]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/arm-smmu.c
Merge remote-tracking branch 'spi/topic/tle62x0' into spi-next
[karo-tx-linux.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - 4k and 64k pages, with contiguous pte hints.
27  *      - Up to 39-bit addressing
28  *      - Context fault reporting
29  */
30
31 #define pr_fmt(fmt) "arm-smmu: " fmt
32
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
37 #include <linux/io.h>
38 #include <linux/iommu.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/of.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45
46 #include <linux/amba/bus.h>
47
48 #include <asm/pgalloc.h>
49
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS            8
52
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS                128
55
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS               128
58
59 /* Number of VMIDs per SMMU */
60 #define ARM_SMMU_NUM_VMIDS              256
61
62 /* SMMU global address space */
63 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
64 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (smmu)->pagesize)
65
66 /* Page table bits */
67 #define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
68 #define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
69 #define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
70 #define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
71 #define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
72 #define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
73
74 #if PAGE_SIZE == SZ_4K
75 #define ARM_SMMU_PTE_CONT_ENTRIES       16
76 #elif PAGE_SIZE == SZ_64K
77 #define ARM_SMMU_PTE_CONT_ENTRIES       32
78 #else
79 #define ARM_SMMU_PTE_CONT_ENTRIES       1
80 #endif
81
82 #define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
83 #define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
84 #define ARM_SMMU_PTE_HWTABLE_SIZE       (PTRS_PER_PTE * sizeof(pte_t))
85
86 /* Stage-1 PTE */
87 #define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
88 #define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
89 #define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
90
91 /* Stage-2 PTE */
92 #define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
93 #define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
94 #define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
95 #define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
96 #define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
97 #define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
98
99 /* Configuration registers */
100 #define ARM_SMMU_GR0_sCR0               0x0
101 #define sCR0_CLIENTPD                   (1 << 0)
102 #define sCR0_GFRE                       (1 << 1)
103 #define sCR0_GFIE                       (1 << 2)
104 #define sCR0_GCFGFRE                    (1 << 4)
105 #define sCR0_GCFGFIE                    (1 << 5)
106 #define sCR0_USFCFG                     (1 << 10)
107 #define sCR0_VMIDPNE                    (1 << 11)
108 #define sCR0_PTM                        (1 << 12)
109 #define sCR0_FB                         (1 << 13)
110 #define sCR0_BSU_SHIFT                  14
111 #define sCR0_BSU_MASK                   0x3
112
113 /* Identification registers */
114 #define ARM_SMMU_GR0_ID0                0x20
115 #define ARM_SMMU_GR0_ID1                0x24
116 #define ARM_SMMU_GR0_ID2                0x28
117 #define ARM_SMMU_GR0_ID3                0x2c
118 #define ARM_SMMU_GR0_ID4                0x30
119 #define ARM_SMMU_GR0_ID5                0x34
120 #define ARM_SMMU_GR0_ID6                0x38
121 #define ARM_SMMU_GR0_ID7                0x3c
122 #define ARM_SMMU_GR0_sGFSR              0x48
123 #define ARM_SMMU_GR0_sGFSYNR0           0x50
124 #define ARM_SMMU_GR0_sGFSYNR1           0x54
125 #define ARM_SMMU_GR0_sGFSYNR2           0x58
126 #define ARM_SMMU_GR0_PIDR0              0xfe0
127 #define ARM_SMMU_GR0_PIDR1              0xfe4
128 #define ARM_SMMU_GR0_PIDR2              0xfe8
129
130 #define ID0_S1TS                        (1 << 30)
131 #define ID0_S2TS                        (1 << 29)
132 #define ID0_NTS                         (1 << 28)
133 #define ID0_SMS                         (1 << 27)
134 #define ID0_PTFS_SHIFT                  24
135 #define ID0_PTFS_MASK                   0x2
136 #define ID0_PTFS_V8_ONLY                0x2
137 #define ID0_CTTW                        (1 << 14)
138 #define ID0_NUMIRPT_SHIFT               16
139 #define ID0_NUMIRPT_MASK                0xff
140 #define ID0_NUMSMRG_SHIFT               0
141 #define ID0_NUMSMRG_MASK                0xff
142
143 #define ID1_PAGESIZE                    (1 << 31)
144 #define ID1_NUMPAGENDXB_SHIFT           28
145 #define ID1_NUMPAGENDXB_MASK            7
146 #define ID1_NUMS2CB_SHIFT               16
147 #define ID1_NUMS2CB_MASK                0xff
148 #define ID1_NUMCB_SHIFT                 0
149 #define ID1_NUMCB_MASK                  0xff
150
151 #define ID2_OAS_SHIFT                   4
152 #define ID2_OAS_MASK                    0xf
153 #define ID2_IAS_SHIFT                   0
154 #define ID2_IAS_MASK                    0xf
155 #define ID2_UBS_SHIFT                   8
156 #define ID2_UBS_MASK                    0xf
157 #define ID2_PTFS_4K                     (1 << 12)
158 #define ID2_PTFS_16K                    (1 << 13)
159 #define ID2_PTFS_64K                    (1 << 14)
160
161 #define PIDR2_ARCH_SHIFT                4
162 #define PIDR2_ARCH_MASK                 0xf
163
164 /* Global TLB invalidation */
165 #define ARM_SMMU_GR0_STLBIALL           0x60
166 #define ARM_SMMU_GR0_TLBIVMID           0x64
167 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
168 #define ARM_SMMU_GR0_TLBIALLH           0x6c
169 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
170 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
171 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
172 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
173
174 /* Stream mapping registers */
175 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
176 #define SMR_VALID                       (1 << 31)
177 #define SMR_MASK_SHIFT                  16
178 #define SMR_MASK_MASK                   0x7fff
179 #define SMR_ID_SHIFT                    0
180 #define SMR_ID_MASK                     0x7fff
181
182 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
183 #define S2CR_CBNDX_SHIFT                0
184 #define S2CR_CBNDX_MASK                 0xff
185 #define S2CR_TYPE_SHIFT                 16
186 #define S2CR_TYPE_MASK                  0x3
187 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
188 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
189 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
190
191 /* Context bank attribute registers */
192 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
193 #define CBAR_VMID_SHIFT                 0
194 #define CBAR_VMID_MASK                  0xff
195 #define CBAR_S1_MEMATTR_SHIFT           12
196 #define CBAR_S1_MEMATTR_MASK            0xf
197 #define CBAR_S1_MEMATTR_WB              0xf
198 #define CBAR_TYPE_SHIFT                 16
199 #define CBAR_TYPE_MASK                  0x3
200 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
201 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
202 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
203 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
204 #define CBAR_IRPTNDX_SHIFT              24
205 #define CBAR_IRPTNDX_MASK               0xff
206
207 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
208 #define CBA2R_RW64_32BIT                (0 << 0)
209 #define CBA2R_RW64_64BIT                (1 << 0)
210
211 /* Translation context bank */
212 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
213 #define ARM_SMMU_CB(smmu, n)            ((n) * (smmu)->pagesize)
214
215 #define ARM_SMMU_CB_SCTLR               0x0
216 #define ARM_SMMU_CB_RESUME              0x8
217 #define ARM_SMMU_CB_TTBCR2              0x10
218 #define ARM_SMMU_CB_TTBR0_LO            0x20
219 #define ARM_SMMU_CB_TTBR0_HI            0x24
220 #define ARM_SMMU_CB_TTBCR               0x30
221 #define ARM_SMMU_CB_S1_MAIR0            0x38
222 #define ARM_SMMU_CB_FSR                 0x58
223 #define ARM_SMMU_CB_FAR_LO              0x60
224 #define ARM_SMMU_CB_FAR_HI              0x64
225 #define ARM_SMMU_CB_FSYNR0              0x68
226
227 #define SCTLR_S1_ASIDPNE                (1 << 12)
228 #define SCTLR_CFCFG                     (1 << 7)
229 #define SCTLR_CFIE                      (1 << 6)
230 #define SCTLR_CFRE                      (1 << 5)
231 #define SCTLR_E                         (1 << 4)
232 #define SCTLR_AFE                       (1 << 2)
233 #define SCTLR_TRE                       (1 << 1)
234 #define SCTLR_M                         (1 << 0)
235 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
236
237 #define RESUME_RETRY                    (0 << 0)
238 #define RESUME_TERMINATE                (1 << 0)
239
240 #define TTBCR_EAE                       (1 << 31)
241
242 #define TTBCR_PASIZE_SHIFT              16
243 #define TTBCR_PASIZE_MASK               0x7
244
245 #define TTBCR_TG0_4K                    (0 << 14)
246 #define TTBCR_TG0_64K                   (1 << 14)
247
248 #define TTBCR_SH0_SHIFT                 12
249 #define TTBCR_SH0_MASK                  0x3
250 #define TTBCR_SH_NS                     0
251 #define TTBCR_SH_OS                     2
252 #define TTBCR_SH_IS                     3
253
254 #define TTBCR_ORGN0_SHIFT               10
255 #define TTBCR_IRGN0_SHIFT               8
256 #define TTBCR_RGN_MASK                  0x3
257 #define TTBCR_RGN_NC                    0
258 #define TTBCR_RGN_WBWA                  1
259 #define TTBCR_RGN_WT                    2
260 #define TTBCR_RGN_WB                    3
261
262 #define TTBCR_SL0_SHIFT                 6
263 #define TTBCR_SL0_MASK                  0x3
264 #define TTBCR_SL0_LVL_2                 0
265 #define TTBCR_SL0_LVL_1                 1
266
267 #define TTBCR_T1SZ_SHIFT                16
268 #define TTBCR_T0SZ_SHIFT                0
269 #define TTBCR_SZ_MASK                   0xf
270
271 #define TTBCR2_SEP_SHIFT                15
272 #define TTBCR2_SEP_MASK                 0x7
273
274 #define TTBCR2_PASIZE_SHIFT             0
275 #define TTBCR2_PASIZE_MASK              0x7
276
277 /* Common definitions for PASize and SEP fields */
278 #define TTBCR2_ADDR_32                  0
279 #define TTBCR2_ADDR_36                  1
280 #define TTBCR2_ADDR_40                  2
281 #define TTBCR2_ADDR_42                  3
282 #define TTBCR2_ADDR_44                  4
283 #define TTBCR2_ADDR_48                  5
284
285 #define MAIR_ATTR_SHIFT(n)              ((n) << 3)
286 #define MAIR_ATTR_MASK                  0xff
287 #define MAIR_ATTR_DEVICE                0x04
288 #define MAIR_ATTR_NC                    0x44
289 #define MAIR_ATTR_WBRWA                 0xff
290 #define MAIR_ATTR_IDX_NC                0
291 #define MAIR_ATTR_IDX_CACHE             1
292 #define MAIR_ATTR_IDX_DEV               2
293
294 #define FSR_MULTI                       (1 << 31)
295 #define FSR_SS                          (1 << 30)
296 #define FSR_UUT                         (1 << 8)
297 #define FSR_ASF                         (1 << 7)
298 #define FSR_TLBLKF                      (1 << 6)
299 #define FSR_TLBMCF                      (1 << 5)
300 #define FSR_EF                          (1 << 4)
301 #define FSR_PF                          (1 << 3)
302 #define FSR_AFF                         (1 << 2)
303 #define FSR_TF                          (1 << 1)
304
305 #define FSR_IGN                         (FSR_AFF | FSR_ASF | FSR_TLBMCF |       \
306                                          FSR_TLBLKF)
307 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT |         \
308                                          FSR_EF | FSR_PF | FSR_TF)
309
310 #define FSYNR0_WNR                      (1 << 4)
311
312 struct arm_smmu_smr {
313         u8                              idx;
314         u16                             mask;
315         u16                             id;
316 };
317
318 struct arm_smmu_master {
319         struct device_node              *of_node;
320
321         /*
322          * The following is specific to the master's position in the
323          * SMMU chain.
324          */
325         struct rb_node                  node;
326         int                             num_streamids;
327         u16                             streamids[MAX_MASTER_STREAMIDS];
328
329         /*
330          * We only need to allocate these on the root SMMU, as we
331          * configure unmatched streams to bypass translation.
332          */
333         struct arm_smmu_smr             *smrs;
334 };
335
336 struct arm_smmu_device {
337         struct device                   *dev;
338         struct device_node              *parent_of_node;
339
340         void __iomem                    *base;
341         unsigned long                   size;
342         unsigned long                   pagesize;
343
344 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
345 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
346 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
347 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
348 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
349         u32                             features;
350         int                             version;
351
352         u32                             num_context_banks;
353         u32                             num_s2_context_banks;
354         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
355         atomic_t                        irptndx;
356
357         u32                             num_mapping_groups;
358         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
359
360         unsigned long                   input_size;
361         unsigned long                   s1_output_size;
362         unsigned long                   s2_output_size;
363
364         u32                             num_global_irqs;
365         u32                             num_context_irqs;
366         unsigned int                    *irqs;
367
368         DECLARE_BITMAP(vmid_map, ARM_SMMU_NUM_VMIDS);
369
370         struct list_head                list;
371         struct rb_root                  masters;
372 };
373
374 struct arm_smmu_cfg {
375         struct arm_smmu_device          *smmu;
376         u8                              vmid;
377         u8                              cbndx;
378         u8                              irptndx;
379         u32                             cbar;
380         pgd_t                           *pgd;
381 };
382
383 struct arm_smmu_domain {
384         /*
385          * A domain can span across multiple, chained SMMUs and requires
386          * all devices within the domain to follow the same translation
387          * path.
388          */
389         struct arm_smmu_device          *leaf_smmu;
390         struct arm_smmu_cfg             root_cfg;
391         phys_addr_t                     output_mask;
392
393         spinlock_t                      lock;
394 };
395
396 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
397 static LIST_HEAD(arm_smmu_devices);
398
399 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
400                                                 struct device_node *dev_node)
401 {
402         struct rb_node *node = smmu->masters.rb_node;
403
404         while (node) {
405                 struct arm_smmu_master *master;
406                 master = container_of(node, struct arm_smmu_master, node);
407
408                 if (dev_node < master->of_node)
409                         node = node->rb_left;
410                 else if (dev_node > master->of_node)
411                         node = node->rb_right;
412                 else
413                         return master;
414         }
415
416         return NULL;
417 }
418
419 static int insert_smmu_master(struct arm_smmu_device *smmu,
420                               struct arm_smmu_master *master)
421 {
422         struct rb_node **new, *parent;
423
424         new = &smmu->masters.rb_node;
425         parent = NULL;
426         while (*new) {
427                 struct arm_smmu_master *this;
428                 this = container_of(*new, struct arm_smmu_master, node);
429
430                 parent = *new;
431                 if (master->of_node < this->of_node)
432                         new = &((*new)->rb_left);
433                 else if (master->of_node > this->of_node)
434                         new = &((*new)->rb_right);
435                 else
436                         return -EEXIST;
437         }
438
439         rb_link_node(&master->node, parent, new);
440         rb_insert_color(&master->node, &smmu->masters);
441         return 0;
442 }
443
444 static int register_smmu_master(struct arm_smmu_device *smmu,
445                                 struct device *dev,
446                                 struct of_phandle_args *masterspec)
447 {
448         int i;
449         struct arm_smmu_master *master;
450
451         master = find_smmu_master(smmu, masterspec->np);
452         if (master) {
453                 dev_err(dev,
454                         "rejecting multiple registrations for master device %s\n",
455                         masterspec->np->name);
456                 return -EBUSY;
457         }
458
459         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
460                 dev_err(dev,
461                         "reached maximum number (%d) of stream IDs for master device %s\n",
462                         MAX_MASTER_STREAMIDS, masterspec->np->name);
463                 return -ENOSPC;
464         }
465
466         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
467         if (!master)
468                 return -ENOMEM;
469
470         master->of_node         = masterspec->np;
471         master->num_streamids   = masterspec->args_count;
472
473         for (i = 0; i < master->num_streamids; ++i)
474                 master->streamids[i] = masterspec->args[i];
475
476         return insert_smmu_master(smmu, master);
477 }
478
479 static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
480 {
481         struct arm_smmu_device *parent;
482
483         if (!smmu->parent_of_node)
484                 return NULL;
485
486         spin_lock(&arm_smmu_devices_lock);
487         list_for_each_entry(parent, &arm_smmu_devices, list)
488                 if (parent->dev->of_node == smmu->parent_of_node)
489                         goto out_unlock;
490
491         parent = NULL;
492         dev_warn(smmu->dev,
493                  "Failed to find SMMU parent despite parent in DT\n");
494 out_unlock:
495         spin_unlock(&arm_smmu_devices_lock);
496         return parent;
497 }
498
499 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
500 {
501         int idx;
502
503         do {
504                 idx = find_next_zero_bit(map, end, start);
505                 if (idx == end)
506                         return -ENOSPC;
507         } while (test_and_set_bit(idx, map));
508
509         return idx;
510 }
511
512 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
513 {
514         clear_bit(idx, map);
515 }
516
517 /* Wait for any pending TLB invalidations to complete */
518 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
519 {
520         int count = 0;
521         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
522
523         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
524         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
525                & sTLBGSTATUS_GSACTIVE) {
526                 cpu_relax();
527                 if (++count == TLB_LOOP_TIMEOUT) {
528                         dev_err_ratelimited(smmu->dev,
529                         "TLB sync timed out -- SMMU may be deadlocked\n");
530                         return;
531                 }
532                 udelay(1);
533         }
534 }
535
536 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
537 {
538         int flags, ret;
539         u32 fsr, far, fsynr, resume;
540         unsigned long iova;
541         struct iommu_domain *domain = dev;
542         struct arm_smmu_domain *smmu_domain = domain->priv;
543         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
544         struct arm_smmu_device *smmu = root_cfg->smmu;
545         void __iomem *cb_base;
546
547         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
548         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
549
550         if (!(fsr & FSR_FAULT))
551                 return IRQ_NONE;
552
553         if (fsr & FSR_IGN)
554                 dev_err_ratelimited(smmu->dev,
555                                     "Unexpected context fault (fsr 0x%u)\n",
556                                     fsr);
557
558         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
559         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
560
561         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
562         iova = far;
563 #ifdef CONFIG_64BIT
564         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
565         iova |= ((unsigned long)far << 32);
566 #endif
567
568         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
569                 ret = IRQ_HANDLED;
570                 resume = RESUME_RETRY;
571         } else {
572                 ret = IRQ_NONE;
573                 resume = RESUME_TERMINATE;
574         }
575
576         /* Clear the faulting FSR */
577         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
578
579         /* Retry or terminate any stalled transactions */
580         if (fsr & FSR_SS)
581                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
582
583         return ret;
584 }
585
586 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
587 {
588         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
589         struct arm_smmu_device *smmu = dev;
590         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
591
592         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
593         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
594         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
595         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
596
597         dev_err_ratelimited(smmu->dev,
598                 "Unexpected global fault, this could be serious\n");
599         dev_err_ratelimited(smmu->dev,
600                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
601                 gfsr, gfsynr0, gfsynr1, gfsynr2);
602
603         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
604         return IRQ_NONE;
605 }
606
607 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
608 {
609         u32 reg;
610         bool stage1;
611         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
612         struct arm_smmu_device *smmu = root_cfg->smmu;
613         void __iomem *cb_base, *gr0_base, *gr1_base;
614
615         gr0_base = ARM_SMMU_GR0(smmu);
616         gr1_base = ARM_SMMU_GR1(smmu);
617         stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
618         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
619
620         /* CBAR */
621         reg = root_cfg->cbar |
622               (root_cfg->vmid << CBAR_VMID_SHIFT);
623         if (smmu->version == 1)
624               reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
625
626         /* Use the weakest memory type, so it is overridden by the pte */
627         if (stage1)
628                 reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
629         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
630
631         if (smmu->version > 1) {
632                 /* CBA2R */
633 #ifdef CONFIG_64BIT
634                 reg = CBA2R_RW64_64BIT;
635 #else
636                 reg = CBA2R_RW64_32BIT;
637 #endif
638                 writel_relaxed(reg,
639                                gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
640
641                 /* TTBCR2 */
642                 switch (smmu->input_size) {
643                 case 32:
644                         reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
645                         break;
646                 case 36:
647                         reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
648                         break;
649                 case 39:
650                         reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
651                         break;
652                 case 42:
653                         reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
654                         break;
655                 case 44:
656                         reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
657                         break;
658                 case 48:
659                         reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
660                         break;
661                 }
662
663                 switch (smmu->s1_output_size) {
664                 case 32:
665                         reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
666                         break;
667                 case 36:
668                         reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
669                         break;
670                 case 39:
671                         reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
672                         break;
673                 case 42:
674                         reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
675                         break;
676                 case 44:
677                         reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
678                         break;
679                 case 48:
680                         reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
681                         break;
682                 }
683
684                 if (stage1)
685                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
686         }
687
688         /* TTBR0 */
689         reg = __pa(root_cfg->pgd);
690 #ifndef __BIG_ENDIAN
691         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
692         reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
693         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
694 #else
695         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
696         reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
697         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
698 #endif
699
700         /*
701          * TTBCR
702          * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
703          */
704         if (smmu->version > 1) {
705                 if (PAGE_SIZE == SZ_4K)
706                         reg = TTBCR_TG0_4K;
707                 else
708                         reg = TTBCR_TG0_64K;
709
710                 if (!stage1) {
711                         switch (smmu->s2_output_size) {
712                         case 32:
713                                 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
714                                 break;
715                         case 36:
716                                 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
717                                 break;
718                         case 40:
719                                 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
720                                 break;
721                         case 42:
722                                 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
723                                 break;
724                         case 44:
725                                 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
726                                 break;
727                         case 48:
728                                 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
729                                 break;
730                         }
731                 } else {
732                         reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
733                 }
734         } else {
735                 reg = 0;
736         }
737
738         reg |= TTBCR_EAE |
739               (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
740               (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
741               (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
742               (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
743         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
744
745         /* MAIR0 (stage-1 only) */
746         if (stage1) {
747                 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
748                       (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
749                       (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
750                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
751         }
752
753         /* Nuke the TLB */
754         writel_relaxed(root_cfg->vmid, gr0_base + ARM_SMMU_GR0_TLBIVMID);
755         arm_smmu_tlb_sync(smmu);
756
757         /* SCTLR */
758         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
759         if (stage1)
760                 reg |= SCTLR_S1_ASIDPNE;
761 #ifdef __BIG_ENDIAN
762         reg |= SCTLR_E;
763 #endif
764         writel(reg, cb_base + ARM_SMMU_CB_SCTLR);
765 }
766
767 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
768                                         struct device *dev)
769 {
770         int irq, ret, start;
771         struct arm_smmu_domain *smmu_domain = domain->priv;
772         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
773         struct arm_smmu_device *smmu, *parent;
774
775         /*
776          * Walk the SMMU chain to find the root device for this chain.
777          * We assume that no masters have translations which terminate
778          * early, and therefore check that the root SMMU does indeed have
779          * a StreamID for the master in question.
780          */
781         parent = dev->archdata.iommu;
782         smmu_domain->output_mask = -1;
783         do {
784                 smmu = parent;
785                 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
786         } while ((parent = find_parent_smmu(smmu)));
787
788         if (!find_smmu_master(smmu, dev->of_node)) {
789                 dev_err(dev, "unable to find root SMMU for device\n");
790                 return -ENODEV;
791         }
792
793         ret = __arm_smmu_alloc_bitmap(smmu->vmid_map, 0, ARM_SMMU_NUM_VMIDS);
794         if (IS_ERR_VALUE(ret))
795                 return ret;
796
797         root_cfg->vmid = ret;
798         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
799                 /*
800                  * We will likely want to change this if/when KVM gets
801                  * involved.
802                  */
803                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
804                 start = smmu->num_s2_context_banks;
805         } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
806                 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
807                 start = 0;
808         } else {
809                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
810                 start = smmu->num_s2_context_banks;
811         }
812
813         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
814                                       smmu->num_context_banks);
815         if (IS_ERR_VALUE(ret))
816                 goto out_free_vmid;
817
818         root_cfg->cbndx = ret;
819
820         if (smmu->version == 1) {
821                 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
822                 root_cfg->irptndx %= smmu->num_context_irqs;
823         } else {
824                 root_cfg->irptndx = root_cfg->cbndx;
825         }
826
827         irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
828         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
829                           "arm-smmu-context-fault", domain);
830         if (IS_ERR_VALUE(ret)) {
831                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
832                         root_cfg->irptndx, irq);
833                 root_cfg->irptndx = -1;
834                 goto out_free_context;
835         }
836
837         root_cfg->smmu = smmu;
838         arm_smmu_init_context_bank(smmu_domain);
839         return ret;
840
841 out_free_context:
842         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
843 out_free_vmid:
844         __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
845         return ret;
846 }
847
848 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
849 {
850         struct arm_smmu_domain *smmu_domain = domain->priv;
851         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
852         struct arm_smmu_device *smmu = root_cfg->smmu;
853         int irq;
854
855         if (!smmu)
856                 return;
857
858         if (root_cfg->irptndx != -1) {
859                 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
860                 free_irq(irq, domain);
861         }
862
863         __arm_smmu_free_bitmap(smmu->vmid_map, root_cfg->vmid);
864         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
865 }
866
867 static int arm_smmu_domain_init(struct iommu_domain *domain)
868 {
869         struct arm_smmu_domain *smmu_domain;
870         pgd_t *pgd;
871
872         /*
873          * Allocate the domain and initialise some of its data structures.
874          * We can't really do anything meaningful until we've added a
875          * master.
876          */
877         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
878         if (!smmu_domain)
879                 return -ENOMEM;
880
881         pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
882         if (!pgd)
883                 goto out_free_domain;
884         smmu_domain->root_cfg.pgd = pgd;
885
886         spin_lock_init(&smmu_domain->lock);
887         domain->priv = smmu_domain;
888         return 0;
889
890 out_free_domain:
891         kfree(smmu_domain);
892         return -ENOMEM;
893 }
894
895 static void arm_smmu_free_ptes(pmd_t *pmd)
896 {
897         pgtable_t table = pmd_pgtable(*pmd);
898         pgtable_page_dtor(table);
899         __free_page(table);
900 }
901
902 static void arm_smmu_free_pmds(pud_t *pud)
903 {
904         int i;
905         pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
906
907         pmd = pmd_base;
908         for (i = 0; i < PTRS_PER_PMD; ++i) {
909                 if (pmd_none(*pmd))
910                         continue;
911
912                 arm_smmu_free_ptes(pmd);
913                 pmd++;
914         }
915
916         pmd_free(NULL, pmd_base);
917 }
918
919 static void arm_smmu_free_puds(pgd_t *pgd)
920 {
921         int i;
922         pud_t *pud, *pud_base = pud_offset(pgd, 0);
923
924         pud = pud_base;
925         for (i = 0; i < PTRS_PER_PUD; ++i) {
926                 if (pud_none(*pud))
927                         continue;
928
929                 arm_smmu_free_pmds(pud);
930                 pud++;
931         }
932
933         pud_free(NULL, pud_base);
934 }
935
936 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
937 {
938         int i;
939         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
940         pgd_t *pgd, *pgd_base = root_cfg->pgd;
941
942         /*
943          * Recursively free the page tables for this domain. We don't
944          * care about speculative TLB filling, because the TLB will be
945          * nuked next time this context bank is re-allocated and no devices
946          * currently map to these tables.
947          */
948         pgd = pgd_base;
949         for (i = 0; i < PTRS_PER_PGD; ++i) {
950                 if (pgd_none(*pgd))
951                         continue;
952                 arm_smmu_free_puds(pgd);
953                 pgd++;
954         }
955
956         kfree(pgd_base);
957 }
958
959 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
960 {
961         struct arm_smmu_domain *smmu_domain = domain->priv;
962         arm_smmu_destroy_domain_context(domain);
963         arm_smmu_free_pgtables(smmu_domain);
964         kfree(smmu_domain);
965 }
966
967 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
968                                           struct arm_smmu_master *master)
969 {
970         int i;
971         struct arm_smmu_smr *smrs;
972         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
973
974         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
975                 return 0;
976
977         if (master->smrs)
978                 return -EEXIST;
979
980         smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
981         if (!smrs) {
982                 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
983                         master->num_streamids, master->of_node->name);
984                 return -ENOMEM;
985         }
986
987         /* Allocate the SMRs on the root SMMU */
988         for (i = 0; i < master->num_streamids; ++i) {
989                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
990                                                   smmu->num_mapping_groups);
991                 if (IS_ERR_VALUE(idx)) {
992                         dev_err(smmu->dev, "failed to allocate free SMR\n");
993                         goto err_free_smrs;
994                 }
995
996                 smrs[i] = (struct arm_smmu_smr) {
997                         .idx    = idx,
998                         .mask   = 0, /* We don't currently share SMRs */
999                         .id     = master->streamids[i],
1000                 };
1001         }
1002
1003         /* It worked! Now, poke the actual hardware */
1004         for (i = 0; i < master->num_streamids; ++i) {
1005                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1006                           smrs[i].mask << SMR_MASK_SHIFT;
1007                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1008         }
1009
1010         master->smrs = smrs;
1011         return 0;
1012
1013 err_free_smrs:
1014         while (--i >= 0)
1015                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1016         kfree(smrs);
1017         return -ENOSPC;
1018 }
1019
1020 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1021                                       struct arm_smmu_master *master)
1022 {
1023         int i;
1024         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1025         struct arm_smmu_smr *smrs = master->smrs;
1026
1027         /* Invalidate the SMRs before freeing back to the allocator */
1028         for (i = 0; i < master->num_streamids; ++i) {
1029                 u8 idx = smrs[i].idx;
1030                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1031                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1032         }
1033
1034         master->smrs = NULL;
1035         kfree(smrs);
1036 }
1037
1038 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1039                                            struct arm_smmu_master *master)
1040 {
1041         int i;
1042         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1043
1044         for (i = 0; i < master->num_streamids; ++i) {
1045                 u16 sid = master->streamids[i];
1046                 writel_relaxed(S2CR_TYPE_BYPASS,
1047                                gr0_base + ARM_SMMU_GR0_S2CR(sid));
1048         }
1049 }
1050
1051 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1052                                       struct arm_smmu_master *master)
1053 {
1054         int i, ret;
1055         struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1056         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1057
1058         ret = arm_smmu_master_configure_smrs(smmu, master);
1059         if (ret)
1060                 return ret;
1061
1062         /* Bypass the leaves */
1063         smmu = smmu_domain->leaf_smmu;
1064         while ((parent = find_parent_smmu(smmu))) {
1065                 /*
1066                  * We won't have a StreamID match for anything but the root
1067                  * smmu, so we only need to worry about StreamID indexing,
1068                  * where we must install bypass entries in the S2CRs.
1069                  */
1070                 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1071                         continue;
1072
1073                 arm_smmu_bypass_stream_mapping(smmu, master);
1074                 smmu = parent;
1075         }
1076
1077         /* Now we're at the root, time to point at our context bank */
1078         for (i = 0; i < master->num_streamids; ++i) {
1079                 u32 idx, s2cr;
1080                 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1081                 s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
1082                        (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1083                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1084         }
1085
1086         return 0;
1087 }
1088
1089 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1090                                           struct arm_smmu_master *master)
1091 {
1092         struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1093
1094         /*
1095          * We *must* clear the S2CR first, because freeing the SMR means
1096          * that it can be re-allocated immediately.
1097          */
1098         arm_smmu_bypass_stream_mapping(smmu, master);
1099         arm_smmu_master_free_smrs(smmu, master);
1100 }
1101
1102 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1103 {
1104         int ret = -EINVAL;
1105         struct arm_smmu_domain *smmu_domain = domain->priv;
1106         struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1107         struct arm_smmu_master *master;
1108
1109         if (!device_smmu) {
1110                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1111                 return -ENXIO;
1112         }
1113
1114         /*
1115          * Sanity check the domain. We don't currently support domains
1116          * that cross between different SMMU chains.
1117          */
1118         spin_lock(&smmu_domain->lock);
1119         if (!smmu_domain->leaf_smmu) {
1120                 /* Now that we have a master, we can finalise the domain */
1121                 ret = arm_smmu_init_domain_context(domain, dev);
1122                 if (IS_ERR_VALUE(ret))
1123                         goto err_unlock;
1124
1125                 smmu_domain->leaf_smmu = device_smmu;
1126         } else if (smmu_domain->leaf_smmu != device_smmu) {
1127                 dev_err(dev,
1128                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1129                         dev_name(smmu_domain->leaf_smmu->dev),
1130                         dev_name(device_smmu->dev));
1131                 goto err_unlock;
1132         }
1133         spin_unlock(&smmu_domain->lock);
1134
1135         /* Looks ok, so add the device to the domain */
1136         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1137         if (!master)
1138                 return -ENODEV;
1139
1140         return arm_smmu_domain_add_master(smmu_domain, master);
1141
1142 err_unlock:
1143         spin_unlock(&smmu_domain->lock);
1144         return ret;
1145 }
1146
1147 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1148 {
1149         struct arm_smmu_domain *smmu_domain = domain->priv;
1150         struct arm_smmu_master *master;
1151
1152         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1153         if (master)
1154                 arm_smmu_domain_remove_master(smmu_domain, master);
1155 }
1156
1157 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
1158                                    size_t size)
1159 {
1160         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
1161
1162         /*
1163          * If the SMMU can't walk tables in the CPU caches, treat them
1164          * like non-coherent DMA since we need to flush the new entries
1165          * all the way out to memory. There's no possibility of recursion
1166          * here as the SMMU table walker will not be wired through another
1167          * SMMU.
1168          */
1169         if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
1170                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
1171                              DMA_TO_DEVICE);
1172 }
1173
1174 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1175                                              unsigned long end)
1176 {
1177         return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1178                 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1179 }
1180
1181 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1182                                    unsigned long addr, unsigned long end,
1183                                    unsigned long pfn, int flags, int stage)
1184 {
1185         pte_t *pte, *start;
1186         pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
1187
1188         if (pmd_none(*pmd)) {
1189                 /* Allocate a new set of tables */
1190                 pgtable_t table = alloc_page(PGALLOC_GFP);
1191                 if (!table)
1192                         return -ENOMEM;
1193
1194                 arm_smmu_flush_pgtable(smmu, page_address(table),
1195                                        ARM_SMMU_PTE_HWTABLE_SIZE);
1196                 pgtable_page_ctor(table);
1197                 pmd_populate(NULL, pmd, table);
1198                 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1199         }
1200
1201         if (stage == 1) {
1202                 pteval |= ARM_SMMU_PTE_AP_UNPRIV;
1203                 if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
1204                         pteval |= ARM_SMMU_PTE_AP_RDONLY;
1205
1206                 if (flags & IOMMU_CACHE)
1207                         pteval |= (MAIR_ATTR_IDX_CACHE <<
1208                                    ARM_SMMU_PTE_ATTRINDX_SHIFT);
1209         } else {
1210                 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1211                 if (flags & IOMMU_READ)
1212                         pteval |= ARM_SMMU_PTE_HAP_READ;
1213                 if (flags & IOMMU_WRITE)
1214                         pteval |= ARM_SMMU_PTE_HAP_WRITE;
1215                 if (flags & IOMMU_CACHE)
1216                         pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1217                 else
1218                         pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1219         }
1220
1221         /* If no access, create a faulting entry to avoid TLB fills */
1222         if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
1223                 pteval &= ~ARM_SMMU_PTE_PAGE;
1224
1225         pteval |= ARM_SMMU_PTE_SH_IS;
1226         start = pmd_page_vaddr(*pmd) + pte_index(addr);
1227         pte = start;
1228
1229         /*
1230          * Install the page table entries. This is fairly complicated
1231          * since we attempt to make use of the contiguous hint in the
1232          * ptes where possible. The contiguous hint indicates a series
1233          * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1234          * contiguous region with the following constraints:
1235          *
1236          *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1237          *   - Each pte in the region has the contiguous hint bit set
1238          *
1239          * This complicates unmapping (also handled by this code, when
1240          * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1241          * possible, yet highly unlikely, that a client may unmap only
1242          * part of a contiguous range. This requires clearing of the
1243          * contiguous hint bits in the range before installing the new
1244          * faulting entries.
1245          *
1246          * Note that re-mapping an address range without first unmapping
1247          * it is not supported, so TLB invalidation is not required here
1248          * and is instead performed at unmap and domain-init time.
1249          */
1250         do {
1251                 int i = 1;
1252                 pteval &= ~ARM_SMMU_PTE_CONT;
1253
1254                 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1255                         i = ARM_SMMU_PTE_CONT_ENTRIES;
1256                         pteval |= ARM_SMMU_PTE_CONT;
1257                 } else if (pte_val(*pte) &
1258                            (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1259                         int j;
1260                         pte_t *cont_start;
1261                         unsigned long idx = pte_index(addr);
1262
1263                         idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1264                         cont_start = pmd_page_vaddr(*pmd) + idx;
1265                         for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1266                                 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1267
1268                         arm_smmu_flush_pgtable(smmu, cont_start,
1269                                                sizeof(*pte) *
1270                                                ARM_SMMU_PTE_CONT_ENTRIES);
1271                 }
1272
1273                 do {
1274                         *pte = pfn_pte(pfn, __pgprot(pteval));
1275                 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1276         } while (addr != end);
1277
1278         arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1279         return 0;
1280 }
1281
1282 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1283                                    unsigned long addr, unsigned long end,
1284                                    phys_addr_t phys, int flags, int stage)
1285 {
1286         int ret;
1287         pmd_t *pmd;
1288         unsigned long next, pfn = __phys_to_pfn(phys);
1289
1290 #ifndef __PAGETABLE_PMD_FOLDED
1291         if (pud_none(*pud)) {
1292                 pmd = pmd_alloc_one(NULL, addr);
1293                 if (!pmd)
1294                         return -ENOMEM;
1295         } else
1296 #endif
1297                 pmd = pmd_offset(pud, addr);
1298
1299         do {
1300                 next = pmd_addr_end(addr, end);
1301                 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
1302                                               flags, stage);
1303                 pud_populate(NULL, pud, pmd);
1304                 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1305                 phys += next - addr;
1306         } while (pmd++, addr = next, addr < end);
1307
1308         return ret;
1309 }
1310
1311 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1312                                    unsigned long addr, unsigned long end,
1313                                    phys_addr_t phys, int flags, int stage)
1314 {
1315         int ret = 0;
1316         pud_t *pud;
1317         unsigned long next;
1318
1319 #ifndef __PAGETABLE_PUD_FOLDED
1320         if (pgd_none(*pgd)) {
1321                 pud = pud_alloc_one(NULL, addr);
1322                 if (!pud)
1323                         return -ENOMEM;
1324         } else
1325 #endif
1326                 pud = pud_offset(pgd, addr);
1327
1328         do {
1329                 next = pud_addr_end(addr, end);
1330                 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1331                                               flags, stage);
1332                 pgd_populate(NULL, pud, pgd);
1333                 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1334                 phys += next - addr;
1335         } while (pud++, addr = next, addr < end);
1336
1337         return ret;
1338 }
1339
1340 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1341                                    unsigned long iova, phys_addr_t paddr,
1342                                    size_t size, int flags)
1343 {
1344         int ret, stage;
1345         unsigned long end;
1346         phys_addr_t input_mask, output_mask;
1347         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1348         pgd_t *pgd = root_cfg->pgd;
1349         struct arm_smmu_device *smmu = root_cfg->smmu;
1350
1351         if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1352                 stage = 2;
1353                 output_mask = (1ULL << smmu->s2_output_size) - 1;
1354         } else {
1355                 stage = 1;
1356                 output_mask = (1ULL << smmu->s1_output_size) - 1;
1357         }
1358
1359         if (!pgd)
1360                 return -EINVAL;
1361
1362         if (size & ~PAGE_MASK)
1363                 return -EINVAL;
1364
1365         input_mask = (1ULL << smmu->input_size) - 1;
1366         if ((phys_addr_t)iova & ~input_mask)
1367                 return -ERANGE;
1368
1369         if (paddr & ~output_mask)
1370                 return -ERANGE;
1371
1372         spin_lock(&smmu_domain->lock);
1373         pgd += pgd_index(iova);
1374         end = iova + size;
1375         do {
1376                 unsigned long next = pgd_addr_end(iova, end);
1377
1378                 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1379                                               flags, stage);
1380                 if (ret)
1381                         goto out_unlock;
1382
1383                 paddr += next - iova;
1384                 iova = next;
1385         } while (pgd++, iova != end);
1386
1387 out_unlock:
1388         spin_unlock(&smmu_domain->lock);
1389
1390         /* Ensure new page tables are visible to the hardware walker */
1391         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1392                 dsb();
1393
1394         return ret;
1395 }
1396
1397 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1398                         phys_addr_t paddr, size_t size, int flags)
1399 {
1400         struct arm_smmu_domain *smmu_domain = domain->priv;
1401         struct arm_smmu_device *smmu = smmu_domain->leaf_smmu;
1402
1403         if (!smmu_domain || !smmu)
1404                 return -ENODEV;
1405
1406         /* Check for silent address truncation up the SMMU chain. */
1407         if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1408                 return -ERANGE;
1409
1410         return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
1411 }
1412
1413 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1414                              size_t size)
1415 {
1416         int ret;
1417         struct arm_smmu_domain *smmu_domain = domain->priv;
1418         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1419         struct arm_smmu_device *smmu = root_cfg->smmu;
1420         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1421
1422         ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1423         writel_relaxed(root_cfg->vmid, gr0_base + ARM_SMMU_GR0_TLBIVMID);
1424         arm_smmu_tlb_sync(smmu);
1425         return ret ? ret : size;
1426 }
1427
1428 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1429                                          dma_addr_t iova)
1430 {
1431         pgd_t *pgd;
1432         pud_t *pud;
1433         pmd_t *pmd;
1434         pte_t *pte;
1435         struct arm_smmu_domain *smmu_domain = domain->priv;
1436         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1437         struct arm_smmu_device *smmu = root_cfg->smmu;
1438
1439         spin_lock(&smmu_domain->lock);
1440         pgd = root_cfg->pgd;
1441         if (!pgd)
1442                 goto err_unlock;
1443
1444         pgd += pgd_index(iova);
1445         if (pgd_none_or_clear_bad(pgd))
1446                 goto err_unlock;
1447
1448         pud = pud_offset(pgd, iova);
1449         if (pud_none_or_clear_bad(pud))
1450                 goto err_unlock;
1451
1452         pmd = pmd_offset(pud, iova);
1453         if (pmd_none_or_clear_bad(pmd))
1454                 goto err_unlock;
1455
1456         pte = pmd_page_vaddr(*pmd) + pte_index(iova);
1457         if (pte_none(pte))
1458                 goto err_unlock;
1459
1460         spin_unlock(&smmu_domain->lock);
1461         return __pfn_to_phys(pte_pfn(*pte)) | (iova & ~PAGE_MASK);
1462
1463 err_unlock:
1464         spin_unlock(&smmu_domain->lock);
1465         dev_warn(smmu->dev,
1466                  "invalid (corrupt?) page tables detected for iova 0x%llx\n",
1467                  (unsigned long long)iova);
1468         return -EINVAL;
1469 }
1470
1471 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1472                                    unsigned long cap)
1473 {
1474         unsigned long caps = 0;
1475         struct arm_smmu_domain *smmu_domain = domain->priv;
1476
1477         if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1478                 caps |= IOMMU_CAP_CACHE_COHERENCY;
1479
1480         return !!(cap & caps);
1481 }
1482
1483 static int arm_smmu_add_device(struct device *dev)
1484 {
1485         struct arm_smmu_device *child, *parent, *smmu;
1486         struct arm_smmu_master *master = NULL;
1487
1488         spin_lock(&arm_smmu_devices_lock);
1489         list_for_each_entry(parent, &arm_smmu_devices, list) {
1490                 smmu = parent;
1491
1492                 /* Try to find a child of the current SMMU. */
1493                 list_for_each_entry(child, &arm_smmu_devices, list) {
1494                         if (child->parent_of_node == parent->dev->of_node) {
1495                                 /* Does the child sit above our master? */
1496                                 master = find_smmu_master(child, dev->of_node);
1497                                 if (master) {
1498                                         smmu = NULL;
1499                                         break;
1500                                 }
1501                         }
1502                 }
1503
1504                 /* We found some children, so keep searching. */
1505                 if (!smmu) {
1506                         master = NULL;
1507                         continue;
1508                 }
1509
1510                 master = find_smmu_master(smmu, dev->of_node);
1511                 if (master)
1512                         break;
1513         }
1514         spin_unlock(&arm_smmu_devices_lock);
1515
1516         if (!master)
1517                 return -ENODEV;
1518
1519         dev->archdata.iommu = smmu;
1520         return 0;
1521 }
1522
1523 static void arm_smmu_remove_device(struct device *dev)
1524 {
1525         dev->archdata.iommu = NULL;
1526 }
1527
1528 static struct iommu_ops arm_smmu_ops = {
1529         .domain_init    = arm_smmu_domain_init,
1530         .domain_destroy = arm_smmu_domain_destroy,
1531         .attach_dev     = arm_smmu_attach_dev,
1532         .detach_dev     = arm_smmu_detach_dev,
1533         .map            = arm_smmu_map,
1534         .unmap          = arm_smmu_unmap,
1535         .iova_to_phys   = arm_smmu_iova_to_phys,
1536         .domain_has_cap = arm_smmu_domain_has_cap,
1537         .add_device     = arm_smmu_add_device,
1538         .remove_device  = arm_smmu_remove_device,
1539         .pgsize_bitmap  = (SECTION_SIZE |
1540                            ARM_SMMU_PTE_CONT_SIZE |
1541                            PAGE_SIZE),
1542 };
1543
1544 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1545 {
1546         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1547         int i = 0;
1548         u32 scr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);
1549
1550         /* Mark all SMRn as invalid and all S2CRn as bypass */
1551         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1552                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1553                 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1554         }
1555
1556         /* Invalidate the TLB, just in case */
1557         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1558         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1559         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1560
1561         /* Enable fault reporting */
1562         scr0 |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1563
1564         /* Disable TLB broadcasting. */
1565         scr0 |= (sCR0_VMIDPNE | sCR0_PTM);
1566
1567         /* Enable client access, but bypass when no mapping is found */
1568         scr0 &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1569
1570         /* Disable forced broadcasting */
1571         scr0 &= ~sCR0_FB;
1572
1573         /* Don't upgrade barriers */
1574         scr0 &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1575
1576         /* Push the button */
1577         arm_smmu_tlb_sync(smmu);
1578         writel(scr0, gr0_base + ARM_SMMU_GR0_sCR0);
1579 }
1580
1581 static int arm_smmu_id_size_to_bits(int size)
1582 {
1583         switch (size) {
1584         case 0:
1585                 return 32;
1586         case 1:
1587                 return 36;
1588         case 2:
1589                 return 40;
1590         case 3:
1591                 return 42;
1592         case 4:
1593                 return 44;
1594         case 5:
1595         default:
1596                 return 48;
1597         }
1598 }
1599
1600 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1601 {
1602         unsigned long size;
1603         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1604         u32 id;
1605
1606         dev_notice(smmu->dev, "probing hardware configuration...\n");
1607
1608         /* Primecell ID */
1609         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1610         smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1611         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1612
1613         /* ID0 */
1614         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1615 #ifndef CONFIG_64BIT
1616         if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1617                 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1618                 return -ENODEV;
1619         }
1620 #endif
1621         if (id & ID0_S1TS) {
1622                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1623                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1624         }
1625
1626         if (id & ID0_S2TS) {
1627                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1628                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1629         }
1630
1631         if (id & ID0_NTS) {
1632                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1633                 dev_notice(smmu->dev, "\tnested translation\n");
1634         }
1635
1636         if (!(smmu->features &
1637                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1638                  ARM_SMMU_FEAT_TRANS_NESTED))) {
1639                 dev_err(smmu->dev, "\tno translation support!\n");
1640                 return -ENODEV;
1641         }
1642
1643         if (id & ID0_CTTW) {
1644                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1645                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1646         }
1647
1648         if (id & ID0_SMS) {
1649                 u32 smr, sid, mask;
1650
1651                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1652                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1653                                            ID0_NUMSMRG_MASK;
1654                 if (smmu->num_mapping_groups == 0) {
1655                         dev_err(smmu->dev,
1656                                 "stream-matching supported, but no SMRs present!\n");
1657                         return -ENODEV;
1658                 }
1659
1660                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1661                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1662                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1663                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1664
1665                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1666                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1667                 if ((mask & sid) != sid) {
1668                         dev_err(smmu->dev,
1669                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1670                                 mask, sid);
1671                         return -ENODEV;
1672                 }
1673
1674                 dev_notice(smmu->dev,
1675                            "\tstream matching with %u register groups, mask 0x%x",
1676                            smmu->num_mapping_groups, mask);
1677         }
1678
1679         /* ID1 */
1680         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1681         smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1682
1683         /* Check that we ioremapped enough */
1684         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1685         size *= (smmu->pagesize << 1);
1686         if (smmu->size < size)
1687                 dev_warn(smmu->dev,
1688                          "device is 0x%lx bytes but only mapped 0x%lx!\n",
1689                          size, smmu->size);
1690
1691         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1692                                       ID1_NUMS2CB_MASK;
1693         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1694         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1695                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1696                 return -ENODEV;
1697         }
1698         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1699                    smmu->num_context_banks, smmu->num_s2_context_banks);
1700
1701         /* ID2 */
1702         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1703         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1704
1705         /*
1706          * Stage-1 output limited by stage-2 input size due to pgd
1707          * allocation (PTRS_PER_PGD).
1708          */
1709 #ifdef CONFIG_64BIT
1710         /* Current maximum output size of 39 bits */
1711         smmu->s1_output_size = min(39UL, size);
1712 #else
1713         smmu->s1_output_size = min(32UL, size);
1714 #endif
1715
1716         /* The stage-2 output mask is also applied for bypass */
1717         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1718         smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1719
1720         if (smmu->version == 1) {
1721                 smmu->input_size = 32;
1722         } else {
1723 #ifdef CONFIG_64BIT
1724                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1725                 size = min(39, arm_smmu_id_size_to_bits(size));
1726 #else
1727                 size = 32;
1728 #endif
1729                 smmu->input_size = size;
1730
1731                 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1732                     (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1733                     (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1734                         dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1735                                 PAGE_SIZE);
1736                         return -ENODEV;
1737                 }
1738         }
1739
1740         dev_notice(smmu->dev,
1741                    "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1742                    smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1743         return 0;
1744 }
1745
1746 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1747 {
1748         struct resource *res;
1749         struct arm_smmu_device *smmu;
1750         struct device_node *dev_node;
1751         struct device *dev = &pdev->dev;
1752         struct rb_node *node;
1753         struct of_phandle_args masterspec;
1754         int num_irqs, i, err;
1755
1756         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1757         if (!smmu) {
1758                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1759                 return -ENOMEM;
1760         }
1761         smmu->dev = dev;
1762
1763         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1764         if (!res) {
1765                 dev_err(dev, "missing base address/size\n");
1766                 return -ENODEV;
1767         }
1768
1769         smmu->size = resource_size(res);
1770         smmu->base = devm_request_and_ioremap(dev, res);
1771         if (!smmu->base)
1772                 return -EADDRNOTAVAIL;
1773
1774         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1775                                  &smmu->num_global_irqs)) {
1776                 dev_err(dev, "missing #global-interrupts property\n");
1777                 return -ENODEV;
1778         }
1779
1780         num_irqs = 0;
1781         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1782                 num_irqs++;
1783                 if (num_irqs > smmu->num_global_irqs)
1784                         smmu->num_context_irqs++;
1785         }
1786
1787         if (num_irqs < smmu->num_global_irqs) {
1788                 dev_warn(dev, "found %d interrupts but expected at least %d\n",
1789                          num_irqs, smmu->num_global_irqs);
1790                 smmu->num_global_irqs = num_irqs;
1791         }
1792         smmu->num_context_irqs = num_irqs - smmu->num_global_irqs;
1793
1794         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1795                                   GFP_KERNEL);
1796         if (!smmu->irqs) {
1797                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1798                 return -ENOMEM;
1799         }
1800
1801         for (i = 0; i < num_irqs; ++i) {
1802                 int irq = platform_get_irq(pdev, i);
1803                 if (irq < 0) {
1804                         dev_err(dev, "failed to get irq index %d\n", i);
1805                         return -ENODEV;
1806                 }
1807                 smmu->irqs[i] = irq;
1808         }
1809
1810         i = 0;
1811         smmu->masters = RB_ROOT;
1812         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1813                                            "#stream-id-cells", i,
1814                                            &masterspec)) {
1815                 err = register_smmu_master(smmu, dev, &masterspec);
1816                 if (err) {
1817                         dev_err(dev, "failed to add master %s\n",
1818                                 masterspec.np->name);
1819                         goto out_put_masters;
1820                 }
1821
1822                 i++;
1823         }
1824         dev_notice(dev, "registered %d master devices\n", i);
1825
1826         if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1827                 smmu->parent_of_node = dev_node;
1828
1829         err = arm_smmu_device_cfg_probe(smmu);
1830         if (err)
1831                 goto out_put_parent;
1832
1833         if (smmu->version > 1 &&
1834             smmu->num_context_banks != smmu->num_context_irqs) {
1835                 dev_err(dev,
1836                         "found only %d context interrupt(s) but %d required\n",
1837                         smmu->num_context_irqs, smmu->num_context_banks);
1838                 goto out_put_parent;
1839         }
1840
1841         arm_smmu_device_reset(smmu);
1842
1843         for (i = 0; i < smmu->num_global_irqs; ++i) {
1844                 err = request_irq(smmu->irqs[i],
1845                                   arm_smmu_global_fault,
1846                                   IRQF_SHARED,
1847                                   "arm-smmu global fault",
1848                                   smmu);
1849                 if (err) {
1850                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1851                                 i, smmu->irqs[i]);
1852                         goto out_free_irqs;
1853                 }
1854         }
1855
1856         INIT_LIST_HEAD(&smmu->list);
1857         spin_lock(&arm_smmu_devices_lock);
1858         list_add(&smmu->list, &arm_smmu_devices);
1859         spin_unlock(&arm_smmu_devices_lock);
1860         return 0;
1861
1862 out_free_irqs:
1863         while (i--)
1864                 free_irq(smmu->irqs[i], smmu);
1865
1866 out_put_parent:
1867         if (smmu->parent_of_node)
1868                 of_node_put(smmu->parent_of_node);
1869
1870 out_put_masters:
1871         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1872                 struct arm_smmu_master *master;
1873                 master = container_of(node, struct arm_smmu_master, node);
1874                 of_node_put(master->of_node);
1875         }
1876
1877         return err;
1878 }
1879
1880 static int arm_smmu_device_remove(struct platform_device *pdev)
1881 {
1882         int i;
1883         struct device *dev = &pdev->dev;
1884         struct arm_smmu_device *curr, *smmu = NULL;
1885         struct rb_node *node;
1886
1887         spin_lock(&arm_smmu_devices_lock);
1888         list_for_each_entry(curr, &arm_smmu_devices, list) {
1889                 if (curr->dev == dev) {
1890                         smmu = curr;
1891                         list_del(&smmu->list);
1892                         break;
1893                 }
1894         }
1895         spin_unlock(&arm_smmu_devices_lock);
1896
1897         if (!smmu)
1898                 return -ENODEV;
1899
1900         if (smmu->parent_of_node)
1901                 of_node_put(smmu->parent_of_node);
1902
1903         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1904                 struct arm_smmu_master *master;
1905                 master = container_of(node, struct arm_smmu_master, node);
1906                 of_node_put(master->of_node);
1907         }
1908
1909         if (!bitmap_empty(smmu->vmid_map, ARM_SMMU_NUM_VMIDS))
1910                 dev_err(dev, "removing device with active domains!\n");
1911
1912         for (i = 0; i < smmu->num_global_irqs; ++i)
1913                 free_irq(smmu->irqs[i], smmu);
1914
1915         /* Turn the thing off */
1916         writel(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
1917         return 0;
1918 }
1919
1920 #ifdef CONFIG_OF
1921 static struct of_device_id arm_smmu_of_match[] = {
1922         { .compatible = "arm,smmu-v1", },
1923         { .compatible = "arm,smmu-v2", },
1924         { .compatible = "arm,mmu-400", },
1925         { .compatible = "arm,mmu-500", },
1926         { },
1927 };
1928 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1929 #endif
1930
1931 static struct platform_driver arm_smmu_driver = {
1932         .driver = {
1933                 .owner          = THIS_MODULE,
1934                 .name           = "arm-smmu",
1935                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1936         },
1937         .probe  = arm_smmu_device_dt_probe,
1938         .remove = arm_smmu_device_remove,
1939 };
1940
1941 static int __init arm_smmu_init(void)
1942 {
1943         int ret;
1944
1945         ret = platform_driver_register(&arm_smmu_driver);
1946         if (ret)
1947                 return ret;
1948
1949         /* Oh, for a proper bus abstraction */
1950         if (!iommu_present(&platform_bus_type));
1951                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1952
1953         if (!iommu_present(&amba_bustype));
1954                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1955
1956         return 0;
1957 }
1958
1959 static void __exit arm_smmu_exit(void)
1960 {
1961         return platform_driver_unregister(&arm_smmu_driver);
1962 }
1963
1964 module_init(arm_smmu_init);
1965 module_exit(arm_smmu_exit);
1966
1967 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1968 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1969 MODULE_LICENSE("GPL v2");