]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/dm-thin.c
026215566abd57a35082a58fbbb842f6bed43aa5
[karo-tx-linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16
17 #define DM_MSG_PREFIX   "thin"
18
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 1024
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97
98 /*----------------------------------------------------------------*/
99
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107
108 struct cell_key {
109         int virtual;
110         dm_thin_id dev;
111         dm_block_t block;
112 };
113
114 struct dm_bio_prison_cell {
115         struct hlist_node list;
116         struct bio_prison *prison;
117         struct cell_key key;
118         struct bio *holder;
119         struct bio_list bios;
120 };
121
122 struct bio_prison {
123         spinlock_t lock;
124         mempool_t *cell_pool;
125
126         unsigned nr_buckets;
127         unsigned hash_mask;
128         struct hlist_head *cells;
129 };
130
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133         uint32_t n = 128;
134
135         nr_cells /= 4;
136         nr_cells = min(nr_cells, 8192u);
137
138         while (n < nr_cells)
139                 n <<= 1;
140
141         return n;
142 }
143
144 static struct kmem_cache *_cell_cache;
145
146 /*
147  * @nr_cells should be the number of cells you want in use _concurrently_.
148  * Don't confuse it with the number of distinct keys.
149  */
150 static struct bio_prison *prison_create(unsigned nr_cells)
151 {
152         unsigned i;
153         uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154         size_t len = sizeof(struct bio_prison) +
155                 (sizeof(struct hlist_head) * nr_buckets);
156         struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158         if (!prison)
159                 return NULL;
160
161         spin_lock_init(&prison->lock);
162         prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
163         if (!prison->cell_pool) {
164                 kfree(prison);
165                 return NULL;
166         }
167
168         prison->nr_buckets = nr_buckets;
169         prison->hash_mask = nr_buckets - 1;
170         prison->cells = (struct hlist_head *) (prison + 1);
171         for (i = 0; i < nr_buckets; i++)
172                 INIT_HLIST_HEAD(prison->cells + i);
173
174         return prison;
175 }
176
177 static void prison_destroy(struct bio_prison *prison)
178 {
179         mempool_destroy(prison->cell_pool);
180         kfree(prison);
181 }
182
183 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184 {
185         const unsigned long BIG_PRIME = 4294967291UL;
186         uint64_t hash = key->block * BIG_PRIME;
187
188         return (uint32_t) (hash & prison->hash_mask);
189 }
190
191 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192 {
193                return (lhs->virtual == rhs->virtual) &&
194                        (lhs->dev == rhs->dev) &&
195                        (lhs->block == rhs->block);
196 }
197
198 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199                                                   struct cell_key *key)
200 {
201         struct dm_bio_prison_cell *cell;
202         struct hlist_node *tmp;
203
204         hlist_for_each_entry(cell, tmp, bucket, list)
205                 if (keys_equal(&cell->key, key))
206                         return cell;
207
208         return NULL;
209 }
210
211 /*
212  * This may block if a new cell needs allocating.  You must ensure that
213  * cells will be unlocked even if the calling thread is blocked.
214  *
215  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
216  */
217 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
218                       struct bio *inmate, struct dm_bio_prison_cell **ref)
219 {
220         int r = 1;
221         unsigned long flags;
222         uint32_t hash = hash_key(prison, key);
223         struct dm_bio_prison_cell *cell, *cell2;
224
225         BUG_ON(hash > prison->nr_buckets);
226
227         spin_lock_irqsave(&prison->lock, flags);
228
229         cell = __search_bucket(prison->cells + hash, key);
230         if (cell) {
231                 bio_list_add(&cell->bios, inmate);
232                 goto out;
233         }
234
235         /*
236          * Allocate a new cell
237          */
238         spin_unlock_irqrestore(&prison->lock, flags);
239         cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240         spin_lock_irqsave(&prison->lock, flags);
241
242         /*
243          * We've been unlocked, so we have to double check that
244          * nobody else has inserted this cell in the meantime.
245          */
246         cell = __search_bucket(prison->cells + hash, key);
247         if (cell) {
248                 mempool_free(cell2, prison->cell_pool);
249                 bio_list_add(&cell->bios, inmate);
250                 goto out;
251         }
252
253         /*
254          * Use new cell.
255          */
256         cell = cell2;
257
258         cell->prison = prison;
259         memcpy(&cell->key, key, sizeof(cell->key));
260         cell->holder = inmate;
261         bio_list_init(&cell->bios);
262         hlist_add_head(&cell->list, prison->cells + hash);
263
264         r = 0;
265
266 out:
267         spin_unlock_irqrestore(&prison->lock, flags);
268
269         *ref = cell;
270
271         return r;
272 }
273
274 /*
275  * @inmates must have been initialised prior to this call
276  */
277 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
278 {
279         struct bio_prison *prison = cell->prison;
280
281         hlist_del(&cell->list);
282
283         if (inmates) {
284                 bio_list_add(inmates, cell->holder);
285                 bio_list_merge(inmates, &cell->bios);
286         }
287
288         mempool_free(cell, prison->cell_pool);
289 }
290
291 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
292 {
293         unsigned long flags;
294         struct bio_prison *prison = cell->prison;
295
296         spin_lock_irqsave(&prison->lock, flags);
297         __cell_release(cell, bios);
298         spin_unlock_irqrestore(&prison->lock, flags);
299 }
300
301 /*
302  * There are a couple of places where we put a bio into a cell briefly
303  * before taking it out again.  In these situations we know that no other
304  * bio may be in the cell.  This function releases the cell, and also does
305  * a sanity check.
306  */
307 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
308 {
309         BUG_ON(cell->holder != bio);
310         BUG_ON(!bio_list_empty(&cell->bios));
311
312         __cell_release(cell, NULL);
313 }
314
315 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
316 {
317         unsigned long flags;
318         struct bio_prison *prison = cell->prison;
319
320         spin_lock_irqsave(&prison->lock, flags);
321         __cell_release_singleton(cell, bio);
322         spin_unlock_irqrestore(&prison->lock, flags);
323 }
324
325 /*
326  * Sometimes we don't want the holder, just the additional bios.
327  */
328 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329                                      struct bio_list *inmates)
330 {
331         struct bio_prison *prison = cell->prison;
332
333         hlist_del(&cell->list);
334         bio_list_merge(inmates, &cell->bios);
335
336         mempool_free(cell, prison->cell_pool);
337 }
338
339 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340                                    struct bio_list *inmates)
341 {
342         unsigned long flags;
343         struct bio_prison *prison = cell->prison;
344
345         spin_lock_irqsave(&prison->lock, flags);
346         __cell_release_no_holder(cell, inmates);
347         spin_unlock_irqrestore(&prison->lock, flags);
348 }
349
350 static void cell_error(struct dm_bio_prison_cell *cell)
351 {
352         struct bio_prison *prison = cell->prison;
353         struct bio_list bios;
354         struct bio *bio;
355         unsigned long flags;
356
357         bio_list_init(&bios);
358
359         spin_lock_irqsave(&prison->lock, flags);
360         __cell_release(cell, &bios);
361         spin_unlock_irqrestore(&prison->lock, flags);
362
363         while ((bio = bio_list_pop(&bios)))
364                 bio_io_error(bio);
365 }
366
367 /*----------------------------------------------------------------*/
368
369 /*
370  * We use the deferred set to keep track of pending reads to shared blocks.
371  * We do this to ensure the new mapping caused by a write isn't performed
372  * until these prior reads have completed.  Otherwise the insertion of the
373  * new mapping could free the old block that the read bios are mapped to.
374  */
375
376 struct deferred_set;
377 struct deferred_entry {
378         struct deferred_set *ds;
379         unsigned count;
380         struct list_head work_items;
381 };
382
383 struct deferred_set {
384         spinlock_t lock;
385         unsigned current_entry;
386         unsigned sweeper;
387         struct deferred_entry entries[DEFERRED_SET_SIZE];
388 };
389
390 static void ds_init(struct deferred_set *ds)
391 {
392         int i;
393
394         spin_lock_init(&ds->lock);
395         ds->current_entry = 0;
396         ds->sweeper = 0;
397         for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398                 ds->entries[i].ds = ds;
399                 ds->entries[i].count = 0;
400                 INIT_LIST_HEAD(&ds->entries[i].work_items);
401         }
402 }
403
404 static struct deferred_entry *ds_inc(struct deferred_set *ds)
405 {
406         unsigned long flags;
407         struct deferred_entry *entry;
408
409         spin_lock_irqsave(&ds->lock, flags);
410         entry = ds->entries + ds->current_entry;
411         entry->count++;
412         spin_unlock_irqrestore(&ds->lock, flags);
413
414         return entry;
415 }
416
417 static unsigned ds_next(unsigned index)
418 {
419         return (index + 1) % DEFERRED_SET_SIZE;
420 }
421
422 static void __sweep(struct deferred_set *ds, struct list_head *head)
423 {
424         while ((ds->sweeper != ds->current_entry) &&
425                !ds->entries[ds->sweeper].count) {
426                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427                 ds->sweeper = ds_next(ds->sweeper);
428         }
429
430         if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431                 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432 }
433
434 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435 {
436         unsigned long flags;
437
438         spin_lock_irqsave(&entry->ds->lock, flags);
439         BUG_ON(!entry->count);
440         --entry->count;
441         __sweep(entry->ds, head);
442         spin_unlock_irqrestore(&entry->ds->lock, flags);
443 }
444
445 /*
446  * Returns 1 if deferred or 0 if no pending items to delay job.
447  */
448 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449 {
450         int r = 1;
451         unsigned long flags;
452         unsigned next_entry;
453
454         spin_lock_irqsave(&ds->lock, flags);
455         if ((ds->sweeper == ds->current_entry) &&
456             !ds->entries[ds->current_entry].count)
457                 r = 0;
458         else {
459                 list_add(work, &ds->entries[ds->current_entry].work_items);
460                 next_entry = ds_next(ds->current_entry);
461                 if (!ds->entries[next_entry].count)
462                         ds->current_entry = next_entry;
463         }
464         spin_unlock_irqrestore(&ds->lock, flags);
465
466         return r;
467 }
468
469 /*----------------------------------------------------------------*/
470
471 /*
472  * Key building.
473  */
474 static void build_data_key(struct dm_thin_device *td,
475                            dm_block_t b, struct cell_key *key)
476 {
477         key->virtual = 0;
478         key->dev = dm_thin_dev_id(td);
479         key->block = b;
480 }
481
482 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483                               struct cell_key *key)
484 {
485         key->virtual = 1;
486         key->dev = dm_thin_dev_id(td);
487         key->block = b;
488 }
489
490 /*----------------------------------------------------------------*/
491
492 /*
493  * A pool device ties together a metadata device and a data device.  It
494  * also provides the interface for creating and destroying internal
495  * devices.
496  */
497 struct dm_thin_new_mapping;
498
499 struct pool_features {
500         unsigned zero_new_blocks:1;
501         unsigned discard_enabled:1;
502         unsigned discard_passdown:1;
503 };
504
505 struct pool {
506         struct list_head list;
507         struct dm_target *ti;   /* Only set if a pool target is bound */
508
509         struct mapped_device *pool_md;
510         struct block_device *md_dev;
511         struct dm_pool_metadata *pmd;
512
513         dm_block_t low_water_blocks;
514         uint32_t sectors_per_block;
515         int sectors_per_block_shift;
516
517         struct pool_features pf;
518         unsigned low_water_triggered:1; /* A dm event has been sent */
519         unsigned no_free_space:1;       /* A -ENOSPC warning has been issued */
520
521         struct bio_prison *prison;
522         struct dm_kcopyd_client *copier;
523
524         struct workqueue_struct *wq;
525         struct work_struct worker;
526         struct delayed_work waker;
527
528         unsigned long last_commit_jiffies;
529         unsigned ref_count;
530
531         spinlock_t lock;
532         struct bio_list deferred_bios;
533         struct bio_list deferred_flush_bios;
534         struct list_head prepared_mappings;
535         struct list_head prepared_discards;
536
537         struct bio_list retry_on_resume_list;
538
539         struct deferred_set shared_read_ds;
540         struct deferred_set all_io_ds;
541
542         struct dm_thin_new_mapping *next_mapping;
543         mempool_t *mapping_pool;
544         mempool_t *endio_hook_pool;
545 };
546
547 /*
548  * Target context for a pool.
549  */
550 struct pool_c {
551         struct dm_target *ti;
552         struct pool *pool;
553         struct dm_dev *data_dev;
554         struct dm_dev *metadata_dev;
555         struct dm_target_callbacks callbacks;
556
557         dm_block_t low_water_blocks;
558         struct pool_features pf;
559 };
560
561 /*
562  * Target context for a thin.
563  */
564 struct thin_c {
565         struct dm_dev *pool_dev;
566         struct dm_dev *origin_dev;
567         dm_thin_id dev_id;
568
569         struct pool *pool;
570         struct dm_thin_device *td;
571 };
572
573 /*----------------------------------------------------------------*/
574
575 /*
576  * A global list of pools that uses a struct mapped_device as a key.
577  */
578 static struct dm_thin_pool_table {
579         struct mutex mutex;
580         struct list_head pools;
581 } dm_thin_pool_table;
582
583 static void pool_table_init(void)
584 {
585         mutex_init(&dm_thin_pool_table.mutex);
586         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
587 }
588
589 static void __pool_table_insert(struct pool *pool)
590 {
591         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
592         list_add(&pool->list, &dm_thin_pool_table.pools);
593 }
594
595 static void __pool_table_remove(struct pool *pool)
596 {
597         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
598         list_del(&pool->list);
599 }
600
601 static struct pool *__pool_table_lookup(struct mapped_device *md)
602 {
603         struct pool *pool = NULL, *tmp;
604
605         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
606
607         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
608                 if (tmp->pool_md == md) {
609                         pool = tmp;
610                         break;
611                 }
612         }
613
614         return pool;
615 }
616
617 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
618 {
619         struct pool *pool = NULL, *tmp;
620
621         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
622
623         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
624                 if (tmp->md_dev == md_dev) {
625                         pool = tmp;
626                         break;
627                 }
628         }
629
630         return pool;
631 }
632
633 /*----------------------------------------------------------------*/
634
635 struct dm_thin_endio_hook {
636         struct thin_c *tc;
637         struct deferred_entry *shared_read_entry;
638         struct deferred_entry *all_io_entry;
639         struct dm_thin_new_mapping *overwrite_mapping;
640 };
641
642 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
643 {
644         struct bio *bio;
645         struct bio_list bios;
646
647         bio_list_init(&bios);
648         bio_list_merge(&bios, master);
649         bio_list_init(master);
650
651         while ((bio = bio_list_pop(&bios))) {
652                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
653
654                 if (h->tc == tc)
655                         bio_endio(bio, DM_ENDIO_REQUEUE);
656                 else
657                         bio_list_add(master, bio);
658         }
659 }
660
661 static void requeue_io(struct thin_c *tc)
662 {
663         struct pool *pool = tc->pool;
664         unsigned long flags;
665
666         spin_lock_irqsave(&pool->lock, flags);
667         __requeue_bio_list(tc, &pool->deferred_bios);
668         __requeue_bio_list(tc, &pool->retry_on_resume_list);
669         spin_unlock_irqrestore(&pool->lock, flags);
670 }
671
672 /*
673  * This section of code contains the logic for processing a thin device's IO.
674  * Much of the code depends on pool object resources (lists, workqueues, etc)
675  * but most is exclusively called from the thin target rather than the thin-pool
676  * target.
677  */
678
679 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
680 {
681         sector_t block_nr = bio->bi_sector;
682
683         if (tc->pool->sectors_per_block_shift < 0)
684                 (void) sector_div(block_nr, tc->pool->sectors_per_block);
685         else
686                 block_nr >>= tc->pool->sectors_per_block_shift;
687
688         return block_nr;
689 }
690
691 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
692 {
693         struct pool *pool = tc->pool;
694         sector_t bi_sector = bio->bi_sector;
695
696         bio->bi_bdev = tc->pool_dev->bdev;
697         if (tc->pool->sectors_per_block_shift < 0)
698                 bio->bi_sector = (block * pool->sectors_per_block) +
699                                  sector_div(bi_sector, pool->sectors_per_block);
700         else
701                 bio->bi_sector = (block << pool->sectors_per_block_shift) |
702                                 (bi_sector & (pool->sectors_per_block - 1));
703 }
704
705 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
706 {
707         bio->bi_bdev = tc->origin_dev->bdev;
708 }
709
710 static void issue(struct thin_c *tc, struct bio *bio)
711 {
712         struct pool *pool = tc->pool;
713         unsigned long flags;
714
715         /*
716          * Batch together any FUA/FLUSH bios we find and then issue
717          * a single commit for them in process_deferred_bios().
718          */
719         if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
720                 spin_lock_irqsave(&pool->lock, flags);
721                 bio_list_add(&pool->deferred_flush_bios, bio);
722                 spin_unlock_irqrestore(&pool->lock, flags);
723         } else
724                 generic_make_request(bio);
725 }
726
727 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
728 {
729         remap_to_origin(tc, bio);
730         issue(tc, bio);
731 }
732
733 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
734                             dm_block_t block)
735 {
736         remap(tc, bio, block);
737         issue(tc, bio);
738 }
739
740 /*
741  * wake_worker() is used when new work is queued and when pool_resume is
742  * ready to continue deferred IO processing.
743  */
744 static void wake_worker(struct pool *pool)
745 {
746         queue_work(pool->wq, &pool->worker);
747 }
748
749 /*----------------------------------------------------------------*/
750
751 /*
752  * Bio endio functions.
753  */
754 struct dm_thin_new_mapping {
755         struct list_head list;
756
757         unsigned quiesced:1;
758         unsigned prepared:1;
759         unsigned pass_discard:1;
760
761         struct thin_c *tc;
762         dm_block_t virt_block;
763         dm_block_t data_block;
764         struct dm_bio_prison_cell *cell, *cell2;
765         int err;
766
767         /*
768          * If the bio covers the whole area of a block then we can avoid
769          * zeroing or copying.  Instead this bio is hooked.  The bio will
770          * still be in the cell, so care has to be taken to avoid issuing
771          * the bio twice.
772          */
773         struct bio *bio;
774         bio_end_io_t *saved_bi_end_io;
775 };
776
777 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
778 {
779         struct pool *pool = m->tc->pool;
780
781         if (m->quiesced && m->prepared) {
782                 list_add(&m->list, &pool->prepared_mappings);
783                 wake_worker(pool);
784         }
785 }
786
787 static void copy_complete(int read_err, unsigned long write_err, void *context)
788 {
789         unsigned long flags;
790         struct dm_thin_new_mapping *m = context;
791         struct pool *pool = m->tc->pool;
792
793         m->err = read_err || write_err ? -EIO : 0;
794
795         spin_lock_irqsave(&pool->lock, flags);
796         m->prepared = 1;
797         __maybe_add_mapping(m);
798         spin_unlock_irqrestore(&pool->lock, flags);
799 }
800
801 static void overwrite_endio(struct bio *bio, int err)
802 {
803         unsigned long flags;
804         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
805         struct dm_thin_new_mapping *m = h->overwrite_mapping;
806         struct pool *pool = m->tc->pool;
807
808         m->err = err;
809
810         spin_lock_irqsave(&pool->lock, flags);
811         m->prepared = 1;
812         __maybe_add_mapping(m);
813         spin_unlock_irqrestore(&pool->lock, flags);
814 }
815
816 /*----------------------------------------------------------------*/
817
818 /*
819  * Workqueue.
820  */
821
822 /*
823  * Prepared mapping jobs.
824  */
825
826 /*
827  * This sends the bios in the cell back to the deferred_bios list.
828  */
829 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
830                        dm_block_t data_block)
831 {
832         struct pool *pool = tc->pool;
833         unsigned long flags;
834
835         spin_lock_irqsave(&pool->lock, flags);
836         cell_release(cell, &pool->deferred_bios);
837         spin_unlock_irqrestore(&tc->pool->lock, flags);
838
839         wake_worker(pool);
840 }
841
842 /*
843  * Same as cell_defer above, except it omits one particular detainee,
844  * a write bio that covers the block and has already been processed.
845  */
846 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848         struct bio_list bios;
849         struct pool *pool = tc->pool;
850         unsigned long flags;
851
852         bio_list_init(&bios);
853
854         spin_lock_irqsave(&pool->lock, flags);
855         cell_release_no_holder(cell, &pool->deferred_bios);
856         spin_unlock_irqrestore(&pool->lock, flags);
857
858         wake_worker(pool);
859 }
860
861 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
862 {
863         struct thin_c *tc = m->tc;
864         struct bio *bio;
865         int r;
866
867         bio = m->bio;
868         if (bio)
869                 bio->bi_end_io = m->saved_bi_end_io;
870
871         if (m->err) {
872                 cell_error(m->cell);
873                 goto out;
874         }
875
876         /*
877          * Commit the prepared block into the mapping btree.
878          * Any I/O for this block arriving after this point will get
879          * remapped to it directly.
880          */
881         r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
882         if (r) {
883                 DMERR("dm_thin_insert_block() failed");
884                 cell_error(m->cell);
885                 goto out;
886         }
887
888         /*
889          * Release any bios held while the block was being provisioned.
890          * If we are processing a write bio that completely covers the block,
891          * we already processed it so can ignore it now when processing
892          * the bios in the cell.
893          */
894         if (bio) {
895                 cell_defer_except(tc, m->cell);
896                 bio_endio(bio, 0);
897         } else
898                 cell_defer(tc, m->cell, m->data_block);
899
900 out:
901         list_del(&m->list);
902         mempool_free(m, tc->pool->mapping_pool);
903 }
904
905 static void process_prepared_discard(struct dm_thin_new_mapping *m)
906 {
907         int r;
908         struct thin_c *tc = m->tc;
909
910         r = dm_thin_remove_block(tc->td, m->virt_block);
911         if (r)
912                 DMERR("dm_thin_remove_block() failed");
913
914         /*
915          * Pass the discard down to the underlying device?
916          */
917         if (m->pass_discard)
918                 remap_and_issue(tc, m->bio, m->data_block);
919         else
920                 bio_endio(m->bio, 0);
921
922         cell_defer_except(tc, m->cell);
923         cell_defer_except(tc, m->cell2);
924         mempool_free(m, tc->pool->mapping_pool);
925 }
926
927 static void process_prepared(struct pool *pool, struct list_head *head,
928                              void (*fn)(struct dm_thin_new_mapping *))
929 {
930         unsigned long flags;
931         struct list_head maps;
932         struct dm_thin_new_mapping *m, *tmp;
933
934         INIT_LIST_HEAD(&maps);
935         spin_lock_irqsave(&pool->lock, flags);
936         list_splice_init(head, &maps);
937         spin_unlock_irqrestore(&pool->lock, flags);
938
939         list_for_each_entry_safe(m, tmp, &maps, list)
940                 fn(m);
941 }
942
943 /*
944  * Deferred bio jobs.
945  */
946 static int io_overlaps_block(struct pool *pool, struct bio *bio)
947 {
948         return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
949 }
950
951 static int io_overwrites_block(struct pool *pool, struct bio *bio)
952 {
953         return (bio_data_dir(bio) == WRITE) &&
954                 io_overlaps_block(pool, bio);
955 }
956
957 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
958                                bio_end_io_t *fn)
959 {
960         *save = bio->bi_end_io;
961         bio->bi_end_io = fn;
962 }
963
964 static int ensure_next_mapping(struct pool *pool)
965 {
966         if (pool->next_mapping)
967                 return 0;
968
969         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
970
971         return pool->next_mapping ? 0 : -ENOMEM;
972 }
973
974 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
975 {
976         struct dm_thin_new_mapping *r = pool->next_mapping;
977
978         BUG_ON(!pool->next_mapping);
979
980         pool->next_mapping = NULL;
981
982         return r;
983 }
984
985 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
986                           struct dm_dev *origin, dm_block_t data_origin,
987                           dm_block_t data_dest,
988                           struct dm_bio_prison_cell *cell, struct bio *bio)
989 {
990         int r;
991         struct pool *pool = tc->pool;
992         struct dm_thin_new_mapping *m = get_next_mapping(pool);
993
994         INIT_LIST_HEAD(&m->list);
995         m->quiesced = 0;
996         m->prepared = 0;
997         m->tc = tc;
998         m->virt_block = virt_block;
999         m->data_block = data_dest;
1000         m->cell = cell;
1001         m->err = 0;
1002         m->bio = NULL;
1003
1004         if (!ds_add_work(&pool->shared_read_ds, &m->list))
1005                 m->quiesced = 1;
1006
1007         /*
1008          * IO to pool_dev remaps to the pool target's data_dev.
1009          *
1010          * If the whole block of data is being overwritten, we can issue the
1011          * bio immediately. Otherwise we use kcopyd to clone the data first.
1012          */
1013         if (io_overwrites_block(pool, bio)) {
1014                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1015
1016                 h->overwrite_mapping = m;
1017                 m->bio = bio;
1018                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1019                 remap_and_issue(tc, bio, data_dest);
1020         } else {
1021                 struct dm_io_region from, to;
1022
1023                 from.bdev = origin->bdev;
1024                 from.sector = data_origin * pool->sectors_per_block;
1025                 from.count = pool->sectors_per_block;
1026
1027                 to.bdev = tc->pool_dev->bdev;
1028                 to.sector = data_dest * pool->sectors_per_block;
1029                 to.count = pool->sectors_per_block;
1030
1031                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1032                                    0, copy_complete, m);
1033                 if (r < 0) {
1034                         mempool_free(m, pool->mapping_pool);
1035                         DMERR("dm_kcopyd_copy() failed");
1036                         cell_error(cell);
1037                 }
1038         }
1039 }
1040
1041 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1042                                    dm_block_t data_origin, dm_block_t data_dest,
1043                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1044 {
1045         schedule_copy(tc, virt_block, tc->pool_dev,
1046                       data_origin, data_dest, cell, bio);
1047 }
1048
1049 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1050                                    dm_block_t data_dest,
1051                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1052 {
1053         schedule_copy(tc, virt_block, tc->origin_dev,
1054                       virt_block, data_dest, cell, bio);
1055 }
1056
1057 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1058                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1059                           struct bio *bio)
1060 {
1061         struct pool *pool = tc->pool;
1062         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1063
1064         INIT_LIST_HEAD(&m->list);
1065         m->quiesced = 1;
1066         m->prepared = 0;
1067         m->tc = tc;
1068         m->virt_block = virt_block;
1069         m->data_block = data_block;
1070         m->cell = cell;
1071         m->err = 0;
1072         m->bio = NULL;
1073
1074         /*
1075          * If the whole block of data is being overwritten or we are not
1076          * zeroing pre-existing data, we can issue the bio immediately.
1077          * Otherwise we use kcopyd to zero the data first.
1078          */
1079         if (!pool->pf.zero_new_blocks)
1080                 process_prepared_mapping(m);
1081
1082         else if (io_overwrites_block(pool, bio)) {
1083                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1084
1085                 h->overwrite_mapping = m;
1086                 m->bio = bio;
1087                 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1088                 remap_and_issue(tc, bio, data_block);
1089         } else {
1090                 int r;
1091                 struct dm_io_region to;
1092
1093                 to.bdev = tc->pool_dev->bdev;
1094                 to.sector = data_block * pool->sectors_per_block;
1095                 to.count = pool->sectors_per_block;
1096
1097                 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1098                 if (r < 0) {
1099                         mempool_free(m, pool->mapping_pool);
1100                         DMERR("dm_kcopyd_zero() failed");
1101                         cell_error(cell);
1102                 }
1103         }
1104 }
1105
1106 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1107 {
1108         int r;
1109         dm_block_t free_blocks;
1110         unsigned long flags;
1111         struct pool *pool = tc->pool;
1112
1113         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1114         if (r)
1115                 return r;
1116
1117         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1118                 DMWARN("%s: reached low water mark, sending event.",
1119                        dm_device_name(pool->pool_md));
1120                 spin_lock_irqsave(&pool->lock, flags);
1121                 pool->low_water_triggered = 1;
1122                 spin_unlock_irqrestore(&pool->lock, flags);
1123                 dm_table_event(pool->ti->table);
1124         }
1125
1126         if (!free_blocks) {
1127                 if (pool->no_free_space)
1128                         return -ENOSPC;
1129                 else {
1130                         /*
1131                          * Try to commit to see if that will free up some
1132                          * more space.
1133                          */
1134                         r = dm_pool_commit_metadata(pool->pmd);
1135                         if (r) {
1136                                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1137                                       __func__, r);
1138                                 return r;
1139                         }
1140
1141                         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1142                         if (r)
1143                                 return r;
1144
1145                         /*
1146                          * If we still have no space we set a flag to avoid
1147                          * doing all this checking and return -ENOSPC.
1148                          */
1149                         if (!free_blocks) {
1150                                 DMWARN("%s: no free space available.",
1151                                        dm_device_name(pool->pool_md));
1152                                 spin_lock_irqsave(&pool->lock, flags);
1153                                 pool->no_free_space = 1;
1154                                 spin_unlock_irqrestore(&pool->lock, flags);
1155                                 return -ENOSPC;
1156                         }
1157                 }
1158         }
1159
1160         r = dm_pool_alloc_data_block(pool->pmd, result);
1161         if (r)
1162                 return r;
1163
1164         return 0;
1165 }
1166
1167 /*
1168  * If we have run out of space, queue bios until the device is
1169  * resumed, presumably after having been reloaded with more space.
1170  */
1171 static void retry_on_resume(struct bio *bio)
1172 {
1173         struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1174         struct thin_c *tc = h->tc;
1175         struct pool *pool = tc->pool;
1176         unsigned long flags;
1177
1178         spin_lock_irqsave(&pool->lock, flags);
1179         bio_list_add(&pool->retry_on_resume_list, bio);
1180         spin_unlock_irqrestore(&pool->lock, flags);
1181 }
1182
1183 static void no_space(struct dm_bio_prison_cell *cell)
1184 {
1185         struct bio *bio;
1186         struct bio_list bios;
1187
1188         bio_list_init(&bios);
1189         cell_release(cell, &bios);
1190
1191         while ((bio = bio_list_pop(&bios)))
1192                 retry_on_resume(bio);
1193 }
1194
1195 static void process_discard(struct thin_c *tc, struct bio *bio)
1196 {
1197         int r;
1198         unsigned long flags;
1199         struct pool *pool = tc->pool;
1200         struct dm_bio_prison_cell *cell, *cell2;
1201         struct cell_key key, key2;
1202         dm_block_t block = get_bio_block(tc, bio);
1203         struct dm_thin_lookup_result lookup_result;
1204         struct dm_thin_new_mapping *m;
1205
1206         build_virtual_key(tc->td, block, &key);
1207         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1208                 return;
1209
1210         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1211         switch (r) {
1212         case 0:
1213                 /*
1214                  * Check nobody is fiddling with this pool block.  This can
1215                  * happen if someone's in the process of breaking sharing
1216                  * on this block.
1217                  */
1218                 build_data_key(tc->td, lookup_result.block, &key2);
1219                 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1220                         cell_release_singleton(cell, bio);
1221                         break;
1222                 }
1223
1224                 if (io_overlaps_block(pool, bio)) {
1225                         /*
1226                          * IO may still be going to the destination block.  We must
1227                          * quiesce before we can do the removal.
1228                          */
1229                         m = get_next_mapping(pool);
1230                         m->tc = tc;
1231                         m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1232                         m->virt_block = block;
1233                         m->data_block = lookup_result.block;
1234                         m->cell = cell;
1235                         m->cell2 = cell2;
1236                         m->err = 0;
1237                         m->bio = bio;
1238
1239                         if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1240                                 spin_lock_irqsave(&pool->lock, flags);
1241                                 list_add(&m->list, &pool->prepared_discards);
1242                                 spin_unlock_irqrestore(&pool->lock, flags);
1243                                 wake_worker(pool);
1244                         }
1245                 } else {
1246                         /*
1247                          * The DM core makes sure that the discard doesn't span
1248                          * a block boundary.  So we submit the discard of a
1249                          * partial block appropriately.
1250                          */
1251                         cell_release_singleton(cell, bio);
1252                         cell_release_singleton(cell2, bio);
1253                         if ((!lookup_result.shared) && pool->pf.discard_passdown)
1254                                 remap_and_issue(tc, bio, lookup_result.block);
1255                         else
1256                                 bio_endio(bio, 0);
1257                 }
1258                 break;
1259
1260         case -ENODATA:
1261                 /*
1262                  * It isn't provisioned, just forget it.
1263                  */
1264                 cell_release_singleton(cell, bio);
1265                 bio_endio(bio, 0);
1266                 break;
1267
1268         default:
1269                 DMERR("discard: find block unexpectedly returned %d", r);
1270                 cell_release_singleton(cell, bio);
1271                 bio_io_error(bio);
1272                 break;
1273         }
1274 }
1275
1276 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1277                           struct cell_key *key,
1278                           struct dm_thin_lookup_result *lookup_result,
1279                           struct dm_bio_prison_cell *cell)
1280 {
1281         int r;
1282         dm_block_t data_block;
1283
1284         r = alloc_data_block(tc, &data_block);
1285         switch (r) {
1286         case 0:
1287                 schedule_internal_copy(tc, block, lookup_result->block,
1288                                        data_block, cell, bio);
1289                 break;
1290
1291         case -ENOSPC:
1292                 no_space(cell);
1293                 break;
1294
1295         default:
1296                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1297                 cell_error(cell);
1298                 break;
1299         }
1300 }
1301
1302 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1303                                dm_block_t block,
1304                                struct dm_thin_lookup_result *lookup_result)
1305 {
1306         struct dm_bio_prison_cell *cell;
1307         struct pool *pool = tc->pool;
1308         struct cell_key key;
1309
1310         /*
1311          * If cell is already occupied, then sharing is already in the process
1312          * of being broken so we have nothing further to do here.
1313          */
1314         build_data_key(tc->td, lookup_result->block, &key);
1315         if (bio_detain(pool->prison, &key, bio, &cell))
1316                 return;
1317
1318         if (bio_data_dir(bio) == WRITE && bio->bi_size)
1319                 break_sharing(tc, bio, block, &key, lookup_result, cell);
1320         else {
1321                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1322
1323                 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1324
1325                 cell_release_singleton(cell, bio);
1326                 remap_and_issue(tc, bio, lookup_result->block);
1327         }
1328 }
1329
1330 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1331                             struct dm_bio_prison_cell *cell)
1332 {
1333         int r;
1334         dm_block_t data_block;
1335
1336         /*
1337          * Remap empty bios (flushes) immediately, without provisioning.
1338          */
1339         if (!bio->bi_size) {
1340                 cell_release_singleton(cell, bio);
1341                 remap_and_issue(tc, bio, 0);
1342                 return;
1343         }
1344
1345         /*
1346          * Fill read bios with zeroes and complete them immediately.
1347          */
1348         if (bio_data_dir(bio) == READ) {
1349                 zero_fill_bio(bio);
1350                 cell_release_singleton(cell, bio);
1351                 bio_endio(bio, 0);
1352                 return;
1353         }
1354
1355         r = alloc_data_block(tc, &data_block);
1356         switch (r) {
1357         case 0:
1358                 if (tc->origin_dev)
1359                         schedule_external_copy(tc, block, data_block, cell, bio);
1360                 else
1361                         schedule_zero(tc, block, data_block, cell, bio);
1362                 break;
1363
1364         case -ENOSPC:
1365                 no_space(cell);
1366                 break;
1367
1368         default:
1369                 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1370                 cell_error(cell);
1371                 break;
1372         }
1373 }
1374
1375 static void process_bio(struct thin_c *tc, struct bio *bio)
1376 {
1377         int r;
1378         dm_block_t block = get_bio_block(tc, bio);
1379         struct dm_bio_prison_cell *cell;
1380         struct cell_key key;
1381         struct dm_thin_lookup_result lookup_result;
1382
1383         /*
1384          * If cell is already occupied, then the block is already
1385          * being provisioned so we have nothing further to do here.
1386          */
1387         build_virtual_key(tc->td, block, &key);
1388         if (bio_detain(tc->pool->prison, &key, bio, &cell))
1389                 return;
1390
1391         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1392         switch (r) {
1393         case 0:
1394                 /*
1395                  * We can release this cell now.  This thread is the only
1396                  * one that puts bios into a cell, and we know there were
1397                  * no preceding bios.
1398                  */
1399                 /*
1400                  * TODO: this will probably have to change when discard goes
1401                  * back in.
1402                  */
1403                 cell_release_singleton(cell, bio);
1404
1405                 if (lookup_result.shared)
1406                         process_shared_bio(tc, bio, block, &lookup_result);
1407                 else
1408                         remap_and_issue(tc, bio, lookup_result.block);
1409                 break;
1410
1411         case -ENODATA:
1412                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1413                         cell_release_singleton(cell, bio);
1414                         remap_to_origin_and_issue(tc, bio);
1415                 } else
1416                         provision_block(tc, bio, block, cell);
1417                 break;
1418
1419         default:
1420                 DMERR("dm_thin_find_block() failed, error = %d", r);
1421                 cell_release_singleton(cell, bio);
1422                 bio_io_error(bio);
1423                 break;
1424         }
1425 }
1426
1427 static int need_commit_due_to_time(struct pool *pool)
1428 {
1429         return jiffies < pool->last_commit_jiffies ||
1430                jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1431 }
1432
1433 static void process_deferred_bios(struct pool *pool)
1434 {
1435         unsigned long flags;
1436         struct bio *bio;
1437         struct bio_list bios;
1438         int r;
1439
1440         bio_list_init(&bios);
1441
1442         spin_lock_irqsave(&pool->lock, flags);
1443         bio_list_merge(&bios, &pool->deferred_bios);
1444         bio_list_init(&pool->deferred_bios);
1445         spin_unlock_irqrestore(&pool->lock, flags);
1446
1447         while ((bio = bio_list_pop(&bios))) {
1448                 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1449                 struct thin_c *tc = h->tc;
1450
1451                 /*
1452                  * If we've got no free new_mapping structs, and processing
1453                  * this bio might require one, we pause until there are some
1454                  * prepared mappings to process.
1455                  */
1456                 if (ensure_next_mapping(pool)) {
1457                         spin_lock_irqsave(&pool->lock, flags);
1458                         bio_list_merge(&pool->deferred_bios, &bios);
1459                         spin_unlock_irqrestore(&pool->lock, flags);
1460
1461                         break;
1462                 }
1463
1464                 if (bio->bi_rw & REQ_DISCARD)
1465                         process_discard(tc, bio);
1466                 else
1467                         process_bio(tc, bio);
1468         }
1469
1470         /*
1471          * If there are any deferred flush bios, we must commit
1472          * the metadata before issuing them.
1473          */
1474         bio_list_init(&bios);
1475         spin_lock_irqsave(&pool->lock, flags);
1476         bio_list_merge(&bios, &pool->deferred_flush_bios);
1477         bio_list_init(&pool->deferred_flush_bios);
1478         spin_unlock_irqrestore(&pool->lock, flags);
1479
1480         if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1481                 return;
1482
1483         r = dm_pool_commit_metadata(pool->pmd);
1484         if (r) {
1485                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1486                       __func__, r);
1487                 while ((bio = bio_list_pop(&bios)))
1488                         bio_io_error(bio);
1489                 return;
1490         }
1491         pool->last_commit_jiffies = jiffies;
1492
1493         while ((bio = bio_list_pop(&bios)))
1494                 generic_make_request(bio);
1495 }
1496
1497 static void do_worker(struct work_struct *ws)
1498 {
1499         struct pool *pool = container_of(ws, struct pool, worker);
1500
1501         process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1502         process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1503         process_deferred_bios(pool);
1504 }
1505
1506 /*
1507  * We want to commit periodically so that not too much
1508  * unwritten data builds up.
1509  */
1510 static void do_waker(struct work_struct *ws)
1511 {
1512         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1513         wake_worker(pool);
1514         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1515 }
1516
1517 /*----------------------------------------------------------------*/
1518
1519 /*
1520  * Mapping functions.
1521  */
1522
1523 /*
1524  * Called only while mapping a thin bio to hand it over to the workqueue.
1525  */
1526 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1527 {
1528         unsigned long flags;
1529         struct pool *pool = tc->pool;
1530
1531         spin_lock_irqsave(&pool->lock, flags);
1532         bio_list_add(&pool->deferred_bios, bio);
1533         spin_unlock_irqrestore(&pool->lock, flags);
1534
1535         wake_worker(pool);
1536 }
1537
1538 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1539 {
1540         struct pool *pool = tc->pool;
1541         struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1542
1543         h->tc = tc;
1544         h->shared_read_entry = NULL;
1545         h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1546         h->overwrite_mapping = NULL;
1547
1548         return h;
1549 }
1550
1551 /*
1552  * Non-blocking function called from the thin target's map function.
1553  */
1554 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1555                         union map_info *map_context)
1556 {
1557         int r;
1558         struct thin_c *tc = ti->private;
1559         dm_block_t block = get_bio_block(tc, bio);
1560         struct dm_thin_device *td = tc->td;
1561         struct dm_thin_lookup_result result;
1562
1563         map_context->ptr = thin_hook_bio(tc, bio);
1564         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1565                 thin_defer_bio(tc, bio);
1566                 return DM_MAPIO_SUBMITTED;
1567         }
1568
1569         r = dm_thin_find_block(td, block, 0, &result);
1570
1571         /*
1572          * Note that we defer readahead too.
1573          */
1574         switch (r) {
1575         case 0:
1576                 if (unlikely(result.shared)) {
1577                         /*
1578                          * We have a race condition here between the
1579                          * result.shared value returned by the lookup and
1580                          * snapshot creation, which may cause new
1581                          * sharing.
1582                          *
1583                          * To avoid this always quiesce the origin before
1584                          * taking the snap.  You want to do this anyway to
1585                          * ensure a consistent application view
1586                          * (i.e. lockfs).
1587                          *
1588                          * More distant ancestors are irrelevant. The
1589                          * shared flag will be set in their case.
1590                          */
1591                         thin_defer_bio(tc, bio);
1592                         r = DM_MAPIO_SUBMITTED;
1593                 } else {
1594                         remap(tc, bio, result.block);
1595                         r = DM_MAPIO_REMAPPED;
1596                 }
1597                 break;
1598
1599         case -ENODATA:
1600                 /*
1601                  * In future, the failed dm_thin_find_block above could
1602                  * provide the hint to load the metadata into cache.
1603                  */
1604         case -EWOULDBLOCK:
1605                 thin_defer_bio(tc, bio);
1606                 r = DM_MAPIO_SUBMITTED;
1607                 break;
1608         }
1609
1610         return r;
1611 }
1612
1613 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1614 {
1615         int r;
1616         unsigned long flags;
1617         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1618
1619         spin_lock_irqsave(&pt->pool->lock, flags);
1620         r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1621         spin_unlock_irqrestore(&pt->pool->lock, flags);
1622
1623         if (!r) {
1624                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1625                 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1626         }
1627
1628         return r;
1629 }
1630
1631 static void __requeue_bios(struct pool *pool)
1632 {
1633         bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1634         bio_list_init(&pool->retry_on_resume_list);
1635 }
1636
1637 /*----------------------------------------------------------------
1638  * Binding of control targets to a pool object
1639  *--------------------------------------------------------------*/
1640 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1641 {
1642         struct pool_c *pt = ti->private;
1643
1644         pool->ti = ti;
1645         pool->low_water_blocks = pt->low_water_blocks;
1646         pool->pf = pt->pf;
1647
1648         /*
1649          * If discard_passdown was enabled verify that the data device
1650          * supports discards.  Disable discard_passdown if not; otherwise
1651          * -EOPNOTSUPP will be returned.
1652          */
1653         if (pt->pf.discard_passdown) {
1654                 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1655                 if (!q || !blk_queue_discard(q)) {
1656                         char buf[BDEVNAME_SIZE];
1657                         DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1658                                bdevname(pt->data_dev->bdev, buf));
1659                         pool->pf.discard_passdown = 0;
1660                 }
1661         }
1662
1663         return 0;
1664 }
1665
1666 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1667 {
1668         if (pool->ti == ti)
1669                 pool->ti = NULL;
1670 }
1671
1672 /*----------------------------------------------------------------
1673  * Pool creation
1674  *--------------------------------------------------------------*/
1675 /* Initialize pool features. */
1676 static void pool_features_init(struct pool_features *pf)
1677 {
1678         pf->zero_new_blocks = 1;
1679         pf->discard_enabled = 1;
1680         pf->discard_passdown = 1;
1681 }
1682
1683 static void __pool_destroy(struct pool *pool)
1684 {
1685         __pool_table_remove(pool);
1686
1687         if (dm_pool_metadata_close(pool->pmd) < 0)
1688                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1689
1690         prison_destroy(pool->prison);
1691         dm_kcopyd_client_destroy(pool->copier);
1692
1693         if (pool->wq)
1694                 destroy_workqueue(pool->wq);
1695
1696         if (pool->next_mapping)
1697                 mempool_free(pool->next_mapping, pool->mapping_pool);
1698         mempool_destroy(pool->mapping_pool);
1699         mempool_destroy(pool->endio_hook_pool);
1700         kfree(pool);
1701 }
1702
1703 static struct kmem_cache *_new_mapping_cache;
1704 static struct kmem_cache *_endio_hook_cache;
1705
1706 static struct pool *pool_create(struct mapped_device *pool_md,
1707                                 struct block_device *metadata_dev,
1708                                 unsigned long block_size, char **error)
1709 {
1710         int r;
1711         void *err_p;
1712         struct pool *pool;
1713         struct dm_pool_metadata *pmd;
1714
1715         pmd = dm_pool_metadata_open(metadata_dev, block_size);
1716         if (IS_ERR(pmd)) {
1717                 *error = "Error creating metadata object";
1718                 return (struct pool *)pmd;
1719         }
1720
1721         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1722         if (!pool) {
1723                 *error = "Error allocating memory for pool";
1724                 err_p = ERR_PTR(-ENOMEM);
1725                 goto bad_pool;
1726         }
1727
1728         pool->pmd = pmd;
1729         pool->sectors_per_block = block_size;
1730         if (block_size & (block_size - 1))
1731                 pool->sectors_per_block_shift = -1;
1732         else
1733                 pool->sectors_per_block_shift = __ffs(block_size);
1734         pool->low_water_blocks = 0;
1735         pool_features_init(&pool->pf);
1736         pool->prison = prison_create(PRISON_CELLS);
1737         if (!pool->prison) {
1738                 *error = "Error creating pool's bio prison";
1739                 err_p = ERR_PTR(-ENOMEM);
1740                 goto bad_prison;
1741         }
1742
1743         pool->copier = dm_kcopyd_client_create();
1744         if (IS_ERR(pool->copier)) {
1745                 r = PTR_ERR(pool->copier);
1746                 *error = "Error creating pool's kcopyd client";
1747                 err_p = ERR_PTR(r);
1748                 goto bad_kcopyd_client;
1749         }
1750
1751         /*
1752          * Create singlethreaded workqueue that will service all devices
1753          * that use this metadata.
1754          */
1755         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1756         if (!pool->wq) {
1757                 *error = "Error creating pool's workqueue";
1758                 err_p = ERR_PTR(-ENOMEM);
1759                 goto bad_wq;
1760         }
1761
1762         INIT_WORK(&pool->worker, do_worker);
1763         INIT_DELAYED_WORK(&pool->waker, do_waker);
1764         spin_lock_init(&pool->lock);
1765         bio_list_init(&pool->deferred_bios);
1766         bio_list_init(&pool->deferred_flush_bios);
1767         INIT_LIST_HEAD(&pool->prepared_mappings);
1768         INIT_LIST_HEAD(&pool->prepared_discards);
1769         pool->low_water_triggered = 0;
1770         pool->no_free_space = 0;
1771         bio_list_init(&pool->retry_on_resume_list);
1772         ds_init(&pool->shared_read_ds);
1773         ds_init(&pool->all_io_ds);
1774
1775         pool->next_mapping = NULL;
1776         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1777                                                       _new_mapping_cache);
1778         if (!pool->mapping_pool) {
1779                 *error = "Error creating pool's mapping mempool";
1780                 err_p = ERR_PTR(-ENOMEM);
1781                 goto bad_mapping_pool;
1782         }
1783
1784         pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1785                                                          _endio_hook_cache);
1786         if (!pool->endio_hook_pool) {
1787                 *error = "Error creating pool's endio_hook mempool";
1788                 err_p = ERR_PTR(-ENOMEM);
1789                 goto bad_endio_hook_pool;
1790         }
1791         pool->ref_count = 1;
1792         pool->last_commit_jiffies = jiffies;
1793         pool->pool_md = pool_md;
1794         pool->md_dev = metadata_dev;
1795         __pool_table_insert(pool);
1796
1797         return pool;
1798
1799 bad_endio_hook_pool:
1800         mempool_destroy(pool->mapping_pool);
1801 bad_mapping_pool:
1802         destroy_workqueue(pool->wq);
1803 bad_wq:
1804         dm_kcopyd_client_destroy(pool->copier);
1805 bad_kcopyd_client:
1806         prison_destroy(pool->prison);
1807 bad_prison:
1808         kfree(pool);
1809 bad_pool:
1810         if (dm_pool_metadata_close(pmd))
1811                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1812
1813         return err_p;
1814 }
1815
1816 static void __pool_inc(struct pool *pool)
1817 {
1818         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1819         pool->ref_count++;
1820 }
1821
1822 static void __pool_dec(struct pool *pool)
1823 {
1824         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1825         BUG_ON(!pool->ref_count);
1826         if (!--pool->ref_count)
1827                 __pool_destroy(pool);
1828 }
1829
1830 static struct pool *__pool_find(struct mapped_device *pool_md,
1831                                 struct block_device *metadata_dev,
1832                                 unsigned long block_size, char **error,
1833                                 int *created)
1834 {
1835         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1836
1837         if (pool) {
1838                 if (pool->pool_md != pool_md) {
1839                         *error = "metadata device already in use by a pool";
1840                         return ERR_PTR(-EBUSY);
1841                 }
1842                 __pool_inc(pool);
1843
1844         } else {
1845                 pool = __pool_table_lookup(pool_md);
1846                 if (pool) {
1847                         if (pool->md_dev != metadata_dev) {
1848                                 *error = "different pool cannot replace a pool";
1849                                 return ERR_PTR(-EINVAL);
1850                         }
1851                         __pool_inc(pool);
1852
1853                 } else {
1854                         pool = pool_create(pool_md, metadata_dev, block_size, error);
1855                         *created = 1;
1856                 }
1857         }
1858
1859         return pool;
1860 }
1861
1862 /*----------------------------------------------------------------
1863  * Pool target methods
1864  *--------------------------------------------------------------*/
1865 static void pool_dtr(struct dm_target *ti)
1866 {
1867         struct pool_c *pt = ti->private;
1868
1869         mutex_lock(&dm_thin_pool_table.mutex);
1870
1871         unbind_control_target(pt->pool, ti);
1872         __pool_dec(pt->pool);
1873         dm_put_device(ti, pt->metadata_dev);
1874         dm_put_device(ti, pt->data_dev);
1875         kfree(pt);
1876
1877         mutex_unlock(&dm_thin_pool_table.mutex);
1878 }
1879
1880 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1881                                struct dm_target *ti)
1882 {
1883         int r;
1884         unsigned argc;
1885         const char *arg_name;
1886
1887         static struct dm_arg _args[] = {
1888                 {0, 3, "Invalid number of pool feature arguments"},
1889         };
1890
1891         /*
1892          * No feature arguments supplied.
1893          */
1894         if (!as->argc)
1895                 return 0;
1896
1897         r = dm_read_arg_group(_args, as, &argc, &ti->error);
1898         if (r)
1899                 return -EINVAL;
1900
1901         while (argc && !r) {
1902                 arg_name = dm_shift_arg(as);
1903                 argc--;
1904
1905                 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1906                         pf->zero_new_blocks = 0;
1907                         continue;
1908                 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1909                         pf->discard_enabled = 0;
1910                         continue;
1911                 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1912                         pf->discard_passdown = 0;
1913                         continue;
1914                 }
1915
1916                 ti->error = "Unrecognised pool feature requested";
1917                 r = -EINVAL;
1918         }
1919
1920         return r;
1921 }
1922
1923 /*
1924  * thin-pool <metadata dev> <data dev>
1925  *           <data block size (sectors)>
1926  *           <low water mark (blocks)>
1927  *           [<#feature args> [<arg>]*]
1928  *
1929  * Optional feature arguments are:
1930  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1931  *           ignore_discard: disable discard
1932  *           no_discard_passdown: don't pass discards down to the data device
1933  */
1934 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1935 {
1936         int r, pool_created = 0;
1937         struct pool_c *pt;
1938         struct pool *pool;
1939         struct pool_features pf;
1940         struct dm_arg_set as;
1941         struct dm_dev *data_dev;
1942         unsigned long block_size;
1943         dm_block_t low_water_blocks;
1944         struct dm_dev *metadata_dev;
1945         sector_t metadata_dev_size;
1946         char b[BDEVNAME_SIZE];
1947
1948         /*
1949          * FIXME Remove validation from scope of lock.
1950          */
1951         mutex_lock(&dm_thin_pool_table.mutex);
1952
1953         if (argc < 4) {
1954                 ti->error = "Invalid argument count";
1955                 r = -EINVAL;
1956                 goto out_unlock;
1957         }
1958         as.argc = argc;
1959         as.argv = argv;
1960
1961         r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1962         if (r) {
1963                 ti->error = "Error opening metadata block device";
1964                 goto out_unlock;
1965         }
1966
1967         metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1968         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1969                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1970                        bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1971
1972         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1973         if (r) {
1974                 ti->error = "Error getting data device";
1975                 goto out_metadata;
1976         }
1977
1978         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1979             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1980             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1981             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1982                 ti->error = "Invalid block size";
1983                 r = -EINVAL;
1984                 goto out;
1985         }
1986
1987         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1988                 ti->error = "Invalid low water mark";
1989                 r = -EINVAL;
1990                 goto out;
1991         }
1992
1993         /*
1994          * Set default pool features.
1995          */
1996         pool_features_init(&pf);
1997
1998         dm_consume_args(&as, 4);
1999         r = parse_pool_features(&as, &pf, ti);
2000         if (r)
2001                 goto out;
2002
2003         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2004         if (!pt) {
2005                 r = -ENOMEM;
2006                 goto out;
2007         }
2008
2009         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2010                            block_size, &ti->error, &pool_created);
2011         if (IS_ERR(pool)) {
2012                 r = PTR_ERR(pool);
2013                 goto out_free_pt;
2014         }
2015
2016         /*
2017          * 'pool_created' reflects whether this is the first table load.
2018          * Top level discard support is not allowed to be changed after
2019          * initial load.  This would require a pool reload to trigger thin
2020          * device changes.
2021          */
2022         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2023                 ti->error = "Discard support cannot be disabled once enabled";
2024                 r = -EINVAL;
2025                 goto out_flags_changed;
2026         }
2027
2028         /*
2029          * The block layer requires discard_granularity to be a power of 2.
2030          */
2031         if (pf.discard_enabled && !is_power_of_2(block_size)) {
2032                 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2033                 r = -EINVAL;
2034                 goto out_flags_changed;
2035         }
2036
2037         pt->pool = pool;
2038         pt->ti = ti;
2039         pt->metadata_dev = metadata_dev;
2040         pt->data_dev = data_dev;
2041         pt->low_water_blocks = low_water_blocks;
2042         pt->pf = pf;
2043         ti->num_flush_requests = 1;
2044         /*
2045          * Only need to enable discards if the pool should pass
2046          * them down to the data device.  The thin device's discard
2047          * processing will cause mappings to be removed from the btree.
2048          */
2049         if (pf.discard_enabled && pf.discard_passdown) {
2050                 ti->num_discard_requests = 1;
2051                 /*
2052                  * Setting 'discards_supported' circumvents the normal
2053                  * stacking of discard limits (this keeps the pool and
2054                  * thin devices' discard limits consistent).
2055                  */
2056                 ti->discards_supported = true;
2057         }
2058         ti->private = pt;
2059
2060         pt->callbacks.congested_fn = pool_is_congested;
2061         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2062
2063         mutex_unlock(&dm_thin_pool_table.mutex);
2064
2065         return 0;
2066
2067 out_flags_changed:
2068         __pool_dec(pool);
2069 out_free_pt:
2070         kfree(pt);
2071 out:
2072         dm_put_device(ti, data_dev);
2073 out_metadata:
2074         dm_put_device(ti, metadata_dev);
2075 out_unlock:
2076         mutex_unlock(&dm_thin_pool_table.mutex);
2077
2078         return r;
2079 }
2080
2081 static int pool_map(struct dm_target *ti, struct bio *bio,
2082                     union map_info *map_context)
2083 {
2084         int r;
2085         struct pool_c *pt = ti->private;
2086         struct pool *pool = pt->pool;
2087         unsigned long flags;
2088
2089         /*
2090          * As this is a singleton target, ti->begin is always zero.
2091          */
2092         spin_lock_irqsave(&pool->lock, flags);
2093         bio->bi_bdev = pt->data_dev->bdev;
2094         r = DM_MAPIO_REMAPPED;
2095         spin_unlock_irqrestore(&pool->lock, flags);
2096
2097         return r;
2098 }
2099
2100 /*
2101  * Retrieves the number of blocks of the data device from
2102  * the superblock and compares it to the actual device size,
2103  * thus resizing the data device in case it has grown.
2104  *
2105  * This both copes with opening preallocated data devices in the ctr
2106  * being followed by a resume
2107  * -and-
2108  * calling the resume method individually after userspace has
2109  * grown the data device in reaction to a table event.
2110  */
2111 static int pool_preresume(struct dm_target *ti)
2112 {
2113         int r;
2114         struct pool_c *pt = ti->private;
2115         struct pool *pool = pt->pool;
2116         sector_t data_size = ti->len;
2117         dm_block_t sb_data_size;
2118
2119         /*
2120          * Take control of the pool object.
2121          */
2122         r = bind_control_target(pool, ti);
2123         if (r)
2124                 return r;
2125
2126         (void) sector_div(data_size, pool->sectors_per_block);
2127
2128         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2129         if (r) {
2130                 DMERR("failed to retrieve data device size");
2131                 return r;
2132         }
2133
2134         if (data_size < sb_data_size) {
2135                 DMERR("pool target too small, is %llu blocks (expected %llu)",
2136                       (unsigned long long)data_size, sb_data_size);
2137                 return -EINVAL;
2138
2139         } else if (data_size > sb_data_size) {
2140                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2141                 if (r) {
2142                         DMERR("failed to resize data device");
2143                         return r;
2144                 }
2145
2146                 r = dm_pool_commit_metadata(pool->pmd);
2147                 if (r) {
2148                         DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2149                               __func__, r);
2150                         return r;
2151                 }
2152         }
2153
2154         return 0;
2155 }
2156
2157 static void pool_resume(struct dm_target *ti)
2158 {
2159         struct pool_c *pt = ti->private;
2160         struct pool *pool = pt->pool;
2161         unsigned long flags;
2162
2163         spin_lock_irqsave(&pool->lock, flags);
2164         pool->low_water_triggered = 0;
2165         pool->no_free_space = 0;
2166         __requeue_bios(pool);
2167         spin_unlock_irqrestore(&pool->lock, flags);
2168
2169         do_waker(&pool->waker.work);
2170 }
2171
2172 static void pool_postsuspend(struct dm_target *ti)
2173 {
2174         int r;
2175         struct pool_c *pt = ti->private;
2176         struct pool *pool = pt->pool;
2177
2178         cancel_delayed_work(&pool->waker);
2179         flush_workqueue(pool->wq);
2180
2181         r = dm_pool_commit_metadata(pool->pmd);
2182         if (r < 0) {
2183                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2184                       __func__, r);
2185                 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2186         }
2187 }
2188
2189 static int check_arg_count(unsigned argc, unsigned args_required)
2190 {
2191         if (argc != args_required) {
2192                 DMWARN("Message received with %u arguments instead of %u.",
2193                        argc, args_required);
2194                 return -EINVAL;
2195         }
2196
2197         return 0;
2198 }
2199
2200 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2201 {
2202         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2203             *dev_id <= MAX_DEV_ID)
2204                 return 0;
2205
2206         if (warning)
2207                 DMWARN("Message received with invalid device id: %s", arg);
2208
2209         return -EINVAL;
2210 }
2211
2212 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2213 {
2214         dm_thin_id dev_id;
2215         int r;
2216
2217         r = check_arg_count(argc, 2);
2218         if (r)
2219                 return r;
2220
2221         r = read_dev_id(argv[1], &dev_id, 1);
2222         if (r)
2223                 return r;
2224
2225         r = dm_pool_create_thin(pool->pmd, dev_id);
2226         if (r) {
2227                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2228                        argv[1]);
2229                 return r;
2230         }
2231
2232         return 0;
2233 }
2234
2235 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2236 {
2237         dm_thin_id dev_id;
2238         dm_thin_id origin_dev_id;
2239         int r;
2240
2241         r = check_arg_count(argc, 3);
2242         if (r)
2243                 return r;
2244
2245         r = read_dev_id(argv[1], &dev_id, 1);
2246         if (r)
2247                 return r;
2248
2249         r = read_dev_id(argv[2], &origin_dev_id, 1);
2250         if (r)
2251                 return r;
2252
2253         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2254         if (r) {
2255                 DMWARN("Creation of new snapshot %s of device %s failed.",
2256                        argv[1], argv[2]);
2257                 return r;
2258         }
2259
2260         return 0;
2261 }
2262
2263 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2264 {
2265         dm_thin_id dev_id;
2266         int r;
2267
2268         r = check_arg_count(argc, 2);
2269         if (r)
2270                 return r;
2271
2272         r = read_dev_id(argv[1], &dev_id, 1);
2273         if (r)
2274                 return r;
2275
2276         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2277         if (r)
2278                 DMWARN("Deletion of thin device %s failed.", argv[1]);
2279
2280         return r;
2281 }
2282
2283 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2284 {
2285         dm_thin_id old_id, new_id;
2286         int r;
2287
2288         r = check_arg_count(argc, 3);
2289         if (r)
2290                 return r;
2291
2292         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2293                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2294                 return -EINVAL;
2295         }
2296
2297         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2298                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2299                 return -EINVAL;
2300         }
2301
2302         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2303         if (r) {
2304                 DMWARN("Failed to change transaction id from %s to %s.",
2305                        argv[1], argv[2]);
2306                 return r;
2307         }
2308
2309         return 0;
2310 }
2311
2312 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2313 {
2314         int r;
2315
2316         r = check_arg_count(argc, 1);
2317         if (r)
2318                 return r;
2319
2320         r = dm_pool_commit_metadata(pool->pmd);
2321         if (r) {
2322                 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2323                       __func__, r);
2324                 return r;
2325         }
2326
2327         r = dm_pool_reserve_metadata_snap(pool->pmd);
2328         if (r)
2329                 DMWARN("reserve_metadata_snap message failed.");
2330
2331         return r;
2332 }
2333
2334 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2335 {
2336         int r;
2337
2338         r = check_arg_count(argc, 1);
2339         if (r)
2340                 return r;
2341
2342         r = dm_pool_release_metadata_snap(pool->pmd);
2343         if (r)
2344                 DMWARN("release_metadata_snap message failed.");
2345
2346         return r;
2347 }
2348
2349 /*
2350  * Messages supported:
2351  *   create_thin        <dev_id>
2352  *   create_snap        <dev_id> <origin_id>
2353  *   delete             <dev_id>
2354  *   trim               <dev_id> <new_size_in_sectors>
2355  *   set_transaction_id <current_trans_id> <new_trans_id>
2356  *   reserve_metadata_snap
2357  *   release_metadata_snap
2358  */
2359 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2360 {
2361         int r = -EINVAL;
2362         struct pool_c *pt = ti->private;
2363         struct pool *pool = pt->pool;
2364
2365         if (!strcasecmp(argv[0], "create_thin"))
2366                 r = process_create_thin_mesg(argc, argv, pool);
2367
2368         else if (!strcasecmp(argv[0], "create_snap"))
2369                 r = process_create_snap_mesg(argc, argv, pool);
2370
2371         else if (!strcasecmp(argv[0], "delete"))
2372                 r = process_delete_mesg(argc, argv, pool);
2373
2374         else if (!strcasecmp(argv[0], "set_transaction_id"))
2375                 r = process_set_transaction_id_mesg(argc, argv, pool);
2376
2377         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2378                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2379
2380         else if (!strcasecmp(argv[0], "release_metadata_snap"))
2381                 r = process_release_metadata_snap_mesg(argc, argv, pool);
2382
2383         else
2384                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2385
2386         if (!r) {
2387                 r = dm_pool_commit_metadata(pool->pmd);
2388                 if (r)
2389                         DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2390                               argv[0], r);
2391         }
2392
2393         return r;
2394 }
2395
2396 /*
2397  * Status line is:
2398  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2399  *    <used data sectors>/<total data sectors> <held metadata root>
2400  */
2401 static int pool_status(struct dm_target *ti, status_type_t type,
2402                        char *result, unsigned maxlen)
2403 {
2404         int r, count;
2405         unsigned sz = 0;
2406         uint64_t transaction_id;
2407         dm_block_t nr_free_blocks_data;
2408         dm_block_t nr_free_blocks_metadata;
2409         dm_block_t nr_blocks_data;
2410         dm_block_t nr_blocks_metadata;
2411         dm_block_t held_root;
2412         char buf[BDEVNAME_SIZE];
2413         char buf2[BDEVNAME_SIZE];
2414         struct pool_c *pt = ti->private;
2415         struct pool *pool = pt->pool;
2416
2417         switch (type) {
2418         case STATUSTYPE_INFO:
2419                 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2420                                                         &transaction_id);
2421                 if (r)
2422                         return r;
2423
2424                 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2425                                                           &nr_free_blocks_metadata);
2426                 if (r)
2427                         return r;
2428
2429                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2430                 if (r)
2431                         return r;
2432
2433                 r = dm_pool_get_free_block_count(pool->pmd,
2434                                                  &nr_free_blocks_data);
2435                 if (r)
2436                         return r;
2437
2438                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2439                 if (r)
2440                         return r;
2441
2442                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2443                 if (r)
2444                         return r;
2445
2446                 DMEMIT("%llu %llu/%llu %llu/%llu ",
2447                        (unsigned long long)transaction_id,
2448                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2449                        (unsigned long long)nr_blocks_metadata,
2450                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2451                        (unsigned long long)nr_blocks_data);
2452
2453                 if (held_root)
2454                         DMEMIT("%llu", held_root);
2455                 else
2456                         DMEMIT("-");
2457
2458                 break;
2459
2460         case STATUSTYPE_TABLE:
2461                 DMEMIT("%s %s %lu %llu ",
2462                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2463                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2464                        (unsigned long)pool->sectors_per_block,
2465                        (unsigned long long)pt->low_water_blocks);
2466
2467                 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2468                         !pt->pf.discard_passdown;
2469                 DMEMIT("%u ", count);
2470
2471                 if (!pool->pf.zero_new_blocks)
2472                         DMEMIT("skip_block_zeroing ");
2473
2474                 if (!pool->pf.discard_enabled)
2475                         DMEMIT("ignore_discard ");
2476
2477                 if (!pt->pf.discard_passdown)
2478                         DMEMIT("no_discard_passdown ");
2479
2480                 break;
2481         }
2482
2483         return 0;
2484 }
2485
2486 static int pool_iterate_devices(struct dm_target *ti,
2487                                 iterate_devices_callout_fn fn, void *data)
2488 {
2489         struct pool_c *pt = ti->private;
2490
2491         return fn(ti, pt->data_dev, 0, ti->len, data);
2492 }
2493
2494 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2495                       struct bio_vec *biovec, int max_size)
2496 {
2497         struct pool_c *pt = ti->private;
2498         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2499
2500         if (!q->merge_bvec_fn)
2501                 return max_size;
2502
2503         bvm->bi_bdev = pt->data_dev->bdev;
2504
2505         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2506 }
2507
2508 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2509 {
2510         /*
2511          * FIXME: these limits may be incompatible with the pool's data device
2512          */
2513         limits->max_discard_sectors = pool->sectors_per_block;
2514
2515         /*
2516          * This is just a hint, and not enforced.  We have to cope with
2517          * bios that cover a block partially.  A discard that spans a block
2518          * boundary is not sent to this target.
2519          */
2520         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2521         limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2522 }
2523
2524 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2525 {
2526         struct pool_c *pt = ti->private;
2527         struct pool *pool = pt->pool;
2528
2529         blk_limits_io_min(limits, 0);
2530         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2531         if (pool->pf.discard_enabled)
2532                 set_discard_limits(pool, limits);
2533 }
2534
2535 static struct target_type pool_target = {
2536         .name = "thin-pool",
2537         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2538                     DM_TARGET_IMMUTABLE,
2539         .version = {1, 2, 0},
2540         .module = THIS_MODULE,
2541         .ctr = pool_ctr,
2542         .dtr = pool_dtr,
2543         .map = pool_map,
2544         .postsuspend = pool_postsuspend,
2545         .preresume = pool_preresume,
2546         .resume = pool_resume,
2547         .message = pool_message,
2548         .status = pool_status,
2549         .merge = pool_merge,
2550         .iterate_devices = pool_iterate_devices,
2551         .io_hints = pool_io_hints,
2552 };
2553
2554 /*----------------------------------------------------------------
2555  * Thin target methods
2556  *--------------------------------------------------------------*/
2557 static void thin_dtr(struct dm_target *ti)
2558 {
2559         struct thin_c *tc = ti->private;
2560
2561         mutex_lock(&dm_thin_pool_table.mutex);
2562
2563         __pool_dec(tc->pool);
2564         dm_pool_close_thin_device(tc->td);
2565         dm_put_device(ti, tc->pool_dev);
2566         if (tc->origin_dev)
2567                 dm_put_device(ti, tc->origin_dev);
2568         kfree(tc);
2569
2570         mutex_unlock(&dm_thin_pool_table.mutex);
2571 }
2572
2573 /*
2574  * Thin target parameters:
2575  *
2576  * <pool_dev> <dev_id> [origin_dev]
2577  *
2578  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2579  * dev_id: the internal device identifier
2580  * origin_dev: a device external to the pool that should act as the origin
2581  *
2582  * If the pool device has discards disabled, they get disabled for the thin
2583  * device as well.
2584  */
2585 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2586 {
2587         int r;
2588         struct thin_c *tc;
2589         struct dm_dev *pool_dev, *origin_dev;
2590         struct mapped_device *pool_md;
2591
2592         mutex_lock(&dm_thin_pool_table.mutex);
2593
2594         if (argc != 2 && argc != 3) {
2595                 ti->error = "Invalid argument count";
2596                 r = -EINVAL;
2597                 goto out_unlock;
2598         }
2599
2600         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2601         if (!tc) {
2602                 ti->error = "Out of memory";
2603                 r = -ENOMEM;
2604                 goto out_unlock;
2605         }
2606
2607         if (argc == 3) {
2608                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2609                 if (r) {
2610                         ti->error = "Error opening origin device";
2611                         goto bad_origin_dev;
2612                 }
2613                 tc->origin_dev = origin_dev;
2614         }
2615
2616         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2617         if (r) {
2618                 ti->error = "Error opening pool device";
2619                 goto bad_pool_dev;
2620         }
2621         tc->pool_dev = pool_dev;
2622
2623         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2624                 ti->error = "Invalid device id";
2625                 r = -EINVAL;
2626                 goto bad_common;
2627         }
2628
2629         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2630         if (!pool_md) {
2631                 ti->error = "Couldn't get pool mapped device";
2632                 r = -EINVAL;
2633                 goto bad_common;
2634         }
2635
2636         tc->pool = __pool_table_lookup(pool_md);
2637         if (!tc->pool) {
2638                 ti->error = "Couldn't find pool object";
2639                 r = -EINVAL;
2640                 goto bad_pool_lookup;
2641         }
2642         __pool_inc(tc->pool);
2643
2644         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2645         if (r) {
2646                 ti->error = "Couldn't open thin internal device";
2647                 goto bad_thin_open;
2648         }
2649
2650         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2651         if (r)
2652                 goto bad_thin_open;
2653
2654         ti->num_flush_requests = 1;
2655         ti->flush_supported = true;
2656
2657         /* In case the pool supports discards, pass them on. */
2658         if (tc->pool->pf.discard_enabled) {
2659                 ti->discards_supported = true;
2660                 ti->num_discard_requests = 1;
2661                 ti->discard_zeroes_data_unsupported = true;
2662                 /* Discard requests must be split on a block boundary */
2663                 ti->split_discard_requests = true;
2664         }
2665
2666         dm_put(pool_md);
2667
2668         mutex_unlock(&dm_thin_pool_table.mutex);
2669
2670         return 0;
2671
2672 bad_thin_open:
2673         __pool_dec(tc->pool);
2674 bad_pool_lookup:
2675         dm_put(pool_md);
2676 bad_common:
2677         dm_put_device(ti, tc->pool_dev);
2678 bad_pool_dev:
2679         if (tc->origin_dev)
2680                 dm_put_device(ti, tc->origin_dev);
2681 bad_origin_dev:
2682         kfree(tc);
2683 out_unlock:
2684         mutex_unlock(&dm_thin_pool_table.mutex);
2685
2686         return r;
2687 }
2688
2689 static int thin_map(struct dm_target *ti, struct bio *bio,
2690                     union map_info *map_context)
2691 {
2692         bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2693
2694         return thin_bio_map(ti, bio, map_context);
2695 }
2696
2697 static int thin_endio(struct dm_target *ti,
2698                       struct bio *bio, int err,
2699                       union map_info *map_context)
2700 {
2701         unsigned long flags;
2702         struct dm_thin_endio_hook *h = map_context->ptr;
2703         struct list_head work;
2704         struct dm_thin_new_mapping *m, *tmp;
2705         struct pool *pool = h->tc->pool;
2706
2707         if (h->shared_read_entry) {
2708                 INIT_LIST_HEAD(&work);
2709                 ds_dec(h->shared_read_entry, &work);
2710
2711                 spin_lock_irqsave(&pool->lock, flags);
2712                 list_for_each_entry_safe(m, tmp, &work, list) {
2713                         list_del(&m->list);
2714                         m->quiesced = 1;
2715                         __maybe_add_mapping(m);
2716                 }
2717                 spin_unlock_irqrestore(&pool->lock, flags);
2718         }
2719
2720         if (h->all_io_entry) {
2721                 INIT_LIST_HEAD(&work);
2722                 ds_dec(h->all_io_entry, &work);
2723                 spin_lock_irqsave(&pool->lock, flags);
2724                 list_for_each_entry_safe(m, tmp, &work, list)
2725                         list_add(&m->list, &pool->prepared_discards);
2726                 spin_unlock_irqrestore(&pool->lock, flags);
2727         }
2728
2729         mempool_free(h, pool->endio_hook_pool);
2730
2731         return 0;
2732 }
2733
2734 static void thin_postsuspend(struct dm_target *ti)
2735 {
2736         if (dm_noflush_suspending(ti))
2737                 requeue_io((struct thin_c *)ti->private);
2738 }
2739
2740 /*
2741  * <nr mapped sectors> <highest mapped sector>
2742  */
2743 static int thin_status(struct dm_target *ti, status_type_t type,
2744                        char *result, unsigned maxlen)
2745 {
2746         int r;
2747         ssize_t sz = 0;
2748         dm_block_t mapped, highest;
2749         char buf[BDEVNAME_SIZE];
2750         struct thin_c *tc = ti->private;
2751
2752         if (!tc->td)
2753                 DMEMIT("-");
2754         else {
2755                 switch (type) {
2756                 case STATUSTYPE_INFO:
2757                         r = dm_thin_get_mapped_count(tc->td, &mapped);
2758                         if (r)
2759                                 return r;
2760
2761                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2762                         if (r < 0)
2763                                 return r;
2764
2765                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2766                         if (r)
2767                                 DMEMIT("%llu", ((highest + 1) *
2768                                                 tc->pool->sectors_per_block) - 1);
2769                         else
2770                                 DMEMIT("-");
2771                         break;
2772
2773                 case STATUSTYPE_TABLE:
2774                         DMEMIT("%s %lu",
2775                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2776                                (unsigned long) tc->dev_id);
2777                         if (tc->origin_dev)
2778                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2779                         break;
2780                 }
2781         }
2782
2783         return 0;
2784 }
2785
2786 static int thin_iterate_devices(struct dm_target *ti,
2787                                 iterate_devices_callout_fn fn, void *data)
2788 {
2789         sector_t blocks;
2790         struct thin_c *tc = ti->private;
2791         struct pool *pool = tc->pool;
2792
2793         /*
2794          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2795          * we follow a more convoluted path through to the pool's target.
2796          */
2797         if (!pool->ti)
2798                 return 0;       /* nothing is bound */
2799
2800         blocks = pool->ti->len;
2801         (void) sector_div(blocks, pool->sectors_per_block);
2802         if (blocks)
2803                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2804
2805         return 0;
2806 }
2807
2808 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2809 {
2810         struct thin_c *tc = ti->private;
2811         struct pool *pool = tc->pool;
2812
2813         blk_limits_io_min(limits, 0);
2814         blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2815         set_discard_limits(pool, limits);
2816 }
2817
2818 static struct target_type thin_target = {
2819         .name = "thin",
2820         .version = {1, 2, 0},
2821         .module = THIS_MODULE,
2822         .ctr = thin_ctr,
2823         .dtr = thin_dtr,
2824         .map = thin_map,
2825         .end_io = thin_endio,
2826         .postsuspend = thin_postsuspend,
2827         .status = thin_status,
2828         .iterate_devices = thin_iterate_devices,
2829         .io_hints = thin_io_hints,
2830 };
2831
2832 /*----------------------------------------------------------------*/
2833
2834 static int __init dm_thin_init(void)
2835 {
2836         int r;
2837
2838         pool_table_init();
2839
2840         r = dm_register_target(&thin_target);
2841         if (r)
2842                 return r;
2843
2844         r = dm_register_target(&pool_target);
2845         if (r)
2846                 goto bad_pool_target;
2847
2848         r = -ENOMEM;
2849
2850         _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2851         if (!_cell_cache)
2852                 goto bad_cell_cache;
2853
2854         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2855         if (!_new_mapping_cache)
2856                 goto bad_new_mapping_cache;
2857
2858         _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2859         if (!_endio_hook_cache)
2860                 goto bad_endio_hook_cache;
2861
2862         return 0;
2863
2864 bad_endio_hook_cache:
2865         kmem_cache_destroy(_new_mapping_cache);
2866 bad_new_mapping_cache:
2867         kmem_cache_destroy(_cell_cache);
2868 bad_cell_cache:
2869         dm_unregister_target(&pool_target);
2870 bad_pool_target:
2871         dm_unregister_target(&thin_target);
2872
2873         return r;
2874 }
2875
2876 static void dm_thin_exit(void)
2877 {
2878         dm_unregister_target(&thin_target);
2879         dm_unregister_target(&pool_target);
2880
2881         kmem_cache_destroy(_cell_cache);
2882         kmem_cache_destroy(_new_mapping_cache);
2883         kmem_cache_destroy(_endio_hook_cache);
2884 }
2885
2886 module_init(dm_thin_init);
2887 module_exit(dm_thin_exit);
2888
2889 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2890 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2891 MODULE_LICENSE("GPL");