]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: using GFP_NOIO to allocate bio for flush request
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395
396         del_timer_sync(&mddev->safemode_timer);
397 }
398 EXPORT_SYMBOL_GPL(mddev_suspend);
399
400 void mddev_resume(struct mddev *mddev)
401 {
402         mddev->suspended = 0;
403         wake_up(&mddev->sb_wait);
404         mddev->pers->quiesce(mddev, 0);
405
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 mddev->pers->make_request(mddev, bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 /* Support for plugging.
502  * This mirrors the plugging support in request_queue, but does not
503  * require having a whole queue or request structures.
504  * We allocate an md_plug_cb for each md device and each thread it gets
505  * plugged on.  This links tot the private plug_handle structure in the
506  * personality data where we keep a count of the number of outstanding
507  * plugs so other code can see if a plug is active.
508  */
509 struct md_plug_cb {
510         struct blk_plug_cb cb;
511         struct mddev *mddev;
512 };
513
514 static void plugger_unplug(struct blk_plug_cb *cb)
515 {
516         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518                 md_wakeup_thread(mdcb->mddev->thread);
519         kfree(mdcb);
520 }
521
522 /* Check that an unplug wakeup will come shortly.
523  * If not, wakeup the md thread immediately
524  */
525 int mddev_check_plugged(struct mddev *mddev)
526 {
527         struct blk_plug *plug = current->plug;
528         struct md_plug_cb *mdcb;
529
530         if (!plug)
531                 return 0;
532
533         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534                 if (mdcb->cb.callback == plugger_unplug &&
535                     mdcb->mddev == mddev) {
536                         /* Already on the list, move to top */
537                         if (mdcb != list_first_entry(&plug->cb_list,
538                                                     struct md_plug_cb,
539                                                     cb.list))
540                                 list_move(&mdcb->cb.list, &plug->cb_list);
541                         return 1;
542                 }
543         }
544         /* Not currently on the callback list */
545         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546         if (!mdcb)
547                 return 0;
548
549         mdcb->mddev = mddev;
550         mdcb->cb.callback = plugger_unplug;
551         atomic_inc(&mddev->plug_cnt);
552         list_add(&mdcb->cb.list, &plug->cb_list);
553         return 1;
554 }
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557 static inline struct mddev *mddev_get(struct mddev *mddev)
558 {
559         atomic_inc(&mddev->active);
560         return mddev;
561 }
562
563 static void mddev_delayed_delete(struct work_struct *ws);
564
565 static void mddev_put(struct mddev *mddev)
566 {
567         struct bio_set *bs = NULL;
568
569         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570                 return;
571         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572             mddev->ctime == 0 && !mddev->hold_active) {
573                 /* Array is not configured at all, and not held active,
574                  * so destroy it */
575                 list_del_init(&mddev->all_mddevs);
576                 bs = mddev->bio_set;
577                 mddev->bio_set = NULL;
578                 if (mddev->gendisk) {
579                         /* We did a probe so need to clean up.  Call
580                          * queue_work inside the spinlock so that
581                          * flush_workqueue() after mddev_find will
582                          * succeed in waiting for the work to be done.
583                          */
584                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585                         queue_work(md_misc_wq, &mddev->del_work);
586                 } else
587                         kfree(mddev);
588         }
589         spin_unlock(&all_mddevs_lock);
590         if (bs)
591                 bioset_free(bs);
592 }
593
594 void mddev_init(struct mddev *mddev)
595 {
596         mutex_init(&mddev->open_mutex);
597         mutex_init(&mddev->reconfig_mutex);
598         mutex_init(&mddev->bitmap_info.mutex);
599         INIT_LIST_HEAD(&mddev->disks);
600         INIT_LIST_HEAD(&mddev->all_mddevs);
601         init_timer(&mddev->safemode_timer);
602         atomic_set(&mddev->active, 1);
603         atomic_set(&mddev->openers, 0);
604         atomic_set(&mddev->active_io, 0);
605         atomic_set(&mddev->plug_cnt, 0);
606         spin_lock_init(&mddev->write_lock);
607         atomic_set(&mddev->flush_pending, 0);
608         init_waitqueue_head(&mddev->sb_wait);
609         init_waitqueue_head(&mddev->recovery_wait);
610         mddev->reshape_position = MaxSector;
611         mddev->resync_min = 0;
612         mddev->resync_max = MaxSector;
613         mddev->level = LEVEL_NONE;
614 }
615 EXPORT_SYMBOL_GPL(mddev_init);
616
617 static struct mddev * mddev_find(dev_t unit)
618 {
619         struct mddev *mddev, *new = NULL;
620
621         if (unit && MAJOR(unit) != MD_MAJOR)
622                 unit &= ~((1<<MdpMinorShift)-1);
623
624  retry:
625         spin_lock(&all_mddevs_lock);
626
627         if (unit) {
628                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629                         if (mddev->unit == unit) {
630                                 mddev_get(mddev);
631                                 spin_unlock(&all_mddevs_lock);
632                                 kfree(new);
633                                 return mddev;
634                         }
635
636                 if (new) {
637                         list_add(&new->all_mddevs, &all_mddevs);
638                         spin_unlock(&all_mddevs_lock);
639                         new->hold_active = UNTIL_IOCTL;
640                         return new;
641                 }
642         } else if (new) {
643                 /* find an unused unit number */
644                 static int next_minor = 512;
645                 int start = next_minor;
646                 int is_free = 0;
647                 int dev = 0;
648                 while (!is_free) {
649                         dev = MKDEV(MD_MAJOR, next_minor);
650                         next_minor++;
651                         if (next_minor > MINORMASK)
652                                 next_minor = 0;
653                         if (next_minor == start) {
654                                 /* Oh dear, all in use. */
655                                 spin_unlock(&all_mddevs_lock);
656                                 kfree(new);
657                                 return NULL;
658                         }
659                                 
660                         is_free = 1;
661                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662                                 if (mddev->unit == dev) {
663                                         is_free = 0;
664                                         break;
665                                 }
666                 }
667                 new->unit = dev;
668                 new->md_minor = MINOR(dev);
669                 new->hold_active = UNTIL_STOP;
670                 list_add(&new->all_mddevs, &all_mddevs);
671                 spin_unlock(&all_mddevs_lock);
672                 return new;
673         }
674         spin_unlock(&all_mddevs_lock);
675
676         new = kzalloc(sizeof(*new), GFP_KERNEL);
677         if (!new)
678                 return NULL;
679
680         new->unit = unit;
681         if (MAJOR(unit) == MD_MAJOR)
682                 new->md_minor = MINOR(unit);
683         else
684                 new->md_minor = MINOR(unit) >> MdpMinorShift;
685
686         mddev_init(new);
687
688         goto retry;
689 }
690
691 static inline int mddev_lock(struct mddev * mddev)
692 {
693         return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 }
695
696 static inline int mddev_is_locked(struct mddev *mddev)
697 {
698         return mutex_is_locked(&mddev->reconfig_mutex);
699 }
700
701 static inline int mddev_trylock(struct mddev * mddev)
702 {
703         return mutex_trylock(&mddev->reconfig_mutex);
704 }
705
706 static struct attribute_group md_redundancy_group;
707
708 static void mddev_unlock(struct mddev * mddev)
709 {
710         if (mddev->to_remove) {
711                 /* These cannot be removed under reconfig_mutex as
712                  * an access to the files will try to take reconfig_mutex
713                  * while holding the file unremovable, which leads to
714                  * a deadlock.
715                  * So hold set sysfs_active while the remove in happeing,
716                  * and anything else which might set ->to_remove or my
717                  * otherwise change the sysfs namespace will fail with
718                  * -EBUSY if sysfs_active is still set.
719                  * We set sysfs_active under reconfig_mutex and elsewhere
720                  * test it under the same mutex to ensure its correct value
721                  * is seen.
722                  */
723                 struct attribute_group *to_remove = mddev->to_remove;
724                 mddev->to_remove = NULL;
725                 mddev->sysfs_active = 1;
726                 mutex_unlock(&mddev->reconfig_mutex);
727
728                 if (mddev->kobj.sd) {
729                         if (to_remove != &md_redundancy_group)
730                                 sysfs_remove_group(&mddev->kobj, to_remove);
731                         if (mddev->pers == NULL ||
732                             mddev->pers->sync_request == NULL) {
733                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734                                 if (mddev->sysfs_action)
735                                         sysfs_put(mddev->sysfs_action);
736                                 mddev->sysfs_action = NULL;
737                         }
738                 }
739                 mddev->sysfs_active = 0;
740         } else
741                 mutex_unlock(&mddev->reconfig_mutex);
742
743         /* As we've dropped the mutex we need a spinlock to
744          * make sure the thread doesn't disappear
745          */
746         spin_lock(&pers_lock);
747         md_wakeup_thread(mddev->thread);
748         spin_unlock(&pers_lock);
749 }
750
751 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
752 {
753         struct md_rdev *rdev;
754
755         list_for_each_entry(rdev, &mddev->disks, same_set)
756                 if (rdev->desc_nr == nr)
757                         return rdev;
758
759         return NULL;
760 }
761
762 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
763 {
764         struct md_rdev *rdev;
765
766         list_for_each_entry(rdev, &mddev->disks, same_set)
767                 if (rdev->bdev->bd_dev == dev)
768                         return rdev;
769
770         return NULL;
771 }
772
773 static struct md_personality *find_pers(int level, char *clevel)
774 {
775         struct md_personality *pers;
776         list_for_each_entry(pers, &pers_list, list) {
777                 if (level != LEVEL_NONE && pers->level == level)
778                         return pers;
779                 if (strcmp(pers->name, clevel)==0)
780                         return pers;
781         }
782         return NULL;
783 }
784
785 /* return the offset of the super block in 512byte sectors */
786 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
787 {
788         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
789         return MD_NEW_SIZE_SECTORS(num_sectors);
790 }
791
792 static int alloc_disk_sb(struct md_rdev * rdev)
793 {
794         if (rdev->sb_page)
795                 MD_BUG();
796
797         rdev->sb_page = alloc_page(GFP_KERNEL);
798         if (!rdev->sb_page) {
799                 printk(KERN_ALERT "md: out of memory.\n");
800                 return -ENOMEM;
801         }
802
803         return 0;
804 }
805
806 static void free_disk_sb(struct md_rdev * rdev)
807 {
808         if (rdev->sb_page) {
809                 put_page(rdev->sb_page);
810                 rdev->sb_loaded = 0;
811                 rdev->sb_page = NULL;
812                 rdev->sb_start = 0;
813                 rdev->sectors = 0;
814         }
815         if (rdev->bb_page) {
816                 put_page(rdev->bb_page);
817                 rdev->bb_page = NULL;
818         }
819 }
820
821
822 static void super_written(struct bio *bio, int error)
823 {
824         struct md_rdev *rdev = bio->bi_private;
825         struct mddev *mddev = rdev->mddev;
826
827         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
828                 printk("md: super_written gets error=%d, uptodate=%d\n",
829                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
830                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
831                 md_error(mddev, rdev);
832         }
833
834         if (atomic_dec_and_test(&mddev->pending_writes))
835                 wake_up(&mddev->sb_wait);
836         bio_put(bio);
837 }
838
839 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
840                    sector_t sector, int size, struct page *page)
841 {
842         /* write first size bytes of page to sector of rdev
843          * Increment mddev->pending_writes before returning
844          * and decrement it on completion, waking up sb_wait
845          * if zero is reached.
846          * If an error occurred, call md_error
847          */
848         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
849
850         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
851         bio->bi_sector = sector;
852         bio_add_page(bio, page, size, 0);
853         bio->bi_private = rdev;
854         bio->bi_end_io = super_written;
855
856         atomic_inc(&mddev->pending_writes);
857         submit_bio(WRITE_FLUSH_FUA, bio);
858 }
859
860 void md_super_wait(struct mddev *mddev)
861 {
862         /* wait for all superblock writes that were scheduled to complete */
863         DEFINE_WAIT(wq);
864         for(;;) {
865                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
866                 if (atomic_read(&mddev->pending_writes)==0)
867                         break;
868                 schedule();
869         }
870         finish_wait(&mddev->sb_wait, &wq);
871 }
872
873 static void bi_complete(struct bio *bio, int error)
874 {
875         complete((struct completion*)bio->bi_private);
876 }
877
878 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
879                  struct page *page, int rw, bool metadata_op)
880 {
881         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
882         struct completion event;
883         int ret;
884
885         rw |= REQ_SYNC;
886
887         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
888                 rdev->meta_bdev : rdev->bdev;
889         if (metadata_op)
890                 bio->bi_sector = sector + rdev->sb_start;
891         else
892                 bio->bi_sector = sector + rdev->data_offset;
893         bio_add_page(bio, page, size, 0);
894         init_completion(&event);
895         bio->bi_private = &event;
896         bio->bi_end_io = bi_complete;
897         submit_bio(rw, bio);
898         wait_for_completion(&event);
899
900         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
901         bio_put(bio);
902         return ret;
903 }
904 EXPORT_SYMBOL_GPL(sync_page_io);
905
906 static int read_disk_sb(struct md_rdev * rdev, int size)
907 {
908         char b[BDEVNAME_SIZE];
909         if (!rdev->sb_page) {
910                 MD_BUG();
911                 return -EINVAL;
912         }
913         if (rdev->sb_loaded)
914                 return 0;
915
916
917         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
918                 goto fail;
919         rdev->sb_loaded = 1;
920         return 0;
921
922 fail:
923         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
924                 bdevname(rdev->bdev,b));
925         return -EINVAL;
926 }
927
928 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
929 {
930         return  sb1->set_uuid0 == sb2->set_uuid0 &&
931                 sb1->set_uuid1 == sb2->set_uuid1 &&
932                 sb1->set_uuid2 == sb2->set_uuid2 &&
933                 sb1->set_uuid3 == sb2->set_uuid3;
934 }
935
936 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
937 {
938         int ret;
939         mdp_super_t *tmp1, *tmp2;
940
941         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
942         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
943
944         if (!tmp1 || !tmp2) {
945                 ret = 0;
946                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
947                 goto abort;
948         }
949
950         *tmp1 = *sb1;
951         *tmp2 = *sb2;
952
953         /*
954          * nr_disks is not constant
955          */
956         tmp1->nr_disks = 0;
957         tmp2->nr_disks = 0;
958
959         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
960 abort:
961         kfree(tmp1);
962         kfree(tmp2);
963         return ret;
964 }
965
966
967 static u32 md_csum_fold(u32 csum)
968 {
969         csum = (csum & 0xffff) + (csum >> 16);
970         return (csum & 0xffff) + (csum >> 16);
971 }
972
973 static unsigned int calc_sb_csum(mdp_super_t * sb)
974 {
975         u64 newcsum = 0;
976         u32 *sb32 = (u32*)sb;
977         int i;
978         unsigned int disk_csum, csum;
979
980         disk_csum = sb->sb_csum;
981         sb->sb_csum = 0;
982
983         for (i = 0; i < MD_SB_BYTES/4 ; i++)
984                 newcsum += sb32[i];
985         csum = (newcsum & 0xffffffff) + (newcsum>>32);
986
987
988 #ifdef CONFIG_ALPHA
989         /* This used to use csum_partial, which was wrong for several
990          * reasons including that different results are returned on
991          * different architectures.  It isn't critical that we get exactly
992          * the same return value as before (we always csum_fold before
993          * testing, and that removes any differences).  However as we
994          * know that csum_partial always returned a 16bit value on
995          * alphas, do a fold to maximise conformity to previous behaviour.
996          */
997         sb->sb_csum = md_csum_fold(disk_csum);
998 #else
999         sb->sb_csum = disk_csum;
1000 #endif
1001         return csum;
1002 }
1003
1004
1005 /*
1006  * Handle superblock details.
1007  * We want to be able to handle multiple superblock formats
1008  * so we have a common interface to them all, and an array of
1009  * different handlers.
1010  * We rely on user-space to write the initial superblock, and support
1011  * reading and updating of superblocks.
1012  * Interface methods are:
1013  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1014  *      loads and validates a superblock on dev.
1015  *      if refdev != NULL, compare superblocks on both devices
1016  *    Return:
1017  *      0 - dev has a superblock that is compatible with refdev
1018  *      1 - dev has a superblock that is compatible and newer than refdev
1019  *          so dev should be used as the refdev in future
1020  *     -EINVAL superblock incompatible or invalid
1021  *     -othererror e.g. -EIO
1022  *
1023  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1024  *      Verify that dev is acceptable into mddev.
1025  *       The first time, mddev->raid_disks will be 0, and data from
1026  *       dev should be merged in.  Subsequent calls check that dev
1027  *       is new enough.  Return 0 or -EINVAL
1028  *
1029  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1030  *     Update the superblock for rdev with data in mddev
1031  *     This does not write to disc.
1032  *
1033  */
1034
1035 struct super_type  {
1036         char                *name;
1037         struct module       *owner;
1038         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1039                                           int minor_version);
1040         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1041         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1042         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1043                                                 sector_t num_sectors);
1044 };
1045
1046 /*
1047  * Check that the given mddev has no bitmap.
1048  *
1049  * This function is called from the run method of all personalities that do not
1050  * support bitmaps. It prints an error message and returns non-zero if mddev
1051  * has a bitmap. Otherwise, it returns 0.
1052  *
1053  */
1054 int md_check_no_bitmap(struct mddev *mddev)
1055 {
1056         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1057                 return 0;
1058         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1059                 mdname(mddev), mddev->pers->name);
1060         return 1;
1061 }
1062 EXPORT_SYMBOL(md_check_no_bitmap);
1063
1064 /*
1065  * load_super for 0.90.0 
1066  */
1067 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1068 {
1069         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1070         mdp_super_t *sb;
1071         int ret;
1072
1073         /*
1074          * Calculate the position of the superblock (512byte sectors),
1075          * it's at the end of the disk.
1076          *
1077          * It also happens to be a multiple of 4Kb.
1078          */
1079         rdev->sb_start = calc_dev_sboffset(rdev);
1080
1081         ret = read_disk_sb(rdev, MD_SB_BYTES);
1082         if (ret) return ret;
1083
1084         ret = -EINVAL;
1085
1086         bdevname(rdev->bdev, b);
1087         sb = page_address(rdev->sb_page);
1088
1089         if (sb->md_magic != MD_SB_MAGIC) {
1090                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1091                        b);
1092                 goto abort;
1093         }
1094
1095         if (sb->major_version != 0 ||
1096             sb->minor_version < 90 ||
1097             sb->minor_version > 91) {
1098                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1099                         sb->major_version, sb->minor_version,
1100                         b);
1101                 goto abort;
1102         }
1103
1104         if (sb->raid_disks <= 0)
1105                 goto abort;
1106
1107         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1108                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1109                         b);
1110                 goto abort;
1111         }
1112
1113         rdev->preferred_minor = sb->md_minor;
1114         rdev->data_offset = 0;
1115         rdev->sb_size = MD_SB_BYTES;
1116         rdev->badblocks.shift = -1;
1117
1118         if (sb->level == LEVEL_MULTIPATH)
1119                 rdev->desc_nr = -1;
1120         else
1121                 rdev->desc_nr = sb->this_disk.number;
1122
1123         if (!refdev) {
1124                 ret = 1;
1125         } else {
1126                 __u64 ev1, ev2;
1127                 mdp_super_t *refsb = page_address(refdev->sb_page);
1128                 if (!uuid_equal(refsb, sb)) {
1129                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1130                                 b, bdevname(refdev->bdev,b2));
1131                         goto abort;
1132                 }
1133                 if (!sb_equal(refsb, sb)) {
1134                         printk(KERN_WARNING "md: %s has same UUID"
1135                                " but different superblock to %s\n",
1136                                b, bdevname(refdev->bdev, b2));
1137                         goto abort;
1138                 }
1139                 ev1 = md_event(sb);
1140                 ev2 = md_event(refsb);
1141                 if (ev1 > ev2)
1142                         ret = 1;
1143                 else 
1144                         ret = 0;
1145         }
1146         rdev->sectors = rdev->sb_start;
1147         /* Limit to 4TB as metadata cannot record more than that */
1148         if (rdev->sectors >= (2ULL << 32))
1149                 rdev->sectors = (2ULL << 32) - 2;
1150
1151         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1152                 /* "this cannot possibly happen" ... */
1153                 ret = -EINVAL;
1154
1155  abort:
1156         return ret;
1157 }
1158
1159 /*
1160  * validate_super for 0.90.0
1161  */
1162 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1163 {
1164         mdp_disk_t *desc;
1165         mdp_super_t *sb = page_address(rdev->sb_page);
1166         __u64 ev1 = md_event(sb);
1167
1168         rdev->raid_disk = -1;
1169         clear_bit(Faulty, &rdev->flags);
1170         clear_bit(In_sync, &rdev->flags);
1171         clear_bit(WriteMostly, &rdev->flags);
1172
1173         if (mddev->raid_disks == 0) {
1174                 mddev->major_version = 0;
1175                 mddev->minor_version = sb->minor_version;
1176                 mddev->patch_version = sb->patch_version;
1177                 mddev->external = 0;
1178                 mddev->chunk_sectors = sb->chunk_size >> 9;
1179                 mddev->ctime = sb->ctime;
1180                 mddev->utime = sb->utime;
1181                 mddev->level = sb->level;
1182                 mddev->clevel[0] = 0;
1183                 mddev->layout = sb->layout;
1184                 mddev->raid_disks = sb->raid_disks;
1185                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1186                 mddev->events = ev1;
1187                 mddev->bitmap_info.offset = 0;
1188                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1189
1190                 if (mddev->minor_version >= 91) {
1191                         mddev->reshape_position = sb->reshape_position;
1192                         mddev->delta_disks = sb->delta_disks;
1193                         mddev->new_level = sb->new_level;
1194                         mddev->new_layout = sb->new_layout;
1195                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1196                 } else {
1197                         mddev->reshape_position = MaxSector;
1198                         mddev->delta_disks = 0;
1199                         mddev->new_level = mddev->level;
1200                         mddev->new_layout = mddev->layout;
1201                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1202                 }
1203
1204                 if (sb->state & (1<<MD_SB_CLEAN))
1205                         mddev->recovery_cp = MaxSector;
1206                 else {
1207                         if (sb->events_hi == sb->cp_events_hi && 
1208                                 sb->events_lo == sb->cp_events_lo) {
1209                                 mddev->recovery_cp = sb->recovery_cp;
1210                         } else
1211                                 mddev->recovery_cp = 0;
1212                 }
1213
1214                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1215                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1216                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1217                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1218
1219                 mddev->max_disks = MD_SB_DISKS;
1220
1221                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1222                     mddev->bitmap_info.file == NULL)
1223                         mddev->bitmap_info.offset =
1224                                 mddev->bitmap_info.default_offset;
1225
1226         } else if (mddev->pers == NULL) {
1227                 /* Insist on good event counter while assembling, except
1228                  * for spares (which don't need an event count) */
1229                 ++ev1;
1230                 if (sb->disks[rdev->desc_nr].state & (
1231                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1232                         if (ev1 < mddev->events) 
1233                                 return -EINVAL;
1234         } else if (mddev->bitmap) {
1235                 /* if adding to array with a bitmap, then we can accept an
1236                  * older device ... but not too old.
1237                  */
1238                 if (ev1 < mddev->bitmap->events_cleared)
1239                         return 0;
1240         } else {
1241                 if (ev1 < mddev->events)
1242                         /* just a hot-add of a new device, leave raid_disk at -1 */
1243                         return 0;
1244         }
1245
1246         if (mddev->level != LEVEL_MULTIPATH) {
1247                 desc = sb->disks + rdev->desc_nr;
1248
1249                 if (desc->state & (1<<MD_DISK_FAULTY))
1250                         set_bit(Faulty, &rdev->flags);
1251                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1252                             desc->raid_disk < mddev->raid_disks */) {
1253                         set_bit(In_sync, &rdev->flags);
1254                         rdev->raid_disk = desc->raid_disk;
1255                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1256                         /* active but not in sync implies recovery up to
1257                          * reshape position.  We don't know exactly where
1258                          * that is, so set to zero for now */
1259                         if (mddev->minor_version >= 91) {
1260                                 rdev->recovery_offset = 0;
1261                                 rdev->raid_disk = desc->raid_disk;
1262                         }
1263                 }
1264                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1265                         set_bit(WriteMostly, &rdev->flags);
1266         } else /* MULTIPATH are always insync */
1267                 set_bit(In_sync, &rdev->flags);
1268         return 0;
1269 }
1270
1271 /*
1272  * sync_super for 0.90.0
1273  */
1274 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1275 {
1276         mdp_super_t *sb;
1277         struct md_rdev *rdev2;
1278         int next_spare = mddev->raid_disks;
1279
1280
1281         /* make rdev->sb match mddev data..
1282          *
1283          * 1/ zero out disks
1284          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1285          * 3/ any empty disks < next_spare become removed
1286          *
1287          * disks[0] gets initialised to REMOVED because
1288          * we cannot be sure from other fields if it has
1289          * been initialised or not.
1290          */
1291         int i;
1292         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1293
1294         rdev->sb_size = MD_SB_BYTES;
1295
1296         sb = page_address(rdev->sb_page);
1297
1298         memset(sb, 0, sizeof(*sb));
1299
1300         sb->md_magic = MD_SB_MAGIC;
1301         sb->major_version = mddev->major_version;
1302         sb->patch_version = mddev->patch_version;
1303         sb->gvalid_words  = 0; /* ignored */
1304         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1305         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1306         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1307         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1308
1309         sb->ctime = mddev->ctime;
1310         sb->level = mddev->level;
1311         sb->size = mddev->dev_sectors / 2;
1312         sb->raid_disks = mddev->raid_disks;
1313         sb->md_minor = mddev->md_minor;
1314         sb->not_persistent = 0;
1315         sb->utime = mddev->utime;
1316         sb->state = 0;
1317         sb->events_hi = (mddev->events>>32);
1318         sb->events_lo = (u32)mddev->events;
1319
1320         if (mddev->reshape_position == MaxSector)
1321                 sb->minor_version = 90;
1322         else {
1323                 sb->minor_version = 91;
1324                 sb->reshape_position = mddev->reshape_position;
1325                 sb->new_level = mddev->new_level;
1326                 sb->delta_disks = mddev->delta_disks;
1327                 sb->new_layout = mddev->new_layout;
1328                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1329         }
1330         mddev->minor_version = sb->minor_version;
1331         if (mddev->in_sync)
1332         {
1333                 sb->recovery_cp = mddev->recovery_cp;
1334                 sb->cp_events_hi = (mddev->events>>32);
1335                 sb->cp_events_lo = (u32)mddev->events;
1336                 if (mddev->recovery_cp == MaxSector)
1337                         sb->state = (1<< MD_SB_CLEAN);
1338         } else
1339                 sb->recovery_cp = 0;
1340
1341         sb->layout = mddev->layout;
1342         sb->chunk_size = mddev->chunk_sectors << 9;
1343
1344         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1345                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1346
1347         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1348         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1349                 mdp_disk_t *d;
1350                 int desc_nr;
1351                 int is_active = test_bit(In_sync, &rdev2->flags);
1352
1353                 if (rdev2->raid_disk >= 0 &&
1354                     sb->minor_version >= 91)
1355                         /* we have nowhere to store the recovery_offset,
1356                          * but if it is not below the reshape_position,
1357                          * we can piggy-back on that.
1358                          */
1359                         is_active = 1;
1360                 if (rdev2->raid_disk < 0 ||
1361                     test_bit(Faulty, &rdev2->flags))
1362                         is_active = 0;
1363                 if (is_active)
1364                         desc_nr = rdev2->raid_disk;
1365                 else
1366                         desc_nr = next_spare++;
1367                 rdev2->desc_nr = desc_nr;
1368                 d = &sb->disks[rdev2->desc_nr];
1369                 nr_disks++;
1370                 d->number = rdev2->desc_nr;
1371                 d->major = MAJOR(rdev2->bdev->bd_dev);
1372                 d->minor = MINOR(rdev2->bdev->bd_dev);
1373                 if (is_active)
1374                         d->raid_disk = rdev2->raid_disk;
1375                 else
1376                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1377                 if (test_bit(Faulty, &rdev2->flags))
1378                         d->state = (1<<MD_DISK_FAULTY);
1379                 else if (is_active) {
1380                         d->state = (1<<MD_DISK_ACTIVE);
1381                         if (test_bit(In_sync, &rdev2->flags))
1382                                 d->state |= (1<<MD_DISK_SYNC);
1383                         active++;
1384                         working++;
1385                 } else {
1386                         d->state = 0;
1387                         spare++;
1388                         working++;
1389                 }
1390                 if (test_bit(WriteMostly, &rdev2->flags))
1391                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1392         }
1393         /* now set the "removed" and "faulty" bits on any missing devices */
1394         for (i=0 ; i < mddev->raid_disks ; i++) {
1395                 mdp_disk_t *d = &sb->disks[i];
1396                 if (d->state == 0 && d->number == 0) {
1397                         d->number = i;
1398                         d->raid_disk = i;
1399                         d->state = (1<<MD_DISK_REMOVED);
1400                         d->state |= (1<<MD_DISK_FAULTY);
1401                         failed++;
1402                 }
1403         }
1404         sb->nr_disks = nr_disks;
1405         sb->active_disks = active;
1406         sb->working_disks = working;
1407         sb->failed_disks = failed;
1408         sb->spare_disks = spare;
1409
1410         sb->this_disk = sb->disks[rdev->desc_nr];
1411         sb->sb_csum = calc_sb_csum(sb);
1412 }
1413
1414 /*
1415  * rdev_size_change for 0.90.0
1416  */
1417 static unsigned long long
1418 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1419 {
1420         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1421                 return 0; /* component must fit device */
1422         if (rdev->mddev->bitmap_info.offset)
1423                 return 0; /* can't move bitmap */
1424         rdev->sb_start = calc_dev_sboffset(rdev);
1425         if (!num_sectors || num_sectors > rdev->sb_start)
1426                 num_sectors = rdev->sb_start;
1427         /* Limit to 4TB as metadata cannot record more than that.
1428          * 4TB == 2^32 KB, or 2*2^32 sectors.
1429          */
1430         if (num_sectors >= (2ULL << 32))
1431                 num_sectors = (2ULL << 32) - 2;
1432         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1433                        rdev->sb_page);
1434         md_super_wait(rdev->mddev);
1435         return num_sectors;
1436 }
1437
1438
1439 /*
1440  * version 1 superblock
1441  */
1442
1443 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1444 {
1445         __le32 disk_csum;
1446         u32 csum;
1447         unsigned long long newcsum;
1448         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1449         __le32 *isuper = (__le32*)sb;
1450         int i;
1451
1452         disk_csum = sb->sb_csum;
1453         sb->sb_csum = 0;
1454         newcsum = 0;
1455         for (i=0; size>=4; size -= 4 )
1456                 newcsum += le32_to_cpu(*isuper++);
1457
1458         if (size == 2)
1459                 newcsum += le16_to_cpu(*(__le16*) isuper);
1460
1461         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1462         sb->sb_csum = disk_csum;
1463         return cpu_to_le32(csum);
1464 }
1465
1466 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1467                             int acknowledged);
1468 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1469 {
1470         struct mdp_superblock_1 *sb;
1471         int ret;
1472         sector_t sb_start;
1473         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1474         int bmask;
1475
1476         /*
1477          * Calculate the position of the superblock in 512byte sectors.
1478          * It is always aligned to a 4K boundary and
1479          * depeding on minor_version, it can be:
1480          * 0: At least 8K, but less than 12K, from end of device
1481          * 1: At start of device
1482          * 2: 4K from start of device.
1483          */
1484         switch(minor_version) {
1485         case 0:
1486                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1487                 sb_start -= 8*2;
1488                 sb_start &= ~(sector_t)(4*2-1);
1489                 break;
1490         case 1:
1491                 sb_start = 0;
1492                 break;
1493         case 2:
1494                 sb_start = 8;
1495                 break;
1496         default:
1497                 return -EINVAL;
1498         }
1499         rdev->sb_start = sb_start;
1500
1501         /* superblock is rarely larger than 1K, but it can be larger,
1502          * and it is safe to read 4k, so we do that
1503          */
1504         ret = read_disk_sb(rdev, 4096);
1505         if (ret) return ret;
1506
1507
1508         sb = page_address(rdev->sb_page);
1509
1510         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1511             sb->major_version != cpu_to_le32(1) ||
1512             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1513             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1514             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1515                 return -EINVAL;
1516
1517         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1518                 printk("md: invalid superblock checksum on %s\n",
1519                         bdevname(rdev->bdev,b));
1520                 return -EINVAL;
1521         }
1522         if (le64_to_cpu(sb->data_size) < 10) {
1523                 printk("md: data_size too small on %s\n",
1524                        bdevname(rdev->bdev,b));
1525                 return -EINVAL;
1526         }
1527
1528         rdev->preferred_minor = 0xffff;
1529         rdev->data_offset = le64_to_cpu(sb->data_offset);
1530         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1531
1532         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1533         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1534         if (rdev->sb_size & bmask)
1535                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1536
1537         if (minor_version
1538             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1539                 return -EINVAL;
1540
1541         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1542                 rdev->desc_nr = -1;
1543         else
1544                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1545
1546         if (!rdev->bb_page) {
1547                 rdev->bb_page = alloc_page(GFP_KERNEL);
1548                 if (!rdev->bb_page)
1549                         return -ENOMEM;
1550         }
1551         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1552             rdev->badblocks.count == 0) {
1553                 /* need to load the bad block list.
1554                  * Currently we limit it to one page.
1555                  */
1556                 s32 offset;
1557                 sector_t bb_sector;
1558                 u64 *bbp;
1559                 int i;
1560                 int sectors = le16_to_cpu(sb->bblog_size);
1561                 if (sectors > (PAGE_SIZE / 512))
1562                         return -EINVAL;
1563                 offset = le32_to_cpu(sb->bblog_offset);
1564                 if (offset == 0)
1565                         return -EINVAL;
1566                 bb_sector = (long long)offset;
1567                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1568                                   rdev->bb_page, READ, true))
1569                         return -EIO;
1570                 bbp = (u64 *)page_address(rdev->bb_page);
1571                 rdev->badblocks.shift = sb->bblog_shift;
1572                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1573                         u64 bb = le64_to_cpu(*bbp);
1574                         int count = bb & (0x3ff);
1575                         u64 sector = bb >> 10;
1576                         sector <<= sb->bblog_shift;
1577                         count <<= sb->bblog_shift;
1578                         if (bb + 1 == 0)
1579                                 break;
1580                         if (md_set_badblocks(&rdev->badblocks,
1581                                              sector, count, 1) == 0)
1582                                 return -EINVAL;
1583                 }
1584         } else if (sb->bblog_offset == 0)
1585                 rdev->badblocks.shift = -1;
1586
1587         if (!refdev) {
1588                 ret = 1;
1589         } else {
1590                 __u64 ev1, ev2;
1591                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1592
1593                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1594                     sb->level != refsb->level ||
1595                     sb->layout != refsb->layout ||
1596                     sb->chunksize != refsb->chunksize) {
1597                         printk(KERN_WARNING "md: %s has strangely different"
1598                                 " superblock to %s\n",
1599                                 bdevname(rdev->bdev,b),
1600                                 bdevname(refdev->bdev,b2));
1601                         return -EINVAL;
1602                 }
1603                 ev1 = le64_to_cpu(sb->events);
1604                 ev2 = le64_to_cpu(refsb->events);
1605
1606                 if (ev1 > ev2)
1607                         ret = 1;
1608                 else
1609                         ret = 0;
1610         }
1611         if (minor_version)
1612                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1613                         le64_to_cpu(sb->data_offset);
1614         else
1615                 rdev->sectors = rdev->sb_start;
1616         if (rdev->sectors < le64_to_cpu(sb->data_size))
1617                 return -EINVAL;
1618         rdev->sectors = le64_to_cpu(sb->data_size);
1619         if (le64_to_cpu(sb->size) > rdev->sectors)
1620                 return -EINVAL;
1621         return ret;
1622 }
1623
1624 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1625 {
1626         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1627         __u64 ev1 = le64_to_cpu(sb->events);
1628
1629         rdev->raid_disk = -1;
1630         clear_bit(Faulty, &rdev->flags);
1631         clear_bit(In_sync, &rdev->flags);
1632         clear_bit(WriteMostly, &rdev->flags);
1633
1634         if (mddev->raid_disks == 0) {
1635                 mddev->major_version = 1;
1636                 mddev->patch_version = 0;
1637                 mddev->external = 0;
1638                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1639                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1640                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1641                 mddev->level = le32_to_cpu(sb->level);
1642                 mddev->clevel[0] = 0;
1643                 mddev->layout = le32_to_cpu(sb->layout);
1644                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1645                 mddev->dev_sectors = le64_to_cpu(sb->size);
1646                 mddev->events = ev1;
1647                 mddev->bitmap_info.offset = 0;
1648                 mddev->bitmap_info.default_offset = 1024 >> 9;
1649                 
1650                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1651                 memcpy(mddev->uuid, sb->set_uuid, 16);
1652
1653                 mddev->max_disks =  (4096-256)/2;
1654
1655                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1656                     mddev->bitmap_info.file == NULL )
1657                         mddev->bitmap_info.offset =
1658                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1659
1660                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1661                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1662                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1663                         mddev->new_level = le32_to_cpu(sb->new_level);
1664                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1665                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1666                 } else {
1667                         mddev->reshape_position = MaxSector;
1668                         mddev->delta_disks = 0;
1669                         mddev->new_level = mddev->level;
1670                         mddev->new_layout = mddev->layout;
1671                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1672                 }
1673
1674         } else if (mddev->pers == NULL) {
1675                 /* Insist of good event counter while assembling, except for
1676                  * spares (which don't need an event count) */
1677                 ++ev1;
1678                 if (rdev->desc_nr >= 0 &&
1679                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1680                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1681                         if (ev1 < mddev->events)
1682                                 return -EINVAL;
1683         } else if (mddev->bitmap) {
1684                 /* If adding to array with a bitmap, then we can accept an
1685                  * older device, but not too old.
1686                  */
1687                 if (ev1 < mddev->bitmap->events_cleared)
1688                         return 0;
1689         } else {
1690                 if (ev1 < mddev->events)
1691                         /* just a hot-add of a new device, leave raid_disk at -1 */
1692                         return 0;
1693         }
1694         if (mddev->level != LEVEL_MULTIPATH) {
1695                 int role;
1696                 if (rdev->desc_nr < 0 ||
1697                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1698                         role = 0xffff;
1699                         rdev->desc_nr = -1;
1700                 } else
1701                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1702                 switch(role) {
1703                 case 0xffff: /* spare */
1704                         break;
1705                 case 0xfffe: /* faulty */
1706                         set_bit(Faulty, &rdev->flags);
1707                         break;
1708                 default:
1709                         if ((le32_to_cpu(sb->feature_map) &
1710                              MD_FEATURE_RECOVERY_OFFSET))
1711                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1712                         else
1713                                 set_bit(In_sync, &rdev->flags);
1714                         rdev->raid_disk = role;
1715                         break;
1716                 }
1717                 if (sb->devflags & WriteMostly1)
1718                         set_bit(WriteMostly, &rdev->flags);
1719         } else /* MULTIPATH are always insync */
1720                 set_bit(In_sync, &rdev->flags);
1721
1722         return 0;
1723 }
1724
1725 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1726 {
1727         struct mdp_superblock_1 *sb;
1728         struct md_rdev *rdev2;
1729         int max_dev, i;
1730         /* make rdev->sb match mddev and rdev data. */
1731
1732         sb = page_address(rdev->sb_page);
1733
1734         sb->feature_map = 0;
1735         sb->pad0 = 0;
1736         sb->recovery_offset = cpu_to_le64(0);
1737         memset(sb->pad1, 0, sizeof(sb->pad1));
1738         memset(sb->pad3, 0, sizeof(sb->pad3));
1739
1740         sb->utime = cpu_to_le64((__u64)mddev->utime);
1741         sb->events = cpu_to_le64(mddev->events);
1742         if (mddev->in_sync)
1743                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1744         else
1745                 sb->resync_offset = cpu_to_le64(0);
1746
1747         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748
1749         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1750         sb->size = cpu_to_le64(mddev->dev_sectors);
1751         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1752         sb->level = cpu_to_le32(mddev->level);
1753         sb->layout = cpu_to_le32(mddev->layout);
1754
1755         if (test_bit(WriteMostly, &rdev->flags))
1756                 sb->devflags |= WriteMostly1;
1757         else
1758                 sb->devflags &= ~WriteMostly1;
1759
1760         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1761                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1762                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763         }
1764
1765         if (rdev->raid_disk >= 0 &&
1766             !test_bit(In_sync, &rdev->flags)) {
1767                 sb->feature_map |=
1768                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1769                 sb->recovery_offset =
1770                         cpu_to_le64(rdev->recovery_offset);
1771         }
1772
1773         if (mddev->reshape_position != MaxSector) {
1774                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1775                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1776                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1777                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1778                 sb->new_level = cpu_to_le32(mddev->new_level);
1779                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1780         }
1781
1782         if (rdev->badblocks.count == 0)
1783                 /* Nothing to do for bad blocks*/ ;
1784         else if (sb->bblog_offset == 0)
1785                 /* Cannot record bad blocks on this device */
1786                 md_error(mddev, rdev);
1787         else {
1788                 struct badblocks *bb = &rdev->badblocks;
1789                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1790                 u64 *p = bb->page;
1791                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1792                 if (bb->changed) {
1793                         unsigned seq;
1794
1795 retry:
1796                         seq = read_seqbegin(&bb->lock);
1797
1798                         memset(bbp, 0xff, PAGE_SIZE);
1799
1800                         for (i = 0 ; i < bb->count ; i++) {
1801                                 u64 internal_bb = *p++;
1802                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1803                                                 | BB_LEN(internal_bb));
1804                                 *bbp++ = cpu_to_le64(store_bb);
1805                         }
1806                         bb->changed = 0;
1807                         if (read_seqretry(&bb->lock, seq))
1808                                 goto retry;
1809
1810                         bb->sector = (rdev->sb_start +
1811                                       (int)le32_to_cpu(sb->bblog_offset));
1812                         bb->size = le16_to_cpu(sb->bblog_size);
1813                 }
1814         }
1815
1816         max_dev = 0;
1817         list_for_each_entry(rdev2, &mddev->disks, same_set)
1818                 if (rdev2->desc_nr+1 > max_dev)
1819                         max_dev = rdev2->desc_nr+1;
1820
1821         if (max_dev > le32_to_cpu(sb->max_dev)) {
1822                 int bmask;
1823                 sb->max_dev = cpu_to_le32(max_dev);
1824                 rdev->sb_size = max_dev * 2 + 256;
1825                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1826                 if (rdev->sb_size & bmask)
1827                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1828         } else
1829                 max_dev = le32_to_cpu(sb->max_dev);
1830
1831         for (i=0; i<max_dev;i++)
1832                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1833         
1834         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1835                 i = rdev2->desc_nr;
1836                 if (test_bit(Faulty, &rdev2->flags))
1837                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1838                 else if (test_bit(In_sync, &rdev2->flags))
1839                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840                 else if (rdev2->raid_disk >= 0)
1841                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842                 else
1843                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1844         }
1845
1846         sb->sb_csum = calc_sb_1_csum(sb);
1847 }
1848
1849 static unsigned long long
1850 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1851 {
1852         struct mdp_superblock_1 *sb;
1853         sector_t max_sectors;
1854         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1855                 return 0; /* component must fit device */
1856         if (rdev->sb_start < rdev->data_offset) {
1857                 /* minor versions 1 and 2; superblock before data */
1858                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1859                 max_sectors -= rdev->data_offset;
1860                 if (!num_sectors || num_sectors > max_sectors)
1861                         num_sectors = max_sectors;
1862         } else if (rdev->mddev->bitmap_info.offset) {
1863                 /* minor version 0 with bitmap we can't move */
1864                 return 0;
1865         } else {
1866                 /* minor version 0; superblock after data */
1867                 sector_t sb_start;
1868                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1869                 sb_start &= ~(sector_t)(4*2 - 1);
1870                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1871                 if (!num_sectors || num_sectors > max_sectors)
1872                         num_sectors = max_sectors;
1873                 rdev->sb_start = sb_start;
1874         }
1875         sb = page_address(rdev->sb_page);
1876         sb->data_size = cpu_to_le64(num_sectors);
1877         sb->super_offset = rdev->sb_start;
1878         sb->sb_csum = calc_sb_1_csum(sb);
1879         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1880                        rdev->sb_page);
1881         md_super_wait(rdev->mddev);
1882         return num_sectors;
1883 }
1884
1885 static struct super_type super_types[] = {
1886         [0] = {
1887                 .name   = "0.90.0",
1888                 .owner  = THIS_MODULE,
1889                 .load_super         = super_90_load,
1890                 .validate_super     = super_90_validate,
1891                 .sync_super         = super_90_sync,
1892                 .rdev_size_change   = super_90_rdev_size_change,
1893         },
1894         [1] = {
1895                 .name   = "md-1",
1896                 .owner  = THIS_MODULE,
1897                 .load_super         = super_1_load,
1898                 .validate_super     = super_1_validate,
1899                 .sync_super         = super_1_sync,
1900                 .rdev_size_change   = super_1_rdev_size_change,
1901         },
1902 };
1903
1904 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1905 {
1906         if (mddev->sync_super) {
1907                 mddev->sync_super(mddev, rdev);
1908                 return;
1909         }
1910
1911         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1912
1913         super_types[mddev->major_version].sync_super(mddev, rdev);
1914 }
1915
1916 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1917 {
1918         struct md_rdev *rdev, *rdev2;
1919
1920         rcu_read_lock();
1921         rdev_for_each_rcu(rdev, mddev1)
1922                 rdev_for_each_rcu(rdev2, mddev2)
1923                         if (rdev->bdev->bd_contains ==
1924                             rdev2->bdev->bd_contains) {
1925                                 rcu_read_unlock();
1926                                 return 1;
1927                         }
1928         rcu_read_unlock();
1929         return 0;
1930 }
1931
1932 static LIST_HEAD(pending_raid_disks);
1933
1934 /*
1935  * Try to register data integrity profile for an mddev
1936  *
1937  * This is called when an array is started and after a disk has been kicked
1938  * from the array. It only succeeds if all working and active component devices
1939  * are integrity capable with matching profiles.
1940  */
1941 int md_integrity_register(struct mddev *mddev)
1942 {
1943         struct md_rdev *rdev, *reference = NULL;
1944
1945         if (list_empty(&mddev->disks))
1946                 return 0; /* nothing to do */
1947         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1948                 return 0; /* shouldn't register, or already is */
1949         list_for_each_entry(rdev, &mddev->disks, same_set) {
1950                 /* skip spares and non-functional disks */
1951                 if (test_bit(Faulty, &rdev->flags))
1952                         continue;
1953                 if (rdev->raid_disk < 0)
1954                         continue;
1955                 if (!reference) {
1956                         /* Use the first rdev as the reference */
1957                         reference = rdev;
1958                         continue;
1959                 }
1960                 /* does this rdev's profile match the reference profile? */
1961                 if (blk_integrity_compare(reference->bdev->bd_disk,
1962                                 rdev->bdev->bd_disk) < 0)
1963                         return -EINVAL;
1964         }
1965         if (!reference || !bdev_get_integrity(reference->bdev))
1966                 return 0;
1967         /*
1968          * All component devices are integrity capable and have matching
1969          * profiles, register the common profile for the md device.
1970          */
1971         if (blk_integrity_register(mddev->gendisk,
1972                         bdev_get_integrity(reference->bdev)) != 0) {
1973                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1974                         mdname(mddev));
1975                 return -EINVAL;
1976         }
1977         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1978         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1979                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1980                        mdname(mddev));
1981                 return -EINVAL;
1982         }
1983         return 0;
1984 }
1985 EXPORT_SYMBOL(md_integrity_register);
1986
1987 /* Disable data integrity if non-capable/non-matching disk is being added */
1988 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1989 {
1990         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1991         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1992
1993         if (!bi_mddev) /* nothing to do */
1994                 return;
1995         if (rdev->raid_disk < 0) /* skip spares */
1996                 return;
1997         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1998                                              rdev->bdev->bd_disk) >= 0)
1999                 return;
2000         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2001         blk_integrity_unregister(mddev->gendisk);
2002 }
2003 EXPORT_SYMBOL(md_integrity_add_rdev);
2004
2005 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2006 {
2007         char b[BDEVNAME_SIZE];
2008         struct kobject *ko;
2009         char *s;
2010         int err;
2011
2012         if (rdev->mddev) {
2013                 MD_BUG();
2014                 return -EINVAL;
2015         }
2016
2017         /* prevent duplicates */
2018         if (find_rdev(mddev, rdev->bdev->bd_dev))
2019                 return -EEXIST;
2020
2021         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2022         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2023                         rdev->sectors < mddev->dev_sectors)) {
2024                 if (mddev->pers) {
2025                         /* Cannot change size, so fail
2026                          * If mddev->level <= 0, then we don't care
2027                          * about aligning sizes (e.g. linear)
2028                          */
2029                         if (mddev->level > 0)
2030                                 return -ENOSPC;
2031                 } else
2032                         mddev->dev_sectors = rdev->sectors;
2033         }
2034
2035         /* Verify rdev->desc_nr is unique.
2036          * If it is -1, assign a free number, else
2037          * check number is not in use
2038          */
2039         if (rdev->desc_nr < 0) {
2040                 int choice = 0;
2041                 if (mddev->pers) choice = mddev->raid_disks;
2042                 while (find_rdev_nr(mddev, choice))
2043                         choice++;
2044                 rdev->desc_nr = choice;
2045         } else {
2046                 if (find_rdev_nr(mddev, rdev->desc_nr))
2047                         return -EBUSY;
2048         }
2049         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2050                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2051                        mdname(mddev), mddev->max_disks);
2052                 return -EBUSY;
2053         }
2054         bdevname(rdev->bdev,b);
2055         while ( (s=strchr(b, '/')) != NULL)
2056                 *s = '!';
2057
2058         rdev->mddev = mddev;
2059         printk(KERN_INFO "md: bind<%s>\n", b);
2060
2061         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2062                 goto fail;
2063
2064         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2065         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2066                 /* failure here is OK */;
2067         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2068
2069         list_add_rcu(&rdev->same_set, &mddev->disks);
2070         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2071
2072         /* May as well allow recovery to be retried once */
2073         mddev->recovery_disabled++;
2074
2075         return 0;
2076
2077  fail:
2078         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2079                b, mdname(mddev));
2080         return err;
2081 }
2082
2083 static void md_delayed_delete(struct work_struct *ws)
2084 {
2085         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2086         kobject_del(&rdev->kobj);
2087         kobject_put(&rdev->kobj);
2088 }
2089
2090 static void unbind_rdev_from_array(struct md_rdev * rdev)
2091 {
2092         char b[BDEVNAME_SIZE];
2093         if (!rdev->mddev) {
2094                 MD_BUG();
2095                 return;
2096         }
2097         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2098         list_del_rcu(&rdev->same_set);
2099         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2100         rdev->mddev = NULL;
2101         sysfs_remove_link(&rdev->kobj, "block");
2102         sysfs_put(rdev->sysfs_state);
2103         rdev->sysfs_state = NULL;
2104         kfree(rdev->badblocks.page);
2105         rdev->badblocks.count = 0;
2106         rdev->badblocks.page = NULL;
2107         /* We need to delay this, otherwise we can deadlock when
2108          * writing to 'remove' to "dev/state".  We also need
2109          * to delay it due to rcu usage.
2110          */
2111         synchronize_rcu();
2112         INIT_WORK(&rdev->del_work, md_delayed_delete);
2113         kobject_get(&rdev->kobj);
2114         queue_work(md_misc_wq, &rdev->del_work);
2115 }
2116
2117 /*
2118  * prevent the device from being mounted, repartitioned or
2119  * otherwise reused by a RAID array (or any other kernel
2120  * subsystem), by bd_claiming the device.
2121  */
2122 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2123 {
2124         int err = 0;
2125         struct block_device *bdev;
2126         char b[BDEVNAME_SIZE];
2127
2128         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2129                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2130         if (IS_ERR(bdev)) {
2131                 printk(KERN_ERR "md: could not open %s.\n",
2132                         __bdevname(dev, b));
2133                 return PTR_ERR(bdev);
2134         }
2135         rdev->bdev = bdev;
2136         return err;
2137 }
2138
2139 static void unlock_rdev(struct md_rdev *rdev)
2140 {
2141         struct block_device *bdev = rdev->bdev;
2142         rdev->bdev = NULL;
2143         if (!bdev)
2144                 MD_BUG();
2145         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 }
2147
2148 void md_autodetect_dev(dev_t dev);
2149
2150 static void export_rdev(struct md_rdev * rdev)
2151 {
2152         char b[BDEVNAME_SIZE];
2153         printk(KERN_INFO "md: export_rdev(%s)\n",
2154                 bdevname(rdev->bdev,b));
2155         if (rdev->mddev)
2156                 MD_BUG();
2157         free_disk_sb(rdev);
2158 #ifndef MODULE
2159         if (test_bit(AutoDetected, &rdev->flags))
2160                 md_autodetect_dev(rdev->bdev->bd_dev);
2161 #endif
2162         unlock_rdev(rdev);
2163         kobject_put(&rdev->kobj);
2164 }
2165
2166 static void kick_rdev_from_array(struct md_rdev * rdev)
2167 {
2168         unbind_rdev_from_array(rdev);
2169         export_rdev(rdev);
2170 }
2171
2172 static void export_array(struct mddev *mddev)
2173 {
2174         struct md_rdev *rdev, *tmp;
2175
2176         rdev_for_each(rdev, tmp, mddev) {
2177                 if (!rdev->mddev) {
2178                         MD_BUG();
2179                         continue;
2180                 }
2181                 kick_rdev_from_array(rdev);
2182         }
2183         if (!list_empty(&mddev->disks))
2184                 MD_BUG();
2185         mddev->raid_disks = 0;
2186         mddev->major_version = 0;
2187 }
2188
2189 static void print_desc(mdp_disk_t *desc)
2190 {
2191         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2192                 desc->major,desc->minor,desc->raid_disk,desc->state);
2193 }
2194
2195 static void print_sb_90(mdp_super_t *sb)
2196 {
2197         int i;
2198
2199         printk(KERN_INFO 
2200                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2201                 sb->major_version, sb->minor_version, sb->patch_version,
2202                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2203                 sb->ctime);
2204         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2205                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2206                 sb->md_minor, sb->layout, sb->chunk_size);
2207         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2208                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2209                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2210                 sb->failed_disks, sb->spare_disks,
2211                 sb->sb_csum, (unsigned long)sb->events_lo);
2212
2213         printk(KERN_INFO);
2214         for (i = 0; i < MD_SB_DISKS; i++) {
2215                 mdp_disk_t *desc;
2216
2217                 desc = sb->disks + i;
2218                 if (desc->number || desc->major || desc->minor ||
2219                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2220                         printk("     D %2d: ", i);
2221                         print_desc(desc);
2222                 }
2223         }
2224         printk(KERN_INFO "md:     THIS: ");
2225         print_desc(&sb->this_disk);
2226 }
2227
2228 static void print_sb_1(struct mdp_superblock_1 *sb)
2229 {
2230         __u8 *uuid;
2231
2232         uuid = sb->set_uuid;
2233         printk(KERN_INFO
2234                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2235                "md:    Name: \"%s\" CT:%llu\n",
2236                 le32_to_cpu(sb->major_version),
2237                 le32_to_cpu(sb->feature_map),
2238                 uuid,
2239                 sb->set_name,
2240                 (unsigned long long)le64_to_cpu(sb->ctime)
2241                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2242
2243         uuid = sb->device_uuid;
2244         printk(KERN_INFO
2245                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2246                         " RO:%llu\n"
2247                "md:     Dev:%08x UUID: %pU\n"
2248                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2249                "md:         (MaxDev:%u) \n",
2250                 le32_to_cpu(sb->level),
2251                 (unsigned long long)le64_to_cpu(sb->size),
2252                 le32_to_cpu(sb->raid_disks),
2253                 le32_to_cpu(sb->layout),
2254                 le32_to_cpu(sb->chunksize),
2255                 (unsigned long long)le64_to_cpu(sb->data_offset),
2256                 (unsigned long long)le64_to_cpu(sb->data_size),
2257                 (unsigned long long)le64_to_cpu(sb->super_offset),
2258                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2259                 le32_to_cpu(sb->dev_number),
2260                 uuid,
2261                 sb->devflags,
2262                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2263                 (unsigned long long)le64_to_cpu(sb->events),
2264                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2265                 le32_to_cpu(sb->sb_csum),
2266                 le32_to_cpu(sb->max_dev)
2267                 );
2268 }
2269
2270 static void print_rdev(struct md_rdev *rdev, int major_version)
2271 {
2272         char b[BDEVNAME_SIZE];
2273         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2274                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2275                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2276                 rdev->desc_nr);
2277         if (rdev->sb_loaded) {
2278                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2279                 switch (major_version) {
2280                 case 0:
2281                         print_sb_90(page_address(rdev->sb_page));
2282                         break;
2283                 case 1:
2284                         print_sb_1(page_address(rdev->sb_page));
2285                         break;
2286                 }
2287         } else
2288                 printk(KERN_INFO "md: no rdev superblock!\n");
2289 }
2290
2291 static void md_print_devices(void)
2292 {
2293         struct list_head *tmp;
2294         struct md_rdev *rdev;
2295         struct mddev *mddev;
2296         char b[BDEVNAME_SIZE];
2297
2298         printk("\n");
2299         printk("md:     **********************************\n");
2300         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2301         printk("md:     **********************************\n");
2302         for_each_mddev(mddev, tmp) {
2303
2304                 if (mddev->bitmap)
2305                         bitmap_print_sb(mddev->bitmap);
2306                 else
2307                         printk("%s: ", mdname(mddev));
2308                 list_for_each_entry(rdev, &mddev->disks, same_set)
2309                         printk("<%s>", bdevname(rdev->bdev,b));
2310                 printk("\n");
2311
2312                 list_for_each_entry(rdev, &mddev->disks, same_set)
2313                         print_rdev(rdev, mddev->major_version);
2314         }
2315         printk("md:     **********************************\n");
2316         printk("\n");
2317 }
2318
2319
2320 static void sync_sbs(struct mddev * mddev, int nospares)
2321 {
2322         /* Update each superblock (in-memory image), but
2323          * if we are allowed to, skip spares which already
2324          * have the right event counter, or have one earlier
2325          * (which would mean they aren't being marked as dirty
2326          * with the rest of the array)
2327          */
2328         struct md_rdev *rdev;
2329         list_for_each_entry(rdev, &mddev->disks, same_set) {
2330                 if (rdev->sb_events == mddev->events ||
2331                     (nospares &&
2332                      rdev->raid_disk < 0 &&
2333                      rdev->sb_events+1 == mddev->events)) {
2334                         /* Don't update this superblock */
2335                         rdev->sb_loaded = 2;
2336                 } else {
2337                         sync_super(mddev, rdev);
2338                         rdev->sb_loaded = 1;
2339                 }
2340         }
2341 }
2342
2343 static void md_update_sb(struct mddev * mddev, int force_change)
2344 {
2345         struct md_rdev *rdev;
2346         int sync_req;
2347         int nospares = 0;
2348         int any_badblocks_changed = 0;
2349
2350 repeat:
2351         /* First make sure individual recovery_offsets are correct */
2352         list_for_each_entry(rdev, &mddev->disks, same_set) {
2353                 if (rdev->raid_disk >= 0 &&
2354                     mddev->delta_disks >= 0 &&
2355                     !test_bit(In_sync, &rdev->flags) &&
2356                     mddev->curr_resync_completed > rdev->recovery_offset)
2357                                 rdev->recovery_offset = mddev->curr_resync_completed;
2358
2359         }       
2360         if (!mddev->persistent) {
2361                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2362                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2363                 if (!mddev->external) {
2364                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2365                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2366                                 if (rdev->badblocks.changed) {
2367                                         rdev->badblocks.changed = 0;
2368                                         md_ack_all_badblocks(&rdev->badblocks);
2369                                         md_error(mddev, rdev);
2370                                 }
2371                                 clear_bit(Blocked, &rdev->flags);
2372                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2373                                 wake_up(&rdev->blocked_wait);
2374                         }
2375                 }
2376                 wake_up(&mddev->sb_wait);
2377                 return;
2378         }
2379
2380         spin_lock_irq(&mddev->write_lock);
2381
2382         mddev->utime = get_seconds();
2383
2384         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2385                 force_change = 1;
2386         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2387                 /* just a clean<-> dirty transition, possibly leave spares alone,
2388                  * though if events isn't the right even/odd, we will have to do
2389                  * spares after all
2390                  */
2391                 nospares = 1;
2392         if (force_change)
2393                 nospares = 0;
2394         if (mddev->degraded)
2395                 /* If the array is degraded, then skipping spares is both
2396                  * dangerous and fairly pointless.
2397                  * Dangerous because a device that was removed from the array
2398                  * might have a event_count that still looks up-to-date,
2399                  * so it can be re-added without a resync.
2400                  * Pointless because if there are any spares to skip,
2401                  * then a recovery will happen and soon that array won't
2402                  * be degraded any more and the spare can go back to sleep then.
2403                  */
2404                 nospares = 0;
2405
2406         sync_req = mddev->in_sync;
2407
2408         /* If this is just a dirty<->clean transition, and the array is clean
2409          * and 'events' is odd, we can roll back to the previous clean state */
2410         if (nospares
2411             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2412             && mddev->can_decrease_events
2413             && mddev->events != 1) {
2414                 mddev->events--;
2415                 mddev->can_decrease_events = 0;
2416         } else {
2417                 /* otherwise we have to go forward and ... */
2418                 mddev->events ++;
2419                 mddev->can_decrease_events = nospares;
2420         }
2421
2422         if (!mddev->events) {
2423                 /*
2424                  * oops, this 64-bit counter should never wrap.
2425                  * Either we are in around ~1 trillion A.C., assuming
2426                  * 1 reboot per second, or we have a bug:
2427                  */
2428                 MD_BUG();
2429                 mddev->events --;
2430         }
2431
2432         list_for_each_entry(rdev, &mddev->disks, same_set) {
2433                 if (rdev->badblocks.changed)
2434                         any_badblocks_changed++;
2435                 if (test_bit(Faulty, &rdev->flags))
2436                         set_bit(FaultRecorded, &rdev->flags);
2437         }
2438
2439         sync_sbs(mddev, nospares);
2440         spin_unlock_irq(&mddev->write_lock);
2441
2442         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2443                  mdname(mddev), mddev->in_sync);
2444
2445         bitmap_update_sb(mddev->bitmap);
2446         list_for_each_entry(rdev, &mddev->disks, same_set) {
2447                 char b[BDEVNAME_SIZE];
2448
2449                 if (rdev->sb_loaded != 1)
2450                         continue; /* no noise on spare devices */
2451
2452                 if (!test_bit(Faulty, &rdev->flags) &&
2453                     rdev->saved_raid_disk == -1) {
2454                         md_super_write(mddev,rdev,
2455                                        rdev->sb_start, rdev->sb_size,
2456                                        rdev->sb_page);
2457                         pr_debug("md: (write) %s's sb offset: %llu\n",
2458                                  bdevname(rdev->bdev, b),
2459                                  (unsigned long long)rdev->sb_start);
2460                         rdev->sb_events = mddev->events;
2461                         if (rdev->badblocks.size) {
2462                                 md_super_write(mddev, rdev,
2463                                                rdev->badblocks.sector,
2464                                                rdev->badblocks.size << 9,
2465                                                rdev->bb_page);
2466                                 rdev->badblocks.size = 0;
2467                         }
2468
2469                 } else if (test_bit(Faulty, &rdev->flags))
2470                         pr_debug("md: %s (skipping faulty)\n",
2471                                  bdevname(rdev->bdev, b));
2472                 else
2473                         pr_debug("(skipping incremental s/r ");
2474
2475                 if (mddev->level == LEVEL_MULTIPATH)
2476                         /* only need to write one superblock... */
2477                         break;
2478         }
2479         md_super_wait(mddev);
2480         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2481
2482         spin_lock_irq(&mddev->write_lock);
2483         if (mddev->in_sync != sync_req ||
2484             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2485                 /* have to write it out again */
2486                 spin_unlock_irq(&mddev->write_lock);
2487                 goto repeat;
2488         }
2489         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2490         spin_unlock_irq(&mddev->write_lock);
2491         wake_up(&mddev->sb_wait);
2492         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2493                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2494
2495         list_for_each_entry(rdev, &mddev->disks, same_set) {
2496                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2497                         clear_bit(Blocked, &rdev->flags);
2498
2499                 if (any_badblocks_changed)
2500                         md_ack_all_badblocks(&rdev->badblocks);
2501                 clear_bit(BlockedBadBlocks, &rdev->flags);
2502                 wake_up(&rdev->blocked_wait);
2503         }
2504 }
2505
2506 /* words written to sysfs files may, or may not, be \n terminated.
2507  * We want to accept with case. For this we use cmd_match.
2508  */
2509 static int cmd_match(const char *cmd, const char *str)
2510 {
2511         /* See if cmd, written into a sysfs file, matches
2512          * str.  They must either be the same, or cmd can
2513          * have a trailing newline
2514          */
2515         while (*cmd && *str && *cmd == *str) {
2516                 cmd++;
2517                 str++;
2518         }
2519         if (*cmd == '\n')
2520                 cmd++;
2521         if (*str || *cmd)
2522                 return 0;
2523         return 1;
2524 }
2525
2526 struct rdev_sysfs_entry {
2527         struct attribute attr;
2528         ssize_t (*show)(struct md_rdev *, char *);
2529         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2530 };
2531
2532 static ssize_t
2533 state_show(struct md_rdev *rdev, char *page)
2534 {
2535         char *sep = "";
2536         size_t len = 0;
2537
2538         if (test_bit(Faulty, &rdev->flags) ||
2539             rdev->badblocks.unacked_exist) {
2540                 len+= sprintf(page+len, "%sfaulty",sep);
2541                 sep = ",";
2542         }
2543         if (test_bit(In_sync, &rdev->flags)) {
2544                 len += sprintf(page+len, "%sin_sync",sep);
2545                 sep = ",";
2546         }
2547         if (test_bit(WriteMostly, &rdev->flags)) {
2548                 len += sprintf(page+len, "%swrite_mostly",sep);
2549                 sep = ",";
2550         }
2551         if (test_bit(Blocked, &rdev->flags) ||
2552             (rdev->badblocks.unacked_exist
2553              && !test_bit(Faulty, &rdev->flags))) {
2554                 len += sprintf(page+len, "%sblocked", sep);
2555                 sep = ",";
2556         }
2557         if (!test_bit(Faulty, &rdev->flags) &&
2558             !test_bit(In_sync, &rdev->flags)) {
2559                 len += sprintf(page+len, "%sspare", sep);
2560                 sep = ",";
2561         }
2562         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2563                 len += sprintf(page+len, "%swrite_error", sep);
2564                 sep = ",";
2565         }
2566         return len+sprintf(page+len, "\n");
2567 }
2568
2569 static ssize_t
2570 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2571 {
2572         /* can write
2573          *  faulty  - simulates an error
2574          *  remove  - disconnects the device
2575          *  writemostly - sets write_mostly
2576          *  -writemostly - clears write_mostly
2577          *  blocked - sets the Blocked flags
2578          *  -blocked - clears the Blocked and possibly simulates an error
2579          *  insync - sets Insync providing device isn't active
2580          *  write_error - sets WriteErrorSeen
2581          *  -write_error - clears WriteErrorSeen
2582          */
2583         int err = -EINVAL;
2584         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585                 md_error(rdev->mddev, rdev);
2586                 if (test_bit(Faulty, &rdev->flags))
2587                         err = 0;
2588                 else
2589                         err = -EBUSY;
2590         } else if (cmd_match(buf, "remove")) {
2591                 if (rdev->raid_disk >= 0)
2592                         err = -EBUSY;
2593                 else {
2594                         struct mddev *mddev = rdev->mddev;
2595                         kick_rdev_from_array(rdev);
2596                         if (mddev->pers)
2597                                 md_update_sb(mddev, 1);
2598                         md_new_event(mddev);
2599                         err = 0;
2600                 }
2601         } else if (cmd_match(buf, "writemostly")) {
2602                 set_bit(WriteMostly, &rdev->flags);
2603                 err = 0;
2604         } else if (cmd_match(buf, "-writemostly")) {
2605                 clear_bit(WriteMostly, &rdev->flags);
2606                 err = 0;
2607         } else if (cmd_match(buf, "blocked")) {
2608                 set_bit(Blocked, &rdev->flags);
2609                 err = 0;
2610         } else if (cmd_match(buf, "-blocked")) {
2611                 if (!test_bit(Faulty, &rdev->flags) &&
2612                     rdev->badblocks.unacked_exist) {
2613                         /* metadata handler doesn't understand badblocks,
2614                          * so we need to fail the device
2615                          */
2616                         md_error(rdev->mddev, rdev);
2617                 }
2618                 clear_bit(Blocked, &rdev->flags);
2619                 clear_bit(BlockedBadBlocks, &rdev->flags);
2620                 wake_up(&rdev->blocked_wait);
2621                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2622                 md_wakeup_thread(rdev->mddev->thread);
2623
2624                 err = 0;
2625         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2626                 set_bit(In_sync, &rdev->flags);
2627                 err = 0;
2628         } else if (cmd_match(buf, "write_error")) {
2629                 set_bit(WriteErrorSeen, &rdev->flags);
2630                 err = 0;
2631         } else if (cmd_match(buf, "-write_error")) {
2632                 clear_bit(WriteErrorSeen, &rdev->flags);
2633                 err = 0;
2634         }
2635         if (!err)
2636                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2637         return err ? err : len;
2638 }
2639 static struct rdev_sysfs_entry rdev_state =
2640 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2641
2642 static ssize_t
2643 errors_show(struct md_rdev *rdev, char *page)
2644 {
2645         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2646 }
2647
2648 static ssize_t
2649 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2650 {
2651         char *e;
2652         unsigned long n = simple_strtoul(buf, &e, 10);
2653         if (*buf && (*e == 0 || *e == '\n')) {
2654                 atomic_set(&rdev->corrected_errors, n);
2655                 return len;
2656         }
2657         return -EINVAL;
2658 }
2659 static struct rdev_sysfs_entry rdev_errors =
2660 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2661
2662 static ssize_t
2663 slot_show(struct md_rdev *rdev, char *page)
2664 {
2665         if (rdev->raid_disk < 0)
2666                 return sprintf(page, "none\n");
2667         else
2668                 return sprintf(page, "%d\n", rdev->raid_disk);
2669 }
2670
2671 static ssize_t
2672 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2673 {
2674         char *e;
2675         int err;
2676         int slot = simple_strtoul(buf, &e, 10);
2677         if (strncmp(buf, "none", 4)==0)
2678                 slot = -1;
2679         else if (e==buf || (*e && *e!= '\n'))
2680                 return -EINVAL;
2681         if (rdev->mddev->pers && slot == -1) {
2682                 /* Setting 'slot' on an active array requires also
2683                  * updating the 'rd%d' link, and communicating
2684                  * with the personality with ->hot_*_disk.
2685                  * For now we only support removing
2686                  * failed/spare devices.  This normally happens automatically,
2687                  * but not when the metadata is externally managed.
2688                  */
2689                 if (rdev->raid_disk == -1)
2690                         return -EEXIST;
2691                 /* personality does all needed checks */
2692                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2693                         return -EINVAL;
2694                 err = rdev->mddev->pers->
2695                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2696                 if (err)
2697                         return err;
2698                 sysfs_unlink_rdev(rdev->mddev, rdev);
2699                 rdev->raid_disk = -1;
2700                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2701                 md_wakeup_thread(rdev->mddev->thread);
2702         } else if (rdev->mddev->pers) {
2703                 struct md_rdev *rdev2;
2704                 /* Activating a spare .. or possibly reactivating
2705                  * if we ever get bitmaps working here.
2706                  */
2707
2708                 if (rdev->raid_disk != -1)
2709                         return -EBUSY;
2710
2711                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2712                         return -EBUSY;
2713
2714                 if (rdev->mddev->pers->hot_add_disk == NULL)
2715                         return -EINVAL;
2716
2717                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2718                         if (rdev2->raid_disk == slot)
2719                                 return -EEXIST;
2720
2721                 if (slot >= rdev->mddev->raid_disks &&
2722                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2723                         return -ENOSPC;
2724
2725                 rdev->raid_disk = slot;
2726                 if (test_bit(In_sync, &rdev->flags))
2727                         rdev->saved_raid_disk = slot;
2728                 else
2729                         rdev->saved_raid_disk = -1;
2730                 clear_bit(In_sync, &rdev->flags);
2731                 err = rdev->mddev->pers->
2732                         hot_add_disk(rdev->mddev, rdev);
2733                 if (err) {
2734                         rdev->raid_disk = -1;
2735                         return err;
2736                 } else
2737                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2738                 if (sysfs_link_rdev(rdev->mddev, rdev))
2739                         /* failure here is OK */;
2740                 /* don't wakeup anyone, leave that to userspace. */
2741         } else {
2742                 if (slot >= rdev->mddev->raid_disks &&
2743                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2744                         return -ENOSPC;
2745                 rdev->raid_disk = slot;
2746                 /* assume it is working */
2747                 clear_bit(Faulty, &rdev->flags);
2748                 clear_bit(WriteMostly, &rdev->flags);
2749                 set_bit(In_sync, &rdev->flags);
2750                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2751         }
2752         return len;
2753 }
2754
2755
2756 static struct rdev_sysfs_entry rdev_slot =
2757 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2758
2759 static ssize_t
2760 offset_show(struct md_rdev *rdev, char *page)
2761 {
2762         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2763 }
2764
2765 static ssize_t
2766 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2767 {
2768         char *e;
2769         unsigned long long offset = simple_strtoull(buf, &e, 10);
2770         if (e==buf || (*e && *e != '\n'))
2771                 return -EINVAL;
2772         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2773                 return -EBUSY;
2774         if (rdev->sectors && rdev->mddev->external)
2775                 /* Must set offset before size, so overlap checks
2776                  * can be sane */
2777                 return -EBUSY;
2778         rdev->data_offset = offset;
2779         return len;
2780 }
2781
2782 static struct rdev_sysfs_entry rdev_offset =
2783 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2784
2785 static ssize_t
2786 rdev_size_show(struct md_rdev *rdev, char *page)
2787 {
2788         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2789 }
2790
2791 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2792 {
2793         /* check if two start/length pairs overlap */
2794         if (s1+l1 <= s2)
2795                 return 0;
2796         if (s2+l2 <= s1)
2797                 return 0;
2798         return 1;
2799 }
2800
2801 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2802 {
2803         unsigned long long blocks;
2804         sector_t new;
2805
2806         if (strict_strtoull(buf, 10, &blocks) < 0)
2807                 return -EINVAL;
2808
2809         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2810                 return -EINVAL; /* sector conversion overflow */
2811
2812         new = blocks * 2;
2813         if (new != blocks * 2)
2814                 return -EINVAL; /* unsigned long long to sector_t overflow */
2815
2816         *sectors = new;
2817         return 0;
2818 }
2819
2820 static ssize_t
2821 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2822 {
2823         struct mddev *my_mddev = rdev->mddev;
2824         sector_t oldsectors = rdev->sectors;
2825         sector_t sectors;
2826
2827         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2828                 return -EINVAL;
2829         if (my_mddev->pers && rdev->raid_disk >= 0) {
2830                 if (my_mddev->persistent) {
2831                         sectors = super_types[my_mddev->major_version].
2832                                 rdev_size_change(rdev, sectors);
2833                         if (!sectors)
2834                                 return -EBUSY;
2835                 } else if (!sectors)
2836                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2837                                 rdev->data_offset;
2838         }
2839         if (sectors < my_mddev->dev_sectors)
2840                 return -EINVAL; /* component must fit device */
2841
2842         rdev->sectors = sectors;
2843         if (sectors > oldsectors && my_mddev->external) {
2844                 /* need to check that all other rdevs with the same ->bdev
2845                  * do not overlap.  We need to unlock the mddev to avoid
2846                  * a deadlock.  We have already changed rdev->sectors, and if
2847                  * we have to change it back, we will have the lock again.
2848                  */
2849                 struct mddev *mddev;
2850                 int overlap = 0;
2851                 struct list_head *tmp;
2852
2853                 mddev_unlock(my_mddev);
2854                 for_each_mddev(mddev, tmp) {
2855                         struct md_rdev *rdev2;
2856
2857                         mddev_lock(mddev);
2858                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2859                                 if (rdev->bdev == rdev2->bdev &&
2860                                     rdev != rdev2 &&
2861                                     overlaps(rdev->data_offset, rdev->sectors,
2862                                              rdev2->data_offset,
2863                                              rdev2->sectors)) {
2864                                         overlap = 1;
2865                                         break;
2866                                 }
2867                         mddev_unlock(mddev);
2868                         if (overlap) {
2869                                 mddev_put(mddev);
2870                                 break;
2871                         }
2872                 }
2873                 mddev_lock(my_mddev);
2874                 if (overlap) {
2875                         /* Someone else could have slipped in a size
2876                          * change here, but doing so is just silly.
2877                          * We put oldsectors back because we *know* it is
2878                          * safe, and trust userspace not to race with
2879                          * itself
2880                          */
2881                         rdev->sectors = oldsectors;
2882                         return -EBUSY;
2883                 }
2884         }
2885         return len;
2886 }
2887
2888 static struct rdev_sysfs_entry rdev_size =
2889 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2890
2891
2892 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2893 {
2894         unsigned long long recovery_start = rdev->recovery_offset;
2895
2896         if (test_bit(In_sync, &rdev->flags) ||
2897             recovery_start == MaxSector)
2898                 return sprintf(page, "none\n");
2899
2900         return sprintf(page, "%llu\n", recovery_start);
2901 }
2902
2903 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2904 {
2905         unsigned long long recovery_start;
2906
2907         if (cmd_match(buf, "none"))
2908                 recovery_start = MaxSector;
2909         else if (strict_strtoull(buf, 10, &recovery_start))
2910                 return -EINVAL;
2911
2912         if (rdev->mddev->pers &&
2913             rdev->raid_disk >= 0)
2914                 return -EBUSY;
2915
2916         rdev->recovery_offset = recovery_start;
2917         if (recovery_start == MaxSector)
2918                 set_bit(In_sync, &rdev->flags);
2919         else
2920                 clear_bit(In_sync, &rdev->flags);
2921         return len;
2922 }
2923
2924 static struct rdev_sysfs_entry rdev_recovery_start =
2925 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2926
2927
2928 static ssize_t
2929 badblocks_show(struct badblocks *bb, char *page, int unack);
2930 static ssize_t
2931 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2932
2933 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2934 {
2935         return badblocks_show(&rdev->badblocks, page, 0);
2936 }
2937 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2938 {
2939         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2940         /* Maybe that ack was all we needed */
2941         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2942                 wake_up(&rdev->blocked_wait);
2943         return rv;
2944 }
2945 static struct rdev_sysfs_entry rdev_bad_blocks =
2946 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2947
2948
2949 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2950 {
2951         return badblocks_show(&rdev->badblocks, page, 1);
2952 }
2953 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2954 {
2955         return badblocks_store(&rdev->badblocks, page, len, 1);
2956 }
2957 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2958 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2959
2960 static struct attribute *rdev_default_attrs[] = {
2961         &rdev_state.attr,
2962         &rdev_errors.attr,
2963         &rdev_slot.attr,
2964         &rdev_offset.attr,
2965         &rdev_size.attr,
2966         &rdev_recovery_start.attr,
2967         &rdev_bad_blocks.attr,
2968         &rdev_unack_bad_blocks.attr,
2969         NULL,
2970 };
2971 static ssize_t
2972 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2973 {
2974         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2976         struct mddev *mddev = rdev->mddev;
2977         ssize_t rv;
2978
2979         if (!entry->show)
2980                 return -EIO;
2981
2982         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2983         if (!rv) {
2984                 if (rdev->mddev == NULL)
2985                         rv = -EBUSY;
2986                 else
2987                         rv = entry->show(rdev, page);
2988                 mddev_unlock(mddev);
2989         }
2990         return rv;
2991 }
2992
2993 static ssize_t
2994 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2995               const char *page, size_t length)
2996 {
2997         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2998         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2999         ssize_t rv;
3000         struct mddev *mddev = rdev->mddev;
3001
3002         if (!entry->store)
3003                 return -EIO;
3004         if (!capable(CAP_SYS_ADMIN))
3005                 return -EACCES;
3006         rv = mddev ? mddev_lock(mddev): -EBUSY;
3007         if (!rv) {
3008                 if (rdev->mddev == NULL)
3009                         rv = -EBUSY;
3010                 else
3011                         rv = entry->store(rdev, page, length);
3012                 mddev_unlock(mddev);
3013         }
3014         return rv;
3015 }
3016
3017 static void rdev_free(struct kobject *ko)
3018 {
3019         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3020         kfree(rdev);
3021 }
3022 static const struct sysfs_ops rdev_sysfs_ops = {
3023         .show           = rdev_attr_show,
3024         .store          = rdev_attr_store,
3025 };
3026 static struct kobj_type rdev_ktype = {
3027         .release        = rdev_free,
3028         .sysfs_ops      = &rdev_sysfs_ops,
3029         .default_attrs  = rdev_default_attrs,
3030 };
3031
3032 int md_rdev_init(struct md_rdev *rdev)
3033 {
3034         rdev->desc_nr = -1;
3035         rdev->saved_raid_disk = -1;
3036         rdev->raid_disk = -1;
3037         rdev->flags = 0;
3038         rdev->data_offset = 0;
3039         rdev->sb_events = 0;
3040         rdev->last_read_error.tv_sec  = 0;
3041         rdev->last_read_error.tv_nsec = 0;
3042         rdev->sb_loaded = 0;
3043         rdev->bb_page = NULL;
3044         atomic_set(&rdev->nr_pending, 0);
3045         atomic_set(&rdev->read_errors, 0);
3046         atomic_set(&rdev->corrected_errors, 0);
3047
3048         INIT_LIST_HEAD(&rdev->same_set);
3049         init_waitqueue_head(&rdev->blocked_wait);
3050
3051         /* Add space to store bad block list.
3052          * This reserves the space even on arrays where it cannot
3053          * be used - I wonder if that matters
3054          */
3055         rdev->badblocks.count = 0;
3056         rdev->badblocks.shift = 0;
3057         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3058         seqlock_init(&rdev->badblocks.lock);
3059         if (rdev->badblocks.page == NULL)
3060                 return -ENOMEM;
3061
3062         return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(md_rdev_init);
3065 /*
3066  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3067  *
3068  * mark the device faulty if:
3069  *
3070  *   - the device is nonexistent (zero size)
3071  *   - the device has no valid superblock
3072  *
3073  * a faulty rdev _never_ has rdev->sb set.
3074  */
3075 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3076 {
3077         char b[BDEVNAME_SIZE];
3078         int err;
3079         struct md_rdev *rdev;
3080         sector_t size;
3081
3082         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3083         if (!rdev) {
3084                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3085                 return ERR_PTR(-ENOMEM);
3086         }
3087
3088         err = md_rdev_init(rdev);
3089         if (err)
3090                 goto abort_free;
3091         err = alloc_disk_sb(rdev);
3092         if (err)
3093                 goto abort_free;
3094
3095         err = lock_rdev(rdev, newdev, super_format == -2);
3096         if (err)
3097                 goto abort_free;
3098
3099         kobject_init(&rdev->kobj, &rdev_ktype);
3100
3101         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3102         if (!size) {
3103                 printk(KERN_WARNING 
3104                         "md: %s has zero or unknown size, marking faulty!\n",
3105                         bdevname(rdev->bdev,b));
3106                 err = -EINVAL;
3107                 goto abort_free;
3108         }
3109
3110         if (super_format >= 0) {
3111                 err = super_types[super_format].
3112                         load_super(rdev, NULL, super_minor);
3113                 if (err == -EINVAL) {
3114                         printk(KERN_WARNING
3115                                 "md: %s does not have a valid v%d.%d "
3116                                "superblock, not importing!\n",
3117                                 bdevname(rdev->bdev,b),
3118                                super_format, super_minor);
3119                         goto abort_free;
3120                 }
3121                 if (err < 0) {
3122                         printk(KERN_WARNING 
3123                                 "md: could not read %s's sb, not importing!\n",
3124                                 bdevname(rdev->bdev,b));
3125                         goto abort_free;
3126                 }
3127         }
3128         if (super_format == -1)
3129                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3130                 rdev->badblocks.shift = -1;
3131
3132         return rdev;
3133
3134 abort_free:
3135         if (rdev->bdev)
3136                 unlock_rdev(rdev);
3137         free_disk_sb(rdev);
3138         kfree(rdev->badblocks.page);
3139         kfree(rdev);
3140         return ERR_PTR(err);
3141 }
3142
3143 /*
3144  * Check a full RAID array for plausibility
3145  */
3146
3147
3148 static void analyze_sbs(struct mddev * mddev)
3149 {
3150         int i;
3151         struct md_rdev *rdev, *freshest, *tmp;
3152         char b[BDEVNAME_SIZE];
3153
3154         freshest = NULL;
3155         rdev_for_each(rdev, tmp, mddev)
3156                 switch (super_types[mddev->major_version].
3157                         load_super(rdev, freshest, mddev->minor_version)) {
3158                 case 1:
3159                         freshest = rdev;
3160                         break;
3161                 case 0:
3162                         break;
3163                 default:
3164                         printk( KERN_ERR \
3165                                 "md: fatal superblock inconsistency in %s"
3166                                 " -- removing from array\n", 
3167                                 bdevname(rdev->bdev,b));
3168                         kick_rdev_from_array(rdev);
3169                 }
3170
3171
3172         super_types[mddev->major_version].
3173                 validate_super(mddev, freshest);
3174
3175         i = 0;
3176         rdev_for_each(rdev, tmp, mddev) {
3177                 if (mddev->max_disks &&
3178                     (rdev->desc_nr >= mddev->max_disks ||
3179                      i > mddev->max_disks)) {
3180                         printk(KERN_WARNING
3181                                "md: %s: %s: only %d devices permitted\n",
3182                                mdname(mddev), bdevname(rdev->bdev, b),
3183                                mddev->max_disks);
3184                         kick_rdev_from_array(rdev);
3185                         continue;
3186                 }
3187                 if (rdev != freshest)
3188                         if (super_types[mddev->major_version].
3189                             validate_super(mddev, rdev)) {
3190                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3191                                         " from array!\n",
3192                                         bdevname(rdev->bdev,b));
3193                                 kick_rdev_from_array(rdev);
3194                                 continue;
3195                         }
3196                 if (mddev->level == LEVEL_MULTIPATH) {
3197                         rdev->desc_nr = i++;
3198                         rdev->raid_disk = rdev->desc_nr;
3199                         set_bit(In_sync, &rdev->flags);
3200                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3201                         rdev->raid_disk = -1;
3202                         clear_bit(In_sync, &rdev->flags);
3203                 }
3204         }
3205 }
3206
3207 /* Read a fixed-point number.
3208  * Numbers in sysfs attributes should be in "standard" units where
3209  * possible, so time should be in seconds.
3210  * However we internally use a a much smaller unit such as 
3211  * milliseconds or jiffies.
3212  * This function takes a decimal number with a possible fractional
3213  * component, and produces an integer which is the result of
3214  * multiplying that number by 10^'scale'.
3215  * all without any floating-point arithmetic.
3216  */
3217 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3218 {
3219         unsigned long result = 0;
3220         long decimals = -1;
3221         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3222                 if (*cp == '.')
3223                         decimals = 0;
3224                 else if (decimals < scale) {
3225                         unsigned int value;
3226                         value = *cp - '0';
3227                         result = result * 10 + value;
3228                         if (decimals >= 0)
3229                                 decimals++;
3230                 }
3231                 cp++;
3232         }
3233         if (*cp == '\n')
3234                 cp++;
3235         if (*cp)
3236                 return -EINVAL;
3237         if (decimals < 0)
3238                 decimals = 0;
3239         while (decimals < scale) {
3240                 result *= 10;
3241                 decimals ++;
3242         }
3243         *res = result;
3244         return 0;
3245 }
3246
3247
3248 static void md_safemode_timeout(unsigned long data);
3249
3250 static ssize_t
3251 safe_delay_show(struct mddev *mddev, char *page)
3252 {
3253         int msec = (mddev->safemode_delay*1000)/HZ;
3254         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3255 }
3256 static ssize_t
3257 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3258 {
3259         unsigned long msec;
3260
3261         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3262                 return -EINVAL;
3263         if (msec == 0)
3264                 mddev->safemode_delay = 0;
3265         else {
3266                 unsigned long old_delay = mddev->safemode_delay;
3267                 mddev->safemode_delay = (msec*HZ)/1000;
3268                 if (mddev->safemode_delay == 0)
3269                         mddev->safemode_delay = 1;
3270                 if (mddev->safemode_delay < old_delay)
3271                         md_safemode_timeout((unsigned long)mddev);
3272         }
3273         return len;
3274 }
3275 static struct md_sysfs_entry md_safe_delay =
3276 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3277
3278 static ssize_t
3279 level_show(struct mddev *mddev, char *page)
3280 {
3281         struct md_personality *p = mddev->pers;
3282         if (p)
3283                 return sprintf(page, "%s\n", p->name);
3284         else if (mddev->clevel[0])
3285                 return sprintf(page, "%s\n", mddev->clevel);
3286         else if (mddev->level != LEVEL_NONE)
3287                 return sprintf(page, "%d\n", mddev->level);
3288         else
3289                 return 0;
3290 }
3291
3292 static ssize_t
3293 level_store(struct mddev *mddev, const char *buf, size_t len)
3294 {
3295         char clevel[16];
3296         ssize_t rv = len;
3297         struct md_personality *pers;
3298         long level;
3299         void *priv;
3300         struct md_rdev *rdev;
3301
3302         if (mddev->pers == NULL) {
3303                 if (len == 0)
3304                         return 0;
3305                 if (len >= sizeof(mddev->clevel))
3306                         return -ENOSPC;
3307                 strncpy(mddev->clevel, buf, len);
3308                 if (mddev->clevel[len-1] == '\n')
3309                         len--;
3310                 mddev->clevel[len] = 0;
3311                 mddev->level = LEVEL_NONE;
3312                 return rv;
3313         }
3314
3315         /* request to change the personality.  Need to ensure:
3316          *  - array is not engaged in resync/recovery/reshape
3317          *  - old personality can be suspended
3318          *  - new personality will access other array.
3319          */
3320
3321         if (mddev->sync_thread ||
3322             mddev->reshape_position != MaxSector ||
3323             mddev->sysfs_active)
3324                 return -EBUSY;
3325
3326         if (!mddev->pers->quiesce) {
3327                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3328                        mdname(mddev), mddev->pers->name);
3329                 return -EINVAL;
3330         }
3331
3332         /* Now find the new personality */
3333         if (len == 0 || len >= sizeof(clevel))
3334                 return -EINVAL;
3335         strncpy(clevel, buf, len);
3336         if (clevel[len-1] == '\n')
3337                 len--;
3338         clevel[len] = 0;
3339         if (strict_strtol(clevel, 10, &level))
3340                 level = LEVEL_NONE;
3341
3342         if (request_module("md-%s", clevel) != 0)
3343                 request_module("md-level-%s", clevel);
3344         spin_lock(&pers_lock);
3345         pers = find_pers(level, clevel);
3346         if (!pers || !try_module_get(pers->owner)) {
3347                 spin_unlock(&pers_lock);
3348                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3349                 return -EINVAL;
3350         }
3351         spin_unlock(&pers_lock);
3352
3353         if (pers == mddev->pers) {
3354                 /* Nothing to do! */
3355                 module_put(pers->owner);
3356                 return rv;
3357         }
3358         if (!pers->takeover) {
3359                 module_put(pers->owner);
3360                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3361                        mdname(mddev), clevel);
3362                 return -EINVAL;
3363         }
3364
3365         list_for_each_entry(rdev, &mddev->disks, same_set)
3366                 rdev->new_raid_disk = rdev->raid_disk;
3367
3368         /* ->takeover must set new_* and/or delta_disks
3369          * if it succeeds, and may set them when it fails.
3370          */
3371         priv = pers->takeover(mddev);
3372         if (IS_ERR(priv)) {
3373                 mddev->new_level = mddev->level;
3374                 mddev->new_layout = mddev->layout;
3375                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3376                 mddev->raid_disks -= mddev->delta_disks;
3377                 mddev->delta_disks = 0;
3378                 module_put(pers->owner);
3379                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380                        mdname(mddev), clevel);
3381                 return PTR_ERR(priv);
3382         }
3383
3384         /* Looks like we have a winner */
3385         mddev_suspend(mddev);
3386         mddev->pers->stop(mddev);
3387         
3388         if (mddev->pers->sync_request == NULL &&
3389             pers->sync_request != NULL) {
3390                 /* need to add the md_redundancy_group */
3391                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3392                         printk(KERN_WARNING
3393                                "md: cannot register extra attributes for %s\n",
3394                                mdname(mddev));
3395                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3396         }               
3397         if (mddev->pers->sync_request != NULL &&
3398             pers->sync_request == NULL) {
3399                 /* need to remove the md_redundancy_group */
3400                 if (mddev->to_remove == NULL)
3401                         mddev->to_remove = &md_redundancy_group;
3402         }
3403
3404         if (mddev->pers->sync_request == NULL &&
3405             mddev->external) {
3406                 /* We are converting from a no-redundancy array
3407                  * to a redundancy array and metadata is managed
3408                  * externally so we need to be sure that writes
3409                  * won't block due to a need to transition
3410                  *      clean->dirty
3411                  * until external management is started.
3412                  */
3413                 mddev->in_sync = 0;
3414                 mddev->safemode_delay = 0;
3415                 mddev->safemode = 0;
3416         }
3417
3418         list_for_each_entry(rdev, &mddev->disks, same_set) {
3419                 if (rdev->raid_disk < 0)
3420                         continue;
3421                 if (rdev->new_raid_disk >= mddev->raid_disks)
3422                         rdev->new_raid_disk = -1;
3423                 if (rdev->new_raid_disk == rdev->raid_disk)
3424                         continue;
3425                 sysfs_unlink_rdev(mddev, rdev);
3426         }
3427         list_for_each_entry(rdev, &mddev->disks, same_set) {
3428                 if (rdev->raid_disk < 0)
3429                         continue;
3430                 if (rdev->new_raid_disk == rdev->raid_disk)
3431                         continue;
3432                 rdev->raid_disk = rdev->new_raid_disk;
3433                 if (rdev->raid_disk < 0)
3434                         clear_bit(In_sync, &rdev->flags);
3435                 else {
3436                         if (sysfs_link_rdev(mddev, rdev))
3437                                 printk(KERN_WARNING "md: cannot register rd%d"
3438                                        " for %s after level change\n",
3439                                        rdev->raid_disk, mdname(mddev));
3440                 }
3441         }
3442
3443         module_put(mddev->pers->owner);
3444         mddev->pers = pers;
3445         mddev->private = priv;
3446         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447         mddev->level = mddev->new_level;
3448         mddev->layout = mddev->new_layout;
3449         mddev->chunk_sectors = mddev->new_chunk_sectors;
3450         mddev->delta_disks = 0;
3451         mddev->degraded = 0;
3452         if (mddev->pers->sync_request == NULL) {
3453                 /* this is now an array without redundancy, so
3454                  * it must always be in_sync
3455                  */
3456                 mddev->in_sync = 1;
3457                 del_timer_sync(&mddev->safemode_timer);
3458         }
3459         pers->run(mddev);
3460         mddev_resume(mddev);
3461         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3462         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3463         md_wakeup_thread(mddev->thread);
3464         sysfs_notify(&mddev->kobj, NULL, "level");
3465         md_new_event(mddev);
3466         return rv;
3467 }
3468
3469 static struct md_sysfs_entry md_level =
3470 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3471
3472
3473 static ssize_t
3474 layout_show(struct mddev *mddev, char *page)
3475 {
3476         /* just a number, not meaningful for all levels */
3477         if (mddev->reshape_position != MaxSector &&
3478             mddev->layout != mddev->new_layout)
3479                 return sprintf(page, "%d (%d)\n",
3480                                mddev->new_layout, mddev->layout);
3481         return sprintf(page, "%d\n", mddev->layout);
3482 }
3483
3484 static ssize_t
3485 layout_store(struct mddev *mddev, const char *buf, size_t len)
3486 {
3487         char *e;
3488         unsigned long n = simple_strtoul(buf, &e, 10);
3489
3490         if (!*buf || (*e && *e != '\n'))
3491                 return -EINVAL;
3492
3493         if (mddev->pers) {
3494                 int err;
3495                 if (mddev->pers->check_reshape == NULL)
3496                         return -EBUSY;
3497                 mddev->new_layout = n;
3498                 err = mddev->pers->check_reshape(mddev);
3499                 if (err) {
3500                         mddev->new_layout = mddev->layout;
3501                         return err;
3502                 }
3503         } else {
3504                 mddev->new_layout = n;
3505                 if (mddev->reshape_position == MaxSector)
3506                         mddev->layout = n;
3507         }
3508         return len;
3509 }
3510 static struct md_sysfs_entry md_layout =
3511 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3512
3513
3514 static ssize_t
3515 raid_disks_show(struct mddev *mddev, char *page)
3516 {
3517         if (mddev->raid_disks == 0)
3518                 return 0;
3519         if (mddev->reshape_position != MaxSector &&
3520             mddev->delta_disks != 0)
3521                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3522                                mddev->raid_disks - mddev->delta_disks);
3523         return sprintf(page, "%d\n", mddev->raid_disks);
3524 }
3525
3526 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3527
3528 static ssize_t
3529 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3530 {
3531         char *e;
3532         int rv = 0;
3533         unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535         if (!*buf || (*e && *e != '\n'))
3536                 return -EINVAL;
3537
3538         if (mddev->pers)
3539                 rv = update_raid_disks(mddev, n);
3540         else if (mddev->reshape_position != MaxSector) {
3541                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3542                 mddev->delta_disks = n - olddisks;
3543                 mddev->raid_disks = n;
3544         } else
3545                 mddev->raid_disks = n;
3546         return rv ? rv : len;
3547 }
3548 static struct md_sysfs_entry md_raid_disks =
3549 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3550
3551 static ssize_t
3552 chunk_size_show(struct mddev *mddev, char *page)
3553 {
3554         if (mddev->reshape_position != MaxSector &&
3555             mddev->chunk_sectors != mddev->new_chunk_sectors)
3556                 return sprintf(page, "%d (%d)\n",
3557                                mddev->new_chunk_sectors << 9,
3558                                mddev->chunk_sectors << 9);
3559         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3560 }
3561
3562 static ssize_t
3563 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3564 {
3565         char *e;
3566         unsigned long n = simple_strtoul(buf, &e, 10);
3567
3568         if (!*buf || (*e && *e != '\n'))
3569                 return -EINVAL;
3570
3571         if (mddev->pers) {
3572                 int err;
3573                 if (mddev->pers->check_reshape == NULL)
3574                         return -EBUSY;
3575                 mddev->new_chunk_sectors = n >> 9;
3576                 err = mddev->pers->check_reshape(mddev);
3577                 if (err) {
3578                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3579                         return err;
3580                 }
3581         } else {
3582                 mddev->new_chunk_sectors = n >> 9;
3583                 if (mddev->reshape_position == MaxSector)
3584                         mddev->chunk_sectors = n >> 9;
3585         }
3586         return len;
3587 }
3588 static struct md_sysfs_entry md_chunk_size =
3589 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3590
3591 static ssize_t
3592 resync_start_show(struct mddev *mddev, char *page)
3593 {
3594         if (mddev->recovery_cp == MaxSector)
3595                 return sprintf(page, "none\n");
3596         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3597 }
3598
3599 static ssize_t
3600 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3601 {
3602         char *e;
3603         unsigned long long n = simple_strtoull(buf, &e, 10);
3604
3605         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3606                 return -EBUSY;
3607         if (cmd_match(buf, "none"))
3608                 n = MaxSector;
3609         else if (!*buf || (*e && *e != '\n'))
3610                 return -EINVAL;
3611
3612         mddev->recovery_cp = n;
3613         return len;
3614 }
3615 static struct md_sysfs_entry md_resync_start =
3616 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3617
3618 /*
3619  * The array state can be:
3620  *
3621  * clear
3622  *     No devices, no size, no level
3623  *     Equivalent to STOP_ARRAY ioctl
3624  * inactive
3625  *     May have some settings, but array is not active
3626  *        all IO results in error
3627  *     When written, doesn't tear down array, but just stops it
3628  * suspended (not supported yet)
3629  *     All IO requests will block. The array can be reconfigured.
3630  *     Writing this, if accepted, will block until array is quiescent
3631  * readonly
3632  *     no resync can happen.  no superblocks get written.
3633  *     write requests fail
3634  * read-auto
3635  *     like readonly, but behaves like 'clean' on a write request.
3636  *
3637  * clean - no pending writes, but otherwise active.
3638  *     When written to inactive array, starts without resync
3639  *     If a write request arrives then
3640  *       if metadata is known, mark 'dirty' and switch to 'active'.
3641  *       if not known, block and switch to write-pending
3642  *     If written to an active array that has pending writes, then fails.
3643  * active
3644  *     fully active: IO and resync can be happening.
3645  *     When written to inactive array, starts with resync
3646  *
3647  * write-pending
3648  *     clean, but writes are blocked waiting for 'active' to be written.
3649  *
3650  * active-idle
3651  *     like active, but no writes have been seen for a while (100msec).
3652  *
3653  */
3654 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3655                    write_pending, active_idle, bad_word};
3656 static char *array_states[] = {
3657         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3658         "write-pending", "active-idle", NULL };
3659
3660 static int match_word(const char *word, char **list)
3661 {
3662         int n;
3663         for (n=0; list[n]; n++)
3664                 if (cmd_match(word, list[n]))
3665                         break;
3666         return n;
3667 }
3668
3669 static ssize_t
3670 array_state_show(struct mddev *mddev, char *page)
3671 {
3672         enum array_state st = inactive;
3673
3674         if (mddev->pers)
3675                 switch(mddev->ro) {
3676                 case 1:
3677                         st = readonly;
3678                         break;
3679                 case 2:
3680                         st = read_auto;
3681                         break;
3682                 case 0:
3683                         if (mddev->in_sync)
3684                                 st = clean;
3685                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3686                                 st = write_pending;
3687                         else if (mddev->safemode)
3688                                 st = active_idle;
3689                         else
3690                                 st = active;
3691                 }
3692         else {
3693                 if (list_empty(&mddev->disks) &&
3694                     mddev->raid_disks == 0 &&
3695                     mddev->dev_sectors == 0)
3696                         st = clear;
3697                 else
3698                         st = inactive;
3699         }
3700         return sprintf(page, "%s\n", array_states[st]);
3701 }
3702
3703 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3704 static int md_set_readonly(struct mddev * mddev, int is_open);
3705 static int do_md_run(struct mddev * mddev);
3706 static int restart_array(struct mddev *mddev);
3707
3708 static ssize_t
3709 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3710 {
3711         int err = -EINVAL;
3712         enum array_state st = match_word(buf, array_states);
3713         switch(st) {
3714         case bad_word:
3715                 break;
3716         case clear:
3717                 /* stopping an active array */
3718                 if (atomic_read(&mddev->openers) > 0)
3719                         return -EBUSY;
3720                 err = do_md_stop(mddev, 0, 0);
3721                 break;
3722         case inactive:
3723                 /* stopping an active array */
3724                 if (mddev->pers) {
3725                         if (atomic_read(&mddev->openers) > 0)
3726                                 return -EBUSY;
3727                         err = do_md_stop(mddev, 2, 0);
3728                 } else
3729                         err = 0; /* already inactive */
3730                 break;
3731         case suspended:
3732                 break; /* not supported yet */
3733         case readonly:
3734                 if (mddev->pers)
3735                         err = md_set_readonly(mddev, 0);
3736                 else {
3737                         mddev->ro = 1;
3738                         set_disk_ro(mddev->gendisk, 1);
3739                         err = do_md_run(mddev);
3740                 }
3741                 break;
3742         case read_auto:
3743                 if (mddev->pers) {
3744                         if (mddev->ro == 0)
3745                                 err = md_set_readonly(mddev, 0);
3746                         else if (mddev->ro == 1)
3747                                 err = restart_array(mddev);
3748                         if (err == 0) {
3749                                 mddev->ro = 2;
3750                                 set_disk_ro(mddev->gendisk, 0);
3751                         }
3752                 } else {
3753                         mddev->ro = 2;
3754                         err = do_md_run(mddev);
3755                 }
3756                 break;
3757         case clean:
3758                 if (mddev->pers) {
3759                         restart_array(mddev);
3760                         spin_lock_irq(&mddev->write_lock);
3761                         if (atomic_read(&mddev->writes_pending) == 0) {
3762                                 if (mddev->in_sync == 0) {
3763                                         mddev->in_sync = 1;
3764                                         if (mddev->safemode == 1)
3765                                                 mddev->safemode = 0;
3766                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767                                 }
3768                                 err = 0;
3769                         } else
3770                                 err = -EBUSY;
3771                         spin_unlock_irq(&mddev->write_lock);
3772                 } else
3773                         err = -EINVAL;
3774                 break;
3775         case active:
3776                 if (mddev->pers) {
3777                         restart_array(mddev);
3778                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3779                         wake_up(&mddev->sb_wait);
3780                         err = 0;
3781                 } else {
3782                         mddev->ro = 0;
3783                         set_disk_ro(mddev->gendisk, 0);
3784                         err = do_md_run(mddev);
3785                 }
3786                 break;
3787         case write_pending:
3788         case active_idle:
3789                 /* these cannot be set */
3790                 break;
3791         }
3792         if (err)
3793                 return err;
3794         else {
3795                 if (mddev->hold_active == UNTIL_IOCTL)
3796                         mddev->hold_active = 0;
3797                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3798                 return len;
3799         }
3800 }
3801 static struct md_sysfs_entry md_array_state =
3802 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3803
3804 static ssize_t
3805 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3806         return sprintf(page, "%d\n",
3807                        atomic_read(&mddev->max_corr_read_errors));
3808 }
3809
3810 static ssize_t
3811 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3812 {
3813         char *e;
3814         unsigned long n = simple_strtoul(buf, &e, 10);
3815
3816         if (*buf && (*e == 0 || *e == '\n')) {
3817                 atomic_set(&mddev->max_corr_read_errors, n);
3818                 return len;
3819         }
3820         return -EINVAL;
3821 }
3822
3823 static struct md_sysfs_entry max_corr_read_errors =
3824 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3825         max_corrected_read_errors_store);
3826
3827 static ssize_t
3828 null_show(struct mddev *mddev, char *page)
3829 {
3830         return -EINVAL;
3831 }
3832
3833 static ssize_t
3834 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3835 {
3836         /* buf must be %d:%d\n? giving major and minor numbers */
3837         /* The new device is added to the array.
3838          * If the array has a persistent superblock, we read the
3839          * superblock to initialise info and check validity.
3840          * Otherwise, only checking done is that in bind_rdev_to_array,
3841          * which mainly checks size.
3842          */
3843         char *e;
3844         int major = simple_strtoul(buf, &e, 10);
3845         int minor;
3846         dev_t dev;
3847         struct md_rdev *rdev;
3848         int err;
3849
3850         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3851                 return -EINVAL;
3852         minor = simple_strtoul(e+1, &e, 10);
3853         if (*e && *e != '\n')
3854                 return -EINVAL;
3855         dev = MKDEV(major, minor);
3856         if (major != MAJOR(dev) ||
3857             minor != MINOR(dev))
3858                 return -EOVERFLOW;
3859
3860
3861         if (mddev->persistent) {
3862                 rdev = md_import_device(dev, mddev->major_version,
3863                                         mddev->minor_version);
3864                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3865                         struct md_rdev *rdev0
3866                                 = list_entry(mddev->disks.next,
3867                                              struct md_rdev, same_set);
3868                         err = super_types[mddev->major_version]
3869                                 .load_super(rdev, rdev0, mddev->minor_version);
3870                         if (err < 0)
3871                                 goto out;
3872                 }
3873         } else if (mddev->external)
3874                 rdev = md_import_device(dev, -2, -1);
3875         else
3876                 rdev = md_import_device(dev, -1, -1);
3877
3878         if (IS_ERR(rdev))
3879                 return PTR_ERR(rdev);
3880         err = bind_rdev_to_array(rdev, mddev);
3881  out:
3882         if (err)
3883                 export_rdev(rdev);
3884         return err ? err : len;
3885 }
3886
3887 static struct md_sysfs_entry md_new_device =
3888 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3889
3890 static ssize_t
3891 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893         char *end;
3894         unsigned long chunk, end_chunk;
3895
3896         if (!mddev->bitmap)
3897                 goto out;
3898         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3899         while (*buf) {
3900                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3901                 if (buf == end) break;
3902                 if (*end == '-') { /* range */
3903                         buf = end + 1;
3904                         end_chunk = simple_strtoul(buf, &end, 0);
3905                         if (buf == end) break;
3906                 }
3907                 if (*end && !isspace(*end)) break;
3908                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3909                 buf = skip_spaces(end);
3910         }
3911         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3912 out:
3913         return len;
3914 }
3915
3916 static struct md_sysfs_entry md_bitmap =
3917 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3918
3919 static ssize_t
3920 size_show(struct mddev *mddev, char *page)
3921 {
3922         return sprintf(page, "%llu\n",
3923                 (unsigned long long)mddev->dev_sectors / 2);
3924 }
3925
3926 static int update_size(struct mddev *mddev, sector_t num_sectors);
3927
3928 static ssize_t
3929 size_store(struct mddev *mddev, const char *buf, size_t len)
3930 {
3931         /* If array is inactive, we can reduce the component size, but
3932          * not increase it (except from 0).
3933          * If array is active, we can try an on-line resize
3934          */
3935         sector_t sectors;
3936         int err = strict_blocks_to_sectors(buf, &sectors);
3937
3938         if (err < 0)
3939                 return err;
3940         if (mddev->pers) {
3941                 err = update_size(mddev, sectors);
3942                 md_update_sb(mddev, 1);
3943         } else {
3944                 if (mddev->dev_sectors == 0 ||
3945                     mddev->dev_sectors > sectors)
3946                         mddev->dev_sectors = sectors;
3947                 else
3948                         err = -ENOSPC;
3949         }
3950         return err ? err : len;
3951 }
3952
3953 static struct md_sysfs_entry md_size =
3954 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3955
3956
3957 /* Metdata version.
3958  * This is one of
3959  *   'none' for arrays with no metadata (good luck...)
3960  *   'external' for arrays with externally managed metadata,
3961  * or N.M for internally known formats
3962  */
3963 static ssize_t
3964 metadata_show(struct mddev *mddev, char *page)
3965 {
3966         if (mddev->persistent)
3967                 return sprintf(page, "%d.%d\n",
3968                                mddev->major_version, mddev->minor_version);
3969         else if (mddev->external)
3970                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3971         else
3972                 return sprintf(page, "none\n");
3973 }
3974
3975 static ssize_t
3976 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3977 {
3978         int major, minor;
3979         char *e;
3980         /* Changing the details of 'external' metadata is
3981          * always permitted.  Otherwise there must be
3982          * no devices attached to the array.
3983          */
3984         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3985                 ;
3986         else if (!list_empty(&mddev->disks))
3987                 return -EBUSY;
3988
3989         if (cmd_match(buf, "none")) {
3990                 mddev->persistent = 0;
3991                 mddev->external = 0;
3992                 mddev->major_version = 0;
3993                 mddev->minor_version = 90;
3994                 return len;
3995         }
3996         if (strncmp(buf, "external:", 9) == 0) {
3997                 size_t namelen = len-9;
3998                 if (namelen >= sizeof(mddev->metadata_type))
3999                         namelen = sizeof(mddev->metadata_type)-1;
4000                 strncpy(mddev->metadata_type, buf+9, namelen);
4001                 mddev->metadata_type[namelen] = 0;
4002                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4003                         mddev->metadata_type[--namelen] = 0;
4004                 mddev->persistent = 0;
4005                 mddev->external = 1;
4006                 mddev->major_version = 0;
4007                 mddev->minor_version = 90;
4008                 return len;
4009         }
4010         major = simple_strtoul(buf, &e, 10);
4011         if (e==buf || *e != '.')
4012                 return -EINVAL;
4013         buf = e+1;
4014         minor = simple_strtoul(buf, &e, 10);
4015         if (e==buf || (*e && *e != '\n') )
4016                 return -EINVAL;
4017         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4018                 return -ENOENT;
4019         mddev->major_version = major;
4020         mddev->minor_version = minor;
4021         mddev->persistent = 1;
4022         mddev->external = 0;
4023         return len;
4024 }
4025
4026 static struct md_sysfs_entry md_metadata =
4027 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4028
4029 static ssize_t
4030 action_show(struct mddev *mddev, char *page)
4031 {
4032         char *type = "idle";
4033         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4034                 type = "frozen";
4035         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4036             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4037                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4038                         type = "reshape";
4039                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4040                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4041                                 type = "resync";
4042                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4043                                 type = "check";
4044                         else
4045                                 type = "repair";
4046                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4047                         type = "recover";
4048         }
4049         return sprintf(page, "%s\n", type);
4050 }
4051
4052 static void reap_sync_thread(struct mddev *mddev);
4053
4054 static ssize_t
4055 action_store(struct mddev *mddev, const char *page, size_t len)
4056 {
4057         if (!mddev->pers || !mddev->pers->sync_request)
4058                 return -EINVAL;
4059
4060         if (cmd_match(page, "frozen"))
4061                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062         else
4063                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4064
4065         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4066                 if (mddev->sync_thread) {
4067                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4068                         reap_sync_thread(mddev);
4069                 }
4070         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4071                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4072                 return -EBUSY;
4073         else if (cmd_match(page, "resync"))
4074                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075         else if (cmd_match(page, "recover")) {
4076                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4077                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4078         } else if (cmd_match(page, "reshape")) {
4079                 int err;
4080                 if (mddev->pers->start_reshape == NULL)
4081                         return -EINVAL;
4082                 err = mddev->pers->start_reshape(mddev);
4083                 if (err)
4084                         return err;
4085                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4086         } else {
4087                 if (cmd_match(page, "check"))
4088                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4089                 else if (!cmd_match(page, "repair"))
4090                         return -EINVAL;
4091                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4092                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4093         }
4094         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4095         md_wakeup_thread(mddev->thread);
4096         sysfs_notify_dirent_safe(mddev->sysfs_action);
4097         return len;
4098 }
4099
4100 static ssize_t
4101 mismatch_cnt_show(struct mddev *mddev, char *page)
4102 {
4103         return sprintf(page, "%llu\n",
4104                        (unsigned long long) mddev->resync_mismatches);
4105 }
4106
4107 static struct md_sysfs_entry md_scan_mode =
4108 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4109
4110
4111 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4112
4113 static ssize_t
4114 sync_min_show(struct mddev *mddev, char *page)
4115 {
4116         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4117                        mddev->sync_speed_min ? "local": "system");
4118 }
4119
4120 static ssize_t
4121 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4122 {
4123         int min;
4124         char *e;
4125         if (strncmp(buf, "system", 6)==0) {
4126                 mddev->sync_speed_min = 0;
4127                 return len;
4128         }
4129         min = simple_strtoul(buf, &e, 10);
4130         if (buf == e || (*e && *e != '\n') || min <= 0)
4131                 return -EINVAL;
4132         mddev->sync_speed_min = min;
4133         return len;
4134 }
4135
4136 static struct md_sysfs_entry md_sync_min =
4137 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4138
4139 static ssize_t
4140 sync_max_show(struct mddev *mddev, char *page)
4141 {
4142         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4143                        mddev->sync_speed_max ? "local": "system");
4144 }
4145
4146 static ssize_t
4147 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4148 {
4149         int max;
4150         char *e;
4151         if (strncmp(buf, "system", 6)==0) {
4152                 mddev->sync_speed_max = 0;
4153                 return len;
4154         }
4155         max = simple_strtoul(buf, &e, 10);
4156         if (buf == e || (*e && *e != '\n') || max <= 0)
4157                 return -EINVAL;
4158         mddev->sync_speed_max = max;
4159         return len;
4160 }
4161
4162 static struct md_sysfs_entry md_sync_max =
4163 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4164
4165 static ssize_t
4166 degraded_show(struct mddev *mddev, char *page)
4167 {
4168         return sprintf(page, "%d\n", mddev->degraded);
4169 }
4170 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4171
4172 static ssize_t
4173 sync_force_parallel_show(struct mddev *mddev, char *page)
4174 {
4175         return sprintf(page, "%d\n", mddev->parallel_resync);
4176 }
4177
4178 static ssize_t
4179 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4180 {
4181         long n;
4182
4183         if (strict_strtol(buf, 10, &n))
4184                 return -EINVAL;
4185
4186         if (n != 0 && n != 1)
4187                 return -EINVAL;
4188
4189         mddev->parallel_resync = n;
4190
4191         if (mddev->sync_thread)
4192                 wake_up(&resync_wait);
4193
4194         return len;
4195 }
4196
4197 /* force parallel resync, even with shared block devices */
4198 static struct md_sysfs_entry md_sync_force_parallel =
4199 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4200        sync_force_parallel_show, sync_force_parallel_store);
4201
4202 static ssize_t
4203 sync_speed_show(struct mddev *mddev, char *page)
4204 {
4205         unsigned long resync, dt, db;
4206         if (mddev->curr_resync == 0)
4207                 return sprintf(page, "none\n");
4208         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4209         dt = (jiffies - mddev->resync_mark) / HZ;
4210         if (!dt) dt++;
4211         db = resync - mddev->resync_mark_cnt;
4212         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4213 }
4214
4215 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4216
4217 static ssize_t
4218 sync_completed_show(struct mddev *mddev, char *page)
4219 {
4220         unsigned long long max_sectors, resync;
4221
4222         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4223                 return sprintf(page, "none\n");
4224
4225         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4226                 max_sectors = mddev->resync_max_sectors;
4227         else
4228                 max_sectors = mddev->dev_sectors;
4229
4230         resync = mddev->curr_resync_completed;
4231         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4232 }
4233
4234 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4235
4236 static ssize_t
4237 min_sync_show(struct mddev *mddev, char *page)
4238 {
4239         return sprintf(page, "%llu\n",
4240                        (unsigned long long)mddev->resync_min);
4241 }
4242 static ssize_t
4243 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4244 {
4245         unsigned long long min;
4246         if (strict_strtoull(buf, 10, &min))
4247                 return -EINVAL;
4248         if (min > mddev->resync_max)
4249                 return -EINVAL;
4250         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4251                 return -EBUSY;
4252
4253         /* Must be a multiple of chunk_size */
4254         if (mddev->chunk_sectors) {
4255                 sector_t temp = min;
4256                 if (sector_div(temp, mddev->chunk_sectors))
4257                         return -EINVAL;
4258         }
4259         mddev->resync_min = min;
4260
4261         return len;
4262 }
4263
4264 static struct md_sysfs_entry md_min_sync =
4265 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4266
4267 static ssize_t
4268 max_sync_show(struct mddev *mddev, char *page)
4269 {
4270         if (mddev->resync_max == MaxSector)
4271                 return sprintf(page, "max\n");
4272         else
4273                 return sprintf(page, "%llu\n",
4274                                (unsigned long long)mddev->resync_max);
4275 }
4276 static ssize_t
4277 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4278 {
4279         if (strncmp(buf, "max", 3) == 0)
4280                 mddev->resync_max = MaxSector;
4281         else {
4282                 unsigned long long max;
4283                 if (strict_strtoull(buf, 10, &max))
4284                         return -EINVAL;
4285                 if (max < mddev->resync_min)
4286                         return -EINVAL;
4287                 if (max < mddev->resync_max &&
4288                     mddev->ro == 0 &&
4289                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4290                         return -EBUSY;
4291
4292                 /* Must be a multiple of chunk_size */
4293                 if (mddev->chunk_sectors) {
4294                         sector_t temp = max;
4295                         if (sector_div(temp, mddev->chunk_sectors))
4296                                 return -EINVAL;
4297                 }
4298                 mddev->resync_max = max;
4299         }
4300         wake_up(&mddev->recovery_wait);
4301         return len;
4302 }
4303
4304 static struct md_sysfs_entry md_max_sync =
4305 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4306
4307 static ssize_t
4308 suspend_lo_show(struct mddev *mddev, char *page)
4309 {
4310         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4311 }
4312
4313 static ssize_t
4314 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4315 {
4316         char *e;
4317         unsigned long long new = simple_strtoull(buf, &e, 10);
4318         unsigned long long old = mddev->suspend_lo;
4319
4320         if (mddev->pers == NULL || 
4321             mddev->pers->quiesce == NULL)
4322                 return -EINVAL;
4323         if (buf == e || (*e && *e != '\n'))
4324                 return -EINVAL;
4325
4326         mddev->suspend_lo = new;
4327         if (new >= old)
4328                 /* Shrinking suspended region */
4329                 mddev->pers->quiesce(mddev, 2);
4330         else {
4331                 /* Expanding suspended region - need to wait */
4332                 mddev->pers->quiesce(mddev, 1);
4333                 mddev->pers->quiesce(mddev, 0);
4334         }
4335         return len;
4336 }
4337 static struct md_sysfs_entry md_suspend_lo =
4338 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4339
4340
4341 static ssize_t
4342 suspend_hi_show(struct mddev *mddev, char *page)
4343 {
4344         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4345 }
4346
4347 static ssize_t
4348 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4349 {
4350         char *e;
4351         unsigned long long new = simple_strtoull(buf, &e, 10);
4352         unsigned long long old = mddev->suspend_hi;
4353
4354         if (mddev->pers == NULL ||
4355             mddev->pers->quiesce == NULL)
4356                 return -EINVAL;
4357         if (buf == e || (*e && *e != '\n'))
4358                 return -EINVAL;
4359
4360         mddev->suspend_hi = new;
4361         if (new <= old)
4362                 /* Shrinking suspended region */
4363                 mddev->pers->quiesce(mddev, 2);
4364         else {
4365                 /* Expanding suspended region - need to wait */
4366                 mddev->pers->quiesce(mddev, 1);
4367                 mddev->pers->quiesce(mddev, 0);
4368         }
4369         return len;
4370 }
4371 static struct md_sysfs_entry md_suspend_hi =
4372 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4373
4374 static ssize_t
4375 reshape_position_show(struct mddev *mddev, char *page)
4376 {
4377         if (mddev->reshape_position != MaxSector)
4378                 return sprintf(page, "%llu\n",
4379                                (unsigned long long)mddev->reshape_position);
4380         strcpy(page, "none\n");
4381         return 5;
4382 }
4383
4384 static ssize_t
4385 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4386 {
4387         char *e;
4388         unsigned long long new = simple_strtoull(buf, &e, 10);
4389         if (mddev->pers)
4390                 return -EBUSY;
4391         if (buf == e || (*e && *e != '\n'))
4392                 return -EINVAL;
4393         mddev->reshape_position = new;
4394         mddev->delta_disks = 0;
4395         mddev->new_level = mddev->level;
4396         mddev->new_layout = mddev->layout;
4397         mddev->new_chunk_sectors = mddev->chunk_sectors;
4398         return len;
4399 }
4400
4401 static struct md_sysfs_entry md_reshape_position =
4402 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4403        reshape_position_store);
4404
4405 static ssize_t
4406 array_size_show(struct mddev *mddev, char *page)
4407 {
4408         if (mddev->external_size)
4409                 return sprintf(page, "%llu\n",
4410                                (unsigned long long)mddev->array_sectors/2);
4411         else
4412                 return sprintf(page, "default\n");
4413 }
4414
4415 static ssize_t
4416 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4417 {
4418         sector_t sectors;
4419
4420         if (strncmp(buf, "default", 7) == 0) {
4421                 if (mddev->pers)
4422                         sectors = mddev->pers->size(mddev, 0, 0);
4423                 else
4424                         sectors = mddev->array_sectors;
4425
4426                 mddev->external_size = 0;
4427         } else {
4428                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4429                         return -EINVAL;
4430                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4431                         return -E2BIG;
4432
4433                 mddev->external_size = 1;
4434         }
4435
4436         mddev->array_sectors = sectors;
4437         if (mddev->pers) {
4438                 set_capacity(mddev->gendisk, mddev->array_sectors);
4439                 revalidate_disk(mddev->gendisk);
4440         }
4441         return len;
4442 }
4443
4444 static struct md_sysfs_entry md_array_size =
4445 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4446        array_size_store);
4447
4448 static struct attribute *md_default_attrs[] = {
4449         &md_level.attr,
4450         &md_layout.attr,
4451         &md_raid_disks.attr,
4452         &md_chunk_size.attr,
4453         &md_size.attr,
4454         &md_resync_start.attr,
4455         &md_metadata.attr,
4456         &md_new_device.attr,
4457         &md_safe_delay.attr,
4458         &md_array_state.attr,
4459         &md_reshape_position.attr,
4460         &md_array_size.attr,
4461         &max_corr_read_errors.attr,
4462         NULL,
4463 };
4464
4465 static struct attribute *md_redundancy_attrs[] = {
4466         &md_scan_mode.attr,
4467         &md_mismatches.attr,
4468         &md_sync_min.attr,
4469         &md_sync_max.attr,
4470         &md_sync_speed.attr,
4471         &md_sync_force_parallel.attr,
4472         &md_sync_completed.attr,
4473         &md_min_sync.attr,
4474         &md_max_sync.attr,
4475         &md_suspend_lo.attr,
4476         &md_suspend_hi.attr,
4477         &md_bitmap.attr,
4478         &md_degraded.attr,
4479         NULL,
4480 };
4481 static struct attribute_group md_redundancy_group = {
4482         .name = NULL,
4483         .attrs = md_redundancy_attrs,
4484 };
4485
4486
4487 static ssize_t
4488 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4489 {
4490         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4491         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4492         ssize_t rv;
4493
4494         if (!entry->show)
4495                 return -EIO;
4496         spin_lock(&all_mddevs_lock);
4497         if (list_empty(&mddev->all_mddevs)) {
4498                 spin_unlock(&all_mddevs_lock);
4499                 return -EBUSY;
4500         }
4501         mddev_get(mddev);
4502         spin_unlock(&all_mddevs_lock);
4503
4504         rv = mddev_lock(mddev);
4505         if (!rv) {
4506                 rv = entry->show(mddev, page);
4507                 mddev_unlock(mddev);
4508         }
4509         mddev_put(mddev);
4510         return rv;
4511 }
4512
4513 static ssize_t
4514 md_attr_store(struct kobject *kobj, struct attribute *attr,
4515               const char *page, size_t length)
4516 {
4517         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4518         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4519         ssize_t rv;
4520
4521         if (!entry->store)
4522                 return -EIO;
4523         if (!capable(CAP_SYS_ADMIN))
4524                 return -EACCES;
4525         spin_lock(&all_mddevs_lock);
4526         if (list_empty(&mddev->all_mddevs)) {
4527                 spin_unlock(&all_mddevs_lock);
4528                 return -EBUSY;
4529         }
4530         mddev_get(mddev);
4531         spin_unlock(&all_mddevs_lock);
4532         rv = mddev_lock(mddev);
4533         if (!rv) {
4534                 rv = entry->store(mddev, page, length);
4535                 mddev_unlock(mddev);
4536         }
4537         mddev_put(mddev);
4538         return rv;
4539 }
4540
4541 static void md_free(struct kobject *ko)
4542 {
4543         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4544
4545         if (mddev->sysfs_state)
4546                 sysfs_put(mddev->sysfs_state);
4547
4548         if (mddev->gendisk) {
4549                 del_gendisk(mddev->gendisk);
4550                 put_disk(mddev->gendisk);
4551         }
4552         if (mddev->queue)
4553                 blk_cleanup_queue(mddev->queue);
4554
4555         kfree(mddev);
4556 }
4557
4558 static const struct sysfs_ops md_sysfs_ops = {
4559         .show   = md_attr_show,
4560         .store  = md_attr_store,
4561 };
4562 static struct kobj_type md_ktype = {
4563         .release        = md_free,
4564         .sysfs_ops      = &md_sysfs_ops,
4565         .default_attrs  = md_default_attrs,
4566 };
4567
4568 int mdp_major = 0;
4569
4570 static void mddev_delayed_delete(struct work_struct *ws)
4571 {
4572         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4573
4574         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4575         kobject_del(&mddev->kobj);
4576         kobject_put(&mddev->kobj);
4577 }
4578
4579 static int md_alloc(dev_t dev, char *name)
4580 {
4581         static DEFINE_MUTEX(disks_mutex);
4582         struct mddev *mddev = mddev_find(dev);
4583         struct gendisk *disk;
4584         int partitioned;
4585         int shift;
4586         int unit;
4587         int error;
4588
4589         if (!mddev)
4590                 return -ENODEV;
4591
4592         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4593         shift = partitioned ? MdpMinorShift : 0;
4594         unit = MINOR(mddev->unit) >> shift;
4595
4596         /* wait for any previous instance of this device to be
4597          * completely removed (mddev_delayed_delete).
4598          */
4599         flush_workqueue(md_misc_wq);
4600
4601         mutex_lock(&disks_mutex);
4602         error = -EEXIST;
4603         if (mddev->gendisk)
4604                 goto abort;
4605
4606         if (name) {
4607                 /* Need to ensure that 'name' is not a duplicate.
4608                  */
4609                 struct mddev *mddev2;
4610                 spin_lock(&all_mddevs_lock);
4611
4612                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4613                         if (mddev2->gendisk &&
4614                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4615                                 spin_unlock(&all_mddevs_lock);
4616                                 goto abort;
4617                         }
4618                 spin_unlock(&all_mddevs_lock);
4619         }
4620
4621         error = -ENOMEM;
4622         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4623         if (!mddev->queue)
4624                 goto abort;
4625         mddev->queue->queuedata = mddev;
4626
4627         blk_queue_make_request(mddev->queue, md_make_request);
4628
4629         disk = alloc_disk(1 << shift);
4630         if (!disk) {
4631                 blk_cleanup_queue(mddev->queue);
4632                 mddev->queue = NULL;
4633                 goto abort;
4634         }
4635         disk->major = MAJOR(mddev->unit);
4636         disk->first_minor = unit << shift;
4637         if (name)
4638                 strcpy(disk->disk_name, name);
4639         else if (partitioned)
4640                 sprintf(disk->disk_name, "md_d%d", unit);
4641         else
4642                 sprintf(disk->disk_name, "md%d", unit);
4643         disk->fops = &md_fops;
4644         disk->private_data = mddev;
4645         disk->queue = mddev->queue;
4646         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4647         /* Allow extended partitions.  This makes the
4648          * 'mdp' device redundant, but we can't really
4649          * remove it now.
4650          */
4651         disk->flags |= GENHD_FL_EXT_DEVT;
4652         mddev->gendisk = disk;
4653         /* As soon as we call add_disk(), another thread could get
4654          * through to md_open, so make sure it doesn't get too far
4655          */
4656         mutex_lock(&mddev->open_mutex);
4657         add_disk(disk);
4658
4659         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4660                                      &disk_to_dev(disk)->kobj, "%s", "md");
4661         if (error) {
4662                 /* This isn't possible, but as kobject_init_and_add is marked
4663                  * __must_check, we must do something with the result
4664                  */
4665                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4666                        disk->disk_name);
4667                 error = 0;
4668         }
4669         if (mddev->kobj.sd &&
4670             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4671                 printk(KERN_DEBUG "pointless warning\n");
4672         mutex_unlock(&mddev->open_mutex);
4673  abort:
4674         mutex_unlock(&disks_mutex);
4675         if (!error && mddev->kobj.sd) {
4676                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4677                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4678         }
4679         mddev_put(mddev);
4680         return error;
4681 }
4682
4683 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4684 {
4685         md_alloc(dev, NULL);
4686         return NULL;
4687 }
4688
4689 static int add_named_array(const char *val, struct kernel_param *kp)
4690 {
4691         /* val must be "md_*" where * is not all digits.
4692          * We allocate an array with a large free minor number, and
4693          * set the name to val.  val must not already be an active name.
4694          */
4695         int len = strlen(val);
4696         char buf[DISK_NAME_LEN];
4697
4698         while (len && val[len-1] == '\n')
4699                 len--;
4700         if (len >= DISK_NAME_LEN)
4701                 return -E2BIG;
4702         strlcpy(buf, val, len+1);
4703         if (strncmp(buf, "md_", 3) != 0)
4704                 return -EINVAL;
4705         return md_alloc(0, buf);
4706 }
4707
4708 static void md_safemode_timeout(unsigned long data)
4709 {
4710         struct mddev *mddev = (struct mddev *) data;
4711
4712         if (!atomic_read(&mddev->writes_pending)) {
4713                 mddev->safemode = 1;
4714                 if (mddev->external)
4715                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4716         }
4717         md_wakeup_thread(mddev->thread);
4718 }
4719
4720 static int start_dirty_degraded;
4721
4722 int md_run(struct mddev *mddev)
4723 {
4724         int err;
4725         struct md_rdev *rdev;
4726         struct md_personality *pers;
4727
4728         if (list_empty(&mddev->disks))
4729                 /* cannot run an array with no devices.. */
4730                 return -EINVAL;
4731
4732         if (mddev->pers)
4733                 return -EBUSY;
4734         /* Cannot run until previous stop completes properly */
4735         if (mddev->sysfs_active)
4736                 return -EBUSY;
4737
4738         /*
4739          * Analyze all RAID superblock(s)
4740          */
4741         if (!mddev->raid_disks) {
4742                 if (!mddev->persistent)
4743                         return -EINVAL;
4744                 analyze_sbs(mddev);
4745         }
4746
4747         if (mddev->level != LEVEL_NONE)
4748                 request_module("md-level-%d", mddev->level);
4749         else if (mddev->clevel[0])
4750                 request_module("md-%s", mddev->clevel);
4751
4752         /*
4753          * Drop all container device buffers, from now on
4754          * the only valid external interface is through the md
4755          * device.
4756          */
4757         list_for_each_entry(rdev, &mddev->disks, same_set) {
4758                 if (test_bit(Faulty, &rdev->flags))
4759                         continue;
4760                 sync_blockdev(rdev->bdev);
4761                 invalidate_bdev(rdev->bdev);
4762
4763                 /* perform some consistency tests on the device.
4764                  * We don't want the data to overlap the metadata,
4765                  * Internal Bitmap issues have been handled elsewhere.
4766                  */
4767                 if (rdev->meta_bdev) {
4768                         /* Nothing to check */;
4769                 } else if (rdev->data_offset < rdev->sb_start) {
4770                         if (mddev->dev_sectors &&
4771                             rdev->data_offset + mddev->dev_sectors
4772                             > rdev->sb_start) {
4773                                 printk("md: %s: data overlaps metadata\n",
4774                                        mdname(mddev));
4775                                 return -EINVAL;
4776                         }
4777                 } else {
4778                         if (rdev->sb_start + rdev->sb_size/512
4779                             > rdev->data_offset) {
4780                                 printk("md: %s: metadata overlaps data\n",
4781                                        mdname(mddev));
4782                                 return -EINVAL;
4783                         }
4784                 }
4785                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4786         }
4787
4788         if (mddev->bio_set == NULL)
4789                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4790                                                sizeof(struct mddev *));
4791
4792         spin_lock(&pers_lock);
4793         pers = find_pers(mddev->level, mddev->clevel);
4794         if (!pers || !try_module_get(pers->owner)) {
4795                 spin_unlock(&pers_lock);
4796                 if (mddev->level != LEVEL_NONE)
4797                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4798                                mddev->level);
4799                 else
4800                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4801                                mddev->clevel);
4802                 return -EINVAL;
4803         }
4804         mddev->pers = pers;
4805         spin_unlock(&pers_lock);
4806         if (mddev->level != pers->level) {
4807                 mddev->level = pers->level;
4808                 mddev->new_level = pers->level;
4809         }
4810         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4811
4812         if (mddev->reshape_position != MaxSector &&
4813             pers->start_reshape == NULL) {
4814                 /* This personality cannot handle reshaping... */
4815                 mddev->pers = NULL;
4816                 module_put(pers->owner);
4817                 return -EINVAL;
4818         }
4819
4820         if (pers->sync_request) {
4821                 /* Warn if this is a potentially silly
4822                  * configuration.
4823                  */
4824                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4825                 struct md_rdev *rdev2;
4826                 int warned = 0;
4827
4828                 list_for_each_entry(rdev, &mddev->disks, same_set)
4829                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4830                                 if (rdev < rdev2 &&
4831                                     rdev->bdev->bd_contains ==
4832                                     rdev2->bdev->bd_contains) {
4833                                         printk(KERN_WARNING
4834                                                "%s: WARNING: %s appears to be"
4835                                                " on the same physical disk as"
4836                                                " %s.\n",
4837                                                mdname(mddev),
4838                                                bdevname(rdev->bdev,b),
4839                                                bdevname(rdev2->bdev,b2));
4840                                         warned = 1;
4841                                 }
4842                         }
4843
4844                 if (warned)
4845                         printk(KERN_WARNING
4846                                "True protection against single-disk"
4847                                " failure might be compromised.\n");
4848         }
4849
4850         mddev->recovery = 0;
4851         /* may be over-ridden by personality */
4852         mddev->resync_max_sectors = mddev->dev_sectors;
4853
4854         mddev->ok_start_degraded = start_dirty_degraded;
4855
4856         if (start_readonly && mddev->ro == 0)
4857                 mddev->ro = 2; /* read-only, but switch on first write */
4858
4859         err = mddev->pers->run(mddev);
4860         if (err)
4861                 printk(KERN_ERR "md: pers->run() failed ...\n");
4862         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4863                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4864                           " but 'external_size' not in effect?\n", __func__);
4865                 printk(KERN_ERR
4866                        "md: invalid array_size %llu > default size %llu\n",
4867                        (unsigned long long)mddev->array_sectors / 2,
4868                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4869                 err = -EINVAL;
4870                 mddev->pers->stop(mddev);
4871         }
4872         if (err == 0 && mddev->pers->sync_request) {
4873                 err = bitmap_create(mddev);
4874                 if (err) {
4875                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4876                                mdname(mddev), err);
4877                         mddev->pers->stop(mddev);
4878                 }
4879         }
4880         if (err) {
4881                 module_put(mddev->pers->owner);
4882                 mddev->pers = NULL;
4883                 bitmap_destroy(mddev);
4884                 return err;
4885         }
4886         if (mddev->pers->sync_request) {
4887                 if (mddev->kobj.sd &&
4888                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4889                         printk(KERN_WARNING
4890                                "md: cannot register extra attributes for %s\n",
4891                                mdname(mddev));
4892                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4893         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4894                 mddev->ro = 0;
4895
4896         atomic_set(&mddev->writes_pending,0);
4897         atomic_set(&mddev->max_corr_read_errors,
4898                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4899         mddev->safemode = 0;
4900         mddev->safemode_timer.function = md_safemode_timeout;
4901         mddev->safemode_timer.data = (unsigned long) mddev;
4902         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4903         mddev->in_sync = 1;
4904         smp_wmb();
4905         mddev->ready = 1;
4906         list_for_each_entry(rdev, &mddev->disks, same_set)
4907                 if (rdev->raid_disk >= 0)
4908                         if (sysfs_link_rdev(mddev, rdev))
4909                                 /* failure here is OK */;
4910         
4911         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4912         
4913         if (mddev->flags)
4914                 md_update_sb(mddev, 0);
4915
4916         md_new_event(mddev);
4917         sysfs_notify_dirent_safe(mddev->sysfs_state);
4918         sysfs_notify_dirent_safe(mddev->sysfs_action);
4919         sysfs_notify(&mddev->kobj, NULL, "degraded");
4920         return 0;
4921 }
4922 EXPORT_SYMBOL_GPL(md_run);
4923
4924 static int do_md_run(struct mddev *mddev)
4925 {
4926         int err;
4927
4928         err = md_run(mddev);
4929         if (err)
4930                 goto out;
4931         err = bitmap_load(mddev);
4932         if (err) {
4933                 bitmap_destroy(mddev);
4934                 goto out;
4935         }
4936
4937         md_wakeup_thread(mddev->thread);
4938         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4939
4940         set_capacity(mddev->gendisk, mddev->array_sectors);
4941         revalidate_disk(mddev->gendisk);
4942         mddev->changed = 1;
4943         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4944 out:
4945         return err;
4946 }
4947
4948 static int restart_array(struct mddev *mddev)
4949 {
4950         struct gendisk *disk = mddev->gendisk;
4951
4952         /* Complain if it has no devices */
4953         if (list_empty(&mddev->disks))
4954                 return -ENXIO;
4955         if (!mddev->pers)
4956                 return -EINVAL;
4957         if (!mddev->ro)
4958                 return -EBUSY;
4959         mddev->safemode = 0;
4960         mddev->ro = 0;
4961         set_disk_ro(disk, 0);
4962         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4963                 mdname(mddev));
4964         /* Kick recovery or resync if necessary */
4965         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4966         md_wakeup_thread(mddev->thread);
4967         md_wakeup_thread(mddev->sync_thread);
4968         sysfs_notify_dirent_safe(mddev->sysfs_state);
4969         return 0;
4970 }
4971
4972 /* similar to deny_write_access, but accounts for our holding a reference
4973  * to the file ourselves */
4974 static int deny_bitmap_write_access(struct file * file)
4975 {
4976         struct inode *inode = file->f_mapping->host;
4977
4978         spin_lock(&inode->i_lock);
4979         if (atomic_read(&inode->i_writecount) > 1) {
4980                 spin_unlock(&inode->i_lock);
4981                 return -ETXTBSY;
4982         }
4983         atomic_set(&inode->i_writecount, -1);
4984         spin_unlock(&inode->i_lock);
4985
4986         return 0;
4987 }
4988
4989 void restore_bitmap_write_access(struct file *file)
4990 {
4991         struct inode *inode = file->f_mapping->host;
4992
4993         spin_lock(&inode->i_lock);
4994         atomic_set(&inode->i_writecount, 1);
4995         spin_unlock(&inode->i_lock);
4996 }
4997
4998 static void md_clean(struct mddev *mddev)
4999 {
5000         mddev->array_sectors = 0;
5001         mddev->external_size = 0;
5002         mddev->dev_sectors = 0;
5003         mddev->raid_disks = 0;
5004         mddev->recovery_cp = 0;
5005         mddev->resync_min = 0;
5006         mddev->resync_max = MaxSector;
5007         mddev->reshape_position = MaxSector;
5008         mddev->external = 0;
5009         mddev->persistent = 0;
5010         mddev->level = LEVEL_NONE;
5011         mddev->clevel[0] = 0;
5012         mddev->flags = 0;
5013         mddev->ro = 0;
5014         mddev->metadata_type[0] = 0;
5015         mddev->chunk_sectors = 0;
5016         mddev->ctime = mddev->utime = 0;
5017         mddev->layout = 0;
5018         mddev->max_disks = 0;
5019         mddev->events = 0;
5020         mddev->can_decrease_events = 0;
5021         mddev->delta_disks = 0;
5022         mddev->new_level = LEVEL_NONE;
5023         mddev->new_layout = 0;
5024         mddev->new_chunk_sectors = 0;
5025         mddev->curr_resync = 0;
5026         mddev->resync_mismatches = 0;
5027         mddev->suspend_lo = mddev->suspend_hi = 0;
5028         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5029         mddev->recovery = 0;
5030         mddev->in_sync = 0;
5031         mddev->changed = 0;
5032         mddev->degraded = 0;
5033         mddev->safemode = 0;
5034         mddev->bitmap_info.offset = 0;
5035         mddev->bitmap_info.default_offset = 0;
5036         mddev->bitmap_info.chunksize = 0;
5037         mddev->bitmap_info.daemon_sleep = 0;
5038         mddev->bitmap_info.max_write_behind = 0;
5039 }
5040
5041 static void __md_stop_writes(struct mddev *mddev)
5042 {
5043         if (mddev->sync_thread) {
5044                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5045                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5046                 reap_sync_thread(mddev);
5047         }
5048
5049         del_timer_sync(&mddev->safemode_timer);
5050
5051         bitmap_flush(mddev);
5052         md_super_wait(mddev);
5053
5054         if (!mddev->in_sync || mddev->flags) {
5055                 /* mark array as shutdown cleanly */
5056                 mddev->in_sync = 1;
5057                 md_update_sb(mddev, 1);
5058         }
5059 }
5060
5061 void md_stop_writes(struct mddev *mddev)
5062 {
5063         mddev_lock(mddev);
5064         __md_stop_writes(mddev);
5065         mddev_unlock(mddev);
5066 }
5067 EXPORT_SYMBOL_GPL(md_stop_writes);
5068
5069 void md_stop(struct mddev *mddev)
5070 {
5071         mddev->ready = 0;
5072         mddev->pers->stop(mddev);
5073         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5074                 mddev->to_remove = &md_redundancy_group;
5075         module_put(mddev->pers->owner);
5076         mddev->pers = NULL;
5077         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5078 }
5079 EXPORT_SYMBOL_GPL(md_stop);
5080
5081 static int md_set_readonly(struct mddev *mddev, int is_open)
5082 {
5083         int err = 0;
5084         mutex_lock(&mddev->open_mutex);
5085         if (atomic_read(&mddev->openers) > is_open) {
5086                 printk("md: %s still in use.\n",mdname(mddev));
5087                 err = -EBUSY;
5088                 goto out;
5089         }
5090         if (mddev->pers) {
5091                 __md_stop_writes(mddev);
5092
5093                 err  = -ENXIO;
5094                 if (mddev->ro==1)
5095                         goto out;
5096                 mddev->ro = 1;
5097                 set_disk_ro(mddev->gendisk, 1);
5098                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5099                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5100                 err = 0;        
5101         }
5102 out:
5103         mutex_unlock(&mddev->open_mutex);
5104         return err;
5105 }
5106
5107 /* mode:
5108  *   0 - completely stop and dis-assemble array
5109  *   2 - stop but do not disassemble array
5110  */
5111 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5112 {
5113         struct gendisk *disk = mddev->gendisk;
5114         struct md_rdev *rdev;
5115
5116         mutex_lock(&mddev->open_mutex);
5117         if (atomic_read(&mddev->openers) > is_open ||
5118             mddev->sysfs_active) {
5119                 printk("md: %s still in use.\n",mdname(mddev));
5120                 mutex_unlock(&mddev->open_mutex);
5121                 return -EBUSY;
5122         }
5123
5124         if (mddev->pers) {
5125                 if (mddev->ro)
5126                         set_disk_ro(disk, 0);
5127
5128                 __md_stop_writes(mddev);
5129                 md_stop(mddev);
5130                 mddev->queue->merge_bvec_fn = NULL;
5131                 mddev->queue->backing_dev_info.congested_fn = NULL;
5132
5133                 /* tell userspace to handle 'inactive' */
5134                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5135
5136                 list_for_each_entry(rdev, &mddev->disks, same_set)
5137                         if (rdev->raid_disk >= 0)
5138                                 sysfs_unlink_rdev(mddev, rdev);
5139
5140                 set_capacity(disk, 0);
5141                 mutex_unlock(&mddev->open_mutex);
5142                 mddev->changed = 1;
5143                 revalidate_disk(disk);
5144
5145                 if (mddev->ro)
5146                         mddev->ro = 0;
5147         } else
5148                 mutex_unlock(&mddev->open_mutex);
5149         /*
5150          * Free resources if final stop
5151          */
5152         if (mode == 0) {
5153                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5154
5155                 bitmap_destroy(mddev);
5156                 if (mddev->bitmap_info.file) {
5157                         restore_bitmap_write_access(mddev->bitmap_info.file);
5158                         fput(mddev->bitmap_info.file);
5159                         mddev->bitmap_info.file = NULL;
5160                 }
5161                 mddev->bitmap_info.offset = 0;
5162
5163                 export_array(mddev);
5164
5165                 md_clean(mddev);
5166                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5167                 if (mddev->hold_active == UNTIL_STOP)
5168                         mddev->hold_active = 0;
5169         }
5170         blk_integrity_unregister(disk);
5171         md_new_event(mddev);
5172         sysfs_notify_dirent_safe(mddev->sysfs_state);
5173         return 0;
5174 }
5175
5176 #ifndef MODULE
5177 static void autorun_array(struct mddev *mddev)
5178 {
5179         struct md_rdev *rdev;
5180         int err;
5181
5182         if (list_empty(&mddev->disks))
5183                 return;
5184
5185         printk(KERN_INFO "md: running: ");
5186
5187         list_for_each_entry(rdev, &mddev->disks, same_set) {
5188                 char b[BDEVNAME_SIZE];
5189                 printk("<%s>", bdevname(rdev->bdev,b));
5190         }
5191         printk("\n");
5192
5193         err = do_md_run(mddev);
5194         if (err) {
5195                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5196                 do_md_stop(mddev, 0, 0);
5197         }
5198 }
5199
5200 /*
5201  * lets try to run arrays based on all disks that have arrived
5202  * until now. (those are in pending_raid_disks)
5203  *
5204  * the method: pick the first pending disk, collect all disks with
5205  * the same UUID, remove all from the pending list and put them into
5206  * the 'same_array' list. Then order this list based on superblock
5207  * update time (freshest comes first), kick out 'old' disks and
5208  * compare superblocks. If everything's fine then run it.
5209  *
5210  * If "unit" is allocated, then bump its reference count
5211  */
5212 static void autorun_devices(int part)
5213 {
5214         struct md_rdev *rdev0, *rdev, *tmp;
5215         struct mddev *mddev;
5216         char b[BDEVNAME_SIZE];
5217
5218         printk(KERN_INFO "md: autorun ...\n");
5219         while (!list_empty(&pending_raid_disks)) {
5220                 int unit;
5221                 dev_t dev;
5222                 LIST_HEAD(candidates);
5223                 rdev0 = list_entry(pending_raid_disks.next,
5224                                          struct md_rdev, same_set);
5225
5226                 printk(KERN_INFO "md: considering %s ...\n",
5227                         bdevname(rdev0->bdev,b));
5228                 INIT_LIST_HEAD(&candidates);
5229                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5230                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5231                                 printk(KERN_INFO "md:  adding %s ...\n",
5232                                         bdevname(rdev->bdev,b));
5233                                 list_move(&rdev->same_set, &candidates);
5234                         }
5235                 /*
5236                  * now we have a set of devices, with all of them having
5237                  * mostly sane superblocks. It's time to allocate the
5238                  * mddev.
5239                  */
5240                 if (part) {
5241                         dev = MKDEV(mdp_major,
5242                                     rdev0->preferred_minor << MdpMinorShift);
5243                         unit = MINOR(dev) >> MdpMinorShift;
5244                 } else {
5245                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5246                         unit = MINOR(dev);
5247                 }
5248                 if (rdev0->preferred_minor != unit) {
5249                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5250                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5251                         break;
5252                 }
5253
5254                 md_probe(dev, NULL, NULL);
5255                 mddev = mddev_find(dev);
5256                 if (!mddev || !mddev->gendisk) {
5257                         if (mddev)
5258                                 mddev_put(mddev);
5259                         printk(KERN_ERR
5260                                 "md: cannot allocate memory for md drive.\n");
5261                         break;
5262                 }
5263                 if (mddev_lock(mddev)) 
5264                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5265                                mdname(mddev));
5266                 else if (mddev->raid_disks || mddev->major_version
5267                          || !list_empty(&mddev->disks)) {
5268                         printk(KERN_WARNING 
5269                                 "md: %s already running, cannot run %s\n",
5270                                 mdname(mddev), bdevname(rdev0->bdev,b));
5271                         mddev_unlock(mddev);
5272                 } else {
5273                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5274                         mddev->persistent = 1;
5275                         rdev_for_each_list(rdev, tmp, &candidates) {
5276                                 list_del_init(&rdev->same_set);
5277                                 if (bind_rdev_to_array(rdev, mddev))
5278                                         export_rdev(rdev);
5279                         }
5280                         autorun_array(mddev);
5281                         mddev_unlock(mddev);
5282                 }
5283                 /* on success, candidates will be empty, on error
5284                  * it won't...
5285                  */
5286                 rdev_for_each_list(rdev, tmp, &candidates) {
5287                         list_del_init(&rdev->same_set);
5288                         export_rdev(rdev);
5289                 }
5290                 mddev_put(mddev);
5291         }
5292         printk(KERN_INFO "md: ... autorun DONE.\n");
5293 }
5294 #endif /* !MODULE */
5295
5296 static int get_version(void __user * arg)
5297 {
5298         mdu_version_t ver;
5299
5300         ver.major = MD_MAJOR_VERSION;
5301         ver.minor = MD_MINOR_VERSION;
5302         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5303
5304         if (copy_to_user(arg, &ver, sizeof(ver)))
5305                 return -EFAULT;
5306
5307         return 0;
5308 }
5309
5310 static int get_array_info(struct mddev * mddev, void __user * arg)
5311 {
5312         mdu_array_info_t info;
5313         int nr,working,insync,failed,spare;
5314         struct md_rdev *rdev;
5315
5316         nr=working=insync=failed=spare=0;
5317         list_for_each_entry(rdev, &mddev->disks, same_set) {
5318                 nr++;
5319                 if (test_bit(Faulty, &rdev->flags))
5320                         failed++;
5321                 else {
5322                         working++;
5323                         if (test_bit(In_sync, &rdev->flags))
5324                                 insync++;       
5325                         else
5326                                 spare++;
5327                 }
5328         }
5329
5330         info.major_version = mddev->major_version;
5331         info.minor_version = mddev->minor_version;
5332         info.patch_version = MD_PATCHLEVEL_VERSION;
5333         info.ctime         = mddev->ctime;
5334         info.level         = mddev->level;
5335         info.size          = mddev->dev_sectors / 2;
5336         if (info.size != mddev->dev_sectors / 2) /* overflow */
5337                 info.size = -1;
5338         info.nr_disks      = nr;
5339         info.raid_disks    = mddev->raid_disks;
5340         info.md_minor      = mddev->md_minor;
5341         info.not_persistent= !mddev->persistent;
5342
5343         info.utime         = mddev->utime;
5344         info.state         = 0;
5345         if (mddev->in_sync)
5346                 info.state = (1<<MD_SB_CLEAN);
5347         if (mddev->bitmap && mddev->bitmap_info.offset)
5348                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5349         info.active_disks  = insync;
5350         info.working_disks = working;
5351         info.failed_disks  = failed;
5352         info.spare_disks   = spare;
5353
5354         info.layout        = mddev->layout;
5355         info.chunk_size    = mddev->chunk_sectors << 9;
5356
5357         if (copy_to_user(arg, &info, sizeof(info)))
5358                 return -EFAULT;
5359
5360         return 0;
5361 }
5362
5363 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5364 {
5365         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5366         char *ptr, *buf = NULL;
5367         int err = -ENOMEM;
5368
5369         if (md_allow_write(mddev))
5370                 file = kmalloc(sizeof(*file), GFP_NOIO);
5371         else
5372                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5373
5374         if (!file)
5375                 goto out;
5376
5377         /* bitmap disabled, zero the first byte and copy out */
5378         if (!mddev->bitmap || !mddev->bitmap->file) {
5379                 file->pathname[0] = '\0';
5380                 goto copy_out;
5381         }
5382
5383         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5384         if (!buf)
5385                 goto out;
5386
5387         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5388         if (IS_ERR(ptr))
5389                 goto out;
5390
5391         strcpy(file->pathname, ptr);
5392
5393 copy_out:
5394         err = 0;
5395         if (copy_to_user(arg, file, sizeof(*file)))
5396                 err = -EFAULT;
5397 out:
5398         kfree(buf);
5399         kfree(file);
5400         return err;
5401 }
5402
5403 static int get_disk_info(struct mddev * mddev, void __user * arg)
5404 {
5405         mdu_disk_info_t info;
5406         struct md_rdev *rdev;
5407
5408         if (copy_from_user(&info, arg, sizeof(info)))
5409                 return -EFAULT;
5410
5411         rdev = find_rdev_nr(mddev, info.number);
5412         if (rdev) {
5413                 info.major = MAJOR(rdev->bdev->bd_dev);
5414                 info.minor = MINOR(rdev->bdev->bd_dev);
5415                 info.raid_disk = rdev->raid_disk;
5416                 info.state = 0;
5417                 if (test_bit(Faulty, &rdev->flags))
5418                         info.state |= (1<<MD_DISK_FAULTY);
5419                 else if (test_bit(In_sync, &rdev->flags)) {
5420                         info.state |= (1<<MD_DISK_ACTIVE);
5421                         info.state |= (1<<MD_DISK_SYNC);
5422                 }
5423                 if (test_bit(WriteMostly, &rdev->flags))
5424                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5425         } else {
5426                 info.major = info.minor = 0;
5427                 info.raid_disk = -1;
5428                 info.state = (1<<MD_DISK_REMOVED);
5429         }
5430
5431         if (copy_to_user(arg, &info, sizeof(info)))
5432                 return -EFAULT;
5433
5434         return 0;
5435 }
5436
5437 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5438 {
5439         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5440         struct md_rdev *rdev;
5441         dev_t dev = MKDEV(info->major,info->minor);
5442
5443         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5444                 return -EOVERFLOW;
5445
5446         if (!mddev->raid_disks) {
5447                 int err;
5448                 /* expecting a device which has a superblock */
5449                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5450                 if (IS_ERR(rdev)) {
5451                         printk(KERN_WARNING 
5452                                 "md: md_import_device returned %ld\n",
5453                                 PTR_ERR(rdev));
5454                         return PTR_ERR(rdev);
5455                 }
5456                 if (!list_empty(&mddev->disks)) {
5457                         struct md_rdev *rdev0
5458                                 = list_entry(mddev->disks.next,
5459                                              struct md_rdev, same_set);
5460                         err = super_types[mddev->major_version]
5461                                 .load_super(rdev, rdev0, mddev->minor_version);
5462                         if (err < 0) {
5463                                 printk(KERN_WARNING 
5464                                         "md: %s has different UUID to %s\n",
5465                                         bdevname(rdev->bdev,b), 
5466                                         bdevname(rdev0->bdev,b2));
5467                                 export_rdev(rdev);
5468                                 return -EINVAL;
5469                         }
5470                 }
5471                 err = bind_rdev_to_array(rdev, mddev);
5472                 if (err)
5473                         export_rdev(rdev);
5474                 return err;
5475         }
5476
5477         /*
5478          * add_new_disk can be used once the array is assembled
5479          * to add "hot spares".  They must already have a superblock
5480          * written
5481          */
5482         if (mddev->pers) {
5483                 int err;
5484                 if (!mddev->pers->hot_add_disk) {
5485                         printk(KERN_WARNING 
5486                                 "%s: personality does not support diskops!\n",
5487                                mdname(mddev));
5488                         return -EINVAL;
5489                 }
5490                 if (mddev->persistent)
5491                         rdev = md_import_device(dev, mddev->major_version,
5492                                                 mddev->minor_version);
5493                 else
5494                         rdev = md_import_device(dev, -1, -1);
5495                 if (IS_ERR(rdev)) {
5496                         printk(KERN_WARNING 
5497                                 "md: md_import_device returned %ld\n",
5498                                 PTR_ERR(rdev));
5499                         return PTR_ERR(rdev);
5500                 }
5501                 /* set saved_raid_disk if appropriate */
5502                 if (!mddev->persistent) {
5503                         if (info->state & (1<<MD_DISK_SYNC)  &&
5504                             info->raid_disk < mddev->raid_disks) {
5505                                 rdev->raid_disk = info->raid_disk;
5506                                 set_bit(In_sync, &rdev->flags);
5507                         } else
5508                                 rdev->raid_disk = -1;
5509                 } else
5510                         super_types[mddev->major_version].
5511                                 validate_super(mddev, rdev);
5512                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5513                     (!test_bit(In_sync, &rdev->flags) ||
5514                      rdev->raid_disk != info->raid_disk)) {
5515                         /* This was a hot-add request, but events doesn't
5516                          * match, so reject it.
5517                          */
5518                         export_rdev(rdev);
5519                         return -EINVAL;
5520                 }
5521
5522                 if (test_bit(In_sync, &rdev->flags))
5523                         rdev->saved_raid_disk = rdev->raid_disk;
5524                 else
5525                         rdev->saved_raid_disk = -1;
5526
5527                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5528                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5529                         set_bit(WriteMostly, &rdev->flags);
5530                 else
5531                         clear_bit(WriteMostly, &rdev->flags);
5532
5533                 rdev->raid_disk = -1;
5534                 err = bind_rdev_to_array(rdev, mddev);
5535                 if (!err && !mddev->pers->hot_remove_disk) {
5536                         /* If there is hot_add_disk but no hot_remove_disk
5537                          * then added disks for geometry changes,
5538                          * and should be added immediately.
5539                          */
5540                         super_types[mddev->major_version].
5541                                 validate_super(mddev, rdev);
5542                         err = mddev->pers->hot_add_disk(mddev, rdev);
5543                         if (err)
5544                                 unbind_rdev_from_array(rdev);
5545                 }
5546                 if (err)
5547                         export_rdev(rdev);
5548                 else
5549                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5550
5551                 md_update_sb(mddev, 1);
5552                 if (mddev->degraded)
5553                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5554                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5555                 if (!err)
5556                         md_new_event(mddev);
5557                 md_wakeup_thread(mddev->thread);
5558                 return err;
5559         }
5560
5561         /* otherwise, add_new_disk is only allowed
5562          * for major_version==0 superblocks
5563          */
5564         if (mddev->major_version != 0) {
5565                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5566                        mdname(mddev));
5567                 return -EINVAL;
5568         }
5569
5570         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5571                 int err;
5572                 rdev = md_import_device(dev, -1, 0);
5573                 if (IS_ERR(rdev)) {
5574                         printk(KERN_WARNING 
5575                                 "md: error, md_import_device() returned %ld\n",
5576                                 PTR_ERR(rdev));
5577                         return PTR_ERR(rdev);
5578                 }
5579                 rdev->desc_nr = info->number;
5580                 if (info->raid_disk < mddev->raid_disks)
5581                         rdev->raid_disk = info->raid_disk;
5582                 else
5583                         rdev->raid_disk = -1;
5584
5585                 if (rdev->raid_disk < mddev->raid_disks)
5586                         if (info->state & (1<<MD_DISK_SYNC))
5587                                 set_bit(In_sync, &rdev->flags);
5588
5589                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5590                         set_bit(WriteMostly, &rdev->flags);
5591
5592                 if (!mddev->persistent) {
5593                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5594                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5595                 } else
5596                         rdev->sb_start = calc_dev_sboffset(rdev);
5597                 rdev->sectors = rdev->sb_start;
5598
5599                 err = bind_rdev_to_array(rdev, mddev);
5600                 if (err) {
5601                         export_rdev(rdev);
5602                         return err;
5603                 }
5604         }
5605
5606         return 0;
5607 }
5608
5609 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5610 {
5611         char b[BDEVNAME_SIZE];
5612         struct md_rdev *rdev;
5613
5614         rdev = find_rdev(mddev, dev);
5615         if (!rdev)
5616                 return -ENXIO;
5617
5618         if (rdev->raid_disk >= 0)
5619                 goto busy;
5620
5621         kick_rdev_from_array(rdev);
5622         md_update_sb(mddev, 1);
5623         md_new_event(mddev);
5624
5625         return 0;
5626 busy:
5627         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5628                 bdevname(rdev->bdev,b), mdname(mddev));
5629         return -EBUSY;
5630 }
5631
5632 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5633 {
5634         char b[BDEVNAME_SIZE];
5635         int err;
5636         struct md_rdev *rdev;
5637
5638         if (!mddev->pers)
5639                 return -ENODEV;
5640
5641         if (mddev->major_version != 0) {
5642                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5643                         " version-0 superblocks.\n",
5644                         mdname(mddev));
5645                 return -EINVAL;
5646         }
5647         if (!mddev->pers->hot_add_disk) {
5648                 printk(KERN_WARNING 
5649                         "%s: personality does not support diskops!\n",
5650                         mdname(mddev));
5651                 return -EINVAL;
5652         }
5653
5654         rdev = md_import_device(dev, -1, 0);
5655         if (IS_ERR(rdev)) {
5656                 printk(KERN_WARNING 
5657                         "md: error, md_import_device() returned %ld\n",
5658                         PTR_ERR(rdev));
5659                 return -EINVAL;
5660         }
5661
5662         if (mddev->persistent)
5663                 rdev->sb_start = calc_dev_sboffset(rdev);
5664         else
5665                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5666
5667         rdev->sectors = rdev->sb_start;
5668
5669         if (test_bit(Faulty, &rdev->flags)) {
5670                 printk(KERN_WARNING 
5671                         "md: can not hot-add faulty %s disk to %s!\n",
5672                         bdevname(rdev->bdev,b), mdname(mddev));
5673                 err = -EINVAL;
5674                 goto abort_export;
5675         }
5676         clear_bit(In_sync, &rdev->flags);
5677         rdev->desc_nr = -1;
5678         rdev->saved_raid_disk = -1;
5679         err = bind_rdev_to_array(rdev, mddev);
5680         if (err)
5681                 goto abort_export;
5682
5683         /*
5684          * The rest should better be atomic, we can have disk failures
5685          * noticed in interrupt contexts ...
5686          */
5687
5688         rdev->raid_disk = -1;
5689
5690         md_update_sb(mddev, 1);
5691
5692         /*
5693          * Kick recovery, maybe this spare has to be added to the
5694          * array immediately.
5695          */
5696         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5697         md_wakeup_thread(mddev->thread);
5698         md_new_event(mddev);
5699         return 0;
5700
5701 abort_export:
5702         export_rdev(rdev);
5703         return err;
5704 }
5705
5706 static int set_bitmap_file(struct mddev *mddev, int fd)
5707 {
5708         int err;
5709
5710         if (mddev->pers) {
5711                 if (!mddev->pers->quiesce)
5712                         return -EBUSY;
5713                 if (mddev->recovery || mddev->sync_thread)
5714                         return -EBUSY;
5715                 /* we should be able to change the bitmap.. */
5716         }
5717
5718
5719         if (fd >= 0) {
5720                 if (mddev->bitmap)
5721                         return -EEXIST; /* cannot add when bitmap is present */
5722                 mddev->bitmap_info.file = fget(fd);
5723
5724                 if (mddev->bitmap_info.file == NULL) {
5725                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5726                                mdname(mddev));
5727                         return -EBADF;
5728                 }
5729
5730                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5731                 if (err) {
5732                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5733                                mdname(mddev));
5734                         fput(mddev->bitmap_info.file);
5735                         mddev->bitmap_info.file = NULL;
5736                         return err;
5737                 }
5738                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5739         } else if (mddev->bitmap == NULL)
5740                 return -ENOENT; /* cannot remove what isn't there */
5741         err = 0;
5742         if (mddev->pers) {
5743                 mddev->pers->quiesce(mddev, 1);
5744                 if (fd >= 0) {
5745                         err = bitmap_create(mddev);
5746                         if (!err)
5747                                 err = bitmap_load(mddev);
5748                 }
5749                 if (fd < 0 || err) {
5750                         bitmap_destroy(mddev);
5751                         fd = -1; /* make sure to put the file */
5752                 }
5753                 mddev->pers->quiesce(mddev, 0);
5754         }
5755         if (fd < 0) {
5756                 if (mddev->bitmap_info.file) {
5757                         restore_bitmap_write_access(mddev->bitmap_info.file);
5758                         fput(mddev->bitmap_info.file);
5759                 }
5760                 mddev->bitmap_info.file = NULL;
5761         }
5762
5763         return err;
5764 }
5765
5766 /*
5767  * set_array_info is used two different ways
5768  * The original usage is when creating a new array.
5769  * In this usage, raid_disks is > 0 and it together with
5770  *  level, size, not_persistent,layout,chunksize determine the
5771  *  shape of the array.
5772  *  This will always create an array with a type-0.90.0 superblock.
5773  * The newer usage is when assembling an array.
5774  *  In this case raid_disks will be 0, and the major_version field is
5775  *  use to determine which style super-blocks are to be found on the devices.
5776  *  The minor and patch _version numbers are also kept incase the
5777  *  super_block handler wishes to interpret them.
5778  */
5779 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5780 {
5781
5782         if (info->raid_disks == 0) {
5783                 /* just setting version number for superblock loading */
5784                 if (info->major_version < 0 ||
5785                     info->major_version >= ARRAY_SIZE(super_types) ||
5786                     super_types[info->major_version].name == NULL) {
5787                         /* maybe try to auto-load a module? */
5788                         printk(KERN_INFO 
5789                                 "md: superblock version %d not known\n",
5790                                 info->major_version);
5791                         return -EINVAL;
5792                 }
5793                 mddev->major_version = info->major_version;
5794                 mddev->minor_version = info->minor_version;
5795                 mddev->patch_version = info->patch_version;
5796                 mddev->persistent = !info->not_persistent;
5797                 /* ensure mddev_put doesn't delete this now that there
5798                  * is some minimal configuration.
5799                  */
5800                 mddev->ctime         = get_seconds();
5801                 return 0;
5802         }
5803         mddev->major_version = MD_MAJOR_VERSION;
5804         mddev->minor_version = MD_MINOR_VERSION;
5805         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5806         mddev->ctime         = get_seconds();
5807
5808         mddev->level         = info->level;
5809         mddev->clevel[0]     = 0;
5810         mddev->dev_sectors   = 2 * (sector_t)info->size;
5811         mddev->raid_disks    = info->raid_disks;
5812         /* don't set md_minor, it is determined by which /dev/md* was
5813          * openned
5814          */
5815         if (info->state & (1<<MD_SB_CLEAN))
5816                 mddev->recovery_cp = MaxSector;
5817         else
5818                 mddev->recovery_cp = 0;
5819         mddev->persistent    = ! info->not_persistent;
5820         mddev->external      = 0;
5821
5822         mddev->layout        = info->layout;
5823         mddev->chunk_sectors = info->chunk_size >> 9;
5824
5825         mddev->max_disks     = MD_SB_DISKS;
5826
5827         if (mddev->persistent)
5828                 mddev->flags         = 0;
5829         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5830
5831         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5832         mddev->bitmap_info.offset = 0;
5833
5834         mddev->reshape_position = MaxSector;
5835
5836         /*
5837          * Generate a 128 bit UUID
5838          */
5839         get_random_bytes(mddev->uuid, 16);
5840
5841         mddev->new_level = mddev->level;
5842         mddev->new_chunk_sectors = mddev->chunk_sectors;
5843         mddev->new_layout = mddev->layout;
5844         mddev->delta_disks = 0;
5845
5846         return 0;
5847 }
5848
5849 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5850 {
5851         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5852
5853         if (mddev->external_size)
5854                 return;
5855
5856         mddev->array_sectors = array_sectors;
5857 }
5858 EXPORT_SYMBOL(md_set_array_sectors);
5859
5860 static int update_size(struct mddev *mddev, sector_t num_sectors)
5861 {
5862         struct md_rdev *rdev;
5863         int rv;
5864         int fit = (num_sectors == 0);
5865
5866         if (mddev->pers->resize == NULL)
5867                 return -EINVAL;
5868         /* The "num_sectors" is the number of sectors of each device that
5869          * is used.  This can only make sense for arrays with redundancy.
5870          * linear and raid0 always use whatever space is available. We can only
5871          * consider changing this number if no resync or reconstruction is
5872          * happening, and if the new size is acceptable. It must fit before the
5873          * sb_start or, if that is <data_offset, it must fit before the size
5874          * of each device.  If num_sectors is zero, we find the largest size
5875          * that fits.
5876          */
5877         if (mddev->sync_thread)
5878                 return -EBUSY;
5879         if (mddev->bitmap)
5880                 /* Sorry, cannot grow a bitmap yet, just remove it,
5881                  * grow, and re-add.
5882                  */
5883                 return -EBUSY;
5884         list_for_each_entry(rdev, &mddev->disks, same_set) {
5885                 sector_t avail = rdev->sectors;
5886
5887                 if (fit && (num_sectors == 0 || num_sectors > avail))
5888                         num_sectors = avail;
5889                 if (avail < num_sectors)
5890                         return -ENOSPC;
5891         }
5892         rv = mddev->pers->resize(mddev, num_sectors);
5893         if (!rv)
5894                 revalidate_disk(mddev->gendisk);
5895         return rv;
5896 }
5897
5898 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5899 {
5900         int rv;
5901         /* change the number of raid disks */
5902         if (mddev->pers->check_reshape == NULL)
5903                 return -EINVAL;
5904         if (raid_disks <= 0 ||
5905             (mddev->max_disks && raid_disks >= mddev->max_disks))
5906                 return -EINVAL;
5907         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5908                 return -EBUSY;
5909         mddev->delta_disks = raid_disks - mddev->raid_disks;
5910
5911         rv = mddev->pers->check_reshape(mddev);
5912         if (rv < 0)
5913                 mddev->delta_disks = 0;
5914         return rv;
5915 }
5916
5917
5918 /*
5919  * update_array_info is used to change the configuration of an
5920  * on-line array.
5921  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5922  * fields in the info are checked against the array.
5923  * Any differences that cannot be handled will cause an error.
5924  * Normally, only one change can be managed at a time.
5925  */
5926 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5927 {
5928         int rv = 0;
5929         int cnt = 0;
5930         int state = 0;
5931
5932         /* calculate expected state,ignoring low bits */
5933         if (mddev->bitmap && mddev->bitmap_info.offset)
5934                 state |= (1 << MD_SB_BITMAP_PRESENT);
5935
5936         if (mddev->major_version != info->major_version ||
5937             mddev->minor_version != info->minor_version ||
5938 /*          mddev->patch_version != info->patch_version || */
5939             mddev->ctime         != info->ctime         ||
5940             mddev->level         != info->level         ||
5941 /*          mddev->layout        != info->layout        || */
5942             !mddev->persistent   != info->not_persistent||
5943             mddev->chunk_sectors != info->chunk_size >> 9 ||
5944             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5945             ((state^info->state) & 0xfffffe00)
5946                 )
5947                 return -EINVAL;
5948         /* Check there is only one change */
5949         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5950                 cnt++;
5951         if (mddev->raid_disks != info->raid_disks)
5952                 cnt++;
5953         if (mddev->layout != info->layout)
5954                 cnt++;
5955         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5956                 cnt++;
5957         if (cnt == 0)
5958                 return 0;
5959         if (cnt > 1)
5960                 return -EINVAL;
5961
5962         if (mddev->layout != info->layout) {
5963                 /* Change layout
5964                  * we don't need to do anything at the md level, the
5965                  * personality will take care of it all.
5966                  */
5967                 if (mddev->pers->check_reshape == NULL)
5968                         return -EINVAL;
5969                 else {
5970                         mddev->new_layout = info->layout;
5971                         rv = mddev->pers->check_reshape(mddev);
5972                         if (rv)
5973                                 mddev->new_layout = mddev->layout;
5974                         return rv;
5975                 }
5976         }
5977         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5978                 rv = update_size(mddev, (sector_t)info->size * 2);
5979
5980         if (mddev->raid_disks    != info->raid_disks)
5981                 rv = update_raid_disks(mddev, info->raid_disks);
5982
5983         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5984                 if (mddev->pers->quiesce == NULL)
5985                         return -EINVAL;
5986                 if (mddev->recovery || mddev->sync_thread)
5987                         return -EBUSY;
5988                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5989                         /* add the bitmap */
5990                         if (mddev->bitmap)
5991                                 return -EEXIST;
5992                         if (mddev->bitmap_info.default_offset == 0)
5993                                 return -EINVAL;
5994                         mddev->bitmap_info.offset =
5995                                 mddev->bitmap_info.default_offset;
5996                         mddev->pers->quiesce(mddev, 1);
5997                         rv = bitmap_create(mddev);
5998                         if (!rv)
5999                                 rv = bitmap_load(mddev);
6000                         if (rv)
6001                                 bitmap_destroy(mddev);
6002                         mddev->pers->quiesce(mddev, 0);
6003                 } else {
6004                         /* remove the bitmap */
6005                         if (!mddev->bitmap)
6006                                 return -ENOENT;
6007                         if (mddev->bitmap->file)
6008                                 return -EINVAL;
6009                         mddev->pers->quiesce(mddev, 1);
6010                         bitmap_destroy(mddev);
6011                         mddev->pers->quiesce(mddev, 0);
6012                         mddev->bitmap_info.offset = 0;
6013                 }
6014         }
6015         md_update_sb(mddev, 1);
6016         return rv;
6017 }
6018
6019 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6020 {
6021         struct md_rdev *rdev;
6022
6023         if (mddev->pers == NULL)
6024                 return -ENODEV;
6025
6026         rdev = find_rdev(mddev, dev);
6027         if (!rdev)
6028                 return -ENODEV;
6029
6030         md_error(mddev, rdev);
6031         if (!test_bit(Faulty, &rdev->flags))
6032                 return -EBUSY;
6033         return 0;
6034 }
6035
6036 /*
6037  * We have a problem here : there is no easy way to give a CHS
6038  * virtual geometry. We currently pretend that we have a 2 heads
6039  * 4 sectors (with a BIG number of cylinders...). This drives
6040  * dosfs just mad... ;-)
6041  */
6042 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6043 {
6044         struct mddev *mddev = bdev->bd_disk->private_data;
6045
6046         geo->heads = 2;
6047         geo->sectors = 4;
6048         geo->cylinders = mddev->array_sectors / 8;
6049         return 0;
6050 }
6051
6052 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6053                         unsigned int cmd, unsigned long arg)
6054 {
6055         int err = 0;
6056         void __user *argp = (void __user *)arg;
6057         struct mddev *mddev = NULL;
6058         int ro;
6059
6060         if (!capable(CAP_SYS_ADMIN))
6061                 return -EACCES;
6062
6063         /*
6064          * Commands dealing with the RAID driver but not any
6065          * particular array:
6066          */
6067         switch (cmd)
6068         {
6069                 case RAID_VERSION:
6070                         err = get_version(argp);
6071                         goto done;
6072
6073                 case PRINT_RAID_DEBUG:
6074                         err = 0;
6075                         md_print_devices();
6076                         goto done;
6077
6078 #ifndef MODULE
6079                 case RAID_AUTORUN:
6080                         err = 0;
6081                         autostart_arrays(arg);
6082                         goto done;
6083 #endif
6084                 default:;
6085         }
6086
6087         /*
6088          * Commands creating/starting a new array:
6089          */
6090
6091         mddev = bdev->bd_disk->private_data;
6092
6093         if (!mddev) {
6094                 BUG();
6095                 goto abort;
6096         }
6097
6098         err = mddev_lock(mddev);
6099         if (err) {
6100                 printk(KERN_INFO 
6101                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6102                         err, cmd);
6103                 goto abort;
6104         }
6105
6106         switch (cmd)
6107         {
6108                 case SET_ARRAY_INFO:
6109                         {
6110                                 mdu_array_info_t info;
6111                                 if (!arg)
6112                                         memset(&info, 0, sizeof(info));
6113                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6114                                         err = -EFAULT;
6115                                         goto abort_unlock;
6116                                 }
6117                                 if (mddev->pers) {
6118                                         err = update_array_info(mddev, &info);
6119                                         if (err) {
6120                                                 printk(KERN_WARNING "md: couldn't update"
6121                                                        " array info. %d\n", err);
6122                                                 goto abort_unlock;
6123                                         }
6124                                         goto done_unlock;
6125                                 }
6126                                 if (!list_empty(&mddev->disks)) {
6127                                         printk(KERN_WARNING
6128                                                "md: array %s already has disks!\n",
6129                                                mdname(mddev));
6130                                         err = -EBUSY;
6131                                         goto abort_unlock;
6132                                 }
6133                                 if (mddev->raid_disks) {
6134                                         printk(KERN_WARNING
6135                                                "md: array %s already initialised!\n",
6136                                                mdname(mddev));
6137                                         err = -EBUSY;
6138                                         goto abort_unlock;
6139                                 }
6140                                 err = set_array_info(mddev, &info);
6141                                 if (err) {
6142                                         printk(KERN_WARNING "md: couldn't set"
6143                                                " array info. %d\n", err);
6144                                         goto abort_unlock;
6145                                 }
6146                         }
6147                         goto done_unlock;
6148
6149                 default:;
6150         }
6151
6152         /*
6153          * Commands querying/configuring an existing array:
6154          */
6155         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6156          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6157         if ((!mddev->raid_disks && !mddev->external)
6158             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6159             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6160             && cmd != GET_BITMAP_FILE) {
6161                 err = -ENODEV;
6162                 goto abort_unlock;
6163         }
6164
6165         /*
6166          * Commands even a read-only array can execute:
6167          */
6168         switch (cmd)
6169         {
6170                 case GET_ARRAY_INFO:
6171                         err = get_array_info(mddev, argp);
6172                         goto done_unlock;
6173
6174                 case GET_BITMAP_FILE:
6175                         err = get_bitmap_file(mddev, argp);
6176                         goto done_unlock;
6177
6178                 case GET_DISK_INFO:
6179                         err = get_disk_info(mddev, argp);
6180                         goto done_unlock;
6181
6182                 case RESTART_ARRAY_RW:
6183                         err = restart_array(mddev);
6184                         goto done_unlock;
6185
6186                 case STOP_ARRAY:
6187                         err = do_md_stop(mddev, 0, 1);
6188                         goto done_unlock;
6189
6190                 case STOP_ARRAY_RO:
6191                         err = md_set_readonly(mddev, 1);
6192                         goto done_unlock;
6193
6194                 case BLKROSET:
6195                         if (get_user(ro, (int __user *)(arg))) {
6196                                 err = -EFAULT;
6197                                 goto done_unlock;
6198                         }
6199                         err = -EINVAL;
6200
6201                         /* if the bdev is going readonly the value of mddev->ro
6202                          * does not matter, no writes are coming
6203                          */
6204                         if (ro)
6205                                 goto done_unlock;
6206
6207                         /* are we are already prepared for writes? */
6208                         if (mddev->ro != 1)
6209                                 goto done_unlock;
6210
6211                         /* transitioning to readauto need only happen for
6212                          * arrays that call md_write_start
6213                          */
6214                         if (mddev->pers) {
6215                                 err = restart_array(mddev);
6216                                 if (err == 0) {
6217                                         mddev->ro = 2;
6218                                         set_disk_ro(mddev->gendisk, 0);
6219                                 }
6220                         }
6221                         goto done_unlock;
6222         }
6223
6224         /*
6225          * The remaining ioctls are changing the state of the
6226          * superblock, so we do not allow them on read-only arrays.
6227          * However non-MD ioctls (e.g. get-size) will still come through
6228          * here and hit the 'default' below, so only disallow
6229          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6230          */
6231         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6232                 if (mddev->ro == 2) {
6233                         mddev->ro = 0;
6234                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6235                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6236                         md_wakeup_thread(mddev->thread);
6237                 } else {
6238                         err = -EROFS;
6239                         goto abort_unlock;
6240                 }
6241         }
6242
6243         switch (cmd)
6244         {
6245                 case ADD_NEW_DISK:
6246                 {
6247                         mdu_disk_info_t info;
6248                         if (copy_from_user(&info, argp, sizeof(info)))
6249                                 err = -EFAULT;
6250                         else
6251                                 err = add_new_disk(mddev, &info);
6252                         goto done_unlock;
6253                 }
6254
6255                 case HOT_REMOVE_DISK:
6256                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6257                         goto done_unlock;
6258
6259                 case HOT_ADD_DISK:
6260                         err = hot_add_disk(mddev, new_decode_dev(arg));
6261                         goto done_unlock;
6262
6263                 case SET_DISK_FAULTY:
6264                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6265                         goto done_unlock;
6266
6267                 case RUN_ARRAY:
6268                         err = do_md_run(mddev);
6269                         goto done_unlock;
6270
6271                 case SET_BITMAP_FILE:
6272                         err = set_bitmap_file(mddev, (int)arg);
6273                         goto done_unlock;
6274
6275                 default:
6276                         err = -EINVAL;
6277                         goto abort_unlock;
6278         }
6279
6280 done_unlock:
6281 abort_unlock:
6282         if (mddev->hold_active == UNTIL_IOCTL &&
6283             err != -EINVAL)
6284                 mddev->hold_active = 0;
6285         mddev_unlock(mddev);
6286
6287         return err;
6288 done:
6289         if (err)
6290                 MD_BUG();
6291 abort:
6292         return err;
6293 }
6294 #ifdef CONFIG_COMPAT
6295 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6296                     unsigned int cmd, unsigned long arg)
6297 {
6298         switch (cmd) {
6299         case HOT_REMOVE_DISK:
6300         case HOT_ADD_DISK:
6301         case SET_DISK_FAULTY:
6302         case SET_BITMAP_FILE:
6303                 /* These take in integer arg, do not convert */
6304                 break;
6305         default:
6306                 arg = (unsigned long)compat_ptr(arg);
6307                 break;
6308         }
6309
6310         return md_ioctl(bdev, mode, cmd, arg);
6311 }
6312 #endif /* CONFIG_COMPAT */
6313
6314 static int md_open(struct block_device *bdev, fmode_t mode)
6315 {
6316         /*
6317          * Succeed if we can lock the mddev, which confirms that
6318          * it isn't being stopped right now.
6319          */
6320         struct mddev *mddev = mddev_find(bdev->bd_dev);
6321         int err;
6322
6323         if (mddev->gendisk != bdev->bd_disk) {
6324                 /* we are racing with mddev_put which is discarding this
6325                  * bd_disk.
6326                  */
6327                 mddev_put(mddev);
6328                 /* Wait until bdev->bd_disk is definitely gone */
6329                 flush_workqueue(md_misc_wq);
6330                 /* Then retry the open from the top */
6331                 return -ERESTARTSYS;
6332         }
6333         BUG_ON(mddev != bdev->bd_disk->private_data);
6334
6335         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6336                 goto out;
6337
6338         err = 0;
6339         atomic_inc(&mddev->openers);
6340         mutex_unlock(&mddev->open_mutex);
6341
6342         check_disk_change(bdev);
6343  out:
6344         return err;
6345 }
6346
6347 static int md_release(struct gendisk *disk, fmode_t mode)
6348 {
6349         struct mddev *mddev = disk->private_data;
6350
6351         BUG_ON(!mddev);
6352         atomic_dec(&mddev->openers);
6353         mddev_put(mddev);
6354
6355         return 0;
6356 }
6357
6358 static int md_media_changed(struct gendisk *disk)
6359 {
6360         struct mddev *mddev = disk->private_data;
6361
6362         return mddev->changed;
6363 }
6364
6365 static int md_revalidate(struct gendisk *disk)
6366 {
6367         struct mddev *mddev = disk->private_data;
6368
6369         mddev->changed = 0;
6370         return 0;
6371 }
6372 static const struct block_device_operations md_fops =
6373 {
6374         .owner          = THIS_MODULE,
6375         .open           = md_open,
6376         .release        = md_release,
6377         .ioctl          = md_ioctl,
6378 #ifdef CONFIG_COMPAT
6379         .compat_ioctl   = md_compat_ioctl,
6380 #endif
6381         .getgeo         = md_getgeo,
6382         .media_changed  = md_media_changed,
6383         .revalidate_disk= md_revalidate,
6384 };
6385
6386 static int md_thread(void * arg)
6387 {
6388         struct md_thread *thread = arg;
6389
6390         /*
6391          * md_thread is a 'system-thread', it's priority should be very
6392          * high. We avoid resource deadlocks individually in each
6393          * raid personality. (RAID5 does preallocation) We also use RR and
6394          * the very same RT priority as kswapd, thus we will never get
6395          * into a priority inversion deadlock.
6396          *
6397          * we definitely have to have equal or higher priority than
6398          * bdflush, otherwise bdflush will deadlock if there are too
6399          * many dirty RAID5 blocks.
6400          */
6401
6402         allow_signal(SIGKILL);
6403         while (!kthread_should_stop()) {
6404
6405                 /* We need to wait INTERRUPTIBLE so that
6406                  * we don't add to the load-average.
6407                  * That means we need to be sure no signals are
6408                  * pending
6409                  */
6410                 if (signal_pending(current))
6411                         flush_signals(current);
6412
6413                 wait_event_interruptible_timeout
6414                         (thread->wqueue,
6415                          test_bit(THREAD_WAKEUP, &thread->flags)
6416                          || kthread_should_stop(),
6417                          thread->timeout);
6418
6419                 clear_bit(THREAD_WAKEUP, &thread->flags);
6420                 if (!kthread_should_stop())
6421                         thread->run(thread->mddev);
6422         }
6423
6424         return 0;
6425 }
6426
6427 void md_wakeup_thread(struct md_thread *thread)
6428 {
6429         if (thread) {
6430                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6431                 set_bit(THREAD_WAKEUP, &thread->flags);
6432                 wake_up(&thread->wqueue);
6433         }
6434 }
6435
6436 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6437                                  const char *name)
6438 {
6439         struct md_thread *thread;
6440
6441         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6442         if (!thread)
6443                 return NULL;
6444
6445         init_waitqueue_head(&thread->wqueue);
6446
6447         thread->run = run;
6448         thread->mddev = mddev;
6449         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6450         thread->tsk = kthread_run(md_thread, thread,
6451                                   "%s_%s",
6452                                   mdname(thread->mddev),
6453                                   name ?: mddev->pers->name);
6454         if (IS_ERR(thread->tsk)) {
6455                 kfree(thread);
6456                 return NULL;
6457         }
6458         return thread;
6459 }
6460
6461 void md_unregister_thread(struct md_thread **threadp)
6462 {
6463         struct md_thread *thread = *threadp;
6464         if (!thread)
6465                 return;
6466         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6467         /* Locking ensures that mddev_unlock does not wake_up a
6468          * non-existent thread
6469          */
6470         spin_lock(&pers_lock);
6471         *threadp = NULL;
6472         spin_unlock(&pers_lock);
6473
6474         kthread_stop(thread->tsk);
6475         kfree(thread);
6476 }
6477
6478 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6479 {
6480         if (!mddev) {
6481                 MD_BUG();
6482                 return;
6483         }
6484
6485         if (!rdev || test_bit(Faulty, &rdev->flags))
6486                 return;
6487
6488         if (!mddev->pers || !mddev->pers->error_handler)
6489                 return;
6490         mddev->pers->error_handler(mddev,rdev);
6491         if (mddev->degraded)
6492                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6493         sysfs_notify_dirent_safe(rdev->sysfs_state);
6494         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6495         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6496         md_wakeup_thread(mddev->thread);
6497         if (mddev->event_work.func)
6498                 queue_work(md_misc_wq, &mddev->event_work);
6499         md_new_event_inintr(mddev);
6500 }
6501
6502 /* seq_file implementation /proc/mdstat */
6503
6504 static void status_unused(struct seq_file *seq)
6505 {
6506         int i = 0;
6507         struct md_rdev *rdev;
6508
6509         seq_printf(seq, "unused devices: ");
6510
6511         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6512                 char b[BDEVNAME_SIZE];
6513                 i++;
6514                 seq_printf(seq, "%s ",
6515                               bdevname(rdev->bdev,b));
6516         }
6517         if (!i)
6518                 seq_printf(seq, "<none>");
6519
6520         seq_printf(seq, "\n");
6521 }
6522
6523
6524 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6525 {
6526         sector_t max_sectors, resync, res;
6527         unsigned long dt, db;
6528         sector_t rt;
6529         int scale;
6530         unsigned int per_milli;
6531
6532         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6533
6534         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6535                 max_sectors = mddev->resync_max_sectors;
6536         else
6537                 max_sectors = mddev->dev_sectors;
6538
6539         /*
6540          * Should not happen.
6541          */
6542         if (!max_sectors) {
6543                 MD_BUG();
6544                 return;
6545         }
6546         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6547          * in a sector_t, and (max_sectors>>scale) will fit in a
6548          * u32, as those are the requirements for sector_div.
6549          * Thus 'scale' must be at least 10
6550          */
6551         scale = 10;
6552         if (sizeof(sector_t) > sizeof(unsigned long)) {
6553                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6554                         scale++;
6555         }
6556         res = (resync>>scale)*1000;
6557         sector_div(res, (u32)((max_sectors>>scale)+1));
6558
6559         per_milli = res;
6560         {
6561                 int i, x = per_milli/50, y = 20-x;
6562                 seq_printf(seq, "[");
6563                 for (i = 0; i < x; i++)
6564                         seq_printf(seq, "=");
6565                 seq_printf(seq, ">");
6566                 for (i = 0; i < y; i++)
6567                         seq_printf(seq, ".");
6568                 seq_printf(seq, "] ");
6569         }
6570         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6571                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6572                     "reshape" :
6573                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6574                      "check" :
6575                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6576                       "resync" : "recovery"))),
6577                    per_milli/10, per_milli % 10,
6578                    (unsigned long long) resync/2,
6579                    (unsigned long long) max_sectors/2);
6580
6581         /*
6582          * dt: time from mark until now
6583          * db: blocks written from mark until now
6584          * rt: remaining time
6585          *
6586          * rt is a sector_t, so could be 32bit or 64bit.
6587          * So we divide before multiply in case it is 32bit and close
6588          * to the limit.
6589          * We scale the divisor (db) by 32 to avoid losing precision
6590          * near the end of resync when the number of remaining sectors
6591          * is close to 'db'.
6592          * We then divide rt by 32 after multiplying by db to compensate.
6593          * The '+1' avoids division by zero if db is very small.
6594          */
6595         dt = ((jiffies - mddev->resync_mark) / HZ);
6596         if (!dt) dt++;
6597         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6598                 - mddev->resync_mark_cnt;
6599
6600         rt = max_sectors - resync;    /* number of remaining sectors */
6601         sector_div(rt, db/32+1);
6602         rt *= dt;
6603         rt >>= 5;
6604
6605         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6606                    ((unsigned long)rt % 60)/6);
6607
6608         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6609 }
6610
6611 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6612 {
6613         struct list_head *tmp;
6614         loff_t l = *pos;
6615         struct mddev *mddev;
6616
6617         if (l >= 0x10000)
6618                 return NULL;
6619         if (!l--)
6620                 /* header */
6621                 return (void*)1;
6622
6623         spin_lock(&all_mddevs_lock);
6624         list_for_each(tmp,&all_mddevs)
6625                 if (!l--) {
6626                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6627                         mddev_get(mddev);
6628                         spin_unlock(&all_mddevs_lock);
6629                         return mddev;
6630                 }
6631         spin_unlock(&all_mddevs_lock);
6632         if (!l--)
6633                 return (void*)2;/* tail */
6634         return NULL;
6635 }
6636
6637 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6638 {
6639         struct list_head *tmp;
6640         struct mddev *next_mddev, *mddev = v;
6641         
6642         ++*pos;
6643         if (v == (void*)2)
6644                 return NULL;
6645
6646         spin_lock(&all_mddevs_lock);
6647         if (v == (void*)1)
6648                 tmp = all_mddevs.next;
6649         else
6650                 tmp = mddev->all_mddevs.next;
6651         if (tmp != &all_mddevs)
6652                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6653         else {
6654                 next_mddev = (void*)2;
6655                 *pos = 0x10000;
6656         }               
6657         spin_unlock(&all_mddevs_lock);
6658
6659         if (v != (void*)1)
6660                 mddev_put(mddev);
6661         return next_mddev;
6662
6663 }
6664
6665 static void md_seq_stop(struct seq_file *seq, void *v)
6666 {
6667         struct mddev *mddev = v;
6668
6669         if (mddev && v != (void*)1 && v != (void*)2)
6670                 mddev_put(mddev);
6671 }
6672
6673 static int md_seq_show(struct seq_file *seq, void *v)
6674 {
6675         struct mddev *mddev = v;
6676         sector_t sectors;
6677         struct md_rdev *rdev;
6678         struct bitmap *bitmap;
6679
6680         if (v == (void*)1) {
6681                 struct md_personality *pers;
6682                 seq_printf(seq, "Personalities : ");
6683                 spin_lock(&pers_lock);
6684                 list_for_each_entry(pers, &pers_list, list)
6685                         seq_printf(seq, "[%s] ", pers->name);
6686
6687                 spin_unlock(&pers_lock);
6688                 seq_printf(seq, "\n");
6689                 seq->poll_event = atomic_read(&md_event_count);
6690                 return 0;
6691         }
6692         if (v == (void*)2) {
6693                 status_unused(seq);
6694                 return 0;
6695         }
6696
6697         if (mddev_lock(mddev) < 0)
6698                 return -EINTR;
6699
6700         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6701                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6702                                                 mddev->pers ? "" : "in");
6703                 if (mddev->pers) {
6704                         if (mddev->ro==1)
6705                                 seq_printf(seq, " (read-only)");
6706                         if (mddev->ro==2)
6707                                 seq_printf(seq, " (auto-read-only)");
6708                         seq_printf(seq, " %s", mddev->pers->name);
6709                 }
6710
6711                 sectors = 0;
6712                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6713                         char b[BDEVNAME_SIZE];
6714                         seq_printf(seq, " %s[%d]",
6715                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6716                         if (test_bit(WriteMostly, &rdev->flags))
6717                                 seq_printf(seq, "(W)");
6718                         if (test_bit(Faulty, &rdev->flags)) {
6719                                 seq_printf(seq, "(F)");
6720                                 continue;
6721                         } else if (rdev->raid_disk < 0)
6722                                 seq_printf(seq, "(S)"); /* spare */
6723                         sectors += rdev->sectors;
6724                 }
6725
6726                 if (!list_empty(&mddev->disks)) {
6727                         if (mddev->pers)
6728                                 seq_printf(seq, "\n      %llu blocks",
6729                                            (unsigned long long)
6730                                            mddev->array_sectors / 2);
6731                         else
6732                                 seq_printf(seq, "\n      %llu blocks",
6733                                            (unsigned long long)sectors / 2);
6734                 }
6735                 if (mddev->persistent) {
6736                         if (mddev->major_version != 0 ||
6737                             mddev->minor_version != 90) {
6738                                 seq_printf(seq," super %d.%d",
6739                                            mddev->major_version,
6740                                            mddev->minor_version);
6741                         }
6742                 } else if (mddev->external)
6743                         seq_printf(seq, " super external:%s",
6744                                    mddev->metadata_type);
6745                 else
6746                         seq_printf(seq, " super non-persistent");
6747
6748                 if (mddev->pers) {
6749                         mddev->pers->status(seq, mddev);
6750                         seq_printf(seq, "\n      ");
6751                         if (mddev->pers->sync_request) {
6752                                 if (mddev->curr_resync > 2) {
6753                                         status_resync(seq, mddev);
6754                                         seq_printf(seq, "\n      ");
6755                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6756                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6757                                 else if (mddev->recovery_cp < MaxSector)
6758                                         seq_printf(seq, "\tresync=PENDING\n      ");
6759                         }
6760                 } else
6761                         seq_printf(seq, "\n       ");
6762
6763                 if ((bitmap = mddev->bitmap)) {
6764                         unsigned long chunk_kb;
6765                         unsigned long flags;
6766                         spin_lock_irqsave(&bitmap->lock, flags);
6767                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6768                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6769                                 "%lu%s chunk",
6770                                 bitmap->pages - bitmap->missing_pages,
6771                                 bitmap->pages,
6772                                 (bitmap->pages - bitmap->missing_pages)
6773                                         << (PAGE_SHIFT - 10),
6774                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6775                                 chunk_kb ? "KB" : "B");
6776                         if (bitmap->file) {
6777                                 seq_printf(seq, ", file: ");
6778                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6779                         }
6780
6781                         seq_printf(seq, "\n");
6782                         spin_unlock_irqrestore(&bitmap->lock, flags);
6783                 }
6784
6785                 seq_printf(seq, "\n");
6786         }
6787         mddev_unlock(mddev);
6788         
6789         return 0;
6790 }
6791
6792 static const struct seq_operations md_seq_ops = {
6793         .start  = md_seq_start,
6794         .next   = md_seq_next,
6795         .stop   = md_seq_stop,
6796         .show   = md_seq_show,
6797 };
6798
6799 static int md_seq_open(struct inode *inode, struct file *file)
6800 {
6801         struct seq_file *seq;
6802         int error;
6803
6804         error = seq_open(file, &md_seq_ops);
6805         if (error)
6806                 return error;
6807
6808         seq = file->private_data;
6809         seq->poll_event = atomic_read(&md_event_count);
6810         return error;
6811 }
6812
6813 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6814 {
6815         struct seq_file *seq = filp->private_data;
6816         int mask;
6817
6818         poll_wait(filp, &md_event_waiters, wait);
6819
6820         /* always allow read */
6821         mask = POLLIN | POLLRDNORM;
6822
6823         if (seq->poll_event != atomic_read(&md_event_count))
6824                 mask |= POLLERR | POLLPRI;
6825         return mask;
6826 }
6827
6828 static const struct file_operations md_seq_fops = {
6829         .owner          = THIS_MODULE,
6830         .open           = md_seq_open,
6831         .read           = seq_read,
6832         .llseek         = seq_lseek,
6833         .release        = seq_release_private,
6834         .poll           = mdstat_poll,
6835 };
6836
6837 int register_md_personality(struct md_personality *p)
6838 {
6839         spin_lock(&pers_lock);
6840         list_add_tail(&p->list, &pers_list);
6841         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6842         spin_unlock(&pers_lock);
6843         return 0;
6844 }
6845
6846 int unregister_md_personality(struct md_personality *p)
6847 {
6848         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6849         spin_lock(&pers_lock);
6850         list_del_init(&p->list);
6851         spin_unlock(&pers_lock);
6852         return 0;
6853 }
6854
6855 static int is_mddev_idle(struct mddev *mddev, int init)
6856 {
6857         struct md_rdev * rdev;
6858         int idle;
6859         int curr_events;
6860
6861         idle = 1;
6862         rcu_read_lock();
6863         rdev_for_each_rcu(rdev, mddev) {
6864                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6865                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6866                               (int)part_stat_read(&disk->part0, sectors[1]) -
6867                               atomic_read(&disk->sync_io);
6868                 /* sync IO will cause sync_io to increase before the disk_stats
6869                  * as sync_io is counted when a request starts, and
6870                  * disk_stats is counted when it completes.
6871                  * So resync activity will cause curr_events to be smaller than
6872                  * when there was no such activity.
6873                  * non-sync IO will cause disk_stat to increase without
6874                  * increasing sync_io so curr_events will (eventually)
6875                  * be larger than it was before.  Once it becomes
6876                  * substantially larger, the test below will cause
6877                  * the array to appear non-idle, and resync will slow
6878                  * down.
6879                  * If there is a lot of outstanding resync activity when
6880                  * we set last_event to curr_events, then all that activity
6881                  * completing might cause the array to appear non-idle
6882                  * and resync will be slowed down even though there might
6883                  * not have been non-resync activity.  This will only
6884                  * happen once though.  'last_events' will soon reflect
6885                  * the state where there is little or no outstanding
6886                  * resync requests, and further resync activity will
6887                  * always make curr_events less than last_events.
6888                  *
6889                  */
6890                 if (init || curr_events - rdev->last_events > 64) {
6891                         rdev->last_events = curr_events;
6892                         idle = 0;
6893                 }
6894         }
6895         rcu_read_unlock();
6896         return idle;
6897 }
6898
6899 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6900 {
6901         /* another "blocks" (512byte) blocks have been synced */
6902         atomic_sub(blocks, &mddev->recovery_active);
6903         wake_up(&mddev->recovery_wait);
6904         if (!ok) {
6905                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6906                 md_wakeup_thread(mddev->thread);
6907                 // stop recovery, signal do_sync ....
6908         }
6909 }
6910
6911
6912 /* md_write_start(mddev, bi)
6913  * If we need to update some array metadata (e.g. 'active' flag
6914  * in superblock) before writing, schedule a superblock update
6915  * and wait for it to complete.
6916  */
6917 void md_write_start(struct mddev *mddev, struct bio *bi)
6918 {
6919         int did_change = 0;
6920         if (bio_data_dir(bi) != WRITE)
6921                 return;
6922
6923         BUG_ON(mddev->ro == 1);
6924         if (mddev->ro == 2) {
6925                 /* need to switch to read/write */
6926                 mddev->ro = 0;
6927                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6928                 md_wakeup_thread(mddev->thread);
6929                 md_wakeup_thread(mddev->sync_thread);
6930                 did_change = 1;
6931         }
6932         atomic_inc(&mddev->writes_pending);
6933         if (mddev->safemode == 1)
6934                 mddev->safemode = 0;
6935         if (mddev->in_sync) {
6936                 spin_lock_irq(&mddev->write_lock);
6937                 if (mddev->in_sync) {
6938                         mddev->in_sync = 0;
6939                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6940                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6941                         md_wakeup_thread(mddev->thread);
6942                         did_change = 1;
6943                 }
6944                 spin_unlock_irq(&mddev->write_lock);
6945         }
6946         if (did_change)
6947                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6948         wait_event(mddev->sb_wait,
6949                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6950 }
6951
6952 void md_write_end(struct mddev *mddev)
6953 {
6954         if (atomic_dec_and_test(&mddev->writes_pending)) {
6955                 if (mddev->safemode == 2)
6956                         md_wakeup_thread(mddev->thread);
6957                 else if (mddev->safemode_delay)
6958                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6959         }
6960 }
6961
6962 /* md_allow_write(mddev)
6963  * Calling this ensures that the array is marked 'active' so that writes
6964  * may proceed without blocking.  It is important to call this before
6965  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6966  * Must be called with mddev_lock held.
6967  *
6968  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6969  * is dropped, so return -EAGAIN after notifying userspace.
6970  */
6971 int md_allow_write(struct mddev *mddev)
6972 {
6973         if (!mddev->pers)
6974                 return 0;
6975         if (mddev->ro)
6976                 return 0;
6977         if (!mddev->pers->sync_request)
6978                 return 0;
6979
6980         spin_lock_irq(&mddev->write_lock);
6981         if (mddev->in_sync) {
6982                 mddev->in_sync = 0;
6983                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6984                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6985                 if (mddev->safemode_delay &&
6986                     mddev->safemode == 0)
6987                         mddev->safemode = 1;
6988                 spin_unlock_irq(&mddev->write_lock);
6989                 md_update_sb(mddev, 0);
6990                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6991         } else
6992                 spin_unlock_irq(&mddev->write_lock);
6993
6994         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6995                 return -EAGAIN;
6996         else
6997                 return 0;
6998 }
6999 EXPORT_SYMBOL_GPL(md_allow_write);
7000
7001 #define SYNC_MARKS      10
7002 #define SYNC_MARK_STEP  (3*HZ)
7003 void md_do_sync(struct mddev *mddev)
7004 {
7005         struct mddev *mddev2;
7006         unsigned int currspeed = 0,
7007                  window;
7008         sector_t max_sectors,j, io_sectors;
7009         unsigned long mark[SYNC_MARKS];
7010         sector_t mark_cnt[SYNC_MARKS];
7011         int last_mark,m;
7012         struct list_head *tmp;
7013         sector_t last_check;
7014         int skipped = 0;
7015         struct md_rdev *rdev;
7016         char *desc;
7017
7018         /* just incase thread restarts... */
7019         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7020                 return;
7021         if (mddev->ro) /* never try to sync a read-only array */
7022                 return;
7023
7024         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7025                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7026                         desc = "data-check";
7027                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7028                         desc = "requested-resync";
7029                 else
7030                         desc = "resync";
7031         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7032                 desc = "reshape";
7033         else
7034                 desc = "recovery";
7035
7036         /* we overload curr_resync somewhat here.
7037          * 0 == not engaged in resync at all
7038          * 2 == checking that there is no conflict with another sync
7039          * 1 == like 2, but have yielded to allow conflicting resync to
7040          *              commense
7041          * other == active in resync - this many blocks
7042          *
7043          * Before starting a resync we must have set curr_resync to
7044          * 2, and then checked that every "conflicting" array has curr_resync
7045          * less than ours.  When we find one that is the same or higher
7046          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7047          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7048          * This will mean we have to start checking from the beginning again.
7049          *
7050          */
7051
7052         do {
7053                 mddev->curr_resync = 2;
7054
7055         try_again:
7056                 if (kthread_should_stop())
7057                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7058
7059                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7060                         goto skip;
7061                 for_each_mddev(mddev2, tmp) {
7062                         if (mddev2 == mddev)
7063                                 continue;
7064                         if (!mddev->parallel_resync
7065                         &&  mddev2->curr_resync
7066                         &&  match_mddev_units(mddev, mddev2)) {
7067                                 DEFINE_WAIT(wq);
7068                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7069                                         /* arbitrarily yield */
7070                                         mddev->curr_resync = 1;
7071                                         wake_up(&resync_wait);
7072                                 }
7073                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7074                                         /* no need to wait here, we can wait the next
7075                                          * time 'round when curr_resync == 2
7076                                          */
7077                                         continue;
7078                                 /* We need to wait 'interruptible' so as not to
7079                                  * contribute to the load average, and not to
7080                                  * be caught by 'softlockup'
7081                                  */
7082                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7083                                 if (!kthread_should_stop() &&
7084                                     mddev2->curr_resync >= mddev->curr_resync) {
7085                                         printk(KERN_INFO "md: delaying %s of %s"
7086                                                " until %s has finished (they"
7087                                                " share one or more physical units)\n",
7088                                                desc, mdname(mddev), mdname(mddev2));
7089                                         mddev_put(mddev2);
7090                                         if (signal_pending(current))
7091                                                 flush_signals(current);
7092                                         schedule();
7093                                         finish_wait(&resync_wait, &wq);
7094                                         goto try_again;
7095                                 }
7096                                 finish_wait(&resync_wait, &wq);
7097                         }
7098                 }
7099         } while (mddev->curr_resync < 2);
7100
7101         j = 0;
7102         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7103                 /* resync follows the size requested by the personality,
7104                  * which defaults to physical size, but can be virtual size
7105                  */
7106                 max_sectors = mddev->resync_max_sectors;
7107                 mddev->resync_mismatches = 0;
7108                 /* we don't use the checkpoint if there's a bitmap */
7109                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7110                         j = mddev->resync_min;
7111                 else if (!mddev->bitmap)
7112                         j = mddev->recovery_cp;
7113
7114         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7115                 max_sectors = mddev->dev_sectors;
7116         else {
7117                 /* recovery follows the physical size of devices */
7118                 max_sectors = mddev->dev_sectors;
7119                 j = MaxSector;
7120                 rcu_read_lock();
7121                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7122                         if (rdev->raid_disk >= 0 &&
7123                             !test_bit(Faulty, &rdev->flags) &&
7124                             !test_bit(In_sync, &rdev->flags) &&
7125                             rdev->recovery_offset < j)
7126                                 j = rdev->recovery_offset;
7127                 rcu_read_unlock();
7128         }
7129
7130         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7131         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7132                 " %d KB/sec/disk.\n", speed_min(mddev));
7133         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7134                "(but not more than %d KB/sec) for %s.\n",
7135                speed_max(mddev), desc);
7136
7137         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7138
7139         io_sectors = 0;
7140         for (m = 0; m < SYNC_MARKS; m++) {
7141                 mark[m] = jiffies;
7142                 mark_cnt[m] = io_sectors;
7143         }
7144         last_mark = 0;
7145         mddev->resync_mark = mark[last_mark];
7146         mddev->resync_mark_cnt = mark_cnt[last_mark];
7147
7148         /*
7149          * Tune reconstruction:
7150          */
7151         window = 32*(PAGE_SIZE/512);
7152         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7153                 window/2, (unsigned long long)max_sectors/2);
7154
7155         atomic_set(&mddev->recovery_active, 0);
7156         last_check = 0;
7157
7158         if (j>2) {
7159                 printk(KERN_INFO 
7160                        "md: resuming %s of %s from checkpoint.\n",
7161                        desc, mdname(mddev));
7162                 mddev->curr_resync = j;
7163         }
7164         mddev->curr_resync_completed = j;
7165
7166         while (j < max_sectors) {
7167                 sector_t sectors;
7168
7169                 skipped = 0;
7170
7171                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7172                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7173                       (mddev->curr_resync - mddev->curr_resync_completed)
7174                       > (max_sectors >> 4)) ||
7175                      (j - mddev->curr_resync_completed)*2
7176                      >= mddev->resync_max - mddev->curr_resync_completed
7177                             )) {
7178                         /* time to update curr_resync_completed */
7179                         wait_event(mddev->recovery_wait,
7180                                    atomic_read(&mddev->recovery_active) == 0);
7181                         mddev->curr_resync_completed = j;
7182                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7183                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7184                 }
7185
7186                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7187                         /* As this condition is controlled by user-space,
7188                          * we can block indefinitely, so use '_interruptible'
7189                          * to avoid triggering warnings.
7190                          */
7191                         flush_signals(current); /* just in case */
7192                         wait_event_interruptible(mddev->recovery_wait,
7193                                                  mddev->resync_max > j
7194                                                  || kthread_should_stop());
7195                 }
7196
7197                 if (kthread_should_stop())
7198                         goto interrupted;
7199
7200                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7201                                                   currspeed < speed_min(mddev));
7202                 if (sectors == 0) {
7203                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7204                         goto out;
7205                 }
7206
7207                 if (!skipped) { /* actual IO requested */
7208                         io_sectors += sectors;
7209                         atomic_add(sectors, &mddev->recovery_active);
7210                 }
7211
7212                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7213                         break;
7214
7215                 j += sectors;
7216                 if (j>1) mddev->curr_resync = j;
7217                 mddev->curr_mark_cnt = io_sectors;
7218                 if (last_check == 0)
7219                         /* this is the earliest that rebuild will be
7220                          * visible in /proc/mdstat
7221                          */
7222                         md_new_event(mddev);
7223
7224                 if (last_check + window > io_sectors || j == max_sectors)
7225                         continue;
7226
7227                 last_check = io_sectors;
7228         repeat:
7229                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7230                         /* step marks */
7231                         int next = (last_mark+1) % SYNC_MARKS;
7232
7233                         mddev->resync_mark = mark[next];
7234                         mddev->resync_mark_cnt = mark_cnt[next];
7235                         mark[next] = jiffies;
7236                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7237                         last_mark = next;
7238                 }
7239
7240
7241                 if (kthread_should_stop())
7242                         goto interrupted;
7243
7244
7245                 /*
7246                  * this loop exits only if either when we are slower than
7247                  * the 'hard' speed limit, or the system was IO-idle for
7248                  * a jiffy.
7249                  * the system might be non-idle CPU-wise, but we only care
7250                  * about not overloading the IO subsystem. (things like an
7251                  * e2fsck being done on the RAID array should execute fast)
7252                  */
7253                 cond_resched();
7254
7255                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7256                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7257
7258                 if (currspeed > speed_min(mddev)) {
7259                         if ((currspeed > speed_max(mddev)) ||
7260                                         !is_mddev_idle(mddev, 0)) {
7261                                 msleep(500);
7262                                 goto repeat;
7263                         }
7264                 }
7265         }
7266         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7267         /*
7268          * this also signals 'finished resyncing' to md_stop
7269          */
7270  out:
7271         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7272
7273         /* tell personality that we are finished */
7274         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7275
7276         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7277             mddev->curr_resync > 2) {
7278                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7279                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7280                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7281                                         printk(KERN_INFO
7282                                                "md: checkpointing %s of %s.\n",
7283                                                desc, mdname(mddev));
7284                                         mddev->recovery_cp = mddev->curr_resync;
7285                                 }
7286                         } else
7287                                 mddev->recovery_cp = MaxSector;
7288                 } else {
7289                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7290                                 mddev->curr_resync = MaxSector;
7291                         rcu_read_lock();
7292                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7293                                 if (rdev->raid_disk >= 0 &&
7294                                     mddev->delta_disks >= 0 &&
7295                                     !test_bit(Faulty, &rdev->flags) &&
7296                                     !test_bit(In_sync, &rdev->flags) &&
7297                                     rdev->recovery_offset < mddev->curr_resync)
7298                                         rdev->recovery_offset = mddev->curr_resync;
7299                         rcu_read_unlock();
7300                 }
7301         }
7302         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7303
7304  skip:
7305         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7306                 /* We completed so min/max setting can be forgotten if used. */
7307                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7308                         mddev->resync_min = 0;
7309                 mddev->resync_max = MaxSector;
7310         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7311                 mddev->resync_min = mddev->curr_resync_completed;
7312         mddev->curr_resync = 0;
7313         wake_up(&resync_wait);
7314         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7315         md_wakeup_thread(mddev->thread);
7316         return;
7317
7318  interrupted:
7319         /*
7320          * got a signal, exit.
7321          */
7322         printk(KERN_INFO
7323                "md: md_do_sync() got signal ... exiting\n");
7324         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7325         goto out;
7326
7327 }
7328 EXPORT_SYMBOL_GPL(md_do_sync);
7329
7330 static int remove_and_add_spares(struct mddev *mddev)
7331 {
7332         struct md_rdev *rdev;
7333         int spares = 0;
7334
7335         mddev->curr_resync_completed = 0;
7336
7337         list_for_each_entry(rdev, &mddev->disks, same_set)
7338                 if (rdev->raid_disk >= 0 &&
7339                     !test_bit(Blocked, &rdev->flags) &&
7340                     (test_bit(Faulty, &rdev->flags) ||
7341                      ! test_bit(In_sync, &rdev->flags)) &&
7342                     atomic_read(&rdev->nr_pending)==0) {
7343                         if (mddev->pers->hot_remove_disk(
7344                                     mddev, rdev->raid_disk)==0) {
7345                                 sysfs_unlink_rdev(mddev, rdev);
7346                                 rdev->raid_disk = -1;
7347                         }
7348                 }
7349
7350         if (mddev->degraded) {
7351                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7352                         if (rdev->raid_disk >= 0 &&
7353                             !test_bit(In_sync, &rdev->flags) &&
7354                             !test_bit(Faulty, &rdev->flags))
7355                                 spares++;
7356                         if (rdev->raid_disk < 0
7357                             && !test_bit(Faulty, &rdev->flags)) {
7358                                 rdev->recovery_offset = 0;
7359                                 if (mddev->pers->
7360                                     hot_add_disk(mddev, rdev) == 0) {
7361                                         if (sysfs_link_rdev(mddev, rdev))
7362                                                 /* failure here is OK */;
7363                                         spares++;
7364                                         md_new_event(mddev);
7365                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7366                                 }
7367                         }
7368                 }
7369         }
7370         return spares;
7371 }
7372
7373 static void reap_sync_thread(struct mddev *mddev)
7374 {
7375         struct md_rdev *rdev;
7376
7377         /* resync has finished, collect result */
7378         md_unregister_thread(&mddev->sync_thread);
7379         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7380             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7381                 /* success...*/
7382                 /* activate any spares */
7383                 if (mddev->pers->spare_active(mddev))
7384                         sysfs_notify(&mddev->kobj, NULL,
7385                                      "degraded");
7386         }
7387         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7388             mddev->pers->finish_reshape)
7389                 mddev->pers->finish_reshape(mddev);
7390
7391         /* If array is no-longer degraded, then any saved_raid_disk
7392          * information must be scrapped.  Also if any device is now
7393          * In_sync we must scrape the saved_raid_disk for that device
7394          * do the superblock for an incrementally recovered device
7395          * written out.
7396          */
7397         list_for_each_entry(rdev, &mddev->disks, same_set)
7398                 if (!mddev->degraded ||
7399                     test_bit(In_sync, &rdev->flags))
7400                         rdev->saved_raid_disk = -1;
7401
7402         md_update_sb(mddev, 1);
7403         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7404         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7405         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7406         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7407         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7408         /* flag recovery needed just to double check */
7409         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7410         sysfs_notify_dirent_safe(mddev->sysfs_action);
7411         md_new_event(mddev);
7412         if (mddev->event_work.func)
7413                 queue_work(md_misc_wq, &mddev->event_work);
7414 }
7415
7416 /*
7417  * This routine is regularly called by all per-raid-array threads to
7418  * deal with generic issues like resync and super-block update.
7419  * Raid personalities that don't have a thread (linear/raid0) do not
7420  * need this as they never do any recovery or update the superblock.
7421  *
7422  * It does not do any resync itself, but rather "forks" off other threads
7423  * to do that as needed.
7424  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7425  * "->recovery" and create a thread at ->sync_thread.
7426  * When the thread finishes it sets MD_RECOVERY_DONE
7427  * and wakeups up this thread which will reap the thread and finish up.
7428  * This thread also removes any faulty devices (with nr_pending == 0).
7429  *
7430  * The overall approach is:
7431  *  1/ if the superblock needs updating, update it.
7432  *  2/ If a recovery thread is running, don't do anything else.
7433  *  3/ If recovery has finished, clean up, possibly marking spares active.
7434  *  4/ If there are any faulty devices, remove them.
7435  *  5/ If array is degraded, try to add spares devices
7436  *  6/ If array has spares or is not in-sync, start a resync thread.
7437  */
7438 void md_check_recovery(struct mddev *mddev)
7439 {
7440         if (mddev->suspended)
7441                 return;
7442
7443         if (mddev->bitmap)
7444                 bitmap_daemon_work(mddev);
7445
7446         if (signal_pending(current)) {
7447                 if (mddev->pers->sync_request && !mddev->external) {
7448                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7449                                mdname(mddev));
7450                         mddev->safemode = 2;
7451                 }
7452                 flush_signals(current);
7453         }
7454
7455         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7456                 return;
7457         if ( ! (
7458                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7459                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7460                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7461                 (mddev->external == 0 && mddev->safemode == 1) ||
7462                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7463                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7464                 ))
7465                 return;
7466
7467         if (mddev_trylock(mddev)) {
7468                 int spares = 0;
7469
7470                 if (mddev->ro) {
7471                         /* Only thing we do on a ro array is remove
7472                          * failed devices.
7473                          */
7474                         struct md_rdev *rdev;
7475                         list_for_each_entry(rdev, &mddev->disks, same_set)
7476                                 if (rdev->raid_disk >= 0 &&
7477                                     !test_bit(Blocked, &rdev->flags) &&
7478                                     test_bit(Faulty, &rdev->flags) &&
7479                                     atomic_read(&rdev->nr_pending)==0) {
7480                                         if (mddev->pers->hot_remove_disk(
7481                                                     mddev, rdev->raid_disk)==0) {
7482                                                 sysfs_unlink_rdev(mddev, rdev);
7483                                                 rdev->raid_disk = -1;
7484                                         }
7485                                 }
7486                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7487                         goto unlock;
7488                 }
7489
7490                 if (!mddev->external) {
7491                         int did_change = 0;
7492                         spin_lock_irq(&mddev->write_lock);
7493                         if (mddev->safemode &&
7494                             !atomic_read(&mddev->writes_pending) &&
7495                             !mddev->in_sync &&
7496                             mddev->recovery_cp == MaxSector) {
7497                                 mddev->in_sync = 1;
7498                                 did_change = 1;
7499                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7500                         }
7501                         if (mddev->safemode == 1)
7502                                 mddev->safemode = 0;
7503                         spin_unlock_irq(&mddev->write_lock);
7504                         if (did_change)
7505                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7506                 }
7507
7508                 if (mddev->flags)
7509                         md_update_sb(mddev, 0);
7510
7511                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7512                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7513                         /* resync/recovery still happening */
7514                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7515                         goto unlock;
7516                 }
7517                 if (mddev->sync_thread) {
7518                         reap_sync_thread(mddev);
7519                         goto unlock;
7520                 }
7521                 /* Set RUNNING before clearing NEEDED to avoid
7522                  * any transients in the value of "sync_action".
7523                  */
7524                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7525                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7526                 /* Clear some bits that don't mean anything, but
7527                  * might be left set
7528                  */
7529                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7530                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7531
7532                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7533                         goto unlock;
7534                 /* no recovery is running.
7535                  * remove any failed drives, then
7536                  * add spares if possible.
7537                  * Spare are also removed and re-added, to allow
7538                  * the personality to fail the re-add.
7539                  */
7540
7541                 if (mddev->reshape_position != MaxSector) {
7542                         if (mddev->pers->check_reshape == NULL ||
7543                             mddev->pers->check_reshape(mddev) != 0)
7544                                 /* Cannot proceed */
7545                                 goto unlock;
7546                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7547                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7548                 } else if ((spares = remove_and_add_spares(mddev))) {
7549                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7550                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7551                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7552                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7553                 } else if (mddev->recovery_cp < MaxSector) {
7554                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7555                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7556                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7557                         /* nothing to be done ... */
7558                         goto unlock;
7559
7560                 if (mddev->pers->sync_request) {
7561                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7562                                 /* We are adding a device or devices to an array
7563                                  * which has the bitmap stored on all devices.
7564                                  * So make sure all bitmap pages get written
7565                                  */
7566                                 bitmap_write_all(mddev->bitmap);
7567                         }
7568                         mddev->sync_thread = md_register_thread(md_do_sync,
7569                                                                 mddev,
7570                                                                 "resync");
7571                         if (!mddev->sync_thread) {
7572                                 printk(KERN_ERR "%s: could not start resync"
7573                                         " thread...\n", 
7574                                         mdname(mddev));
7575                                 /* leave the spares where they are, it shouldn't hurt */
7576                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7577                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7578                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7579                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7580                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7581                         } else
7582                                 md_wakeup_thread(mddev->sync_thread);
7583                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7584                         md_new_event(mddev);
7585                 }
7586         unlock:
7587                 if (!mddev->sync_thread) {
7588                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7589                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7590                                                &mddev->recovery))
7591                                 if (mddev->sysfs_action)
7592                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7593                 }
7594                 mddev_unlock(mddev);
7595         }
7596 }
7597
7598 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7599 {
7600         sysfs_notify_dirent_safe(rdev->sysfs_state);
7601         wait_event_timeout(rdev->blocked_wait,
7602                            !test_bit(Blocked, &rdev->flags) &&
7603                            !test_bit(BlockedBadBlocks, &rdev->flags),
7604                            msecs_to_jiffies(5000));
7605         rdev_dec_pending(rdev, mddev);
7606 }
7607 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7608
7609
7610 /* Bad block management.
7611  * We can record which blocks on each device are 'bad' and so just
7612  * fail those blocks, or that stripe, rather than the whole device.
7613  * Entries in the bad-block table are 64bits wide.  This comprises:
7614  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7615  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7616  *  A 'shift' can be set so that larger blocks are tracked and
7617  *  consequently larger devices can be covered.
7618  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7619  *
7620  * Locking of the bad-block table uses a seqlock so md_is_badblock
7621  * might need to retry if it is very unlucky.
7622  * We will sometimes want to check for bad blocks in a bi_end_io function,
7623  * so we use the write_seqlock_irq variant.
7624  *
7625  * When looking for a bad block we specify a range and want to
7626  * know if any block in the range is bad.  So we binary-search
7627  * to the last range that starts at-or-before the given endpoint,
7628  * (or "before the sector after the target range")
7629  * then see if it ends after the given start.
7630  * We return
7631  *  0 if there are no known bad blocks in the range
7632  *  1 if there are known bad block which are all acknowledged
7633  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7634  * plus the start/length of the first bad section we overlap.
7635  */
7636 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7637                    sector_t *first_bad, int *bad_sectors)
7638 {
7639         int hi;
7640         int lo = 0;
7641         u64 *p = bb->page;
7642         int rv = 0;
7643         sector_t target = s + sectors;
7644         unsigned seq;
7645
7646         if (bb->shift > 0) {
7647                 /* round the start down, and the end up */
7648                 s >>= bb->shift;
7649                 target += (1<<bb->shift) - 1;
7650                 target >>= bb->shift;
7651                 sectors = target - s;
7652         }
7653         /* 'target' is now the first block after the bad range */
7654
7655 retry:
7656         seq = read_seqbegin(&bb->lock);
7657
7658         hi = bb->count;
7659
7660         /* Binary search between lo and hi for 'target'
7661          * i.e. for the last range that starts before 'target'
7662          */
7663         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7664          * are known not to be the last range before target.
7665          * VARIANT: hi-lo is the number of possible
7666          * ranges, and decreases until it reaches 1
7667          */
7668         while (hi - lo > 1) {
7669                 int mid = (lo + hi) / 2;
7670                 sector_t a = BB_OFFSET(p[mid]);
7671                 if (a < target)
7672                         /* This could still be the one, earlier ranges
7673                          * could not. */
7674                         lo = mid;
7675                 else
7676                         /* This and later ranges are definitely out. */
7677                         hi = mid;
7678         }
7679         /* 'lo' might be the last that started before target, but 'hi' isn't */
7680         if (hi > lo) {
7681                 /* need to check all range that end after 's' to see if
7682                  * any are unacknowledged.
7683                  */
7684                 while (lo >= 0 &&
7685                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7686                         if (BB_OFFSET(p[lo]) < target) {
7687                                 /* starts before the end, and finishes after
7688                                  * the start, so they must overlap
7689                                  */
7690                                 if (rv != -1 && BB_ACK(p[lo]))
7691                                         rv = 1;
7692                                 else
7693                                         rv = -1;
7694                                 *first_bad = BB_OFFSET(p[lo]);
7695                                 *bad_sectors = BB_LEN(p[lo]);
7696                         }
7697                         lo--;
7698                 }
7699         }
7700
7701         if (read_seqretry(&bb->lock, seq))
7702                 goto retry;
7703
7704         return rv;
7705 }
7706 EXPORT_SYMBOL_GPL(md_is_badblock);
7707
7708 /*
7709  * Add a range of bad blocks to the table.
7710  * This might extend the table, or might contract it
7711  * if two adjacent ranges can be merged.
7712  * We binary-search to find the 'insertion' point, then
7713  * decide how best to handle it.
7714  */
7715 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7716                             int acknowledged)
7717 {
7718         u64 *p;
7719         int lo, hi;
7720         int rv = 1;
7721
7722         if (bb->shift < 0)
7723                 /* badblocks are disabled */
7724                 return 0;
7725
7726         if (bb->shift) {
7727                 /* round the start down, and the end up */
7728                 sector_t next = s + sectors;
7729                 s >>= bb->shift;
7730                 next += (1<<bb->shift) - 1;
7731                 next >>= bb->shift;
7732                 sectors = next - s;
7733         }
7734
7735         write_seqlock_irq(&bb->lock);
7736
7737         p = bb->page;
7738         lo = 0;
7739         hi = bb->count;
7740         /* Find the last range that starts at-or-before 's' */
7741         while (hi - lo > 1) {
7742                 int mid = (lo + hi) / 2;
7743                 sector_t a = BB_OFFSET(p[mid]);
7744                 if (a <= s)
7745                         lo = mid;
7746                 else
7747                         hi = mid;
7748         }
7749         if (hi > lo && BB_OFFSET(p[lo]) > s)
7750                 hi = lo;
7751
7752         if (hi > lo) {
7753                 /* we found a range that might merge with the start
7754                  * of our new range
7755                  */
7756                 sector_t a = BB_OFFSET(p[lo]);
7757                 sector_t e = a + BB_LEN(p[lo]);
7758                 int ack = BB_ACK(p[lo]);
7759                 if (e >= s) {
7760                         /* Yes, we can merge with a previous range */
7761                         if (s == a && s + sectors >= e)
7762                                 /* new range covers old */
7763                                 ack = acknowledged;
7764                         else
7765                                 ack = ack && acknowledged;
7766
7767                         if (e < s + sectors)
7768                                 e = s + sectors;
7769                         if (e - a <= BB_MAX_LEN) {
7770                                 p[lo] = BB_MAKE(a, e-a, ack);
7771                                 s = e;
7772                         } else {
7773                                 /* does not all fit in one range,
7774                                  * make p[lo] maximal
7775                                  */
7776                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7777                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7778                                 s = a + BB_MAX_LEN;
7779                         }
7780                         sectors = e - s;
7781                 }
7782         }
7783         if (sectors && hi < bb->count) {
7784                 /* 'hi' points to the first range that starts after 's'.
7785                  * Maybe we can merge with the start of that range */
7786                 sector_t a = BB_OFFSET(p[hi]);
7787                 sector_t e = a + BB_LEN(p[hi]);
7788                 int ack = BB_ACK(p[hi]);
7789                 if (a <= s + sectors) {
7790                         /* merging is possible */
7791                         if (e <= s + sectors) {
7792                                 /* full overlap */
7793                                 e = s + sectors;
7794                                 ack = acknowledged;
7795                         } else
7796                                 ack = ack && acknowledged;
7797
7798                         a = s;
7799                         if (e - a <= BB_MAX_LEN) {
7800                                 p[hi] = BB_MAKE(a, e-a, ack);
7801                                 s = e;
7802                         } else {
7803                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7804                                 s = a + BB_MAX_LEN;
7805                         }
7806                         sectors = e - s;
7807                         lo = hi;
7808                         hi++;
7809                 }
7810         }
7811         if (sectors == 0 && hi < bb->count) {
7812                 /* we might be able to combine lo and hi */
7813                 /* Note: 's' is at the end of 'lo' */
7814                 sector_t a = BB_OFFSET(p[hi]);
7815                 int lolen = BB_LEN(p[lo]);
7816                 int hilen = BB_LEN(p[hi]);
7817                 int newlen = lolen + hilen - (s - a);
7818                 if (s >= a && newlen < BB_MAX_LEN) {
7819                         /* yes, we can combine them */
7820                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7821                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7822                         memmove(p + hi, p + hi + 1,
7823                                 (bb->count - hi - 1) * 8);
7824                         bb->count--;
7825                 }
7826         }
7827         while (sectors) {
7828                 /* didn't merge (it all).
7829                  * Need to add a range just before 'hi' */
7830                 if (bb->count >= MD_MAX_BADBLOCKS) {
7831                         /* No room for more */
7832                         rv = 0;
7833                         break;
7834                 } else {
7835                         int this_sectors = sectors;
7836                         memmove(p + hi + 1, p + hi,
7837                                 (bb->count - hi) * 8);
7838                         bb->count++;
7839
7840                         if (this_sectors > BB_MAX_LEN)
7841                                 this_sectors = BB_MAX_LEN;
7842                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7843                         sectors -= this_sectors;
7844                         s += this_sectors;
7845                 }
7846         }
7847
7848         bb->changed = 1;
7849         if (!acknowledged)
7850                 bb->unacked_exist = 1;
7851         write_sequnlock_irq(&bb->lock);
7852
7853         return rv;
7854 }
7855
7856 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7857                        int acknowledged)
7858 {
7859         int rv = md_set_badblocks(&rdev->badblocks,
7860                                   s + rdev->data_offset, sectors, acknowledged);
7861         if (rv) {
7862                 /* Make sure they get written out promptly */
7863                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7864                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7865                 md_wakeup_thread(rdev->mddev->thread);
7866         }
7867         return rv;
7868 }
7869 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7870
7871 /*
7872  * Remove a range of bad blocks from the table.
7873  * This may involve extending the table if we spilt a region,
7874  * but it must not fail.  So if the table becomes full, we just
7875  * drop the remove request.
7876  */
7877 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7878 {
7879         u64 *p;
7880         int lo, hi;
7881         sector_t target = s + sectors;
7882         int rv = 0;
7883
7884         if (bb->shift > 0) {
7885                 /* When clearing we round the start up and the end down.
7886                  * This should not matter as the shift should align with
7887                  * the block size and no rounding should ever be needed.
7888                  * However it is better the think a block is bad when it
7889                  * isn't than to think a block is not bad when it is.
7890                  */
7891                 s += (1<<bb->shift) - 1;
7892                 s >>= bb->shift;
7893                 target >>= bb->shift;
7894                 sectors = target - s;
7895         }
7896
7897         write_seqlock_irq(&bb->lock);
7898
7899         p = bb->page;
7900         lo = 0;
7901         hi = bb->count;
7902         /* Find the last range that starts before 'target' */
7903         while (hi - lo > 1) {
7904                 int mid = (lo + hi) / 2;
7905                 sector_t a = BB_OFFSET(p[mid]);
7906                 if (a < target)
7907                         lo = mid;
7908                 else
7909                         hi = mid;
7910         }
7911         if (hi > lo) {
7912                 /* p[lo] is the last range that could overlap the
7913                  * current range.  Earlier ranges could also overlap,
7914                  * but only this one can overlap the end of the range.
7915                  */
7916                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7917                         /* Partial overlap, leave the tail of this range */
7918                         int ack = BB_ACK(p[lo]);
7919                         sector_t a = BB_OFFSET(p[lo]);
7920                         sector_t end = a + BB_LEN(p[lo]);
7921
7922                         if (a < s) {
7923                                 /* we need to split this range */
7924                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7925                                         rv = 0;
7926                                         goto out;
7927                                 }
7928                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7929                                 bb->count++;
7930                                 p[lo] = BB_MAKE(a, s-a, ack);
7931                                 lo++;
7932                         }
7933                         p[lo] = BB_MAKE(target, end - target, ack);
7934                         /* there is no longer an overlap */
7935                         hi = lo;
7936                         lo--;
7937                 }
7938                 while (lo >= 0 &&
7939                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7940                         /* This range does overlap */
7941                         if (BB_OFFSET(p[lo]) < s) {
7942                                 /* Keep the early parts of this range. */
7943                                 int ack = BB_ACK(p[lo]);
7944                                 sector_t start = BB_OFFSET(p[lo]);
7945                                 p[lo] = BB_MAKE(start, s - start, ack);
7946                                 /* now low doesn't overlap, so.. */
7947                                 break;
7948                         }
7949                         lo--;
7950                 }
7951                 /* 'lo' is strictly before, 'hi' is strictly after,
7952                  * anything between needs to be discarded
7953                  */
7954                 if (hi - lo > 1) {
7955                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7956                         bb->count -= (hi - lo - 1);
7957                 }
7958         }
7959
7960         bb->changed = 1;
7961 out:
7962         write_sequnlock_irq(&bb->lock);
7963         return rv;
7964 }
7965
7966 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7967 {
7968         return md_clear_badblocks(&rdev->badblocks,
7969                                   s + rdev->data_offset,
7970                                   sectors);
7971 }
7972 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7973
7974 /*
7975  * Acknowledge all bad blocks in a list.
7976  * This only succeeds if ->changed is clear.  It is used by
7977  * in-kernel metadata updates
7978  */
7979 void md_ack_all_badblocks(struct badblocks *bb)
7980 {
7981         if (bb->page == NULL || bb->changed)
7982                 /* no point even trying */
7983                 return;
7984         write_seqlock_irq(&bb->lock);
7985
7986         if (bb->changed == 0) {
7987                 u64 *p = bb->page;
7988                 int i;
7989                 for (i = 0; i < bb->count ; i++) {
7990                         if (!BB_ACK(p[i])) {
7991                                 sector_t start = BB_OFFSET(p[i]);
7992                                 int len = BB_LEN(p[i]);
7993                                 p[i] = BB_MAKE(start, len, 1);
7994                         }
7995                 }
7996                 bb->unacked_exist = 0;
7997         }
7998         write_sequnlock_irq(&bb->lock);
7999 }
8000 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8001
8002 /* sysfs access to bad-blocks list.
8003  * We present two files.
8004  * 'bad-blocks' lists sector numbers and lengths of ranges that
8005  *    are recorded as bad.  The list is truncated to fit within
8006  *    the one-page limit of sysfs.
8007  *    Writing "sector length" to this file adds an acknowledged
8008  *    bad block list.
8009  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8010  *    been acknowledged.  Writing to this file adds bad blocks
8011  *    without acknowledging them.  This is largely for testing.
8012  */
8013
8014 static ssize_t
8015 badblocks_show(struct badblocks *bb, char *page, int unack)
8016 {
8017         size_t len;
8018         int i;
8019         u64 *p = bb->page;
8020         unsigned seq;
8021
8022         if (bb->shift < 0)
8023                 return 0;
8024
8025 retry:
8026         seq = read_seqbegin(&bb->lock);
8027
8028         len = 0;
8029         i = 0;
8030
8031         while (len < PAGE_SIZE && i < bb->count) {
8032                 sector_t s = BB_OFFSET(p[i]);
8033                 unsigned int length = BB_LEN(p[i]);
8034                 int ack = BB_ACK(p[i]);
8035                 i++;
8036
8037                 if (unack && ack)
8038                         continue;
8039
8040                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8041                                 (unsigned long long)s << bb->shift,
8042                                 length << bb->shift);
8043         }
8044         if (unack && len == 0)
8045                 bb->unacked_exist = 0;
8046
8047         if (read_seqretry(&bb->lock, seq))
8048                 goto retry;
8049
8050         return len;
8051 }
8052
8053 #define DO_DEBUG 1
8054
8055 static ssize_t
8056 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8057 {
8058         unsigned long long sector;
8059         int length;
8060         char newline;
8061 #ifdef DO_DEBUG
8062         /* Allow clearing via sysfs *only* for testing/debugging.
8063          * Normally only a successful write may clear a badblock
8064          */
8065         int clear = 0;
8066         if (page[0] == '-') {
8067                 clear = 1;
8068                 page++;
8069         }
8070 #endif /* DO_DEBUG */
8071
8072         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8073         case 3:
8074                 if (newline != '\n')
8075                         return -EINVAL;
8076         case 2:
8077                 if (length <= 0)
8078                         return -EINVAL;
8079                 break;
8080         default:
8081                 return -EINVAL;
8082         }
8083
8084 #ifdef DO_DEBUG
8085         if (clear) {
8086                 md_clear_badblocks(bb, sector, length);
8087                 return len;
8088         }
8089 #endif /* DO_DEBUG */
8090         if (md_set_badblocks(bb, sector, length, !unack))
8091                 return len;
8092         else
8093                 return -ENOSPC;
8094 }
8095
8096 static int md_notify_reboot(struct notifier_block *this,
8097                             unsigned long code, void *x)
8098 {
8099         struct list_head *tmp;
8100         struct mddev *mddev;
8101         int need_delay = 0;
8102
8103         for_each_mddev(mddev, tmp) {
8104                 if (mddev_trylock(mddev)) {
8105                         if (mddev->pers)
8106                                 __md_stop_writes(mddev);
8107                         mddev->safemode = 2;
8108                         mddev_unlock(mddev);
8109                 }
8110                 need_delay = 1;
8111         }
8112         /*
8113          * certain more exotic SCSI devices are known to be
8114          * volatile wrt too early system reboots. While the
8115          * right place to handle this issue is the given
8116          * driver, we do want to have a safe RAID driver ...
8117          */
8118         if (need_delay)
8119                 mdelay(1000*1);
8120
8121         return NOTIFY_DONE;
8122 }
8123
8124 static struct notifier_block md_notifier = {
8125         .notifier_call  = md_notify_reboot,
8126         .next           = NULL,
8127         .priority       = INT_MAX, /* before any real devices */
8128 };
8129
8130 static void md_geninit(void)
8131 {
8132         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8133
8134         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8135 }
8136
8137 static int __init md_init(void)
8138 {
8139         int ret = -ENOMEM;
8140
8141         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8142         if (!md_wq)
8143                 goto err_wq;
8144
8145         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8146         if (!md_misc_wq)
8147                 goto err_misc_wq;
8148
8149         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8150                 goto err_md;
8151
8152         if ((ret = register_blkdev(0, "mdp")) < 0)
8153                 goto err_mdp;
8154         mdp_major = ret;
8155
8156         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8157                             md_probe, NULL, NULL);
8158         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8159                             md_probe, NULL, NULL);
8160
8161         register_reboot_notifier(&md_notifier);
8162         raid_table_header = register_sysctl_table(raid_root_table);
8163
8164         md_geninit();
8165         return 0;
8166
8167 err_mdp:
8168         unregister_blkdev(MD_MAJOR, "md");
8169 err_md:
8170         destroy_workqueue(md_misc_wq);
8171 err_misc_wq:
8172         destroy_workqueue(md_wq);
8173 err_wq:
8174         return ret;
8175 }
8176
8177 #ifndef MODULE
8178
8179 /*
8180  * Searches all registered partitions for autorun RAID arrays
8181  * at boot time.
8182  */
8183
8184 static LIST_HEAD(all_detected_devices);
8185 struct detected_devices_node {
8186         struct list_head list;
8187         dev_t dev;
8188 };
8189
8190 void md_autodetect_dev(dev_t dev)
8191 {
8192         struct detected_devices_node *node_detected_dev;
8193
8194         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8195         if (node_detected_dev) {
8196                 node_detected_dev->dev = dev;
8197                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8198         } else {
8199                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8200                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8201         }
8202 }
8203
8204
8205 static void autostart_arrays(int part)
8206 {
8207         struct md_rdev *rdev;
8208         struct detected_devices_node *node_detected_dev;
8209         dev_t dev;
8210         int i_scanned, i_passed;
8211
8212         i_scanned = 0;
8213         i_passed = 0;
8214
8215         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8216
8217         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8218                 i_scanned++;
8219                 node_detected_dev = list_entry(all_detected_devices.next,
8220                                         struct detected_devices_node, list);
8221                 list_del(&node_detected_dev->list);
8222                 dev = node_detected_dev->dev;
8223                 kfree(node_detected_dev);
8224                 rdev = md_import_device(dev,0, 90);
8225                 if (IS_ERR(rdev))
8226                         continue;
8227
8228                 if (test_bit(Faulty, &rdev->flags)) {
8229                         MD_BUG();
8230                         continue;
8231                 }
8232                 set_bit(AutoDetected, &rdev->flags);
8233                 list_add(&rdev->same_set, &pending_raid_disks);
8234                 i_passed++;
8235         }
8236
8237         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8238                                                 i_scanned, i_passed);
8239
8240         autorun_devices(part);
8241 }
8242
8243 #endif /* !MODULE */
8244
8245 static __exit void md_exit(void)
8246 {
8247         struct mddev *mddev;
8248         struct list_head *tmp;
8249
8250         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8251         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8252
8253         unregister_blkdev(MD_MAJOR,"md");
8254         unregister_blkdev(mdp_major, "mdp");
8255         unregister_reboot_notifier(&md_notifier);
8256         unregister_sysctl_table(raid_table_header);
8257         remove_proc_entry("mdstat", NULL);
8258         for_each_mddev(mddev, tmp) {
8259                 export_array(mddev);
8260                 mddev->hold_active = 0;
8261         }
8262         destroy_workqueue(md_misc_wq);
8263         destroy_workqueue(md_wq);
8264 }
8265
8266 subsys_initcall(md_init);
8267 module_exit(md_exit)
8268
8269 static int get_ro(char *buffer, struct kernel_param *kp)
8270 {
8271         return sprintf(buffer, "%d", start_readonly);
8272 }
8273 static int set_ro(const char *val, struct kernel_param *kp)
8274 {
8275         char *e;
8276         int num = simple_strtoul(val, &e, 10);
8277         if (*val && (*e == '\0' || *e == '\n')) {
8278                 start_readonly = num;
8279                 return 0;
8280         }
8281         return -EINVAL;
8282 }
8283
8284 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8285 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8286
8287 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8288
8289 EXPORT_SYMBOL(register_md_personality);
8290 EXPORT_SYMBOL(unregister_md_personality);
8291 EXPORT_SYMBOL(md_error);
8292 EXPORT_SYMBOL(md_done_sync);
8293 EXPORT_SYMBOL(md_write_start);
8294 EXPORT_SYMBOL(md_write_end);
8295 EXPORT_SYMBOL(md_register_thread);
8296 EXPORT_SYMBOL(md_unregister_thread);
8297 EXPORT_SYMBOL(md_wakeup_thread);
8298 EXPORT_SYMBOL(md_check_recovery);
8299 MODULE_LICENSE("GPL");
8300 MODULE_DESCRIPTION("MD RAID framework");
8301 MODULE_ALIAS("md");
8302 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);