         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2249
2250         I915_STATE_WARN(cur_state != state,
2251                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2252                         onoff(state), onoff(cur_state));
2253 }
2254 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2255 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2256
2257 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2258 {
2259         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2260         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2261         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2262
2263         assert_pipe_disabled(dev_priv, crtc->pipe);
2264         assert_dp_port_disabled(intel_dp);
2265         assert_edp_pll_disabled(dev_priv);
2266
2267         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2268                       crtc->config->port_clock);
2269
2270         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2271
2272         if (crtc->config->port_clock == 162000)
2273                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2274         else
2275                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2276
2277         I915_WRITE(DP_A, intel_dp->DP);
2278         POSTING_READ(DP_A);
2279         udelay(500);
2280
2281         /*
2282          * [DevILK] Work around required when enabling DP PLL
2283          * while a pipe is enabled going to FDI:
2284          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2285          * 2. Program DP PLL enable
2286          */
2287         if (IS_GEN5(dev_priv))
2288                 intel_wait_for_vblank_if_active(&dev_priv->drm, !crtc->pipe);
2289
2290         intel_dp->DP |= DP_PLL_ENABLE;
2291
2292         I915_WRITE(DP_A, intel_dp->DP);
2293         POSTING_READ(DP_A);
2294         udelay(200);
2295 }
2296
2297 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2298 {
2299         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2300         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2301         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2302
2303         assert_pipe_disabled(dev_priv, crtc->pipe);
2304         assert_dp_port_disabled(intel_dp);
2305         assert_edp_pll_enabled(dev_priv);
2306
2307         DRM_DEBUG_KMS("disabling eDP PLL\n");
2308
2309         intel_dp->DP &= ~DP_PLL_ENABLE;
2310
2311         I915_WRITE(DP_A, intel_dp->DP);
2312         POSTING_READ(DP_A);
2313         udelay(200);
2314 }
2315
2316 /* If the sink supports it, try to set the power state appropriately */
2317 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2318 {
2319         int ret, i;
2320
2321         /* Should have a valid DPCD by this point */
2322         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2323                 return;
2324
2325         if (mode != DRM_MODE_DPMS_ON) {
2326                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2327                                          DP_SET_POWER_D3);
2328         } else {
2329                 /*
2330                  * When turning on, we need to retry for 1ms to give the sink
2331                  * time to wake up.
2332                  */
2333                 for (i = 0; i < 3; i++) {
2334                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2335                                                  DP_SET_POWER_D0);
2336                         if (ret == 1)
2337                                 break;
2338                         msleep(1);
2339                 }
2340         }
2341
2342         if (ret != 1)
2343                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2344                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2345 }
2346
2347 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2348                                   enum pipe *pipe)
2349 {
2350         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2351         enum port port = dp_to_dig_port(intel_dp)->port;
2352         struct drm_device *dev = encoder->base.dev;
2353         struct drm_i915_private *dev_priv = to_i915(dev);
2354         enum intel_display_power_domain power_domain;
2355         u32 tmp;
2356         bool ret;
2357
2358         power_domain = intel_display_port_power_domain(encoder);
2359         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2360                 return false;
2361
2362         ret = false;
2363
2364         tmp = I915_READ(intel_dp->output_reg);
2365
2366         if (!(tmp & DP_PORT_EN))
2367                 goto out;
2368
2369         if (IS_GEN7(dev) && port == PORT_A) {
2370                 *pipe = PORT_TO_PIPE_CPT(tmp);
2371         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2372                 enum pipe p;
2373
2374                 for_each_pipe(dev_priv, p) {
2375                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2376                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2377                                 *pipe = p;
2378                                 ret = true;
2379
2380                                 goto out;
2381                         }
2382                 }
2383
2384                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2385                               i915_mmio_reg_offset(intel_dp->output_reg));
2386         } else if (IS_CHERRYVIEW(dev)) {
2387                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2388         } else {
2389                 *pipe = PORT_TO_PIPE(tmp);
2390         }
2391
2392         ret = true;
2393
2394 out:
2395         intel_display_power_put(dev_priv, power_domain);
2396
2397         return ret;
2398 }
2399
2400 static void intel_dp_get_config(struct intel_encoder *encoder,
2401                                 struct intel_crtc_state *pipe_config)
2402 {
2403         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2404         u32 tmp, flags = 0;
2405         struct drm_device *dev = encoder->base.dev;
2406         struct drm_i915_private *dev_priv = to_i915(dev);
2407         enum port port = dp_to_dig_port(intel_dp)->port;
2408         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2409
2410         tmp = I915_READ(intel_dp->output_reg);
2411
2412         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2413
2414         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2415                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2416
2417                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2418                         flags |= DRM_MODE_FLAG_PHSYNC;
2419                 else
2420                         flags |= DRM_MODE_FLAG_NHSYNC;
2421
2422                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2423                         flags |= DRM_MODE_FLAG_PVSYNC;
2424                 else
2425                         flags |= DRM_MODE_FLAG_NVSYNC;
2426         } else {
2427                 if (tmp & DP_SYNC_HS_HIGH)
2428                         flags |= DRM_MODE_FLAG_PHSYNC;
2429                 else
2430                         flags |= DRM_MODE_FLAG_NHSYNC;
2431
2432                 if (tmp & DP_SYNC_VS_HIGH)
2433                         flags |= DRM_MODE_FLAG_PVSYNC;
2434                 else
2435                         flags |= DRM_MODE_FLAG_NVSYNC;
2436         }
2437
2438         pipe_config->base.adjusted_mode.flags |= flags;
2439
2440         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2441             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2442                 pipe_config->limited_color_range = true;
2443
2444         pipe_config->lane_count =
2445                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2446
2447         intel_dp_get_m_n(crtc, pipe_config);
2448
2449         if (port == PORT_A) {
2450                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2451                         pipe_config->port_clock = 162000;
2452                 else
2453                         pipe_config->port_clock = 270000;
2454         }
2455
2456         pipe_config->base.adjusted_mode.crtc_clock =
2457                 intel_dotclock_calculate(pipe_config->port_clock,
2458                                          &pipe_config->dp_m_n);
2459
2460         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2461             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2462                 /*
2463                  * This is a big fat ugly hack.
2464                  *
2465                  * Some machines in UEFI boot mode provide us a VBT that has 18
2466                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2467                  * unknown we fail to light up. Yet the same BIOS boots up with
2468                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2469                  * max, not what it tells us to use.
2470                  *
2471                  * Note: This will still be broken if the eDP panel is not lit
2472                  * up by the BIOS, and thus we can't get the mode at module
2473                  * load.
2474                  */
2475                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2476                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2477                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2478         }
2479 }
2480
2481 static void intel_disable_dp(struct intel_encoder *encoder)
2482 {
2483         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2484         struct drm_device *dev = encoder->base.dev;
2485         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486
2487         if (crtc->config->has_audio)
2488                 intel_audio_codec_disable(encoder);
2489
2490         if (HAS_PSR(dev) && !HAS_DDI(dev))
2491                 intel_psr_disable(intel_dp);
2492
2493         /* Make sure the panel is off before trying to change the mode. But also
2494          * ensure that we have vdd while we switch off the panel. */
2495         intel_edp_panel_vdd_on(intel_dp);
2496         intel_edp_backlight_off(intel_dp);
2497         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2498         intel_edp_panel_off(intel_dp);
2499
2500         /* disable the port before the pipe on g4x */
2501         if (INTEL_INFO(dev)->gen < 5)
2502                 intel_dp_link_down(intel_dp);
2503 }
2504
2505 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2506 {
2507         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2508         enum port port = dp_to_dig_port(intel_dp)->port;
2509
2510         intel_dp_link_down(intel_dp);
2511
2512         /* Only ilk+ has port A */
2513         if (port == PORT_A)
2514                 ironlake_edp_pll_off(intel_dp);
2515 }
2516
2517 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2518 {
2519         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2520
2521         intel_dp_link_down(intel_dp);
2522 }
2523
2524 static void chv_post_disable_dp(struct intel_encoder *encoder)
2525 {
2526         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2527         struct drm_device *dev = encoder->base.dev;
2528         struct drm_i915_private *dev_priv = to_i915(dev);
2529
2530         intel_dp_link_down(intel_dp);
2531
2532         mutex_lock(&dev_priv->sb_lock);
2533
2534         /* Assert data lane reset */
2535         chv_data_lane_soft_reset(encoder, true);
2536
2537         mutex_unlock(&dev_priv->sb_lock);
2538 }
2539
2540 static void
2541 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2542                          uint32_t *DP,
2543                          uint8_t dp_train_pat)
2544 {
2545         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2546         struct drm_device *dev = intel_dig_port->base.base.dev;
2547         struct drm_i915_private *dev_priv = to_i915(dev);
2548         enum port port = intel_dig_port->port;
2549
2550         if (HAS_DDI(dev)) {
2551                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2552
2553                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2554                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2555                 else
2556                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2557
2558                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2559                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2560                 case DP_TRAINING_PATTERN_DISABLE:
2561                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2562
2563                         break;
2564                 case DP_TRAINING_PATTERN_1:
2565                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2566                         break;
2567                 case DP_TRAINING_PATTERN_2:
2568                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2569                         break;
2570                 case DP_TRAINING_PATTERN_3:
2571                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2572                         break;
2573                 }
2574                 I915_WRITE(DP_TP_CTL(port), temp);
2575
2576         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2577                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2578                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2579
2580                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2581                 case DP_TRAINING_PATTERN_DISABLE:
2582                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2583                         break;
2584                 case DP_TRAINING_PATTERN_1:
2585                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2586                         break;
2587                 case DP_TRAINING_PATTERN_2:
2588                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2589                         break;
2590                 case DP_TRAINING_PATTERN_3:
2591                         DRM_ERROR("DP training pattern 3 not supported\n");
2592                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2593                         break;
2594                 }
2595
2596         } else {
2597                 if (IS_CHERRYVIEW(dev))
2598                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2599                 else
2600                         *DP &= ~DP_LINK_TRAIN_MASK;
2601
2602                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2603                 case DP_TRAINING_PATTERN_DISABLE:
2604                         *DP |= DP_LINK_TRAIN_OFF;
2605                         break;
2606                 case DP_TRAINING_PATTERN_1:
2607                         *DP |= DP_LINK_TRAIN_PAT_1;
2608                         break;
2609                 case DP_TRAINING_PATTERN_2:
2610                         *DP |= DP_LINK_TRAIN_PAT_2;
2611                         break;
2612                 case DP_TRAINING_PATTERN_3:
2613                         if (IS_CHERRYVIEW(dev)) {
2614                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2615                         } else {
2616                                 DRM_ERROR("DP training pattern 3 not supported\n");
2617                                 *DP |= DP_LINK_TRAIN_PAT_2;
2618                         }
2619                         break;
2620                 }
2621         }
2622 }
2623
2624 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2625 {
2626         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2627         struct drm_i915_private *dev_priv = to_i915(dev);
2628         struct intel_crtc *crtc =
2629                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2630
2631         /* enable with pattern 1 (as per spec) */
2632         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2633                                  DP_TRAINING_PATTERN_1);
2634
2635         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2636         POSTING_READ(intel_dp->output_reg);
2637
2638         /*
2639          * Magic for VLV/CHV. We _must_ first set up the register
2640          * without actually enabling the port, and then do another
2641          * write to enable the port. Otherwise link training will
2642          * fail when the power sequencer is freshly used for this port.
2643          */
2644         intel_dp->DP |= DP_PORT_EN;
2645         if (crtc->config->has_audio)
2646                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2647
2648         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2649         POSTING_READ(intel_dp->output_reg);
2650 }
2651
2652 static void intel_enable_dp(struct intel_encoder *encoder)
2653 {
2654         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2655         struct drm_device *dev = encoder->base.dev;
2656         struct drm_i915_private *dev_priv = to_i915(dev);
2657         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2658         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2659         enum pipe pipe = crtc->pipe;
2660
2661         if (WARN_ON(dp_reg & DP_PORT_EN))
2662                 return;
2663
2664         pps_lock(intel_dp);
2665
2666         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2667                 vlv_init_panel_power_sequencer(intel_dp);
2668
2669         intel_dp_enable_port(intel_dp);
2670
2671         edp_panel_vdd_on(intel_dp);
2672         edp_panel_on(intel_dp);
2673         edp_panel_vdd_off(intel_dp, true);
2674
2675         pps_unlock(intel_dp);
2676
2677         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2678                 unsigned int lane_mask = 0x0;
2679
2680                 if (IS_CHERRYVIEW(dev))
2681                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2682
2683                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2684                                     lane_mask);
2685         }
2686
2687         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2688         intel_dp_start_link_train(intel_dp);
2689         intel_dp_stop_link_train(intel_dp);
2690
2691         if (crtc->config->has_audio) {
2692                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2693                                  pipe_name(pipe));
2694                 intel_audio_codec_enable(encoder);
2695         }
2696 }
2697
2698 static void g4x_enable_dp(struct intel_encoder *encoder)
2699 {
2700         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2701
2702         intel_enable_dp(encoder);
2703         intel_edp_backlight_on(intel_dp);
2704 }
2705
2706 static void vlv_enable_dp(struct intel_encoder *encoder)
2707 {
2708         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2709
2710         intel_edp_backlight_on(intel_dp);
2711         intel_psr_enable(intel_dp);
2712 }
2713
2714 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2715 {
2716         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2717         enum port port = dp_to_dig_port(intel_dp)->port;
2718
2719         intel_dp_prepare(encoder);
2720
2721         /* Only ilk+ has port A */
2722         if (port == PORT_A)
2723                 ironlake_edp_pll_on(intel_dp);
2724 }
2725
2726 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2727 {
2728         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2729         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
2730         enum pipe pipe = intel_dp->pps_pipe;
2731         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2732
2733         edp_panel_vdd_off_sync(intel_dp);
2734
2735         /*
2736          * VLV seems to get confused when multiple power seqeuencers
2737          * have the same port selected (even if only one has power/vdd
2738          * enabled). The failure manifests as vlv_wait_port_ready() failing
2739          * CHV on the other hand doesn't seem to mind having the same port
2740          * selected in multiple power seqeuencers, but let's clear the
2741          * port select always when logically disconnecting a power sequencer
2742          * from a port.
2743          */
2744         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2745                       pipe_name(pipe), port_name(intel_dig_port->port));
2746         I915_WRITE(pp_on_reg, 0);
2747         POSTING_READ(pp_on_reg);
2748
2749         intel_dp->pps_pipe = INVALID_PIPE;
2750 }
2751
2752 static void vlv_steal_power_sequencer(struct drm_device *dev,
2753                                       enum pipe pipe)
2754 {
2755         struct drm_i915_private *dev_priv = to_i915(dev);
2756         struct intel_encoder *encoder;
2757
2758         lockdep_assert_held(&dev_priv->pps_mutex);
2759
2760         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2761                 return;
2762
2763         for_each_intel_encoder(dev, encoder) {
2764                 struct intel_dp *intel_dp;
2765                 enum port port;
2766
2767                 if (encoder->type != INTEL_OUTPUT_EDP)
2768                         continue;
2769
2770                 intel_dp = enc_to_intel_dp(&encoder->base);
2771                 port = dp_to_dig_port(intel_dp)->port;
2772
2773                 if (intel_dp->pps_pipe != pipe)
2774                         continue;
2775
2776                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2777                               pipe_name(pipe), port_name(port));
2778
2779                 WARN(encoder->base.crtc,
2780                      "stealing pipe %c power sequencer from active eDP port %c\n",
2781                      pipe_name(pipe), port_name(port));
2782
2783                 /* make sure vdd is off before we steal it */
2784                 vlv_detach_power_sequencer(intel_dp);
2785         }
2786 }
2787
2788 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2789 {
2790         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2791         struct intel_encoder *encoder = &intel_dig_port->base;
2792         struct drm_device *dev = encoder->base.dev;
2793         struct drm_i915_private *dev_priv = to_i915(dev);
2794         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2795
2796         lockdep_assert_held(&dev_priv->pps_mutex);
2797
2798         if (!is_edp(intel_dp))
2799                 return;
2800
2801         if (intel_dp->pps_pipe == crtc->pipe)
2802                 return;
2803
2804         /*
2805          * If another power sequencer was being used on this
2806          * port previously make sure to turn off vdd there while
2807          * we still have control of it.
2808          */
2809         if (intel_dp->pps_pipe != INVALID_PIPE)
2810                 vlv_detach_power_sequencer(intel_dp);
2811
2812         /*
2813          * We may be stealing the power
2814          * sequencer from another port.
2815          */
2816         vlv_steal_power_sequencer(dev, crtc->pipe);
2817
2818         /* now it's all ours */
2819         intel_dp->pps_pipe = crtc->pipe;
2820
2821         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2822                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2823
2824         /* init power sequencer on this pipe and port */
2825         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2826         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2827 }
2828
2829 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2830 {
2831         vlv_phy_pre_encoder_enable(encoder);
2832
2833         intel_enable_dp(encoder);
2834 }
2835
2836 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2837 {
2838         intel_dp_prepare(encoder);
2839
2840         vlv_phy_pre_pll_enable(encoder);
2841 }
2842
2843 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2844 {
2845         chv_phy_pre_encoder_enable(encoder);
2846
2847         intel_enable_dp(encoder);
2848
2849         /* Second common lane will stay alive on its own now */
2850         chv_phy_release_cl2_override(encoder);
2851 }
2852
2853 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2854 {
2855         intel_dp_prepare(encoder);
2856
2857         chv_phy_pre_pll_enable(encoder);
2858 }
2859
2860 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2861 {
2862         chv_phy_post_pll_disable(encoder);
2863 }
2864
2865 /*
2866  * Fetch AUX CH registers 0x202 - 0x207 which contain
2867  * link status information
2868  */
2869 bool
2870 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2871 {
2872         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
2873                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2874 }
2875
2876 /* These are source-specific values. */
2877 uint8_t
2878 intel_dp_voltage_max(struct intel_dp *intel_dp)
2879 {
2880         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2881         struct drm_i915_private *dev_priv = to_i915(dev);
2882         enum port port = dp_to_dig_port(intel_dp)->port;
2883
2884         if (IS_BROXTON(dev))
2885                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2886         else if (INTEL_INFO(dev)->gen >= 9) {
2887                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2888                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2889                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2890         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2891                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2892         else if (IS_GEN7(dev) && port == PORT_A)
2893                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2894         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2895                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2896         else
2897                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2898 }
2899
2900 uint8_t
2901 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2902 {
2903         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2904         enum port port = dp_to_dig_port(intel_dp)->port;
2905
2906         if (INTEL_INFO(dev)->gen >= 9) {
2907                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2908                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2909                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2910                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2911                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2912                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2913                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2914                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2915                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2916                 default:
2917                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2918                 }
2919         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2920                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2921                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2922                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2923                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2924                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2925                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2926                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2927                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2928                 default:
2929                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2930                 }
2931         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2932                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940                 default:
2941                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2942                 }
2943         } else if (IS_GEN7(dev) && port == PORT_A) {
2944                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2945                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2946                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2947                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2948                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2949                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2950                 default:
2951                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2952                 }
2953         } else {
2954                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2955                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2956                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2957                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2958                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
2959                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2960                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
2961                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2962                 default:
2963                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
2964                 }
2965         }
2966 }
2967
2968 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2969 {
2970         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2971         unsigned long demph_reg_value, preemph_reg_value,
2972                 uniqtranscale_reg_value;
2973         uint8_t train_set = intel_dp->train_set[0];
2974
2975         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2976         case DP_TRAIN_PRE_EMPH_LEVEL_0:
2977                 preemph_reg_value = 0x0004000;
2978                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2979                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2980                         demph_reg_value = 0x2B405555;
2981                         uniqtranscale_reg_value = 0x552AB83A;
2982                         break;
2983                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2984                         demph_reg_value = 0x2B404040;
2985                         uniqtranscale_reg_value = 0x5548B83A;
2986                         break;
2987                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2988                         demph_reg_value = 0x2B245555;
2989                         uniqtranscale_reg_value = 0x5560B83A;
2990                         break;
2991                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2992                         demph_reg_value = 0x2B405555;
2993                         uniqtranscale_reg_value = 0x5598DA3A;
2994                         break;
2995                 default:
2996                         return 0;
2997                 }
2998                 break;
2999         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3000                 preemph_reg_value = 0x0002000;
3001                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3002                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3003                         demph_reg_value = 0x2B404040;
3004                         uniqtranscale_reg_value = 0x5552B83A;
3005                         break;
3006                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3007                         demph_reg_value = 0x2B404848;
3008                         uniqtranscale_reg_value = 0x5580B83A;
3009                         break;
3010                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3011                         demph_reg_value = 0x2B404040;
3012                         uniqtranscale_reg_value = 0x55ADDA3A;
3013                         break;
3014                 default:
3015                         return 0;
3016                 }
3017                 break;
3018         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3019                 preemph_reg_value = 0x0000000;
3020                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3021                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3022                         demph_reg_value = 0x2B305555;
3023                         uniqtranscale_reg_value = 0x5570B83A;
3024                         break;
3025                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3026                         demph_reg_value = 0x2B2B4040;
3027                         uniqtranscale_reg_value = 0x55ADDA3A;
3028                         break;
3029                 default:
3030                         return 0;
3031                 }
3032                 break;
3033         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3034                 preemph_reg_value = 0x0006000;
3035                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3036                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3037                         demph_reg_value = 0x1B405555;
3038                         uniqtranscale_reg_value = 0x55ADDA3A;
3039                         break;
3040                 default:
3041                         return 0;
3042                 }
3043                 break;
3044         default:
3045                 return 0;
3046         }
3047
3048         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3049                                  uniqtranscale_reg_value, 0);
3050
3051         return 0;
3052 }
3053
3054 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3055 {
3056         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3057         u32 deemph_reg_value, margin_reg_value;
3058         bool uniq_trans_scale = false;
3059         uint8_t train_set = intel_dp->train_set[0];
3060
3061         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3062         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3063                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3064                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3065                         deemph_reg_value = 128;
3066                         margin_reg_value = 52;
3067                         break;
3068                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3069                         deemph_reg_value = 128;
3070                         margin_reg_value = 77;
3071                         break;
3072                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3073                         deemph_reg_value = 128;
3074                         margin_reg_value = 102;
3075                         break;
3076                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3077                         deemph_reg_value = 128;
3078                         margin_reg_value = 154;
3079                         uniq_trans_scale = true;
3080                         break;
3081                 default:
3082                         return 0;
3083                 }
3084                 break;
3085         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3086                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3087                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3088                         deemph_reg_value = 85;
3089                         margin_reg_value = 78;
3090                         break;
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3092                         deemph_reg_value = 85;
3093                         margin_reg_value = 116;
3094                         break;
3095                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3096                         deemph_reg_value = 85;
3097                         margin_reg_value = 154;
3098                         break;
3099                 default:
3100                         return 0;
3101                 }
3102                 break;
3103         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3104                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3105                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3106                         deemph_reg_value = 64;
3107                         margin_reg_value = 104;
3108                         break;
3109                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3110                         deemph_reg_value = 64;
3111                         margin_reg_value = 154;
3112                         break;
3113                 default:
3114                         return 0;
3115                 }
3116                 break;
3117         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3118                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3119                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3120                         deemph_reg_value = 43;
3121                         margin_reg_value = 154;
3122                         break;
3123                 default:
3124                         return 0;
3125                 }
3126                 break;
3127         default:
3128                 return 0;
3129         }
3130
3131         chv_set_phy_signal_level(encoder, deemph_reg_value,
3132                                  margin_reg_value, uniq_trans_scale);
3133
3134         return 0;
3135 }
3136
3137 static uint32_t
3138 gen4_signal_levels(uint8_t train_set)
3139 {
3140         uint32_t        signal_levels = 0;
3141
3142         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3143         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3144         default:
3145                 signal_levels |= DP_VOLTAGE_0_4;
3146                 break;
3147         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3148                 signal_levels |= DP_VOLTAGE_0_6;
3149                 break;
3150         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3151                 signal_levels |= DP_VOLTAGE_0_8;
3152                 break;
3153         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3154                 signal_levels |= DP_VOLTAGE_1_2;
3155                 break;
3156         }
3157         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3158         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3159         default:
3160                 signal_levels |= DP_PRE_EMPHASIS_0;
3161                 break;
3162         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3163                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3164                 break;
3165         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3166                 signal_levels |= DP_PRE_EMPHASIS_6;
3167                 break;
3168         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3169                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3170                 break;
3171         }
3172         return signal_levels;
3173 }
3174
3175 /* Gen6's DP voltage swing and pre-emphasis control */
3176 static uint32_t
3177 gen6_edp_signal_levels(uint8_t train_set)
3178 {
3179         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3180                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3181         switch (signal_levels) {
3182         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3183         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3184                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3185         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3186                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3187         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3188         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3189                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3190         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3191         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3192                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3193         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3194         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3195                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3196         default:
3197                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3198                               "0x%x\n", signal_levels);
3199                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3200         }
3201 }
3202
3203 /* Gen7's DP voltage swing and pre-emphasis control */
3204 static uint32_t
3205 gen7_edp_signal_levels(uint8_t train_set)
3206 {
3207         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3208                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3209         switch (signal_levels) {
3210         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3211                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3212         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3213                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3214         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3215                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3216
3217         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3218                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3219         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3220                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3221
3222         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3223                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3224         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3225                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3226
3227         default:
3228                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3229                               "0x%x\n", signal_levels);
3230                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3231         }
3232 }
3233
3234 void
3235 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3236 {
3237         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3238         enum port port = intel_dig_port->port;
3239         struct drm_device *dev = intel_dig_port->base.base.dev;
3240         struct drm_i915_private *dev_priv = to_i915(dev);
3241         uint32_t signal_levels, mask = 0;
3242         uint8_t train_set = intel_dp->train_set[0];
3243
3244         if (HAS_DDI(dev)) {
3245                 signal_levels = ddi_signal_levels(intel_dp);
3246
3247                 if (IS_BROXTON(dev))
3248                         signal_levels = 0;
3249                 else
3250                         mask = DDI_BUF_EMP_MASK;
3251         } else if (IS_CHERRYVIEW(dev)) {
3252                 signal_levels = chv_signal_levels(intel_dp);
3253         } else if (IS_VALLEYVIEW(dev)) {
3254                 signal_levels = vlv_signal_levels(intel_dp);
3255         } else if (IS_GEN7(dev) && port == PORT_A) {
3256                 signal_levels = gen7_edp_signal_levels(train_set);
3257                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3258         } else if (IS_GEN6(dev) && port == PORT_A) {
3259                 signal_levels = gen6_edp_signal_levels(train_set);
3260                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3261         } else {
3262                 signal_levels = gen4_signal_levels(train_set);
3263                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3264         }
3265
3266         if (mask)
3267                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3268
3269         DRM_DEBUG_KMS("Using vswing level %d\n",
3270                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3271         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3272                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3273                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3274
3275         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3276
3277         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3278         POSTING_READ(intel_dp->output_reg);
3279 }
3280
3281 void
3282 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3283                                        uint8_t dp_train_pat)
3284 {
3285         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3286         struct drm_i915_private *dev_priv =
3287                 to_i915(intel_dig_port->base.base.dev);
3288
3289         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3290
3291         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3292         POSTING_READ(intel_dp->output_reg);
3293 }
3294
3295 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3296 {
3297         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3298         struct drm_device *dev = intel_dig_port->base.base.dev;
3299         struct drm_i915_private *dev_priv = to_i915(dev);
3300         enum port port = intel_dig_port->port;
3301         uint32_t val;
3302
3303         if (!HAS_DDI(dev))
3304                 return;
3305
3306         val = I915_READ(DP_TP_CTL(port));
3307         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3308         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3309         I915_WRITE(DP_TP_CTL(port), val);
3310
3311         /*
3312          * On PORT_A we can have only eDP in SST mode. There the only reason
3313          * we need to set idle transmission mode is to work around a HW issue
3314          * where we enable the pipe while not in idle link-training mode.
3315          * In this case there is requirement to wait for a minimum number of
3316          * idle patterns to be sent.
3317          */
3318         if (port == PORT_A)
3319                 return;
3320
3321         if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
3322                                     DP_TP_STATUS_IDLE_DONE,
3323                                     DP_TP_STATUS_IDLE_DONE,
3324                                     1))
3325                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3326 }
3327
3328 static void
3329 intel_dp_link_down(struct intel_dp *intel_dp)
3330 {
3331         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3332         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3333         enum port port = intel_dig_port->port;
3334         struct drm_device *dev = intel_dig_port->base.base.dev;
3335         struct drm_i915_private *dev_priv = to_i915(dev);
3336         uint32_t DP = intel_dp->DP;
3337
3338         if (WARN_ON(HAS_DDI(dev)))
3339                 return;
3340
3341         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3342                 return;
3343
3344         DRM_DEBUG_KMS("\n");
3345
3346         if ((IS_GEN7(dev) && port == PORT_A) ||
3347             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3348                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3349                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3350         } else {
3351                 if (IS_CHERRYVIEW(dev))
3352                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3353                 else
3354                         DP &= ~DP_LINK_TRAIN_MASK;
3355                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3356         }
3357         I915_WRITE(intel_dp->output_reg, DP);
3358         POSTING_READ(intel_dp->output_reg);
3359
3360         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3361         I915_WRITE(intel_dp->output_reg, DP);
3362         POSTING_READ(intel_dp->output_reg);
3363
3364         /*
3365          * HW workaround for IBX, we need to move the port
3366          * to transcoder A after disabling it to allow the
3367          * matching HDMI port to be enabled on transcoder A.
3368          */
3369         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3370                 /*
3371                  * We get CPU/PCH FIFO underruns on the other pipe when
3372                  * doing the workaround. Sweep them under the rug.
3373                  */
3374                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3375                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3376
3377                 /* always enable with pattern 1 (as per spec) */
3378                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3379                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3380                 I915_WRITE(intel_dp->output_reg, DP);
3381                 POSTING_READ(intel_dp->output_reg);
3382
3383                 DP &= ~DP_PORT_EN;
3384                 I915_WRITE(intel_dp->output_reg, DP);
3385                 POSTING_READ(intel_dp->output_reg);
3386
3387                 intel_wait_for_vblank_if_active(&dev_priv->drm, PIPE_A);
3388                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3389                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3390         }
3391
3392         msleep(intel_dp->panel_power_down_delay);
3393
3394         intel_dp->DP = DP;
3395 }
3396
3397 static bool
3398 intel_dp_read_dpcd(struct intel_dp *intel_dp)
3399 {
3400         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3401                              sizeof(intel_dp->dpcd)) < 0)
3402                 return false; /* aux transfer failed */
3403
3404         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3405
3406         return intel_dp->dpcd[DP_DPCD_REV] != 0;
3407 }
3408
3409 static bool
3410 intel_edp_init_dpcd(struct intel_dp *intel_dp)
3411 {
3412         struct drm_i915_private *dev_priv =
3413                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
3414
3415         /* this function is meant to be called only once */
3416         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
3417
3418         if (!intel_dp_read_dpcd(intel_dp))
3419                 return false;
3420
3421         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3422                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3423                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3424
3425         /* Check if the panel supports PSR */
3426         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3427                          intel_dp->psr_dpcd,
3428                          sizeof(intel_dp->psr_dpcd));
3429         if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3430                 dev_priv->psr.sink_support = true;
3431                 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3432         }
3433
3434         if (INTEL_GEN(dev_priv) >= 9 &&
3435             (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3436                 uint8_t frame_sync_cap;
3437
3438                 dev_priv->psr.sink_support = true;
3439                 drm_dp_dpcd_read(&intel_dp->aux,
3440                                  DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3441                                  &frame_sync_cap, 1);
3442                 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3443                 /* PSR2 needs frame sync as well */
3444                 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3445                 DRM_DEBUG_KMS("PSR2 %s on sink",
3446                               dev_priv->psr.psr2_support ? "supported" : "not supported");
3447         }
3448
3449         /* Read the eDP Display control capabilities registers */
3450         if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3451             drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
3452                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd) ==
3453                              sizeof(intel_dp->edp_dpcd)))
3454                 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3455                               intel_dp->edp_dpcd);
3456
3457         /* Intermediate frequency support */
3458         if (intel_dp->edp_dpcd[0] >= 0x03) { /* eDp v1.4 or higher */
3459                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3460                 int i;
3461
3462                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3463                                 sink_rates, sizeof(sink_rates));
3464
3465                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3466                         int val = le16_to_cpu(sink_rates[i]);
3467
3468                         if (val == 0)
3469                                 break;
3470
3471                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3472                         intel_dp->sink_rates[i] = (val * 200) / 10;
3473                 }
3474                 intel_dp->num_sink_rates = i;
3475         }
3476
3477         return true;
3478 }
3479
3480
3481 static bool
3482 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3483 {
3484         if (!intel_dp_read_dpcd(intel_dp))
3485                 return false;
3486
3487         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3488                              &intel_dp->sink_count, 1) < 0)
3489                 return false;
3490
3491         /*
3492          * Sink count can change between short pulse hpd hence
3493          * a member variable in intel_dp will track any changes
3494          * between short pulse interrupts.
3495          */
3496         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3497
3498         /*
3499          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3500          * a dongle is present but no display. Unless we require to know
3501          * if a dongle is present or not, we don't need to update
3502          * downstream port information. So, an early return here saves
3503          * time from performing other operations which are not required.
3504          */
3505         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3506                 return false;
3507
3508         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3509               DP_DWN_STRM_PORT_PRESENT))
3510                 return true; /* native DP sink */
3511
3512         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3513                 return true; /* no per-port downstream info */
3514
3515         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3516                              intel_dp->downstream_ports,
3517                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3518                 return false; /* downstream port status fetch failed */
3519
3520         return true;
3521 }
3522
3523 static void
3524 intel_dp_probe_oui(struct intel_dp *intel_dp)
3525 {
3526         u8 buf[3];
3527
3528         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3529                 return;
3530
3531         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3532                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3533                               buf[0], buf[1], buf[2]);
3534
3535         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3536                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3537                               buf[0], buf[1], buf[2]);
3538 }
3539
3540 static bool
3541 intel_dp_probe_mst(struct intel_dp *intel_dp)
3542 {
3543         u8 buf[1];
3544
3545         if (!i915.enable_dp_mst)
3546                 return false;
3547
3548         if (!intel_dp->can_mst)
3549                 return false;
3550
3551         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3552                 return false;
3553
3554         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3555                 if (buf[0] & DP_MST_CAP) {
3556                         DRM_DEBUG_KMS("Sink is MST capable\n");
3557                         intel_dp->is_mst = true;
3558                 } else {
3559                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3560                         intel_dp->is_mst = false;
3561                 }
3562         }
3563
3564         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3565         return intel_dp->is_mst;
3566 }
3567
3568 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3569 {
3570         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3571         struct drm_device *dev = dig_port->base.base.dev;
3572         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3573         u8 buf;
3574         int ret = 0;
3575         int count = 0;
3576         int attempts = 10;
3577
3578         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3579                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3580                 ret = -EIO;
3581                 goto out;
3582         }
3583
3584         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3585                                buf & ~DP_TEST_SINK_START) < 0) {
3586                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3587                 ret = -EIO;
3588                 goto out;
3589         }
3590
3591         do {
3592                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3593
3594                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3595                                       DP_TEST_SINK_MISC, &buf) < 0) {
3596                         ret = -EIO;
3597                         goto out;
3598                 }
3599                 count = buf & DP_TEST_COUNT_MASK;
3600         } while (--attempts && count);
3601
3602         if (attempts == 0) {
3603                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3604                 ret = -ETIMEDOUT;
3605         }
3606
3607  out:
3608         hsw_enable_ips(intel_crtc);
3609         return ret;
3610 }
3611
3612 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3613 {
3614         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3615         struct drm_device *dev = dig_port->base.base.dev;
3616         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3617         u8 buf;
3618         int ret;
3619
3620         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3621                 return -EIO;
3622
3623         if (!(buf & DP_TEST_CRC_SUPPORTED))
3624                 return -ENOTTY;
3625
3626         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3627                 return -EIO;
3628
3629         if (buf & DP_TEST_SINK_START) {
3630                 ret = intel_dp_sink_crc_stop(intel_dp);
3631                 if (ret)
3632                         return ret;
3633         }
3634
3635         hsw_disable_ips(intel_crtc);
3636
3637         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3638                                buf | DP_TEST_SINK_START) < 0) {
3639                 hsw_enable_ips(intel_crtc);
3640                 return -EIO;
3641         }
3642
3643         intel_wait_for_vblank(dev, intel_crtc->pipe);
3644         return 0;
3645 }
3646
3647 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3648 {
3649         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3650         struct drm_device *dev = dig_port->base.base.dev;
3651         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3652         u8 buf;
3653         int count, ret;
3654         int attempts = 6;
3655
3656         ret = intel_dp_sink_crc_start(intel_dp);
3657         if (ret)
3658                 return ret;
3659
3660         do {
3661                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3662
3663                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3664                                       DP_TEST_SINK_MISC, &buf) < 0) {
3665                         ret = -EIO;
3666                         goto stop;
3667                 }
3668                 count = buf & DP_TEST_COUNT_MASK;
3669
3670         } while (--attempts && count == 0);
3671
3672         if (attempts == 0) {
3673                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3674                 ret = -ETIMEDOUT;
3675                 goto stop;
3676         }
3677
3678         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3679                 ret = -EIO;
3680                 goto stop;
3681         }
3682
3683 stop:
3684         intel_dp_sink_crc_stop(intel_dp);
3685         return ret;
3686 }
3687
3688 static bool
3689 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3690 {
3691         return drm_dp_dpcd_read(&intel_dp->aux,
3692                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3693                                        sink_irq_vector, 1) == 1;
3694 }
3695
3696 static bool
3697 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3698 {
3699         int ret;
3700
3701         ret = drm_dp_dpcd_read(&intel_dp->aux,
3702                                              DP_SINK_COUNT_ESI,
3703                                              sink_irq_vector, 14);
3704         if (ret != 14)
3705                 return false;
3706
3707         return true;
3708 }
3709
3710 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3711 {
3712         uint8_t test_result = DP_TEST_ACK;
3713         return test_result;
3714 }
3715
3716 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3717 {
3718         uint8_t test_result = DP_TEST_NAK;
3719         return test_result;
3720 }
3721
3722 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3723 {
3724         uint8_t test_result = DP_TEST_NAK;
3725         struct intel_connector *intel_connector = intel_dp->attached_connector;
3726         struct drm_connector *connector = &intel_connector->base;
3727
3728         if (intel_connector->detect_edid == NULL ||
3729             connector->edid_corrupt ||
3730             intel_dp->aux.i2c_defer_count > 6) {
3731                 /* Check EDID read for NACKs, DEFERs and corruption
3732                  * (DP CTS 1.2 Core r1.1)
3733                  *    4.2.2.4 : Failed EDID read, I2C_NAK
3734                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
3735                  *    4.2.2.6 : EDID corruption detected
3736                  * Use failsafe mode for all cases
3737                  */
3738                 if (intel_dp->aux.i2c_nack_count > 0 ||
3739                         intel_dp->aux.i2c_defer_count > 0)
3740                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3741                                       intel_dp->aux.i2c_nack_count,
3742                                       intel_dp->aux.i2c_defer_count);
3743                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3744         } else {
3745                 struct edid *block = intel_connector->detect_edid;
3746
3747                 /* We have to write the checksum
3748                  * of the last block read
3749                  */
3750                 block += intel_connector->detect_edid->extensions;
3751
3752                 if (!drm_dp_dpcd_write(&intel_dp->aux,
3753                                         DP_TEST_EDID_CHECKSUM,
3754                                         &block->checksum,
3755                                         1))
3756                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3757
3758                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3759                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3760         }
3761
3762         /* Set test active flag here so userspace doesn't interrupt things */
3763         intel_dp->compliance_test_active = 1;
3764
3765         return test_result;
3766 }
3767
3768 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3769 {
3770         uint8_t test_result = DP_TEST_NAK;
3771         return test_result;
3772 }
3773
3774 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3775 {
3776         uint8_t response = DP_TEST_NAK;
3777         uint8_t rxdata = 0;
3778         int status = 0;
3779
3780         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3781         if (status <= 0) {
3782                 DRM_DEBUG_KMS("Could not read test request from sink\n");
3783                 goto update_status;
3784         }
3785
3786         switch (rxdata) {
3787         case DP_TEST_LINK_TRAINING:
3788                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3789                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3790                 response = intel_dp_autotest_link_training(intel_dp);
3791                 break;
3792         case DP_TEST_LINK_VIDEO_PATTERN:
3793                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3794                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3795                 response = intel_dp_autotest_video_pattern(intel_dp);
3796                 break;
3797         case DP_TEST_LINK_EDID_READ:
3798                 DRM_DEBUG_KMS("EDID test requested\n");
3799                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3800                 response = intel_dp_autotest_edid(intel_dp);
3801                 break;
3802         case DP_TEST_LINK_PHY_TEST_PATTERN:
3803                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3804                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3805                 response = intel_dp_autotest_phy_pattern(intel_dp);
3806                 break;
3807         default:
3808                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3809                 break;
3810         }
3811
3812 update_status:
3813         status = drm_dp_dpcd_write(&intel_dp->aux,
3814                                    DP_TEST_RESPONSE,
3815                                    &response, 1);
3816         if (status <= 0)
3817                 DRM_DEBUG_KMS("Could not write test response to sink\n");
3818 }
3819
3820 static int
3821 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3822 {
3823         bool bret;
3824
3825         if (intel_dp->is_mst) {
3826                 u8 esi[16] = { 0 };
3827                 int ret = 0;
3828                 int retry;
3829                 bool handled;
3830                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3831 go_again:
3832                 if (bret == true) {
3833
3834                         /* check link status - esi[10] = 0x200c */
3835                         if (intel_dp->active_mst_links &&
3836                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3837                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3838                                 intel_dp_start_link_train(intel_dp);
3839                                 intel_dp_stop_link_train(intel_dp);
3840                         }
3841
3842                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
3843                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3844
3845                         if (handled) {
3846                                 for (retry = 0; retry < 3; retry++) {
3847                                         int wret;
3848                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
3849                                                                  DP_SINK_COUNT_ESI+1,
3850                                                                  &esi[1], 3);
3851                                         if (wret == 3) {
3852                                                 break;
3853                                         }
3854                                 }
3855
3856                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3857                                 if (bret == true) {
3858                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3859                                         goto go_again;
3860                                 }
3861                         } else
3862                                 ret = 0;
3863
3864                         return ret;
3865                 } else {
3866                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3867                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3868                         intel_dp->is_mst = false;
3869                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3870                         /* send a hotplug event */
3871                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3872                 }
3873         }
3874         return -EINVAL;
3875 }
3876
3877 static void
3878 intel_dp_check_link_status(struct intel_dp *intel_dp)
3879 {
3880         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3881         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3882         u8 link_status[DP_LINK_STATUS_SIZE];
3883
3884         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3885
3886         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3887                 DRM_ERROR("Failed to get link status\n");
3888                 return;
3889         }
3890
3891         if (!intel_encoder->base.crtc)
3892                 return;
3893
3894         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3895                 return;
3896
3897         /* if link training is requested we should perform it always */
3898         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3899             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3900                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3901                               intel_encoder->base.name);
3902                 intel_dp_start_link_train(intel_dp);
3903                 intel_dp_stop_link_train(intel_dp);
3904         }
3905 }
3906
3907 /*
3908  * According to DP spec
3909  * 5.1.2:
3910  *  1. Read DPCD
3911  *  2. Configure link according to Receiver Capabilities
3912  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3913  *  4. Check link status on receipt of hot-plug interrupt
3914  *
3915  * intel_dp_short_pulse -  handles short pulse interrupts
3916  * when full detection is not required.
3917  * Returns %true if short pulse is handled and full detection
3918  * is NOT required and %false otherwise.
3919  */
3920 static bool
3921 intel_dp_short_pulse(struct intel_dp *intel_dp)
3922 {
3923         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3924         u8 sink_irq_vector;
3925         u8 old_sink_count = intel_dp->sink_count;
3926         bool ret;
3927
3928         /*
3929          * Clearing compliance test variables to allow capturing
3930          * of values for next automated test request.
3931          */
3932         intel_dp->compliance_test_active = 0;
3933         intel_dp->compliance_test_type = 0;
3934         intel_dp->compliance_test_data = 0;
3935
3936         /*
3937          * Now read the DPCD to see if it's actually running
3938          * If the current value of sink count doesn't match with
3939          * the value that was stored earlier or dpcd read failed
3940          * we need to do full detection
3941          */
3942         ret = intel_dp_get_dpcd(intel_dp);
3943
3944         if ((old_sink_count != intel_dp->sink_count) || !ret) {
3945                 /* No need to proceed if we are going to do full detect */
3946                 return false;
3947         }
3948
3949         /* Try to read the source of the interrupt */
3950         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3951             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3952                 /* Clear interrupt source */
3953                 drm_dp_dpcd_writeb(&intel_dp->aux,
3954                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3955                                    sink_irq_vector);
3956
3957                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3958                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3959                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3960                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3961         }
3962
3963         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3964         intel_dp_check_link_status(intel_dp);
3965         drm_modeset_unlock(&dev->mode_config.connection_mutex);
3966
3967         return true;
3968 }
3969
3970 /* XXX this is probably wrong for multiple downstream ports */
3971 static enum drm_connector_status
3972 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3973 {
3974         uint8_t *dpcd = intel_dp->dpcd;
3975         uint8_t type;
3976
3977         if (!intel_dp_get_dpcd(intel_dp))
3978                 return connector_status_disconnected;
3979
3980         if (is_edp(intel_dp))
3981                 return connector_status_connected;
3982
3983         /* if there's no downstream port, we're done */
3984         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3985                 return connector_status_connected;
3986
3987         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3988         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3989             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3990
3991                 return intel_dp->sink_count ?
3992                 connector_status_connected : connector_status_disconnected;
3993         }
3994
3995         /* If no HPD, poke DDC gently */
3996         if (drm_probe_ddc(&intel_dp->aux.ddc))
3997                 return connector_status_connected;
3998
3999         /* Well we tried, say unknown for unreliable port types */
4000         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4001                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4002                 if (type == DP_DS_PORT_TYPE_VGA ||
4003                     type == DP_DS_PORT_TYPE_NON_EDID)
4004                         return connector_status_unknown;
4005         } else {
4006                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4007                         DP_DWN_STRM_PORT_TYPE_MASK;
4008                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4009                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4010                         return connector_status_unknown;
4011         }
4012
4013         /* Anything else is out of spec, warn and ignore */
4014         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4015         return connector_status_disconnected;
4016 }
4017
4018 static enum drm_connector_status
4019 edp_detect(struct intel_dp *intel_dp)
4020 {
4021         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4022         enum drm_connector_status status;
4023
4024         status = intel_panel_detect(dev);
4025         if (status == connector_status_unknown)
4026                 status = connector_status_connected;
4027
4028         return status;
4029 }
4030
4031 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4032                                        struct intel_digital_port *port)
4033 {
4034         u32 bit;
4035
4036         switch (port->port) {
4037         case PORT_A:
4038                 return true;
4039         case PORT_B:
4040                 bit = SDE_PORTB_HOTPLUG;
4041                 break;
4042         case PORT_C:
4043                 bit = SDE_PORTC_HOTPLUG;
4044                 break;
4045         case PORT_D:
4046                 bit = SDE_PORTD_HOTPLUG;
4047                 break;
4048         default:
4049                 MISSING_CASE(port->port);
4050                 return false;
4051         }
4052
4053         return I915_READ(SDEISR) & bit;
4054 }
4055
4056 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4057                                        struct intel_digital_port *port)
4058 {
4059         u32 bit;
4060
4061         switch (port->port) {
4062         case PORT_A:
4063                 return true;
4064         case PORT_B:
4065                 bit = SDE_PORTB_HOTPLUG_CPT;
4066                 break;
4067         case PORT_C:
4068                 bit = SDE_PORTC_HOTPLUG_CPT;
4069                 break;
4070         case PORT_D:
4071                 bit = SDE_PORTD_HOTPLUG_CPT;
4072                 break;
4073         case PORT_E:
4074                 bit = SDE_PORTE_HOTPLUG_SPT;
4075                 break;
4076         default:
4077                 MISSING_CASE(port->port);
4078                 return false;
4079         }
4080
4081         return I915_READ(SDEISR) & bit;
4082 }
4083
4084 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4085                                        struct intel_digital_port *port)
4086 {
4087         u32 bit;
4088
4089         switch (port->port) {
4090         case PORT_B:
4091                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4092                 break;
4093         case PORT_C:
4094                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4095                 break;
4096         case PORT_D:
4097                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4098                 break;
4099         default:
4100                 MISSING_CASE(port->port);
4101                 return false;
4102         }
4103
4104         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4105 }
4106
4107 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4108                                         struct intel_digital_port *port)
4109 {
4110         u32 bit;
4111
4112         switch (port->port) {
4113         case PORT_B:
4114                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4115                 break;
4116         case PORT_C:
4117                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4118                 break;
4119         case PORT_D:
4120                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4121                 break;
4122         default:
4123                 MISSING_CASE(port->port);
4124                 return false;
4125         }
4126
4127         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4128 }
4129
4130 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4131                                        struct intel_digital_port *intel_dig_port)
4132 {
4133         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4134         enum port port;
4135         u32 bit;
4136
4137         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4138         switch (port) {
4139         case PORT_A:
4140                 bit = BXT_DE_PORT_HP_DDIA;
4141                 break;
4142         case PORT_B:
4143                 bit = BXT_DE_PORT_HP_DDIB;
4144                 break;
4145         case PORT_C:
4146                 bit = BXT_DE_PORT_HP_DDIC;
4147                 break;
4148         default:
4149                 MISSING_CASE(port);
4150                 return false;
4151         }
4152
4153         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4154 }
4155
4156 /*
4157  * intel_digital_port_connected - is the specified port connected?
4158  * @dev_priv: i915 private structure
4159  * @port: the port to test
4160  *
4161  * Return %true if @port is connected, %false otherwise.
4162  */
4163 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4164                                          struct intel_digital_port *port)
4165 {
4166         if (HAS_PCH_IBX(dev_priv))
4167                 return ibx_digital_port_connected(dev_priv, port);
4168         else if (HAS_PCH_SPLIT(dev_priv))
4169                 return cpt_digital_port_connected(dev_priv, port);
4170         else if (IS_BROXTON(dev_priv))
4171                 return bxt_digital_port_connected(dev_priv, port);
4172         else if (IS_GM45(dev_priv))
4173                 return gm45_digital_port_connected(dev_priv, port);
4174         else
4175                 return g4x_digital_port_connected(dev_priv, port);
4176 }
4177
4178 static struct edid *
4179 intel_dp_get_edid(struct intel_dp *intel_dp)
4180 {
4181         struct intel_connector *intel_connector = intel_dp->attached_connector;
4182
4183         /* use cached edid if we have one */
4184         if (intel_connector->edid) {
4185                 /* invalid edid */
4186                 if (IS_ERR(intel_connector->edid))
4187                         return NULL;
4188
4189                 return drm_edid_duplicate(intel_connector->edid);
4190         } else
4191                 return drm_get_edid(&intel_connector->base,
4192                                     &intel_dp->aux.ddc);
4193 }
4194
4195 static void
4196 intel_dp_set_edid(struct intel_dp *intel_dp)
4197 {
4198         struct intel_connector *intel_connector = intel_dp->attached_connector;
4199         struct edid *edid;
4200
4201         intel_dp_unset_edid(intel_dp);
4202         edid = intel_dp_get_edid(intel_dp);
4203         intel_connector->detect_edid = edid;
4204
4205         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4206                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4207         else
4208                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4209 }
4210
4211 static void
4212 intel_dp_unset_edid(struct intel_dp *intel_dp)
4213 {
4214         struct intel_connector *intel_connector = intel_dp->attached_connector;
4215
4216         kfree(intel_connector->detect_edid);
4217         intel_connector->detect_edid = NULL;
4218
4219         intel_dp->has_audio = false;
4220 }
4221
4222 static void
4223 intel_dp_long_pulse(struct intel_connector *intel_connector)
4224 {
4225         struct drm_connector *connector = &intel_connector->base;
4226         struct intel_dp *intel_dp = intel_attached_dp(connector);
4227         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4228         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4229         struct drm_device *dev = connector->dev;
4230         enum drm_connector_status status;
4231         enum intel_display_power_domain power_domain;
4232         bool ret;
4233         u8 sink_irq_vector;
4234
4235         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4236         intel_display_power_get(to_i915(dev), power_domain);
4237
4238         /* Can't disconnect eDP, but you can close the lid... */
4239         if (is_edp(intel_dp))
4240                 status = edp_detect(intel_dp);
4241         else if (intel_digital_port_connected(to_i915(dev),
4242                                               dp_to_dig_port(intel_dp)))
4243                 status = intel_dp_detect_dpcd(intel_dp);
4244         else
4245                 status = connector_status_disconnected;
4246
4247         if (status != connector_status_connected) {
4248                 intel_dp->compliance_test_active = 0;
4249                 intel_dp->compliance_test_type = 0;
4250                 intel_dp->compliance_test_data = 0;
4251
4252                 if (intel_dp->is_mst) {
4253                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4254                                       intel_dp->is_mst,
4255                                       intel_dp->mst_mgr.mst_state);
4256                         intel_dp->is_mst = false;
4257                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4258                                                         intel_dp->is_mst);
4259                 }
4260
4261                 goto out;
4262         }
4263
4264         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4265                 intel_encoder->type = INTEL_OUTPUT_DP;
4266
4267         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4268                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
4269                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4270
4271         intel_dp_print_rates(intel_dp);
4272
4273         intel_dp_probe_oui(intel_dp);
4274
4275         ret = intel_dp_probe_mst(intel_dp);
4276         if (ret) {
4277                 /*
4278                  * If we are in MST mode then this connector
4279                  * won't appear connected or have anything
4280                  * with EDID on it
4281                  */
4282                 status = connector_status_disconnected;
4283                 goto out;
4284         } else if (connector->status == connector_status_connected) {
4285                 /*
4286                  * If display was connected already and is still connected
4287                  * check links status, there has been known issues of
4288                  * link loss triggerring long pulse!!!!
4289                  */
4290                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4291                 intel_dp_check_link_status(intel_dp);
4292                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4293                 goto out;
4294         }
4295
4296         /*
4297          * Clearing NACK and defer counts to get their exact values
4298          * while reading EDID which are required by Compliance tests
4299          * 4.2.2.4 and 4.2.2.5
4300          */
4301         intel_dp->aux.i2c_nack_count = 0;
4302         intel_dp->aux.i2c_defer_count = 0;
4303
4304         intel_dp_set_edid(intel_dp);
4305
4306         status = connector_status_connected;
4307         intel_dp->detect_done = true;
4308
4309         /* Try to read the source of the interrupt */
4310         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4311             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4312                 /* Clear interrupt source */
4313                 drm_dp_dpcd_writeb(&intel_dp->aux,
4314                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4315                                    sink_irq_vector);
4316
4317                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4318                         intel_dp_handle_test_request(intel_dp);
4319                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4320                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4321         }
4322
4323 out:
4324         if ((status != connector_status_connected) &&
4325             (intel_dp->is_mst == false))
4326                 intel_dp_unset_edid(intel_dp);
4327
4328         intel_display_power_put(to_i915(dev), power_domain);
4329         return;
4330 }
4331
4332 static enum drm_connector_status
4333 intel_dp_detect(struct drm_connector *connector, bool force)
4334 {
4335         struct intel_dp *intel_dp = intel_attached_dp(connector);
4336         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4337         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4338         struct intel_connector *intel_connector = to_intel_connector(connector);
4339
4340         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4341                       connector->base.id, connector->name);
4342
4343         if (intel_dp->is_mst) {
4344                 /* MST devices are disconnected from a monitor POV */
4345                 intel_dp_unset_edid(intel_dp);
4346                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4347                         intel_encoder->type = INTEL_OUTPUT_DP;
4348                 return connector_status_disconnected;
4349         }
4350
4351         /* If full detect is not performed yet, do a full detect */
4352         if (!intel_dp->detect_done)
4353                 intel_dp_long_pulse(intel_dp->attached_connector);
4354
4355         intel_dp->detect_done = false;
4356
4357         if (is_edp(intel_dp) || intel_connector->detect_edid)
4358                 return connector_status_connected;
4359         else
4360                 return connector_status_disconnected;
4361 }
4362
4363 static void
4364 intel_dp_force(struct drm_connector *connector)
4365 {
4366         struct intel_dp *intel_dp = intel_attached_dp(connector);
4367         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4368         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4369         enum intel_display_power_domain power_domain;
4370
4371         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4372                       connector->base.id, connector->name);
4373         intel_dp_unset_edid(intel_dp);
4374
4375         if (connector->status != connector_status_connected)
4376                 return;
4377
4378         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4379         intel_display_power_get(dev_priv, power_domain);
4380
4381         intel_dp_set_edid(intel_dp);
4382
4383         intel_display_power_put(dev_priv, power_domain);
4384
4385         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4386                 intel_encoder->type = INTEL_OUTPUT_DP;
4387 }
4388
4389 static int intel_dp_get_modes(struct drm_connector *connector)
4390 {
4391         struct intel_connector *intel_connector = to_intel_connector(connector);
4392         struct edid *edid;
4393
4394         edid = intel_connector->detect_edid;
4395         if (edid) {
4396                 int ret = intel_connector_update_modes(connector, edid);
4397                 if (ret)
4398                         return ret;
4399         }
4400
4401         /* if eDP has no EDID, fall back to fixed mode */
4402         if (is_edp(intel_attached_dp(connector)) &&
4403             intel_connector->panel.fixed_mode) {
4404                 struct drm_display_mode *mode;
4405
4406                 mode = drm_mode_duplicate(connector->dev,
4407                                           intel_connector->panel.fixed_mode);
4408                 if (mode) {
4409                         drm_mode_probed_add(connector, mode);
4410                         return 1;
4411                 }
4412         }
4413
4414         return 0;
4415 }
4416
4417 static bool
4418 intel_dp_detect_audio(struct drm_connector *connector)
4419 {
4420         bool has_audio = false;
4421         struct edid *edid;
4422
4423         edid = to_intel_connector(connector)->detect_edid;
4424         if (edid)
4425                 has_audio = drm_detect_monitor_audio(edid);
4426
4427         return has_audio;
4428 }
4429
4430 static int
4431 intel_dp_set_property(struct drm_connector *connector,
4432                       struct drm_property *property,
4433                       uint64_t val)
4434 {
4435         struct drm_i915_private *dev_priv = to_i915(connector->dev);
4436         struct intel_connector *intel_connector = to_intel_connector(connector);
4437         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4438         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4439         int ret;
4440
4441         ret = drm_object_property_set_value(&connector->base, property, val);
4442         if (ret)
4443                 return ret;
4444
4445         if (property == dev_priv->force_audio_property) {
4446                 int i = val;
4447                 bool has_audio;
4448
4449                 if (i == intel_dp->force_audio)
4450                         return 0;
4451
4452                 intel_dp->force_audio = i;
4453
4454                 if (i == HDMI_AUDIO_AUTO)
4455                         has_audio = intel_dp_detect_audio(connector);
4456                 else
4457                         has_audio = (i == HDMI_AUDIO_ON);
4458
4459                 if (has_audio == intel_dp->has_audio)
4460                         return 0;
4461
4462                 intel_dp->has_audio = has_audio;
4463                 goto done;
4464         }
4465
4466         if (property == dev_priv->broadcast_rgb_property) {
4467                 bool old_auto = intel_dp->color_range_auto;
4468                 bool old_range = intel_dp->limited_color_range;
4469
4470                 switch (val) {
4471                 case INTEL_BROADCAST_RGB_AUTO:
4472                         intel_dp->color_range_auto = true;
4473                         break;
4474                 case INTEL_BROADCAST_RGB_FULL:
4475                         intel_dp->color_range_auto = false;
4476                         intel_dp->limited_color_range = false;
4477                         break;
4478                 case INTEL_BROADCAST_RGB_LIMITED:
4479                         intel_dp->color_range_auto = false;
4480                         intel_dp->limited_color_range = true;
4481                         break;
4482                 default:
4483                         return -EINVAL;
4484                 }
4485
4486                 if (old_auto == intel_dp->color_range_auto &&
4487                     old_range == intel_dp->limited_color_range)
4488                         return 0;
4489
4490                 goto done;
4491         }
4492
4493         if (is_edp(intel_dp) &&
4494             property == connector->dev->mode_config.scaling_mode_property) {
4495                 if (val == DRM_MODE_SCALE_NONE) {
4496                         DRM_DEBUG_KMS("no scaling not supported\n");
4497                         return -EINVAL;
4498                 }
4499                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4500                     val == DRM_MODE_SCALE_CENTER) {
4501                         DRM_DEBUG_KMS("centering not supported\n");
4502                         return -EINVAL;
4503                 }
4504
4505                 if (intel_connector->panel.fitting_mode == val) {
4506                         /* the eDP scaling property is not changed */
4507                         return 0;
4508                 }
4509                 intel_connector->panel.fitting_mode = val;
4510
4511                 goto done;
4512         }
4513
4514         return -EINVAL;
4515
4516 done:
4517         if (intel_encoder->base.crtc)
4518                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4519
4520         return 0;
4521 }
4522
4523 static int
4524 intel_dp_connector_register(struct drm_connector *connector)
4525 {
4526         struct intel_dp *intel_dp = intel_attached_dp(connector);
4527         int ret;
4528
4529         ret = intel_connector_register(connector);
4530         if (ret)
4531                 return ret;
4532
4533         i915_debugfs_connector_add(connector);
4534
4535         DRM_DEBUG_KMS("registering %s bus for %s\n",
4536                       intel_dp->aux.name, connector->kdev->kobj.name);
4537
4538         intel_dp->aux.dev = connector->kdev;
4539         return drm_dp_aux_register(&intel_dp->aux);
4540 }
4541
4542 static void
4543 intel_dp_connector_unregister(struct drm_connector *connector)
4544 {
4545         drm_dp_aux_unregister(&intel_attached_dp(connector)->aux);
4546         intel_connector_unregister(connector);
4547 }
4548
4549 static void
4550 intel_dp_connector_destroy(struct drm_connector *connector)
4551 {
4552         struct intel_connector *intel_connector = to_intel_connector(connector);
4553
4554         kfree(intel_connector->detect_edid);
4555
4556         if (!IS_ERR_OR_NULL(intel_connector->edid))
4557                 kfree(intel_connector->edid);
4558
4559         /* Can't call is_edp() since the encoder may have been destroyed
4560          * already. */
4561         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4562                 intel_panel_fini(&intel_connector->panel);
4563
4564         drm_connector_cleanup(connector);
4565         kfree(connector);
4566 }
4567
4568 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4569 {
4570         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4571         struct intel_dp *intel_dp = &intel_dig_port->dp;
4572
4573         intel_dp_mst_encoder_cleanup(intel_dig_port);
4574         if (is_edp(intel_dp)) {
4575                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4576                 /*
4577                  * vdd might still be enabled do to the delayed vdd off.
4578                  * Make sure vdd is actually turned off here.
4579                  */
4580                 pps_lock(intel_dp);
4581                 edp_panel_vdd_off_sync(intel_dp);
4582                 pps_unlock(intel_dp);
4583
4584                 if (intel_dp->edp_notifier.notifier_call) {
4585                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4586                         intel_dp->edp_notifier.notifier_call = NULL;
4587                 }
4588         }
4589
4590         intel_dp_aux_fini(intel_dp);
4591
4592         drm_encoder_cleanup(encoder);
4593         kfree(intel_dig_port);
4594 }
4595
4596 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4597 {
4598         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4599
4600         if (!is_edp(intel_dp))
4601                 return;
4602
4603         /*
4604          * vdd might still be enabled do to the delayed vdd off.
4605          * Make sure vdd is actually turned off here.
4606          */
4607         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4608         pps_lock(intel_dp);
4609         edp_panel_vdd_off_sync(intel_dp);
4610         pps_unlock(intel_dp);
4611 }
4612
4613 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4614 {
4615         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4616         struct drm_device *dev = intel_dig_port->base.base.dev;
4617         struct drm_i915_private *dev_priv = to_i915(dev);
4618         enum intel_display_power_domain power_domain;
4619
4620         lockdep_assert_held(&dev_priv->pps_mutex);
4621
4622         if (!edp_have_panel_vdd(intel_dp))
4623                 return;
4624
4625         /*
4626          * The VDD bit needs a power domain reference, so if the bit is
4627          * already enabled when we boot or resume, grab this reference and
4628          * schedule a vdd off, so we don't hold on to the reference
4629          * indefinitely.
4630          */
4631         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4632         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4633         intel_display_power_get(dev_priv, power_domain);
4634
4635         edp_panel_vdd_schedule_off(intel_dp);
4636 }
4637
4638 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4639 {
4640         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4641         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4642
4643         if (!HAS_DDI(dev_priv))
4644                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4645
4646         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4647                 return;
4648
4649         pps_lock(intel_dp);
4650
4651         /*
4652          * Read out the current power sequencer assignment,
4653          * in case the BIOS did something with it.
4654          */
4655         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4656                 vlv_initial_power_sequencer_setup(intel_dp);
4657
4658         intel_edp_panel_vdd_sanitize(intel_dp);
4659
4660         pps_unlock(intel_dp);
4661 }
4662
4663 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4664         .dpms = drm_atomic_helper_connector_dpms,
4665         .detect = intel_dp_detect,
4666         .force = intel_dp_force,
4667         .fill_modes = drm_helper_probe_single_connector_modes,
4668         .set_property = intel_dp_set_property,
4669         .atomic_get_property = intel_connector_atomic_get_property,
4670         .late_register = intel_dp_connector_register,
4671         .early_unregister = intel_dp_connector_unregister,
4672         .destroy = intel_dp_connector_destroy,
4673         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4674         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4675 };
4676
4677 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4678         .get_modes = intel_dp_get_modes,
4679         .mode_valid = intel_dp_mode_valid,
4680 };
4681
4682 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4683         .reset = intel_dp_encoder_reset,
4684         .destroy = intel_dp_encoder_destroy,
4685 };
4686
4687 enum irqreturn
4688 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4689 {
4690         struct intel_dp *intel_dp = &intel_dig_port->dp;
4691         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4692         struct drm_device *dev = intel_dig_port->base.base.dev;
4693         struct drm_i915_private *dev_priv = to_i915(dev);
4694         enum intel_display_power_domain power_domain;
4695         enum irqreturn ret = IRQ_NONE;
4696
4697         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4698             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4699                 intel_dig_port->base.type = INTEL_OUTPUT_DP;
4700
4701         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4702                 /*
4703                  * vdd off can generate a long pulse on eDP which
4704                  * would require vdd on to handle it, and thus we
4705                  * would end up in an endless cycle of
4706                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4707                  */
4708                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4709                               port_name(intel_dig_port->port));
4710                 return IRQ_HANDLED;
4711         }
4712
4713         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4714                       port_name(intel_dig_port->port),
4715                       long_hpd ? "long" : "short");
4716
4717         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4718         intel_display_power_get(dev_priv, power_domain);
4719
4720         if (long_hpd) {
4721                 intel_dp_long_pulse(intel_dp->attached_connector);
4722                 if (intel_dp->is_mst)
4723                         ret = IRQ_HANDLED;
4724                 goto put_power;
4725
4726         } else {
4727                 if (intel_dp->is_mst) {
4728                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4729                                 /*
4730                                  * If we were in MST mode, and device is not
4731                                  * there, get out of MST mode
4732                                  */
4733                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4734                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4735                                 intel_dp->is_mst = false;
4736                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4737                                                                 intel_dp->is_mst);
4738                                 goto put_power;
4739                         }
4740                 }
4741
4742                 if (!intel_dp->is_mst) {
4743                         if (!intel_dp_short_pulse(intel_dp)) {
4744                                 intel_dp_long_pulse(intel_dp->attached_connector);
4745                                 goto put_power;
4746                         }
4747                 }
4748         }
4749
4750         ret = IRQ_HANDLED;
4751
4752 put_power:
4753         intel_display_power_put(dev_priv, power_domain);
4754
4755         return ret;
4756 }
4757
4758 /* check the VBT to see whether the eDP is on another port */
4759 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4760 {
4761         struct drm_i915_private *dev_priv = to_i915(dev);
4762
4763         /*
4764          * eDP not supported on g4x. so bail out early just
4765          * for a bit extra safety in case the VBT is bonkers.
4766          */
4767         if (INTEL_INFO(dev)->gen < 5)
4768                 return false;
4769
4770         if (port == PORT_A)
4771                 return true;
4772
4773         return intel_bios_is_port_edp(dev_priv, port);
4774 }
4775
4776 void
4777 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4778 {
4779         struct intel_connector *intel_connector = to_intel_connector(connector);
4780
4781         intel_attach_force_audio_property(connector);
4782         intel_attach_broadcast_rgb_property(connector);
4783         intel_dp->color_range_auto = true;
4784
4785         if (is_edp(intel_dp)) {
4786                 drm_mode_create_scaling_mode_property(connector->dev);
4787                 drm_object_attach_property(
4788                         &connector->base,
4789                         connector->dev->mode_config.scaling_mode_property,
4790                         DRM_MODE_SCALE_ASPECT);
4791                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4792         }
4793 }
4794
4795 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4796 {
4797         intel_dp->panel_power_off_time = ktime_get_boottime();
4798         intel_dp->last_power_on = jiffies;
4799         intel_dp->last_backlight_off = jiffies;
4800 }
4801
4802 static void
4803 intel_pps_readout_hw_state(struct drm_i915_private *dev_priv,
4804                            struct intel_dp *intel_dp, struct edp_power_seq *seq)
4805 {
4806         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4807         struct pps_registers regs;
4808
4809         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4810
4811         /* Workaround: Need to write PP_CONTROL with the unlock key as
4812          * the very first thing. */
4813         pp_ctl = ironlake_get_pp_control(intel_dp);
4814
4815         pp_on = I915_READ(regs.pp_on);
4816         pp_off = I915_READ(regs.pp_off);
4817         if (!IS_BROXTON(dev_priv)) {
4818                 I915_WRITE(regs.pp_ctrl, pp_ctl);
4819                 pp_div = I915_READ(regs.pp_div);
4820         }
4821
4822         /* Pull timing values out of registers */
4823         seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4824                      PANEL_POWER_UP_DELAY_SHIFT;
4825
4826         seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4827                   PANEL_LIGHT_ON_DELAY_SHIFT;
4828
4829         seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4830                   PANEL_LIGHT_OFF_DELAY_SHIFT;
4831
4832         seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4833                    PANEL_POWER_DOWN_DELAY_SHIFT;
4834
4835         if (IS_BROXTON(dev_priv)) {
4836                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4837                         BXT_POWER_CYCLE_DELAY_SHIFT;
4838                 if (tmp > 0)
4839                         seq->t11_t12 = (tmp - 1) * 1000;
4840                 else
4841                         seq->t11_t12 = 0;
4842         } else {
4843                 seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4844                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4845         }
4846 }
4847
4848 static void
4849 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
4850 {
4851         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4852                       state_name,
4853                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
4854 }
4855
4856 static void
4857 intel_pps_verify_state(struct drm_i915_private *dev_priv,
4858                        struct intel_dp *intel_dp)
4859 {
4860         struct edp_power_seq hw;
4861         struct edp_power_seq *sw = &intel_dp->pps_delays;
4862
4863         intel_pps_readout_hw_state(dev_priv, intel_dp, &hw);
4864
4865         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
4866             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
4867                 DRM_ERROR("PPS state mismatch\n");
4868                 intel_pps_dump_state("sw", sw);
4869                 intel_pps_dump_state("hw", &hw);
4870         }
4871 }
4872
4873 static void
4874 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4875                                     struct intel_dp *intel_dp)
4876 {
4877         struct drm_i915_private *dev_priv = to_i915(dev);
4878         struct edp_power_seq cur, vbt, spec,
4879                 *final = &intel_dp->pps_delays;
4880
4881         lockdep_assert_held(&dev_priv->pps_mutex);
4882
4883         /* already initialized? */
4884         if (final->t11_t12 != 0)
4885                 return;
4886
4887         intel_pps_readout_hw_state(dev_priv, intel_dp, &cur);
4888
4889         intel_pps_dump_state("cur", &cur);
4890
4891         vbt = dev_priv->vbt.edp.pps;
4892
4893         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4894          * our hw here, which are all in 100usec. */
4895         spec.t1_t3 = 210 * 10;
4896         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4897         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4898         spec.t10 = 500 * 10;
4899         /* This one is special and actually in units of 100ms, but zero
4900          * based in the hw (so we need to add 100 ms). But the sw vbt
4901          * table multiplies it with 1000 to make it in units of 100usec,
4902          * too. */
4903         spec.t11_t12 = (510 + 100) * 10;
4904
4905         intel_pps_dump_state("vbt", &vbt);
4906
4907         /* Use the max of the register settings and vbt. If both are
4908          * unset, fall back to the spec limits. */
4909 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
4910                                        spec.field : \
4911                                        max(cur.field, vbt.field))
4912         assign_final(t1_t3);
4913         assign_final(t8);
4914         assign_final(t9);
4915         assign_final(t10);
4916         assign_final(t11_t12);
4917 #undef assign_final
4918
4919 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
4920         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4921         intel_dp->backlight_on_delay = get_delay(t8);
4922         intel_dp->backlight_off_delay = get_delay(t9);
4923         intel_dp->panel_power_down_delay = get_delay(t10);
4924         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4925 #undef get_delay
4926
4927         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4928                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4929                       intel_dp->panel_power_cycle_delay);
4930
4931         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4932                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4933
4934         /*
4935          * We override the HW backlight delays to 1 because we do manual waits
4936          * on them. For T8, even BSpec recommends doing it. For T9, if we
4937          * don't do this, we'll end up waiting for the backlight off delay
4938          * twice: once when we do the manual sleep, and once when we disable
4939          * the panel and wait for the PP_STATUS bit to become zero.
4940          */
4941         final->t8 = 1;
4942         final->t9 = 1;
4943 }
4944
4945 static void
4946 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4947                                               struct intel_dp *intel_dp)
4948 {
4949         struct drm_i915_private *dev_priv = to_i915(dev);
4950         u32 pp_on, pp_off, pp_div, port_sel = 0;
4951         int div = dev_priv->rawclk_freq / 1000;
4952         struct pps_registers regs;
4953         enum port port = dp_to_dig_port(intel_dp)->port;
4954         const struct edp_power_seq *seq = &intel_dp->pps_delays;
4955
4956         lockdep_assert_held(&dev_priv->pps_mutex);
4957
4958         intel_pps_get_registers(dev_priv, intel_dp, &regs);
4959
4960         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4961                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
4962         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4963                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4964         /* Compute the divisor for the pp clock, simply match the Bspec
4965          * formula. */
4966         if (IS_BROXTON(dev)) {
4967                 pp_div = I915_READ(regs.pp_ctrl);
4968                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4969                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4970                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
4971         } else {
4972                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4973                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4974                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4975         }
4976
4977         /* Haswell doesn't have any port selection bits for the panel
4978          * power sequencer any more. */
4979         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4980                 port_sel = PANEL_PORT_SELECT_VLV(port);
4981         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4982                 if (port == PORT_A)
4983                         port_sel = PANEL_PORT_SELECT_DPA;
4984                 else
4985                         port_sel = PANEL_PORT_SELECT_DPD;
4986         }
4987
4988         pp_on |= port_sel;
4989
4990         I915_WRITE(regs.pp_on, pp_on);
4991         I915_WRITE(regs.pp_off, pp_off);
4992         if (IS_BROXTON(dev))
4993                 I915_WRITE(regs.pp_ctrl, pp_div);
4994         else
4995                 I915_WRITE(regs.pp_div, pp_div);
4996
4997         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4998                       I915_READ(regs.pp_on),
4999                       I915_READ(regs.pp_off),
5000                       IS_BROXTON(dev) ?
5001                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
5002                       I915_READ(regs.pp_div));
5003 }
5004
5005 /**
5006  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5007  * @dev: DRM device
5008  * @refresh_rate: RR to be programmed
5009  *
5010  * This function gets called when refresh rate (RR) has to be changed from
5011  * one frequency to another. Switches can be between high and low RR
5012  * supported by the panel or to any other RR based on media playback (in
5013  * this case, RR value needs to be passed from user space).
5014  *
5015  * The caller of this function needs to take a lock on dev_priv->drrs.
5016  */
5017 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5018 {
5019         struct drm_i915_private *dev_priv = to_i915(dev);
5020         struct intel_encoder *encoder;
5021         struct intel_digital_port *dig_port = NULL;
5022         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5023         struct intel_crtc_state *config = NULL;
5024         struct intel_crtc *intel_crtc = NULL;
5025         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5026
5027         if (refresh_rate <= 0) {
5028                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5029                 return;
5030         }
5031
5032         if (intel_dp == NULL) {
5033                 DRM_DEBUG_KMS("DRRS not supported.\n");
5034                 return;
5035         }
5036
5037         /*
5038          * FIXME: This needs proper synchronization with psr state for some
5039          * platforms that cannot have PSR and DRRS enabled at the same time.
5040          */
5041
5042         dig_port = dp_to_dig_port(intel_dp);
5043         encoder = &dig_port->base;
5044         intel_crtc = to_intel_crtc(encoder->base.crtc);
5045
5046         if (!intel_crtc) {
5047                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5048                 return;
5049         }
5050
5051         config = intel_crtc->config;
5052
5053         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5054                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5055                 return;
5056         }
5057
5058         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5059                         refresh_rate)
5060                 index = DRRS_LOW_RR;
5061
5062         if (index == dev_priv->drrs.refresh_rate_type) {
5063                 DRM_DEBUG_KMS(
5064                         "DRRS requested for previously set RR...ignoring\n");
5065                 return;
5066         }
5067
5068         if (!intel_crtc->active) {
5069                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5070                 return;
5071         }
5072
5073         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5074                 switch (index) {
5075                 case DRRS_HIGH_RR:
5076                         intel_dp_set_m_n(intel_crtc, M1_N1);
5077                         break;
5078                 case DRRS_LOW_RR:
5079                         intel_dp_set_m_n(intel_crtc, M2_N2);
5080                         break;
5081                 case DRRS_MAX_RR:
5082                 default:
5083                         DRM_ERROR("Unsupported refreshrate type\n");
5084                 }
5085         } else if (INTEL_INFO(dev)->gen > 6) {
5086                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5087                 u32 val;
5088
5089                 val = I915_READ(reg);
5090                 if (index > DRRS_HIGH_RR) {
5091                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5092                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5093                         else
5094                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5095                 } else {
5096                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5097                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5098                         else
5099                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5100                 }
5101                 I915_WRITE(reg, val);
5102         }
5103
5104         dev_priv->drrs.refresh_rate_type = index;
5105
5106         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5107 }
5108
5109 /**
5110  * intel_edp_drrs_enable - init drrs struct if supported
5111  * @intel_dp: DP struct
5112  *
5113  * Initializes frontbuffer_bits and drrs.dp
5114  */
5115 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5116 {
5117         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5118         struct drm_i915_private *dev_priv = to_i915(dev);
5119         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5120         struct drm_crtc *crtc = dig_port->base.base.crtc;
5121         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5122
5123         if (!intel_crtc->config->has_drrs) {
5124                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5125                 return;
5126         }
5127
5128         mutex_lock(&dev_priv->drrs.mutex);
5129         if (WARN_ON(dev_priv->drrs.dp)) {
5130                 DRM_ERROR("DRRS already enabled\n");
5131                 goto unlock;
5132         }
5133
5134         dev_priv->drrs.busy_frontbuffer_bits = 0;
5135
5136         dev_priv->drrs.dp = intel_dp;
5137
5138 unlock:
5139         mutex_unlock(&dev_priv->drrs.mutex);
5140 }
5141
5142 /**
5143  * intel_edp_drrs_disable - Disable DRRS
5144  * @intel_dp: DP struct
5145  *
5146  */
5147 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5148 {
5149         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5150         struct drm_i915_private *dev_priv = to_i915(dev);
5151         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5152         struct drm_crtc *crtc = dig_port->base.base.crtc;
5153         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5154
5155         if (!intel_crtc->config->has_drrs)
5156                 return;
5157
5158         mutex_lock(&dev_priv->drrs.mutex);
5159         if (!dev_priv->drrs.dp) {
5160                 mutex_unlock(&dev_priv->drrs.mutex);
5161                 return;
5162         }
5163
5164         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5165                 intel_dp_set_drrs_state(&dev_priv->drm,
5166                                         intel_dp->attached_connector->panel.
5167                                         fixed_mode->vrefresh);
5168
5169         dev_priv->drrs.dp = NULL;
5170         mutex_unlock(&dev_priv->drrs.mutex);
5171
5172         cancel_delayed_work_sync(&dev_priv->drrs.work);
5173 }
5174
5175 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5176 {
5177         struct drm_i915_private *dev_priv =
5178                 container_of(work, typeof(*dev_priv), drrs.work.work);
5179         struct intel_dp *intel_dp;
5180
5181         mutex_lock(&dev_priv->drrs.mutex);
5182
5183         intel_dp = dev_priv->drrs.dp;
5184
5185         if (!intel_dp)
5186                 goto unlock;
5187
5188         /*
5189          * The delayed work can race with an invalidate hence we need to
5190          * recheck.
5191          */
5192
5193         if (dev_priv->drrs.busy_frontbuffer_bits)
5194                 goto unlock;
5195
5196         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5197                 intel_dp_set_drrs_state(&dev_priv->drm,
5198                                         intel_dp->attached_connector->panel.
5199                                         downclock_mode->vrefresh);
5200
5201 unlock:
5202         mutex_unlock(&dev_priv->drrs.mutex);
5203 }
5204
5205 /**
5206  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5207  * @dev: DRM device
5208  * @frontbuffer_bits: frontbuffer plane tracking bits
5209  *
5210  * This function gets called everytime rendering on the given planes start.
5211  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5212  *
5213  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5214  */
5215 void intel_edp_drrs_invalidate(struct drm_device *dev,
5216                 unsigned frontbuffer_bits)
5217 {
5218         struct drm_i915_private *dev_priv = to_i915(dev);
5219         struct drm_crtc *crtc;
5220         enum pipe pipe;
5221
5222         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5223                 return;
5224
5225         cancel_delayed_work(&dev_priv->drrs.work);
5226
5227         mutex_lock(&dev_priv->drrs.mutex);
5228         if (!dev_priv->drrs.dp) {
5229                 mutex_unlock(&dev_priv->drrs.mutex);
5230                 return;
5231         }
5232
5233         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5234         pipe = to_intel_crtc(crtc)->pipe;
5235
5236         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5237         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5238
5239         /* invalidate means busy screen hence upclock */
5240         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5241                 intel_dp_set_drrs_state(&dev_priv->drm,
5242                                         dev_priv->drrs.dp->attached_connector->panel.
5243                                         fixed_mode->vrefresh);
5244
5245         mutex_unlock(&dev_priv->drrs.mutex);
5246 }
5247
5248 /**
5249  * intel_edp_drrs_flush - Restart Idleness DRRS
5250  * @dev: DRM device
5251  * @frontbuffer_bits: frontbuffer plane tracking bits
5252  *
5253  * This function gets called every time rendering on the given planes has
5254  * completed or flip on a crtc is completed. So DRRS should be upclocked
5255  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5256  * if no other planes are dirty.
5257  *
5258  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5259  */
5260 void intel_edp_drrs_flush(struct drm_device *dev,
5261                 unsigned frontbuffer_bits)
5262 {
5263         struct drm_i915_private *dev_priv = to_i915(dev);
5264         struct drm_crtc *crtc;
5265         enum pipe pipe;
5266
5267         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5268                 return;
5269
5270         cancel_delayed_work(&dev_priv->drrs.work);
5271
5272         mutex_lock(&dev_priv->drrs.mutex);
5273         if (!dev_priv->drrs.dp) {
5274                 mutex_unlock(&dev_priv->drrs.mutex);
5275                 return;
5276         }
5277
5278         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5279         pipe = to_intel_crtc(crtc)->pipe;
5280
5281         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5282         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5283
5284         /* flush means busy screen hence upclock */
5285         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5286                 intel_dp_set_drrs_state(&dev_priv->drm,
5287                                         dev_priv->drrs.dp->attached_connector->panel.
5288                                         fixed_mode->vrefresh);
5289
5290         /*
5291          * flush also means no more activity hence schedule downclock, if all
5292          * other fbs are quiescent too
5293          */
5294         if (!dev_priv->drrs.busy_frontbuffer_bits)
5295                 schedule_delayed_work(&dev_priv->drrs.work,
5296                                 msecs_to_jiffies(1000));
5297         mutex_unlock(&dev_priv->drrs.mutex);
5298 }
5299
5300 /**
5301  * DOC: Display Refresh Rate Switching (DRRS)
5302  *
5303  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5304  * which enables swtching between low and high refresh rates,
5305  * dynamically, based on the usage scenario. This feature is applicable
5306  * for internal panels.
5307  *
5308  * Indication that the panel supports DRRS is given by the panel EDID, which
5309  * would list multiple refresh rates for one resolution.
5310  *
5311  * DRRS is of 2 types - static and seamless.
5312  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5313  * (may appear as a blink on screen) and is used in dock-undock scenario.
5314  * Seamless DRRS involves changing RR without any visual effect to the user
5315  * and can be used during normal system usage. This is done by programming
5316  * certain registers.
5317  *
5318  * Support for static/seamless DRRS may be indicated in the VBT based on
5319  * inputs from the panel spec.
5320  *
5321  * DRRS saves power by switching to low RR based on usage scenarios.
5322  *
5323  * The implementation is based on frontbuffer tracking implementation.  When
5324  * there is a disturbance on the screen triggered by user activity or a periodic
5325  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
5326  * no movement on screen, after a timeout of 1 second, a switch to low RR is
5327  * made.
5328  *
5329  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
5330  * and intel_edp_drrs_flush() are called.
5331  *
5332  * DRRS can be further extended to support other internal panels and also
5333  * the scenario of video playback wherein RR is set based on the rate
5334  * requested by userspace.
5335  */
5336
5337 /**
5338  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5339  * @intel_connector: eDP connector
5340  * @fixed_mode: preferred mode of panel
5341  *
5342  * This function is  called only once at driver load to initialize basic
5343  * DRRS stuff.
5344  *
5345  * Returns:
5346  * Downclock mode if panel supports it, else return NULL.
5347  * DRRS support is determined by the presence of downclock mode (apart
5348  * from VBT setting).
5349  */
5350 static struct drm_display_mode *
5351 intel_dp_drrs_init(struct intel_connector *intel_connector,
5352                 struct drm_display_mode *fixed_mode)
5353 {
5354         struct drm_connector *connector = &intel_connector->base;
5355         struct drm_device *dev = connector->dev;
5356         struct drm_i915_private *dev_priv = to_i915(dev);
5357         struct drm_display_mode *downclock_mode = NULL;
5358
5359         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5360         mutex_init(&dev_priv->drrs.mutex);
5361
5362         if (INTEL_INFO(dev)->gen <= 6) {
5363                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5364                 return NULL;
5365         }
5366
5367         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5368                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5369                 return NULL;
5370         }
5371
5372         downclock_mode = intel_find_panel_downclock
5373                                         (dev, fixed_mode, connector);
5374
5375         if (!downclock_mode) {
5376                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5377                 return NULL;
5378         }
5379
5380         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5381
5382         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5383         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5384         return downclock_mode;
5385 }
5386
5387 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5388                                      struct intel_connector *intel_connector)
5389 {
5390         struct drm_connector *connector = &intel_connector->base;
5391         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5392         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5393         struct drm_device *dev = intel_encoder->base.dev;
5394         struct drm_i915_private *dev_priv = to_i915(dev);
5395         struct drm_display_mode *fixed_mode = NULL;
5396         struct drm_display_mode *downclock_mode = NULL;
5397         bool has_dpcd;
5398         struct drm_display_mode *scan;
5399         struct edid *edid;
5400         enum pipe pipe = INVALID_PIPE;
5401
5402         if (!is_edp(intel_dp))
5403                 return true;
5404
5405         /*
5406          * On IBX/CPT we may get here with LVDS already registered. Since the
5407          * driver uses the only internal power sequencer available for both
5408          * eDP and LVDS bail out early in this case to prevent interfering
5409          * with an already powered-on LVDS power sequencer.
5410          */
5411         if (intel_get_lvds_encoder(dev)) {
5412                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
5413                 DRM_INFO("LVDS was detected, not registering eDP\n");
5414
5415                 return false;
5416         }
5417
5418         pps_lock(intel_dp);
5419
5420         intel_dp_init_panel_power_timestamps(intel_dp);
5421
5422         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5423                 vlv_initial_power_sequencer_setup(intel_dp);
5424         } else {
5425                 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5426                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5427         }
5428
5429         intel_edp_panel_vdd_sanitize(intel_dp);
5430
5431         pps_unlock(intel_dp);
5432
5433         /* Cache DPCD and EDID for edp. */
5434         has_dpcd = intel_edp_init_dpcd(intel_dp);
5435
5436         if (!has_dpcd) {
5437                 /* if this fails, presume the device is a ghost */
5438                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5439                 goto out_vdd_off;
5440         }
5441
5442         mutex_lock(&dev->mode_config.mutex);
5443         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5444         if (edid) {
5445                 if (drm_add_edid_modes(connector, edid)) {
5446                         drm_mode_connector_update_edid_property(connector,
5447                                                                 edid);
5448                         drm_edid_to_eld(connector, edid);
5449                 } else {
5450                         kfree(edid);
5451                         edid = ERR_PTR(-EINVAL);
5452                 }
5453         } else {
5454                 edid = ERR_PTR(-ENOENT);
5455         }
5456         intel_connector->edid = edid;
5457
5458         /* prefer fixed mode from EDID if available */
5459         list_for_each_entry(scan, &connector->probed_modes, head) {
5460                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5461                         fixed_mode = drm_mode_duplicate(dev, scan);
5462                         downclock_mode = intel_dp_drrs_init(
5463                                                 intel_connector, fixed_mode);
5464                         break;
5465                 }
5466         }
5467
5468         /* fallback to VBT if available for eDP */
5469         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5470                 fixed_mode = drm_mode_duplicate(dev,
5471                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5472                 if (fixed_mode) {
5473                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5474                         connector->display_info.width_mm = fixed_mode->width_mm;
5475                         connector->display_info.height_mm = fixed_mode->height_mm;
5476                 }
5477         }
5478         mutex_unlock(&dev->mode_config.mutex);
5479
5480         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5481                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5482                 register_reboot_notifier(&intel_dp->edp_notifier);
5483
5484                 /*
5485                  * Figure out the current pipe for the initial backlight setup.
5486                  * If the current pipe isn't valid, try the PPS pipe, and if that
5487                  * fails just assume pipe A.
5488                  */
5489                 if (IS_CHERRYVIEW(dev))
5490                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5491                 else
5492                         pipe = PORT_TO_PIPE(intel_dp->DP);
5493
5494                 if (pipe != PIPE_A && pipe != PIPE_B)
5495                         pipe = intel_dp->pps_pipe;
5496
5497                 if (pipe != PIPE_A && pipe != PIPE_B)
5498                         pipe = PIPE_A;
5499
5500                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5501                               pipe_name(pipe));
5502         }
5503
5504         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5505         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5506         intel_panel_setup_backlight(connector, pipe);
5507
5508         return true;
5509
5510 out_vdd_off:
5511         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5512         /*
5513          * vdd might still be enabled do to the delayed vdd off.
5514          * Make sure vdd is actually turned off here.
5515          */
5516         pps_lock(intel_dp);
5517         edp_panel_vdd_off_sync(intel_dp);
5518         pps_unlock(intel_dp);
5519
5520         return false;
5521 }
5522
5523 bool
5524 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5525                         struct intel_connector *intel_connector)
5526 {
5527         struct drm_connector *connector = &intel_connector->base;
5528         struct intel_dp *intel_dp = &intel_dig_port->dp;
5529         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5530         struct drm_device *dev = intel_encoder->base.dev;
5531         struct drm_i915_private *dev_priv = to_i915(dev);
5532         enum port port = intel_dig_port->port;
5533         int type;
5534
5535         if (WARN(intel_dig_port->max_lanes < 1,
5536                  "Not enough lanes (%d) for DP on port %c\n",
5537                  intel_dig_port->max_lanes, port_name(port)))
5538                 return false;
5539
5540         intel_dp->pps_pipe = INVALID_PIPE;
5541
5542         /* intel_dp vfuncs */
5543         if (INTEL_INFO(dev)->gen >= 9)
5544                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5545         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5546                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5547         else if (HAS_PCH_SPLIT(dev))
5548                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5549         else
5550                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5551
5552         if (INTEL_INFO(dev)->gen >= 9)
5553                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5554         else
5555                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5556
5557         if (HAS_DDI(dev))
5558                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5559
5560         /* Preserve the current hw state. */
5561         intel_dp->DP = I915_READ(intel_dp->output_reg);
5562         intel_dp->attached_connector = intel_connector;
5563
5564         if (intel_dp_is_edp(dev, port))
5565                 type = DRM_MODE_CONNECTOR_eDP;
5566         else
5567                 type = DRM_MODE_CONNECTOR_DisplayPort;
5568
5569         /*
5570          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5571          * for DP the encoder type can be set by the caller to
5572          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5573          */
5574         if (type == DRM_MODE_CONNECTOR_eDP)
5575                 intel_encoder->type = INTEL_OUTPUT_EDP;
5576
5577         /* eDP only on port B and/or C on vlv/chv */
5578         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5579                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5580                 return false;
5581
5582         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5583                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5584                         port_name(port));
5585
5586         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5587         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5588
5589         connector->interlace_allowed = true;
5590         connector->doublescan_allowed = 0;
5591
5592         intel_dp_aux_init(intel_dp, intel_connector);
5593
5594         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5595                           edp_panel_vdd_work);
5596
5597         intel_connector_attach_encoder(intel_connector, intel_encoder);
5598
5599         if (HAS_DDI(dev))
5600                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5601         else
5602                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5603
5604         /* Set up the hotplug pin. */
5605         switch (port) {
5606         case PORT_A:
5607                 intel_encoder->hpd_pin = HPD_PORT_A;
5608                 break;
5609         case PORT_B:
5610                 intel_encoder->hpd_pin = HPD_PORT_B;
5611                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5612                         intel_encoder->hpd_pin = HPD_PORT_A;
5613                 break;
5614         case PORT_C:
5615                 intel_encoder->hpd_pin = HPD_PORT_C;
5616                 break;
5617         case PORT_D:
5618                 intel_encoder->hpd_pin = HPD_PORT_D;
5619                 break;
5620         case PORT_E:
5621                 intel_encoder->hpd_pin = HPD_PORT_E;
5622                 break;
5623         default:
5624                 BUG();
5625         }
5626
5627         /* init MST on ports that can support it */
5628         if (HAS_DP_MST(dev) && !is_edp(intel_dp) &&
5629             (port == PORT_B || port == PORT_C || port == PORT_D))
5630                 intel_dp_mst_encoder_init(intel_dig_port,
5631                                           intel_connector->base.base.id);
5632
5633         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5634                 intel_dp_aux_fini(intel_dp);
5635                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5636                 goto fail;
5637         }
5638
5639         intel_dp_add_properties(intel_dp, connector);
5640
5641         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5642          * 0xd.  Failure to do so will result in spurious interrupts being
5643          * generated on the port when a cable is not attached.
5644          */
5645         if (IS_G4X(dev) && !IS_GM45(dev)) {
5646                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5647                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5648         }
5649
5650         return true;
5651
5652 fail:
5653         drm_connector_cleanup(connector);
5654
5655         return false;
5656 }
5657
5658 bool intel_dp_init(struct drm_device *dev,
5659                    i915_reg_t output_reg,
5660                    enum port port)
5661 {
5662         struct drm_i915_private *dev_priv = to_i915(dev);
5663         struct intel_digital_port *intel_dig_port;
5664         struct intel_encoder *intel_encoder;
5665         struct drm_encoder *encoder;
5666         struct intel_connector *intel_connector;
5667
5668         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5669         if (!intel_dig_port)
5670                 return false;
5671
5672         intel_connector = intel_connector_alloc();
5673         if (!intel_connector)
5674                 goto err_connector_alloc;
5675
5676         intel_encoder = &intel_dig_port->base;
5677         encoder = &intel_encoder->base;
5678
5679         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5680                              DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port)))
5681                 goto err_encoder_init;
5682
5683         intel_encoder->compute_config = intel_dp_compute_config;
5684         intel_encoder->disable = intel_disable_dp;
5685         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5686         intel_encoder->get_config = intel_dp_get_config;
5687         intel_encoder->suspend = intel_dp_encoder_suspend;
5688         if (IS_CHERRYVIEW(dev)) {
5689                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5690                 intel_encoder->pre_enable = chv_pre_enable_dp;
5691                 intel_encoder->enable = vlv_enable_dp;
5692                 intel_encoder->post_disable = chv_post_disable_dp;
5693                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5694         } else if (IS_VALLEYVIEW(dev)) {
5695                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5696                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5697                 intel_encoder->enable = vlv_enable_dp;
5698                 intel_encoder->post_disable = vlv_post_disable_dp;
5699         } else {
5700                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5701                 intel_encoder->enable = g4x_enable_dp;
5702                 if (INTEL_INFO(dev)->gen >= 5)
5703                         intel_encoder->post_disable = ilk_post_disable_dp;
5704         }
5705
5706         intel_dig_port->port = port;
5707         intel_dig_port->dp.output_reg = output_reg;
5708         intel_dig_port->max_lanes = 4;
5709
5710         intel_encoder->type = INTEL_OUTPUT_DP;
5711         if (IS_CHERRYVIEW(dev)) {
5712                 if (port == PORT_D)
5713                         intel_encoder->crtc_mask = 1 << 2;
5714                 else
5715                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5716         } else {
5717                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5718         }
5719         intel_encoder->cloneable = 0;
5720
5721         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5722         dev_priv->hotplug.irq_port[port] = intel_dig_port;
5723
5724         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5725                 goto err_init_connector;
5726
5727         return true;
5728
5729 err_init_connector:
5730         drm_encoder_cleanup(encoder);
5731 err_encoder_init:
5732         kfree(intel_connector);
5733 err_connector_alloc:
5734         kfree(intel_dig_port);
5735         return false;
5736 }
5737
5738 void intel_dp_mst_suspend(struct drm_device *dev)
5739 {
5740         struct drm_i915_private *dev_priv = to_i915(dev);
5741         int i;
5742
5743         /* disable MST */
5744         for (i = 0; i < I915_MAX_PORTS; i++) {
5745                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5746
5747                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5748                         continue;
5749
5750                 if (intel_dig_port->dp.is_mst)
5751                         drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5752         }
5753 }
5754
5755 void intel_dp_mst_resume(struct drm_device *dev)
5756 {
5757         struct drm_i915_private *dev_priv = to_i915(dev);
5758         int i;
5759
5760         for (i = 0; i < I915_MAX_PORTS; i++) {
5761                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5762                 int ret;
5763
5764                 if (!intel_dig_port || !intel_dig_port->dp.can_mst)
5765                         continue;
5766
5767                 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5768                 if (ret)
5769                         intel_dp_check_mst_status(&intel_dig_port->dp);
5770         }
5771 }