]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/hv/hv_balloon.c
Merge branch 'for-jens' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/linux...
[karo-tx-linux.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65
66         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68
69         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8
70 };
71
72
73
74 /*
75  * Message Types
76  */
77
78 enum dm_message_type {
79         /*
80          * Version 0.3
81          */
82         DM_ERROR                        = 0,
83         DM_VERSION_REQUEST              = 1,
84         DM_VERSION_RESPONSE             = 2,
85         DM_CAPABILITIES_REPORT          = 3,
86         DM_CAPABILITIES_RESPONSE        = 4,
87         DM_STATUS_REPORT                = 5,
88         DM_BALLOON_REQUEST              = 6,
89         DM_BALLOON_RESPONSE             = 7,
90         DM_UNBALLOON_REQUEST            = 8,
91         DM_UNBALLOON_RESPONSE           = 9,
92         DM_MEM_HOT_ADD_REQUEST          = 10,
93         DM_MEM_HOT_ADD_RESPONSE         = 11,
94         DM_VERSION_03_MAX               = 11,
95         /*
96          * Version 1.0.
97          */
98         DM_INFO_MESSAGE                 = 12,
99         DM_VERSION_1_MAX                = 12
100 };
101
102
103 /*
104  * Structures defining the dynamic memory management
105  * protocol.
106  */
107
108 union dm_version {
109         struct {
110                 __u16 minor_version;
111                 __u16 major_version;
112         };
113         __u32 version;
114 } __packed;
115
116
117 union dm_caps {
118         struct {
119                 __u64 balloon:1;
120                 __u64 hot_add:1;
121                 /*
122                  * To support guests that may have alignment
123                  * limitations on hot-add, the guest can specify
124                  * its alignment requirements; a value of n
125                  * represents an alignment of 2^n in mega bytes.
126                  */
127                 __u64 hot_add_alignment:4;
128                 __u64 reservedz:58;
129         } cap_bits;
130         __u64 caps;
131 } __packed;
132
133 union dm_mem_page_range {
134         struct  {
135                 /*
136                  * The PFN number of the first page in the range.
137                  * 40 bits is the architectural limit of a PFN
138                  * number for AMD64.
139                  */
140                 __u64 start_page:40;
141                 /*
142                  * The number of pages in the range.
143                  */
144                 __u64 page_cnt:24;
145         } finfo;
146         __u64  page_range;
147 } __packed;
148
149
150
151 /*
152  * The header for all dynamic memory messages:
153  *
154  * type: Type of the message.
155  * size: Size of the message in bytes; including the header.
156  * trans_id: The guest is responsible for manufacturing this ID.
157  */
158
159 struct dm_header {
160         __u16 type;
161         __u16 size;
162         __u32 trans_id;
163 } __packed;
164
165 /*
166  * A generic message format for dynamic memory.
167  * Specific message formats are defined later in the file.
168  */
169
170 struct dm_message {
171         struct dm_header hdr;
172         __u8 data[]; /* enclosed message */
173 } __packed;
174
175
176 /*
177  * Specific message types supporting the dynamic memory protocol.
178  */
179
180 /*
181  * Version negotiation message. Sent from the guest to the host.
182  * The guest is free to try different versions until the host
183  * accepts the version.
184  *
185  * dm_version: The protocol version requested.
186  * is_last_attempt: If TRUE, this is the last version guest will request.
187  * reservedz: Reserved field, set to zero.
188  */
189
190 struct dm_version_request {
191         struct dm_header hdr;
192         union dm_version version;
193         __u32 is_last_attempt:1;
194         __u32 reservedz:31;
195 } __packed;
196
197 /*
198  * Version response message; Host to Guest and indicates
199  * if the host has accepted the version sent by the guest.
200  *
201  * is_accepted: If TRUE, host has accepted the version and the guest
202  * should proceed to the next stage of the protocol. FALSE indicates that
203  * guest should re-try with a different version.
204  *
205  * reservedz: Reserved field, set to zero.
206  */
207
208 struct dm_version_response {
209         struct dm_header hdr;
210         __u64 is_accepted:1;
211         __u64 reservedz:63;
212 } __packed;
213
214 /*
215  * Message reporting capabilities. This is sent from the guest to the
216  * host.
217  */
218
219 struct dm_capabilities {
220         struct dm_header hdr;
221         union dm_caps caps;
222         __u64 min_page_cnt;
223         __u64 max_page_number;
224 } __packed;
225
226 /*
227  * Response to the capabilities message. This is sent from the host to the
228  * guest. This message notifies if the host has accepted the guest's
229  * capabilities. If the host has not accepted, the guest must shutdown
230  * the service.
231  *
232  * is_accepted: Indicates if the host has accepted guest's capabilities.
233  * reservedz: Must be 0.
234  */
235
236 struct dm_capabilities_resp_msg {
237         struct dm_header hdr;
238         __u64 is_accepted:1;
239         __u64 reservedz:63;
240 } __packed;
241
242 /*
243  * This message is used to report memory pressure from the guest.
244  * This message is not part of any transaction and there is no
245  * response to this message.
246  *
247  * num_avail: Available memory in pages.
248  * num_committed: Committed memory in pages.
249  * page_file_size: The accumulated size of all page files
250  *                 in the system in pages.
251  * zero_free: The nunber of zero and free pages.
252  * page_file_writes: The writes to the page file in pages.
253  * io_diff: An indicator of file cache efficiency or page file activity,
254  *          calculated as File Cache Page Fault Count - Page Read Count.
255  *          This value is in pages.
256  *
257  * Some of these metrics are Windows specific and fortunately
258  * the algorithm on the host side that computes the guest memory
259  * pressure only uses num_committed value.
260  */
261
262 struct dm_status {
263         struct dm_header hdr;
264         __u64 num_avail;
265         __u64 num_committed;
266         __u64 page_file_size;
267         __u64 zero_free;
268         __u32 page_file_writes;
269         __u32 io_diff;
270 } __packed;
271
272
273 /*
274  * Message to ask the guest to allocate memory - balloon up message.
275  * This message is sent from the host to the guest. The guest may not be
276  * able to allocate as much memory as requested.
277  *
278  * num_pages: number of pages to allocate.
279  */
280
281 struct dm_balloon {
282         struct dm_header hdr;
283         __u32 num_pages;
284         __u32 reservedz;
285 } __packed;
286
287
288 /*
289  * Balloon response message; this message is sent from the guest
290  * to the host in response to the balloon message.
291  *
292  * reservedz: Reserved; must be set to zero.
293  * more_pages: If FALSE, this is the last message of the transaction.
294  * if TRUE there will atleast one more message from the guest.
295  *
296  * range_count: The number of ranges in the range array.
297  *
298  * range_array: An array of page ranges returned to the host.
299  *
300  */
301
302 struct dm_balloon_response {
303         struct dm_header hdr;
304         __u32 reservedz;
305         __u32 more_pages:1;
306         __u32 range_count:31;
307         union dm_mem_page_range range_array[];
308 } __packed;
309
310 /*
311  * Un-balloon message; this message is sent from the host
312  * to the guest to give guest more memory.
313  *
314  * more_pages: If FALSE, this is the last message of the transaction.
315  * if TRUE there will atleast one more message from the guest.
316  *
317  * reservedz: Reserved; must be set to zero.
318  *
319  * range_count: The number of ranges in the range array.
320  *
321  * range_array: An array of page ranges returned to the host.
322  *
323  */
324
325 struct dm_unballoon_request {
326         struct dm_header hdr;
327         __u32 more_pages:1;
328         __u32 reservedz:31;
329         __u32 range_count;
330         union dm_mem_page_range range_array[];
331 } __packed;
332
333 /*
334  * Un-balloon response message; this message is sent from the guest
335  * to the host in response to an unballoon request.
336  *
337  */
338
339 struct dm_unballoon_response {
340         struct dm_header hdr;
341 } __packed;
342
343
344 /*
345  * Hot add request message. Message sent from the host to the guest.
346  *
347  * mem_range: Memory range to hot add.
348  *
349  * On Linux we currently don't support this since we cannot hot add
350  * arbitrary granularity of memory.
351  */
352
353 struct dm_hot_add {
354         struct dm_header hdr;
355         union dm_mem_page_range range;
356 } __packed;
357
358 /*
359  * Hot add response message.
360  * This message is sent by the guest to report the status of a hot add request.
361  * If page_count is less than the requested page count, then the host should
362  * assume all further hot add requests will fail, since this indicates that
363  * the guest has hit an upper physical memory barrier.
364  *
365  * Hot adds may also fail due to low resources; in this case, the guest must
366  * not complete this message until the hot add can succeed, and the host must
367  * not send a new hot add request until the response is sent.
368  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
369  * times it fails the request.
370  *
371  *
372  * page_count: number of pages that were successfully hot added.
373  *
374  * result: result of the operation 1: success, 0: failure.
375  *
376  */
377
378 struct dm_hot_add_response {
379         struct dm_header hdr;
380         __u32 page_count;
381         __u32 result;
382 } __packed;
383
384 /*
385  * Types of information sent from host to the guest.
386  */
387
388 enum dm_info_type {
389         INFO_TYPE_MAX_PAGE_CNT = 0,
390         MAX_INFO_TYPE
391 };
392
393
394 /*
395  * Header for the information message.
396  */
397
398 struct dm_info_header {
399         enum dm_info_type type;
400         __u32 data_size;
401 } __packed;
402
403 /*
404  * This message is sent from the host to the guest to pass
405  * some relevant information (win8 addition).
406  *
407  * reserved: no used.
408  * info_size: size of the information blob.
409  * info: information blob.
410  */
411
412 struct dm_info_msg {
413         struct dm_header hdr;
414         __u32 reserved;
415         __u32 info_size;
416         __u8  info[];
417 };
418
419 /*
420  * End protocol definitions.
421  */
422
423 /*
424  * State to manage hot adding memory into the guest.
425  * The range start_pfn : end_pfn specifies the range
426  * that the host has asked us to hot add. The range
427  * start_pfn : ha_end_pfn specifies the range that we have
428  * currently hot added. We hot add in multiples of 128M
429  * chunks; it is possible that we may not be able to bring
430  * online all the pages in the region. The range
431  * covered_start_pfn : covered_end_pfn defines the pages that can
432  * be brough online.
433  */
434
435 struct hv_hotadd_state {
436         struct list_head list;
437         unsigned long start_pfn;
438         unsigned long covered_start_pfn;
439         unsigned long covered_end_pfn;
440         unsigned long ha_end_pfn;
441         unsigned long end_pfn;
442 };
443
444 struct balloon_state {
445         __u32 num_pages;
446         struct work_struct wrk;
447 };
448
449 struct hot_add_wrk {
450         union dm_mem_page_range ha_page_range;
451         union dm_mem_page_range ha_region_range;
452         struct work_struct wrk;
453 };
454
455 static bool hot_add = true;
456 static bool do_hot_add;
457 /*
458  * Delay reporting memory pressure by
459  * the specified number of seconds.
460  */
461 static uint pressure_report_delay = 45;
462
463 /*
464  * The last time we posted a pressure report to host.
465  */
466 static unsigned long last_post_time;
467
468 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
469 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
470
471 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
472 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
473 static atomic_t trans_id = ATOMIC_INIT(0);
474
475 static int dm_ring_size = (5 * PAGE_SIZE);
476
477 /*
478  * Driver specific state.
479  */
480
481 enum hv_dm_state {
482         DM_INITIALIZING = 0,
483         DM_INITIALIZED,
484         DM_BALLOON_UP,
485         DM_BALLOON_DOWN,
486         DM_HOT_ADD,
487         DM_INIT_ERROR
488 };
489
490
491 static __u8 recv_buffer[PAGE_SIZE];
492 static __u8 *send_buffer;
493 #define PAGES_IN_2M     512
494 #define HA_CHUNK (32 * 1024)
495
496 struct hv_dynmem_device {
497         struct hv_device *dev;
498         enum hv_dm_state state;
499         struct completion host_event;
500         struct completion config_event;
501
502         /*
503          * Number of pages we have currently ballooned out.
504          */
505         unsigned int num_pages_ballooned;
506
507         /*
508          * State to manage the ballooning (up) operation.
509          */
510         struct balloon_state balloon_wrk;
511
512         /*
513          * State to execute the "hot-add" operation.
514          */
515         struct hot_add_wrk ha_wrk;
516
517         /*
518          * This state tracks if the host has specified a hot-add
519          * region.
520          */
521         bool host_specified_ha_region;
522
523         /*
524          * State to synchronize hot-add.
525          */
526         struct completion  ol_waitevent;
527         bool ha_waiting;
528         /*
529          * This thread handles hot-add
530          * requests from the host as well as notifying
531          * the host with regards to memory pressure in
532          * the guest.
533          */
534         struct task_struct *thread;
535
536         /*
537          * A list of hot-add regions.
538          */
539         struct list_head ha_region_list;
540
541         /*
542          * We start with the highest version we can support
543          * and downgrade based on the host; we save here the
544          * next version to try.
545          */
546         __u32 next_version;
547 };
548
549 static struct hv_dynmem_device dm_device;
550
551 static void post_status(struct hv_dynmem_device *dm);
552 #ifdef CONFIG_MEMORY_HOTPLUG
553
554 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
555 {
556         int i;
557
558         for (i = 0; i < size; i++) {
559                 struct page *pg;
560                 pg = pfn_to_page(start_pfn + i);
561                 __online_page_set_limits(pg);
562                 __online_page_increment_counters(pg);
563                 __online_page_free(pg);
564         }
565 }
566
567 static void hv_mem_hot_add(unsigned long start, unsigned long size,
568                                 unsigned long pfn_count,
569                                 struct hv_hotadd_state *has)
570 {
571         int ret = 0;
572         int i, nid;
573         unsigned long start_pfn;
574         unsigned long processed_pfn;
575         unsigned long total_pfn = pfn_count;
576
577         for (i = 0; i < (size/HA_CHUNK); i++) {
578                 start_pfn = start + (i * HA_CHUNK);
579                 has->ha_end_pfn +=  HA_CHUNK;
580
581                 if (total_pfn > HA_CHUNK) {
582                         processed_pfn = HA_CHUNK;
583                         total_pfn -= HA_CHUNK;
584                 } else {
585                         processed_pfn = total_pfn;
586                         total_pfn = 0;
587                 }
588
589                 has->covered_end_pfn +=  processed_pfn;
590
591                 init_completion(&dm_device.ol_waitevent);
592                 dm_device.ha_waiting = true;
593
594                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
595                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
596                                 (HA_CHUNK << PAGE_SHIFT));
597
598                 if (ret) {
599                         pr_info("hot_add memory failed error is %d\n", ret);
600                         if (ret == -EEXIST) {
601                                 /*
602                                  * This error indicates that the error
603                                  * is not a transient failure. This is the
604                                  * case where the guest's physical address map
605                                  * precludes hot adding memory. Stop all further
606                                  * memory hot-add.
607                                  */
608                                 do_hot_add = false;
609                         }
610                         has->ha_end_pfn -= HA_CHUNK;
611                         has->covered_end_pfn -=  processed_pfn;
612                         break;
613                 }
614
615                 /*
616                  * Wait for the memory block to be onlined.
617                  * Since the hot add has succeeded, it is ok to
618                  * proceed even if the pages in the hot added region
619                  * have not been "onlined" within the allowed time.
620                  */
621                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
622                 post_status(&dm_device);
623         }
624
625         return;
626 }
627
628 static void hv_online_page(struct page *pg)
629 {
630         struct list_head *cur;
631         struct hv_hotadd_state *has;
632         unsigned long cur_start_pgp;
633         unsigned long cur_end_pgp;
634
635         if (dm_device.ha_waiting) {
636                 dm_device.ha_waiting = false;
637                 complete(&dm_device.ol_waitevent);
638         }
639
640         list_for_each(cur, &dm_device.ha_region_list) {
641                 has = list_entry(cur, struct hv_hotadd_state, list);
642                 cur_start_pgp = (unsigned long)
643                                 pfn_to_page(has->covered_start_pfn);
644                 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
645
646                 if (((unsigned long)pg >= cur_start_pgp) &&
647                         ((unsigned long)pg < cur_end_pgp)) {
648                         /*
649                          * This frame is currently backed; online the
650                          * page.
651                          */
652                         __online_page_set_limits(pg);
653                         __online_page_increment_counters(pg);
654                         __online_page_free(pg);
655                         has->covered_start_pfn++;
656                 }
657         }
658 }
659
660 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
661 {
662         struct list_head *cur;
663         struct hv_hotadd_state *has;
664         unsigned long residual, new_inc;
665
666         if (list_empty(&dm_device.ha_region_list))
667                 return false;
668
669         list_for_each(cur, &dm_device.ha_region_list) {
670                 has = list_entry(cur, struct hv_hotadd_state, list);
671
672                 /*
673                  * If the pfn range we are dealing with is not in the current
674                  * "hot add block", move on.
675                  */
676                 if ((start_pfn >= has->end_pfn))
677                         continue;
678                 /*
679                  * If the current hot add-request extends beyond
680                  * our current limit; extend it.
681                  */
682                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
683                         residual = (start_pfn + pfn_cnt - has->end_pfn);
684                         /*
685                          * Extend the region by multiples of HA_CHUNK.
686                          */
687                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
688                         if (residual % HA_CHUNK)
689                                 new_inc += HA_CHUNK;
690
691                         has->end_pfn += new_inc;
692                 }
693
694                 /*
695                  * If the current start pfn is not where the covered_end
696                  * is, update it.
697                  */
698
699                 if (has->covered_end_pfn != start_pfn) {
700                         has->covered_end_pfn = start_pfn;
701                         has->covered_start_pfn = start_pfn;
702                 }
703                 return true;
704
705         }
706
707         return false;
708 }
709
710 static unsigned long handle_pg_range(unsigned long pg_start,
711                                         unsigned long pg_count)
712 {
713         unsigned long start_pfn = pg_start;
714         unsigned long pfn_cnt = pg_count;
715         unsigned long size;
716         struct list_head *cur;
717         struct hv_hotadd_state *has;
718         unsigned long pgs_ol = 0;
719         unsigned long old_covered_state;
720
721         if (list_empty(&dm_device.ha_region_list))
722                 return 0;
723
724         list_for_each(cur, &dm_device.ha_region_list) {
725                 has = list_entry(cur, struct hv_hotadd_state, list);
726
727                 /*
728                  * If the pfn range we are dealing with is not in the current
729                  * "hot add block", move on.
730                  */
731                 if ((start_pfn >= has->end_pfn))
732                         continue;
733
734                 old_covered_state = has->covered_end_pfn;
735
736                 if (start_pfn < has->ha_end_pfn) {
737                         /*
738                          * This is the case where we are backing pages
739                          * in an already hot added region. Bring
740                          * these pages online first.
741                          */
742                         pgs_ol = has->ha_end_pfn - start_pfn;
743                         if (pgs_ol > pfn_cnt)
744                                 pgs_ol = pfn_cnt;
745                         hv_bring_pgs_online(start_pfn, pgs_ol);
746                         has->covered_end_pfn +=  pgs_ol;
747                         has->covered_start_pfn +=  pgs_ol;
748                         pfn_cnt -= pgs_ol;
749                 }
750
751                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
752                         /*
753                          * We have some residual hot add range
754                          * that needs to be hot added; hot add
755                          * it now. Hot add a multiple of
756                          * of HA_CHUNK that fully covers the pages
757                          * we have.
758                          */
759                         size = (has->end_pfn - has->ha_end_pfn);
760                         if (pfn_cnt <= size) {
761                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
762                                 if (pfn_cnt % HA_CHUNK)
763                                         size += HA_CHUNK;
764                         } else {
765                                 pfn_cnt = size;
766                         }
767                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
768                 }
769                 /*
770                  * If we managed to online any pages that were given to us,
771                  * we declare success.
772                  */
773                 return has->covered_end_pfn - old_covered_state;
774
775         }
776
777         return 0;
778 }
779
780 static unsigned long process_hot_add(unsigned long pg_start,
781                                         unsigned long pfn_cnt,
782                                         unsigned long rg_start,
783                                         unsigned long rg_size)
784 {
785         struct hv_hotadd_state *ha_region = NULL;
786
787         if (pfn_cnt == 0)
788                 return 0;
789
790         if (!dm_device.host_specified_ha_region)
791                 if (pfn_covered(pg_start, pfn_cnt))
792                         goto do_pg_range;
793
794         /*
795          * If the host has specified a hot-add range; deal with it first.
796          */
797
798         if (rg_size != 0) {
799                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
800                 if (!ha_region)
801                         return 0;
802
803                 INIT_LIST_HEAD(&ha_region->list);
804
805                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
806                 ha_region->start_pfn = rg_start;
807                 ha_region->ha_end_pfn = rg_start;
808                 ha_region->covered_start_pfn = pg_start;
809                 ha_region->covered_end_pfn = pg_start;
810                 ha_region->end_pfn = rg_start + rg_size;
811         }
812
813 do_pg_range:
814         /*
815          * Process the page range specified; bringing them
816          * online if possible.
817          */
818         return handle_pg_range(pg_start, pfn_cnt);
819 }
820
821 #endif
822
823 static void hot_add_req(struct work_struct *dummy)
824 {
825         struct dm_hot_add_response resp;
826 #ifdef CONFIG_MEMORY_HOTPLUG
827         unsigned long pg_start, pfn_cnt;
828         unsigned long rg_start, rg_sz;
829 #endif
830         struct hv_dynmem_device *dm = &dm_device;
831
832         memset(&resp, 0, sizeof(struct dm_hot_add_response));
833         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
834         resp.hdr.size = sizeof(struct dm_hot_add_response);
835
836 #ifdef CONFIG_MEMORY_HOTPLUG
837         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
838         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
839
840         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
841         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
842
843         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
844                 unsigned long region_size;
845                 unsigned long region_start;
846
847                 /*
848                  * The host has not specified the hot-add region.
849                  * Based on the hot-add page range being specified,
850                  * compute a hot-add region that can cover the pages
851                  * that need to be hot-added while ensuring the alignment
852                  * and size requirements of Linux as it relates to hot-add.
853                  */
854                 region_start = pg_start;
855                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
856                 if (pfn_cnt % HA_CHUNK)
857                         region_size += HA_CHUNK;
858
859                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
860
861                 rg_start = region_start;
862                 rg_sz = region_size;
863         }
864
865         if (do_hot_add)
866                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
867                                                 rg_start, rg_sz);
868 #endif
869         /*
870          * The result field of the response structure has the
871          * following semantics:
872          *
873          * 1. If all or some pages hot-added: Guest should return success.
874          *
875          * 2. If no pages could be hot-added:
876          *
877          * If the guest returns success, then the host
878          * will not attempt any further hot-add operations. This
879          * signifies a permanent failure.
880          *
881          * If the guest returns failure, then this failure will be
882          * treated as a transient failure and the host may retry the
883          * hot-add operation after some delay.
884          */
885         if (resp.page_count > 0)
886                 resp.result = 1;
887         else if (!do_hot_add)
888                 resp.result = 1;
889         else
890                 resp.result = 0;
891
892         if (!do_hot_add || (resp.page_count == 0))
893                 pr_info("Memory hot add failed\n");
894
895         dm->state = DM_INITIALIZED;
896         resp.hdr.trans_id = atomic_inc_return(&trans_id);
897         vmbus_sendpacket(dm->dev->channel, &resp,
898                         sizeof(struct dm_hot_add_response),
899                         (unsigned long)NULL,
900                         VM_PKT_DATA_INBAND, 0);
901 }
902
903 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
904 {
905         struct dm_info_header *info_hdr;
906
907         info_hdr = (struct dm_info_header *)msg->info;
908
909         switch (info_hdr->type) {
910         case INFO_TYPE_MAX_PAGE_CNT:
911                 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
912                 pr_info("Data Size is %d\n", info_hdr->data_size);
913                 break;
914         default:
915                 pr_info("Received Unknown type: %d\n", info_hdr->type);
916         }
917 }
918
919 static unsigned long compute_balloon_floor(void)
920 {
921         unsigned long min_pages;
922 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
923         /* Simple continuous piecewiese linear function:
924          *  max MiB -> min MiB  gradient
925          *       0         0
926          *      16        16
927          *      32        24
928          *     128        72    (1/2)
929          *     512       168    (1/4)
930          *    2048       360    (1/8)
931          *    8192       552    (1/32)
932          *   32768      1320
933          *  131072      4392
934          */
935         if (totalram_pages < MB2PAGES(128))
936                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
937         else if (totalram_pages < MB2PAGES(512))
938                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
939         else if (totalram_pages < MB2PAGES(2048))
940                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
941         else
942                 min_pages = MB2PAGES(296) + (totalram_pages >> 5);
943 #undef MB2PAGES
944         return min_pages;
945 }
946
947 /*
948  * Post our status as it relates memory pressure to the
949  * host. Host expects the guests to post this status
950  * periodically at 1 second intervals.
951  *
952  * The metrics specified in this protocol are very Windows
953  * specific and so we cook up numbers here to convey our memory
954  * pressure.
955  */
956
957 static void post_status(struct hv_dynmem_device *dm)
958 {
959         struct dm_status status;
960         struct sysinfo val;
961         unsigned long now = jiffies;
962         unsigned long last_post = last_post_time;
963
964         if (pressure_report_delay > 0) {
965                 --pressure_report_delay;
966                 return;
967         }
968
969         if (!time_after(now, (last_post_time + HZ)))
970                 return;
971
972         si_meminfo(&val);
973         memset(&status, 0, sizeof(struct dm_status));
974         status.hdr.type = DM_STATUS_REPORT;
975         status.hdr.size = sizeof(struct dm_status);
976         status.hdr.trans_id = atomic_inc_return(&trans_id);
977
978         /*
979          * The host expects the guest to report free memory.
980          * Further, the host expects the pressure information to
981          * include the ballooned out pages.
982          * For a given amount of memory that we are managing, we
983          * need to compute a floor below which we should not balloon.
984          * Compute this and add it to the pressure report.
985          */
986         status.num_avail = val.freeram;
987         status.num_committed = vm_memory_committed() +
988                                 dm->num_pages_ballooned +
989                                 compute_balloon_floor();
990
991         /*
992          * If our transaction ID is no longer current, just don't
993          * send the status. This can happen if we were interrupted
994          * after we picked our transaction ID.
995          */
996         if (status.hdr.trans_id != atomic_read(&trans_id))
997                 return;
998
999         /*
1000          * If the last post time that we sampled has changed,
1001          * we have raced, don't post the status.
1002          */
1003         if (last_post != last_post_time)
1004                 return;
1005
1006         last_post_time = jiffies;
1007         vmbus_sendpacket(dm->dev->channel, &status,
1008                                 sizeof(struct dm_status),
1009                                 (unsigned long)NULL,
1010                                 VM_PKT_DATA_INBAND, 0);
1011
1012 }
1013
1014 static void free_balloon_pages(struct hv_dynmem_device *dm,
1015                          union dm_mem_page_range *range_array)
1016 {
1017         int num_pages = range_array->finfo.page_cnt;
1018         __u64 start_frame = range_array->finfo.start_page;
1019         struct page *pg;
1020         int i;
1021
1022         for (i = 0; i < num_pages; i++) {
1023                 pg = pfn_to_page(i + start_frame);
1024                 __free_page(pg);
1025                 dm->num_pages_ballooned--;
1026         }
1027 }
1028
1029
1030
1031 static int  alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages,
1032                          struct dm_balloon_response *bl_resp, int alloc_unit,
1033                          bool *alloc_error)
1034 {
1035         int i = 0;
1036         struct page *pg;
1037
1038         if (num_pages < alloc_unit)
1039                 return 0;
1040
1041         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1042                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1043                         PAGE_SIZE)
1044                         return i * alloc_unit;
1045
1046                 /*
1047                  * We execute this code in a thread context. Furthermore,
1048                  * we don't want the kernel to try too hard.
1049                  */
1050                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1051                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1052                                 get_order(alloc_unit << PAGE_SHIFT));
1053
1054                 if (!pg) {
1055                         *alloc_error = true;
1056                         return i * alloc_unit;
1057                 }
1058
1059
1060                 dm->num_pages_ballooned += alloc_unit;
1061
1062                 /*
1063                  * If we allocatted 2M pages; split them so we
1064                  * can free them in any order we get.
1065                  */
1066
1067                 if (alloc_unit != 1)
1068                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1069
1070                 bl_resp->range_count++;
1071                 bl_resp->range_array[i].finfo.start_page =
1072                         page_to_pfn(pg);
1073                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1074                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1075
1076         }
1077
1078         return num_pages;
1079 }
1080
1081
1082
1083 static void balloon_up(struct work_struct *dummy)
1084 {
1085         int num_pages = dm_device.balloon_wrk.num_pages;
1086         int num_ballooned = 0;
1087         struct dm_balloon_response *bl_resp;
1088         int alloc_unit;
1089         int ret;
1090         bool alloc_error = false;
1091         bool done = false;
1092         int i;
1093
1094
1095         /*
1096          * We will attempt 2M allocations. However, if we fail to
1097          * allocate 2M chunks, we will go back to 4k allocations.
1098          */
1099         alloc_unit = 512;
1100
1101         while (!done) {
1102                 bl_resp = (struct dm_balloon_response *)send_buffer;
1103                 memset(send_buffer, 0, PAGE_SIZE);
1104                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1105                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1106                 bl_resp->more_pages = 1;
1107
1108
1109                 num_pages -= num_ballooned;
1110                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1111                                                 bl_resp, alloc_unit,
1112                                                  &alloc_error);
1113
1114                 if ((alloc_error) && (alloc_unit != 1)) {
1115                         alloc_unit = 1;
1116                         continue;
1117                 }
1118
1119                 if ((alloc_error) || (num_ballooned == num_pages)) {
1120                         bl_resp->more_pages = 0;
1121                         done = true;
1122                         dm_device.state = DM_INITIALIZED;
1123                 }
1124
1125                 /*
1126                  * We are pushing a lot of data through the channel;
1127                  * deal with transient failures caused because of the
1128                  * lack of space in the ring buffer.
1129                  */
1130
1131                 do {
1132                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1133                         ret = vmbus_sendpacket(dm_device.dev->channel,
1134                                                 bl_resp,
1135                                                 bl_resp->hdr.size,
1136                                                 (unsigned long)NULL,
1137                                                 VM_PKT_DATA_INBAND, 0);
1138
1139                         if (ret == -EAGAIN)
1140                                 msleep(20);
1141                         post_status(&dm_device);
1142                 } while (ret == -EAGAIN);
1143
1144                 if (ret) {
1145                         /*
1146                          * Free up the memory we allocatted.
1147                          */
1148                         pr_info("Balloon response failed\n");
1149
1150                         for (i = 0; i < bl_resp->range_count; i++)
1151                                 free_balloon_pages(&dm_device,
1152                                                  &bl_resp->range_array[i]);
1153
1154                         done = true;
1155                 }
1156         }
1157
1158 }
1159
1160 static void balloon_down(struct hv_dynmem_device *dm,
1161                         struct dm_unballoon_request *req)
1162 {
1163         union dm_mem_page_range *range_array = req->range_array;
1164         int range_count = req->range_count;
1165         struct dm_unballoon_response resp;
1166         int i;
1167
1168         for (i = 0; i < range_count; i++) {
1169                 free_balloon_pages(dm, &range_array[i]);
1170                 post_status(&dm_device);
1171         }
1172
1173         if (req->more_pages == 1)
1174                 return;
1175
1176         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1177         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1178         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1179         resp.hdr.size = sizeof(struct dm_unballoon_response);
1180
1181         vmbus_sendpacket(dm_device.dev->channel, &resp,
1182                                 sizeof(struct dm_unballoon_response),
1183                                 (unsigned long)NULL,
1184                                 VM_PKT_DATA_INBAND, 0);
1185
1186         dm->state = DM_INITIALIZED;
1187 }
1188
1189 static void balloon_onchannelcallback(void *context);
1190
1191 static int dm_thread_func(void *dm_dev)
1192 {
1193         struct hv_dynmem_device *dm = dm_dev;
1194         int t;
1195
1196         while (!kthread_should_stop()) {
1197                 t = wait_for_completion_interruptible_timeout(
1198                                                 &dm_device.config_event, 1*HZ);
1199                 /*
1200                  * The host expects us to post information on the memory
1201                  * pressure every second.
1202                  */
1203
1204                 if (t == 0)
1205                         post_status(dm);
1206
1207         }
1208
1209         return 0;
1210 }
1211
1212
1213 static void version_resp(struct hv_dynmem_device *dm,
1214                         struct dm_version_response *vresp)
1215 {
1216         struct dm_version_request version_req;
1217         int ret;
1218
1219         if (vresp->is_accepted) {
1220                 /*
1221                  * We are done; wakeup the
1222                  * context waiting for version
1223                  * negotiation.
1224                  */
1225                 complete(&dm->host_event);
1226                 return;
1227         }
1228         /*
1229          * If there are more versions to try, continue
1230          * with negotiations; if not
1231          * shutdown the service since we are not able
1232          * to negotiate a suitable version number
1233          * with the host.
1234          */
1235         if (dm->next_version == 0)
1236                 goto version_error;
1237
1238         dm->next_version = 0;
1239         memset(&version_req, 0, sizeof(struct dm_version_request));
1240         version_req.hdr.type = DM_VERSION_REQUEST;
1241         version_req.hdr.size = sizeof(struct dm_version_request);
1242         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1243         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7;
1244         version_req.is_last_attempt = 1;
1245
1246         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1247                                 sizeof(struct dm_version_request),
1248                                 (unsigned long)NULL,
1249                                 VM_PKT_DATA_INBAND, 0);
1250
1251         if (ret)
1252                 goto version_error;
1253
1254         return;
1255
1256 version_error:
1257         dm->state = DM_INIT_ERROR;
1258         complete(&dm->host_event);
1259 }
1260
1261 static void cap_resp(struct hv_dynmem_device *dm,
1262                         struct dm_capabilities_resp_msg *cap_resp)
1263 {
1264         if (!cap_resp->is_accepted) {
1265                 pr_info("Capabilities not accepted by host\n");
1266                 dm->state = DM_INIT_ERROR;
1267         }
1268         complete(&dm->host_event);
1269 }
1270
1271 static void balloon_onchannelcallback(void *context)
1272 {
1273         struct hv_device *dev = context;
1274         u32 recvlen;
1275         u64 requestid;
1276         struct dm_message *dm_msg;
1277         struct dm_header *dm_hdr;
1278         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1279         struct dm_balloon *bal_msg;
1280         struct dm_hot_add *ha_msg;
1281         union dm_mem_page_range *ha_pg_range;
1282         union dm_mem_page_range *ha_region;
1283
1284         memset(recv_buffer, 0, sizeof(recv_buffer));
1285         vmbus_recvpacket(dev->channel, recv_buffer,
1286                          PAGE_SIZE, &recvlen, &requestid);
1287
1288         if (recvlen > 0) {
1289                 dm_msg = (struct dm_message *)recv_buffer;
1290                 dm_hdr = &dm_msg->hdr;
1291
1292                 switch (dm_hdr->type) {
1293                 case DM_VERSION_RESPONSE:
1294                         version_resp(dm,
1295                                  (struct dm_version_response *)dm_msg);
1296                         break;
1297
1298                 case DM_CAPABILITIES_RESPONSE:
1299                         cap_resp(dm,
1300                                  (struct dm_capabilities_resp_msg *)dm_msg);
1301                         break;
1302
1303                 case DM_BALLOON_REQUEST:
1304                         if (dm->state == DM_BALLOON_UP)
1305                                 pr_warn("Currently ballooning\n");
1306                         bal_msg = (struct dm_balloon *)recv_buffer;
1307                         dm->state = DM_BALLOON_UP;
1308                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1309                         schedule_work(&dm_device.balloon_wrk.wrk);
1310                         break;
1311
1312                 case DM_UNBALLOON_REQUEST:
1313                         dm->state = DM_BALLOON_DOWN;
1314                         balloon_down(dm,
1315                                  (struct dm_unballoon_request *)recv_buffer);
1316                         break;
1317
1318                 case DM_MEM_HOT_ADD_REQUEST:
1319                         if (dm->state == DM_HOT_ADD)
1320                                 pr_warn("Currently hot-adding\n");
1321                         dm->state = DM_HOT_ADD;
1322                         ha_msg = (struct dm_hot_add *)recv_buffer;
1323                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1324                                 /*
1325                                  * This is a normal hot-add request specifying
1326                                  * hot-add memory.
1327                                  */
1328                                 ha_pg_range = &ha_msg->range;
1329                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1330                                 dm->ha_wrk.ha_region_range.page_range = 0;
1331                         } else {
1332                                 /*
1333                                  * Host is specifying that we first hot-add
1334                                  * a region and then partially populate this
1335                                  * region.
1336                                  */
1337                                 dm->host_specified_ha_region = true;
1338                                 ha_pg_range = &ha_msg->range;
1339                                 ha_region = &ha_pg_range[1];
1340                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1341                                 dm->ha_wrk.ha_region_range = *ha_region;
1342                         }
1343                         schedule_work(&dm_device.ha_wrk.wrk);
1344                         break;
1345
1346                 case DM_INFO_MESSAGE:
1347                         process_info(dm, (struct dm_info_msg *)dm_msg);
1348                         break;
1349
1350                 default:
1351                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1352
1353                 }
1354         }
1355
1356 }
1357
1358 static int balloon_probe(struct hv_device *dev,
1359                         const struct hv_vmbus_device_id *dev_id)
1360 {
1361         int ret, t;
1362         struct dm_version_request version_req;
1363         struct dm_capabilities cap_msg;
1364
1365         do_hot_add = hot_add;
1366
1367         /*
1368          * First allocate a send buffer.
1369          */
1370
1371         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1372         if (!send_buffer)
1373                 return -ENOMEM;
1374
1375         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1376                         balloon_onchannelcallback, dev);
1377
1378         if (ret)
1379                 goto probe_error0;
1380
1381         dm_device.dev = dev;
1382         dm_device.state = DM_INITIALIZING;
1383         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1384         init_completion(&dm_device.host_event);
1385         init_completion(&dm_device.config_event);
1386         INIT_LIST_HEAD(&dm_device.ha_region_list);
1387         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1388         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1389         dm_device.host_specified_ha_region = false;
1390
1391         dm_device.thread =
1392                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1393         if (IS_ERR(dm_device.thread)) {
1394                 ret = PTR_ERR(dm_device.thread);
1395                 goto probe_error1;
1396         }
1397
1398 #ifdef CONFIG_MEMORY_HOTPLUG
1399         set_online_page_callback(&hv_online_page);
1400 #endif
1401
1402         hv_set_drvdata(dev, &dm_device);
1403         /*
1404          * Initiate the hand shake with the host and negotiate
1405          * a version that the host can support. We start with the
1406          * highest version number and go down if the host cannot
1407          * support it.
1408          */
1409         memset(&version_req, 0, sizeof(struct dm_version_request));
1410         version_req.hdr.type = DM_VERSION_REQUEST;
1411         version_req.hdr.size = sizeof(struct dm_version_request);
1412         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1413         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8;
1414         version_req.is_last_attempt = 0;
1415
1416         ret = vmbus_sendpacket(dev->channel, &version_req,
1417                                 sizeof(struct dm_version_request),
1418                                 (unsigned long)NULL,
1419                                 VM_PKT_DATA_INBAND, 0);
1420         if (ret)
1421                 goto probe_error2;
1422
1423         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1424         if (t == 0) {
1425                 ret = -ETIMEDOUT;
1426                 goto probe_error2;
1427         }
1428
1429         /*
1430          * If we could not negotiate a compatible version with the host
1431          * fail the probe function.
1432          */
1433         if (dm_device.state == DM_INIT_ERROR) {
1434                 ret = -ETIMEDOUT;
1435                 goto probe_error2;
1436         }
1437         /*
1438          * Now submit our capabilities to the host.
1439          */
1440         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1441         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1442         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1443         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1444
1445         cap_msg.caps.cap_bits.balloon = 1;
1446         cap_msg.caps.cap_bits.hot_add = 1;
1447
1448         /*
1449          * Specify our alignment requirements as it relates
1450          * memory hot-add. Specify 128MB alignment.
1451          */
1452         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1453
1454         /*
1455          * Currently the host does not use these
1456          * values and we set them to what is done in the
1457          * Windows driver.
1458          */
1459         cap_msg.min_page_cnt = 0;
1460         cap_msg.max_page_number = -1;
1461
1462         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1463                                 sizeof(struct dm_capabilities),
1464                                 (unsigned long)NULL,
1465                                 VM_PKT_DATA_INBAND, 0);
1466         if (ret)
1467                 goto probe_error2;
1468
1469         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1470         if (t == 0) {
1471                 ret = -ETIMEDOUT;
1472                 goto probe_error2;
1473         }
1474
1475         /*
1476          * If the host does not like our capabilities,
1477          * fail the probe function.
1478          */
1479         if (dm_device.state == DM_INIT_ERROR) {
1480                 ret = -ETIMEDOUT;
1481                 goto probe_error2;
1482         }
1483
1484         dm_device.state = DM_INITIALIZED;
1485
1486         return 0;
1487
1488 probe_error2:
1489 #ifdef CONFIG_MEMORY_HOTPLUG
1490         restore_online_page_callback(&hv_online_page);
1491 #endif
1492         kthread_stop(dm_device.thread);
1493
1494 probe_error1:
1495         vmbus_close(dev->channel);
1496 probe_error0:
1497         kfree(send_buffer);
1498         return ret;
1499 }
1500
1501 static int balloon_remove(struct hv_device *dev)
1502 {
1503         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1504         struct list_head *cur, *tmp;
1505         struct hv_hotadd_state *has;
1506
1507         if (dm->num_pages_ballooned != 0)
1508                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1509
1510         cancel_work_sync(&dm->balloon_wrk.wrk);
1511         cancel_work_sync(&dm->ha_wrk.wrk);
1512
1513         vmbus_close(dev->channel);
1514         kthread_stop(dm->thread);
1515         kfree(send_buffer);
1516 #ifdef CONFIG_MEMORY_HOTPLUG
1517         restore_online_page_callback(&hv_online_page);
1518 #endif
1519         list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1520                 has = list_entry(cur, struct hv_hotadd_state, list);
1521                 list_del(&has->list);
1522                 kfree(has);
1523         }
1524
1525         return 0;
1526 }
1527
1528 static const struct hv_vmbus_device_id id_table[] = {
1529         /* Dynamic Memory Class ID */
1530         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1531         { HV_DM_GUID, },
1532         { },
1533 };
1534
1535 MODULE_DEVICE_TABLE(vmbus, id_table);
1536
1537 static  struct hv_driver balloon_drv = {
1538         .name = "hv_balloon",
1539         .id_table = id_table,
1540         .probe =  balloon_probe,
1541         .remove =  balloon_remove,
1542 };
1543
1544 static int __init init_balloon_drv(void)
1545 {
1546
1547         return vmbus_driver_register(&balloon_drv);
1548 }
1549
1550 module_init(init_balloon_drv);
1551
1552 MODULE_DESCRIPTION("Hyper-V Balloon");
1553 MODULE_LICENSE("GPL");