]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/bcache/writeback.c
arm: imx6: defconfig: update tx6 defconfigs
[karo-tx-linux.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <trace/events/bcache.h>
15
16 static struct workqueue_struct *dirty_wq;
17
18 static void read_dirty(struct closure *);
19
20 struct dirty_io {
21         struct closure          cl;
22         struct cached_dev       *dc;
23         struct bio              bio;
24 };
25
26 /* Rate limiting */
27
28 static void __update_writeback_rate(struct cached_dev *dc)
29 {
30         struct cache_set *c = dc->disk.c;
31         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
32         uint64_t cache_dirty_target =
33                 div_u64(cache_sectors * dc->writeback_percent, 100);
34
35         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
36                                    c->cached_dev_sectors);
37
38         /* PD controller */
39
40         int change = 0;
41         int64_t error;
42         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
43         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
44
45         dc->disk.sectors_dirty_last = dirty;
46
47         derivative *= dc->writeback_rate_d_term;
48         derivative = clamp(derivative, -dirty, dirty);
49
50         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
51                               dc->writeback_rate_d_smooth, 0);
52
53         /* Avoid divide by zero */
54         if (!target)
55                 goto out;
56
57         error = div64_s64((dirty + derivative - target) << 8, target);
58
59         change = div_s64((dc->writeback_rate.rate * error) >> 8,
60                          dc->writeback_rate_p_term_inverse);
61
62         /* Don't increase writeback rate if the device isn't keeping up */
63         if (change > 0 &&
64             time_after64(local_clock(),
65                          dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
66                 change = 0;
67
68         dc->writeback_rate.rate =
69                 clamp_t(int64_t, dc->writeback_rate.rate + change,
70                         1, NSEC_PER_MSEC);
71 out:
72         dc->writeback_rate_derivative = derivative;
73         dc->writeback_rate_change = change;
74         dc->writeback_rate_target = target;
75
76         schedule_delayed_work(&dc->writeback_rate_update,
77                               dc->writeback_rate_update_seconds * HZ);
78 }
79
80 static void update_writeback_rate(struct work_struct *work)
81 {
82         struct cached_dev *dc = container_of(to_delayed_work(work),
83                                              struct cached_dev,
84                                              writeback_rate_update);
85
86         down_read(&dc->writeback_lock);
87
88         if (atomic_read(&dc->has_dirty) &&
89             dc->writeback_percent)
90                 __update_writeback_rate(dc);
91
92         up_read(&dc->writeback_lock);
93 }
94
95 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
96 {
97         uint64_t ret;
98
99         if (atomic_read(&dc->disk.detaching) ||
100             !dc->writeback_percent)
101                 return 0;
102
103         ret = bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
104
105         return min_t(uint64_t, ret, HZ);
106 }
107
108 /* Background writeback */
109
110 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
111 {
112         return KEY_DIRTY(k);
113 }
114
115 static bool dirty_full_stripe_pred(struct keybuf *buf, struct bkey *k)
116 {
117         uint64_t stripe;
118         unsigned nr_sectors = KEY_SIZE(k);
119         struct cached_dev *dc = container_of(buf, struct cached_dev,
120                                              writeback_keys);
121         unsigned stripe_size = 1 << dc->disk.stripe_size_bits;
122
123         if (!KEY_DIRTY(k))
124                 return false;
125
126         stripe = KEY_START(k) >> dc->disk.stripe_size_bits;
127         while (1) {
128                 if (atomic_read(dc->disk.stripe_sectors_dirty + stripe) !=
129                     stripe_size)
130                         return false;
131
132                 if (nr_sectors <= stripe_size)
133                         return true;
134
135                 nr_sectors -= stripe_size;
136                 stripe++;
137         }
138 }
139
140 static void dirty_init(struct keybuf_key *w)
141 {
142         struct dirty_io *io = w->private;
143         struct bio *bio = &io->bio;
144
145         bio_init(bio);
146         if (!io->dc->writeback_percent)
147                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
148
149         bio->bi_size            = KEY_SIZE(&w->key) << 9;
150         bio->bi_max_vecs        = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
151         bio->bi_private         = w;
152         bio->bi_io_vec          = bio->bi_inline_vecs;
153         bch_bio_map(bio, NULL);
154 }
155
156 static void refill_dirty(struct closure *cl)
157 {
158         struct cached_dev *dc = container_of(cl, struct cached_dev,
159                                              writeback.cl);
160         struct keybuf *buf = &dc->writeback_keys;
161         bool searched_from_start = false;
162         struct bkey end = MAX_KEY;
163         SET_KEY_INODE(&end, dc->disk.id);
164
165         if (!atomic_read(&dc->disk.detaching) &&
166             !dc->writeback_running)
167                 closure_return(cl);
168
169         down_write(&dc->writeback_lock);
170
171         if (!atomic_read(&dc->has_dirty)) {
172                 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
173                 bch_write_bdev_super(dc, NULL);
174
175                 up_write(&dc->writeback_lock);
176                 closure_return(cl);
177         }
178
179         if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
180                 buf->last_scanned = KEY(dc->disk.id, 0, 0);
181                 searched_from_start = true;
182         }
183
184         if (dc->partial_stripes_expensive) {
185                 uint64_t i;
186
187                 for (i = 0; i < dc->disk.nr_stripes; i++)
188                         if (atomic_read(dc->disk.stripe_sectors_dirty + i) ==
189                             1 << dc->disk.stripe_size_bits)
190                                 goto full_stripes;
191
192                 goto normal_refill;
193 full_stripes:
194                 bch_refill_keybuf(dc->disk.c, buf, &end,
195                                   dirty_full_stripe_pred);
196         } else {
197 normal_refill:
198                 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
199         }
200
201         if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
202                 /* Searched the entire btree  - delay awhile */
203
204                 if (RB_EMPTY_ROOT(&buf->keys)) {
205                         atomic_set(&dc->has_dirty, 0);
206                         cached_dev_put(dc);
207                 }
208
209                 if (!atomic_read(&dc->disk.detaching))
210                         closure_delay(&dc->writeback, dc->writeback_delay * HZ);
211         }
212
213         up_write(&dc->writeback_lock);
214
215         bch_ratelimit_reset(&dc->writeback_rate);
216
217         /* Punt to workqueue only so we don't recurse and blow the stack */
218         continue_at(cl, read_dirty, dirty_wq);
219 }
220
221 void bch_writeback_queue(struct cached_dev *dc)
222 {
223         if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
224                 if (!atomic_read(&dc->disk.detaching))
225                         closure_delay(&dc->writeback, dc->writeback_delay * HZ);
226
227                 continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
228         }
229 }
230
231 void bch_writeback_add(struct cached_dev *dc)
232 {
233         if (!atomic_read(&dc->has_dirty) &&
234             !atomic_xchg(&dc->has_dirty, 1)) {
235                 atomic_inc(&dc->count);
236
237                 if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
238                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
239                         /* XXX: should do this synchronously */
240                         bch_write_bdev_super(dc, NULL);
241                 }
242
243                 bch_writeback_queue(dc);
244
245                 if (dc->writeback_percent)
246                         schedule_delayed_work(&dc->writeback_rate_update,
247                                       dc->writeback_rate_update_seconds * HZ);
248         }
249 }
250
251 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
252                                   uint64_t offset, int nr_sectors)
253 {
254         struct bcache_device *d = c->devices[inode];
255         unsigned stripe_size, stripe_offset;
256         uint64_t stripe;
257
258         if (!d)
259                 return;
260
261         stripe_size = 1 << d->stripe_size_bits;
262         stripe = offset >> d->stripe_size_bits;
263         stripe_offset = offset & (stripe_size - 1);
264
265         while (nr_sectors) {
266                 int s = min_t(unsigned, abs(nr_sectors),
267                               stripe_size - stripe_offset);
268
269                 if (nr_sectors < 0)
270                         s = -s;
271
272                 atomic_add(s, d->stripe_sectors_dirty + stripe);
273                 nr_sectors -= s;
274                 stripe_offset = 0;
275                 stripe++;
276         }
277 }
278
279 /* Background writeback - IO loop */
280
281 static void dirty_io_destructor(struct closure *cl)
282 {
283         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
284         kfree(io);
285 }
286
287 static void write_dirty_finish(struct closure *cl)
288 {
289         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
290         struct keybuf_key *w = io->bio.bi_private;
291         struct cached_dev *dc = io->dc;
292         struct bio_vec *bv;
293         int i;
294
295         bio_for_each_segment_all(bv, &io->bio, i)
296                 __free_page(bv->bv_page);
297
298         /* This is kind of a dumb way of signalling errors. */
299         if (KEY_DIRTY(&w->key)) {
300                 unsigned i;
301                 struct btree_op op;
302                 bch_btree_op_init_stack(&op);
303
304                 op.type = BTREE_REPLACE;
305                 bkey_copy(&op.replace, &w->key);
306
307                 SET_KEY_DIRTY(&w->key, false);
308                 bch_keylist_add(&op.keys, &w->key);
309
310                 for (i = 0; i < KEY_PTRS(&w->key); i++)
311                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
312
313                 bch_btree_insert(&op, dc->disk.c);
314                 closure_sync(&op.cl);
315
316                 if (op.insert_collision)
317                         trace_bcache_writeback_collision(&w->key);
318
319                 atomic_long_inc(op.insert_collision
320                                 ? &dc->disk.c->writeback_keys_failed
321                                 : &dc->disk.c->writeback_keys_done);
322         }
323
324         bch_keybuf_del(&dc->writeback_keys, w);
325         up(&dc->in_flight);
326
327         closure_return_with_destructor(cl, dirty_io_destructor);
328 }
329
330 static void dirty_endio(struct bio *bio, int error)
331 {
332         struct keybuf_key *w = bio->bi_private;
333         struct dirty_io *io = w->private;
334
335         if (error)
336                 SET_KEY_DIRTY(&w->key, false);
337
338         closure_put(&io->cl);
339 }
340
341 static void write_dirty(struct closure *cl)
342 {
343         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
344         struct keybuf_key *w = io->bio.bi_private;
345
346         dirty_init(w);
347         io->bio.bi_rw           = WRITE;
348         io->bio.bi_sector       = KEY_START(&w->key);
349         io->bio.bi_bdev         = io->dc->bdev;
350         io->bio.bi_end_io       = dirty_endio;
351
352         closure_bio_submit(&io->bio, cl, &io->dc->disk);
353
354         continue_at(cl, write_dirty_finish, system_wq);
355 }
356
357 static void read_dirty_endio(struct bio *bio, int error)
358 {
359         struct keybuf_key *w = bio->bi_private;
360         struct dirty_io *io = w->private;
361
362         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
363                             error, "reading dirty data from cache");
364
365         dirty_endio(bio, error);
366 }
367
368 static void read_dirty_submit(struct closure *cl)
369 {
370         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
371
372         closure_bio_submit(&io->bio, cl, &io->dc->disk);
373
374         continue_at(cl, write_dirty, system_wq);
375 }
376
377 static void read_dirty(struct closure *cl)
378 {
379         struct cached_dev *dc = container_of(cl, struct cached_dev,
380                                              writeback.cl);
381         unsigned delay = writeback_delay(dc, 0);
382         struct keybuf_key *w;
383         struct dirty_io *io;
384
385         /*
386          * XXX: if we error, background writeback just spins. Should use some
387          * mempools.
388          */
389
390         while (1) {
391                 w = bch_keybuf_next(&dc->writeback_keys);
392                 if (!w)
393                         break;
394
395                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
396
397                 if (delay > 0 &&
398                     (KEY_START(&w->key) != dc->last_read ||
399                      jiffies_to_msecs(delay) > 50))
400                         delay = schedule_timeout_uninterruptible(delay);
401
402                 dc->last_read   = KEY_OFFSET(&w->key);
403
404                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
405                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
406                              GFP_KERNEL);
407                 if (!io)
408                         goto err;
409
410                 w->private      = io;
411                 io->dc          = dc;
412
413                 dirty_init(w);
414                 io->bio.bi_sector       = PTR_OFFSET(&w->key, 0);
415                 io->bio.bi_bdev         = PTR_CACHE(dc->disk.c,
416                                                     &w->key, 0)->bdev;
417                 io->bio.bi_rw           = READ;
418                 io->bio.bi_end_io       = read_dirty_endio;
419
420                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
421                         goto err_free;
422
423                 trace_bcache_writeback(&w->key);
424
425                 down(&dc->in_flight);
426                 closure_call(&io->cl, read_dirty_submit, NULL, cl);
427
428                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
429         }
430
431         if (0) {
432 err_free:
433                 kfree(w->private);
434 err:
435                 bch_keybuf_del(&dc->writeback_keys, w);
436         }
437
438         /*
439          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
440          * freed) before refilling again
441          */
442         continue_at(cl, refill_dirty, dirty_wq);
443 }
444
445 /* Init */
446
447 static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
448                                         struct cached_dev *dc)
449 {
450         struct bkey *k;
451         struct btree_iter iter;
452
453         bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
454         while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
455                 if (!b->level) {
456                         if (KEY_INODE(k) > dc->disk.id)
457                                 break;
458
459                         if (KEY_DIRTY(k))
460                                 bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
461                                                              KEY_START(k),
462                                                              KEY_SIZE(k));
463                 } else {
464                         btree(sectors_dirty_init, k, b, op, dc);
465                         if (KEY_INODE(k) > dc->disk.id)
466                                 break;
467
468                         cond_resched();
469                 }
470
471         return 0;
472 }
473
474 void bch_sectors_dirty_init(struct cached_dev *dc)
475 {
476         struct btree_op op;
477
478         bch_btree_op_init_stack(&op);
479         btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
480 }
481
482 void bch_cached_dev_writeback_init(struct cached_dev *dc)
483 {
484         sema_init(&dc->in_flight, 64);
485         closure_init_unlocked(&dc->writeback);
486         init_rwsem(&dc->writeback_lock);
487
488         bch_keybuf_init(&dc->writeback_keys);
489
490         dc->writeback_metadata          = true;
491         dc->writeback_running           = true;
492         dc->writeback_percent           = 10;
493         dc->writeback_delay             = 30;
494         dc->writeback_rate.rate         = 1024;
495
496         dc->writeback_rate_update_seconds = 30;
497         dc->writeback_rate_d_term       = 16;
498         dc->writeback_rate_p_term_inverse = 64;
499         dc->writeback_rate_d_smooth     = 8;
500
501         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
502         schedule_delayed_work(&dc->writeback_rate_update,
503                               dc->writeback_rate_update_seconds * HZ);
504 }
505
506 void bch_writeback_exit(void)
507 {
508         if (dirty_wq)
509                 destroy_workqueue(dirty_wq);
510 }
511
512 int __init bch_writeback_init(void)
513 {
514         dirty_wq = create_workqueue("bcache_writeback");
515         if (!dirty_wq)
516                 return -ENOMEM;
517
518         return 0;
519 }