]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/iommu/intel-iommu.c
Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[karo-tx-linux.git] / drivers / iommu / intel-iommu.c
1 /*
2  * Copyright © 2006-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * Authors: David Woodhouse <dwmw2@infradead.org>,
14  *          Ashok Raj <ashok.raj@intel.com>,
15  *          Shaohua Li <shaohua.li@intel.com>,
16  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17  *          Fenghua Yu <fenghua.yu@intel.com>
18  *          Joerg Roedel <jroedel@suse.de>
19  */
20
21 #define pr_fmt(fmt)     "DMAR: " fmt
22
23 #include <linux/init.h>
24 #include <linux/bitmap.h>
25 #include <linux/debugfs.h>
26 #include <linux/export.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/memory.h>
36 #include <linux/cpu.h>
37 #include <linux/timer.h>
38 #include <linux/io.h>
39 #include <linux/iova.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/tboot.h>
44 #include <linux/dmi.h>
45 #include <linux/pci-ats.h>
46 #include <linux/memblock.h>
47 #include <linux/dma-contiguous.h>
48 #include <linux/crash_dump.h>
49 #include <asm/irq_remapping.h>
50 #include <asm/cacheflush.h>
51 #include <asm/iommu.h>
52
53 #include "irq_remapping.h"
54
55 #define ROOT_SIZE               VTD_PAGE_SIZE
56 #define CONTEXT_SIZE            VTD_PAGE_SIZE
57
58 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
59 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
60 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
61 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
62
63 #define IOAPIC_RANGE_START      (0xfee00000)
64 #define IOAPIC_RANGE_END        (0xfeefffff)
65 #define IOVA_START_ADDR         (0x1000)
66
67 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
68
69 #define MAX_AGAW_WIDTH 64
70 #define MAX_AGAW_PFN_WIDTH      (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
71
72 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
73 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
74
75 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
76    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
77 #define DOMAIN_MAX_PFN(gaw)     ((unsigned long) min_t(uint64_t, \
78                                 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
79 #define DOMAIN_MAX_ADDR(gaw)    (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
80
81 /* IO virtual address start page frame number */
82 #define IOVA_START_PFN          (1)
83
84 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
85 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
86 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
87
88 /* page table handling */
89 #define LEVEL_STRIDE            (9)
90 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
91
92 /*
93  * This bitmap is used to advertise the page sizes our hardware support
94  * to the IOMMU core, which will then use this information to split
95  * physically contiguous memory regions it is mapping into page sizes
96  * that we support.
97  *
98  * Traditionally the IOMMU core just handed us the mappings directly,
99  * after making sure the size is an order of a 4KiB page and that the
100  * mapping has natural alignment.
101  *
102  * To retain this behavior, we currently advertise that we support
103  * all page sizes that are an order of 4KiB.
104  *
105  * If at some point we'd like to utilize the IOMMU core's new behavior,
106  * we could change this to advertise the real page sizes we support.
107  */
108 #define INTEL_IOMMU_PGSIZES     (~0xFFFUL)
109
110 static inline int agaw_to_level(int agaw)
111 {
112         return agaw + 2;
113 }
114
115 static inline int agaw_to_width(int agaw)
116 {
117         return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
118 }
119
120 static inline int width_to_agaw(int width)
121 {
122         return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
123 }
124
125 static inline unsigned int level_to_offset_bits(int level)
126 {
127         return (level - 1) * LEVEL_STRIDE;
128 }
129
130 static inline int pfn_level_offset(unsigned long pfn, int level)
131 {
132         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
133 }
134
135 static inline unsigned long level_mask(int level)
136 {
137         return -1UL << level_to_offset_bits(level);
138 }
139
140 static inline unsigned long level_size(int level)
141 {
142         return 1UL << level_to_offset_bits(level);
143 }
144
145 static inline unsigned long align_to_level(unsigned long pfn, int level)
146 {
147         return (pfn + level_size(level) - 1) & level_mask(level);
148 }
149
150 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
151 {
152         return  1 << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
153 }
154
155 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
156    are never going to work. */
157 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
158 {
159         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
160 }
161
162 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
163 {
164         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
165 }
166 static inline unsigned long page_to_dma_pfn(struct page *pg)
167 {
168         return mm_to_dma_pfn(page_to_pfn(pg));
169 }
170 static inline unsigned long virt_to_dma_pfn(void *p)
171 {
172         return page_to_dma_pfn(virt_to_page(p));
173 }
174
175 /* global iommu list, set NULL for ignored DMAR units */
176 static struct intel_iommu **g_iommus;
177
178 static void __init check_tylersburg_isoch(void);
179 static int rwbf_quirk;
180
181 /*
182  * set to 1 to panic kernel if can't successfully enable VT-d
183  * (used when kernel is launched w/ TXT)
184  */
185 static int force_on = 0;
186
187 /*
188  * 0: Present
189  * 1-11: Reserved
190  * 12-63: Context Ptr (12 - (haw-1))
191  * 64-127: Reserved
192  */
193 struct root_entry {
194         u64     lo;
195         u64     hi;
196 };
197 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
198
199 /*
200  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
201  * if marked present.
202  */
203 static phys_addr_t root_entry_lctp(struct root_entry *re)
204 {
205         if (!(re->lo & 1))
206                 return 0;
207
208         return re->lo & VTD_PAGE_MASK;
209 }
210
211 /*
212  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
213  * if marked present.
214  */
215 static phys_addr_t root_entry_uctp(struct root_entry *re)
216 {
217         if (!(re->hi & 1))
218                 return 0;
219
220         return re->hi & VTD_PAGE_MASK;
221 }
222 /*
223  * low 64 bits:
224  * 0: present
225  * 1: fault processing disable
226  * 2-3: translation type
227  * 12-63: address space root
228  * high 64 bits:
229  * 0-2: address width
230  * 3-6: aval
231  * 8-23: domain id
232  */
233 struct context_entry {
234         u64 lo;
235         u64 hi;
236 };
237
238 static inline void context_clear_pasid_enable(struct context_entry *context)
239 {
240         context->lo &= ~(1ULL << 11);
241 }
242
243 static inline bool context_pasid_enabled(struct context_entry *context)
244 {
245         return !!(context->lo & (1ULL << 11));
246 }
247
248 static inline void context_set_copied(struct context_entry *context)
249 {
250         context->hi |= (1ull << 3);
251 }
252
253 static inline bool context_copied(struct context_entry *context)
254 {
255         return !!(context->hi & (1ULL << 3));
256 }
257
258 static inline bool __context_present(struct context_entry *context)
259 {
260         return (context->lo & 1);
261 }
262
263 static inline bool context_present(struct context_entry *context)
264 {
265         return context_pasid_enabled(context) ?
266              __context_present(context) :
267              __context_present(context) && !context_copied(context);
268 }
269
270 static inline void context_set_present(struct context_entry *context)
271 {
272         context->lo |= 1;
273 }
274
275 static inline void context_set_fault_enable(struct context_entry *context)
276 {
277         context->lo &= (((u64)-1) << 2) | 1;
278 }
279
280 static inline void context_set_translation_type(struct context_entry *context,
281                                                 unsigned long value)
282 {
283         context->lo &= (((u64)-1) << 4) | 3;
284         context->lo |= (value & 3) << 2;
285 }
286
287 static inline void context_set_address_root(struct context_entry *context,
288                                             unsigned long value)
289 {
290         context->lo &= ~VTD_PAGE_MASK;
291         context->lo |= value & VTD_PAGE_MASK;
292 }
293
294 static inline void context_set_address_width(struct context_entry *context,
295                                              unsigned long value)
296 {
297         context->hi |= value & 7;
298 }
299
300 static inline void context_set_domain_id(struct context_entry *context,
301                                          unsigned long value)
302 {
303         context->hi |= (value & ((1 << 16) - 1)) << 8;
304 }
305
306 static inline int context_domain_id(struct context_entry *c)
307 {
308         return((c->hi >> 8) & 0xffff);
309 }
310
311 static inline void context_clear_entry(struct context_entry *context)
312 {
313         context->lo = 0;
314         context->hi = 0;
315 }
316
317 /*
318  * 0: readable
319  * 1: writable
320  * 2-6: reserved
321  * 7: super page
322  * 8-10: available
323  * 11: snoop behavior
324  * 12-63: Host physcial address
325  */
326 struct dma_pte {
327         u64 val;
328 };
329
330 static inline void dma_clear_pte(struct dma_pte *pte)
331 {
332         pte->val = 0;
333 }
334
335 static inline u64 dma_pte_addr(struct dma_pte *pte)
336 {
337 #ifdef CONFIG_64BIT
338         return pte->val & VTD_PAGE_MASK;
339 #else
340         /* Must have a full atomic 64-bit read */
341         return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
342 #endif
343 }
344
345 static inline bool dma_pte_present(struct dma_pte *pte)
346 {
347         return (pte->val & 3) != 0;
348 }
349
350 static inline bool dma_pte_superpage(struct dma_pte *pte)
351 {
352         return (pte->val & DMA_PTE_LARGE_PAGE);
353 }
354
355 static inline int first_pte_in_page(struct dma_pte *pte)
356 {
357         return !((unsigned long)pte & ~VTD_PAGE_MASK);
358 }
359
360 /*
361  * This domain is a statically identity mapping domain.
362  *      1. This domain creats a static 1:1 mapping to all usable memory.
363  *      2. It maps to each iommu if successful.
364  *      3. Each iommu mapps to this domain if successful.
365  */
366 static struct dmar_domain *si_domain;
367 static int hw_pass_through = 1;
368
369 /*
370  * Domain represents a virtual machine, more than one devices
371  * across iommus may be owned in one domain, e.g. kvm guest.
372  */
373 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 0)
374
375 /* si_domain contains mulitple devices */
376 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 1)
377
378 #define for_each_domain_iommu(idx, domain)                      \
379         for (idx = 0; idx < g_num_of_iommus; idx++)             \
380                 if (domain->iommu_refcnt[idx])
381
382 struct dmar_domain {
383         int     nid;                    /* node id */
384
385         unsigned        iommu_refcnt[DMAR_UNITS_SUPPORTED];
386                                         /* Refcount of devices per iommu */
387
388
389         u16             iommu_did[DMAR_UNITS_SUPPORTED];
390                                         /* Domain ids per IOMMU. Use u16 since
391                                          * domain ids are 16 bit wide according
392                                          * to VT-d spec, section 9.3 */
393
394         bool has_iotlb_device;
395         struct list_head devices;       /* all devices' list */
396         struct iova_domain iovad;       /* iova's that belong to this domain */
397
398         struct dma_pte  *pgd;           /* virtual address */
399         int             gaw;            /* max guest address width */
400
401         /* adjusted guest address width, 0 is level 2 30-bit */
402         int             agaw;
403
404         int             flags;          /* flags to find out type of domain */
405
406         int             iommu_coherency;/* indicate coherency of iommu access */
407         int             iommu_snooping; /* indicate snooping control feature*/
408         int             iommu_count;    /* reference count of iommu */
409         int             iommu_superpage;/* Level of superpages supported:
410                                            0 == 4KiB (no superpages), 1 == 2MiB,
411                                            2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
412         u64             max_addr;       /* maximum mapped address */
413
414         struct iommu_domain domain;     /* generic domain data structure for
415                                            iommu core */
416 };
417
418 /* PCI domain-device relationship */
419 struct device_domain_info {
420         struct list_head link;  /* link to domain siblings */
421         struct list_head global; /* link to global list */
422         u8 bus;                 /* PCI bus number */
423         u8 devfn;               /* PCI devfn number */
424         u8 pasid_supported:3;
425         u8 pasid_enabled:1;
426         u8 pri_supported:1;
427         u8 pri_enabled:1;
428         u8 ats_supported:1;
429         u8 ats_enabled:1;
430         u8 ats_qdep;
431         struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
432         struct intel_iommu *iommu; /* IOMMU used by this device */
433         struct dmar_domain *domain; /* pointer to domain */
434 };
435
436 struct dmar_rmrr_unit {
437         struct list_head list;          /* list of rmrr units   */
438         struct acpi_dmar_header *hdr;   /* ACPI header          */
439         u64     base_address;           /* reserved base address*/
440         u64     end_address;            /* reserved end address */
441         struct dmar_dev_scope *devices; /* target devices */
442         int     devices_cnt;            /* target device count */
443 };
444
445 struct dmar_atsr_unit {
446         struct list_head list;          /* list of ATSR units */
447         struct acpi_dmar_header *hdr;   /* ACPI header */
448         struct dmar_dev_scope *devices; /* target devices */
449         int devices_cnt;                /* target device count */
450         u8 include_all:1;               /* include all ports */
451 };
452
453 static LIST_HEAD(dmar_atsr_units);
454 static LIST_HEAD(dmar_rmrr_units);
455
456 #define for_each_rmrr_units(rmrr) \
457         list_for_each_entry(rmrr, &dmar_rmrr_units, list)
458
459 static void flush_unmaps_timeout(unsigned long data);
460
461 struct deferred_flush_entry {
462         unsigned long iova_pfn;
463         unsigned long nrpages;
464         struct dmar_domain *domain;
465         struct page *freelist;
466 };
467
468 #define HIGH_WATER_MARK 250
469 struct deferred_flush_table {
470         int next;
471         struct deferred_flush_entry entries[HIGH_WATER_MARK];
472 };
473
474 struct deferred_flush_data {
475         spinlock_t lock;
476         int timer_on;
477         struct timer_list timer;
478         long size;
479         struct deferred_flush_table *tables;
480 };
481
482 DEFINE_PER_CPU(struct deferred_flush_data, deferred_flush);
483
484 /* bitmap for indexing intel_iommus */
485 static int g_num_of_iommus;
486
487 static void domain_exit(struct dmar_domain *domain);
488 static void domain_remove_dev_info(struct dmar_domain *domain);
489 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
490                                      struct device *dev);
491 static void __dmar_remove_one_dev_info(struct device_domain_info *info);
492 static void domain_context_clear(struct intel_iommu *iommu,
493                                  struct device *dev);
494 static int domain_detach_iommu(struct dmar_domain *domain,
495                                struct intel_iommu *iommu);
496
497 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
498 int dmar_disabled = 0;
499 #else
500 int dmar_disabled = 1;
501 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
502
503 int intel_iommu_enabled = 0;
504 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
505
506 static int dmar_map_gfx = 1;
507 static int dmar_forcedac;
508 static int intel_iommu_strict;
509 static int intel_iommu_superpage = 1;
510 static int intel_iommu_ecs = 1;
511 static int intel_iommu_pasid28;
512 static int iommu_identity_mapping;
513
514 #define IDENTMAP_ALL            1
515 #define IDENTMAP_GFX            2
516 #define IDENTMAP_AZALIA         4
517
518 /* Broadwell and Skylake have broken ECS support — normal so-called "second
519  * level" translation of DMA requests-without-PASID doesn't actually happen
520  * unless you also set the NESTE bit in an extended context-entry. Which of
521  * course means that SVM doesn't work because it's trying to do nested
522  * translation of the physical addresses it finds in the process page tables,
523  * through the IOVA->phys mapping found in the "second level" page tables.
524  *
525  * The VT-d specification was retroactively changed to change the definition
526  * of the capability bits and pretend that Broadwell/Skylake never happened...
527  * but unfortunately the wrong bit was changed. It's ECS which is broken, but
528  * for some reason it was the PASID capability bit which was redefined (from
529  * bit 28 on BDW/SKL to bit 40 in future).
530  *
531  * So our test for ECS needs to eschew those implementations which set the old
532  * PASID capabiity bit 28, since those are the ones on which ECS is broken.
533  * Unless we are working around the 'pasid28' limitations, that is, by putting
534  * the device into passthrough mode for normal DMA and thus masking the bug.
535  */
536 #define ecs_enabled(iommu) (intel_iommu_ecs && ecap_ecs(iommu->ecap) && \
537                             (intel_iommu_pasid28 || !ecap_broken_pasid(iommu->ecap)))
538 /* PASID support is thus enabled if ECS is enabled and *either* of the old
539  * or new capability bits are set. */
540 #define pasid_enabled(iommu) (ecs_enabled(iommu) &&                     \
541                               (ecap_pasid(iommu->ecap) || ecap_broken_pasid(iommu->ecap)))
542
543 int intel_iommu_gfx_mapped;
544 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
545
546 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
547 static DEFINE_SPINLOCK(device_domain_lock);
548 static LIST_HEAD(device_domain_list);
549
550 static const struct iommu_ops intel_iommu_ops;
551
552 static bool translation_pre_enabled(struct intel_iommu *iommu)
553 {
554         return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
555 }
556
557 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
558 {
559         iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
560 }
561
562 static void init_translation_status(struct intel_iommu *iommu)
563 {
564         u32 gsts;
565
566         gsts = readl(iommu->reg + DMAR_GSTS_REG);
567         if (gsts & DMA_GSTS_TES)
568                 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
569 }
570
571 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
572 static struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
573 {
574         return container_of(dom, struct dmar_domain, domain);
575 }
576
577 static int __init intel_iommu_setup(char *str)
578 {
579         if (!str)
580                 return -EINVAL;
581         while (*str) {
582                 if (!strncmp(str, "on", 2)) {
583                         dmar_disabled = 0;
584                         pr_info("IOMMU enabled\n");
585                 } else if (!strncmp(str, "off", 3)) {
586                         dmar_disabled = 1;
587                         pr_info("IOMMU disabled\n");
588                 } else if (!strncmp(str, "igfx_off", 8)) {
589                         dmar_map_gfx = 0;
590                         pr_info("Disable GFX device mapping\n");
591                 } else if (!strncmp(str, "forcedac", 8)) {
592                         pr_info("Forcing DAC for PCI devices\n");
593                         dmar_forcedac = 1;
594                 } else if (!strncmp(str, "strict", 6)) {
595                         pr_info("Disable batched IOTLB flush\n");
596                         intel_iommu_strict = 1;
597                 } else if (!strncmp(str, "sp_off", 6)) {
598                         pr_info("Disable supported super page\n");
599                         intel_iommu_superpage = 0;
600                 } else if (!strncmp(str, "ecs_off", 7)) {
601                         printk(KERN_INFO
602                                 "Intel-IOMMU: disable extended context table support\n");
603                         intel_iommu_ecs = 0;
604                 } else if (!strncmp(str, "pasid28", 7)) {
605                         printk(KERN_INFO
606                                 "Intel-IOMMU: enable pre-production PASID support\n");
607                         intel_iommu_pasid28 = 1;
608                         iommu_identity_mapping |= IDENTMAP_GFX;
609                 }
610
611                 str += strcspn(str, ",");
612                 while (*str == ',')
613                         str++;
614         }
615         return 0;
616 }
617 __setup("intel_iommu=", intel_iommu_setup);
618
619 static struct kmem_cache *iommu_domain_cache;
620 static struct kmem_cache *iommu_devinfo_cache;
621
622 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
623 {
624         struct dmar_domain **domains;
625         int idx = did >> 8;
626
627         domains = iommu->domains[idx];
628         if (!domains)
629                 return NULL;
630
631         return domains[did & 0xff];
632 }
633
634 static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
635                              struct dmar_domain *domain)
636 {
637         struct dmar_domain **domains;
638         int idx = did >> 8;
639
640         if (!iommu->domains[idx]) {
641                 size_t size = 256 * sizeof(struct dmar_domain *);
642                 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
643         }
644
645         domains = iommu->domains[idx];
646         if (WARN_ON(!domains))
647                 return;
648         else
649                 domains[did & 0xff] = domain;
650 }
651
652 static inline void *alloc_pgtable_page(int node)
653 {
654         struct page *page;
655         void *vaddr = NULL;
656
657         page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
658         if (page)
659                 vaddr = page_address(page);
660         return vaddr;
661 }
662
663 static inline void free_pgtable_page(void *vaddr)
664 {
665         free_page((unsigned long)vaddr);
666 }
667
668 static inline void *alloc_domain_mem(void)
669 {
670         return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
671 }
672
673 static void free_domain_mem(void *vaddr)
674 {
675         kmem_cache_free(iommu_domain_cache, vaddr);
676 }
677
678 static inline void * alloc_devinfo_mem(void)
679 {
680         return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
681 }
682
683 static inline void free_devinfo_mem(void *vaddr)
684 {
685         kmem_cache_free(iommu_devinfo_cache, vaddr);
686 }
687
688 static inline int domain_type_is_vm(struct dmar_domain *domain)
689 {
690         return domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE;
691 }
692
693 static inline int domain_type_is_si(struct dmar_domain *domain)
694 {
695         return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
696 }
697
698 static inline int domain_type_is_vm_or_si(struct dmar_domain *domain)
699 {
700         return domain->flags & (DOMAIN_FLAG_VIRTUAL_MACHINE |
701                                 DOMAIN_FLAG_STATIC_IDENTITY);
702 }
703
704 static inline int domain_pfn_supported(struct dmar_domain *domain,
705                                        unsigned long pfn)
706 {
707         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
708
709         return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
710 }
711
712 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
713 {
714         unsigned long sagaw;
715         int agaw = -1;
716
717         sagaw = cap_sagaw(iommu->cap);
718         for (agaw = width_to_agaw(max_gaw);
719              agaw >= 0; agaw--) {
720                 if (test_bit(agaw, &sagaw))
721                         break;
722         }
723
724         return agaw;
725 }
726
727 /*
728  * Calculate max SAGAW for each iommu.
729  */
730 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
731 {
732         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
733 }
734
735 /*
736  * calculate agaw for each iommu.
737  * "SAGAW" may be different across iommus, use a default agaw, and
738  * get a supported less agaw for iommus that don't support the default agaw.
739  */
740 int iommu_calculate_agaw(struct intel_iommu *iommu)
741 {
742         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
743 }
744
745 /* This functionin only returns single iommu in a domain */
746 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
747 {
748         int iommu_id;
749
750         /* si_domain and vm domain should not get here. */
751         BUG_ON(domain_type_is_vm_or_si(domain));
752         for_each_domain_iommu(iommu_id, domain)
753                 break;
754
755         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
756                 return NULL;
757
758         return g_iommus[iommu_id];
759 }
760
761 static void domain_update_iommu_coherency(struct dmar_domain *domain)
762 {
763         struct dmar_drhd_unit *drhd;
764         struct intel_iommu *iommu;
765         bool found = false;
766         int i;
767
768         domain->iommu_coherency = 1;
769
770         for_each_domain_iommu(i, domain) {
771                 found = true;
772                 if (!ecap_coherent(g_iommus[i]->ecap)) {
773                         domain->iommu_coherency = 0;
774                         break;
775                 }
776         }
777         if (found)
778                 return;
779
780         /* No hardware attached; use lowest common denominator */
781         rcu_read_lock();
782         for_each_active_iommu(iommu, drhd) {
783                 if (!ecap_coherent(iommu->ecap)) {
784                         domain->iommu_coherency = 0;
785                         break;
786                 }
787         }
788         rcu_read_unlock();
789 }
790
791 static int domain_update_iommu_snooping(struct intel_iommu *skip)
792 {
793         struct dmar_drhd_unit *drhd;
794         struct intel_iommu *iommu;
795         int ret = 1;
796
797         rcu_read_lock();
798         for_each_active_iommu(iommu, drhd) {
799                 if (iommu != skip) {
800                         if (!ecap_sc_support(iommu->ecap)) {
801                                 ret = 0;
802                                 break;
803                         }
804                 }
805         }
806         rcu_read_unlock();
807
808         return ret;
809 }
810
811 static int domain_update_iommu_superpage(struct intel_iommu *skip)
812 {
813         struct dmar_drhd_unit *drhd;
814         struct intel_iommu *iommu;
815         int mask = 0xf;
816
817         if (!intel_iommu_superpage) {
818                 return 0;
819         }
820
821         /* set iommu_superpage to the smallest common denominator */
822         rcu_read_lock();
823         for_each_active_iommu(iommu, drhd) {
824                 if (iommu != skip) {
825                         mask &= cap_super_page_val(iommu->cap);
826                         if (!mask)
827                                 break;
828                 }
829         }
830         rcu_read_unlock();
831
832         return fls(mask);
833 }
834
835 /* Some capabilities may be different across iommus */
836 static void domain_update_iommu_cap(struct dmar_domain *domain)
837 {
838         domain_update_iommu_coherency(domain);
839         domain->iommu_snooping = domain_update_iommu_snooping(NULL);
840         domain->iommu_superpage = domain_update_iommu_superpage(NULL);
841 }
842
843 static inline struct context_entry *iommu_context_addr(struct intel_iommu *iommu,
844                                                        u8 bus, u8 devfn, int alloc)
845 {
846         struct root_entry *root = &iommu->root_entry[bus];
847         struct context_entry *context;
848         u64 *entry;
849
850         entry = &root->lo;
851         if (ecs_enabled(iommu)) {
852                 if (devfn >= 0x80) {
853                         devfn -= 0x80;
854                         entry = &root->hi;
855                 }
856                 devfn *= 2;
857         }
858         if (*entry & 1)
859                 context = phys_to_virt(*entry & VTD_PAGE_MASK);
860         else {
861                 unsigned long phy_addr;
862                 if (!alloc)
863                         return NULL;
864
865                 context = alloc_pgtable_page(iommu->node);
866                 if (!context)
867                         return NULL;
868
869                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
870                 phy_addr = virt_to_phys((void *)context);
871                 *entry = phy_addr | 1;
872                 __iommu_flush_cache(iommu, entry, sizeof(*entry));
873         }
874         return &context[devfn];
875 }
876
877 static int iommu_dummy(struct device *dev)
878 {
879         return dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
880 }
881
882 static struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
883 {
884         struct dmar_drhd_unit *drhd = NULL;
885         struct intel_iommu *iommu;
886         struct device *tmp;
887         struct pci_dev *ptmp, *pdev = NULL;
888         u16 segment = 0;
889         int i;
890
891         if (iommu_dummy(dev))
892                 return NULL;
893
894         if (dev_is_pci(dev)) {
895                 struct pci_dev *pf_pdev;
896
897                 pdev = to_pci_dev(dev);
898                 /* VFs aren't listed in scope tables; we need to look up
899                  * the PF instead to find the IOMMU. */
900                 pf_pdev = pci_physfn(pdev);
901                 dev = &pf_pdev->dev;
902                 segment = pci_domain_nr(pdev->bus);
903         } else if (has_acpi_companion(dev))
904                 dev = &ACPI_COMPANION(dev)->dev;
905
906         rcu_read_lock();
907         for_each_active_iommu(iommu, drhd) {
908                 if (pdev && segment != drhd->segment)
909                         continue;
910
911                 for_each_active_dev_scope(drhd->devices,
912                                           drhd->devices_cnt, i, tmp) {
913                         if (tmp == dev) {
914                                 /* For a VF use its original BDF# not that of the PF
915                                  * which we used for the IOMMU lookup. Strictly speaking
916                                  * we could do this for all PCI devices; we only need to
917                                  * get the BDF# from the scope table for ACPI matches. */
918                                 if (pdev->is_virtfn)
919                                         goto got_pdev;
920
921                                 *bus = drhd->devices[i].bus;
922                                 *devfn = drhd->devices[i].devfn;
923                                 goto out;
924                         }
925
926                         if (!pdev || !dev_is_pci(tmp))
927                                 continue;
928
929                         ptmp = to_pci_dev(tmp);
930                         if (ptmp->subordinate &&
931                             ptmp->subordinate->number <= pdev->bus->number &&
932                             ptmp->subordinate->busn_res.end >= pdev->bus->number)
933                                 goto got_pdev;
934                 }
935
936                 if (pdev && drhd->include_all) {
937                 got_pdev:
938                         *bus = pdev->bus->number;
939                         *devfn = pdev->devfn;
940                         goto out;
941                 }
942         }
943         iommu = NULL;
944  out:
945         rcu_read_unlock();
946
947         return iommu;
948 }
949
950 static void domain_flush_cache(struct dmar_domain *domain,
951                                void *addr, int size)
952 {
953         if (!domain->iommu_coherency)
954                 clflush_cache_range(addr, size);
955 }
956
957 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
958 {
959         struct context_entry *context;
960         int ret = 0;
961         unsigned long flags;
962
963         spin_lock_irqsave(&iommu->lock, flags);
964         context = iommu_context_addr(iommu, bus, devfn, 0);
965         if (context)
966                 ret = context_present(context);
967         spin_unlock_irqrestore(&iommu->lock, flags);
968         return ret;
969 }
970
971 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
972 {
973         struct context_entry *context;
974         unsigned long flags;
975
976         spin_lock_irqsave(&iommu->lock, flags);
977         context = iommu_context_addr(iommu, bus, devfn, 0);
978         if (context) {
979                 context_clear_entry(context);
980                 __iommu_flush_cache(iommu, context, sizeof(*context));
981         }
982         spin_unlock_irqrestore(&iommu->lock, flags);
983 }
984
985 static void free_context_table(struct intel_iommu *iommu)
986 {
987         int i;
988         unsigned long flags;
989         struct context_entry *context;
990
991         spin_lock_irqsave(&iommu->lock, flags);
992         if (!iommu->root_entry) {
993                 goto out;
994         }
995         for (i = 0; i < ROOT_ENTRY_NR; i++) {
996                 context = iommu_context_addr(iommu, i, 0, 0);
997                 if (context)
998                         free_pgtable_page(context);
999
1000                 if (!ecs_enabled(iommu))
1001                         continue;
1002
1003                 context = iommu_context_addr(iommu, i, 0x80, 0);
1004                 if (context)
1005                         free_pgtable_page(context);
1006
1007         }
1008         free_pgtable_page(iommu->root_entry);
1009         iommu->root_entry = NULL;
1010 out:
1011         spin_unlock_irqrestore(&iommu->lock, flags);
1012 }
1013
1014 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
1015                                       unsigned long pfn, int *target_level)
1016 {
1017         struct dma_pte *parent, *pte = NULL;
1018         int level = agaw_to_level(domain->agaw);
1019         int offset;
1020
1021         BUG_ON(!domain->pgd);
1022
1023         if (!domain_pfn_supported(domain, pfn))
1024                 /* Address beyond IOMMU's addressing capabilities. */
1025                 return NULL;
1026
1027         parent = domain->pgd;
1028
1029         while (1) {
1030                 void *tmp_page;
1031
1032                 offset = pfn_level_offset(pfn, level);
1033                 pte = &parent[offset];
1034                 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
1035                         break;
1036                 if (level == *target_level)
1037                         break;
1038
1039                 if (!dma_pte_present(pte)) {
1040                         uint64_t pteval;
1041
1042                         tmp_page = alloc_pgtable_page(domain->nid);
1043
1044                         if (!tmp_page)
1045                                 return NULL;
1046
1047                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
1048                         pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
1049                         if (cmpxchg64(&pte->val, 0ULL, pteval))
1050                                 /* Someone else set it while we were thinking; use theirs. */
1051                                 free_pgtable_page(tmp_page);
1052                         else
1053                                 domain_flush_cache(domain, pte, sizeof(*pte));
1054                 }
1055                 if (level == 1)
1056                         break;
1057
1058                 parent = phys_to_virt(dma_pte_addr(pte));
1059                 level--;
1060         }
1061
1062         if (!*target_level)
1063                 *target_level = level;
1064
1065         return pte;
1066 }
1067
1068
1069 /* return address's pte at specific level */
1070 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
1071                                          unsigned long pfn,
1072                                          int level, int *large_page)
1073 {
1074         struct dma_pte *parent, *pte = NULL;
1075         int total = agaw_to_level(domain->agaw);
1076         int offset;
1077
1078         parent = domain->pgd;
1079         while (level <= total) {
1080                 offset = pfn_level_offset(pfn, total);
1081                 pte = &parent[offset];
1082                 if (level == total)
1083                         return pte;
1084
1085                 if (!dma_pte_present(pte)) {
1086                         *large_page = total;
1087                         break;
1088                 }
1089
1090                 if (dma_pte_superpage(pte)) {
1091                         *large_page = total;
1092                         return pte;
1093                 }
1094
1095                 parent = phys_to_virt(dma_pte_addr(pte));
1096                 total--;
1097         }
1098         return NULL;
1099 }
1100
1101 /* clear last level pte, a tlb flush should be followed */
1102 static void dma_pte_clear_range(struct dmar_domain *domain,
1103                                 unsigned long start_pfn,
1104                                 unsigned long last_pfn)
1105 {
1106         unsigned int large_page = 1;
1107         struct dma_pte *first_pte, *pte;
1108
1109         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1110         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1111         BUG_ON(start_pfn > last_pfn);
1112
1113         /* we don't need lock here; nobody else touches the iova range */
1114         do {
1115                 large_page = 1;
1116                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1117                 if (!pte) {
1118                         start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1119                         continue;
1120                 }
1121                 do {
1122                         dma_clear_pte(pte);
1123                         start_pfn += lvl_to_nr_pages(large_page);
1124                         pte++;
1125                 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1126
1127                 domain_flush_cache(domain, first_pte,
1128                                    (void *)pte - (void *)first_pte);
1129
1130         } while (start_pfn && start_pfn <= last_pfn);
1131 }
1132
1133 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1134                                struct dma_pte *pte, unsigned long pfn,
1135                                unsigned long start_pfn, unsigned long last_pfn)
1136 {
1137         pfn = max(start_pfn, pfn);
1138         pte = &pte[pfn_level_offset(pfn, level)];
1139
1140         do {
1141                 unsigned long level_pfn;
1142                 struct dma_pte *level_pte;
1143
1144                 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1145                         goto next;
1146
1147                 level_pfn = pfn & level_mask(level - 1);
1148                 level_pte = phys_to_virt(dma_pte_addr(pte));
1149
1150                 if (level > 2)
1151                         dma_pte_free_level(domain, level - 1, level_pte,
1152                                            level_pfn, start_pfn, last_pfn);
1153
1154                 /* If range covers entire pagetable, free it */
1155                 if (!(start_pfn > level_pfn ||
1156                       last_pfn < level_pfn + level_size(level) - 1)) {
1157                         dma_clear_pte(pte);
1158                         domain_flush_cache(domain, pte, sizeof(*pte));
1159                         free_pgtable_page(level_pte);
1160                 }
1161 next:
1162                 pfn += level_size(level);
1163         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1164 }
1165
1166 /* clear last level (leaf) ptes and free page table pages. */
1167 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1168                                    unsigned long start_pfn,
1169                                    unsigned long last_pfn)
1170 {
1171         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1172         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1173         BUG_ON(start_pfn > last_pfn);
1174
1175         dma_pte_clear_range(domain, start_pfn, last_pfn);
1176
1177         /* We don't need lock here; nobody else touches the iova range */
1178         dma_pte_free_level(domain, agaw_to_level(domain->agaw),
1179                            domain->pgd, 0, start_pfn, last_pfn);
1180
1181         /* free pgd */
1182         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1183                 free_pgtable_page(domain->pgd);
1184                 domain->pgd = NULL;
1185         }
1186 }
1187
1188 /* When a page at a given level is being unlinked from its parent, we don't
1189    need to *modify* it at all. All we need to do is make a list of all the
1190    pages which can be freed just as soon as we've flushed the IOTLB and we
1191    know the hardware page-walk will no longer touch them.
1192    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1193    be freed. */
1194 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
1195                                             int level, struct dma_pte *pte,
1196                                             struct page *freelist)
1197 {
1198         struct page *pg;
1199
1200         pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1201         pg->freelist = freelist;
1202         freelist = pg;
1203
1204         if (level == 1)
1205                 return freelist;
1206
1207         pte = page_address(pg);
1208         do {
1209                 if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1210                         freelist = dma_pte_list_pagetables(domain, level - 1,
1211                                                            pte, freelist);
1212                 pte++;
1213         } while (!first_pte_in_page(pte));
1214
1215         return freelist;
1216 }
1217
1218 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
1219                                         struct dma_pte *pte, unsigned long pfn,
1220                                         unsigned long start_pfn,
1221                                         unsigned long last_pfn,
1222                                         struct page *freelist)
1223 {
1224         struct dma_pte *first_pte = NULL, *last_pte = NULL;
1225
1226         pfn = max(start_pfn, pfn);
1227         pte = &pte[pfn_level_offset(pfn, level)];
1228
1229         do {
1230                 unsigned long level_pfn;
1231
1232                 if (!dma_pte_present(pte))
1233                         goto next;
1234
1235                 level_pfn = pfn & level_mask(level);
1236
1237                 /* If range covers entire pagetable, free it */
1238                 if (start_pfn <= level_pfn &&
1239                     last_pfn >= level_pfn + level_size(level) - 1) {
1240                         /* These suborbinate page tables are going away entirely. Don't
1241                            bother to clear them; we're just going to *free* them. */
1242                         if (level > 1 && !dma_pte_superpage(pte))
1243                                 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1244
1245                         dma_clear_pte(pte);
1246                         if (!first_pte)
1247                                 first_pte = pte;
1248                         last_pte = pte;
1249                 } else if (level > 1) {
1250                         /* Recurse down into a level that isn't *entirely* obsolete */
1251                         freelist = dma_pte_clear_level(domain, level - 1,
1252                                                        phys_to_virt(dma_pte_addr(pte)),
1253                                                        level_pfn, start_pfn, last_pfn,
1254                                                        freelist);
1255                 }
1256 next:
1257                 pfn += level_size(level);
1258         } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1259
1260         if (first_pte)
1261                 domain_flush_cache(domain, first_pte,
1262                                    (void *)++last_pte - (void *)first_pte);
1263
1264         return freelist;
1265 }
1266
1267 /* We can't just free the pages because the IOMMU may still be walking
1268    the page tables, and may have cached the intermediate levels. The
1269    pages can only be freed after the IOTLB flush has been done. */
1270 static struct page *domain_unmap(struct dmar_domain *domain,
1271                                  unsigned long start_pfn,
1272                                  unsigned long last_pfn)
1273 {
1274         struct page *freelist = NULL;
1275
1276         BUG_ON(!domain_pfn_supported(domain, start_pfn));
1277         BUG_ON(!domain_pfn_supported(domain, last_pfn));
1278         BUG_ON(start_pfn > last_pfn);
1279
1280         /* we don't need lock here; nobody else touches the iova range */
1281         freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1282                                        domain->pgd, 0, start_pfn, last_pfn, NULL);
1283
1284         /* free pgd */
1285         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1286                 struct page *pgd_page = virt_to_page(domain->pgd);
1287                 pgd_page->freelist = freelist;
1288                 freelist = pgd_page;
1289
1290                 domain->pgd = NULL;
1291         }
1292
1293         return freelist;
1294 }
1295
1296 static void dma_free_pagelist(struct page *freelist)
1297 {
1298         struct page *pg;
1299
1300         while ((pg = freelist)) {
1301                 freelist = pg->freelist;
1302                 free_pgtable_page(page_address(pg));
1303         }
1304 }
1305
1306 /* iommu handling */
1307 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1308 {
1309         struct root_entry *root;
1310         unsigned long flags;
1311
1312         root = (struct root_entry *)alloc_pgtable_page(iommu->node);
1313         if (!root) {
1314                 pr_err("Allocating root entry for %s failed\n",
1315                         iommu->name);
1316                 return -ENOMEM;
1317         }
1318
1319         __iommu_flush_cache(iommu, root, ROOT_SIZE);
1320
1321         spin_lock_irqsave(&iommu->lock, flags);
1322         iommu->root_entry = root;
1323         spin_unlock_irqrestore(&iommu->lock, flags);
1324
1325         return 0;
1326 }
1327
1328 static void iommu_set_root_entry(struct intel_iommu *iommu)
1329 {
1330         u64 addr;
1331         u32 sts;
1332         unsigned long flag;
1333
1334         addr = virt_to_phys(iommu->root_entry);
1335         if (ecs_enabled(iommu))
1336                 addr |= DMA_RTADDR_RTT;
1337
1338         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1339         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1340
1341         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1342
1343         /* Make sure hardware complete it */
1344         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1345                       readl, (sts & DMA_GSTS_RTPS), sts);
1346
1347         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1348 }
1349
1350 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
1351 {
1352         u32 val;
1353         unsigned long flag;
1354
1355         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1356                 return;
1357
1358         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1359         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1360
1361         /* Make sure hardware complete it */
1362         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1363                       readl, (!(val & DMA_GSTS_WBFS)), val);
1364
1365         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1366 }
1367
1368 /* return value determine if we need a write buffer flush */
1369 static void __iommu_flush_context(struct intel_iommu *iommu,
1370                                   u16 did, u16 source_id, u8 function_mask,
1371                                   u64 type)
1372 {
1373         u64 val = 0;
1374         unsigned long flag;
1375
1376         switch (type) {
1377         case DMA_CCMD_GLOBAL_INVL:
1378                 val = DMA_CCMD_GLOBAL_INVL;
1379                 break;
1380         case DMA_CCMD_DOMAIN_INVL:
1381                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1382                 break;
1383         case DMA_CCMD_DEVICE_INVL:
1384                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1385                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1386                 break;
1387         default:
1388                 BUG();
1389         }
1390         val |= DMA_CCMD_ICC;
1391
1392         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1393         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1394
1395         /* Make sure hardware complete it */
1396         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1397                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1398
1399         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1400 }
1401
1402 /* return value determine if we need a write buffer flush */
1403 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1404                                 u64 addr, unsigned int size_order, u64 type)
1405 {
1406         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1407         u64 val = 0, val_iva = 0;
1408         unsigned long flag;
1409
1410         switch (type) {
1411         case DMA_TLB_GLOBAL_FLUSH:
1412                 /* global flush doesn't need set IVA_REG */
1413                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1414                 break;
1415         case DMA_TLB_DSI_FLUSH:
1416                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1417                 break;
1418         case DMA_TLB_PSI_FLUSH:
1419                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1420                 /* IH bit is passed in as part of address */
1421                 val_iva = size_order | addr;
1422                 break;
1423         default:
1424                 BUG();
1425         }
1426         /* Note: set drain read/write */
1427 #if 0
1428         /*
1429          * This is probably to be super secure.. Looks like we can
1430          * ignore it without any impact.
1431          */
1432         if (cap_read_drain(iommu->cap))
1433                 val |= DMA_TLB_READ_DRAIN;
1434 #endif
1435         if (cap_write_drain(iommu->cap))
1436                 val |= DMA_TLB_WRITE_DRAIN;
1437
1438         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1439         /* Note: Only uses first TLB reg currently */
1440         if (val_iva)
1441                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1442         dmar_writeq(iommu->reg + tlb_offset + 8, val);
1443
1444         /* Make sure hardware complete it */
1445         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1446                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1447
1448         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1449
1450         /* check IOTLB invalidation granularity */
1451         if (DMA_TLB_IAIG(val) == 0)
1452                 pr_err("Flush IOTLB failed\n");
1453         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1454                 pr_debug("TLB flush request %Lx, actual %Lx\n",
1455                         (unsigned long long)DMA_TLB_IIRG(type),
1456                         (unsigned long long)DMA_TLB_IAIG(val));
1457 }
1458
1459 static struct device_domain_info *
1460 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
1461                          u8 bus, u8 devfn)
1462 {
1463         struct device_domain_info *info;
1464
1465         assert_spin_locked(&device_domain_lock);
1466
1467         if (!iommu->qi)
1468                 return NULL;
1469
1470         list_for_each_entry(info, &domain->devices, link)
1471                 if (info->iommu == iommu && info->bus == bus &&
1472                     info->devfn == devfn) {
1473                         if (info->ats_supported && info->dev)
1474                                 return info;
1475                         break;
1476                 }
1477
1478         return NULL;
1479 }
1480
1481 static void domain_update_iotlb(struct dmar_domain *domain)
1482 {
1483         struct device_domain_info *info;
1484         bool has_iotlb_device = false;
1485
1486         assert_spin_locked(&device_domain_lock);
1487
1488         list_for_each_entry(info, &domain->devices, link) {
1489                 struct pci_dev *pdev;
1490
1491                 if (!info->dev || !dev_is_pci(info->dev))
1492                         continue;
1493
1494                 pdev = to_pci_dev(info->dev);
1495                 if (pdev->ats_enabled) {
1496                         has_iotlb_device = true;
1497                         break;
1498                 }
1499         }
1500
1501         domain->has_iotlb_device = has_iotlb_device;
1502 }
1503
1504 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1505 {
1506         struct pci_dev *pdev;
1507
1508         assert_spin_locked(&device_domain_lock);
1509
1510         if (!info || !dev_is_pci(info->dev))
1511                 return;
1512
1513         pdev = to_pci_dev(info->dev);
1514
1515 #ifdef CONFIG_INTEL_IOMMU_SVM
1516         /* The PCIe spec, in its wisdom, declares that the behaviour of
1517            the device if you enable PASID support after ATS support is
1518            undefined. So always enable PASID support on devices which
1519            have it, even if we can't yet know if we're ever going to
1520            use it. */
1521         if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1522                 info->pasid_enabled = 1;
1523
1524         if (info->pri_supported && !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
1525                 info->pri_enabled = 1;
1526 #endif
1527         if (info->ats_supported && !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1528                 info->ats_enabled = 1;
1529                 domain_update_iotlb(info->domain);
1530                 info->ats_qdep = pci_ats_queue_depth(pdev);
1531         }
1532 }
1533
1534 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1535 {
1536         struct pci_dev *pdev;
1537
1538         assert_spin_locked(&device_domain_lock);
1539
1540         if (!dev_is_pci(info->dev))
1541                 return;
1542
1543         pdev = to_pci_dev(info->dev);
1544
1545         if (info->ats_enabled) {
1546                 pci_disable_ats(pdev);
1547                 info->ats_enabled = 0;
1548                 domain_update_iotlb(info->domain);
1549         }
1550 #ifdef CONFIG_INTEL_IOMMU_SVM
1551         if (info->pri_enabled) {
1552                 pci_disable_pri(pdev);
1553                 info->pri_enabled = 0;
1554         }
1555         if (info->pasid_enabled) {
1556                 pci_disable_pasid(pdev);
1557                 info->pasid_enabled = 0;
1558         }
1559 #endif
1560 }
1561
1562 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1563                                   u64 addr, unsigned mask)
1564 {
1565         u16 sid, qdep;
1566         unsigned long flags;
1567         struct device_domain_info *info;
1568
1569         if (!domain->has_iotlb_device)
1570                 return;
1571
1572         spin_lock_irqsave(&device_domain_lock, flags);
1573         list_for_each_entry(info, &domain->devices, link) {
1574                 if (!info->ats_enabled)
1575                         continue;
1576
1577                 sid = info->bus << 8 | info->devfn;
1578                 qdep = info->ats_qdep;
1579                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1580         }
1581         spin_unlock_irqrestore(&device_domain_lock, flags);
1582 }
1583
1584 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1585                                   struct dmar_domain *domain,
1586                                   unsigned long pfn, unsigned int pages,
1587                                   int ih, int map)
1588 {
1589         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1590         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1591         u16 did = domain->iommu_did[iommu->seq_id];
1592
1593         BUG_ON(pages == 0);
1594
1595         if (ih)
1596                 ih = 1 << 6;
1597         /*
1598          * Fallback to domain selective flush if no PSI support or the size is
1599          * too big.
1600          * PSI requires page size to be 2 ^ x, and the base address is naturally
1601          * aligned to the size
1602          */
1603         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1604                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1605                                                 DMA_TLB_DSI_FLUSH);
1606         else
1607                 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1608                                                 DMA_TLB_PSI_FLUSH);
1609
1610         /*
1611          * In caching mode, changes of pages from non-present to present require
1612          * flush. However, device IOTLB doesn't need to be flushed in this case.
1613          */
1614         if (!cap_caching_mode(iommu->cap) || !map)
1615                 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
1616                                       addr, mask);
1617 }
1618
1619 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1620 {
1621         u32 pmen;
1622         unsigned long flags;
1623
1624         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1625         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1626         pmen &= ~DMA_PMEN_EPM;
1627         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1628
1629         /* wait for the protected region status bit to clear */
1630         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1631                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1632
1633         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1634 }
1635
1636 static void iommu_enable_translation(struct intel_iommu *iommu)
1637 {
1638         u32 sts;
1639         unsigned long flags;
1640
1641         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1642         iommu->gcmd |= DMA_GCMD_TE;
1643         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644
1645         /* Make sure hardware complete it */
1646         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1647                       readl, (sts & DMA_GSTS_TES), sts);
1648
1649         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1650 }
1651
1652 static void iommu_disable_translation(struct intel_iommu *iommu)
1653 {
1654         u32 sts;
1655         unsigned long flag;
1656
1657         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1658         iommu->gcmd &= ~DMA_GCMD_TE;
1659         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660
1661         /* Make sure hardware complete it */
1662         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663                       readl, (!(sts & DMA_GSTS_TES)), sts);
1664
1665         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666 }
1667
1668
1669 static int iommu_init_domains(struct intel_iommu *iommu)
1670 {
1671         u32 ndomains, nlongs;
1672         size_t size;
1673
1674         ndomains = cap_ndoms(iommu->cap);
1675         pr_debug("%s: Number of Domains supported <%d>\n",
1676                  iommu->name, ndomains);
1677         nlongs = BITS_TO_LONGS(ndomains);
1678
1679         spin_lock_init(&iommu->lock);
1680
1681         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1682         if (!iommu->domain_ids) {
1683                 pr_err("%s: Allocating domain id array failed\n",
1684                        iommu->name);
1685                 return -ENOMEM;
1686         }
1687
1688         size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
1689         iommu->domains = kzalloc(size, GFP_KERNEL);
1690
1691         if (iommu->domains) {
1692                 size = 256 * sizeof(struct dmar_domain *);
1693                 iommu->domains[0] = kzalloc(size, GFP_KERNEL);
1694         }
1695
1696         if (!iommu->domains || !iommu->domains[0]) {
1697                 pr_err("%s: Allocating domain array failed\n",
1698                        iommu->name);
1699                 kfree(iommu->domain_ids);
1700                 kfree(iommu->domains);
1701                 iommu->domain_ids = NULL;
1702                 iommu->domains    = NULL;
1703                 return -ENOMEM;
1704         }
1705
1706
1707
1708         /*
1709          * If Caching mode is set, then invalid translations are tagged
1710          * with domain-id 0, hence we need to pre-allocate it. We also
1711          * use domain-id 0 as a marker for non-allocated domain-id, so
1712          * make sure it is not used for a real domain.
1713          */
1714         set_bit(0, iommu->domain_ids);
1715
1716         return 0;
1717 }
1718
1719 static void disable_dmar_iommu(struct intel_iommu *iommu)
1720 {
1721         struct device_domain_info *info, *tmp;
1722         unsigned long flags;
1723
1724         if (!iommu->domains || !iommu->domain_ids)
1725                 return;
1726
1727 again:
1728         spin_lock_irqsave(&device_domain_lock, flags);
1729         list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
1730                 struct dmar_domain *domain;
1731
1732                 if (info->iommu != iommu)
1733                         continue;
1734
1735                 if (!info->dev || !info->domain)
1736                         continue;
1737
1738                 domain = info->domain;
1739
1740                 __dmar_remove_one_dev_info(info);
1741
1742                 if (!domain_type_is_vm_or_si(domain)) {
1743                         /*
1744                          * The domain_exit() function  can't be called under
1745                          * device_domain_lock, as it takes this lock itself.
1746                          * So release the lock here and re-run the loop
1747                          * afterwards.
1748                          */
1749                         spin_unlock_irqrestore(&device_domain_lock, flags);
1750                         domain_exit(domain);
1751                         goto again;
1752                 }
1753         }
1754         spin_unlock_irqrestore(&device_domain_lock, flags);
1755
1756         if (iommu->gcmd & DMA_GCMD_TE)
1757                 iommu_disable_translation(iommu);
1758 }
1759
1760 static void free_dmar_iommu(struct intel_iommu *iommu)
1761 {
1762         if ((iommu->domains) && (iommu->domain_ids)) {
1763                 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
1764                 int i;
1765
1766                 for (i = 0; i < elems; i++)
1767                         kfree(iommu->domains[i]);
1768                 kfree(iommu->domains);
1769                 kfree(iommu->domain_ids);
1770                 iommu->domains = NULL;
1771                 iommu->domain_ids = NULL;
1772         }
1773
1774         g_iommus[iommu->seq_id] = NULL;
1775
1776         /* free context mapping */
1777         free_context_table(iommu);
1778
1779 #ifdef CONFIG_INTEL_IOMMU_SVM
1780         if (pasid_enabled(iommu)) {
1781                 if (ecap_prs(iommu->ecap))
1782                         intel_svm_finish_prq(iommu);
1783                 intel_svm_free_pasid_tables(iommu);
1784         }
1785 #endif
1786 }
1787
1788 static struct dmar_domain *alloc_domain(int flags)
1789 {
1790         struct dmar_domain *domain;
1791
1792         domain = alloc_domain_mem();
1793         if (!domain)
1794                 return NULL;
1795
1796         memset(domain, 0, sizeof(*domain));
1797         domain->nid = -1;
1798         domain->flags = flags;
1799         domain->has_iotlb_device = false;
1800         INIT_LIST_HEAD(&domain->devices);
1801
1802         return domain;
1803 }
1804
1805 /* Must be called with iommu->lock */
1806 static int domain_attach_iommu(struct dmar_domain *domain,
1807                                struct intel_iommu *iommu)
1808 {
1809         unsigned long ndomains;
1810         int num;
1811
1812         assert_spin_locked(&device_domain_lock);
1813         assert_spin_locked(&iommu->lock);
1814
1815         domain->iommu_refcnt[iommu->seq_id] += 1;
1816         domain->iommu_count += 1;
1817         if (domain->iommu_refcnt[iommu->seq_id] == 1) {
1818                 ndomains = cap_ndoms(iommu->cap);
1819                 num      = find_first_zero_bit(iommu->domain_ids, ndomains);
1820
1821                 if (num >= ndomains) {
1822                         pr_err("%s: No free domain ids\n", iommu->name);
1823                         domain->iommu_refcnt[iommu->seq_id] -= 1;
1824                         domain->iommu_count -= 1;
1825                         return -ENOSPC;
1826                 }
1827
1828                 set_bit(num, iommu->domain_ids);
1829                 set_iommu_domain(iommu, num, domain);
1830
1831                 domain->iommu_did[iommu->seq_id] = num;
1832                 domain->nid                      = iommu->node;
1833
1834                 domain_update_iommu_cap(domain);
1835         }
1836
1837         return 0;
1838 }
1839
1840 static int domain_detach_iommu(struct dmar_domain *domain,
1841                                struct intel_iommu *iommu)
1842 {
1843         int num, count = INT_MAX;
1844
1845         assert_spin_locked(&device_domain_lock);
1846         assert_spin_locked(&iommu->lock);
1847
1848         domain->iommu_refcnt[iommu->seq_id] -= 1;
1849         count = --domain->iommu_count;
1850         if (domain->iommu_refcnt[iommu->seq_id] == 0) {
1851                 num = domain->iommu_did[iommu->seq_id];
1852                 clear_bit(num, iommu->domain_ids);
1853                 set_iommu_domain(iommu, num, NULL);
1854
1855                 domain_update_iommu_cap(domain);
1856                 domain->iommu_did[iommu->seq_id] = 0;
1857         }
1858
1859         return count;
1860 }
1861
1862 static struct iova_domain reserved_iova_list;
1863 static struct lock_class_key reserved_rbtree_key;
1864
1865 static int dmar_init_reserved_ranges(void)
1866 {
1867         struct pci_dev *pdev = NULL;
1868         struct iova *iova;
1869         int i;
1870
1871         init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN,
1872                         DMA_32BIT_PFN);
1873
1874         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1875                 &reserved_rbtree_key);
1876
1877         /* IOAPIC ranges shouldn't be accessed by DMA */
1878         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1879                 IOVA_PFN(IOAPIC_RANGE_END));
1880         if (!iova) {
1881                 pr_err("Reserve IOAPIC range failed\n");
1882                 return -ENODEV;
1883         }
1884
1885         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1886         for_each_pci_dev(pdev) {
1887                 struct resource *r;
1888
1889                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1890                         r = &pdev->resource[i];
1891                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1892                                 continue;
1893                         iova = reserve_iova(&reserved_iova_list,
1894                                             IOVA_PFN(r->start),
1895                                             IOVA_PFN(r->end));
1896                         if (!iova) {
1897                                 pr_err("Reserve iova failed\n");
1898                                 return -ENODEV;
1899                         }
1900                 }
1901         }
1902         return 0;
1903 }
1904
1905 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1906 {
1907         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1908 }
1909
1910 static inline int guestwidth_to_adjustwidth(int gaw)
1911 {
1912         int agaw;
1913         int r = (gaw - 12) % 9;
1914
1915         if (r == 0)
1916                 agaw = gaw;
1917         else
1918                 agaw = gaw + 9 - r;
1919         if (agaw > 64)
1920                 agaw = 64;
1921         return agaw;
1922 }
1923
1924 static int domain_init(struct dmar_domain *domain, struct intel_iommu *iommu,
1925                        int guest_width)
1926 {
1927         int adjust_width, agaw;
1928         unsigned long sagaw;
1929
1930         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
1931                         DMA_32BIT_PFN);
1932         domain_reserve_special_ranges(domain);
1933
1934         /* calculate AGAW */
1935         if (guest_width > cap_mgaw(iommu->cap))
1936                 guest_width = cap_mgaw(iommu->cap);
1937         domain->gaw = guest_width;
1938         adjust_width = guestwidth_to_adjustwidth(guest_width);
1939         agaw = width_to_agaw(adjust_width);
1940         sagaw = cap_sagaw(iommu->cap);
1941         if (!test_bit(agaw, &sagaw)) {
1942                 /* hardware doesn't support it, choose a bigger one */
1943                 pr_debug("Hardware doesn't support agaw %d\n", agaw);
1944                 agaw = find_next_bit(&sagaw, 5, agaw);
1945                 if (agaw >= 5)
1946                         return -ENODEV;
1947         }
1948         domain->agaw = agaw;
1949
1950         if (ecap_coherent(iommu->ecap))
1951                 domain->iommu_coherency = 1;
1952         else
1953                 domain->iommu_coherency = 0;
1954
1955         if (ecap_sc_support(iommu->ecap))
1956                 domain->iommu_snooping = 1;
1957         else
1958                 domain->iommu_snooping = 0;
1959
1960         if (intel_iommu_superpage)
1961                 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1962         else
1963                 domain->iommu_superpage = 0;
1964
1965         domain->nid = iommu->node;
1966
1967         /* always allocate the top pgd */
1968         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1969         if (!domain->pgd)
1970                 return -ENOMEM;
1971         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1972         return 0;
1973 }
1974
1975 static void domain_exit(struct dmar_domain *domain)
1976 {
1977         struct page *freelist = NULL;
1978
1979         /* Domain 0 is reserved, so dont process it */
1980         if (!domain)
1981                 return;
1982
1983         /* Flush any lazy unmaps that may reference this domain */
1984         if (!intel_iommu_strict) {
1985                 int cpu;
1986
1987                 for_each_possible_cpu(cpu)
1988                         flush_unmaps_timeout(cpu);
1989         }
1990
1991         /* Remove associated devices and clear attached or cached domains */
1992         rcu_read_lock();
1993         domain_remove_dev_info(domain);
1994         rcu_read_unlock();
1995
1996         /* destroy iovas */
1997         put_iova_domain(&domain->iovad);
1998
1999         freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
2000
2001         dma_free_pagelist(freelist);
2002
2003         free_domain_mem(domain);
2004 }
2005
2006 static int domain_context_mapping_one(struct dmar_domain *domain,
2007                                       struct intel_iommu *iommu,
2008                                       u8 bus, u8 devfn)
2009 {
2010         u16 did = domain->iommu_did[iommu->seq_id];
2011         int translation = CONTEXT_TT_MULTI_LEVEL;
2012         struct device_domain_info *info = NULL;
2013         struct context_entry *context;
2014         unsigned long flags;
2015         struct dma_pte *pgd;
2016         int ret, agaw;
2017
2018         WARN_ON(did == 0);
2019
2020         if (hw_pass_through && domain_type_is_si(domain))
2021                 translation = CONTEXT_TT_PASS_THROUGH;
2022
2023         pr_debug("Set context mapping for %02x:%02x.%d\n",
2024                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
2025
2026         BUG_ON(!domain->pgd);
2027
2028         spin_lock_irqsave(&device_domain_lock, flags);
2029         spin_lock(&iommu->lock);
2030
2031         ret = -ENOMEM;
2032         context = iommu_context_addr(iommu, bus, devfn, 1);
2033         if (!context)
2034                 goto out_unlock;
2035
2036         ret = 0;
2037         if (context_present(context))
2038                 goto out_unlock;
2039
2040         pgd = domain->pgd;
2041
2042         context_clear_entry(context);
2043         context_set_domain_id(context, did);
2044
2045         /*
2046          * Skip top levels of page tables for iommu which has less agaw
2047          * than default.  Unnecessary for PT mode.
2048          */
2049         if (translation != CONTEXT_TT_PASS_THROUGH) {
2050                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
2051                         ret = -ENOMEM;
2052                         pgd = phys_to_virt(dma_pte_addr(pgd));
2053                         if (!dma_pte_present(pgd))
2054                                 goto out_unlock;
2055                 }
2056
2057                 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
2058                 if (info && info->ats_supported)
2059                         translation = CONTEXT_TT_DEV_IOTLB;
2060                 else
2061                         translation = CONTEXT_TT_MULTI_LEVEL;
2062
2063                 context_set_address_root(context, virt_to_phys(pgd));
2064                 context_set_address_width(context, iommu->agaw);
2065         } else {
2066                 /*
2067                  * In pass through mode, AW must be programmed to
2068                  * indicate the largest AGAW value supported by
2069                  * hardware. And ASR is ignored by hardware.
2070                  */
2071                 context_set_address_width(context, iommu->msagaw);
2072         }
2073
2074         context_set_translation_type(context, translation);
2075         context_set_fault_enable(context);
2076         context_set_present(context);
2077         domain_flush_cache(domain, context, sizeof(*context));
2078
2079         /*
2080          * It's a non-present to present mapping. If hardware doesn't cache
2081          * non-present entry we only need to flush the write-buffer. If the
2082          * _does_ cache non-present entries, then it does so in the special
2083          * domain #0, which we have to flush:
2084          */
2085         if (cap_caching_mode(iommu->cap)) {
2086                 iommu->flush.flush_context(iommu, 0,
2087                                            (((u16)bus) << 8) | devfn,
2088                                            DMA_CCMD_MASK_NOBIT,
2089                                            DMA_CCMD_DEVICE_INVL);
2090                 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2091         } else {
2092                 iommu_flush_write_buffer(iommu);
2093         }
2094         iommu_enable_dev_iotlb(info);
2095
2096         ret = 0;
2097
2098 out_unlock:
2099         spin_unlock(&iommu->lock);
2100         spin_unlock_irqrestore(&device_domain_lock, flags);
2101
2102         return ret;
2103 }
2104
2105 struct domain_context_mapping_data {
2106         struct dmar_domain *domain;
2107         struct intel_iommu *iommu;
2108 };
2109
2110 static int domain_context_mapping_cb(struct pci_dev *pdev,
2111                                      u16 alias, void *opaque)
2112 {
2113         struct domain_context_mapping_data *data = opaque;
2114
2115         return domain_context_mapping_one(data->domain, data->iommu,
2116                                           PCI_BUS_NUM(alias), alias & 0xff);
2117 }
2118
2119 static int
2120 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2121 {
2122         struct intel_iommu *iommu;
2123         u8 bus, devfn;
2124         struct domain_context_mapping_data data;
2125
2126         iommu = device_to_iommu(dev, &bus, &devfn);
2127         if (!iommu)
2128                 return -ENODEV;
2129
2130         if (!dev_is_pci(dev))
2131                 return domain_context_mapping_one(domain, iommu, bus, devfn);
2132
2133         data.domain = domain;
2134         data.iommu = iommu;
2135
2136         return pci_for_each_dma_alias(to_pci_dev(dev),
2137                                       &domain_context_mapping_cb, &data);
2138 }
2139
2140 static int domain_context_mapped_cb(struct pci_dev *pdev,
2141                                     u16 alias, void *opaque)
2142 {
2143         struct intel_iommu *iommu = opaque;
2144
2145         return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
2146 }
2147
2148 static int domain_context_mapped(struct device *dev)
2149 {
2150         struct intel_iommu *iommu;
2151         u8 bus, devfn;
2152
2153         iommu = device_to_iommu(dev, &bus, &devfn);
2154         if (!iommu)
2155                 return -ENODEV;
2156
2157         if (!dev_is_pci(dev))
2158                 return device_context_mapped(iommu, bus, devfn);
2159
2160         return !pci_for_each_dma_alias(to_pci_dev(dev),
2161                                        domain_context_mapped_cb, iommu);
2162 }
2163
2164 /* Returns a number of VTD pages, but aligned to MM page size */
2165 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2166                                             size_t size)
2167 {
2168         host_addr &= ~PAGE_MASK;
2169         return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2170 }
2171
2172 /* Return largest possible superpage level for a given mapping */
2173 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2174                                           unsigned long iov_pfn,
2175                                           unsigned long phy_pfn,
2176                                           unsigned long pages)
2177 {
2178         int support, level = 1;
2179         unsigned long pfnmerge;
2180
2181         support = domain->iommu_superpage;
2182
2183         /* To use a large page, the virtual *and* physical addresses
2184            must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2185            of them will mean we have to use smaller pages. So just
2186            merge them and check both at once. */
2187         pfnmerge = iov_pfn | phy_pfn;
2188
2189         while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2190                 pages >>= VTD_STRIDE_SHIFT;
2191                 if (!pages)
2192                         break;
2193                 pfnmerge >>= VTD_STRIDE_SHIFT;
2194                 level++;
2195                 support--;
2196         }
2197         return level;
2198 }
2199
2200 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2201                             struct scatterlist *sg, unsigned long phys_pfn,
2202                             unsigned long nr_pages, int prot)
2203 {
2204         struct dma_pte *first_pte = NULL, *pte = NULL;
2205         phys_addr_t uninitialized_var(pteval);
2206         unsigned long sg_res = 0;
2207         unsigned int largepage_lvl = 0;
2208         unsigned long lvl_pages = 0;
2209
2210         BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
2211
2212         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2213                 return -EINVAL;
2214
2215         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
2216
2217         if (!sg) {
2218                 sg_res = nr_pages;
2219                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
2220         }
2221
2222         while (nr_pages > 0) {
2223                 uint64_t tmp;
2224
2225                 if (!sg_res) {
2226                         sg_res = aligned_nrpages(sg->offset, sg->length);
2227                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
2228                         sg->dma_length = sg->length;
2229                         pteval = page_to_phys(sg_page(sg)) | prot;
2230                         phys_pfn = pteval >> VTD_PAGE_SHIFT;
2231                 }
2232
2233                 if (!pte) {
2234                         largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
2235
2236                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
2237                         if (!pte)
2238                                 return -ENOMEM;
2239                         /* It is large page*/
2240                         if (largepage_lvl > 1) {
2241                                 unsigned long nr_superpages, end_pfn;
2242
2243                                 pteval |= DMA_PTE_LARGE_PAGE;
2244                                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2245
2246                                 nr_superpages = sg_res / lvl_pages;
2247                                 end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
2248
2249                                 /*
2250                                  * Ensure that old small page tables are
2251                                  * removed to make room for superpage(s).
2252                                  */
2253                                 dma_pte_free_pagetable(domain, iov_pfn, end_pfn);
2254                         } else {
2255                                 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2256                         }
2257
2258                 }
2259                 /* We don't need lock here, nobody else
2260                  * touches the iova range
2261                  */
2262                 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2263                 if (tmp) {
2264                         static int dumps = 5;
2265                         pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2266                                 iov_pfn, tmp, (unsigned long long)pteval);
2267                         if (dumps) {
2268                                 dumps--;
2269                                 debug_dma_dump_mappings(NULL);
2270                         }
2271                         WARN_ON(1);
2272                 }
2273
2274                 lvl_pages = lvl_to_nr_pages(largepage_lvl);
2275
2276                 BUG_ON(nr_pages < lvl_pages);
2277                 BUG_ON(sg_res < lvl_pages);
2278
2279                 nr_pages -= lvl_pages;
2280                 iov_pfn += lvl_pages;
2281                 phys_pfn += lvl_pages;
2282                 pteval += lvl_pages * VTD_PAGE_SIZE;
2283                 sg_res -= lvl_pages;
2284
2285                 /* If the next PTE would be the first in a new page, then we
2286                    need to flush the cache on the entries we've just written.
2287                    And then we'll need to recalculate 'pte', so clear it and
2288                    let it get set again in the if (!pte) block above.
2289
2290                    If we're done (!nr_pages) we need to flush the cache too.
2291
2292                    Also if we've been setting superpages, we may need to
2293                    recalculate 'pte' and switch back to smaller pages for the
2294                    end of the mapping, if the trailing size is not enough to
2295                    use another superpage (i.e. sg_res < lvl_pages). */
2296                 pte++;
2297                 if (!nr_pages || first_pte_in_page(pte) ||
2298                     (largepage_lvl > 1 && sg_res < lvl_pages)) {
2299                         domain_flush_cache(domain, first_pte,
2300                                            (void *)pte - (void *)first_pte);
2301                         pte = NULL;
2302                 }
2303
2304                 if (!sg_res && nr_pages)
2305                         sg = sg_next(sg);
2306         }
2307         return 0;
2308 }
2309
2310 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2311                                     struct scatterlist *sg, unsigned long nr_pages,
2312                                     int prot)
2313 {
2314         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
2315 }
2316
2317 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2318                                      unsigned long phys_pfn, unsigned long nr_pages,
2319                                      int prot)
2320 {
2321         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
2322 }
2323
2324 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
2325 {
2326         if (!iommu)
2327                 return;
2328
2329         clear_context_table(iommu, bus, devfn);
2330         iommu->flush.flush_context(iommu, 0, 0, 0,
2331                                            DMA_CCMD_GLOBAL_INVL);
2332         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2333 }
2334
2335 static inline void unlink_domain_info(struct device_domain_info *info)
2336 {
2337         assert_spin_locked(&device_domain_lock);
2338         list_del(&info->link);
2339         list_del(&info->global);
2340         if (info->dev)
2341                 info->dev->archdata.iommu = NULL;
2342 }
2343
2344 static void domain_remove_dev_info(struct dmar_domain *domain)
2345 {
2346         struct device_domain_info *info, *tmp;
2347         unsigned long flags;
2348
2349         spin_lock_irqsave(&device_domain_lock, flags);
2350         list_for_each_entry_safe(info, tmp, &domain->devices, link)
2351                 __dmar_remove_one_dev_info(info);
2352         spin_unlock_irqrestore(&device_domain_lock, flags);
2353 }
2354
2355 /*
2356  * find_domain
2357  * Note: we use struct device->archdata.iommu stores the info
2358  */
2359 static struct dmar_domain *find_domain(struct device *dev)
2360 {
2361         struct device_domain_info *info;
2362
2363         /* No lock here, assumes no domain exit in normal case */
2364         info = dev->archdata.iommu;
2365         if (info)
2366                 return info->domain;
2367         return NULL;
2368 }
2369
2370 static inline struct device_domain_info *
2371 dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
2372 {
2373         struct device_domain_info *info;
2374
2375         list_for_each_entry(info, &device_domain_list, global)
2376                 if (info->iommu->segment == segment && info->bus == bus &&
2377                     info->devfn == devfn)
2378                         return info;
2379
2380         return NULL;
2381 }
2382
2383 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
2384                                                     int bus, int devfn,
2385                                                     struct device *dev,
2386                                                     struct dmar_domain *domain)
2387 {
2388         struct dmar_domain *found = NULL;
2389         struct device_domain_info *info;
2390         unsigned long flags;
2391         int ret;
2392
2393         info = alloc_devinfo_mem();
2394         if (!info)
2395                 return NULL;
2396
2397         info->bus = bus;
2398         info->devfn = devfn;
2399         info->ats_supported = info->pasid_supported = info->pri_supported = 0;
2400         info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
2401         info->ats_qdep = 0;
2402         info->dev = dev;
2403         info->domain = domain;
2404         info->iommu = iommu;
2405
2406         if (dev && dev_is_pci(dev)) {
2407                 struct pci_dev *pdev = to_pci_dev(info->dev);
2408
2409                 if (ecap_dev_iotlb_support(iommu->ecap) &&
2410                     pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS) &&
2411                     dmar_find_matched_atsr_unit(pdev))
2412                         info->ats_supported = 1;
2413
2414                 if (ecs_enabled(iommu)) {
2415                         if (pasid_enabled(iommu)) {
2416                                 int features = pci_pasid_features(pdev);
2417                                 if (features >= 0)
2418                                         info->pasid_supported = features | 1;
2419                         }
2420
2421                         if (info->ats_supported && ecap_prs(iommu->ecap) &&
2422                             pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI))
2423                                 info->pri_supported = 1;
2424                 }
2425         }
2426
2427         spin_lock_irqsave(&device_domain_lock, flags);
2428         if (dev)
2429                 found = find_domain(dev);
2430
2431         if (!found) {
2432                 struct device_domain_info *info2;
2433                 info2 = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn);
2434                 if (info2) {
2435                         found      = info2->domain;
2436                         info2->dev = dev;
2437                 }
2438         }
2439
2440         if (found) {
2441                 spin_unlock_irqrestore(&device_domain_lock, flags);
2442                 free_devinfo_mem(info);
2443                 /* Caller must free the original domain */
2444                 return found;
2445         }
2446
2447         spin_lock(&iommu->lock);
2448         ret = domain_attach_iommu(domain, iommu);
2449         spin_unlock(&iommu->lock);
2450
2451         if (ret) {
2452                 spin_unlock_irqrestore(&device_domain_lock, flags);
2453                 free_devinfo_mem(info);
2454                 return NULL;
2455         }
2456
2457         list_add(&info->link, &domain->devices);
2458         list_add(&info->global, &device_domain_list);
2459         if (dev)
2460                 dev->archdata.iommu = info;
2461         spin_unlock_irqrestore(&device_domain_lock, flags);
2462
2463         if (dev && domain_context_mapping(domain, dev)) {
2464                 pr_err("Domain context map for %s failed\n", dev_name(dev));
2465                 dmar_remove_one_dev_info(domain, dev);
2466                 return NULL;
2467         }
2468
2469         return domain;
2470 }
2471
2472 static int get_last_alias(struct pci_dev *pdev, u16 alias, void *opaque)
2473 {
2474         *(u16 *)opaque = alias;
2475         return 0;
2476 }
2477
2478 static struct dmar_domain *find_or_alloc_domain(struct device *dev, int gaw)
2479 {
2480         struct device_domain_info *info = NULL;
2481         struct dmar_domain *domain = NULL;
2482         struct intel_iommu *iommu;
2483         u16 req_id, dma_alias;
2484         unsigned long flags;
2485         u8 bus, devfn;
2486
2487         iommu = device_to_iommu(dev, &bus, &devfn);
2488         if (!iommu)
2489                 return NULL;
2490
2491         req_id = ((u16)bus << 8) | devfn;
2492
2493         if (dev_is_pci(dev)) {
2494                 struct pci_dev *pdev = to_pci_dev(dev);
2495
2496                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2497
2498                 spin_lock_irqsave(&device_domain_lock, flags);
2499                 info = dmar_search_domain_by_dev_info(pci_domain_nr(pdev->bus),
2500                                                       PCI_BUS_NUM(dma_alias),
2501                                                       dma_alias & 0xff);
2502                 if (info) {
2503                         iommu = info->iommu;
2504                         domain = info->domain;
2505                 }
2506                 spin_unlock_irqrestore(&device_domain_lock, flags);
2507
2508                 /* DMA alias already has a domain, use it */
2509                 if (info)
2510                         goto out;
2511         }
2512
2513         /* Allocate and initialize new domain for the device */
2514         domain = alloc_domain(0);
2515         if (!domain)
2516                 return NULL;
2517         if (domain_init(domain, iommu, gaw)) {
2518                 domain_exit(domain);
2519                 return NULL;
2520         }
2521
2522 out:
2523
2524         return domain;
2525 }
2526
2527 static struct dmar_domain *set_domain_for_dev(struct device *dev,
2528                                               struct dmar_domain *domain)
2529 {
2530         struct intel_iommu *iommu;
2531         struct dmar_domain *tmp;
2532         u16 req_id, dma_alias;
2533         u8 bus, devfn;
2534
2535         iommu = device_to_iommu(dev, &bus, &devfn);
2536         if (!iommu)
2537                 return NULL;
2538
2539         req_id = ((u16)bus << 8) | devfn;
2540
2541         if (dev_is_pci(dev)) {
2542                 struct pci_dev *pdev = to_pci_dev(dev);
2543
2544                 pci_for_each_dma_alias(pdev, get_last_alias, &dma_alias);
2545
2546                 /* register PCI DMA alias device */
2547                 if (req_id != dma_alias) {
2548                         tmp = dmar_insert_one_dev_info(iommu, PCI_BUS_NUM(dma_alias),
2549                                         dma_alias & 0xff, NULL, domain);
2550
2551                         if (!tmp || tmp != domain)
2552                                 return tmp;
2553                 }
2554         }
2555
2556         tmp = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2557         if (!tmp || tmp != domain)
2558                 return tmp;
2559
2560         return domain;
2561 }
2562
2563 static struct dmar_domain *get_domain_for_dev(struct device *dev, int gaw)
2564 {
2565         struct dmar_domain *domain, *tmp;
2566
2567         domain = find_domain(dev);
2568         if (domain)
2569                 goto out;
2570
2571         domain = find_or_alloc_domain(dev, gaw);
2572         if (!domain)
2573                 goto out;
2574
2575         tmp = set_domain_for_dev(dev, domain);
2576         if (!tmp || domain != tmp) {
2577                 domain_exit(domain);
2578                 domain = tmp;
2579         }
2580
2581 out:
2582
2583         return domain;
2584 }
2585
2586 static int iommu_domain_identity_map(struct dmar_domain *domain,
2587                                      unsigned long long start,
2588                                      unsigned long long end)
2589 {
2590         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2591         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2592
2593         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2594                           dma_to_mm_pfn(last_vpfn))) {
2595                 pr_err("Reserving iova failed\n");
2596                 return -ENOMEM;
2597         }
2598
2599         pr_debug("Mapping reserved region %llx-%llx\n", start, end);
2600         /*
2601          * RMRR range might have overlap with physical memory range,
2602          * clear it first
2603          */
2604         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2605
2606         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2607                                   last_vpfn - first_vpfn + 1,
2608                                   DMA_PTE_READ|DMA_PTE_WRITE);
2609 }
2610
2611 static int domain_prepare_identity_map(struct device *dev,
2612                                        struct dmar_domain *domain,
2613                                        unsigned long long start,
2614                                        unsigned long long end)
2615 {
2616         /* For _hardware_ passthrough, don't bother. But for software
2617            passthrough, we do it anyway -- it may indicate a memory
2618            range which is reserved in E820, so which didn't get set
2619            up to start with in si_domain */
2620         if (domain == si_domain && hw_pass_through) {
2621                 pr_warn("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2622                         dev_name(dev), start, end);
2623                 return 0;
2624         }
2625
2626         pr_info("Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2627                 dev_name(dev), start, end);
2628
2629         if (end < start) {
2630                 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2631                         "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2632                         dmi_get_system_info(DMI_BIOS_VENDOR),
2633                         dmi_get_system_info(DMI_BIOS_VERSION),
2634                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2635                 return -EIO;
2636         }
2637
2638         if (end >> agaw_to_width(domain->agaw)) {
2639                 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2640                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2641                      agaw_to_width(domain->agaw),
2642                      dmi_get_system_info(DMI_BIOS_VENDOR),
2643                      dmi_get_system_info(DMI_BIOS_VERSION),
2644                      dmi_get_system_info(DMI_PRODUCT_VERSION));
2645                 return -EIO;
2646         }
2647
2648         return iommu_domain_identity_map(domain, start, end);
2649 }
2650
2651 static int iommu_prepare_identity_map(struct device *dev,
2652                                       unsigned long long start,
2653                                       unsigned long long end)
2654 {
2655         struct dmar_domain *domain;
2656         int ret;
2657
2658         domain = get_domain_for_dev(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2659         if (!domain)
2660                 return -ENOMEM;
2661
2662         ret = domain_prepare_identity_map(dev, domain, start, end);
2663         if (ret)
2664                 domain_exit(domain);
2665
2666         return ret;
2667 }
2668
2669 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2670                                          struct device *dev)
2671 {
2672         if (dev->archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2673                 return 0;
2674         return iommu_prepare_identity_map(dev, rmrr->base_address,
2675                                           rmrr->end_address);
2676 }
2677
2678 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2679 static inline void iommu_prepare_isa(void)
2680 {
2681         struct pci_dev *pdev;
2682         int ret;
2683
2684         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2685         if (!pdev)
2686                 return;
2687
2688         pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2689         ret = iommu_prepare_identity_map(&pdev->dev, 0, 16*1024*1024 - 1);
2690
2691         if (ret)
2692                 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2693
2694         pci_dev_put(pdev);
2695 }
2696 #else
2697 static inline void iommu_prepare_isa(void)
2698 {
2699         return;
2700 }
2701 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2702
2703 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2704
2705 static int __init si_domain_init(int hw)
2706 {
2707         int nid, ret = 0;
2708
2709         si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
2710         if (!si_domain)
2711                 return -EFAULT;
2712
2713         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2714                 domain_exit(si_domain);
2715                 return -EFAULT;
2716         }
2717
2718         pr_debug("Identity mapping domain allocated\n");
2719
2720         if (hw)
2721                 return 0;
2722
2723         for_each_online_node(nid) {
2724                 unsigned long start_pfn, end_pfn;
2725                 int i;
2726
2727                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2728                         ret = iommu_domain_identity_map(si_domain,
2729                                         PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2730                         if (ret)
2731                                 return ret;
2732                 }
2733         }
2734
2735         return 0;
2736 }
2737
2738 static int identity_mapping(struct device *dev)
2739 {
2740         struct device_domain_info *info;
2741
2742         if (likely(!iommu_identity_mapping))
2743                 return 0;
2744
2745         info = dev->archdata.iommu;
2746         if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2747                 return (info->domain == si_domain);
2748
2749         return 0;
2750 }
2751
2752 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
2753 {
2754         struct dmar_domain *ndomain;
2755         struct intel_iommu *iommu;
2756         u8 bus, devfn;
2757
2758         iommu = device_to_iommu(dev, &bus, &devfn);
2759         if (!iommu)
2760                 return -ENODEV;
2761
2762         ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
2763         if (ndomain != domain)
2764                 return -EBUSY;
2765
2766         return 0;
2767 }
2768
2769 static bool device_has_rmrr(struct device *dev)
2770 {
2771         struct dmar_rmrr_unit *rmrr;
2772         struct device *tmp;
2773         int i;
2774
2775         rcu_read_lock();
2776         for_each_rmrr_units(rmrr) {
2777                 /*
2778                  * Return TRUE if this RMRR contains the device that
2779                  * is passed in.
2780                  */
2781                 for_each_active_dev_scope(rmrr->devices,
2782                                           rmrr->devices_cnt, i, tmp)
2783                         if (tmp == dev) {
2784                                 rcu_read_unlock();
2785                                 return true;
2786                         }
2787         }
2788         rcu_read_unlock();
2789         return false;
2790 }
2791
2792 /*
2793  * There are a couple cases where we need to restrict the functionality of
2794  * devices associated with RMRRs.  The first is when evaluating a device for
2795  * identity mapping because problems exist when devices are moved in and out
2796  * of domains and their respective RMRR information is lost.  This means that
2797  * a device with associated RMRRs will never be in a "passthrough" domain.
2798  * The second is use of the device through the IOMMU API.  This interface
2799  * expects to have full control of the IOVA space for the device.  We cannot
2800  * satisfy both the requirement that RMRR access is maintained and have an
2801  * unencumbered IOVA space.  We also have no ability to quiesce the device's
2802  * use of the RMRR space or even inform the IOMMU API user of the restriction.
2803  * We therefore prevent devices associated with an RMRR from participating in
2804  * the IOMMU API, which eliminates them from device assignment.
2805  *
2806  * In both cases we assume that PCI USB devices with RMRRs have them largely
2807  * for historical reasons and that the RMRR space is not actively used post
2808  * boot.  This exclusion may change if vendors begin to abuse it.
2809  *
2810  * The same exception is made for graphics devices, with the requirement that
2811  * any use of the RMRR regions will be torn down before assigning the device
2812  * to a guest.
2813  */
2814 static bool device_is_rmrr_locked(struct device *dev)
2815 {
2816         if (!device_has_rmrr(dev))
2817                 return false;
2818
2819         if (dev_is_pci(dev)) {
2820                 struct pci_dev *pdev = to_pci_dev(dev);
2821
2822                 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2823                         return false;
2824         }
2825
2826         return true;
2827 }
2828
2829 static int iommu_should_identity_map(struct device *dev, int startup)
2830 {
2831
2832         if (dev_is_pci(dev)) {
2833                 struct pci_dev *pdev = to_pci_dev(dev);
2834
2835                 if (device_is_rmrr_locked(dev))
2836                         return 0;
2837
2838                 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2839                         return 1;
2840
2841                 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2842                         return 1;
2843
2844                 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2845                         return 0;
2846
2847                 /*
2848                  * We want to start off with all devices in the 1:1 domain, and
2849                  * take them out later if we find they can't access all of memory.
2850                  *
2851                  * However, we can't do this for PCI devices behind bridges,
2852                  * because all PCI devices behind the same bridge will end up
2853                  * with the same source-id on their transactions.
2854                  *
2855                  * Practically speaking, we can't change things around for these
2856                  * devices at run-time, because we can't be sure there'll be no
2857                  * DMA transactions in flight for any of their siblings.
2858                  *
2859                  * So PCI devices (unless they're on the root bus) as well as
2860                  * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2861                  * the 1:1 domain, just in _case_ one of their siblings turns out
2862                  * not to be able to map all of memory.
2863                  */
2864                 if (!pci_is_pcie(pdev)) {
2865                         if (!pci_is_root_bus(pdev->bus))
2866                                 return 0;
2867                         if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2868                                 return 0;
2869                 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2870                         return 0;
2871         } else {
2872                 if (device_has_rmrr(dev))
2873                         return 0;
2874         }
2875
2876         /*
2877          * At boot time, we don't yet know if devices will be 64-bit capable.
2878          * Assume that they will — if they turn out not to be, then we can
2879          * take them out of the 1:1 domain later.
2880          */
2881         if (!startup) {
2882                 /*
2883                  * If the device's dma_mask is less than the system's memory
2884                  * size then this is not a candidate for identity mapping.
2885                  */
2886                 u64 dma_mask = *dev->dma_mask;
2887
2888                 if (dev->coherent_dma_mask &&
2889                     dev->coherent_dma_mask < dma_mask)
2890                         dma_mask = dev->coherent_dma_mask;
2891
2892                 return dma_mask >= dma_get_required_mask(dev);
2893         }
2894
2895         return 1;
2896 }
2897
2898 static int __init dev_prepare_static_identity_mapping(struct device *dev, int hw)
2899 {
2900         int ret;
2901
2902         if (!iommu_should_identity_map(dev, 1))
2903                 return 0;
2904
2905         ret = domain_add_dev_info(si_domain, dev);
2906         if (!ret)
2907                 pr_info("%s identity mapping for device %s\n",
2908                         hw ? "Hardware" : "Software", dev_name(dev));
2909         else if (ret == -ENODEV)
2910                 /* device not associated with an iommu */
2911                 ret = 0;
2912
2913         return ret;
2914 }
2915
2916
2917 static int __init iommu_prepare_static_identity_mapping(int hw)
2918 {
2919         struct pci_dev *pdev = NULL;
2920         struct dmar_drhd_unit *drhd;
2921         struct intel_iommu *iommu;
2922         struct device *dev;
2923         int i;
2924         int ret = 0;
2925
2926         for_each_pci_dev(pdev) {
2927                 ret = dev_prepare_static_identity_mapping(&pdev->dev, hw);
2928                 if (ret)
2929                         return ret;
2930         }
2931
2932         for_each_active_iommu(iommu, drhd)
2933                 for_each_active_dev_scope(drhd->devices, drhd->devices_cnt, i, dev) {
2934                         struct acpi_device_physical_node *pn;
2935                         struct acpi_device *adev;
2936
2937                         if (dev->bus != &acpi_bus_type)
2938                                 continue;
2939
2940                         adev= to_acpi_device(dev);
2941                         mutex_lock(&adev->physical_node_lock);
2942                         list_for_each_entry(pn, &adev->physical_node_list, node) {
2943                                 ret = dev_prepare_static_identity_mapping(pn->dev, hw);
2944                                 if (ret)
2945                                         break;
2946                         }
2947                         mutex_unlock(&adev->physical_node_lock);
2948                         if (ret)
2949                                 return ret;
2950                 }
2951
2952         return 0;
2953 }
2954
2955 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2956 {
2957         /*
2958          * Start from the sane iommu hardware state.
2959          * If the queued invalidation is already initialized by us
2960          * (for example, while enabling interrupt-remapping) then
2961          * we got the things already rolling from a sane state.
2962          */
2963         if (!iommu->qi) {
2964                 /*
2965                  * Clear any previous faults.
2966                  */
2967                 dmar_fault(-1, iommu);
2968                 /*
2969                  * Disable queued invalidation if supported and already enabled
2970                  * before OS handover.
2971                  */
2972                 dmar_disable_qi(iommu);
2973         }
2974
2975         if (dmar_enable_qi(iommu)) {
2976                 /*
2977                  * Queued Invalidate not enabled, use Register Based Invalidate
2978                  */
2979                 iommu->flush.flush_context = __iommu_flush_context;
2980                 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2981                 pr_info("%s: Using Register based invalidation\n",
2982                         iommu->name);
2983         } else {
2984                 iommu->flush.flush_context = qi_flush_context;
2985                 iommu->flush.flush_iotlb = qi_flush_iotlb;
2986                 pr_info("%s: Using Queued invalidation\n", iommu->name);
2987         }
2988 }
2989
2990 static int copy_context_table(struct intel_iommu *iommu,
2991                               struct root_entry *old_re,
2992                               struct context_entry **tbl,
2993                               int bus, bool ext)
2994 {
2995         int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2996         struct context_entry *new_ce = NULL, ce;
2997         struct context_entry *old_ce = NULL;
2998         struct root_entry re;
2999         phys_addr_t old_ce_phys;
3000
3001         tbl_idx = ext ? bus * 2 : bus;
3002         memcpy(&re, old_re, sizeof(re));
3003
3004         for (devfn = 0; devfn < 256; devfn++) {
3005                 /* First calculate the correct index */
3006                 idx = (ext ? devfn * 2 : devfn) % 256;
3007
3008                 if (idx == 0) {
3009                         /* First save what we may have and clean up */
3010                         if (new_ce) {
3011                                 tbl[tbl_idx] = new_ce;
3012                                 __iommu_flush_cache(iommu, new_ce,
3013                                                     VTD_PAGE_SIZE);
3014                                 pos = 1;
3015                         }
3016
3017                         if (old_ce)
3018                                 iounmap(old_ce);
3019
3020                         ret = 0;
3021                         if (devfn < 0x80)
3022                                 old_ce_phys = root_entry_lctp(&re);
3023                         else
3024                                 old_ce_phys = root_entry_uctp(&re);
3025
3026                         if (!old_ce_phys) {
3027                                 if (ext && devfn == 0) {
3028                                         /* No LCTP, try UCTP */
3029                                         devfn = 0x7f;
3030                                         continue;
3031                                 } else {
3032                                         goto out;
3033                                 }
3034                         }
3035
3036                         ret = -ENOMEM;
3037                         old_ce = memremap(old_ce_phys, PAGE_SIZE,
3038                                         MEMREMAP_WB);
3039                         if (!old_ce)
3040                                 goto out;
3041
3042                         new_ce = alloc_pgtable_page(iommu->node);
3043                         if (!new_ce)
3044                                 goto out_unmap;
3045
3046                         ret = 0;
3047                 }
3048
3049                 /* Now copy the context entry */
3050                 memcpy(&ce, old_ce + idx, sizeof(ce));
3051
3052                 if (!__context_present(&ce))
3053                         continue;
3054
3055                 did = context_domain_id(&ce);
3056                 if (did >= 0 && did < cap_ndoms(iommu->cap))
3057                         set_bit(did, iommu->domain_ids);
3058
3059                 /*
3060                  * We need a marker for copied context entries. This
3061                  * marker needs to work for the old format as well as
3062                  * for extended context entries.
3063                  *
3064                  * Bit 67 of the context entry is used. In the old
3065                  * format this bit is available to software, in the
3066                  * extended format it is the PGE bit, but PGE is ignored
3067                  * by HW if PASIDs are disabled (and thus still
3068                  * available).
3069                  *
3070                  * So disable PASIDs first and then mark the entry
3071                  * copied. This means that we don't copy PASID
3072                  * translations from the old kernel, but this is fine as
3073                  * faults there are not fatal.
3074                  */
3075                 context_clear_pasid_enable(&ce);
3076                 context_set_copied(&ce);
3077
3078                 new_ce[idx] = ce;
3079         }
3080
3081         tbl[tbl_idx + pos] = new_ce;
3082
3083         __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
3084
3085 out_unmap:
3086         memunmap(old_ce);
3087
3088 out:
3089         return ret;
3090 }
3091
3092 static int copy_translation_tables(struct intel_iommu *iommu)
3093 {
3094         struct context_entry **ctxt_tbls;
3095         struct root_entry *old_rt;
3096         phys_addr_t old_rt_phys;
3097         int ctxt_table_entries;
3098         unsigned long flags;
3099         u64 rtaddr_reg;
3100         int bus, ret;
3101         bool new_ext, ext;
3102
3103         rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
3104         ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
3105         new_ext    = !!ecap_ecs(iommu->ecap);
3106
3107         /*
3108          * The RTT bit can only be changed when translation is disabled,
3109          * but disabling translation means to open a window for data
3110          * corruption. So bail out and don't copy anything if we would
3111          * have to change the bit.
3112          */
3113         if (new_ext != ext)
3114                 return -EINVAL;
3115
3116         old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
3117         if (!old_rt_phys)
3118                 return -EINVAL;
3119
3120         old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
3121         if (!old_rt)
3122                 return -ENOMEM;
3123
3124         /* This is too big for the stack - allocate it from slab */
3125         ctxt_table_entries = ext ? 512 : 256;
3126         ret = -ENOMEM;
3127         ctxt_tbls = kzalloc(ctxt_table_entries * sizeof(void *), GFP_KERNEL);
3128         if (!ctxt_tbls)
3129                 goto out_unmap;
3130
3131         for (bus = 0; bus < 256; bus++) {
3132                 ret = copy_context_table(iommu, &old_rt[bus],
3133                                          ctxt_tbls, bus, ext);
3134                 if (ret) {
3135                         pr_err("%s: Failed to copy context table for bus %d\n",
3136                                 iommu->name, bus);
3137                         continue;
3138                 }
3139         }
3140
3141         spin_lock_irqsave(&iommu->lock, flags);
3142
3143         /* Context tables are copied, now write them to the root_entry table */
3144         for (bus = 0; bus < 256; bus++) {
3145                 int idx = ext ? bus * 2 : bus;
3146                 u64 val;
3147
3148                 if (ctxt_tbls[idx]) {
3149                         val = virt_to_phys(ctxt_tbls[idx]) | 1;
3150                         iommu->root_entry[bus].lo = val;
3151                 }
3152
3153                 if (!ext || !ctxt_tbls[idx + 1])
3154                         continue;
3155
3156                 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
3157                 iommu->root_entry[bus].hi = val;
3158         }
3159
3160         spin_unlock_irqrestore(&iommu->lock, flags);
3161
3162         kfree(ctxt_tbls);
3163
3164         __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
3165
3166         ret = 0;
3167
3168 out_unmap:
3169         memunmap(old_rt);
3170
3171         return ret;
3172 }
3173
3174 static int __init init_dmars(void)
3175 {
3176         struct dmar_drhd_unit *drhd;
3177         struct dmar_rmrr_unit *rmrr;
3178         bool copied_tables = false;
3179         struct device *dev;
3180         struct intel_iommu *iommu;
3181         int i, ret, cpu;
3182
3183         /*
3184          * for each drhd
3185          *    allocate root
3186          *    initialize and program root entry to not present
3187          * endfor
3188          */
3189         for_each_drhd_unit(drhd) {
3190                 /*
3191                  * lock not needed as this is only incremented in the single
3192                  * threaded kernel __init code path all other access are read
3193                  * only
3194                  */
3195                 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
3196                         g_num_of_iommus++;
3197                         continue;
3198                 }
3199                 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
3200         }
3201
3202         /* Preallocate enough resources for IOMMU hot-addition */
3203         if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
3204                 g_num_of_iommus = DMAR_UNITS_SUPPORTED;
3205
3206         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
3207                         GFP_KERNEL);
3208         if (!g_iommus) {
3209                 pr_err("Allocating global iommu array failed\n");
3210                 ret = -ENOMEM;
3211                 goto error;
3212         }
3213
3214         for_each_possible_cpu(cpu) {
3215                 struct deferred_flush_data *dfd = per_cpu_ptr(&deferred_flush,
3216                                                               cpu);
3217
3218                 dfd->tables = kzalloc(g_num_of_iommus *
3219                                       sizeof(struct deferred_flush_table),
3220                                       GFP_KERNEL);
3221                 if (!dfd->tables) {
3222                         ret = -ENOMEM;
3223                         goto free_g_iommus;
3224                 }
3225
3226                 spin_lock_init(&dfd->lock);
3227                 setup_timer(&dfd->timer, flush_unmaps_timeout, cpu);
3228         }
3229
3230         for_each_active_iommu(iommu, drhd) {
3231                 g_iommus[iommu->seq_id] = iommu;
3232
3233                 intel_iommu_init_qi(iommu);
3234
3235                 ret = iommu_init_domains(iommu);
3236                 if (ret)
3237                         goto free_iommu;
3238
3239                 init_translation_status(iommu);
3240
3241                 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
3242                         iommu_disable_translation(iommu);
3243                         clear_translation_pre_enabled(iommu);
3244                         pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3245                                 iommu->name);
3246                 }
3247
3248                 /*
3249                  * TBD:
3250                  * we could share the same root & context tables
3251                  * among all IOMMU's. Need to Split it later.
3252                  */
3253                 ret = iommu_alloc_root_entry(iommu);
3254                 if (ret)
3255                         goto free_iommu;
3256
3257                 if (translation_pre_enabled(iommu)) {
3258                         pr_info("Translation already enabled - trying to copy translation structures\n");
3259
3260                         ret = copy_translation_tables(iommu);
3261                         if (ret) {
3262                                 /*
3263                                  * We found the IOMMU with translation
3264                                  * enabled - but failed to copy over the
3265                                  * old root-entry table. Try to proceed
3266                                  * by disabling translation now and
3267                                  * allocating a clean root-entry table.
3268                                  * This might cause DMAR faults, but
3269                                  * probably the dump will still succeed.
3270                                  */
3271                                 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3272                                        iommu->name);
3273                                 iommu_disable_translation(iommu);
3274                                 clear_translation_pre_enabled(iommu);
3275                         } else {
3276                                 pr_info("Copied translation tables from previous kernel for %s\n",
3277                                         iommu->name);
3278                                 copied_tables = true;
3279                         }
3280                 }
3281
3282                 if (!ecap_pass_through(iommu->ecap))
3283                         hw_pass_through = 0;
3284 #ifdef CONFIG_INTEL_IOMMU_SVM
3285                 if (pasid_enabled(iommu))
3286                         intel_svm_alloc_pasid_tables(iommu);
3287 #endif
3288         }
3289
3290         /*
3291          * Now that qi is enabled on all iommus, set the root entry and flush
3292          * caches. This is required on some Intel X58 chipsets, otherwise the
3293          * flush_context function will loop forever and the boot hangs.
3294          */
3295         for_each_active_iommu(iommu, drhd) {
3296                 iommu_flush_write_buffer(iommu);
3297                 iommu_set_root_entry(iommu);
3298                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
3299                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
3300         }
3301
3302         if (iommu_pass_through)
3303                 iommu_identity_mapping |= IDENTMAP_ALL;
3304
3305 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3306         iommu_identity_mapping |= IDENTMAP_GFX;
3307 #endif
3308
3309         if (iommu_identity_mapping) {
3310                 ret = si_domain_init(hw_pass_through);
3311                 if (ret)
3312                         goto free_iommu;
3313         }
3314
3315         check_tylersburg_isoch();
3316
3317         /*
3318          * If we copied translations from a previous kernel in the kdump
3319          * case, we can not assign the devices to domains now, as that
3320          * would eliminate the old mappings. So skip this part and defer
3321          * the assignment to device driver initialization time.
3322          */
3323         if (copied_tables)
3324                 goto domains_done;
3325
3326         /*
3327          * If pass through is not set or not enabled, setup context entries for
3328          * identity mappings for rmrr, gfx, and isa and may fall back to static
3329          * identity mapping if iommu_identity_mapping is set.
3330          */
3331         if (iommu_identity_mapping) {
3332                 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
3333                 if (ret) {
3334                         pr_crit("Failed to setup IOMMU pass-through\n");
3335                         goto free_iommu;
3336                 }
3337         }
3338         /*
3339          * For each rmrr
3340          *   for each dev attached to rmrr
3341          *   do
3342          *     locate drhd for dev, alloc domain for dev
3343          *     allocate free domain
3344          *     allocate page table entries for rmrr
3345          *     if context not allocated for bus
3346          *           allocate and init context
3347          *           set present in root table for this bus
3348          *     init context with domain, translation etc
3349          *    endfor
3350          * endfor
3351          */
3352         pr_info("Setting RMRR:\n");
3353         for_each_rmrr_units(rmrr) {
3354                 /* some BIOS lists non-exist devices in DMAR table. */
3355                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3356                                           i, dev) {
3357                         ret = iommu_prepare_rmrr_dev(rmrr, dev);
3358                         if (ret)
3359                                 pr_err("Mapping reserved region failed\n");
3360                 }
3361         }
3362
3363         iommu_prepare_isa();
3364
3365 domains_done:
3366
3367         /*
3368          * for each drhd
3369          *   enable fault log
3370          *   global invalidate context cache
3371          *   global invalidate iotlb
3372          *   enable translation
3373          */
3374         for_each_iommu(iommu, drhd) {
3375                 if (drhd->ignored) {
3376                         /*
3377                          * we always have to disable PMRs or DMA may fail on
3378                          * this device
3379                          */
3380                         if (force_on)
3381                                 iommu_disable_protect_mem_regions(iommu);
3382                         continue;
3383                 }
3384
3385                 iommu_flush_write_buffer(iommu);
3386
3387 #ifdef CONFIG_INTEL_IOMMU_SVM
3388                 if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
3389                         ret = intel_svm_enable_prq(iommu);
3390                         if (ret)
3391                                 goto free_iommu;
3392                 }
3393 #endif
3394                 ret = dmar_set_interrupt(iommu);
3395                 if (ret)
3396                         goto free_iommu;
3397
3398                 if (!translation_pre_enabled(iommu))
3399                         iommu_enable_translation(iommu);
3400
3401                 iommu_disable_protect_mem_regions(iommu);
3402         }
3403
3404         return 0;
3405
3406 free_iommu:
3407         for_each_active_iommu(iommu, drhd) {
3408                 disable_dmar_iommu(iommu);
3409                 free_dmar_iommu(iommu);
3410         }
3411 free_g_iommus:
3412         for_each_possible_cpu(cpu)
3413                 kfree(per_cpu_ptr(&deferred_flush, cpu)->tables);
3414         kfree(g_iommus);
3415 error:
3416         return ret;
3417 }
3418
3419 /* This takes a number of _MM_ pages, not VTD pages */
3420 static unsigned long intel_alloc_iova(struct device *dev,
3421                                      struct dmar_domain *domain,
3422                                      unsigned long nrpages, uint64_t dma_mask)
3423 {
3424         unsigned long iova_pfn = 0;
3425
3426         /* Restrict dma_mask to the width that the iommu can handle */
3427         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
3428         /* Ensure we reserve the whole size-aligned region */
3429         nrpages = __roundup_pow_of_two(nrpages);
3430
3431         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
3432                 /*
3433                  * First try to allocate an io virtual address in
3434                  * DMA_BIT_MASK(32) and if that fails then try allocating
3435                  * from higher range
3436                  */
3437                 iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
3438                                            IOVA_PFN(DMA_BIT_MASK(32)));
3439                 if (iova_pfn)
3440                         return iova_pfn;
3441         }
3442         iova_pfn = alloc_iova_fast(&domain->iovad, nrpages, IOVA_PFN(dma_mask));
3443         if (unlikely(!iova_pfn)) {
3444                 pr_err("Allocating %ld-page iova for %s failed",
3445                        nrpages, dev_name(dev));
3446                 return 0;
3447         }
3448
3449         return iova_pfn;
3450 }
3451
3452 static struct dmar_domain *__get_valid_domain_for_dev(struct device *dev)
3453 {
3454         struct dmar_domain *domain, *tmp;
3455         struct dmar_rmrr_unit *rmrr;
3456         struct device *i_dev;
3457         int i, ret;
3458
3459         domain = find_domain(dev);
3460         if (domain)
3461                 goto out;
3462
3463         domain = find_or_alloc_domain(dev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
3464         if (!domain)
3465                 goto out;
3466
3467         /* We have a new domain - setup possible RMRRs for the device */
3468         rcu_read_lock();
3469         for_each_rmrr_units(rmrr) {
3470                 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
3471                                           i, i_dev) {
3472                         if (i_dev != dev)
3473                                 continue;
3474
3475                         ret = domain_prepare_identity_map(dev, domain,
3476                                                           rmrr->base_address,
3477                                                           rmrr->end_address);
3478                         if (ret)
3479                                 dev_err(dev, "Mapping reserved region failed\n");
3480                 }
3481         }
3482         rcu_read_unlock();
3483
3484         tmp = set_domain_for_dev(dev, domain);
3485         if (!tmp || domain != tmp) {
3486                 domain_exit(domain);
3487                 domain = tmp;
3488         }
3489
3490 out:
3491
3492         if (!domain)
3493                 pr_err("Allocating domain for %s failed\n", dev_name(dev));
3494
3495
3496         return domain;
3497 }
3498
3499 static inline struct dmar_domain *get_valid_domain_for_dev(struct device *dev)
3500 {
3501         struct device_domain_info *info;
3502
3503         /* No lock here, assumes no domain exit in normal case */
3504         info = dev->archdata.iommu;
3505         if (likely(info))
3506                 return info->domain;
3507
3508         return __get_valid_domain_for_dev(dev);
3509 }
3510
3511 /* Check if the dev needs to go through non-identity map and unmap process.*/
3512 static int iommu_no_mapping(struct device *dev)
3513 {
3514         int found;
3515
3516         if (iommu_dummy(dev))
3517                 return 1;
3518
3519         if (!iommu_identity_mapping)
3520                 return 0;
3521
3522         found = identity_mapping(dev);
3523         if (found) {
3524                 if (iommu_should_identity_map(dev, 0))
3525                         return 1;
3526                 else {
3527                         /*
3528                          * 32 bit DMA is removed from si_domain and fall back
3529                          * to non-identity mapping.
3530                          */
3531                         dmar_remove_one_dev_info(si_domain, dev);
3532                         pr_info("32bit %s uses non-identity mapping\n",
3533                                 dev_name(dev));
3534                         return 0;
3535                 }
3536         } else {
3537                 /*
3538                  * In case of a detached 64 bit DMA device from vm, the device
3539                  * is put into si_domain for identity mapping.
3540                  */
3541                 if (iommu_should_identity_map(dev, 0)) {
3542                         int ret;
3543                         ret = domain_add_dev_info(si_domain, dev);
3544                         if (!ret) {
3545                                 pr_info("64bit %s uses identity mapping\n",
3546                                         dev_name(dev));
3547                                 return 1;
3548                         }
3549                 }
3550         }
3551
3552         return 0;
3553 }
3554
3555 static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
3556                                      size_t size, int dir, u64 dma_mask)
3557 {
3558         struct dmar_domain *domain;
3559         phys_addr_t start_paddr;
3560         unsigned long iova_pfn;
3561         int prot = 0;
3562         int ret;
3563         struct intel_iommu *iommu;
3564         unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
3565
3566         BUG_ON(dir == DMA_NONE);
3567
3568         if (iommu_no_mapping(dev))
3569                 return paddr;
3570
3571         domain = get_valid_domain_for_dev(dev);
3572         if (!domain)
3573                 return 0;
3574
3575         iommu = domain_get_iommu(domain);
3576         size = aligned_nrpages(paddr, size);
3577
3578         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
3579         if (!iova_pfn)
3580                 goto error;
3581
3582         /*
3583          * Check if DMAR supports zero-length reads on write only
3584          * mappings..
3585          */
3586         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3587                         !cap_zlr(iommu->cap))
3588                 prot |= DMA_PTE_READ;
3589         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3590                 prot |= DMA_PTE_WRITE;
3591         /*
3592          * paddr - (paddr + size) might be partial page, we should map the whole
3593          * page.  Note: if two part of one page are separately mapped, we
3594          * might have two guest_addr mapping to the same host paddr, but this
3595          * is not a big problem
3596          */
3597         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
3598                                  mm_to_dma_pfn(paddr_pfn), size, prot);
3599         if (ret)
3600                 goto error;
3601
3602         /* it's a non-present to present mapping. Only flush if caching mode */
3603         if (cap_caching_mode(iommu->cap))
3604                 iommu_flush_iotlb_psi(iommu, domain,
3605                                       mm_to_dma_pfn(iova_pfn),
3606                                       size, 0, 1);
3607         else
3608                 iommu_flush_write_buffer(iommu);
3609
3610         start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
3611         start_paddr += paddr & ~PAGE_MASK;
3612         return start_paddr;
3613
3614 error:
3615         if (iova_pfn)
3616                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3617         pr_err("Device %s request: %zx@%llx dir %d --- failed\n",
3618                 dev_name(dev), size, (unsigned long long)paddr, dir);
3619         return 0;
3620 }
3621
3622 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
3623                                  unsigned long offset, size_t size,
3624                                  enum dma_data_direction dir,
3625                                  unsigned long attrs)
3626 {
3627         return __intel_map_single(dev, page_to_phys(page) + offset, size,
3628                                   dir, *dev->dma_mask);
3629 }
3630
3631 static void flush_unmaps(struct deferred_flush_data *flush_data)
3632 {
3633         int i, j;
3634
3635         flush_data->timer_on = 0;
3636
3637         /* just flush them all */
3638         for (i = 0; i < g_num_of_iommus; i++) {
3639                 struct intel_iommu *iommu = g_iommus[i];
3640                 struct deferred_flush_table *flush_table =
3641                                 &flush_data->tables[i];
3642                 if (!iommu)
3643                         continue;
3644
3645                 if (!flush_table->next)
3646                         continue;
3647
3648                 /* In caching mode, global flushes turn emulation expensive */
3649                 if (!cap_caching_mode(iommu->cap))
3650                         iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3651                                          DMA_TLB_GLOBAL_FLUSH);
3652                 for (j = 0; j < flush_table->next; j++) {
3653                         unsigned long mask;
3654                         struct deferred_flush_entry *entry =
3655                                                 &flush_table->entries[j];
3656                         unsigned long iova_pfn = entry->iova_pfn;
3657                         unsigned long nrpages = entry->nrpages;
3658                         struct dmar_domain *domain = entry->domain;
3659                         struct page *freelist = entry->freelist;
3660
3661                         /* On real hardware multiple invalidations are expensive */
3662                         if (cap_caching_mode(iommu->cap))
3663                                 iommu_flush_iotlb_psi(iommu, domain,
3664                                         mm_to_dma_pfn(iova_pfn),
3665                                         nrpages, !freelist, 0);
3666                         else {
3667                                 mask = ilog2(nrpages);
3668                                 iommu_flush_dev_iotlb(domain,
3669                                                 (uint64_t)iova_pfn << PAGE_SHIFT, mask);
3670                         }
3671                         free_iova_fast(&domain->iovad, iova_pfn, nrpages);
3672                         if (freelist)
3673                                 dma_free_pagelist(freelist);
3674                 }
3675                 flush_table->next = 0;
3676         }
3677
3678         flush_data->size = 0;
3679 }
3680
3681 static void flush_unmaps_timeout(unsigned long cpuid)
3682 {
3683         struct deferred_flush_data *flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3684         unsigned long flags;
3685
3686         spin_lock_irqsave(&flush_data->lock, flags);
3687         flush_unmaps(flush_data);
3688         spin_unlock_irqrestore(&flush_data->lock, flags);
3689 }
3690
3691 static void add_unmap(struct dmar_domain *dom, unsigned long iova_pfn,
3692                       unsigned long nrpages, struct page *freelist)
3693 {
3694         unsigned long flags;
3695         int entry_id, iommu_id;
3696         struct intel_iommu *iommu;
3697         struct deferred_flush_entry *entry;
3698         struct deferred_flush_data *flush_data;
3699         unsigned int cpuid;
3700
3701         cpuid = get_cpu();
3702         flush_data = per_cpu_ptr(&deferred_flush, cpuid);
3703
3704         /* Flush all CPUs' entries to avoid deferring too much.  If
3705          * this becomes a bottleneck, can just flush us, and rely on
3706          * flush timer for the rest.
3707          */
3708         if (flush_data->size == HIGH_WATER_MARK) {
3709                 int cpu;
3710
3711                 for_each_online_cpu(cpu)
3712                         flush_unmaps_timeout(cpu);
3713         }
3714
3715         spin_lock_irqsave(&flush_data->lock, flags);
3716
3717         iommu = domain_get_iommu(dom);
3718         iommu_id = iommu->seq_id;
3719
3720         entry_id = flush_data->tables[iommu_id].next;
3721         ++(flush_data->tables[iommu_id].next);
3722
3723         entry = &flush_data->tables[iommu_id].entries[entry_id];
3724         entry->domain = dom;
3725         entry->iova_pfn = iova_pfn;
3726         entry->nrpages = nrpages;
3727         entry->freelist = freelist;
3728
3729         if (!flush_data->timer_on) {
3730                 mod_timer(&flush_data->timer, jiffies + msecs_to_jiffies(10));
3731                 flush_data->timer_on = 1;
3732         }
3733         flush_data->size++;
3734         spin_unlock_irqrestore(&flush_data->lock, flags);
3735
3736         put_cpu();
3737 }
3738
3739 static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
3740 {
3741         struct dmar_domain *domain;
3742         unsigned long start_pfn, last_pfn;
3743         unsigned long nrpages;
3744         unsigned long iova_pfn;
3745         struct intel_iommu *iommu;
3746         struct page *freelist;
3747
3748         if (iommu_no_mapping(dev))
3749                 return;
3750
3751         domain = find_domain(dev);
3752         BUG_ON(!domain);
3753
3754         iommu = domain_get_iommu(domain);
3755
3756         iova_pfn = IOVA_PFN(dev_addr);
3757
3758         nrpages = aligned_nrpages(dev_addr, size);
3759         start_pfn = mm_to_dma_pfn(iova_pfn);
3760         last_pfn = start_pfn + nrpages - 1;
3761
3762         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3763                  dev_name(dev), start_pfn, last_pfn);
3764
3765         freelist = domain_unmap(domain, start_pfn, last_pfn);
3766
3767         if (intel_iommu_strict) {
3768                 iommu_flush_iotlb_psi(iommu, domain, start_pfn,
3769                                       nrpages, !freelist, 0);
3770                 /* free iova */
3771                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
3772                 dma_free_pagelist(freelist);
3773         } else {
3774                 add_unmap(domain, iova_pfn, nrpages, freelist);
3775                 /*
3776                  * queue up the release of the unmap to save the 1/6th of the
3777                  * cpu used up by the iotlb flush operation...
3778                  */
3779         }
3780 }
3781
3782 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
3783                              size_t size, enum dma_data_direction dir,
3784                              unsigned long attrs)
3785 {
3786         intel_unmap(dev, dev_addr, size);
3787 }
3788
3789 static void *intel_alloc_coherent(struct device *dev, size_t size,
3790                                   dma_addr_t *dma_handle, gfp_t flags,
3791                                   unsigned long attrs)
3792 {
3793         struct page *page = NULL;
3794         int order;
3795
3796         size = PAGE_ALIGN(size);
3797         order = get_order(size);
3798
3799         if (!iommu_no_mapping(dev))
3800                 flags &= ~(GFP_DMA | GFP_DMA32);
3801         else if (dev->coherent_dma_mask < dma_get_required_mask(dev)) {
3802                 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
3803                         flags |= GFP_DMA;
3804                 else
3805                         flags |= GFP_DMA32;
3806         }
3807
3808         if (gfpflags_allow_blocking(flags)) {
3809                 unsigned int count = size >> PAGE_SHIFT;
3810
3811                 page = dma_alloc_from_contiguous(dev, count, order);
3812                 if (page && iommu_no_mapping(dev) &&
3813                     page_to_phys(page) + size > dev->coherent_dma_mask) {
3814                         dma_release_from_contiguous(dev, page, count);
3815                         page = NULL;
3816                 }
3817         }
3818
3819         if (!page)
3820                 page = alloc_pages(flags, order);
3821         if (!page)
3822                 return NULL;
3823         memset(page_address(page), 0, size);
3824
3825         *dma_handle = __intel_map_single(dev, page_to_phys(page), size,
3826                                          DMA_BIDIRECTIONAL,
3827                                          dev->coherent_dma_mask);
3828         if (*dma_handle)
3829                 return page_address(page);
3830         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3831                 __free_pages(page, order);
3832
3833         return NULL;
3834 }
3835
3836 static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
3837                                 dma_addr_t dma_handle, unsigned long attrs)
3838 {
3839         int order;
3840         struct page *page = virt_to_page(vaddr);
3841
3842         size = PAGE_ALIGN(size);
3843         order = get_order(size);
3844
3845         intel_unmap(dev, dma_handle, size);
3846         if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
3847                 __free_pages(page, order);
3848 }
3849
3850 static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
3851                            int nelems, enum dma_data_direction dir,
3852                            unsigned long attrs)
3853 {
3854         dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
3855         unsigned long nrpages = 0;
3856         struct scatterlist *sg;
3857         int i;
3858
3859         for_each_sg(sglist, sg, nelems, i) {
3860                 nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
3861         }
3862
3863         intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
3864 }
3865
3866 static int intel_nontranslate_map_sg(struct device *hddev,
3867         struct scatterlist *sglist, int nelems, int dir)
3868 {
3869         int i;
3870         struct scatterlist *sg;
3871
3872         for_each_sg(sglist, sg, nelems, i) {
3873                 BUG_ON(!sg_page(sg));
3874                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3875                 sg->dma_length = sg->length;
3876         }
3877         return nelems;
3878 }
3879
3880 static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
3881                         enum dma_data_direction dir, unsigned long attrs)
3882 {
3883         int i;
3884         struct dmar_domain *domain;
3885         size_t size = 0;
3886         int prot = 0;
3887         unsigned long iova_pfn;
3888         int ret;
3889         struct scatterlist *sg;
3890         unsigned long start_vpfn;
3891         struct intel_iommu *iommu;
3892
3893         BUG_ON(dir == DMA_NONE);
3894         if (iommu_no_mapping(dev))
3895                 return intel_nontranslate_map_sg(dev, sglist, nelems, dir);
3896
3897         domain = get_valid_domain_for_dev(dev);
3898         if (!domain)
3899                 return 0;
3900
3901         iommu = domain_get_iommu(domain);
3902
3903         for_each_sg(sglist, sg, nelems, i)
3904                 size += aligned_nrpages(sg->offset, sg->length);
3905
3906         iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
3907                                 *dev->dma_mask);
3908         if (!iova_pfn) {
3909                 sglist->dma_length = 0;
3910                 return 0;
3911         }
3912
3913         /*
3914          * Check if DMAR supports zero-length reads on write only
3915          * mappings..
3916          */
3917         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3918                         !cap_zlr(iommu->cap))
3919                 prot |= DMA_PTE_READ;
3920         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3921                 prot |= DMA_PTE_WRITE;
3922
3923         start_vpfn = mm_to_dma_pfn(iova_pfn);
3924
3925         ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3926         if (unlikely(ret)) {
3927                 dma_pte_free_pagetable(domain, start_vpfn,
3928                                        start_vpfn + size - 1);
3929                 free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
3930                 return 0;
3931         }
3932
3933         /* it's a non-present to present mapping. Only flush if caching mode */
3934         if (cap_caching_mode(iommu->cap))
3935                 iommu_flush_iotlb_psi(iommu, domain, start_vpfn, size, 0, 1);
3936         else
3937                 iommu_flush_write_buffer(iommu);
3938
3939         return nelems;
3940 }
3941
3942 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3943 {
3944         return !dma_addr;
3945 }
3946
3947 struct dma_map_ops intel_dma_ops = {
3948         .alloc = intel_alloc_coherent,
3949         .free = intel_free_coherent,
3950         .map_sg = intel_map_sg,
3951         .unmap_sg = intel_unmap_sg,
3952         .map_page = intel_map_page,
3953         .unmap_page = intel_unmap_page,
3954         .mapping_error = intel_mapping_error,
3955 };
3956
3957 static inline int iommu_domain_cache_init(void)
3958 {
3959         int ret = 0;
3960
3961         iommu_domain_cache = kmem_cache_create("iommu_domain",
3962                                          sizeof(struct dmar_domain),
3963                                          0,
3964                                          SLAB_HWCACHE_ALIGN,
3965
3966                                          NULL);
3967         if (!iommu_domain_cache) {
3968                 pr_err("Couldn't create iommu_domain cache\n");
3969                 ret = -ENOMEM;
3970         }
3971
3972         return ret;
3973 }
3974
3975 static inline int iommu_devinfo_cache_init(void)
3976 {
3977         int ret = 0;
3978
3979         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3980                                          sizeof(struct device_domain_info),
3981                                          0,
3982                                          SLAB_HWCACHE_ALIGN,
3983                                          NULL);
3984         if (!iommu_devinfo_cache) {
3985                 pr_err("Couldn't create devinfo cache\n");
3986                 ret = -ENOMEM;
3987         }
3988
3989         return ret;
3990 }
3991
3992 static int __init iommu_init_mempool(void)
3993 {
3994         int ret;
3995         ret = iova_cache_get();
3996         if (ret)
3997                 return ret;
3998
3999         ret = iommu_domain_cache_init();
4000         if (ret)
4001                 goto domain_error;
4002
4003         ret = iommu_devinfo_cache_init();
4004         if (!ret)
4005                 return ret;
4006
4007         kmem_cache_destroy(iommu_domain_cache);
4008 domain_error:
4009         iova_cache_put();
4010
4011         return -ENOMEM;
4012 }
4013
4014 static void __init iommu_exit_mempool(void)
4015 {
4016         kmem_cache_destroy(iommu_devinfo_cache);
4017         kmem_cache_destroy(iommu_domain_cache);
4018         iova_cache_put();
4019 }
4020
4021 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
4022 {
4023         struct dmar_drhd_unit *drhd;
4024         u32 vtbar;
4025         int rc;
4026
4027         /* We know that this device on this chipset has its own IOMMU.
4028          * If we find it under a different IOMMU, then the BIOS is lying
4029          * to us. Hope that the IOMMU for this device is actually
4030          * disabled, and it needs no translation...
4031          */
4032         rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
4033         if (rc) {
4034                 /* "can't" happen */
4035                 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
4036                 return;
4037         }
4038         vtbar &= 0xffff0000;
4039
4040         /* we know that the this iommu should be at offset 0xa000 from vtbar */
4041         drhd = dmar_find_matched_drhd_unit(pdev);
4042         if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
4043                             TAINT_FIRMWARE_WORKAROUND,
4044                             "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4045                 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4046 }
4047 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
4048
4049 static void __init init_no_remapping_devices(void)
4050 {
4051         struct dmar_drhd_unit *drhd;
4052         struct device *dev;
4053         int i;
4054
4055         for_each_drhd_unit(drhd) {
4056                 if (!drhd->include_all) {
4057                         for_each_active_dev_scope(drhd->devices,
4058                                                   drhd->devices_cnt, i, dev)
4059                                 break;
4060                         /* ignore DMAR unit if no devices exist */
4061                         if (i == drhd->devices_cnt)
4062                                 drhd->ignored = 1;
4063                 }
4064         }
4065
4066         for_each_active_drhd_unit(drhd) {
4067                 if (drhd->include_all)
4068                         continue;
4069
4070                 for_each_active_dev_scope(drhd->devices,
4071                                           drhd->devices_cnt, i, dev)
4072                         if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
4073                                 break;
4074                 if (i < drhd->devices_cnt)
4075                         continue;
4076
4077                 /* This IOMMU has *only* gfx devices. Either bypass it or
4078                    set the gfx_mapped flag, as appropriate */
4079                 if (dmar_map_gfx) {
4080                         intel_iommu_gfx_mapped = 1;
4081                 } else {
4082                         drhd->ignored = 1;
4083                         for_each_active_dev_scope(drhd->devices,
4084                                                   drhd->devices_cnt, i, dev)
4085                                 dev->archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
4086                 }
4087         }
4088 }
4089
4090 #ifdef CONFIG_SUSPEND
4091 static int init_iommu_hw(void)
4092 {
4093         struct dmar_drhd_unit *drhd;
4094         struct intel_iommu *iommu = NULL;
4095
4096         for_each_active_iommu(iommu, drhd)
4097                 if (iommu->qi)
4098                         dmar_reenable_qi(iommu);
4099
4100         for_each_iommu(iommu, drhd) {
4101                 if (drhd->ignored) {
4102                         /*
4103                          * we always have to disable PMRs or DMA may fail on
4104                          * this device
4105                          */
4106                         if (force_on)
4107                                 iommu_disable_protect_mem_regions(iommu);
4108                         continue;
4109                 }
4110         
4111                 iommu_flush_write_buffer(iommu);
4112
4113                 iommu_set_root_entry(iommu);
4114
4115                 iommu->flush.flush_context(iommu, 0, 0, 0,
4116                                            DMA_CCMD_GLOBAL_INVL);
4117                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4118                 iommu_enable_translation(iommu);
4119                 iommu_disable_protect_mem_regions(iommu);
4120         }
4121
4122         return 0;
4123 }
4124
4125 static void iommu_flush_all(void)
4126 {
4127         struct dmar_drhd_unit *drhd;
4128         struct intel_iommu *iommu;
4129
4130         for_each_active_iommu(iommu, drhd) {
4131                 iommu->flush.flush_context(iommu, 0, 0, 0,
4132                                            DMA_CCMD_GLOBAL_INVL);
4133                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
4134                                          DMA_TLB_GLOBAL_FLUSH);
4135         }
4136 }
4137
4138 static int iommu_suspend(void)
4139 {
4140         struct dmar_drhd_unit *drhd;
4141         struct intel_iommu *iommu = NULL;
4142         unsigned long flag;
4143
4144         for_each_active_iommu(iommu, drhd) {
4145                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
4146                                                  GFP_ATOMIC);
4147                 if (!iommu->iommu_state)
4148                         goto nomem;
4149         }
4150
4151         iommu_flush_all();
4152
4153         for_each_active_iommu(iommu, drhd) {
4154                 iommu_disable_translation(iommu);
4155
4156                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4157
4158                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
4159                         readl(iommu->reg + DMAR_FECTL_REG);
4160                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
4161                         readl(iommu->reg + DMAR_FEDATA_REG);
4162                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
4163                         readl(iommu->reg + DMAR_FEADDR_REG);
4164                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
4165                         readl(iommu->reg + DMAR_FEUADDR_REG);
4166
4167                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4168         }
4169         return 0;
4170
4171 nomem:
4172         for_each_active_iommu(iommu, drhd)
4173                 kfree(iommu->iommu_state);
4174
4175         return -ENOMEM;
4176 }
4177
4178 static void iommu_resume(void)
4179 {
4180         struct dmar_drhd_unit *drhd;
4181         struct intel_iommu *iommu = NULL;
4182         unsigned long flag;
4183
4184         if (init_iommu_hw()) {
4185                 if (force_on)
4186                         panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4187                 else
4188                         WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4189                 return;
4190         }
4191
4192         for_each_active_iommu(iommu, drhd) {
4193
4194                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
4195
4196                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
4197                         iommu->reg + DMAR_FECTL_REG);
4198                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
4199                         iommu->reg + DMAR_FEDATA_REG);
4200                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
4201                         iommu->reg + DMAR_FEADDR_REG);
4202                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
4203                         iommu->reg + DMAR_FEUADDR_REG);
4204
4205                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
4206         }
4207
4208         for_each_active_iommu(iommu, drhd)
4209                 kfree(iommu->iommu_state);
4210 }
4211
4212 static struct syscore_ops iommu_syscore_ops = {
4213         .resume         = iommu_resume,
4214         .suspend        = iommu_suspend,
4215 };
4216
4217 static void __init init_iommu_pm_ops(void)
4218 {
4219         register_syscore_ops(&iommu_syscore_ops);
4220 }
4221
4222 #else
4223 static inline void init_iommu_pm_ops(void) {}
4224 #endif  /* CONFIG_PM */
4225
4226
4227 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
4228 {
4229         struct acpi_dmar_reserved_memory *rmrr;
4230         struct dmar_rmrr_unit *rmrru;
4231
4232         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
4233         if (!rmrru)
4234                 return -ENOMEM;
4235
4236         rmrru->hdr = header;
4237         rmrr = (struct acpi_dmar_reserved_memory *)header;
4238         rmrru->base_address = rmrr->base_address;
4239         rmrru->end_address = rmrr->end_address;
4240         rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
4241                                 ((void *)rmrr) + rmrr->header.length,
4242                                 &rmrru->devices_cnt);
4243         if (rmrru->devices_cnt && rmrru->devices == NULL) {
4244                 kfree(rmrru);
4245                 return -ENOMEM;
4246         }
4247
4248         list_add(&rmrru->list, &dmar_rmrr_units);
4249
4250         return 0;
4251 }
4252
4253 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
4254 {
4255         struct dmar_atsr_unit *atsru;
4256         struct acpi_dmar_atsr *tmp;
4257
4258         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4259                 tmp = (struct acpi_dmar_atsr *)atsru->hdr;
4260                 if (atsr->segment != tmp->segment)
4261                         continue;
4262                 if (atsr->header.length != tmp->header.length)
4263                         continue;
4264                 if (memcmp(atsr, tmp, atsr->header.length) == 0)
4265                         return atsru;
4266         }
4267
4268         return NULL;
4269 }
4270
4271 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4272 {
4273         struct acpi_dmar_atsr *atsr;
4274         struct dmar_atsr_unit *atsru;
4275
4276         if (system_state != SYSTEM_BOOTING && !intel_iommu_enabled)
4277                 return 0;
4278
4279         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4280         atsru = dmar_find_atsr(atsr);
4281         if (atsru)
4282                 return 0;
4283
4284         atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
4285         if (!atsru)
4286                 return -ENOMEM;
4287
4288         /*
4289          * If memory is allocated from slab by ACPI _DSM method, we need to
4290          * copy the memory content because the memory buffer will be freed
4291          * on return.
4292          */
4293         atsru->hdr = (void *)(atsru + 1);
4294         memcpy(atsru->hdr, hdr, hdr->length);
4295         atsru->include_all = atsr->flags & 0x1;
4296         if (!atsru->include_all) {
4297                 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
4298                                 (void *)atsr + atsr->header.length,
4299                                 &atsru->devices_cnt);
4300                 if (atsru->devices_cnt && atsru->devices == NULL) {
4301                         kfree(atsru);
4302                         return -ENOMEM;
4303                 }
4304         }
4305
4306         list_add_rcu(&atsru->list, &dmar_atsr_units);
4307
4308         return 0;
4309 }
4310
4311 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
4312 {
4313         dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
4314         kfree(atsru);
4315 }
4316
4317 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4318 {
4319         struct acpi_dmar_atsr *atsr;
4320         struct dmar_atsr_unit *atsru;
4321
4322         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4323         atsru = dmar_find_atsr(atsr);
4324         if (atsru) {
4325                 list_del_rcu(&atsru->list);
4326                 synchronize_rcu();
4327                 intel_iommu_free_atsr(atsru);
4328         }
4329
4330         return 0;
4331 }
4332
4333 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
4334 {
4335         int i;
4336         struct device *dev;
4337         struct acpi_dmar_atsr *atsr;
4338         struct dmar_atsr_unit *atsru;
4339
4340         atsr = container_of(hdr, struct acpi_dmar_atsr, header);
4341         atsru = dmar_find_atsr(atsr);
4342         if (!atsru)
4343                 return 0;
4344
4345         if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
4346                 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
4347                                           i, dev)
4348                         return -EBUSY;
4349         }
4350
4351         return 0;
4352 }
4353
4354 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
4355 {
4356         int sp, ret = 0;
4357         struct intel_iommu *iommu = dmaru->iommu;
4358
4359         if (g_iommus[iommu->seq_id])
4360                 return 0;
4361
4362         if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
4363                 pr_warn("%s: Doesn't support hardware pass through.\n",
4364                         iommu->name);
4365                 return -ENXIO;
4366         }
4367         if (!ecap_sc_support(iommu->ecap) &&
4368             domain_update_iommu_snooping(iommu)) {
4369                 pr_warn("%s: Doesn't support snooping.\n",
4370                         iommu->name);
4371                 return -ENXIO;
4372         }
4373         sp = domain_update_iommu_superpage(iommu) - 1;
4374         if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
4375                 pr_warn("%s: Doesn't support large page.\n",
4376                         iommu->name);
4377                 return -ENXIO;
4378         }
4379
4380         /*
4381          * Disable translation if already enabled prior to OS handover.
4382          */
4383         if (iommu->gcmd & DMA_GCMD_TE)
4384                 iommu_disable_translation(iommu);
4385
4386         g_iommus[iommu->seq_id] = iommu;
4387         ret = iommu_init_domains(iommu);
4388         if (ret == 0)
4389                 ret = iommu_alloc_root_entry(iommu);
4390         if (ret)
4391                 goto out;
4392
4393 #ifdef CONFIG_INTEL_IOMMU_SVM
4394         if (pasid_enabled(iommu))
4395                 intel_svm_alloc_pasid_tables(iommu);
4396 #endif
4397
4398         if (dmaru->ignored) {
4399                 /*
4400                  * we always have to disable PMRs or DMA may fail on this device
4401                  */
4402                 if (force_on)
4403                         iommu_disable_protect_mem_regions(iommu);
4404                 return 0;
4405         }
4406
4407         intel_iommu_init_qi(iommu);
4408         iommu_flush_write_buffer(iommu);
4409
4410 #ifdef CONFIG_INTEL_IOMMU_SVM
4411         if (pasid_enabled(iommu) && ecap_prs(iommu->ecap)) {
4412                 ret = intel_svm_enable_prq(iommu);
4413                 if (ret)
4414                         goto disable_iommu;
4415         }
4416 #endif
4417         ret = dmar_set_interrupt(iommu);
4418         if (ret)
4419                 goto disable_iommu;
4420
4421         iommu_set_root_entry(iommu);
4422         iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
4423         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
4424         iommu_enable_translation(iommu);
4425
4426         iommu_disable_protect_mem_regions(iommu);
4427         return 0;
4428
4429 disable_iommu:
4430         disable_dmar_iommu(iommu);
4431 out:
4432         free_dmar_iommu(iommu);
4433         return ret;
4434 }
4435
4436 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
4437 {
4438         int ret = 0;
4439         struct intel_iommu *iommu = dmaru->iommu;
4440
4441         if (!intel_iommu_enabled)
4442                 return 0;
4443         if (iommu == NULL)
4444                 return -EINVAL;
4445
4446         if (insert) {
4447                 ret = intel_iommu_add(dmaru);
4448         } else {
4449                 disable_dmar_iommu(iommu);
4450                 free_dmar_iommu(iommu);
4451         }
4452
4453         return ret;
4454 }
4455
4456 static void intel_iommu_free_dmars(void)
4457 {
4458         struct dmar_rmrr_unit *rmrru, *rmrr_n;
4459         struct dmar_atsr_unit *atsru, *atsr_n;
4460
4461         list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
4462                 list_del(&rmrru->list);
4463                 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
4464                 kfree(rmrru);
4465         }
4466
4467         list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
4468                 list_del(&atsru->list);
4469                 intel_iommu_free_atsr(atsru);
4470         }
4471 }
4472
4473 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
4474 {
4475         int i, ret = 1;
4476         struct pci_bus *bus;
4477         struct pci_dev *bridge = NULL;
4478         struct device *tmp;
4479         struct acpi_dmar_atsr *atsr;
4480         struct dmar_atsr_unit *atsru;
4481
4482         dev = pci_physfn(dev);
4483         for (bus = dev->bus; bus; bus = bus->parent) {
4484                 bridge = bus->self;
4485                 /* If it's an integrated device, allow ATS */
4486                 if (!bridge)
4487                         return 1;
4488                 /* Connected via non-PCIe: no ATS */
4489                 if (!pci_is_pcie(bridge) ||
4490                     pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
4491                         return 0;
4492                 /* If we found the root port, look it up in the ATSR */
4493                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
4494                         break;
4495         }
4496
4497         rcu_read_lock();
4498         list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
4499                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4500                 if (atsr->segment != pci_domain_nr(dev->bus))
4501                         continue;
4502
4503                 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
4504                         if (tmp == &bridge->dev)
4505                                 goto out;
4506
4507                 if (atsru->include_all)
4508                         goto out;
4509         }
4510         ret = 0;
4511 out:
4512         rcu_read_unlock();
4513
4514         return ret;
4515 }
4516
4517 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
4518 {
4519         int ret = 0;
4520         struct dmar_rmrr_unit *rmrru;
4521         struct dmar_atsr_unit *atsru;
4522         struct acpi_dmar_atsr *atsr;
4523         struct acpi_dmar_reserved_memory *rmrr;
4524
4525         if (!intel_iommu_enabled && system_state != SYSTEM_BOOTING)
4526                 return 0;
4527
4528         list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
4529                 rmrr = container_of(rmrru->hdr,
4530                                     struct acpi_dmar_reserved_memory, header);
4531                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4532                         ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
4533                                 ((void *)rmrr) + rmrr->header.length,
4534                                 rmrr->segment, rmrru->devices,
4535                                 rmrru->devices_cnt);
4536                         if(ret < 0)
4537                                 return ret;
4538                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4539                         dmar_remove_dev_scope(info, rmrr->segment,
4540                                 rmrru->devices, rmrru->devices_cnt);
4541                 }
4542         }
4543
4544         list_for_each_entry(atsru, &dmar_atsr_units, list) {
4545                 if (atsru->include_all)
4546                         continue;
4547
4548                 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
4549                 if (info->event == BUS_NOTIFY_ADD_DEVICE) {
4550                         ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
4551                                         (void *)atsr + atsr->header.length,
4552                                         atsr->segment, atsru->devices,
4553                                         atsru->devices_cnt);
4554                         if (ret > 0)
4555                                 break;
4556                         else if(ret < 0)
4557                                 return ret;
4558                 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
4559                         if (dmar_remove_dev_scope(info, atsr->segment,
4560                                         atsru->devices, atsru->devices_cnt))
4561                                 break;
4562                 }
4563         }
4564
4565         return 0;
4566 }
4567
4568 /*
4569  * Here we only respond to action of unbound device from driver.
4570  *
4571  * Added device is not attached to its DMAR domain here yet. That will happen
4572  * when mapping the device to iova.
4573  */
4574 static int device_notifier(struct notifier_block *nb,
4575                                   unsigned long action, void *data)
4576 {
4577         struct device *dev = data;
4578         struct dmar_domain *domain;
4579
4580         if (iommu_dummy(dev))
4581                 return 0;
4582
4583         if (action != BUS_NOTIFY_REMOVED_DEVICE)
4584                 return 0;
4585
4586         domain = find_domain(dev);
4587         if (!domain)
4588                 return 0;
4589
4590         dmar_remove_one_dev_info(domain, dev);
4591         if (!domain_type_is_vm_or_si(domain) && list_empty(&domain->devices))
4592                 domain_exit(domain);
4593
4594         return 0;
4595 }
4596
4597 static struct notifier_block device_nb = {
4598         .notifier_call = device_notifier,
4599 };
4600
4601 static int intel_iommu_memory_notifier(struct notifier_block *nb,
4602                                        unsigned long val, void *v)
4603 {
4604         struct memory_notify *mhp = v;
4605         unsigned long long start, end;
4606         unsigned long start_vpfn, last_vpfn;
4607
4608         switch (val) {
4609         case MEM_GOING_ONLINE:
4610                 start = mhp->start_pfn << PAGE_SHIFT;
4611                 end = ((mhp->start_pfn + mhp->nr_pages) << PAGE_SHIFT) - 1;
4612                 if (iommu_domain_identity_map(si_domain, start, end)) {
4613                         pr_warn("Failed to build identity map for [%llx-%llx]\n",
4614                                 start, end);
4615                         return NOTIFY_BAD;
4616                 }
4617                 break;
4618
4619         case MEM_OFFLINE:
4620         case MEM_CANCEL_ONLINE:
4621                 start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
4622                 last_vpfn = mm_to_dma_pfn(mhp->start_pfn + mhp->nr_pages - 1);
4623                 while (start_vpfn <= last_vpfn) {
4624                         struct iova *iova;
4625                         struct dmar_drhd_unit *drhd;
4626                         struct intel_iommu *iommu;
4627                         struct page *freelist;
4628
4629                         iova = find_iova(&si_domain->iovad, start_vpfn);
4630                         if (iova == NULL) {
4631                                 pr_debug("Failed get IOVA for PFN %lx\n",
4632                                          start_vpfn);
4633                                 break;
4634                         }
4635
4636                         iova = split_and_remove_iova(&si_domain->iovad, iova,
4637                                                      start_vpfn, last_vpfn);
4638                         if (iova == NULL) {
4639                                 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4640                                         start_vpfn, last_vpfn);
4641                                 return NOTIFY_BAD;
4642                         }
4643
4644                         freelist = domain_unmap(si_domain, iova->pfn_lo,
4645                                                iova->pfn_hi);
4646
4647                         rcu_read_lock();
4648                         for_each_active_iommu(iommu, drhd)
4649                                 iommu_flush_iotlb_psi(iommu, si_domain,
4650                                         iova->pfn_lo, iova_size(iova),
4651                                         !freelist, 0);
4652                         rcu_read_unlock();
4653                         dma_free_pagelist(freelist);
4654
4655                         start_vpfn = iova->pfn_hi + 1;
4656                         free_iova_mem(iova);
4657                 }
4658                 break;
4659         }
4660
4661         return NOTIFY_OK;
4662 }
4663
4664 static struct notifier_block intel_iommu_memory_nb = {
4665         .notifier_call = intel_iommu_memory_notifier,
4666         .priority = 0
4667 };
4668
4669 static void free_all_cpu_cached_iovas(unsigned int cpu)
4670 {
4671         int i;
4672
4673         for (i = 0; i < g_num_of_iommus; i++) {
4674                 struct intel_iommu *iommu = g_iommus[i];
4675                 struct dmar_domain *domain;
4676                 int did;
4677
4678                 if (!iommu)
4679                         continue;
4680
4681                 for (did = 0; did < cap_ndoms(iommu->cap); did++) {
4682                         domain = get_iommu_domain(iommu, (u16)did);
4683
4684                         if (!domain)
4685                                 continue;
4686                         free_cpu_cached_iovas(cpu, &domain->iovad);
4687                 }
4688         }
4689 }
4690
4691 static int intel_iommu_cpu_dead(unsigned int cpu)
4692 {
4693         free_all_cpu_cached_iovas(cpu);
4694         flush_unmaps_timeout(cpu);
4695         return 0;
4696 }
4697
4698 static ssize_t intel_iommu_show_version(struct device *dev,
4699                                         struct device_attribute *attr,
4700                                         char *buf)
4701 {
4702         struct intel_iommu *iommu = dev_get_drvdata(dev);
4703         u32 ver = readl(iommu->reg + DMAR_VER_REG);
4704         return sprintf(buf, "%d:%d\n",
4705                        DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
4706 }
4707 static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
4708
4709 static ssize_t intel_iommu_show_address(struct device *dev,
4710                                         struct device_attribute *attr,
4711                                         char *buf)
4712 {
4713         struct intel_iommu *iommu = dev_get_drvdata(dev);
4714         return sprintf(buf, "%llx\n", iommu->reg_phys);
4715 }
4716 static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
4717
4718 static ssize_t intel_iommu_show_cap(struct device *dev,
4719                                     struct device_attribute *attr,
4720                                     char *buf)
4721 {
4722         struct intel_iommu *iommu = dev_get_drvdata(dev);
4723         return sprintf(buf, "%llx\n", iommu->cap);
4724 }
4725 static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
4726
4727 static ssize_t intel_iommu_show_ecap(struct device *dev,
4728                                     struct device_attribute *attr,
4729                                     char *buf)
4730 {
4731         struct intel_iommu *iommu = dev_get_drvdata(dev);
4732         return sprintf(buf, "%llx\n", iommu->ecap);
4733 }
4734 static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
4735
4736 static ssize_t intel_iommu_show_ndoms(struct device *dev,
4737                                       struct device_attribute *attr,
4738                                       char *buf)
4739 {
4740         struct intel_iommu *iommu = dev_get_drvdata(dev);
4741         return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
4742 }
4743 static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
4744
4745 static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
4746                                            struct device_attribute *attr,
4747                                            char *buf)
4748 {
4749         struct intel_iommu *iommu = dev_get_drvdata(dev);
4750         return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
4751                                                   cap_ndoms(iommu->cap)));
4752 }
4753 static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
4754
4755 static struct attribute *intel_iommu_attrs[] = {
4756         &dev_attr_version.attr,
4757         &dev_attr_address.attr,
4758         &dev_attr_cap.attr,
4759         &dev_attr_ecap.attr,
4760         &dev_attr_domains_supported.attr,
4761         &dev_attr_domains_used.attr,
4762         NULL,
4763 };
4764
4765 static struct attribute_group intel_iommu_group = {
4766         .name = "intel-iommu",
4767         .attrs = intel_iommu_attrs,
4768 };
4769
4770 const struct attribute_group *intel_iommu_groups[] = {
4771         &intel_iommu_group,
4772         NULL,
4773 };
4774
4775 int __init intel_iommu_init(void)
4776 {
4777         int ret = -ENODEV;
4778         struct dmar_drhd_unit *drhd;
4779         struct intel_iommu *iommu;
4780
4781         /* VT-d is required for a TXT/tboot launch, so enforce that */
4782         force_on = tboot_force_iommu();
4783
4784         if (iommu_init_mempool()) {
4785                 if (force_on)
4786                         panic("tboot: Failed to initialize iommu memory\n");
4787                 return -ENOMEM;
4788         }
4789
4790         down_write(&dmar_global_lock);
4791         if (dmar_table_init()) {
4792                 if (force_on)
4793                         panic("tboot: Failed to initialize DMAR table\n");
4794                 goto out_free_dmar;
4795         }
4796
4797         if (dmar_dev_scope_init() < 0) {
4798                 if (force_on)
4799                         panic("tboot: Failed to initialize DMAR device scope\n");
4800                 goto out_free_dmar;
4801         }
4802
4803         if (no_iommu || dmar_disabled)
4804                 goto out_free_dmar;
4805
4806         if (list_empty(&dmar_rmrr_units))
4807                 pr_info("No RMRR found\n");
4808
4809         if (list_empty(&dmar_atsr_units))
4810                 pr_info("No ATSR found\n");
4811
4812         if (dmar_init_reserved_ranges()) {
4813                 if (force_on)
4814                         panic("tboot: Failed to reserve iommu ranges\n");
4815                 goto out_free_reserved_range;
4816         }
4817
4818         init_no_remapping_devices();
4819
4820         ret = init_dmars();
4821         if (ret) {
4822                 if (force_on)
4823                         panic("tboot: Failed to initialize DMARs\n");
4824                 pr_err("Initialization failed\n");
4825                 goto out_free_reserved_range;
4826         }
4827         up_write(&dmar_global_lock);
4828         pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4829
4830 #ifdef CONFIG_SWIOTLB
4831         swiotlb = 0;
4832 #endif
4833         dma_ops = &intel_dma_ops;
4834
4835         init_iommu_pm_ops();
4836
4837         for_each_active_iommu(iommu, drhd)
4838                 iommu->iommu_dev = iommu_device_create(NULL, iommu,
4839                                                        intel_iommu_groups,
4840                                                        "%s", iommu->name);
4841
4842         bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
4843         bus_register_notifier(&pci_bus_type, &device_nb);
4844         if (si_domain && !hw_pass_through)
4845                 register_memory_notifier(&intel_iommu_memory_nb);
4846         cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
4847                           intel_iommu_cpu_dead);
4848         intel_iommu_enabled = 1;
4849
4850         return 0;
4851
4852 out_free_reserved_range:
4853         put_iova_domain(&reserved_iova_list);
4854 out_free_dmar:
4855         intel_iommu_free_dmars();
4856         up_write(&dmar_global_lock);
4857         iommu_exit_mempool();
4858         return ret;
4859 }
4860
4861 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
4862 {
4863         struct intel_iommu *iommu = opaque;
4864
4865         domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
4866         return 0;
4867 }
4868
4869 /*
4870  * NB - intel-iommu lacks any sort of reference counting for the users of
4871  * dependent devices.  If multiple endpoints have intersecting dependent
4872  * devices, unbinding the driver from any one of them will possibly leave
4873  * the others unable to operate.
4874  */
4875 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
4876 {
4877         if (!iommu || !dev || !dev_is_pci(dev))
4878                 return;
4879
4880         pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
4881 }
4882
4883 static void __dmar_remove_one_dev_info(struct device_domain_info *info)
4884 {
4885         struct intel_iommu *iommu;
4886         unsigned long flags;
4887
4888         assert_spin_locked(&device_domain_lock);
4889
4890         if (WARN_ON(!info))
4891                 return;
4892
4893         iommu = info->iommu;
4894
4895         if (info->dev) {
4896                 iommu_disable_dev_iotlb(info);
4897                 domain_context_clear(iommu, info->dev);
4898         }
4899
4900         unlink_domain_info(info);
4901
4902         spin_lock_irqsave(&iommu->lock, flags);
4903         domain_detach_iommu(info->domain, iommu);
4904         spin_unlock_irqrestore(&iommu->lock, flags);
4905
4906         free_devinfo_mem(info);
4907 }
4908
4909 static void dmar_remove_one_dev_info(struct dmar_domain *domain,
4910                                      struct device *dev)
4911 {
4912         struct device_domain_info *info;
4913         unsigned long flags;
4914
4915         spin_lock_irqsave(&device_domain_lock, flags);
4916         info = dev->archdata.iommu;
4917         __dmar_remove_one_dev_info(info);
4918         spin_unlock_irqrestore(&device_domain_lock, flags);
4919 }
4920
4921 static int md_domain_init(struct dmar_domain *domain, int guest_width)
4922 {
4923         int adjust_width;
4924
4925         init_iova_domain(&domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN,
4926                         DMA_32BIT_PFN);
4927         domain_reserve_special_ranges(domain);
4928
4929         /* calculate AGAW */
4930         domain->gaw = guest_width;
4931         adjust_width = guestwidth_to_adjustwidth(guest_width);
4932         domain->agaw = width_to_agaw(adjust_width);
4933
4934         domain->iommu_coherency = 0;
4935         domain->iommu_snooping = 0;
4936         domain->iommu_superpage = 0;
4937         domain->max_addr = 0;
4938
4939         /* always allocate the top pgd */
4940         domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
4941         if (!domain->pgd)
4942                 return -ENOMEM;
4943         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4944         return 0;
4945 }
4946
4947 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4948 {
4949         struct dmar_domain *dmar_domain;
4950         struct iommu_domain *domain;
4951
4952         if (type != IOMMU_DOMAIN_UNMANAGED)
4953                 return NULL;
4954
4955         dmar_domain = alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE);
4956         if (!dmar_domain) {
4957                 pr_err("Can't allocate dmar_domain\n");
4958                 return NULL;
4959         }
4960         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4961                 pr_err("Domain initialization failed\n");
4962                 domain_exit(dmar_domain);
4963                 return NULL;
4964         }
4965         domain_update_iommu_cap(dmar_domain);
4966
4967         domain = &dmar_domain->domain;
4968         domain->geometry.aperture_start = 0;
4969         domain->geometry.aperture_end   = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
4970         domain->geometry.force_aperture = true;
4971
4972         return domain;
4973 }
4974
4975 static void intel_iommu_domain_free(struct iommu_domain *domain)
4976 {
4977         domain_exit(to_dmar_domain(domain));
4978 }
4979
4980 static int intel_iommu_attach_device(struct iommu_domain *domain,
4981                                      struct device *dev)
4982 {
4983         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4984         struct intel_iommu *iommu;
4985         int addr_width;
4986         u8 bus, devfn;
4987
4988         if (device_is_rmrr_locked(dev)) {
4989                 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
4990                 return -EPERM;
4991         }
4992
4993         /* normally dev is not mapped */
4994         if (unlikely(domain_context_mapped(dev))) {
4995                 struct dmar_domain *old_domain;
4996
4997                 old_domain = find_domain(dev);
4998                 if (old_domain) {
4999                         rcu_read_lock();
5000                         dmar_remove_one_dev_info(old_domain, dev);
5001                         rcu_read_unlock();
5002
5003                         if (!domain_type_is_vm_or_si(old_domain) &&
5004                              list_empty(&old_domain->devices))
5005                                 domain_exit(old_domain);
5006                 }
5007         }
5008
5009         iommu = device_to_iommu(dev, &bus, &devfn);
5010         if (!iommu)
5011                 return -ENODEV;
5012
5013         /* check if this iommu agaw is sufficient for max mapped address */
5014         addr_width = agaw_to_width(iommu->agaw);
5015         if (addr_width > cap_mgaw(iommu->cap))
5016                 addr_width = cap_mgaw(iommu->cap);
5017
5018         if (dmar_domain->max_addr > (1LL << addr_width)) {
5019                 pr_err("%s: iommu width (%d) is not "
5020                        "sufficient for the mapped address (%llx)\n",
5021                        __func__, addr_width, dmar_domain->max_addr);
5022                 return -EFAULT;
5023         }
5024         dmar_domain->gaw = addr_width;
5025
5026         /*
5027          * Knock out extra levels of page tables if necessary
5028          */
5029         while (iommu->agaw < dmar_domain->agaw) {
5030                 struct dma_pte *pte;
5031
5032                 pte = dmar_domain->pgd;
5033                 if (dma_pte_present(pte)) {
5034                         dmar_domain->pgd = (struct dma_pte *)
5035                                 phys_to_virt(dma_pte_addr(pte));
5036                         free_pgtable_page(pte);
5037                 }
5038                 dmar_domain->agaw--;
5039         }
5040
5041         return domain_add_dev_info(dmar_domain, dev);
5042 }
5043
5044 static void intel_iommu_detach_device(struct iommu_domain *domain,
5045                                       struct device *dev)
5046 {
5047         dmar_remove_one_dev_info(to_dmar_domain(domain), dev);
5048 }
5049
5050 static int intel_iommu_map(struct iommu_domain *domain,
5051                            unsigned long iova, phys_addr_t hpa,
5052                            size_t size, int iommu_prot)
5053 {
5054         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5055         u64 max_addr;
5056         int prot = 0;
5057         int ret;
5058
5059         if (iommu_prot & IOMMU_READ)
5060                 prot |= DMA_PTE_READ;
5061         if (iommu_prot & IOMMU_WRITE)
5062                 prot |= DMA_PTE_WRITE;
5063         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
5064                 prot |= DMA_PTE_SNP;
5065
5066         max_addr = iova + size;
5067         if (dmar_domain->max_addr < max_addr) {
5068                 u64 end;
5069
5070                 /* check if minimum agaw is sufficient for mapped address */
5071                 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
5072                 if (end < max_addr) {
5073                         pr_err("%s: iommu width (%d) is not "
5074                                "sufficient for the mapped address (%llx)\n",
5075                                __func__, dmar_domain->gaw, max_addr);
5076                         return -EFAULT;
5077                 }
5078                 dmar_domain->max_addr = max_addr;
5079         }
5080         /* Round up size to next multiple of PAGE_SIZE, if it and
5081            the low bits of hpa would take us onto the next page */
5082         size = aligned_nrpages(hpa, size);
5083         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
5084                                  hpa >> VTD_PAGE_SHIFT, size, prot);
5085         return ret;
5086 }
5087
5088 static size_t intel_iommu_unmap(struct iommu_domain *domain,
5089                                 unsigned long iova, size_t size)
5090 {
5091         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5092         struct page *freelist = NULL;
5093         struct intel_iommu *iommu;
5094         unsigned long start_pfn, last_pfn;
5095         unsigned int npages;
5096         int iommu_id, level = 0;
5097
5098         /* Cope with horrid API which requires us to unmap more than the
5099            size argument if it happens to be a large-page mapping. */
5100         BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
5101
5102         if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
5103                 size = VTD_PAGE_SIZE << level_to_offset_bits(level);
5104
5105         start_pfn = iova >> VTD_PAGE_SHIFT;
5106         last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
5107
5108         freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
5109
5110         npages = last_pfn - start_pfn + 1;
5111
5112         for_each_domain_iommu(iommu_id, dmar_domain) {
5113                 iommu = g_iommus[iommu_id];
5114
5115                 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
5116                                       start_pfn, npages, !freelist, 0);
5117         }
5118
5119         dma_free_pagelist(freelist);
5120
5121         if (dmar_domain->max_addr == iova + size)
5122                 dmar_domain->max_addr = iova;
5123
5124         return size;
5125 }
5126
5127 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
5128                                             dma_addr_t iova)
5129 {
5130         struct dmar_domain *dmar_domain = to_dmar_domain(domain);
5131         struct dma_pte *pte;
5132         int level = 0;
5133         u64 phys = 0;
5134
5135         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
5136         if (pte)
5137                 phys = dma_pte_addr(pte);
5138
5139         return phys;
5140 }
5141
5142 static bool intel_iommu_capable(enum iommu_cap cap)
5143 {
5144         if (cap == IOMMU_CAP_CACHE_COHERENCY)
5145                 return domain_update_iommu_snooping(NULL) == 1;
5146         if (cap == IOMMU_CAP_INTR_REMAP)
5147                 return irq_remapping_enabled == 1;
5148
5149         return false;
5150 }
5151
5152 static int intel_iommu_add_device(struct device *dev)
5153 {
5154         struct intel_iommu *iommu;
5155         struct iommu_group *group;
5156         u8 bus, devfn;
5157
5158         iommu = device_to_iommu(dev, &bus, &devfn);
5159         if (!iommu)
5160                 return -ENODEV;
5161
5162         iommu_device_link(iommu->iommu_dev, dev);
5163
5164         group = iommu_group_get_for_dev(dev);
5165
5166         if (IS_ERR(group))
5167                 return PTR_ERR(group);
5168
5169         iommu_group_put(group);
5170         return 0;
5171 }
5172
5173 static void intel_iommu_remove_device(struct device *dev)
5174 {
5175         struct intel_iommu *iommu;
5176         u8 bus, devfn;
5177
5178         iommu = device_to_iommu(dev, &bus, &devfn);
5179         if (!iommu)
5180                 return;
5181
5182         iommu_group_remove_device(dev);
5183
5184         iommu_device_unlink(iommu->iommu_dev, dev);
5185 }
5186
5187 #ifdef CONFIG_INTEL_IOMMU_SVM
5188 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct intel_svm_dev *sdev)
5189 {
5190         struct device_domain_info *info;
5191         struct context_entry *context;
5192         struct dmar_domain *domain;
5193         unsigned long flags;
5194         u64 ctx_lo;
5195         int ret;
5196
5197         domain = get_valid_domain_for_dev(sdev->dev);
5198         if (!domain)
5199                 return -EINVAL;
5200
5201         spin_lock_irqsave(&device_domain_lock, flags);
5202         spin_lock(&iommu->lock);
5203
5204         ret = -EINVAL;
5205         info = sdev->dev->archdata.iommu;
5206         if (!info || !info->pasid_supported)
5207                 goto out;
5208
5209         context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
5210         if (WARN_ON(!context))
5211                 goto out;
5212
5213         ctx_lo = context[0].lo;
5214
5215         sdev->did = domain->iommu_did[iommu->seq_id];
5216         sdev->sid = PCI_DEVID(info->bus, info->devfn);
5217
5218         if (!(ctx_lo & CONTEXT_PASIDE)) {
5219                 context[1].hi = (u64)virt_to_phys(iommu->pasid_state_table);
5220                 context[1].lo = (u64)virt_to_phys(iommu->pasid_table) | ecap_pss(iommu->ecap);
5221                 wmb();
5222                 /* CONTEXT_TT_MULTI_LEVEL and CONTEXT_TT_DEV_IOTLB are both
5223                  * extended to permit requests-with-PASID if the PASIDE bit
5224                  * is set. which makes sense. For CONTEXT_TT_PASS_THROUGH,
5225                  * however, the PASIDE bit is ignored and requests-with-PASID
5226                  * are unconditionally blocked. Which makes less sense.
5227                  * So convert from CONTEXT_TT_PASS_THROUGH to one of the new
5228                  * "guest mode" translation types depending on whether ATS
5229                  * is available or not. Annoyingly, we can't use the new
5230                  * modes *unless* PASIDE is set. */
5231                 if ((ctx_lo & CONTEXT_TT_MASK) == (CONTEXT_TT_PASS_THROUGH << 2)) {
5232                         ctx_lo &= ~CONTEXT_TT_MASK;
5233                         if (info->ats_supported)
5234                                 ctx_lo |= CONTEXT_TT_PT_PASID_DEV_IOTLB << 2;
5235                         else
5236                                 ctx_lo |= CONTEXT_TT_PT_PASID << 2;
5237                 }
5238                 ctx_lo |= CONTEXT_PASIDE;
5239                 if (iommu->pasid_state_table)
5240                         ctx_lo |= CONTEXT_DINVE;
5241                 if (info->pri_supported)
5242                         ctx_lo |= CONTEXT_PRS;
5243                 context[0].lo = ctx_lo;
5244                 wmb();
5245                 iommu->flush.flush_context(iommu, sdev->did, sdev->sid,
5246                                            DMA_CCMD_MASK_NOBIT,
5247                                            DMA_CCMD_DEVICE_INVL);
5248         }
5249
5250         /* Enable PASID support in the device, if it wasn't already */
5251         if (!info->pasid_enabled)
5252                 iommu_enable_dev_iotlb(info);
5253
5254         if (info->ats_enabled) {
5255                 sdev->dev_iotlb = 1;
5256                 sdev->qdep = info->ats_qdep;
5257                 if (sdev->qdep >= QI_DEV_EIOTLB_MAX_INVS)
5258                         sdev->qdep = 0;
5259         }
5260         ret = 0;
5261
5262  out:
5263         spin_unlock(&iommu->lock);
5264         spin_unlock_irqrestore(&device_domain_lock, flags);
5265
5266         return ret;
5267 }
5268
5269 struct intel_iommu *intel_svm_device_to_iommu(struct device *dev)
5270 {
5271         struct intel_iommu *iommu;
5272         u8 bus, devfn;
5273
5274         if (iommu_dummy(dev)) {
5275                 dev_warn(dev,
5276                          "No IOMMU translation for device; cannot enable SVM\n");
5277                 return NULL;
5278         }
5279
5280         iommu = device_to_iommu(dev, &bus, &devfn);
5281         if ((!iommu)) {
5282                 dev_err(dev, "No IOMMU for device; cannot enable SVM\n");
5283                 return NULL;
5284         }
5285
5286         if (!iommu->pasid_table) {
5287                 dev_err(dev, "PASID not enabled on IOMMU; cannot enable SVM\n");
5288                 return NULL;
5289         }
5290
5291         return iommu;
5292 }
5293 #endif /* CONFIG_INTEL_IOMMU_SVM */
5294
5295 static const struct iommu_ops intel_iommu_ops = {
5296         .capable        = intel_iommu_capable,
5297         .domain_alloc   = intel_iommu_domain_alloc,
5298         .domain_free    = intel_iommu_domain_free,
5299         .attach_dev     = intel_iommu_attach_device,
5300         .detach_dev     = intel_iommu_detach_device,
5301         .map            = intel_iommu_map,
5302         .unmap          = intel_iommu_unmap,
5303         .map_sg         = default_iommu_map_sg,
5304         .iova_to_phys   = intel_iommu_iova_to_phys,
5305         .add_device     = intel_iommu_add_device,
5306         .remove_device  = intel_iommu_remove_device,
5307         .device_group   = pci_device_group,
5308         .pgsize_bitmap  = INTEL_IOMMU_PGSIZES,
5309 };
5310
5311 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
5312 {
5313         /* G4x/GM45 integrated gfx dmar support is totally busted. */
5314         pr_info("Disabling IOMMU for graphics on this chipset\n");
5315         dmar_map_gfx = 0;
5316 }
5317
5318 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
5319 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
5320 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
5321 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
5322 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
5323 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
5324 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
5325
5326 static void quirk_iommu_rwbf(struct pci_dev *dev)
5327 {
5328         /*
5329          * Mobile 4 Series Chipset neglects to set RWBF capability,
5330          * but needs it. Same seems to hold for the desktop versions.
5331          */
5332         pr_info("Forcing write-buffer flush capability\n");
5333         rwbf_quirk = 1;
5334 }
5335
5336 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
5337 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
5338 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
5339 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
5340 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
5341 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
5342 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
5343
5344 #define GGC 0x52
5345 #define GGC_MEMORY_SIZE_MASK    (0xf << 8)
5346 #define GGC_MEMORY_SIZE_NONE    (0x0 << 8)
5347 #define GGC_MEMORY_SIZE_1M      (0x1 << 8)
5348 #define GGC_MEMORY_SIZE_2M      (0x3 << 8)
5349 #define GGC_MEMORY_VT_ENABLED   (0x8 << 8)
5350 #define GGC_MEMORY_SIZE_2M_VT   (0x9 << 8)
5351 #define GGC_MEMORY_SIZE_3M_VT   (0xa << 8)
5352 #define GGC_MEMORY_SIZE_4M_VT   (0xb << 8)
5353
5354 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
5355 {
5356         unsigned short ggc;
5357
5358         if (pci_read_config_word(dev, GGC, &ggc))
5359                 return;
5360
5361         if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
5362                 pr_info("BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5363                 dmar_map_gfx = 0;
5364         } else if (dmar_map_gfx) {
5365                 /* we have to ensure the gfx device is idle before we flush */
5366                 pr_info("Disabling batched IOTLB flush on Ironlake\n");
5367                 intel_iommu_strict = 1;
5368        }
5369 }
5370 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
5371 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
5372 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
5373 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
5374
5375 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5376    ISOCH DMAR unit for the Azalia sound device, but not give it any
5377    TLB entries, which causes it to deadlock. Check for that.  We do
5378    this in a function called from init_dmars(), instead of in a PCI
5379    quirk, because we don't want to print the obnoxious "BIOS broken"
5380    message if VT-d is actually disabled.
5381 */
5382 static void __init check_tylersburg_isoch(void)
5383 {
5384         struct pci_dev *pdev;
5385         uint32_t vtisochctrl;
5386
5387         /* If there's no Azalia in the system anyway, forget it. */
5388         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
5389         if (!pdev)
5390                 return;
5391         pci_dev_put(pdev);
5392
5393         /* System Management Registers. Might be hidden, in which case
5394            we can't do the sanity check. But that's OK, because the
5395            known-broken BIOSes _don't_ actually hide it, so far. */
5396         pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
5397         if (!pdev)
5398                 return;
5399
5400         if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
5401                 pci_dev_put(pdev);
5402                 return;
5403         }
5404
5405         pci_dev_put(pdev);
5406
5407         /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5408         if (vtisochctrl & 1)
5409                 return;
5410
5411         /* Drop all bits other than the number of TLB entries */
5412         vtisochctrl &= 0x1c;
5413
5414         /* If we have the recommended number of TLB entries (16), fine. */
5415         if (vtisochctrl == 0x10)
5416                 return;
5417
5418         /* Zero TLB entries? You get to ride the short bus to school. */
5419         if (!vtisochctrl) {
5420                 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5421                      "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5422                      dmi_get_system_info(DMI_BIOS_VENDOR),
5423                      dmi_get_system_info(DMI_BIOS_VERSION),
5424                      dmi_get_system_info(DMI_PRODUCT_VERSION));
5425                 iommu_identity_mapping |= IDENTMAP_AZALIA;
5426                 return;
5427         }
5428
5429         pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5430                vtisochctrl);
5431 }