]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/lightnvm/rrpc.c
Merge tag 'ktest-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[karo-tx-linux.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct nvm_tgt_dev *dev = rrpc->dev;
32         struct rrpc_block *rblk = a->rblk;
33         unsigned int pg_offset;
34
35         lockdep_assert_held(&rrpc->rev_lock);
36
37         if (a->addr == ADDR_EMPTY || !rblk)
38                 return;
39
40         spin_lock(&rblk->lock);
41
42         div_u64_rem(a->addr, dev->geo.sec_per_blk, &pg_offset);
43         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
44         rblk->nr_invalid_pages++;
45
46         spin_unlock(&rblk->lock);
47
48         rrpc->rev_trans_map[a->addr].addr = ADDR_EMPTY;
49 }
50
51 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
52                                                         unsigned int len)
53 {
54         sector_t i;
55
56         spin_lock(&rrpc->rev_lock);
57         for (i = slba; i < slba + len; i++) {
58                 struct rrpc_addr *gp = &rrpc->trans_map[i];
59
60                 rrpc_page_invalidate(rrpc, gp);
61                 gp->rblk = NULL;
62         }
63         spin_unlock(&rrpc->rev_lock);
64 }
65
66 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
67                                         sector_t laddr, unsigned int pages)
68 {
69         struct nvm_rq *rqd;
70         struct rrpc_inflight_rq *inf;
71
72         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
73         if (!rqd)
74                 return ERR_PTR(-ENOMEM);
75
76         inf = rrpc_get_inflight_rq(rqd);
77         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
78                 mempool_free(rqd, rrpc->rq_pool);
79                 return NULL;
80         }
81
82         return rqd;
83 }
84
85 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
86 {
87         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
88
89         rrpc_unlock_laddr(rrpc, inf);
90
91         mempool_free(rqd, rrpc->rq_pool);
92 }
93
94 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
95 {
96         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
97         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
98         struct nvm_rq *rqd;
99
100         while (1) {
101                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
102                 if (rqd)
103                         break;
104
105                 schedule();
106         }
107
108         if (IS_ERR(rqd)) {
109                 pr_err("rrpc: unable to acquire inflight IO\n");
110                 bio_io_error(bio);
111                 return;
112         }
113
114         rrpc_invalidate_range(rrpc, slba, len);
115         rrpc_inflight_laddr_release(rrpc, rqd);
116 }
117
118 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
119 {
120         struct nvm_tgt_dev *dev = rrpc->dev;
121
122         return (rblk->next_page == dev->geo.sec_per_blk);
123 }
124
125 /* Calculate relative addr for the given block, considering instantiated LUNs */
126 static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
127 {
128         struct nvm_tgt_dev *dev = rrpc->dev;
129         struct rrpc_lun *rlun = rblk->rlun;
130
131         return rlun->id * dev->geo.sec_per_blk;
132 }
133
134 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_tgt_dev *dev,
135                                          struct rrpc_addr *gp)
136 {
137         struct rrpc_block *rblk = gp->rblk;
138         struct rrpc_lun *rlun = rblk->rlun;
139         u64 addr = gp->addr;
140         struct ppa_addr paddr;
141
142         paddr.ppa = addr;
143         paddr = rrpc_linear_to_generic_addr(&dev->geo, paddr);
144         paddr.g.ch = rlun->bppa.g.ch;
145         paddr.g.lun = rlun->bppa.g.lun;
146         paddr.g.blk = rblk->id;
147
148         return paddr;
149 }
150
151 /* requires lun->lock taken */
152 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
153                                                 struct rrpc_block **cur_rblk)
154 {
155         struct rrpc *rrpc = rlun->rrpc;
156
157         if (*cur_rblk) {
158                 spin_lock(&(*cur_rblk)->lock);
159                 WARN_ON(!block_is_full(rrpc, *cur_rblk));
160                 spin_unlock(&(*cur_rblk)->lock);
161         }
162         *cur_rblk = new_rblk;
163 }
164
165 static struct rrpc_block *__rrpc_get_blk(struct rrpc *rrpc,
166                                                         struct rrpc_lun *rlun)
167 {
168         struct rrpc_block *rblk = NULL;
169
170         if (list_empty(&rlun->free_list))
171                 goto out;
172
173         rblk = list_first_entry(&rlun->free_list, struct rrpc_block, list);
174
175         list_move_tail(&rblk->list, &rlun->used_list);
176         rblk->state = NVM_BLK_ST_TGT;
177         rlun->nr_free_blocks--;
178
179 out:
180         return rblk;
181 }
182
183 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
184                                                         unsigned long flags)
185 {
186         struct nvm_tgt_dev *dev = rrpc->dev;
187         struct rrpc_block *rblk;
188         int is_gc = flags & NVM_IOTYPE_GC;
189
190         spin_lock(&rlun->lock);
191         if (!is_gc && rlun->nr_free_blocks < rlun->reserved_blocks) {
192                 pr_err("nvm: rrpc: cannot give block to non GC request\n");
193                 spin_unlock(&rlun->lock);
194                 return NULL;
195         }
196
197         rblk = __rrpc_get_blk(rrpc, rlun);
198         if (!rblk) {
199                 pr_err("nvm: rrpc: cannot get new block\n");
200                 spin_unlock(&rlun->lock);
201                 return NULL;
202         }
203         spin_unlock(&rlun->lock);
204
205         bitmap_zero(rblk->invalid_pages, dev->geo.sec_per_blk);
206         rblk->next_page = 0;
207         rblk->nr_invalid_pages = 0;
208         atomic_set(&rblk->data_cmnt_size, 0);
209
210         return rblk;
211 }
212
213 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
214 {
215         struct rrpc_lun *rlun = rblk->rlun;
216
217         spin_lock(&rlun->lock);
218         if (rblk->state & NVM_BLK_ST_TGT) {
219                 list_move_tail(&rblk->list, &rlun->free_list);
220                 rlun->nr_free_blocks++;
221                 rblk->state = NVM_BLK_ST_FREE;
222         } else if (rblk->state & NVM_BLK_ST_BAD) {
223                 list_move_tail(&rblk->list, &rlun->bb_list);
224                 rblk->state = NVM_BLK_ST_BAD;
225         } else {
226                 WARN_ON_ONCE(1);
227                 pr_err("rrpc: erroneous type (ch:%d,lun:%d,blk%d-> %u)\n",
228                                         rlun->bppa.g.ch, rlun->bppa.g.lun,
229                                         rblk->id, rblk->state);
230                 list_move_tail(&rblk->list, &rlun->bb_list);
231         }
232         spin_unlock(&rlun->lock);
233 }
234
235 static void rrpc_put_blks(struct rrpc *rrpc)
236 {
237         struct rrpc_lun *rlun;
238         int i;
239
240         for (i = 0; i < rrpc->nr_luns; i++) {
241                 rlun = &rrpc->luns[i];
242                 if (rlun->cur)
243                         rrpc_put_blk(rrpc, rlun->cur);
244                 if (rlun->gc_cur)
245                         rrpc_put_blk(rrpc, rlun->gc_cur);
246         }
247 }
248
249 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
250 {
251         int next = atomic_inc_return(&rrpc->next_lun);
252
253         return &rrpc->luns[next % rrpc->nr_luns];
254 }
255
256 static void rrpc_gc_kick(struct rrpc *rrpc)
257 {
258         struct rrpc_lun *rlun;
259         unsigned int i;
260
261         for (i = 0; i < rrpc->nr_luns; i++) {
262                 rlun = &rrpc->luns[i];
263                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
264         }
265 }
266
267 /*
268  * timed GC every interval.
269  */
270 static void rrpc_gc_timer(unsigned long data)
271 {
272         struct rrpc *rrpc = (struct rrpc *)data;
273
274         rrpc_gc_kick(rrpc);
275         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
276 }
277
278 static void rrpc_end_sync_bio(struct bio *bio)
279 {
280         struct completion *waiting = bio->bi_private;
281
282         if (bio->bi_error)
283                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
284
285         complete(waiting);
286 }
287
288 /*
289  * rrpc_move_valid_pages -- migrate live data off the block
290  * @rrpc: the 'rrpc' structure
291  * @block: the block from which to migrate live pages
292  *
293  * Description:
294  *   GC algorithms may call this function to migrate remaining live
295  *   pages off the block prior to erasing it. This function blocks
296  *   further execution until the operation is complete.
297  */
298 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
299 {
300         struct nvm_tgt_dev *dev = rrpc->dev;
301         struct request_queue *q = dev->q;
302         struct rrpc_rev_addr *rev;
303         struct nvm_rq *rqd;
304         struct bio *bio;
305         struct page *page;
306         int slot;
307         int nr_sec_per_blk = dev->geo.sec_per_blk;
308         u64 phys_addr;
309         DECLARE_COMPLETION_ONSTACK(wait);
310
311         if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
312                 return 0;
313
314         bio = bio_alloc(GFP_NOIO, 1);
315         if (!bio) {
316                 pr_err("nvm: could not alloc bio to gc\n");
317                 return -ENOMEM;
318         }
319
320         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
321         if (!page) {
322                 bio_put(bio);
323                 return -ENOMEM;
324         }
325
326         while ((slot = find_first_zero_bit(rblk->invalid_pages,
327                                             nr_sec_per_blk)) < nr_sec_per_blk) {
328
329                 /* Lock laddr */
330                 phys_addr = rrpc_blk_to_ppa(rrpc, rblk) + slot;
331
332 try:
333                 spin_lock(&rrpc->rev_lock);
334                 /* Get logical address from physical to logical table */
335                 rev = &rrpc->rev_trans_map[phys_addr];
336                 /* already updated by previous regular write */
337                 if (rev->addr == ADDR_EMPTY) {
338                         spin_unlock(&rrpc->rev_lock);
339                         continue;
340                 }
341
342                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
343                 if (IS_ERR_OR_NULL(rqd)) {
344                         spin_unlock(&rrpc->rev_lock);
345                         schedule();
346                         goto try;
347                 }
348
349                 spin_unlock(&rrpc->rev_lock);
350
351                 /* Perform read to do GC */
352                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
353                 bio_set_op_attrs(bio,  REQ_OP_READ, 0);
354                 bio->bi_private = &wait;
355                 bio->bi_end_io = rrpc_end_sync_bio;
356
357                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
358                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
359
360                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
361                         pr_err("rrpc: gc read failed.\n");
362                         rrpc_inflight_laddr_release(rrpc, rqd);
363                         goto finished;
364                 }
365                 wait_for_completion_io(&wait);
366                 if (bio->bi_error) {
367                         rrpc_inflight_laddr_release(rrpc, rqd);
368                         goto finished;
369                 }
370
371                 bio_reset(bio);
372                 reinit_completion(&wait);
373
374                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
375                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
376                 bio->bi_private = &wait;
377                 bio->bi_end_io = rrpc_end_sync_bio;
378
379                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
380
381                 /* turn the command around and write the data back to a new
382                  * address
383                  */
384                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
385                         pr_err("rrpc: gc write failed.\n");
386                         rrpc_inflight_laddr_release(rrpc, rqd);
387                         goto finished;
388                 }
389                 wait_for_completion_io(&wait);
390
391                 rrpc_inflight_laddr_release(rrpc, rqd);
392                 if (bio->bi_error)
393                         goto finished;
394
395                 bio_reset(bio);
396         }
397
398 finished:
399         mempool_free(page, rrpc->page_pool);
400         bio_put(bio);
401
402         if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
403                 pr_err("nvm: failed to garbage collect block\n");
404                 return -EIO;
405         }
406
407         return 0;
408 }
409
410 static void rrpc_block_gc(struct work_struct *work)
411 {
412         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
413                                                                         ws_gc);
414         struct rrpc *rrpc = gcb->rrpc;
415         struct rrpc_block *rblk = gcb->rblk;
416         struct rrpc_lun *rlun = rblk->rlun;
417         struct nvm_tgt_dev *dev = rrpc->dev;
418         struct ppa_addr ppa;
419
420         mempool_free(gcb, rrpc->gcb_pool);
421         pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' being reclaimed\n",
422                         rlun->bppa.g.ch, rlun->bppa.g.lun,
423                         rblk->id);
424
425         if (rrpc_move_valid_pages(rrpc, rblk))
426                 goto put_back;
427
428         ppa.ppa = 0;
429         ppa.g.ch = rlun->bppa.g.ch;
430         ppa.g.lun = rlun->bppa.g.lun;
431         ppa.g.blk = rblk->id;
432
433         if (nvm_erase_blk(dev, &ppa, 0))
434                 goto put_back;
435
436         rrpc_put_blk(rrpc, rblk);
437
438         return;
439
440 put_back:
441         spin_lock(&rlun->lock);
442         list_add_tail(&rblk->prio, &rlun->prio_list);
443         spin_unlock(&rlun->lock);
444 }
445
446 /* the block with highest number of invalid pages, will be in the beginning
447  * of the list
448  */
449 static struct rrpc_block *rblk_max_invalid(struct rrpc_block *ra,
450                                                         struct rrpc_block *rb)
451 {
452         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
453                 return ra;
454
455         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
456 }
457
458 /* linearly find the block with highest number of invalid pages
459  * requires lun->lock
460  */
461 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
462 {
463         struct list_head *prio_list = &rlun->prio_list;
464         struct rrpc_block *rblk, *max;
465
466         BUG_ON(list_empty(prio_list));
467
468         max = list_first_entry(prio_list, struct rrpc_block, prio);
469         list_for_each_entry(rblk, prio_list, prio)
470                 max = rblk_max_invalid(max, rblk);
471
472         return max;
473 }
474
475 static void rrpc_lun_gc(struct work_struct *work)
476 {
477         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
478         struct rrpc *rrpc = rlun->rrpc;
479         struct nvm_tgt_dev *dev = rrpc->dev;
480         struct rrpc_block_gc *gcb;
481         unsigned int nr_blocks_need;
482
483         nr_blocks_need = dev->geo.blks_per_lun / GC_LIMIT_INVERSE;
484
485         if (nr_blocks_need < rrpc->nr_luns)
486                 nr_blocks_need = rrpc->nr_luns;
487
488         spin_lock(&rlun->lock);
489         while (nr_blocks_need > rlun->nr_free_blocks &&
490                                         !list_empty(&rlun->prio_list)) {
491                 struct rrpc_block *rblk = block_prio_find_max(rlun);
492
493                 if (!rblk->nr_invalid_pages)
494                         break;
495
496                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
497                 if (!gcb)
498                         break;
499
500                 list_del_init(&rblk->prio);
501
502                 WARN_ON(!block_is_full(rrpc, rblk));
503
504                 pr_debug("rrpc: selected block 'ch:%d,lun:%d,blk:%d' for GC\n",
505                                         rlun->bppa.g.ch, rlun->bppa.g.lun,
506                                         rblk->id);
507
508                 gcb->rrpc = rrpc;
509                 gcb->rblk = rblk;
510                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
511
512                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
513
514                 nr_blocks_need--;
515         }
516         spin_unlock(&rlun->lock);
517
518         /* TODO: Hint that request queue can be started again */
519 }
520
521 static void rrpc_gc_queue(struct work_struct *work)
522 {
523         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
524                                                                         ws_gc);
525         struct rrpc *rrpc = gcb->rrpc;
526         struct rrpc_block *rblk = gcb->rblk;
527         struct rrpc_lun *rlun = rblk->rlun;
528
529         spin_lock(&rlun->lock);
530         list_add_tail(&rblk->prio, &rlun->prio_list);
531         spin_unlock(&rlun->lock);
532
533         mempool_free(gcb, rrpc->gcb_pool);
534         pr_debug("nvm: block 'ch:%d,lun:%d,blk:%d' full, allow GC (sched)\n",
535                                         rlun->bppa.g.ch, rlun->bppa.g.lun,
536                                         rblk->id);
537 }
538
539 static const struct block_device_operations rrpc_fops = {
540         .owner          = THIS_MODULE,
541 };
542
543 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
544 {
545         unsigned int i;
546         struct rrpc_lun *rlun, *max_free;
547
548         if (!is_gc)
549                 return get_next_lun(rrpc);
550
551         /* during GC, we don't care about RR, instead we want to make
552          * sure that we maintain evenness between the block luns.
553          */
554         max_free = &rrpc->luns[0];
555         /* prevent GC-ing lun from devouring pages of a lun with
556          * little free blocks. We don't take the lock as we only need an
557          * estimate.
558          */
559         rrpc_for_each_lun(rrpc, rlun, i) {
560                 if (rlun->nr_free_blocks > max_free->nr_free_blocks)
561                         max_free = rlun;
562         }
563
564         return max_free;
565 }
566
567 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
568                                         struct rrpc_block *rblk, u64 paddr)
569 {
570         struct rrpc_addr *gp;
571         struct rrpc_rev_addr *rev;
572
573         BUG_ON(laddr >= rrpc->nr_sects);
574
575         gp = &rrpc->trans_map[laddr];
576         spin_lock(&rrpc->rev_lock);
577         if (gp->rblk)
578                 rrpc_page_invalidate(rrpc, gp);
579
580         gp->addr = paddr;
581         gp->rblk = rblk;
582
583         rev = &rrpc->rev_trans_map[gp->addr];
584         rev->addr = laddr;
585         spin_unlock(&rrpc->rev_lock);
586
587         return gp;
588 }
589
590 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
591 {
592         u64 addr = ADDR_EMPTY;
593
594         spin_lock(&rblk->lock);
595         if (block_is_full(rrpc, rblk))
596                 goto out;
597
598         addr = rblk->next_page;
599
600         rblk->next_page++;
601 out:
602         spin_unlock(&rblk->lock);
603         return addr;
604 }
605
606 /* Map logical address to a physical page. The mapping implements a round robin
607  * approach and allocates a page from the next lun available.
608  *
609  * Returns rrpc_addr with the physical address and block. Returns NULL if no
610  * blocks in the next rlun are available.
611  */
612 static struct ppa_addr rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
613                                                                 int is_gc)
614 {
615         struct nvm_tgt_dev *tgt_dev = rrpc->dev;
616         struct rrpc_lun *rlun;
617         struct rrpc_block *rblk, **cur_rblk;
618         struct rrpc_addr *p;
619         struct ppa_addr ppa;
620         u64 paddr;
621         int gc_force = 0;
622
623         ppa.ppa = ADDR_EMPTY;
624         rlun = rrpc_get_lun_rr(rrpc, is_gc);
625
626         if (!is_gc && rlun->nr_free_blocks < rrpc->nr_luns * 4)
627                 return ppa;
628
629         /*
630          * page allocation steps:
631          * 1. Try to allocate new page from current rblk
632          * 2a. If succeed, proceed to map it in and return
633          * 2b. If fail, first try to allocate a new block from media manger,
634          *     and then retry step 1. Retry until the normal block pool is
635          *     exhausted.
636          * 3. If exhausted, and garbage collector is requesting the block,
637          *    go to the reserved block and retry step 1.
638          *    In the case that this fails as well, or it is not GC
639          *    requesting, report not able to retrieve a block and let the
640          *    caller handle further processing.
641          */
642
643         spin_lock(&rlun->lock);
644         cur_rblk = &rlun->cur;
645         rblk = rlun->cur;
646 retry:
647         paddr = rrpc_alloc_addr(rrpc, rblk);
648
649         if (paddr != ADDR_EMPTY)
650                 goto done;
651
652         if (!list_empty(&rlun->wblk_list)) {
653 new_blk:
654                 rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
655                                                                         prio);
656                 rrpc_set_lun_cur(rlun, rblk, cur_rblk);
657                 list_del(&rblk->prio);
658                 goto retry;
659         }
660         spin_unlock(&rlun->lock);
661
662         rblk = rrpc_get_blk(rrpc, rlun, gc_force);
663         if (rblk) {
664                 spin_lock(&rlun->lock);
665                 list_add_tail(&rblk->prio, &rlun->wblk_list);
666                 /*
667                  * another thread might already have added a new block,
668                  * Therefore, make sure that one is used, instead of the
669                  * one just added.
670                  */
671                 goto new_blk;
672         }
673
674         if (unlikely(is_gc) && !gc_force) {
675                 /* retry from emergency gc block */
676                 cur_rblk = &rlun->gc_cur;
677                 rblk = rlun->gc_cur;
678                 gc_force = 1;
679                 spin_lock(&rlun->lock);
680                 goto retry;
681         }
682
683         pr_err("rrpc: failed to allocate new block\n");
684         return ppa;
685 done:
686         spin_unlock(&rlun->lock);
687         p = rrpc_update_map(rrpc, laddr, rblk, paddr);
688         if (!p)
689                 return ppa;
690
691         /* return global address */
692         return rrpc_ppa_to_gaddr(tgt_dev, p);
693 }
694
695 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
696 {
697         struct rrpc_block_gc *gcb;
698
699         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
700         if (!gcb) {
701                 pr_err("rrpc: unable to queue block for gc.");
702                 return;
703         }
704
705         gcb->rrpc = rrpc;
706         gcb->rblk = rblk;
707
708         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
709         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
710 }
711
712 static struct rrpc_lun *rrpc_ppa_to_lun(struct rrpc *rrpc, struct ppa_addr p)
713 {
714         struct rrpc_lun *rlun = NULL;
715         int i;
716
717         for (i = 0; i < rrpc->nr_luns; i++) {
718                 if (rrpc->luns[i].bppa.g.ch == p.g.ch &&
719                                 rrpc->luns[i].bppa.g.lun == p.g.lun) {
720                         rlun = &rrpc->luns[i];
721                         break;
722                 }
723         }
724
725         return rlun;
726 }
727
728 static void __rrpc_mark_bad_block(struct rrpc *rrpc, struct ppa_addr ppa)
729 {
730         struct nvm_tgt_dev *dev = rrpc->dev;
731         struct rrpc_lun *rlun;
732         struct rrpc_block *rblk;
733
734         rlun = rrpc_ppa_to_lun(rrpc, ppa);
735         rblk = &rlun->blocks[ppa.g.blk];
736         rblk->state = NVM_BLK_ST_BAD;
737
738         nvm_set_tgt_bb_tbl(dev, &ppa, 1, NVM_BLK_T_GRWN_BAD);
739 }
740
741 static void rrpc_mark_bad_block(struct rrpc *rrpc, struct nvm_rq *rqd)
742 {
743         void *comp_bits = &rqd->ppa_status;
744         struct ppa_addr ppa, prev_ppa;
745         int nr_ppas = rqd->nr_ppas;
746         int bit;
747
748         if (rqd->nr_ppas == 1)
749                 __rrpc_mark_bad_block(rrpc, rqd->ppa_addr);
750
751         ppa_set_empty(&prev_ppa);
752         bit = -1;
753         while ((bit = find_next_bit(comp_bits, nr_ppas, bit + 1)) < nr_ppas) {
754                 ppa = rqd->ppa_list[bit];
755                 if (ppa_cmp_blk(ppa, prev_ppa))
756                         continue;
757
758                 __rrpc_mark_bad_block(rrpc, ppa);
759         }
760 }
761
762 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
763                                                 sector_t laddr, uint8_t npages)
764 {
765         struct nvm_tgt_dev *dev = rrpc->dev;
766         struct rrpc_addr *p;
767         struct rrpc_block *rblk;
768         int cmnt_size, i;
769
770         for (i = 0; i < npages; i++) {
771                 p = &rrpc->trans_map[laddr + i];
772                 rblk = p->rblk;
773
774                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
775                 if (unlikely(cmnt_size == dev->geo.sec_per_blk))
776                         rrpc_run_gc(rrpc, rblk);
777         }
778 }
779
780 static void rrpc_end_io(struct nvm_rq *rqd)
781 {
782         struct rrpc *rrpc = rqd->private;
783         struct nvm_tgt_dev *dev = rrpc->dev;
784         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
785         uint8_t npages = rqd->nr_ppas;
786         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
787
788         if (bio_data_dir(rqd->bio) == WRITE) {
789                 if (rqd->error == NVM_RSP_ERR_FAILWRITE)
790                         rrpc_mark_bad_block(rrpc, rqd);
791
792                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
793         }
794
795         bio_put(rqd->bio);
796
797         if (rrqd->flags & NVM_IOTYPE_GC)
798                 return;
799
800         rrpc_unlock_rq(rrpc, rqd);
801
802         if (npages > 1)
803                 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
804
805         mempool_free(rqd, rrpc->rq_pool);
806 }
807
808 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
809                         struct nvm_rq *rqd, unsigned long flags, int npages)
810 {
811         struct nvm_tgt_dev *dev = rrpc->dev;
812         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
813         struct rrpc_addr *gp;
814         sector_t laddr = rrpc_get_laddr(bio);
815         int is_gc = flags & NVM_IOTYPE_GC;
816         int i;
817
818         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
819                 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
820                 return NVM_IO_REQUEUE;
821         }
822
823         for (i = 0; i < npages; i++) {
824                 /* We assume that mapping occurs at 4KB granularity */
825                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
826                 gp = &rrpc->trans_map[laddr + i];
827
828                 if (gp->rblk) {
829                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(dev, gp);
830                 } else {
831                         BUG_ON(is_gc);
832                         rrpc_unlock_laddr(rrpc, r);
833                         nvm_dev_dma_free(dev->parent, rqd->ppa_list,
834                                                         rqd->dma_ppa_list);
835                         return NVM_IO_DONE;
836                 }
837         }
838
839         rqd->opcode = NVM_OP_HBREAD;
840
841         return NVM_IO_OK;
842 }
843
844 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
845                                                         unsigned long flags)
846 {
847         int is_gc = flags & NVM_IOTYPE_GC;
848         sector_t laddr = rrpc_get_laddr(bio);
849         struct rrpc_addr *gp;
850
851         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
852                 return NVM_IO_REQUEUE;
853
854         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
855         gp = &rrpc->trans_map[laddr];
856
857         if (gp->rblk) {
858                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp);
859         } else {
860                 BUG_ON(is_gc);
861                 rrpc_unlock_rq(rrpc, rqd);
862                 return NVM_IO_DONE;
863         }
864
865         rqd->opcode = NVM_OP_HBREAD;
866
867         return NVM_IO_OK;
868 }
869
870 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
871                         struct nvm_rq *rqd, unsigned long flags, int npages)
872 {
873         struct nvm_tgt_dev *dev = rrpc->dev;
874         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
875         struct ppa_addr p;
876         sector_t laddr = rrpc_get_laddr(bio);
877         int is_gc = flags & NVM_IOTYPE_GC;
878         int i;
879
880         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
881                 nvm_dev_dma_free(dev->parent, rqd->ppa_list, rqd->dma_ppa_list);
882                 return NVM_IO_REQUEUE;
883         }
884
885         for (i = 0; i < npages; i++) {
886                 /* We assume that mapping occurs at 4KB granularity */
887                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
888                 if (p.ppa == ADDR_EMPTY) {
889                         BUG_ON(is_gc);
890                         rrpc_unlock_laddr(rrpc, r);
891                         nvm_dev_dma_free(dev->parent, rqd->ppa_list,
892                                                         rqd->dma_ppa_list);
893                         rrpc_gc_kick(rrpc);
894                         return NVM_IO_REQUEUE;
895                 }
896
897                 rqd->ppa_list[i] = p;
898         }
899
900         rqd->opcode = NVM_OP_HBWRITE;
901
902         return NVM_IO_OK;
903 }
904
905 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
906                                 struct nvm_rq *rqd, unsigned long flags)
907 {
908         struct ppa_addr p;
909         int is_gc = flags & NVM_IOTYPE_GC;
910         sector_t laddr = rrpc_get_laddr(bio);
911
912         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
913                 return NVM_IO_REQUEUE;
914
915         p = rrpc_map_page(rrpc, laddr, is_gc);
916         if (p.ppa == ADDR_EMPTY) {
917                 BUG_ON(is_gc);
918                 rrpc_unlock_rq(rrpc, rqd);
919                 rrpc_gc_kick(rrpc);
920                 return NVM_IO_REQUEUE;
921         }
922
923         rqd->ppa_addr = p;
924         rqd->opcode = NVM_OP_HBWRITE;
925
926         return NVM_IO_OK;
927 }
928
929 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
930                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
931 {
932         struct nvm_tgt_dev *dev = rrpc->dev;
933
934         if (npages > 1) {
935                 rqd->ppa_list = nvm_dev_dma_alloc(dev->parent, GFP_KERNEL,
936                                                         &rqd->dma_ppa_list);
937                 if (!rqd->ppa_list) {
938                         pr_err("rrpc: not able to allocate ppa list\n");
939                         return NVM_IO_ERR;
940                 }
941
942                 if (bio_op(bio) == REQ_OP_WRITE)
943                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
944                                                                         npages);
945
946                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
947         }
948
949         if (bio_op(bio) == REQ_OP_WRITE)
950                 return rrpc_write_rq(rrpc, bio, rqd, flags);
951
952         return rrpc_read_rq(rrpc, bio, rqd, flags);
953 }
954
955 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
956                                 struct nvm_rq *rqd, unsigned long flags)
957 {
958         struct nvm_tgt_dev *dev = rrpc->dev;
959         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
960         uint8_t nr_pages = rrpc_get_pages(bio);
961         int bio_size = bio_sectors(bio) << 9;
962         int err;
963
964         if (bio_size < dev->geo.sec_size)
965                 return NVM_IO_ERR;
966         else if (bio_size > dev->geo.max_rq_size)
967                 return NVM_IO_ERR;
968
969         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
970         if (err)
971                 return err;
972
973         bio_get(bio);
974         rqd->bio = bio;
975         rqd->private = rrpc;
976         rqd->nr_ppas = nr_pages;
977         rqd->end_io = rrpc_end_io;
978         rrq->flags = flags;
979
980         err = nvm_submit_io(dev, rqd);
981         if (err) {
982                 pr_err("rrpc: I/O submission failed: %d\n", err);
983                 bio_put(bio);
984                 if (!(flags & NVM_IOTYPE_GC)) {
985                         rrpc_unlock_rq(rrpc, rqd);
986                         if (rqd->nr_ppas > 1)
987                                 nvm_dev_dma_free(dev->parent, rqd->ppa_list,
988                                                         rqd->dma_ppa_list);
989                 }
990                 return NVM_IO_ERR;
991         }
992
993         return NVM_IO_OK;
994 }
995
996 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
997 {
998         struct rrpc *rrpc = q->queuedata;
999         struct nvm_rq *rqd;
1000         int err;
1001
1002         blk_queue_split(q, &bio, q->bio_split);
1003
1004         if (bio_op(bio) == REQ_OP_DISCARD) {
1005                 rrpc_discard(rrpc, bio);
1006                 return BLK_QC_T_NONE;
1007         }
1008
1009         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
1010         if (!rqd) {
1011                 pr_err_ratelimited("rrpc: not able to queue bio.");
1012                 bio_io_error(bio);
1013                 return BLK_QC_T_NONE;
1014         }
1015         memset(rqd, 0, sizeof(struct nvm_rq));
1016
1017         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
1018         switch (err) {
1019         case NVM_IO_OK:
1020                 return BLK_QC_T_NONE;
1021         case NVM_IO_ERR:
1022                 bio_io_error(bio);
1023                 break;
1024         case NVM_IO_DONE:
1025                 bio_endio(bio);
1026                 break;
1027         case NVM_IO_REQUEUE:
1028                 spin_lock(&rrpc->bio_lock);
1029                 bio_list_add(&rrpc->requeue_bios, bio);
1030                 spin_unlock(&rrpc->bio_lock);
1031                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
1032                 break;
1033         }
1034
1035         mempool_free(rqd, rrpc->rq_pool);
1036         return BLK_QC_T_NONE;
1037 }
1038
1039 static void rrpc_requeue(struct work_struct *work)
1040 {
1041         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
1042         struct bio_list bios;
1043         struct bio *bio;
1044
1045         bio_list_init(&bios);
1046
1047         spin_lock(&rrpc->bio_lock);
1048         bio_list_merge(&bios, &rrpc->requeue_bios);
1049         bio_list_init(&rrpc->requeue_bios);
1050         spin_unlock(&rrpc->bio_lock);
1051
1052         while ((bio = bio_list_pop(&bios)))
1053                 rrpc_make_rq(rrpc->disk->queue, bio);
1054 }
1055
1056 static void rrpc_gc_free(struct rrpc *rrpc)
1057 {
1058         if (rrpc->krqd_wq)
1059                 destroy_workqueue(rrpc->krqd_wq);
1060
1061         if (rrpc->kgc_wq)
1062                 destroy_workqueue(rrpc->kgc_wq);
1063 }
1064
1065 static int rrpc_gc_init(struct rrpc *rrpc)
1066 {
1067         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
1068                                                                 rrpc->nr_luns);
1069         if (!rrpc->krqd_wq)
1070                 return -ENOMEM;
1071
1072         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
1073         if (!rrpc->kgc_wq)
1074                 return -ENOMEM;
1075
1076         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
1077
1078         return 0;
1079 }
1080
1081 static void rrpc_map_free(struct rrpc *rrpc)
1082 {
1083         vfree(rrpc->rev_trans_map);
1084         vfree(rrpc->trans_map);
1085 }
1086
1087 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
1088 {
1089         struct rrpc *rrpc = (struct rrpc *)private;
1090         struct nvm_tgt_dev *dev = rrpc->dev;
1091         struct rrpc_addr *addr = rrpc->trans_map + slba;
1092         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
1093         struct rrpc_lun *rlun;
1094         struct rrpc_block *rblk;
1095         u64 i;
1096
1097         for (i = 0; i < nlb; i++) {
1098                 struct ppa_addr gaddr;
1099                 u64 pba = le64_to_cpu(entries[i]);
1100                 unsigned int mod;
1101
1102                 /* LNVM treats address-spaces as silos, LBA and PBA are
1103                  * equally large and zero-indexed.
1104                  */
1105                 if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
1106                         pr_err("nvm: L2P data entry is out of bounds!\n");
1107                         pr_err("nvm: Maybe loaded an old target L2P\n");
1108                         return -EINVAL;
1109                 }
1110
1111                 /* Address zero is a special one. The first page on a disk is
1112                  * protected. As it often holds internal device boot
1113                  * information.
1114                  */
1115                 if (!pba)
1116                         continue;
1117
1118                 div_u64_rem(pba, rrpc->nr_sects, &mod);
1119
1120                 gaddr = rrpc_recov_addr(dev, pba);
1121                 rlun = rrpc_ppa_to_lun(rrpc, gaddr);
1122                 if (!rlun) {
1123                         pr_err("rrpc: l2p corruption on lba %llu\n",
1124                                                         slba + i);
1125                         return -EINVAL;
1126                 }
1127
1128                 rblk = &rlun->blocks[gaddr.g.blk];
1129                 if (!rblk->state) {
1130                         /* at this point, we don't know anything about the
1131                          * block. It's up to the FTL on top to re-etablish the
1132                          * block state. The block is assumed to be open.
1133                          */
1134                         list_move_tail(&rblk->list, &rlun->used_list);
1135                         rblk->state = NVM_BLK_ST_TGT;
1136                         rlun->nr_free_blocks--;
1137                 }
1138
1139                 addr[i].addr = pba;
1140                 addr[i].rblk = rblk;
1141                 raddr[mod].addr = slba + i;
1142         }
1143
1144         return 0;
1145 }
1146
1147 static int rrpc_map_init(struct rrpc *rrpc)
1148 {
1149         struct nvm_tgt_dev *dev = rrpc->dev;
1150         sector_t i;
1151         int ret;
1152
1153         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
1154         if (!rrpc->trans_map)
1155                 return -ENOMEM;
1156
1157         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1158                                                         * rrpc->nr_sects);
1159         if (!rrpc->rev_trans_map)
1160                 return -ENOMEM;
1161
1162         for (i = 0; i < rrpc->nr_sects; i++) {
1163                 struct rrpc_addr *p = &rrpc->trans_map[i];
1164                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1165
1166                 p->addr = ADDR_EMPTY;
1167                 r->addr = ADDR_EMPTY;
1168         }
1169
1170         /* Bring up the mapping table from device */
1171         ret = nvm_get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
1172                                                         rrpc_l2p_update, rrpc);
1173         if (ret) {
1174                 pr_err("nvm: rrpc: could not read L2P table.\n");
1175                 return -EINVAL;
1176         }
1177
1178         return 0;
1179 }
1180
1181 /* Minimum pages needed within a lun */
1182 #define PAGE_POOL_SIZE 16
1183 #define ADDR_POOL_SIZE 64
1184
1185 static int rrpc_core_init(struct rrpc *rrpc)
1186 {
1187         down_write(&rrpc_lock);
1188         if (!rrpc_gcb_cache) {
1189                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1190                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1191                 if (!rrpc_gcb_cache) {
1192                         up_write(&rrpc_lock);
1193                         return -ENOMEM;
1194                 }
1195
1196                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1197                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1198                                 0, 0, NULL);
1199                 if (!rrpc_rq_cache) {
1200                         kmem_cache_destroy(rrpc_gcb_cache);
1201                         up_write(&rrpc_lock);
1202                         return -ENOMEM;
1203                 }
1204         }
1205         up_write(&rrpc_lock);
1206
1207         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1208         if (!rrpc->page_pool)
1209                 return -ENOMEM;
1210
1211         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->geo.nr_luns,
1212                                                                 rrpc_gcb_cache);
1213         if (!rrpc->gcb_pool)
1214                 return -ENOMEM;
1215
1216         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1217         if (!rrpc->rq_pool)
1218                 return -ENOMEM;
1219
1220         spin_lock_init(&rrpc->inflights.lock);
1221         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1222
1223         return 0;
1224 }
1225
1226 static void rrpc_core_free(struct rrpc *rrpc)
1227 {
1228         mempool_destroy(rrpc->page_pool);
1229         mempool_destroy(rrpc->gcb_pool);
1230         mempool_destroy(rrpc->rq_pool);
1231 }
1232
1233 static void rrpc_luns_free(struct rrpc *rrpc)
1234 {
1235         struct rrpc_lun *rlun;
1236         int i;
1237
1238         if (!rrpc->luns)
1239                 return;
1240
1241         for (i = 0; i < rrpc->nr_luns; i++) {
1242                 rlun = &rrpc->luns[i];
1243                 vfree(rlun->blocks);
1244         }
1245
1246         kfree(rrpc->luns);
1247 }
1248
1249 static int rrpc_bb_discovery(struct nvm_tgt_dev *dev, struct rrpc_lun *rlun)
1250 {
1251         struct nvm_geo *geo = &dev->geo;
1252         struct rrpc_block *rblk;
1253         struct ppa_addr ppa;
1254         u8 *blks;
1255         int nr_blks;
1256         int i;
1257         int ret;
1258
1259         if (!dev->parent->ops->get_bb_tbl)
1260                 return 0;
1261
1262         nr_blks = geo->blks_per_lun * geo->plane_mode;
1263         blks = kmalloc(nr_blks, GFP_KERNEL);
1264         if (!blks)
1265                 return -ENOMEM;
1266
1267         ppa.ppa = 0;
1268         ppa.g.ch = rlun->bppa.g.ch;
1269         ppa.g.lun = rlun->bppa.g.lun;
1270
1271         ret = nvm_get_tgt_bb_tbl(dev, ppa, blks);
1272         if (ret) {
1273                 pr_err("rrpc: could not get BB table\n");
1274                 goto out;
1275         }
1276
1277         nr_blks = nvm_bb_tbl_fold(dev->parent, blks, nr_blks);
1278         if (nr_blks < 0)
1279                 return nr_blks;
1280
1281         for (i = 0; i < nr_blks; i++) {
1282                 if (blks[i] == NVM_BLK_T_FREE)
1283                         continue;
1284
1285                 rblk = &rlun->blocks[i];
1286                 list_move_tail(&rblk->list, &rlun->bb_list);
1287                 rblk->state = NVM_BLK_ST_BAD;
1288                 rlun->nr_free_blocks--;
1289         }
1290
1291 out:
1292         kfree(blks);
1293         return ret;
1294 }
1295
1296 static void rrpc_set_lun_ppa(struct rrpc_lun *rlun, struct ppa_addr ppa)
1297 {
1298         rlun->bppa.ppa = 0;
1299         rlun->bppa.g.ch = ppa.g.ch;
1300         rlun->bppa.g.lun = ppa.g.lun;
1301 }
1302
1303 static int rrpc_luns_init(struct rrpc *rrpc, struct ppa_addr *luns)
1304 {
1305         struct nvm_tgt_dev *dev = rrpc->dev;
1306         struct nvm_geo *geo = &dev->geo;
1307         struct rrpc_lun *rlun;
1308         int i, j, ret = -EINVAL;
1309
1310         if (geo->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1311                 pr_err("rrpc: number of pages per block too high.");
1312                 return -EINVAL;
1313         }
1314
1315         spin_lock_init(&rrpc->rev_lock);
1316
1317         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1318                                                                 GFP_KERNEL);
1319         if (!rrpc->luns)
1320                 return -ENOMEM;
1321
1322         /* 1:1 mapping */
1323         for (i = 0; i < rrpc->nr_luns; i++) {
1324                 rlun = &rrpc->luns[i];
1325                 rlun->id = i;
1326                 rrpc_set_lun_ppa(rlun, luns[i]);
1327                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1328                                                         geo->blks_per_lun);
1329                 if (!rlun->blocks) {
1330                         ret = -ENOMEM;
1331                         goto err;
1332                 }
1333
1334                 INIT_LIST_HEAD(&rlun->free_list);
1335                 INIT_LIST_HEAD(&rlun->used_list);
1336                 INIT_LIST_HEAD(&rlun->bb_list);
1337
1338                 for (j = 0; j < geo->blks_per_lun; j++) {
1339                         struct rrpc_block *rblk = &rlun->blocks[j];
1340
1341                         rblk->id = j;
1342                         rblk->rlun = rlun;
1343                         rblk->state = NVM_BLK_T_FREE;
1344                         INIT_LIST_HEAD(&rblk->prio);
1345                         INIT_LIST_HEAD(&rblk->list);
1346                         spin_lock_init(&rblk->lock);
1347
1348                         list_add_tail(&rblk->list, &rlun->free_list);
1349                 }
1350
1351                 rlun->rrpc = rrpc;
1352                 rlun->nr_free_blocks = geo->blks_per_lun;
1353                 rlun->reserved_blocks = 2; /* for GC only */
1354
1355                 INIT_LIST_HEAD(&rlun->prio_list);
1356                 INIT_LIST_HEAD(&rlun->wblk_list);
1357
1358                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1359                 spin_lock_init(&rlun->lock);
1360
1361                 if (rrpc_bb_discovery(dev, rlun))
1362                         goto err;
1363
1364         }
1365
1366         return 0;
1367 err:
1368         return ret;
1369 }
1370
1371 /* returns 0 on success and stores the beginning address in *begin */
1372 static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
1373 {
1374         struct nvm_tgt_dev *dev = rrpc->dev;
1375         sector_t size = rrpc->nr_sects * dev->geo.sec_size;
1376         int ret;
1377
1378         size >>= 9;
1379
1380         ret = nvm_get_area(dev, begin, size);
1381         if (!ret)
1382                 *begin >>= (ilog2(dev->geo.sec_size) - 9);
1383
1384         return ret;
1385 }
1386
1387 static void rrpc_area_free(struct rrpc *rrpc)
1388 {
1389         struct nvm_tgt_dev *dev = rrpc->dev;
1390         sector_t begin = rrpc->soffset << (ilog2(dev->geo.sec_size) - 9);
1391
1392         nvm_put_area(dev, begin);
1393 }
1394
1395 static void rrpc_free(struct rrpc *rrpc)
1396 {
1397         rrpc_gc_free(rrpc);
1398         rrpc_map_free(rrpc);
1399         rrpc_core_free(rrpc);
1400         rrpc_luns_free(rrpc);
1401         rrpc_area_free(rrpc);
1402
1403         kfree(rrpc);
1404 }
1405
1406 static void rrpc_exit(void *private)
1407 {
1408         struct rrpc *rrpc = private;
1409
1410         del_timer(&rrpc->gc_timer);
1411
1412         flush_workqueue(rrpc->krqd_wq);
1413         flush_workqueue(rrpc->kgc_wq);
1414
1415         rrpc_free(rrpc);
1416 }
1417
1418 static sector_t rrpc_capacity(void *private)
1419 {
1420         struct rrpc *rrpc = private;
1421         struct nvm_tgt_dev *dev = rrpc->dev;
1422         sector_t reserved, provisioned;
1423
1424         /* cur, gc, and two emergency blocks for each lun */
1425         reserved = rrpc->nr_luns * dev->geo.sec_per_blk * 4;
1426         provisioned = rrpc->nr_sects - reserved;
1427
1428         if (reserved > rrpc->nr_sects) {
1429                 pr_err("rrpc: not enough space available to expose storage.\n");
1430                 return 0;
1431         }
1432
1433         sector_div(provisioned, 10);
1434         return provisioned * 9 * NR_PHY_IN_LOG;
1435 }
1436
1437 /*
1438  * Looks up the logical address from reverse trans map and check if its valid by
1439  * comparing the logical to physical address with the physical address.
1440  * Returns 0 on free, otherwise 1 if in use
1441  */
1442 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1443 {
1444         struct nvm_tgt_dev *dev = rrpc->dev;
1445         int offset;
1446         struct rrpc_addr *laddr;
1447         u64 bpaddr, paddr, pladdr;
1448
1449         bpaddr = block_to_rel_addr(rrpc, rblk);
1450         for (offset = 0; offset < dev->geo.sec_per_blk; offset++) {
1451                 paddr = bpaddr + offset;
1452
1453                 pladdr = rrpc->rev_trans_map[paddr].addr;
1454                 if (pladdr == ADDR_EMPTY)
1455                         continue;
1456
1457                 laddr = &rrpc->trans_map[pladdr];
1458
1459                 if (paddr == laddr->addr) {
1460                         laddr->rblk = rblk;
1461                 } else {
1462                         set_bit(offset, rblk->invalid_pages);
1463                         rblk->nr_invalid_pages++;
1464                 }
1465         }
1466 }
1467
1468 static int rrpc_blocks_init(struct rrpc *rrpc)
1469 {
1470         struct nvm_tgt_dev *dev = rrpc->dev;
1471         struct rrpc_lun *rlun;
1472         struct rrpc_block *rblk;
1473         int lun_iter, blk_iter;
1474
1475         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1476                 rlun = &rrpc->luns[lun_iter];
1477
1478                 for (blk_iter = 0; blk_iter < dev->geo.blks_per_lun;
1479                                                                 blk_iter++) {
1480                         rblk = &rlun->blocks[blk_iter];
1481                         rrpc_block_map_update(rrpc, rblk);
1482                 }
1483         }
1484
1485         return 0;
1486 }
1487
1488 static int rrpc_luns_configure(struct rrpc *rrpc)
1489 {
1490         struct rrpc_lun *rlun;
1491         struct rrpc_block *rblk;
1492         int i;
1493
1494         for (i = 0; i < rrpc->nr_luns; i++) {
1495                 rlun = &rrpc->luns[i];
1496
1497                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1498                 if (!rblk)
1499                         goto err;
1500                 rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
1501
1502                 /* Emergency gc block */
1503                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1504                 if (!rblk)
1505                         goto err;
1506                 rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
1507         }
1508
1509         return 0;
1510 err:
1511         rrpc_put_blks(rrpc);
1512         return -EINVAL;
1513 }
1514
1515 static struct nvm_tgt_type tt_rrpc;
1516
1517 static void *rrpc_init(struct nvm_tgt_dev *dev, struct gendisk *tdisk)
1518 {
1519         struct request_queue *bqueue = dev->q;
1520         struct request_queue *tqueue = tdisk->queue;
1521         struct nvm_geo *geo = &dev->geo;
1522         struct rrpc *rrpc;
1523         sector_t soffset;
1524         int ret;
1525
1526         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1527                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1528                                                         dev->identity.dom);
1529                 return ERR_PTR(-EINVAL);
1530         }
1531
1532         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1533         if (!rrpc)
1534                 return ERR_PTR(-ENOMEM);
1535
1536         rrpc->dev = dev;
1537         rrpc->disk = tdisk;
1538
1539         bio_list_init(&rrpc->requeue_bios);
1540         spin_lock_init(&rrpc->bio_lock);
1541         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1542
1543         rrpc->nr_luns = geo->nr_luns;
1544         rrpc->nr_sects = (unsigned long long)geo->sec_per_lun * rrpc->nr_luns;
1545
1546         /* simple round-robin strategy */
1547         atomic_set(&rrpc->next_lun, -1);
1548
1549         ret = rrpc_area_init(rrpc, &soffset);
1550         if (ret < 0) {
1551                 pr_err("nvm: rrpc: could not initialize area\n");
1552                 return ERR_PTR(ret);
1553         }
1554         rrpc->soffset = soffset;
1555
1556         ret = rrpc_luns_init(rrpc, dev->luns);
1557         if (ret) {
1558                 pr_err("nvm: rrpc: could not initialize luns\n");
1559                 goto err;
1560         }
1561
1562         ret = rrpc_core_init(rrpc);
1563         if (ret) {
1564                 pr_err("nvm: rrpc: could not initialize core\n");
1565                 goto err;
1566         }
1567
1568         ret = rrpc_map_init(rrpc);
1569         if (ret) {
1570                 pr_err("nvm: rrpc: could not initialize maps\n");
1571                 goto err;
1572         }
1573
1574         ret = rrpc_blocks_init(rrpc);
1575         if (ret) {
1576                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1577                 goto err;
1578         }
1579
1580         ret = rrpc_luns_configure(rrpc);
1581         if (ret) {
1582                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1583                 goto err;
1584         }
1585
1586         ret = rrpc_gc_init(rrpc);
1587         if (ret) {
1588                 pr_err("nvm: rrpc: could not initialize gc\n");
1589                 goto err;
1590         }
1591
1592         /* inherit the size from the underlying device */
1593         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1594         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1595
1596         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1597                         rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
1598
1599         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1600
1601         return rrpc;
1602 err:
1603         rrpc_free(rrpc);
1604         return ERR_PTR(ret);
1605 }
1606
1607 /* round robin, page-based FTL, and cost-based GC */
1608 static struct nvm_tgt_type tt_rrpc = {
1609         .name           = "rrpc",
1610         .version        = {1, 0, 0},
1611
1612         .make_rq        = rrpc_make_rq,
1613         .capacity       = rrpc_capacity,
1614
1615         .init           = rrpc_init,
1616         .exit           = rrpc_exit,
1617 };
1618
1619 static int __init rrpc_module_init(void)
1620 {
1621         return nvm_register_tgt_type(&tt_rrpc);
1622 }
1623
1624 static void rrpc_module_exit(void)
1625 {
1626         nvm_unregister_tgt_type(&tt_rrpc);
1627 }
1628
1629 module_init(rrpc_module_init);
1630 module_exit(rrpc_module_exit);
1631 MODULE_LICENSE("GPL v2");
1632 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");