]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-raid.c
md: dm-raid should call helper function to clear rdev.
[karo-tx-linux.git] / drivers / md / dm-raid.c
1 /*
2  * Copyright (C) 2010-2011 Neil Brown
3  * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include <linux/slab.h>
9 #include <linux/module.h>
10
11 #include "md.h"
12 #include "raid1.h"
13 #include "raid5.h"
14 #include "bitmap.h"
15
16 #include <linux/device-mapper.h>
17
18 #define DM_MSG_PREFIX "raid"
19
20 /*
21  * The following flags are used by dm-raid.c to set up the array state.
22  * They must be cleared before md_run is called.
23  */
24 #define FirstUse 10             /* rdev flag */
25
26 struct raid_dev {
27         /*
28          * Two DM devices, one to hold metadata and one to hold the
29          * actual data/parity.  The reason for this is to not confuse
30          * ti->len and give more flexibility in altering size and
31          * characteristics.
32          *
33          * While it is possible for this device to be associated
34          * with a different physical device than the data_dev, it
35          * is intended for it to be the same.
36          *    |--------- Physical Device ---------|
37          *    |- meta_dev -|------ data_dev ------|
38          */
39         struct dm_dev *meta_dev;
40         struct dm_dev *data_dev;
41         struct md_rdev rdev;
42 };
43
44 /*
45  * Flags for rs->print_flags field.
46  */
47 #define DMPF_SYNC              0x1
48 #define DMPF_NOSYNC            0x2
49 #define DMPF_REBUILD           0x4
50 #define DMPF_DAEMON_SLEEP      0x8
51 #define DMPF_MIN_RECOVERY_RATE 0x10
52 #define DMPF_MAX_RECOVERY_RATE 0x20
53 #define DMPF_MAX_WRITE_BEHIND  0x40
54 #define DMPF_STRIPE_CACHE      0x80
55 #define DMPF_REGION_SIZE       0X100
56 struct raid_set {
57         struct dm_target *ti;
58
59         uint32_t bitmap_loaded;
60         uint32_t print_flags;
61
62         struct mddev md;
63         struct raid_type *raid_type;
64         struct dm_target_callbacks callbacks;
65
66         struct raid_dev dev[0];
67 };
68
69 /* Supported raid types and properties. */
70 static struct raid_type {
71         const char *name;               /* RAID algorithm. */
72         const char *descr;              /* Descriptor text for logging. */
73         const unsigned parity_devs;     /* # of parity devices. */
74         const unsigned minimal_devs;    /* minimal # of devices in set. */
75         const unsigned level;           /* RAID level. */
76         const unsigned algorithm;       /* RAID algorithm. */
77 } raid_types[] = {
78         {"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
79         {"raid4",    "RAID4 (dedicated parity disk)",   1, 2, 5, ALGORITHM_PARITY_0},
80         {"raid5_la", "RAID5 (left asymmetric)",         1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
81         {"raid5_ra", "RAID5 (right asymmetric)",        1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
82         {"raid5_ls", "RAID5 (left symmetric)",          1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
83         {"raid5_rs", "RAID5 (right symmetric)",         1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
84         {"raid6_zr", "RAID6 (zero restart)",            2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
85         {"raid6_nr", "RAID6 (N restart)",               2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
86         {"raid6_nc", "RAID6 (N continue)",              2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
87 };
88
89 static struct raid_type *get_raid_type(char *name)
90 {
91         int i;
92
93         for (i = 0; i < ARRAY_SIZE(raid_types); i++)
94                 if (!strcmp(raid_types[i].name, name))
95                         return &raid_types[i];
96
97         return NULL;
98 }
99
100 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
101 {
102         unsigned i;
103         struct raid_set *rs;
104         sector_t sectors_per_dev;
105
106         if (raid_devs <= raid_type->parity_devs) {
107                 ti->error = "Insufficient number of devices";
108                 return ERR_PTR(-EINVAL);
109         }
110
111         sectors_per_dev = ti->len;
112         if ((raid_type->level > 1) &&
113             sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
114                 ti->error = "Target length not divisible by number of data devices";
115                 return ERR_PTR(-EINVAL);
116         }
117
118         rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
119         if (!rs) {
120                 ti->error = "Cannot allocate raid context";
121                 return ERR_PTR(-ENOMEM);
122         }
123
124         mddev_init(&rs->md);
125
126         rs->ti = ti;
127         rs->raid_type = raid_type;
128         rs->md.raid_disks = raid_devs;
129         rs->md.level = raid_type->level;
130         rs->md.new_level = rs->md.level;
131         rs->md.dev_sectors = sectors_per_dev;
132         rs->md.layout = raid_type->algorithm;
133         rs->md.new_layout = rs->md.layout;
134         rs->md.delta_disks = 0;
135         rs->md.recovery_cp = 0;
136
137         for (i = 0; i < raid_devs; i++)
138                 md_rdev_init(&rs->dev[i].rdev);
139
140         /*
141          * Remaining items to be initialized by further RAID params:
142          *  rs->md.persistent
143          *  rs->md.external
144          *  rs->md.chunk_sectors
145          *  rs->md.new_chunk_sectors
146          */
147
148         return rs;
149 }
150
151 static void context_free(struct raid_set *rs)
152 {
153         int i;
154
155         for (i = 0; i < rs->md.raid_disks; i++) {
156                 if (rs->dev[i].meta_dev)
157                         dm_put_device(rs->ti, rs->dev[i].meta_dev);
158                 md_rdev_clear(&rs->dev[i].rdev);
159                 if (rs->dev[i].data_dev)
160                         dm_put_device(rs->ti, rs->dev[i].data_dev);
161         }
162
163         kfree(rs);
164 }
165
166 /*
167  * For every device we have two words
168  *  <meta_dev>: meta device name or '-' if missing
169  *  <data_dev>: data device name or '-' if missing
170  *
171  * The following are permitted:
172  *    - -
173  *    - <data_dev>
174  *    <meta_dev> <data_dev>
175  *
176  * The following is not allowed:
177  *    <meta_dev> -
178  *
179  * This code parses those words.  If there is a failure,
180  * the caller must use context_free to unwind the operations.
181  */
182 static int dev_parms(struct raid_set *rs, char **argv)
183 {
184         int i;
185         int rebuild = 0;
186         int metadata_available = 0;
187         int ret = 0;
188
189         for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
190                 rs->dev[i].rdev.raid_disk = i;
191
192                 rs->dev[i].meta_dev = NULL;
193                 rs->dev[i].data_dev = NULL;
194
195                 /*
196                  * There are no offsets, since there is a separate device
197                  * for data and metadata.
198                  */
199                 rs->dev[i].rdev.data_offset = 0;
200                 rs->dev[i].rdev.mddev = &rs->md;
201
202                 if (strcmp(argv[0], "-")) {
203                         ret = dm_get_device(rs->ti, argv[0],
204                                             dm_table_get_mode(rs->ti->table),
205                                             &rs->dev[i].meta_dev);
206                         rs->ti->error = "RAID metadata device lookup failure";
207                         if (ret)
208                                 return ret;
209
210                         rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
211                         if (!rs->dev[i].rdev.sb_page)
212                                 return -ENOMEM;
213                 }
214
215                 if (!strcmp(argv[1], "-")) {
216                         if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
217                             (!rs->dev[i].rdev.recovery_offset)) {
218                                 rs->ti->error = "Drive designated for rebuild not specified";
219                                 return -EINVAL;
220                         }
221
222                         rs->ti->error = "No data device supplied with metadata device";
223                         if (rs->dev[i].meta_dev)
224                                 return -EINVAL;
225
226                         continue;
227                 }
228
229                 ret = dm_get_device(rs->ti, argv[1],
230                                     dm_table_get_mode(rs->ti->table),
231                                     &rs->dev[i].data_dev);
232                 if (ret) {
233                         rs->ti->error = "RAID device lookup failure";
234                         return ret;
235                 }
236
237                 if (rs->dev[i].meta_dev) {
238                         metadata_available = 1;
239                         rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
240                 }
241                 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
242                 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
243                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
244                         rebuild++;
245         }
246
247         if (metadata_available) {
248                 rs->md.external = 0;
249                 rs->md.persistent = 1;
250                 rs->md.major_version = 2;
251         } else if (rebuild && !rs->md.recovery_cp) {
252                 /*
253                  * Without metadata, we will not be able to tell if the array
254                  * is in-sync or not - we must assume it is not.  Therefore,
255                  * it is impossible to rebuild a drive.
256                  *
257                  * Even if there is metadata, the on-disk information may
258                  * indicate that the array is not in-sync and it will then
259                  * fail at that time.
260                  *
261                  * User could specify 'nosync' option if desperate.
262                  */
263                 DMERR("Unable to rebuild drive while array is not in-sync");
264                 rs->ti->error = "RAID device lookup failure";
265                 return -EINVAL;
266         }
267
268         return 0;
269 }
270
271 /*
272  * validate_region_size
273  * @rs
274  * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
275  *
276  * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
277  * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
278  *
279  * Returns: 0 on success, -EINVAL on failure.
280  */
281 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
282 {
283         unsigned long min_region_size = rs->ti->len / (1 << 21);
284
285         if (!region_size) {
286                 /*
287                  * Choose a reasonable default.  All figures in sectors.
288                  */
289                 if (min_region_size > (1 << 13)) {
290                         DMINFO("Choosing default region size of %lu sectors",
291                                region_size);
292                         region_size = min_region_size;
293                 } else {
294                         DMINFO("Choosing default region size of 4MiB");
295                         region_size = 1 << 13; /* sectors */
296                 }
297         } else {
298                 /*
299                  * Validate user-supplied value.
300                  */
301                 if (region_size > rs->ti->len) {
302                         rs->ti->error = "Supplied region size is too large";
303                         return -EINVAL;
304                 }
305
306                 if (region_size < min_region_size) {
307                         DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
308                               region_size, min_region_size);
309                         rs->ti->error = "Supplied region size is too small";
310                         return -EINVAL;
311                 }
312
313                 if (!is_power_of_2(region_size)) {
314                         rs->ti->error = "Region size is not a power of 2";
315                         return -EINVAL;
316                 }
317
318                 if (region_size < rs->md.chunk_sectors) {
319                         rs->ti->error = "Region size is smaller than the chunk size";
320                         return -EINVAL;
321                 }
322         }
323
324         /*
325          * Convert sectors to bytes.
326          */
327         rs->md.bitmap_info.chunksize = (region_size << 9);
328
329         return 0;
330 }
331
332 /*
333  * Possible arguments are...
334  *      <chunk_size> [optional_args]
335  *
336  * Argument definitions
337  *    <chunk_size>                      The number of sectors per disk that
338  *                                      will form the "stripe"
339  *    [[no]sync]                        Force or prevent recovery of the
340  *                                      entire array
341  *    [rebuild <idx>]                   Rebuild the drive indicated by the index
342  *    [daemon_sleep <ms>]               Time between bitmap daemon work to
343  *                                      clear bits
344  *    [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
345  *    [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
346  *    [write_mostly <idx>]              Indicate a write mostly drive via index
347  *    [max_write_behind <sectors>]      See '-write-behind=' (man mdadm)
348  *    [stripe_cache <sectors>]          Stripe cache size for higher RAIDs
349  *    [region_size <sectors>]           Defines granularity of bitmap
350  */
351 static int parse_raid_params(struct raid_set *rs, char **argv,
352                              unsigned num_raid_params)
353 {
354         unsigned i, rebuild_cnt = 0;
355         unsigned long value, region_size = 0;
356         char *key;
357
358         /*
359          * First, parse the in-order required arguments
360          * "chunk_size" is the only argument of this type.
361          */
362         if ((strict_strtoul(argv[0], 10, &value) < 0)) {
363                 rs->ti->error = "Bad chunk size";
364                 return -EINVAL;
365         } else if (rs->raid_type->level == 1) {
366                 if (value)
367                         DMERR("Ignoring chunk size parameter for RAID 1");
368                 value = 0;
369         } else if (!is_power_of_2(value)) {
370                 rs->ti->error = "Chunk size must be a power of 2";
371                 return -EINVAL;
372         } else if (value < 8) {
373                 rs->ti->error = "Chunk size value is too small";
374                 return -EINVAL;
375         }
376
377         rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
378         argv++;
379         num_raid_params--;
380
381         /*
382          * We set each individual device as In_sync with a completed
383          * 'recovery_offset'.  If there has been a device failure or
384          * replacement then one of the following cases applies:
385          *
386          *   1) User specifies 'rebuild'.
387          *      - Device is reset when param is read.
388          *   2) A new device is supplied.
389          *      - No matching superblock found, resets device.
390          *   3) Device failure was transient and returns on reload.
391          *      - Failure noticed, resets device for bitmap replay.
392          *   4) Device hadn't completed recovery after previous failure.
393          *      - Superblock is read and overrides recovery_offset.
394          *
395          * What is found in the superblocks of the devices is always
396          * authoritative, unless 'rebuild' or '[no]sync' was specified.
397          */
398         for (i = 0; i < rs->md.raid_disks; i++) {
399                 set_bit(In_sync, &rs->dev[i].rdev.flags);
400                 rs->dev[i].rdev.recovery_offset = MaxSector;
401         }
402
403         /*
404          * Second, parse the unordered optional arguments
405          */
406         for (i = 0; i < num_raid_params; i++) {
407                 if (!strcasecmp(argv[i], "nosync")) {
408                         rs->md.recovery_cp = MaxSector;
409                         rs->print_flags |= DMPF_NOSYNC;
410                         continue;
411                 }
412                 if (!strcasecmp(argv[i], "sync")) {
413                         rs->md.recovery_cp = 0;
414                         rs->print_flags |= DMPF_SYNC;
415                         continue;
416                 }
417
418                 /* The rest of the optional arguments come in key/value pairs */
419                 if ((i + 1) >= num_raid_params) {
420                         rs->ti->error = "Wrong number of raid parameters given";
421                         return -EINVAL;
422                 }
423
424                 key = argv[i++];
425                 if (strict_strtoul(argv[i], 10, &value) < 0) {
426                         rs->ti->error = "Bad numerical argument given in raid params";
427                         return -EINVAL;
428                 }
429
430                 if (!strcasecmp(key, "rebuild")) {
431                         rebuild_cnt++;
432                         if (((rs->raid_type->level != 1) &&
433                              (rebuild_cnt > rs->raid_type->parity_devs)) ||
434                             ((rs->raid_type->level == 1) &&
435                              (rebuild_cnt > (rs->md.raid_disks - 1)))) {
436                                 rs->ti->error = "Too many rebuild devices specified for given RAID type";
437                                 return -EINVAL;
438                         }
439                         if (value > rs->md.raid_disks) {
440                                 rs->ti->error = "Invalid rebuild index given";
441                                 return -EINVAL;
442                         }
443                         clear_bit(In_sync, &rs->dev[value].rdev.flags);
444                         rs->dev[value].rdev.recovery_offset = 0;
445                         rs->print_flags |= DMPF_REBUILD;
446                 } else if (!strcasecmp(key, "write_mostly")) {
447                         if (rs->raid_type->level != 1) {
448                                 rs->ti->error = "write_mostly option is only valid for RAID1";
449                                 return -EINVAL;
450                         }
451                         if (value >= rs->md.raid_disks) {
452                                 rs->ti->error = "Invalid write_mostly drive index given";
453                                 return -EINVAL;
454                         }
455                         set_bit(WriteMostly, &rs->dev[value].rdev.flags);
456                 } else if (!strcasecmp(key, "max_write_behind")) {
457                         if (rs->raid_type->level != 1) {
458                                 rs->ti->error = "max_write_behind option is only valid for RAID1";
459                                 return -EINVAL;
460                         }
461                         rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
462
463                         /*
464                          * In device-mapper, we specify things in sectors, but
465                          * MD records this value in kB
466                          */
467                         value /= 2;
468                         if (value > COUNTER_MAX) {
469                                 rs->ti->error = "Max write-behind limit out of range";
470                                 return -EINVAL;
471                         }
472                         rs->md.bitmap_info.max_write_behind = value;
473                 } else if (!strcasecmp(key, "daemon_sleep")) {
474                         rs->print_flags |= DMPF_DAEMON_SLEEP;
475                         if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
476                                 rs->ti->error = "daemon sleep period out of range";
477                                 return -EINVAL;
478                         }
479                         rs->md.bitmap_info.daemon_sleep = value;
480                 } else if (!strcasecmp(key, "stripe_cache")) {
481                         rs->print_flags |= DMPF_STRIPE_CACHE;
482
483                         /*
484                          * In device-mapper, we specify things in sectors, but
485                          * MD records this value in kB
486                          */
487                         value /= 2;
488
489                         if (rs->raid_type->level < 5) {
490                                 rs->ti->error = "Inappropriate argument: stripe_cache";
491                                 return -EINVAL;
492                         }
493                         if (raid5_set_cache_size(&rs->md, (int)value)) {
494                                 rs->ti->error = "Bad stripe_cache size";
495                                 return -EINVAL;
496                         }
497                 } else if (!strcasecmp(key, "min_recovery_rate")) {
498                         rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
499                         if (value > INT_MAX) {
500                                 rs->ti->error = "min_recovery_rate out of range";
501                                 return -EINVAL;
502                         }
503                         rs->md.sync_speed_min = (int)value;
504                 } else if (!strcasecmp(key, "max_recovery_rate")) {
505                         rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
506                         if (value > INT_MAX) {
507                                 rs->ti->error = "max_recovery_rate out of range";
508                                 return -EINVAL;
509                         }
510                         rs->md.sync_speed_max = (int)value;
511                 } else if (!strcasecmp(key, "region_size")) {
512                         rs->print_flags |= DMPF_REGION_SIZE;
513                         region_size = value;
514                 } else {
515                         DMERR("Unable to parse RAID parameter: %s", key);
516                         rs->ti->error = "Unable to parse RAID parameters";
517                         return -EINVAL;
518                 }
519         }
520
521         if (validate_region_size(rs, region_size))
522                 return -EINVAL;
523
524         if (rs->md.chunk_sectors)
525                 rs->ti->split_io = rs->md.chunk_sectors;
526         else
527                 rs->ti->split_io = region_size;
528
529         if (rs->md.chunk_sectors)
530                 rs->ti->split_io = rs->md.chunk_sectors;
531         else
532                 rs->ti->split_io = region_size;
533
534         /* Assume there are no metadata devices until the drives are parsed */
535         rs->md.persistent = 0;
536         rs->md.external = 1;
537
538         return 0;
539 }
540
541 static void do_table_event(struct work_struct *ws)
542 {
543         struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
544
545         dm_table_event(rs->ti->table);
546 }
547
548 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
549 {
550         struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
551
552         if (rs->raid_type->level == 1)
553                 return md_raid1_congested(&rs->md, bits);
554
555         return md_raid5_congested(&rs->md, bits);
556 }
557
558 /*
559  * This structure is never routinely used by userspace, unlike md superblocks.
560  * Devices with this superblock should only ever be accessed via device-mapper.
561  */
562 #define DM_RAID_MAGIC 0x64526D44
563 struct dm_raid_superblock {
564         __le32 magic;           /* "DmRd" */
565         __le32 features;        /* Used to indicate possible future changes */
566
567         __le32 num_devices;     /* Number of devices in this array. (Max 64) */
568         __le32 array_position;  /* The position of this drive in the array */
569
570         __le64 events;          /* Incremented by md when superblock updated */
571         __le64 failed_devices;  /* Bit field of devices to indicate failures */
572
573         /*
574          * This offset tracks the progress of the repair or replacement of
575          * an individual drive.
576          */
577         __le64 disk_recovery_offset;
578
579         /*
580          * This offset tracks the progress of the initial array
581          * synchronisation/parity calculation.
582          */
583         __le64 array_resync_offset;
584
585         /*
586          * RAID characteristics
587          */
588         __le32 level;
589         __le32 layout;
590         __le32 stripe_sectors;
591
592         __u8 pad[452];          /* Round struct to 512 bytes. */
593                                 /* Always set to 0 when writing. */
594 } __packed;
595
596 static int read_disk_sb(struct md_rdev *rdev, int size)
597 {
598         BUG_ON(!rdev->sb_page);
599
600         if (rdev->sb_loaded)
601                 return 0;
602
603         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
604                 DMERR("Failed to read superblock of device at position %d",
605                       rdev->raid_disk);
606                 set_bit(Faulty, &rdev->flags);
607                 return -EINVAL;
608         }
609
610         rdev->sb_loaded = 1;
611
612         return 0;
613 }
614
615 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
616 {
617         struct md_rdev *r;
618         uint64_t failed_devices;
619         struct dm_raid_superblock *sb;
620
621         sb = page_address(rdev->sb_page);
622         failed_devices = le64_to_cpu(sb->failed_devices);
623
624         rdev_for_each(r, mddev)
625                 if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
626                         failed_devices |= (1ULL << r->raid_disk);
627
628         memset(sb, 0, sizeof(*sb));
629
630         sb->magic = cpu_to_le32(DM_RAID_MAGIC);
631         sb->features = cpu_to_le32(0);  /* No features yet */
632
633         sb->num_devices = cpu_to_le32(mddev->raid_disks);
634         sb->array_position = cpu_to_le32(rdev->raid_disk);
635
636         sb->events = cpu_to_le64(mddev->events);
637         sb->failed_devices = cpu_to_le64(failed_devices);
638
639         sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
640         sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
641
642         sb->level = cpu_to_le32(mddev->level);
643         sb->layout = cpu_to_le32(mddev->layout);
644         sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
645 }
646
647 /*
648  * super_load
649  *
650  * This function creates a superblock if one is not found on the device
651  * and will decide which superblock to use if there's a choice.
652  *
653  * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
654  */
655 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
656 {
657         int ret;
658         struct dm_raid_superblock *sb;
659         struct dm_raid_superblock *refsb;
660         uint64_t events_sb, events_refsb;
661
662         rdev->sb_start = 0;
663         rdev->sb_size = sizeof(*sb);
664
665         ret = read_disk_sb(rdev, rdev->sb_size);
666         if (ret)
667                 return ret;
668
669         sb = page_address(rdev->sb_page);
670
671         /*
672          * Two cases that we want to write new superblocks and rebuild:
673          * 1) New device (no matching magic number)
674          * 2) Device specified for rebuild (!In_sync w/ offset == 0)
675          */
676         if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
677             (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
678                 super_sync(rdev->mddev, rdev);
679
680                 set_bit(FirstUse, &rdev->flags);
681
682                 /* Force writing of superblocks to disk */
683                 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
684
685                 /* Any superblock is better than none, choose that if given */
686                 return refdev ? 0 : 1;
687         }
688
689         if (!refdev)
690                 return 1;
691
692         events_sb = le64_to_cpu(sb->events);
693
694         refsb = page_address(refdev->sb_page);
695         events_refsb = le64_to_cpu(refsb->events);
696
697         return (events_sb > events_refsb) ? 1 : 0;
698 }
699
700 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
701 {
702         int role;
703         struct raid_set *rs = container_of(mddev, struct raid_set, md);
704         uint64_t events_sb;
705         uint64_t failed_devices;
706         struct dm_raid_superblock *sb;
707         uint32_t new_devs = 0;
708         uint32_t rebuilds = 0;
709         struct md_rdev *r;
710         struct dm_raid_superblock *sb2;
711
712         sb = page_address(rdev->sb_page);
713         events_sb = le64_to_cpu(sb->events);
714         failed_devices = le64_to_cpu(sb->failed_devices);
715
716         /*
717          * Initialise to 1 if this is a new superblock.
718          */
719         mddev->events = events_sb ? : 1;
720
721         /*
722          * Reshaping is not currently allowed
723          */
724         if ((le32_to_cpu(sb->level) != mddev->level) ||
725             (le32_to_cpu(sb->layout) != mddev->layout) ||
726             (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
727                 DMERR("Reshaping arrays not yet supported.");
728                 return -EINVAL;
729         }
730
731         /* We can only change the number of devices in RAID1 right now */
732         if ((rs->raid_type->level != 1) &&
733             (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
734                 DMERR("Reshaping arrays not yet supported.");
735                 return -EINVAL;
736         }
737
738         if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
739                 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
740
741         /*
742          * During load, we set FirstUse if a new superblock was written.
743          * There are two reasons we might not have a superblock:
744          * 1) The array is brand new - in which case, all of the
745          *    devices must have their In_sync bit set.  Also,
746          *    recovery_cp must be 0, unless forced.
747          * 2) This is a new device being added to an old array
748          *    and the new device needs to be rebuilt - in which
749          *    case the In_sync bit will /not/ be set and
750          *    recovery_cp must be MaxSector.
751          */
752         rdev_for_each(r, mddev) {
753                 if (!test_bit(In_sync, &r->flags)) {
754                         DMINFO("Device %d specified for rebuild: "
755                                "Clearing superblock", r->raid_disk);
756                         rebuilds++;
757                 } else if (test_bit(FirstUse, &r->flags))
758                         new_devs++;
759         }
760
761         if (!rebuilds) {
762                 if (new_devs == mddev->raid_disks) {
763                         DMINFO("Superblocks created for new array");
764                         set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
765                 } else if (new_devs) {
766                         DMERR("New device injected "
767                               "into existing array without 'rebuild' "
768                               "parameter specified");
769                         return -EINVAL;
770                 }
771         } else if (new_devs) {
772                 DMERR("'rebuild' devices cannot be "
773                       "injected into an array with other first-time devices");
774                 return -EINVAL;
775         } else if (mddev->recovery_cp != MaxSector) {
776                 DMERR("'rebuild' specified while array is not in-sync");
777                 return -EINVAL;
778         }
779
780         /*
781          * Now we set the Faulty bit for those devices that are
782          * recorded in the superblock as failed.
783          */
784         rdev_for_each(r, mddev) {
785                 if (!r->sb_page)
786                         continue;
787                 sb2 = page_address(r->sb_page);
788                 sb2->failed_devices = 0;
789
790                 /*
791                  * Check for any device re-ordering.
792                  */
793                 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
794                         role = le32_to_cpu(sb2->array_position);
795                         if (role != r->raid_disk) {
796                                 if (rs->raid_type->level != 1) {
797                                         rs->ti->error = "Cannot change device "
798                                                 "positions in RAID array";
799                                         return -EINVAL;
800                                 }
801                                 DMINFO("RAID1 device #%d now at position #%d",
802                                        role, r->raid_disk);
803                         }
804
805                         /*
806                          * Partial recovery is performed on
807                          * returning failed devices.
808                          */
809                         if (failed_devices & (1 << role))
810                                 set_bit(Faulty, &r->flags);
811                 }
812         }
813
814         return 0;
815 }
816
817 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
818 {
819         struct dm_raid_superblock *sb = page_address(rdev->sb_page);
820
821         /*
822          * If mddev->events is not set, we know we have not yet initialized
823          * the array.
824          */
825         if (!mddev->events && super_init_validation(mddev, rdev))
826                 return -EINVAL;
827
828         mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
829         rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
830         if (!test_bit(FirstUse, &rdev->flags)) {
831                 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
832                 if (rdev->recovery_offset != MaxSector)
833                         clear_bit(In_sync, &rdev->flags);
834         }
835
836         /*
837          * If a device comes back, set it as not In_sync and no longer faulty.
838          */
839         if (test_bit(Faulty, &rdev->flags)) {
840                 clear_bit(Faulty, &rdev->flags);
841                 clear_bit(In_sync, &rdev->flags);
842                 rdev->saved_raid_disk = rdev->raid_disk;
843                 rdev->recovery_offset = 0;
844         }
845
846         clear_bit(FirstUse, &rdev->flags);
847
848         return 0;
849 }
850
851 /*
852  * Analyse superblocks and select the freshest.
853  */
854 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
855 {
856         int ret;
857         unsigned redundancy = 0;
858         struct raid_dev *dev;
859         struct md_rdev *rdev, *tmp, *freshest;
860         struct mddev *mddev = &rs->md;
861
862         switch (rs->raid_type->level) {
863         case 1:
864                 redundancy = rs->md.raid_disks - 1;
865                 break;
866         case 4:
867         case 5:
868         case 6:
869                 redundancy = rs->raid_type->parity_devs;
870                 break;
871         default:
872                 ti->error = "Unknown RAID type";
873                 return -EINVAL;
874         }
875
876         freshest = NULL;
877         rdev_for_each_safe(rdev, tmp, mddev) {
878                 if (!rdev->meta_bdev)
879                         continue;
880
881                 ret = super_load(rdev, freshest);
882
883                 switch (ret) {
884                 case 1:
885                         freshest = rdev;
886                         break;
887                 case 0:
888                         break;
889                 default:
890                         dev = container_of(rdev, struct raid_dev, rdev);
891                         if (redundancy--) {
892                                 if (dev->meta_dev)
893                                         dm_put_device(ti, dev->meta_dev);
894
895                                 dev->meta_dev = NULL;
896                                 rdev->meta_bdev = NULL;
897
898                                 if (rdev->sb_page)
899                                         put_page(rdev->sb_page);
900
901                                 rdev->sb_page = NULL;
902
903                                 rdev->sb_loaded = 0;
904
905                                 /*
906                                  * We might be able to salvage the data device
907                                  * even though the meta device has failed.  For
908                                  * now, we behave as though '- -' had been
909                                  * set for this device in the table.
910                                  */
911                                 if (dev->data_dev)
912                                         dm_put_device(ti, dev->data_dev);
913
914                                 dev->data_dev = NULL;
915                                 rdev->bdev = NULL;
916
917                                 list_del(&rdev->same_set);
918
919                                 continue;
920                         }
921                         ti->error = "Failed to load superblock";
922                         return ret;
923                 }
924         }
925
926         if (!freshest)
927                 return 0;
928
929         /*
930          * Validation of the freshest device provides the source of
931          * validation for the remaining devices.
932          */
933         ti->error = "Unable to assemble array: Invalid superblocks";
934         if (super_validate(mddev, freshest))
935                 return -EINVAL;
936
937         rdev_for_each(rdev, mddev)
938                 if ((rdev != freshest) && super_validate(mddev, rdev))
939                         return -EINVAL;
940
941         return 0;
942 }
943
944 /*
945  * Construct a RAID4/5/6 mapping:
946  * Args:
947  *      <raid_type> <#raid_params> <raid_params>                \
948  *      <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
949  *
950  * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
951  * details on possible <raid_params>.
952  */
953 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
954 {
955         int ret;
956         struct raid_type *rt;
957         unsigned long num_raid_params, num_raid_devs;
958         struct raid_set *rs = NULL;
959
960         /* Must have at least <raid_type> <#raid_params> */
961         if (argc < 2) {
962                 ti->error = "Too few arguments";
963                 return -EINVAL;
964         }
965
966         /* raid type */
967         rt = get_raid_type(argv[0]);
968         if (!rt) {
969                 ti->error = "Unrecognised raid_type";
970                 return -EINVAL;
971         }
972         argc--;
973         argv++;
974
975         /* number of RAID parameters */
976         if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
977                 ti->error = "Cannot understand number of RAID parameters";
978                 return -EINVAL;
979         }
980         argc--;
981         argv++;
982
983         /* Skip over RAID params for now and find out # of devices */
984         if (num_raid_params + 1 > argc) {
985                 ti->error = "Arguments do not agree with counts given";
986                 return -EINVAL;
987         }
988
989         if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
990             (num_raid_devs >= INT_MAX)) {
991                 ti->error = "Cannot understand number of raid devices";
992                 return -EINVAL;
993         }
994
995         rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
996         if (IS_ERR(rs))
997                 return PTR_ERR(rs);
998
999         ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1000         if (ret)
1001                 goto bad;
1002
1003         ret = -EINVAL;
1004
1005         argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1006         argv += num_raid_params + 1;
1007
1008         if (argc != (num_raid_devs * 2)) {
1009                 ti->error = "Supplied RAID devices does not match the count given";
1010                 goto bad;
1011         }
1012
1013         ret = dev_parms(rs, argv);
1014         if (ret)
1015                 goto bad;
1016
1017         rs->md.sync_super = super_sync;
1018         ret = analyse_superblocks(ti, rs);
1019         if (ret)
1020                 goto bad;
1021
1022         INIT_WORK(&rs->md.event_work, do_table_event);
1023         ti->private = rs;
1024         ti->num_flush_requests = 1;
1025
1026         mutex_lock(&rs->md.reconfig_mutex);
1027         ret = md_run(&rs->md);
1028         rs->md.in_sync = 0; /* Assume already marked dirty */
1029         mutex_unlock(&rs->md.reconfig_mutex);
1030
1031         if (ret) {
1032                 ti->error = "Fail to run raid array";
1033                 goto bad;
1034         }
1035
1036         rs->callbacks.congested_fn = raid_is_congested;
1037         dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1038
1039         mddev_suspend(&rs->md);
1040         return 0;
1041
1042 bad:
1043         context_free(rs);
1044
1045         return ret;
1046 }
1047
1048 static void raid_dtr(struct dm_target *ti)
1049 {
1050         struct raid_set *rs = ti->private;
1051
1052         list_del_init(&rs->callbacks.list);
1053         md_stop(&rs->md);
1054         context_free(rs);
1055 }
1056
1057 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1058 {
1059         struct raid_set *rs = ti->private;
1060         struct mddev *mddev = &rs->md;
1061
1062         mddev->pers->make_request(mddev, bio);
1063
1064         return DM_MAPIO_SUBMITTED;
1065 }
1066
1067 static int raid_status(struct dm_target *ti, status_type_t type,
1068                        char *result, unsigned maxlen)
1069 {
1070         struct raid_set *rs = ti->private;
1071         unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1072         unsigned sz = 0;
1073         int i, array_in_sync = 0;
1074         sector_t sync;
1075
1076         switch (type) {
1077         case STATUSTYPE_INFO:
1078                 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1079
1080                 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1081                         sync = rs->md.curr_resync_completed;
1082                 else
1083                         sync = rs->md.recovery_cp;
1084
1085                 if (sync >= rs->md.resync_max_sectors) {
1086                         array_in_sync = 1;
1087                         sync = rs->md.resync_max_sectors;
1088                 } else {
1089                         /*
1090                          * The array may be doing an initial sync, or it may
1091                          * be rebuilding individual components.  If all the
1092                          * devices are In_sync, then it is the array that is
1093                          * being initialized.
1094                          */
1095                         for (i = 0; i < rs->md.raid_disks; i++)
1096                                 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1097                                         array_in_sync = 1;
1098                 }
1099                 /*
1100                  * Status characters:
1101                  *  'D' = Dead/Failed device
1102                  *  'a' = Alive but not in-sync
1103                  *  'A' = Alive and in-sync
1104                  */
1105                 for (i = 0; i < rs->md.raid_disks; i++) {
1106                         if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1107                                 DMEMIT("D");
1108                         else if (!array_in_sync ||
1109                                  !test_bit(In_sync, &rs->dev[i].rdev.flags))
1110                                 DMEMIT("a");
1111                         else
1112                                 DMEMIT("A");
1113                 }
1114
1115                 /*
1116                  * In-sync ratio:
1117                  *  The in-sync ratio shows the progress of:
1118                  *   - Initializing the array
1119                  *   - Rebuilding a subset of devices of the array
1120                  *  The user can distinguish between the two by referring
1121                  *  to the status characters.
1122                  */
1123                 DMEMIT(" %llu/%llu",
1124                        (unsigned long long) sync,
1125                        (unsigned long long) rs->md.resync_max_sectors);
1126
1127                 break;
1128         case STATUSTYPE_TABLE:
1129                 /* The string you would use to construct this array */
1130                 for (i = 0; i < rs->md.raid_disks; i++) {
1131                         if ((rs->print_flags & DMPF_REBUILD) &&
1132                             rs->dev[i].data_dev &&
1133                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1134                                 raid_param_cnt += 2; /* for rebuilds */
1135                         if (rs->dev[i].data_dev &&
1136                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1137                                 raid_param_cnt += 2;
1138                 }
1139
1140                 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1141                 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1142                         raid_param_cnt--;
1143
1144                 DMEMIT("%s %u %u", rs->raid_type->name,
1145                        raid_param_cnt, rs->md.chunk_sectors);
1146
1147                 if ((rs->print_flags & DMPF_SYNC) &&
1148                     (rs->md.recovery_cp == MaxSector))
1149                         DMEMIT(" sync");
1150                 if (rs->print_flags & DMPF_NOSYNC)
1151                         DMEMIT(" nosync");
1152
1153                 for (i = 0; i < rs->md.raid_disks; i++)
1154                         if ((rs->print_flags & DMPF_REBUILD) &&
1155                             rs->dev[i].data_dev &&
1156                             !test_bit(In_sync, &rs->dev[i].rdev.flags))
1157                                 DMEMIT(" rebuild %u", i);
1158
1159                 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1160                         DMEMIT(" daemon_sleep %lu",
1161                                rs->md.bitmap_info.daemon_sleep);
1162
1163                 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1164                         DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1165
1166                 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1167                         DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1168
1169                 for (i = 0; i < rs->md.raid_disks; i++)
1170                         if (rs->dev[i].data_dev &&
1171                             test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1172                                 DMEMIT(" write_mostly %u", i);
1173
1174                 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1175                         DMEMIT(" max_write_behind %lu",
1176                                rs->md.bitmap_info.max_write_behind);
1177
1178                 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1179                         struct r5conf *conf = rs->md.private;
1180
1181                         /* convert from kiB to sectors */
1182                         DMEMIT(" stripe_cache %d",
1183                                conf ? conf->max_nr_stripes * 2 : 0);
1184                 }
1185
1186                 if (rs->print_flags & DMPF_REGION_SIZE)
1187                         DMEMIT(" region_size %lu",
1188                                rs->md.bitmap_info.chunksize >> 9);
1189
1190                 DMEMIT(" %d", rs->md.raid_disks);
1191                 for (i = 0; i < rs->md.raid_disks; i++) {
1192                         if (rs->dev[i].meta_dev)
1193                                 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1194                         else
1195                                 DMEMIT(" -");
1196
1197                         if (rs->dev[i].data_dev)
1198                                 DMEMIT(" %s", rs->dev[i].data_dev->name);
1199                         else
1200                                 DMEMIT(" -");
1201                 }
1202         }
1203
1204         return 0;
1205 }
1206
1207 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1208 {
1209         struct raid_set *rs = ti->private;
1210         unsigned i;
1211         int ret = 0;
1212
1213         for (i = 0; !ret && i < rs->md.raid_disks; i++)
1214                 if (rs->dev[i].data_dev)
1215                         ret = fn(ti,
1216                                  rs->dev[i].data_dev,
1217                                  0, /* No offset on data devs */
1218                                  rs->md.dev_sectors,
1219                                  data);
1220
1221         return ret;
1222 }
1223
1224 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1225 {
1226         struct raid_set *rs = ti->private;
1227         unsigned chunk_size = rs->md.chunk_sectors << 9;
1228         struct r5conf *conf = rs->md.private;
1229
1230         blk_limits_io_min(limits, chunk_size);
1231         blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1232 }
1233
1234 static void raid_presuspend(struct dm_target *ti)
1235 {
1236         struct raid_set *rs = ti->private;
1237
1238         md_stop_writes(&rs->md);
1239 }
1240
1241 static void raid_postsuspend(struct dm_target *ti)
1242 {
1243         struct raid_set *rs = ti->private;
1244
1245         mddev_suspend(&rs->md);
1246 }
1247
1248 static void raid_resume(struct dm_target *ti)
1249 {
1250         struct raid_set *rs = ti->private;
1251
1252         if (!rs->bitmap_loaded) {
1253                 bitmap_load(&rs->md);
1254                 rs->bitmap_loaded = 1;
1255         } else
1256                 md_wakeup_thread(rs->md.thread);
1257
1258         mddev_resume(&rs->md);
1259 }
1260
1261 static struct target_type raid_target = {
1262         .name = "raid",
1263         .version = {1, 2, 0},
1264         .module = THIS_MODULE,
1265         .ctr = raid_ctr,
1266         .dtr = raid_dtr,
1267         .map = raid_map,
1268         .status = raid_status,
1269         .iterate_devices = raid_iterate_devices,
1270         .io_hints = raid_io_hints,
1271         .presuspend = raid_presuspend,
1272         .postsuspend = raid_postsuspend,
1273         .resume = raid_resume,
1274 };
1275
1276 static int __init dm_raid_init(void)
1277 {
1278         return dm_register_target(&raid_target);
1279 }
1280
1281 static void __exit dm_raid_exit(void)
1282 {
1283         dm_unregister_target(&raid_target);
1284 }
1285
1286 module_init(dm_raid_init);
1287 module_exit(dm_raid_exit);
1288
1289 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1290 MODULE_ALIAS("dm-raid4");
1291 MODULE_ALIAS("dm-raid5");
1292 MODULE_ALIAS("dm-raid6");
1293 MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
1294 MODULE_LICENSE("GPL");