]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/md.c
md: Don't truncate size at 4TB for RAID0 and Linear
[karo-tx-linux.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101         return mddev->sync_speed_min ?
102                 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107         return mddev->sync_speed_max ?
108                 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114         {
115                 .procname       = "speed_limit_min",
116                 .data           = &sysctl_speed_limit_min,
117                 .maxlen         = sizeof(int),
118                 .mode           = S_IRUGO|S_IWUSR,
119                 .proc_handler   = proc_dointvec,
120         },
121         {
122                 .procname       = "speed_limit_max",
123                 .data           = &sysctl_speed_limit_max,
124                 .maxlen         = sizeof(int),
125                 .mode           = S_IRUGO|S_IWUSR,
126                 .proc_handler   = proc_dointvec,
127         },
128         { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132         {
133                 .procname       = "raid",
134                 .maxlen         = 0,
135                 .mode           = S_IRUGO|S_IXUGO,
136                 .child          = raid_table,
137         },
138         { }
139 };
140
141 static ctl_table raid_root_table[] = {
142         {
143                 .procname       = "dev",
144                 .maxlen         = 0,
145                 .mode           = 0555,
146                 .child          = raid_dir_table,
147         },
148         {  }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161         struct mddev *mddev, **mddevp;
162
163         mddevp = (void*)bio;
164         mddev = mddevp[-1];
165
166         bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170                             struct mddev *mddev)
171 {
172         struct bio *b;
173         struct mddev **mddevp;
174
175         if (!mddev || !mddev->bio_set)
176                 return bio_alloc(gfp_mask, nr_iovecs);
177
178         b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179                              mddev->bio_set);
180         if (!b)
181                 return NULL;
182         mddevp = (void*)b;
183         mddevp[-1] = mddev;
184         b->bi_destructor = mddev_bio_destructor;
185         return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190                             struct mddev *mddev)
191 {
192         struct bio *b;
193         struct mddev **mddevp;
194
195         if (!mddev || !mddev->bio_set)
196                 return bio_clone(bio, gfp_mask);
197
198         b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199                              mddev->bio_set);
200         if (!b)
201                 return NULL;
202         mddevp = (void*)b;
203         mddevp[-1] = mddev;
204         b->bi_destructor = mddev_bio_destructor;
205         __bio_clone(b, bio);
206         if (bio_integrity(bio)) {
207                 int ret;
208
209                 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211                 if (ret < 0) {
212                         bio_put(b);
213                         return NULL;
214                 }
215         }
216
217         return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223         /* 'bio' is a cloned bio which we need to trim to match
224          * the given offset and size.
225          * This requires adjusting bi_sector, bi_size, and bi_io_vec
226          */
227         int i;
228         struct bio_vec *bvec;
229         int sofar = 0;
230
231         size <<= 9;
232         if (offset == 0 && size == bio->bi_size)
233                 return;
234
235         bio->bi_sector += offset;
236         bio->bi_size = size;
237         offset <<= 9;
238         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240         while (bio->bi_idx < bio->bi_vcnt &&
241                bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242                 /* remove this whole bio_vec */
243                 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244                 bio->bi_idx++;
245         }
246         if (bio->bi_idx < bio->bi_vcnt) {
247                 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248                 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249         }
250         /* avoid any complications with bi_idx being non-zero*/
251         if (bio->bi_idx) {
252                 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253                         (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254                 bio->bi_vcnt -= bio->bi_idx;
255                 bio->bi_idx = 0;
256         }
257         /* Make sure vcnt and last bv are not too big */
258         bio_for_each_segment(bvec, bio, i) {
259                 if (sofar + bvec->bv_len > size)
260                         bvec->bv_len = size - sofar;
261                 if (bvec->bv_len == 0) {
262                         bio->bi_vcnt = i;
263                         break;
264                 }
265                 sofar += bvec->bv_len;
266         }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284         atomic_inc(&md_event_count);
285         wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294         atomic_inc(&md_event_count);
295         wake_up(&md_event_waiters);
296 }
297
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)                                     \
314                                                                         \
315         for (({ spin_lock(&all_mddevs_lock);                            \
316                 _tmp = all_mddevs.next;                                 \
317                 _mddev = NULL;});                                       \
318              ({ if (_tmp != &all_mddevs)                                \
319                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320                 spin_unlock(&all_mddevs_lock);                          \
321                 if (_mddev) mddev_put(_mddev);                          \
322                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
323                 _tmp != &all_mddevs;});                                 \
324              ({ spin_lock(&all_mddevs_lock);                            \
325                 _tmp = _tmp->next;})                                    \
326                 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338         const int rw = bio_data_dir(bio);
339         struct mddev *mddev = q->queuedata;
340         int cpu;
341         unsigned int sectors;
342
343         if (mddev == NULL || mddev->pers == NULL
344             || !mddev->ready) {
345                 bio_io_error(bio);
346                 return;
347         }
348         smp_rmb(); /* Ensure implications of  'active' are visible */
349         rcu_read_lock();
350         if (mddev->suspended) {
351                 DEFINE_WAIT(__wait);
352                 for (;;) {
353                         prepare_to_wait(&mddev->sb_wait, &__wait,
354                                         TASK_UNINTERRUPTIBLE);
355                         if (!mddev->suspended)
356                                 break;
357                         rcu_read_unlock();
358                         schedule();
359                         rcu_read_lock();
360                 }
361                 finish_wait(&mddev->sb_wait, &__wait);
362         }
363         atomic_inc(&mddev->active_io);
364         rcu_read_unlock();
365
366         /*
367          * save the sectors now since our bio can
368          * go away inside make_request
369          */
370         sectors = bio_sectors(bio);
371         mddev->pers->make_request(mddev, bio);
372
373         cpu = part_stat_lock();
374         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376         part_stat_unlock();
377
378         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379                 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390         BUG_ON(mddev->suspended);
391         mddev->suspended = 1;
392         synchronize_rcu();
393         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394         mddev->pers->quiesce(mddev, 1);
395
396         del_timer_sync(&mddev->safemode_timer);
397 }
398 EXPORT_SYMBOL_GPL(mddev_suspend);
399
400 void mddev_resume(struct mddev *mddev)
401 {
402         mddev->suspended = 0;
403         wake_up(&mddev->sb_wait);
404         mddev->pers->quiesce(mddev, 0);
405
406         md_wakeup_thread(mddev->thread);
407         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413         return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418  * Generic flush handling for md
419  */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423         struct md_rdev *rdev = bio->bi_private;
424         struct mddev *mddev = rdev->mddev;
425
426         rdev_dec_pending(rdev, mddev);
427
428         if (atomic_dec_and_test(&mddev->flush_pending)) {
429                 /* The pre-request flush has finished */
430                 queue_work(md_wq, &mddev->flush_work);
431         }
432         bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440         struct md_rdev *rdev;
441
442         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443         atomic_set(&mddev->flush_pending, 1);
444         rcu_read_lock();
445         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
446                 if (rdev->raid_disk >= 0 &&
447                     !test_bit(Faulty, &rdev->flags)) {
448                         /* Take two references, one is dropped
449                          * when request finishes, one after
450                          * we reclaim rcu_read_lock
451                          */
452                         struct bio *bi;
453                         atomic_inc(&rdev->nr_pending);
454                         atomic_inc(&rdev->nr_pending);
455                         rcu_read_unlock();
456                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457                         bi->bi_end_io = md_end_flush;
458                         bi->bi_private = rdev;
459                         bi->bi_bdev = rdev->bdev;
460                         atomic_inc(&mddev->flush_pending);
461                         submit_bio(WRITE_FLUSH, bi);
462                         rcu_read_lock();
463                         rdev_dec_pending(rdev, mddev);
464                 }
465         rcu_read_unlock();
466         if (atomic_dec_and_test(&mddev->flush_pending))
467                 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473         struct bio *bio = mddev->flush_bio;
474
475         if (bio->bi_size == 0)
476                 /* an empty barrier - all done */
477                 bio_endio(bio, 0);
478         else {
479                 bio->bi_rw &= ~REQ_FLUSH;
480                 mddev->pers->make_request(mddev, bio);
481         }
482
483         mddev->flush_bio = NULL;
484         wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489         spin_lock_irq(&mddev->write_lock);
490         wait_event_lock_irq(mddev->sb_wait,
491                             !mddev->flush_bio,
492                             mddev->write_lock, /*nothing*/);
493         mddev->flush_bio = bio;
494         spin_unlock_irq(&mddev->write_lock);
495
496         INIT_WORK(&mddev->flush_work, submit_flushes);
497         queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 /* Support for plugging.
502  * This mirrors the plugging support in request_queue, but does not
503  * require having a whole queue or request structures.
504  * We allocate an md_plug_cb for each md device and each thread it gets
505  * plugged on.  This links tot the private plug_handle structure in the
506  * personality data where we keep a count of the number of outstanding
507  * plugs so other code can see if a plug is active.
508  */
509 struct md_plug_cb {
510         struct blk_plug_cb cb;
511         struct mddev *mddev;
512 };
513
514 static void plugger_unplug(struct blk_plug_cb *cb)
515 {
516         struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517         if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518                 md_wakeup_thread(mdcb->mddev->thread);
519         kfree(mdcb);
520 }
521
522 /* Check that an unplug wakeup will come shortly.
523  * If not, wakeup the md thread immediately
524  */
525 int mddev_check_plugged(struct mddev *mddev)
526 {
527         struct blk_plug *plug = current->plug;
528         struct md_plug_cb *mdcb;
529
530         if (!plug)
531                 return 0;
532
533         list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534                 if (mdcb->cb.callback == plugger_unplug &&
535                     mdcb->mddev == mddev) {
536                         /* Already on the list, move to top */
537                         if (mdcb != list_first_entry(&plug->cb_list,
538                                                     struct md_plug_cb,
539                                                     cb.list))
540                                 list_move(&mdcb->cb.list, &plug->cb_list);
541                         return 1;
542                 }
543         }
544         /* Not currently on the callback list */
545         mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546         if (!mdcb)
547                 return 0;
548
549         mdcb->mddev = mddev;
550         mdcb->cb.callback = plugger_unplug;
551         atomic_inc(&mddev->plug_cnt);
552         list_add(&mdcb->cb.list, &plug->cb_list);
553         return 1;
554 }
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557 static inline struct mddev *mddev_get(struct mddev *mddev)
558 {
559         atomic_inc(&mddev->active);
560         return mddev;
561 }
562
563 static void mddev_delayed_delete(struct work_struct *ws);
564
565 static void mddev_put(struct mddev *mddev)
566 {
567         struct bio_set *bs = NULL;
568
569         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570                 return;
571         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572             mddev->ctime == 0 && !mddev->hold_active) {
573                 /* Array is not configured at all, and not held active,
574                  * so destroy it */
575                 list_del_init(&mddev->all_mddevs);
576                 bs = mddev->bio_set;
577                 mddev->bio_set = NULL;
578                 if (mddev->gendisk) {
579                         /* We did a probe so need to clean up.  Call
580                          * queue_work inside the spinlock so that
581                          * flush_workqueue() after mddev_find will
582                          * succeed in waiting for the work to be done.
583                          */
584                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585                         queue_work(md_misc_wq, &mddev->del_work);
586                 } else
587                         kfree(mddev);
588         }
589         spin_unlock(&all_mddevs_lock);
590         if (bs)
591                 bioset_free(bs);
592 }
593
594 void mddev_init(struct mddev *mddev)
595 {
596         mutex_init(&mddev->open_mutex);
597         mutex_init(&mddev->reconfig_mutex);
598         mutex_init(&mddev->bitmap_info.mutex);
599         INIT_LIST_HEAD(&mddev->disks);
600         INIT_LIST_HEAD(&mddev->all_mddevs);
601         init_timer(&mddev->safemode_timer);
602         atomic_set(&mddev->active, 1);
603         atomic_set(&mddev->openers, 0);
604         atomic_set(&mddev->active_io, 0);
605         atomic_set(&mddev->plug_cnt, 0);
606         spin_lock_init(&mddev->write_lock);
607         atomic_set(&mddev->flush_pending, 0);
608         init_waitqueue_head(&mddev->sb_wait);
609         init_waitqueue_head(&mddev->recovery_wait);
610         mddev->reshape_position = MaxSector;
611         mddev->resync_min = 0;
612         mddev->resync_max = MaxSector;
613         mddev->level = LEVEL_NONE;
614 }
615 EXPORT_SYMBOL_GPL(mddev_init);
616
617 static struct mddev * mddev_find(dev_t unit)
618 {
619         struct mddev *mddev, *new = NULL;
620
621         if (unit && MAJOR(unit) != MD_MAJOR)
622                 unit &= ~((1<<MdpMinorShift)-1);
623
624  retry:
625         spin_lock(&all_mddevs_lock);
626
627         if (unit) {
628                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629                         if (mddev->unit == unit) {
630                                 mddev_get(mddev);
631                                 spin_unlock(&all_mddevs_lock);
632                                 kfree(new);
633                                 return mddev;
634                         }
635
636                 if (new) {
637                         list_add(&new->all_mddevs, &all_mddevs);
638                         spin_unlock(&all_mddevs_lock);
639                         new->hold_active = UNTIL_IOCTL;
640                         return new;
641                 }
642         } else if (new) {
643                 /* find an unused unit number */
644                 static int next_minor = 512;
645                 int start = next_minor;
646                 int is_free = 0;
647                 int dev = 0;
648                 while (!is_free) {
649                         dev = MKDEV(MD_MAJOR, next_minor);
650                         next_minor++;
651                         if (next_minor > MINORMASK)
652                                 next_minor = 0;
653                         if (next_minor == start) {
654                                 /* Oh dear, all in use. */
655                                 spin_unlock(&all_mddevs_lock);
656                                 kfree(new);
657                                 return NULL;
658                         }
659                                 
660                         is_free = 1;
661                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662                                 if (mddev->unit == dev) {
663                                         is_free = 0;
664                                         break;
665                                 }
666                 }
667                 new->unit = dev;
668                 new->md_minor = MINOR(dev);
669                 new->hold_active = UNTIL_STOP;
670                 list_add(&new->all_mddevs, &all_mddevs);
671                 spin_unlock(&all_mddevs_lock);
672                 return new;
673         }
674         spin_unlock(&all_mddevs_lock);
675
676         new = kzalloc(sizeof(*new), GFP_KERNEL);
677         if (!new)
678                 return NULL;
679
680         new->unit = unit;
681         if (MAJOR(unit) == MD_MAJOR)
682                 new->md_minor = MINOR(unit);
683         else
684                 new->md_minor = MINOR(unit) >> MdpMinorShift;
685
686         mddev_init(new);
687
688         goto retry;
689 }
690
691 static inline int mddev_lock(struct mddev * mddev)
692 {
693         return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 }
695
696 static inline int mddev_is_locked(struct mddev *mddev)
697 {
698         return mutex_is_locked(&mddev->reconfig_mutex);
699 }
700
701 static inline int mddev_trylock(struct mddev * mddev)
702 {
703         return mutex_trylock(&mddev->reconfig_mutex);
704 }
705
706 static struct attribute_group md_redundancy_group;
707
708 static void mddev_unlock(struct mddev * mddev)
709 {
710         if (mddev->to_remove) {
711                 /* These cannot be removed under reconfig_mutex as
712                  * an access to the files will try to take reconfig_mutex
713                  * while holding the file unremovable, which leads to
714                  * a deadlock.
715                  * So hold set sysfs_active while the remove in happeing,
716                  * and anything else which might set ->to_remove or my
717                  * otherwise change the sysfs namespace will fail with
718                  * -EBUSY if sysfs_active is still set.
719                  * We set sysfs_active under reconfig_mutex and elsewhere
720                  * test it under the same mutex to ensure its correct value
721                  * is seen.
722                  */
723                 struct attribute_group *to_remove = mddev->to_remove;
724                 mddev->to_remove = NULL;
725                 mddev->sysfs_active = 1;
726                 mutex_unlock(&mddev->reconfig_mutex);
727
728                 if (mddev->kobj.sd) {
729                         if (to_remove != &md_redundancy_group)
730                                 sysfs_remove_group(&mddev->kobj, to_remove);
731                         if (mddev->pers == NULL ||
732                             mddev->pers->sync_request == NULL) {
733                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734                                 if (mddev->sysfs_action)
735                                         sysfs_put(mddev->sysfs_action);
736                                 mddev->sysfs_action = NULL;
737                         }
738                 }
739                 mddev->sysfs_active = 0;
740         } else
741                 mutex_unlock(&mddev->reconfig_mutex);
742
743         /* As we've dropped the mutex we need a spinlock to
744          * make sure the thread doesn't disappear
745          */
746         spin_lock(&pers_lock);
747         md_wakeup_thread(mddev->thread);
748         spin_unlock(&pers_lock);
749 }
750
751 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
752 {
753         struct md_rdev *rdev;
754
755         list_for_each_entry(rdev, &mddev->disks, same_set)
756                 if (rdev->desc_nr == nr)
757                         return rdev;
758
759         return NULL;
760 }
761
762 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
763 {
764         struct md_rdev *rdev;
765
766         list_for_each_entry(rdev, &mddev->disks, same_set)
767                 if (rdev->bdev->bd_dev == dev)
768                         return rdev;
769
770         return NULL;
771 }
772
773 static struct md_personality *find_pers(int level, char *clevel)
774 {
775         struct md_personality *pers;
776         list_for_each_entry(pers, &pers_list, list) {
777                 if (level != LEVEL_NONE && pers->level == level)
778                         return pers;
779                 if (strcmp(pers->name, clevel)==0)
780                         return pers;
781         }
782         return NULL;
783 }
784
785 /* return the offset of the super block in 512byte sectors */
786 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
787 {
788         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
789         return MD_NEW_SIZE_SECTORS(num_sectors);
790 }
791
792 static int alloc_disk_sb(struct md_rdev * rdev)
793 {
794         if (rdev->sb_page)
795                 MD_BUG();
796
797         rdev->sb_page = alloc_page(GFP_KERNEL);
798         if (!rdev->sb_page) {
799                 printk(KERN_ALERT "md: out of memory.\n");
800                 return -ENOMEM;
801         }
802
803         return 0;
804 }
805
806 static void free_disk_sb(struct md_rdev * rdev)
807 {
808         if (rdev->sb_page) {
809                 put_page(rdev->sb_page);
810                 rdev->sb_loaded = 0;
811                 rdev->sb_page = NULL;
812                 rdev->sb_start = 0;
813                 rdev->sectors = 0;
814         }
815         if (rdev->bb_page) {
816                 put_page(rdev->bb_page);
817                 rdev->bb_page = NULL;
818         }
819 }
820
821
822 static void super_written(struct bio *bio, int error)
823 {
824         struct md_rdev *rdev = bio->bi_private;
825         struct mddev *mddev = rdev->mddev;
826
827         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
828                 printk("md: super_written gets error=%d, uptodate=%d\n",
829                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
830                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
831                 md_error(mddev, rdev);
832         }
833
834         if (atomic_dec_and_test(&mddev->pending_writes))
835                 wake_up(&mddev->sb_wait);
836         bio_put(bio);
837 }
838
839 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
840                    sector_t sector, int size, struct page *page)
841 {
842         /* write first size bytes of page to sector of rdev
843          * Increment mddev->pending_writes before returning
844          * and decrement it on completion, waking up sb_wait
845          * if zero is reached.
846          * If an error occurred, call md_error
847          */
848         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
849
850         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
851         bio->bi_sector = sector;
852         bio_add_page(bio, page, size, 0);
853         bio->bi_private = rdev;
854         bio->bi_end_io = super_written;
855
856         atomic_inc(&mddev->pending_writes);
857         submit_bio(WRITE_FLUSH_FUA, bio);
858 }
859
860 void md_super_wait(struct mddev *mddev)
861 {
862         /* wait for all superblock writes that were scheduled to complete */
863         DEFINE_WAIT(wq);
864         for(;;) {
865                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
866                 if (atomic_read(&mddev->pending_writes)==0)
867                         break;
868                 schedule();
869         }
870         finish_wait(&mddev->sb_wait, &wq);
871 }
872
873 static void bi_complete(struct bio *bio, int error)
874 {
875         complete((struct completion*)bio->bi_private);
876 }
877
878 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
879                  struct page *page, int rw, bool metadata_op)
880 {
881         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
882         struct completion event;
883         int ret;
884
885         rw |= REQ_SYNC;
886
887         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
888                 rdev->meta_bdev : rdev->bdev;
889         if (metadata_op)
890                 bio->bi_sector = sector + rdev->sb_start;
891         else
892                 bio->bi_sector = sector + rdev->data_offset;
893         bio_add_page(bio, page, size, 0);
894         init_completion(&event);
895         bio->bi_private = &event;
896         bio->bi_end_io = bi_complete;
897         submit_bio(rw, bio);
898         wait_for_completion(&event);
899
900         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
901         bio_put(bio);
902         return ret;
903 }
904 EXPORT_SYMBOL_GPL(sync_page_io);
905
906 static int read_disk_sb(struct md_rdev * rdev, int size)
907 {
908         char b[BDEVNAME_SIZE];
909         if (!rdev->sb_page) {
910                 MD_BUG();
911                 return -EINVAL;
912         }
913         if (rdev->sb_loaded)
914                 return 0;
915
916
917         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
918                 goto fail;
919         rdev->sb_loaded = 1;
920         return 0;
921
922 fail:
923         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
924                 bdevname(rdev->bdev,b));
925         return -EINVAL;
926 }
927
928 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
929 {
930         return  sb1->set_uuid0 == sb2->set_uuid0 &&
931                 sb1->set_uuid1 == sb2->set_uuid1 &&
932                 sb1->set_uuid2 == sb2->set_uuid2 &&
933                 sb1->set_uuid3 == sb2->set_uuid3;
934 }
935
936 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
937 {
938         int ret;
939         mdp_super_t *tmp1, *tmp2;
940
941         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
942         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
943
944         if (!tmp1 || !tmp2) {
945                 ret = 0;
946                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
947                 goto abort;
948         }
949
950         *tmp1 = *sb1;
951         *tmp2 = *sb2;
952
953         /*
954          * nr_disks is not constant
955          */
956         tmp1->nr_disks = 0;
957         tmp2->nr_disks = 0;
958
959         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
960 abort:
961         kfree(tmp1);
962         kfree(tmp2);
963         return ret;
964 }
965
966
967 static u32 md_csum_fold(u32 csum)
968 {
969         csum = (csum & 0xffff) + (csum >> 16);
970         return (csum & 0xffff) + (csum >> 16);
971 }
972
973 static unsigned int calc_sb_csum(mdp_super_t * sb)
974 {
975         u64 newcsum = 0;
976         u32 *sb32 = (u32*)sb;
977         int i;
978         unsigned int disk_csum, csum;
979
980         disk_csum = sb->sb_csum;
981         sb->sb_csum = 0;
982
983         for (i = 0; i < MD_SB_BYTES/4 ; i++)
984                 newcsum += sb32[i];
985         csum = (newcsum & 0xffffffff) + (newcsum>>32);
986
987
988 #ifdef CONFIG_ALPHA
989         /* This used to use csum_partial, which was wrong for several
990          * reasons including that different results are returned on
991          * different architectures.  It isn't critical that we get exactly
992          * the same return value as before (we always csum_fold before
993          * testing, and that removes any differences).  However as we
994          * know that csum_partial always returned a 16bit value on
995          * alphas, do a fold to maximise conformity to previous behaviour.
996          */
997         sb->sb_csum = md_csum_fold(disk_csum);
998 #else
999         sb->sb_csum = disk_csum;
1000 #endif
1001         return csum;
1002 }
1003
1004
1005 /*
1006  * Handle superblock details.
1007  * We want to be able to handle multiple superblock formats
1008  * so we have a common interface to them all, and an array of
1009  * different handlers.
1010  * We rely on user-space to write the initial superblock, and support
1011  * reading and updating of superblocks.
1012  * Interface methods are:
1013  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1014  *      loads and validates a superblock on dev.
1015  *      if refdev != NULL, compare superblocks on both devices
1016  *    Return:
1017  *      0 - dev has a superblock that is compatible with refdev
1018  *      1 - dev has a superblock that is compatible and newer than refdev
1019  *          so dev should be used as the refdev in future
1020  *     -EINVAL superblock incompatible or invalid
1021  *     -othererror e.g. -EIO
1022  *
1023  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1024  *      Verify that dev is acceptable into mddev.
1025  *       The first time, mddev->raid_disks will be 0, and data from
1026  *       dev should be merged in.  Subsequent calls check that dev
1027  *       is new enough.  Return 0 or -EINVAL
1028  *
1029  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1030  *     Update the superblock for rdev with data in mddev
1031  *     This does not write to disc.
1032  *
1033  */
1034
1035 struct super_type  {
1036         char                *name;
1037         struct module       *owner;
1038         int                 (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1039                                           int minor_version);
1040         int                 (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1041         void                (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1042         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1043                                                 sector_t num_sectors);
1044 };
1045
1046 /*
1047  * Check that the given mddev has no bitmap.
1048  *
1049  * This function is called from the run method of all personalities that do not
1050  * support bitmaps. It prints an error message and returns non-zero if mddev
1051  * has a bitmap. Otherwise, it returns 0.
1052  *
1053  */
1054 int md_check_no_bitmap(struct mddev *mddev)
1055 {
1056         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1057                 return 0;
1058         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1059                 mdname(mddev), mddev->pers->name);
1060         return 1;
1061 }
1062 EXPORT_SYMBOL(md_check_no_bitmap);
1063
1064 /*
1065  * load_super for 0.90.0 
1066  */
1067 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1068 {
1069         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1070         mdp_super_t *sb;
1071         int ret;
1072
1073         /*
1074          * Calculate the position of the superblock (512byte sectors),
1075          * it's at the end of the disk.
1076          *
1077          * It also happens to be a multiple of 4Kb.
1078          */
1079         rdev->sb_start = calc_dev_sboffset(rdev);
1080
1081         ret = read_disk_sb(rdev, MD_SB_BYTES);
1082         if (ret) return ret;
1083
1084         ret = -EINVAL;
1085
1086         bdevname(rdev->bdev, b);
1087         sb = page_address(rdev->sb_page);
1088
1089         if (sb->md_magic != MD_SB_MAGIC) {
1090                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1091                        b);
1092                 goto abort;
1093         }
1094
1095         if (sb->major_version != 0 ||
1096             sb->minor_version < 90 ||
1097             sb->minor_version > 91) {
1098                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1099                         sb->major_version, sb->minor_version,
1100                         b);
1101                 goto abort;
1102         }
1103
1104         if (sb->raid_disks <= 0)
1105                 goto abort;
1106
1107         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1108                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1109                         b);
1110                 goto abort;
1111         }
1112
1113         rdev->preferred_minor = sb->md_minor;
1114         rdev->data_offset = 0;
1115         rdev->sb_size = MD_SB_BYTES;
1116         rdev->badblocks.shift = -1;
1117
1118         if (sb->level == LEVEL_MULTIPATH)
1119                 rdev->desc_nr = -1;
1120         else
1121                 rdev->desc_nr = sb->this_disk.number;
1122
1123         if (!refdev) {
1124                 ret = 1;
1125         } else {
1126                 __u64 ev1, ev2;
1127                 mdp_super_t *refsb = page_address(refdev->sb_page);
1128                 if (!uuid_equal(refsb, sb)) {
1129                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1130                                 b, bdevname(refdev->bdev,b2));
1131                         goto abort;
1132                 }
1133                 if (!sb_equal(refsb, sb)) {
1134                         printk(KERN_WARNING "md: %s has same UUID"
1135                                " but different superblock to %s\n",
1136                                b, bdevname(refdev->bdev, b2));
1137                         goto abort;
1138                 }
1139                 ev1 = md_event(sb);
1140                 ev2 = md_event(refsb);
1141                 if (ev1 > ev2)
1142                         ret = 1;
1143                 else 
1144                         ret = 0;
1145         }
1146         rdev->sectors = rdev->sb_start;
1147         /* Limit to 4TB as metadata cannot record more than that.
1148          * (not needed for Linear and RAID0 as metadata doesn't
1149          * record this size)
1150          */
1151         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1152                 rdev->sectors = (2ULL << 32) - 2;
1153
1154         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1155                 /* "this cannot possibly happen" ... */
1156                 ret = -EINVAL;
1157
1158  abort:
1159         return ret;
1160 }
1161
1162 /*
1163  * validate_super for 0.90.0
1164  */
1165 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167         mdp_disk_t *desc;
1168         mdp_super_t *sb = page_address(rdev->sb_page);
1169         __u64 ev1 = md_event(sb);
1170
1171         rdev->raid_disk = -1;
1172         clear_bit(Faulty, &rdev->flags);
1173         clear_bit(In_sync, &rdev->flags);
1174         clear_bit(WriteMostly, &rdev->flags);
1175
1176         if (mddev->raid_disks == 0) {
1177                 mddev->major_version = 0;
1178                 mddev->minor_version = sb->minor_version;
1179                 mddev->patch_version = sb->patch_version;
1180                 mddev->external = 0;
1181                 mddev->chunk_sectors = sb->chunk_size >> 9;
1182                 mddev->ctime = sb->ctime;
1183                 mddev->utime = sb->utime;
1184                 mddev->level = sb->level;
1185                 mddev->clevel[0] = 0;
1186                 mddev->layout = sb->layout;
1187                 mddev->raid_disks = sb->raid_disks;
1188                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1189                 mddev->events = ev1;
1190                 mddev->bitmap_info.offset = 0;
1191                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1192
1193                 if (mddev->minor_version >= 91) {
1194                         mddev->reshape_position = sb->reshape_position;
1195                         mddev->delta_disks = sb->delta_disks;
1196                         mddev->new_level = sb->new_level;
1197                         mddev->new_layout = sb->new_layout;
1198                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1199                 } else {
1200                         mddev->reshape_position = MaxSector;
1201                         mddev->delta_disks = 0;
1202                         mddev->new_level = mddev->level;
1203                         mddev->new_layout = mddev->layout;
1204                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1205                 }
1206
1207                 if (sb->state & (1<<MD_SB_CLEAN))
1208                         mddev->recovery_cp = MaxSector;
1209                 else {
1210                         if (sb->events_hi == sb->cp_events_hi && 
1211                                 sb->events_lo == sb->cp_events_lo) {
1212                                 mddev->recovery_cp = sb->recovery_cp;
1213                         } else
1214                                 mddev->recovery_cp = 0;
1215                 }
1216
1217                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1218                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1219                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1220                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1221
1222                 mddev->max_disks = MD_SB_DISKS;
1223
1224                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1225                     mddev->bitmap_info.file == NULL)
1226                         mddev->bitmap_info.offset =
1227                                 mddev->bitmap_info.default_offset;
1228
1229         } else if (mddev->pers == NULL) {
1230                 /* Insist on good event counter while assembling, except
1231                  * for spares (which don't need an event count) */
1232                 ++ev1;
1233                 if (sb->disks[rdev->desc_nr].state & (
1234                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1235                         if (ev1 < mddev->events) 
1236                                 return -EINVAL;
1237         } else if (mddev->bitmap) {
1238                 /* if adding to array with a bitmap, then we can accept an
1239                  * older device ... but not too old.
1240                  */
1241                 if (ev1 < mddev->bitmap->events_cleared)
1242                         return 0;
1243         } else {
1244                 if (ev1 < mddev->events)
1245                         /* just a hot-add of a new device, leave raid_disk at -1 */
1246                         return 0;
1247         }
1248
1249         if (mddev->level != LEVEL_MULTIPATH) {
1250                 desc = sb->disks + rdev->desc_nr;
1251
1252                 if (desc->state & (1<<MD_DISK_FAULTY))
1253                         set_bit(Faulty, &rdev->flags);
1254                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1255                             desc->raid_disk < mddev->raid_disks */) {
1256                         set_bit(In_sync, &rdev->flags);
1257                         rdev->raid_disk = desc->raid_disk;
1258                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1259                         /* active but not in sync implies recovery up to
1260                          * reshape position.  We don't know exactly where
1261                          * that is, so set to zero for now */
1262                         if (mddev->minor_version >= 91) {
1263                                 rdev->recovery_offset = 0;
1264                                 rdev->raid_disk = desc->raid_disk;
1265                         }
1266                 }
1267                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1268                         set_bit(WriteMostly, &rdev->flags);
1269         } else /* MULTIPATH are always insync */
1270                 set_bit(In_sync, &rdev->flags);
1271         return 0;
1272 }
1273
1274 /*
1275  * sync_super for 0.90.0
1276  */
1277 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1278 {
1279         mdp_super_t *sb;
1280         struct md_rdev *rdev2;
1281         int next_spare = mddev->raid_disks;
1282
1283
1284         /* make rdev->sb match mddev data..
1285          *
1286          * 1/ zero out disks
1287          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1288          * 3/ any empty disks < next_spare become removed
1289          *
1290          * disks[0] gets initialised to REMOVED because
1291          * we cannot be sure from other fields if it has
1292          * been initialised or not.
1293          */
1294         int i;
1295         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1296
1297         rdev->sb_size = MD_SB_BYTES;
1298
1299         sb = page_address(rdev->sb_page);
1300
1301         memset(sb, 0, sizeof(*sb));
1302
1303         sb->md_magic = MD_SB_MAGIC;
1304         sb->major_version = mddev->major_version;
1305         sb->patch_version = mddev->patch_version;
1306         sb->gvalid_words  = 0; /* ignored */
1307         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1308         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1309         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1310         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1311
1312         sb->ctime = mddev->ctime;
1313         sb->level = mddev->level;
1314         sb->size = mddev->dev_sectors / 2;
1315         sb->raid_disks = mddev->raid_disks;
1316         sb->md_minor = mddev->md_minor;
1317         sb->not_persistent = 0;
1318         sb->utime = mddev->utime;
1319         sb->state = 0;
1320         sb->events_hi = (mddev->events>>32);
1321         sb->events_lo = (u32)mddev->events;
1322
1323         if (mddev->reshape_position == MaxSector)
1324                 sb->minor_version = 90;
1325         else {
1326                 sb->minor_version = 91;
1327                 sb->reshape_position = mddev->reshape_position;
1328                 sb->new_level = mddev->new_level;
1329                 sb->delta_disks = mddev->delta_disks;
1330                 sb->new_layout = mddev->new_layout;
1331                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1332         }
1333         mddev->minor_version = sb->minor_version;
1334         if (mddev->in_sync)
1335         {
1336                 sb->recovery_cp = mddev->recovery_cp;
1337                 sb->cp_events_hi = (mddev->events>>32);
1338                 sb->cp_events_lo = (u32)mddev->events;
1339                 if (mddev->recovery_cp == MaxSector)
1340                         sb->state = (1<< MD_SB_CLEAN);
1341         } else
1342                 sb->recovery_cp = 0;
1343
1344         sb->layout = mddev->layout;
1345         sb->chunk_size = mddev->chunk_sectors << 9;
1346
1347         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1348                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1349
1350         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1351         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1352                 mdp_disk_t *d;
1353                 int desc_nr;
1354                 int is_active = test_bit(In_sync, &rdev2->flags);
1355
1356                 if (rdev2->raid_disk >= 0 &&
1357                     sb->minor_version >= 91)
1358                         /* we have nowhere to store the recovery_offset,
1359                          * but if it is not below the reshape_position,
1360                          * we can piggy-back on that.
1361                          */
1362                         is_active = 1;
1363                 if (rdev2->raid_disk < 0 ||
1364                     test_bit(Faulty, &rdev2->flags))
1365                         is_active = 0;
1366                 if (is_active)
1367                         desc_nr = rdev2->raid_disk;
1368                 else
1369                         desc_nr = next_spare++;
1370                 rdev2->desc_nr = desc_nr;
1371                 d = &sb->disks[rdev2->desc_nr];
1372                 nr_disks++;
1373                 d->number = rdev2->desc_nr;
1374                 d->major = MAJOR(rdev2->bdev->bd_dev);
1375                 d->minor = MINOR(rdev2->bdev->bd_dev);
1376                 if (is_active)
1377                         d->raid_disk = rdev2->raid_disk;
1378                 else
1379                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1380                 if (test_bit(Faulty, &rdev2->flags))
1381                         d->state = (1<<MD_DISK_FAULTY);
1382                 else if (is_active) {
1383                         d->state = (1<<MD_DISK_ACTIVE);
1384                         if (test_bit(In_sync, &rdev2->flags))
1385                                 d->state |= (1<<MD_DISK_SYNC);
1386                         active++;
1387                         working++;
1388                 } else {
1389                         d->state = 0;
1390                         spare++;
1391                         working++;
1392                 }
1393                 if (test_bit(WriteMostly, &rdev2->flags))
1394                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1395         }
1396         /* now set the "removed" and "faulty" bits on any missing devices */
1397         for (i=0 ; i < mddev->raid_disks ; i++) {
1398                 mdp_disk_t *d = &sb->disks[i];
1399                 if (d->state == 0 && d->number == 0) {
1400                         d->number = i;
1401                         d->raid_disk = i;
1402                         d->state = (1<<MD_DISK_REMOVED);
1403                         d->state |= (1<<MD_DISK_FAULTY);
1404                         failed++;
1405                 }
1406         }
1407         sb->nr_disks = nr_disks;
1408         sb->active_disks = active;
1409         sb->working_disks = working;
1410         sb->failed_disks = failed;
1411         sb->spare_disks = spare;
1412
1413         sb->this_disk = sb->disks[rdev->desc_nr];
1414         sb->sb_csum = calc_sb_csum(sb);
1415 }
1416
1417 /*
1418  * rdev_size_change for 0.90.0
1419  */
1420 static unsigned long long
1421 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1422 {
1423         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1424                 return 0; /* component must fit device */
1425         if (rdev->mddev->bitmap_info.offset)
1426                 return 0; /* can't move bitmap */
1427         rdev->sb_start = calc_dev_sboffset(rdev);
1428         if (!num_sectors || num_sectors > rdev->sb_start)
1429                 num_sectors = rdev->sb_start;
1430         /* Limit to 4TB as metadata cannot record more than that.
1431          * 4TB == 2^32 KB, or 2*2^32 sectors.
1432          */
1433         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1434                 num_sectors = (2ULL << 32) - 2;
1435         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1436                        rdev->sb_page);
1437         md_super_wait(rdev->mddev);
1438         return num_sectors;
1439 }
1440
1441
1442 /*
1443  * version 1 superblock
1444  */
1445
1446 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1447 {
1448         __le32 disk_csum;
1449         u32 csum;
1450         unsigned long long newcsum;
1451         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1452         __le32 *isuper = (__le32*)sb;
1453         int i;
1454
1455         disk_csum = sb->sb_csum;
1456         sb->sb_csum = 0;
1457         newcsum = 0;
1458         for (i=0; size>=4; size -= 4 )
1459                 newcsum += le32_to_cpu(*isuper++);
1460
1461         if (size == 2)
1462                 newcsum += le16_to_cpu(*(__le16*) isuper);
1463
1464         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1465         sb->sb_csum = disk_csum;
1466         return cpu_to_le32(csum);
1467 }
1468
1469 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1470                             int acknowledged);
1471 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1472 {
1473         struct mdp_superblock_1 *sb;
1474         int ret;
1475         sector_t sb_start;
1476         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1477         int bmask;
1478
1479         /*
1480          * Calculate the position of the superblock in 512byte sectors.
1481          * It is always aligned to a 4K boundary and
1482          * depeding on minor_version, it can be:
1483          * 0: At least 8K, but less than 12K, from end of device
1484          * 1: At start of device
1485          * 2: 4K from start of device.
1486          */
1487         switch(minor_version) {
1488         case 0:
1489                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1490                 sb_start -= 8*2;
1491                 sb_start &= ~(sector_t)(4*2-1);
1492                 break;
1493         case 1:
1494                 sb_start = 0;
1495                 break;
1496         case 2:
1497                 sb_start = 8;
1498                 break;
1499         default:
1500                 return -EINVAL;
1501         }
1502         rdev->sb_start = sb_start;
1503
1504         /* superblock is rarely larger than 1K, but it can be larger,
1505          * and it is safe to read 4k, so we do that
1506          */
1507         ret = read_disk_sb(rdev, 4096);
1508         if (ret) return ret;
1509
1510
1511         sb = page_address(rdev->sb_page);
1512
1513         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1514             sb->major_version != cpu_to_le32(1) ||
1515             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1516             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1517             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1518                 return -EINVAL;
1519
1520         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1521                 printk("md: invalid superblock checksum on %s\n",
1522                         bdevname(rdev->bdev,b));
1523                 return -EINVAL;
1524         }
1525         if (le64_to_cpu(sb->data_size) < 10) {
1526                 printk("md: data_size too small on %s\n",
1527                        bdevname(rdev->bdev,b));
1528                 return -EINVAL;
1529         }
1530
1531         rdev->preferred_minor = 0xffff;
1532         rdev->data_offset = le64_to_cpu(sb->data_offset);
1533         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1534
1535         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1536         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1537         if (rdev->sb_size & bmask)
1538                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1539
1540         if (minor_version
1541             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1542                 return -EINVAL;
1543
1544         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1545                 rdev->desc_nr = -1;
1546         else
1547                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1548
1549         if (!rdev->bb_page) {
1550                 rdev->bb_page = alloc_page(GFP_KERNEL);
1551                 if (!rdev->bb_page)
1552                         return -ENOMEM;
1553         }
1554         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1555             rdev->badblocks.count == 0) {
1556                 /* need to load the bad block list.
1557                  * Currently we limit it to one page.
1558                  */
1559                 s32 offset;
1560                 sector_t bb_sector;
1561                 u64 *bbp;
1562                 int i;
1563                 int sectors = le16_to_cpu(sb->bblog_size);
1564                 if (sectors > (PAGE_SIZE / 512))
1565                         return -EINVAL;
1566                 offset = le32_to_cpu(sb->bblog_offset);
1567                 if (offset == 0)
1568                         return -EINVAL;
1569                 bb_sector = (long long)offset;
1570                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1571                                   rdev->bb_page, READ, true))
1572                         return -EIO;
1573                 bbp = (u64 *)page_address(rdev->bb_page);
1574                 rdev->badblocks.shift = sb->bblog_shift;
1575                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1576                         u64 bb = le64_to_cpu(*bbp);
1577                         int count = bb & (0x3ff);
1578                         u64 sector = bb >> 10;
1579                         sector <<= sb->bblog_shift;
1580                         count <<= sb->bblog_shift;
1581                         if (bb + 1 == 0)
1582                                 break;
1583                         if (md_set_badblocks(&rdev->badblocks,
1584                                              sector, count, 1) == 0)
1585                                 return -EINVAL;
1586                 }
1587         } else if (sb->bblog_offset == 0)
1588                 rdev->badblocks.shift = -1;
1589
1590         if (!refdev) {
1591                 ret = 1;
1592         } else {
1593                 __u64 ev1, ev2;
1594                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1595
1596                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1597                     sb->level != refsb->level ||
1598                     sb->layout != refsb->layout ||
1599                     sb->chunksize != refsb->chunksize) {
1600                         printk(KERN_WARNING "md: %s has strangely different"
1601                                 " superblock to %s\n",
1602                                 bdevname(rdev->bdev,b),
1603                                 bdevname(refdev->bdev,b2));
1604                         return -EINVAL;
1605                 }
1606                 ev1 = le64_to_cpu(sb->events);
1607                 ev2 = le64_to_cpu(refsb->events);
1608
1609                 if (ev1 > ev2)
1610                         ret = 1;
1611                 else
1612                         ret = 0;
1613         }
1614         if (minor_version)
1615                 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1616                         le64_to_cpu(sb->data_offset);
1617         else
1618                 rdev->sectors = rdev->sb_start;
1619         if (rdev->sectors < le64_to_cpu(sb->data_size))
1620                 return -EINVAL;
1621         rdev->sectors = le64_to_cpu(sb->data_size);
1622         if (le64_to_cpu(sb->size) > rdev->sectors)
1623                 return -EINVAL;
1624         return ret;
1625 }
1626
1627 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1628 {
1629         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1630         __u64 ev1 = le64_to_cpu(sb->events);
1631
1632         rdev->raid_disk = -1;
1633         clear_bit(Faulty, &rdev->flags);
1634         clear_bit(In_sync, &rdev->flags);
1635         clear_bit(WriteMostly, &rdev->flags);
1636
1637         if (mddev->raid_disks == 0) {
1638                 mddev->major_version = 1;
1639                 mddev->patch_version = 0;
1640                 mddev->external = 0;
1641                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1642                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1643                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1644                 mddev->level = le32_to_cpu(sb->level);
1645                 mddev->clevel[0] = 0;
1646                 mddev->layout = le32_to_cpu(sb->layout);
1647                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1648                 mddev->dev_sectors = le64_to_cpu(sb->size);
1649                 mddev->events = ev1;
1650                 mddev->bitmap_info.offset = 0;
1651                 mddev->bitmap_info.default_offset = 1024 >> 9;
1652                 
1653                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1654                 memcpy(mddev->uuid, sb->set_uuid, 16);
1655
1656                 mddev->max_disks =  (4096-256)/2;
1657
1658                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1659                     mddev->bitmap_info.file == NULL )
1660                         mddev->bitmap_info.offset =
1661                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1662
1663                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1664                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1665                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1666                         mddev->new_level = le32_to_cpu(sb->new_level);
1667                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1668                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1669                 } else {
1670                         mddev->reshape_position = MaxSector;
1671                         mddev->delta_disks = 0;
1672                         mddev->new_level = mddev->level;
1673                         mddev->new_layout = mddev->layout;
1674                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1675                 }
1676
1677         } else if (mddev->pers == NULL) {
1678                 /* Insist of good event counter while assembling, except for
1679                  * spares (which don't need an event count) */
1680                 ++ev1;
1681                 if (rdev->desc_nr >= 0 &&
1682                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684                         if (ev1 < mddev->events)
1685                                 return -EINVAL;
1686         } else if (mddev->bitmap) {
1687                 /* If adding to array with a bitmap, then we can accept an
1688                  * older device, but not too old.
1689                  */
1690                 if (ev1 < mddev->bitmap->events_cleared)
1691                         return 0;
1692         } else {
1693                 if (ev1 < mddev->events)
1694                         /* just a hot-add of a new device, leave raid_disk at -1 */
1695                         return 0;
1696         }
1697         if (mddev->level != LEVEL_MULTIPATH) {
1698                 int role;
1699                 if (rdev->desc_nr < 0 ||
1700                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701                         role = 0xffff;
1702                         rdev->desc_nr = -1;
1703                 } else
1704                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705                 switch(role) {
1706                 case 0xffff: /* spare */
1707                         break;
1708                 case 0xfffe: /* faulty */
1709                         set_bit(Faulty, &rdev->flags);
1710                         break;
1711                 default:
1712                         if ((le32_to_cpu(sb->feature_map) &
1713                              MD_FEATURE_RECOVERY_OFFSET))
1714                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715                         else
1716                                 set_bit(In_sync, &rdev->flags);
1717                         rdev->raid_disk = role;
1718                         break;
1719                 }
1720                 if (sb->devflags & WriteMostly1)
1721                         set_bit(WriteMostly, &rdev->flags);
1722         } else /* MULTIPATH are always insync */
1723                 set_bit(In_sync, &rdev->flags);
1724
1725         return 0;
1726 }
1727
1728 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1729 {
1730         struct mdp_superblock_1 *sb;
1731         struct md_rdev *rdev2;
1732         int max_dev, i;
1733         /* make rdev->sb match mddev and rdev data. */
1734
1735         sb = page_address(rdev->sb_page);
1736
1737         sb->feature_map = 0;
1738         sb->pad0 = 0;
1739         sb->recovery_offset = cpu_to_le64(0);
1740         memset(sb->pad1, 0, sizeof(sb->pad1));
1741         memset(sb->pad3, 0, sizeof(sb->pad3));
1742
1743         sb->utime = cpu_to_le64((__u64)mddev->utime);
1744         sb->events = cpu_to_le64(mddev->events);
1745         if (mddev->in_sync)
1746                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1747         else
1748                 sb->resync_offset = cpu_to_le64(0);
1749
1750         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1751
1752         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1753         sb->size = cpu_to_le64(mddev->dev_sectors);
1754         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1755         sb->level = cpu_to_le32(mddev->level);
1756         sb->layout = cpu_to_le32(mddev->layout);
1757
1758         if (test_bit(WriteMostly, &rdev->flags))
1759                 sb->devflags |= WriteMostly1;
1760         else
1761                 sb->devflags &= ~WriteMostly1;
1762
1763         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1764                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1765                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1766         }
1767
1768         if (rdev->raid_disk >= 0 &&
1769             !test_bit(In_sync, &rdev->flags)) {
1770                 sb->feature_map |=
1771                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1772                 sb->recovery_offset =
1773                         cpu_to_le64(rdev->recovery_offset);
1774         }
1775
1776         if (mddev->reshape_position != MaxSector) {
1777                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1778                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1779                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1780                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1781                 sb->new_level = cpu_to_le32(mddev->new_level);
1782                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1783         }
1784
1785         if (rdev->badblocks.count == 0)
1786                 /* Nothing to do for bad blocks*/ ;
1787         else if (sb->bblog_offset == 0)
1788                 /* Cannot record bad blocks on this device */
1789                 md_error(mddev, rdev);
1790         else {
1791                 struct badblocks *bb = &rdev->badblocks;
1792                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1793                 u64 *p = bb->page;
1794                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1795                 if (bb->changed) {
1796                         unsigned seq;
1797
1798 retry:
1799                         seq = read_seqbegin(&bb->lock);
1800
1801                         memset(bbp, 0xff, PAGE_SIZE);
1802
1803                         for (i = 0 ; i < bb->count ; i++) {
1804                                 u64 internal_bb = *p++;
1805                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1806                                                 | BB_LEN(internal_bb));
1807                                 *bbp++ = cpu_to_le64(store_bb);
1808                         }
1809                         bb->changed = 0;
1810                         if (read_seqretry(&bb->lock, seq))
1811                                 goto retry;
1812
1813                         bb->sector = (rdev->sb_start +
1814                                       (int)le32_to_cpu(sb->bblog_offset));
1815                         bb->size = le16_to_cpu(sb->bblog_size);
1816                 }
1817         }
1818
1819         max_dev = 0;
1820         list_for_each_entry(rdev2, &mddev->disks, same_set)
1821                 if (rdev2->desc_nr+1 > max_dev)
1822                         max_dev = rdev2->desc_nr+1;
1823
1824         if (max_dev > le32_to_cpu(sb->max_dev)) {
1825                 int bmask;
1826                 sb->max_dev = cpu_to_le32(max_dev);
1827                 rdev->sb_size = max_dev * 2 + 256;
1828                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1829                 if (rdev->sb_size & bmask)
1830                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1831         } else
1832                 max_dev = le32_to_cpu(sb->max_dev);
1833
1834         for (i=0; i<max_dev;i++)
1835                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836         
1837         list_for_each_entry(rdev2, &mddev->disks, same_set) {
1838                 i = rdev2->desc_nr;
1839                 if (test_bit(Faulty, &rdev2->flags))
1840                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1841                 else if (test_bit(In_sync, &rdev2->flags))
1842                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843                 else if (rdev2->raid_disk >= 0)
1844                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1845                 else
1846                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1847         }
1848
1849         sb->sb_csum = calc_sb_1_csum(sb);
1850 }
1851
1852 static unsigned long long
1853 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1854 {
1855         struct mdp_superblock_1 *sb;
1856         sector_t max_sectors;
1857         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1858                 return 0; /* component must fit device */
1859         if (rdev->sb_start < rdev->data_offset) {
1860                 /* minor versions 1 and 2; superblock before data */
1861                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1862                 max_sectors -= rdev->data_offset;
1863                 if (!num_sectors || num_sectors > max_sectors)
1864                         num_sectors = max_sectors;
1865         } else if (rdev->mddev->bitmap_info.offset) {
1866                 /* minor version 0 with bitmap we can't move */
1867                 return 0;
1868         } else {
1869                 /* minor version 0; superblock after data */
1870                 sector_t sb_start;
1871                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1872                 sb_start &= ~(sector_t)(4*2 - 1);
1873                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1874                 if (!num_sectors || num_sectors > max_sectors)
1875                         num_sectors = max_sectors;
1876                 rdev->sb_start = sb_start;
1877         }
1878         sb = page_address(rdev->sb_page);
1879         sb->data_size = cpu_to_le64(num_sectors);
1880         sb->super_offset = rdev->sb_start;
1881         sb->sb_csum = calc_sb_1_csum(sb);
1882         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1883                        rdev->sb_page);
1884         md_super_wait(rdev->mddev);
1885         return num_sectors;
1886 }
1887
1888 static struct super_type super_types[] = {
1889         [0] = {
1890                 .name   = "0.90.0",
1891                 .owner  = THIS_MODULE,
1892                 .load_super         = super_90_load,
1893                 .validate_super     = super_90_validate,
1894                 .sync_super         = super_90_sync,
1895                 .rdev_size_change   = super_90_rdev_size_change,
1896         },
1897         [1] = {
1898                 .name   = "md-1",
1899                 .owner  = THIS_MODULE,
1900                 .load_super         = super_1_load,
1901                 .validate_super     = super_1_validate,
1902                 .sync_super         = super_1_sync,
1903                 .rdev_size_change   = super_1_rdev_size_change,
1904         },
1905 };
1906
1907 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1908 {
1909         if (mddev->sync_super) {
1910                 mddev->sync_super(mddev, rdev);
1911                 return;
1912         }
1913
1914         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1915
1916         super_types[mddev->major_version].sync_super(mddev, rdev);
1917 }
1918
1919 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1920 {
1921         struct md_rdev *rdev, *rdev2;
1922
1923         rcu_read_lock();
1924         rdev_for_each_rcu(rdev, mddev1)
1925                 rdev_for_each_rcu(rdev2, mddev2)
1926                         if (rdev->bdev->bd_contains ==
1927                             rdev2->bdev->bd_contains) {
1928                                 rcu_read_unlock();
1929                                 return 1;
1930                         }
1931         rcu_read_unlock();
1932         return 0;
1933 }
1934
1935 static LIST_HEAD(pending_raid_disks);
1936
1937 /*
1938  * Try to register data integrity profile for an mddev
1939  *
1940  * This is called when an array is started and after a disk has been kicked
1941  * from the array. It only succeeds if all working and active component devices
1942  * are integrity capable with matching profiles.
1943  */
1944 int md_integrity_register(struct mddev *mddev)
1945 {
1946         struct md_rdev *rdev, *reference = NULL;
1947
1948         if (list_empty(&mddev->disks))
1949                 return 0; /* nothing to do */
1950         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1951                 return 0; /* shouldn't register, or already is */
1952         list_for_each_entry(rdev, &mddev->disks, same_set) {
1953                 /* skip spares and non-functional disks */
1954                 if (test_bit(Faulty, &rdev->flags))
1955                         continue;
1956                 if (rdev->raid_disk < 0)
1957                         continue;
1958                 if (!reference) {
1959                         /* Use the first rdev as the reference */
1960                         reference = rdev;
1961                         continue;
1962                 }
1963                 /* does this rdev's profile match the reference profile? */
1964                 if (blk_integrity_compare(reference->bdev->bd_disk,
1965                                 rdev->bdev->bd_disk) < 0)
1966                         return -EINVAL;
1967         }
1968         if (!reference || !bdev_get_integrity(reference->bdev))
1969                 return 0;
1970         /*
1971          * All component devices are integrity capable and have matching
1972          * profiles, register the common profile for the md device.
1973          */
1974         if (blk_integrity_register(mddev->gendisk,
1975                         bdev_get_integrity(reference->bdev)) != 0) {
1976                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1977                         mdname(mddev));
1978                 return -EINVAL;
1979         }
1980         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1981         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1982                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1983                        mdname(mddev));
1984                 return -EINVAL;
1985         }
1986         return 0;
1987 }
1988 EXPORT_SYMBOL(md_integrity_register);
1989
1990 /* Disable data integrity if non-capable/non-matching disk is being added */
1991 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1992 {
1993         struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1994         struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1995
1996         if (!bi_mddev) /* nothing to do */
1997                 return;
1998         if (rdev->raid_disk < 0) /* skip spares */
1999                 return;
2000         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2001                                              rdev->bdev->bd_disk) >= 0)
2002                 return;
2003         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2004         blk_integrity_unregister(mddev->gendisk);
2005 }
2006 EXPORT_SYMBOL(md_integrity_add_rdev);
2007
2008 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2009 {
2010         char b[BDEVNAME_SIZE];
2011         struct kobject *ko;
2012         char *s;
2013         int err;
2014
2015         if (rdev->mddev) {
2016                 MD_BUG();
2017                 return -EINVAL;
2018         }
2019
2020         /* prevent duplicates */
2021         if (find_rdev(mddev, rdev->bdev->bd_dev))
2022                 return -EEXIST;
2023
2024         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2025         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2026                         rdev->sectors < mddev->dev_sectors)) {
2027                 if (mddev->pers) {
2028                         /* Cannot change size, so fail
2029                          * If mddev->level <= 0, then we don't care
2030                          * about aligning sizes (e.g. linear)
2031                          */
2032                         if (mddev->level > 0)
2033                                 return -ENOSPC;
2034                 } else
2035                         mddev->dev_sectors = rdev->sectors;
2036         }
2037
2038         /* Verify rdev->desc_nr is unique.
2039          * If it is -1, assign a free number, else
2040          * check number is not in use
2041          */
2042         if (rdev->desc_nr < 0) {
2043                 int choice = 0;
2044                 if (mddev->pers) choice = mddev->raid_disks;
2045                 while (find_rdev_nr(mddev, choice))
2046                         choice++;
2047                 rdev->desc_nr = choice;
2048         } else {
2049                 if (find_rdev_nr(mddev, rdev->desc_nr))
2050                         return -EBUSY;
2051         }
2052         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2053                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2054                        mdname(mddev), mddev->max_disks);
2055                 return -EBUSY;
2056         }
2057         bdevname(rdev->bdev,b);
2058         while ( (s=strchr(b, '/')) != NULL)
2059                 *s = '!';
2060
2061         rdev->mddev = mddev;
2062         printk(KERN_INFO "md: bind<%s>\n", b);
2063
2064         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2065                 goto fail;
2066
2067         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2068         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2069                 /* failure here is OK */;
2070         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2071
2072         list_add_rcu(&rdev->same_set, &mddev->disks);
2073         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2074
2075         /* May as well allow recovery to be retried once */
2076         mddev->recovery_disabled++;
2077
2078         return 0;
2079
2080  fail:
2081         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2082                b, mdname(mddev));
2083         return err;
2084 }
2085
2086 static void md_delayed_delete(struct work_struct *ws)
2087 {
2088         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2089         kobject_del(&rdev->kobj);
2090         kobject_put(&rdev->kobj);
2091 }
2092
2093 static void unbind_rdev_from_array(struct md_rdev * rdev)
2094 {
2095         char b[BDEVNAME_SIZE];
2096         if (!rdev->mddev) {
2097                 MD_BUG();
2098                 return;
2099         }
2100         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2101         list_del_rcu(&rdev->same_set);
2102         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2103         rdev->mddev = NULL;
2104         sysfs_remove_link(&rdev->kobj, "block");
2105         sysfs_put(rdev->sysfs_state);
2106         rdev->sysfs_state = NULL;
2107         kfree(rdev->badblocks.page);
2108         rdev->badblocks.count = 0;
2109         rdev->badblocks.page = NULL;
2110         /* We need to delay this, otherwise we can deadlock when
2111          * writing to 'remove' to "dev/state".  We also need
2112          * to delay it due to rcu usage.
2113          */
2114         synchronize_rcu();
2115         INIT_WORK(&rdev->del_work, md_delayed_delete);
2116         kobject_get(&rdev->kobj);
2117         queue_work(md_misc_wq, &rdev->del_work);
2118 }
2119
2120 /*
2121  * prevent the device from being mounted, repartitioned or
2122  * otherwise reused by a RAID array (or any other kernel
2123  * subsystem), by bd_claiming the device.
2124  */
2125 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2126 {
2127         int err = 0;
2128         struct block_device *bdev;
2129         char b[BDEVNAME_SIZE];
2130
2131         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2132                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2133         if (IS_ERR(bdev)) {
2134                 printk(KERN_ERR "md: could not open %s.\n",
2135                         __bdevname(dev, b));
2136                 return PTR_ERR(bdev);
2137         }
2138         rdev->bdev = bdev;
2139         return err;
2140 }
2141
2142 static void unlock_rdev(struct md_rdev *rdev)
2143 {
2144         struct block_device *bdev = rdev->bdev;
2145         rdev->bdev = NULL;
2146         if (!bdev)
2147                 MD_BUG();
2148         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2149 }
2150
2151 void md_autodetect_dev(dev_t dev);
2152
2153 static void export_rdev(struct md_rdev * rdev)
2154 {
2155         char b[BDEVNAME_SIZE];
2156         printk(KERN_INFO "md: export_rdev(%s)\n",
2157                 bdevname(rdev->bdev,b));
2158         if (rdev->mddev)
2159                 MD_BUG();
2160         free_disk_sb(rdev);
2161 #ifndef MODULE
2162         if (test_bit(AutoDetected, &rdev->flags))
2163                 md_autodetect_dev(rdev->bdev->bd_dev);
2164 #endif
2165         unlock_rdev(rdev);
2166         kobject_put(&rdev->kobj);
2167 }
2168
2169 static void kick_rdev_from_array(struct md_rdev * rdev)
2170 {
2171         unbind_rdev_from_array(rdev);
2172         export_rdev(rdev);
2173 }
2174
2175 static void export_array(struct mddev *mddev)
2176 {
2177         struct md_rdev *rdev, *tmp;
2178
2179         rdev_for_each(rdev, tmp, mddev) {
2180                 if (!rdev->mddev) {
2181                         MD_BUG();
2182                         continue;
2183                 }
2184                 kick_rdev_from_array(rdev);
2185         }
2186         if (!list_empty(&mddev->disks))
2187                 MD_BUG();
2188         mddev->raid_disks = 0;
2189         mddev->major_version = 0;
2190 }
2191
2192 static void print_desc(mdp_disk_t *desc)
2193 {
2194         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2195                 desc->major,desc->minor,desc->raid_disk,desc->state);
2196 }
2197
2198 static void print_sb_90(mdp_super_t *sb)
2199 {
2200         int i;
2201
2202         printk(KERN_INFO 
2203                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2204                 sb->major_version, sb->minor_version, sb->patch_version,
2205                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2206                 sb->ctime);
2207         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2208                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2209                 sb->md_minor, sb->layout, sb->chunk_size);
2210         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2211                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2212                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2213                 sb->failed_disks, sb->spare_disks,
2214                 sb->sb_csum, (unsigned long)sb->events_lo);
2215
2216         printk(KERN_INFO);
2217         for (i = 0; i < MD_SB_DISKS; i++) {
2218                 mdp_disk_t *desc;
2219
2220                 desc = sb->disks + i;
2221                 if (desc->number || desc->major || desc->minor ||
2222                     desc->raid_disk || (desc->state && (desc->state != 4))) {
2223                         printk("     D %2d: ", i);
2224                         print_desc(desc);
2225                 }
2226         }
2227         printk(KERN_INFO "md:     THIS: ");
2228         print_desc(&sb->this_disk);
2229 }
2230
2231 static void print_sb_1(struct mdp_superblock_1 *sb)
2232 {
2233         __u8 *uuid;
2234
2235         uuid = sb->set_uuid;
2236         printk(KERN_INFO
2237                "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2238                "md:    Name: \"%s\" CT:%llu\n",
2239                 le32_to_cpu(sb->major_version),
2240                 le32_to_cpu(sb->feature_map),
2241                 uuid,
2242                 sb->set_name,
2243                 (unsigned long long)le64_to_cpu(sb->ctime)
2244                        & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2245
2246         uuid = sb->device_uuid;
2247         printk(KERN_INFO
2248                "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2249                         " RO:%llu\n"
2250                "md:     Dev:%08x UUID: %pU\n"
2251                "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2252                "md:         (MaxDev:%u) \n",
2253                 le32_to_cpu(sb->level),
2254                 (unsigned long long)le64_to_cpu(sb->size),
2255                 le32_to_cpu(sb->raid_disks),
2256                 le32_to_cpu(sb->layout),
2257                 le32_to_cpu(sb->chunksize),
2258                 (unsigned long long)le64_to_cpu(sb->data_offset),
2259                 (unsigned long long)le64_to_cpu(sb->data_size),
2260                 (unsigned long long)le64_to_cpu(sb->super_offset),
2261                 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2262                 le32_to_cpu(sb->dev_number),
2263                 uuid,
2264                 sb->devflags,
2265                 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2266                 (unsigned long long)le64_to_cpu(sb->events),
2267                 (unsigned long long)le64_to_cpu(sb->resync_offset),
2268                 le32_to_cpu(sb->sb_csum),
2269                 le32_to_cpu(sb->max_dev)
2270                 );
2271 }
2272
2273 static void print_rdev(struct md_rdev *rdev, int major_version)
2274 {
2275         char b[BDEVNAME_SIZE];
2276         printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2277                 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2278                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2279                 rdev->desc_nr);
2280         if (rdev->sb_loaded) {
2281                 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2282                 switch (major_version) {
2283                 case 0:
2284                         print_sb_90(page_address(rdev->sb_page));
2285                         break;
2286                 case 1:
2287                         print_sb_1(page_address(rdev->sb_page));
2288                         break;
2289                 }
2290         } else
2291                 printk(KERN_INFO "md: no rdev superblock!\n");
2292 }
2293
2294 static void md_print_devices(void)
2295 {
2296         struct list_head *tmp;
2297         struct md_rdev *rdev;
2298         struct mddev *mddev;
2299         char b[BDEVNAME_SIZE];
2300
2301         printk("\n");
2302         printk("md:     **********************************\n");
2303         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
2304         printk("md:     **********************************\n");
2305         for_each_mddev(mddev, tmp) {
2306
2307                 if (mddev->bitmap)
2308                         bitmap_print_sb(mddev->bitmap);
2309                 else
2310                         printk("%s: ", mdname(mddev));
2311                 list_for_each_entry(rdev, &mddev->disks, same_set)
2312                         printk("<%s>", bdevname(rdev->bdev,b));
2313                 printk("\n");
2314
2315                 list_for_each_entry(rdev, &mddev->disks, same_set)
2316                         print_rdev(rdev, mddev->major_version);
2317         }
2318         printk("md:     **********************************\n");
2319         printk("\n");
2320 }
2321
2322
2323 static void sync_sbs(struct mddev * mddev, int nospares)
2324 {
2325         /* Update each superblock (in-memory image), but
2326          * if we are allowed to, skip spares which already
2327          * have the right event counter, or have one earlier
2328          * (which would mean they aren't being marked as dirty
2329          * with the rest of the array)
2330          */
2331         struct md_rdev *rdev;
2332         list_for_each_entry(rdev, &mddev->disks, same_set) {
2333                 if (rdev->sb_events == mddev->events ||
2334                     (nospares &&
2335                      rdev->raid_disk < 0 &&
2336                      rdev->sb_events+1 == mddev->events)) {
2337                         /* Don't update this superblock */
2338                         rdev->sb_loaded = 2;
2339                 } else {
2340                         sync_super(mddev, rdev);
2341                         rdev->sb_loaded = 1;
2342                 }
2343         }
2344 }
2345
2346 static void md_update_sb(struct mddev * mddev, int force_change)
2347 {
2348         struct md_rdev *rdev;
2349         int sync_req;
2350         int nospares = 0;
2351         int any_badblocks_changed = 0;
2352
2353 repeat:
2354         /* First make sure individual recovery_offsets are correct */
2355         list_for_each_entry(rdev, &mddev->disks, same_set) {
2356                 if (rdev->raid_disk >= 0 &&
2357                     mddev->delta_disks >= 0 &&
2358                     !test_bit(In_sync, &rdev->flags) &&
2359                     mddev->curr_resync_completed > rdev->recovery_offset)
2360                                 rdev->recovery_offset = mddev->curr_resync_completed;
2361
2362         }       
2363         if (!mddev->persistent) {
2364                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2365                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2366                 if (!mddev->external) {
2367                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2368                         list_for_each_entry(rdev, &mddev->disks, same_set) {
2369                                 if (rdev->badblocks.changed) {
2370                                         rdev->badblocks.changed = 0;
2371                                         md_ack_all_badblocks(&rdev->badblocks);
2372                                         md_error(mddev, rdev);
2373                                 }
2374                                 clear_bit(Blocked, &rdev->flags);
2375                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2376                                 wake_up(&rdev->blocked_wait);
2377                         }
2378                 }
2379                 wake_up(&mddev->sb_wait);
2380                 return;
2381         }
2382
2383         spin_lock_irq(&mddev->write_lock);
2384
2385         mddev->utime = get_seconds();
2386
2387         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2388                 force_change = 1;
2389         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2390                 /* just a clean<-> dirty transition, possibly leave spares alone,
2391                  * though if events isn't the right even/odd, we will have to do
2392                  * spares after all
2393                  */
2394                 nospares = 1;
2395         if (force_change)
2396                 nospares = 0;
2397         if (mddev->degraded)
2398                 /* If the array is degraded, then skipping spares is both
2399                  * dangerous and fairly pointless.
2400                  * Dangerous because a device that was removed from the array
2401                  * might have a event_count that still looks up-to-date,
2402                  * so it can be re-added without a resync.
2403                  * Pointless because if there are any spares to skip,
2404                  * then a recovery will happen and soon that array won't
2405                  * be degraded any more and the spare can go back to sleep then.
2406                  */
2407                 nospares = 0;
2408
2409         sync_req = mddev->in_sync;
2410
2411         /* If this is just a dirty<->clean transition, and the array is clean
2412          * and 'events' is odd, we can roll back to the previous clean state */
2413         if (nospares
2414             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2415             && mddev->can_decrease_events
2416             && mddev->events != 1) {
2417                 mddev->events--;
2418                 mddev->can_decrease_events = 0;
2419         } else {
2420                 /* otherwise we have to go forward and ... */
2421                 mddev->events ++;
2422                 mddev->can_decrease_events = nospares;
2423         }
2424
2425         if (!mddev->events) {
2426                 /*
2427                  * oops, this 64-bit counter should never wrap.
2428                  * Either we are in around ~1 trillion A.C., assuming
2429                  * 1 reboot per second, or we have a bug:
2430                  */
2431                 MD_BUG();
2432                 mddev->events --;
2433         }
2434
2435         list_for_each_entry(rdev, &mddev->disks, same_set) {
2436                 if (rdev->badblocks.changed)
2437                         any_badblocks_changed++;
2438                 if (test_bit(Faulty, &rdev->flags))
2439                         set_bit(FaultRecorded, &rdev->flags);
2440         }
2441
2442         sync_sbs(mddev, nospares);
2443         spin_unlock_irq(&mddev->write_lock);
2444
2445         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2446                  mdname(mddev), mddev->in_sync);
2447
2448         bitmap_update_sb(mddev->bitmap);
2449         list_for_each_entry(rdev, &mddev->disks, same_set) {
2450                 char b[BDEVNAME_SIZE];
2451
2452                 if (rdev->sb_loaded != 1)
2453                         continue; /* no noise on spare devices */
2454
2455                 if (!test_bit(Faulty, &rdev->flags) &&
2456                     rdev->saved_raid_disk == -1) {
2457                         md_super_write(mddev,rdev,
2458                                        rdev->sb_start, rdev->sb_size,
2459                                        rdev->sb_page);
2460                         pr_debug("md: (write) %s's sb offset: %llu\n",
2461                                  bdevname(rdev->bdev, b),
2462                                  (unsigned long long)rdev->sb_start);
2463                         rdev->sb_events = mddev->events;
2464                         if (rdev->badblocks.size) {
2465                                 md_super_write(mddev, rdev,
2466                                                rdev->badblocks.sector,
2467                                                rdev->badblocks.size << 9,
2468                                                rdev->bb_page);
2469                                 rdev->badblocks.size = 0;
2470                         }
2471
2472                 } else if (test_bit(Faulty, &rdev->flags))
2473                         pr_debug("md: %s (skipping faulty)\n",
2474                                  bdevname(rdev->bdev, b));
2475                 else
2476                         pr_debug("(skipping incremental s/r ");
2477
2478                 if (mddev->level == LEVEL_MULTIPATH)
2479                         /* only need to write one superblock... */
2480                         break;
2481         }
2482         md_super_wait(mddev);
2483         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2484
2485         spin_lock_irq(&mddev->write_lock);
2486         if (mddev->in_sync != sync_req ||
2487             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2488                 /* have to write it out again */
2489                 spin_unlock_irq(&mddev->write_lock);
2490                 goto repeat;
2491         }
2492         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2493         spin_unlock_irq(&mddev->write_lock);
2494         wake_up(&mddev->sb_wait);
2495         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2496                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2497
2498         list_for_each_entry(rdev, &mddev->disks, same_set) {
2499                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2500                         clear_bit(Blocked, &rdev->flags);
2501
2502                 if (any_badblocks_changed)
2503                         md_ack_all_badblocks(&rdev->badblocks);
2504                 clear_bit(BlockedBadBlocks, &rdev->flags);
2505                 wake_up(&rdev->blocked_wait);
2506         }
2507 }
2508
2509 /* words written to sysfs files may, or may not, be \n terminated.
2510  * We want to accept with case. For this we use cmd_match.
2511  */
2512 static int cmd_match(const char *cmd, const char *str)
2513 {
2514         /* See if cmd, written into a sysfs file, matches
2515          * str.  They must either be the same, or cmd can
2516          * have a trailing newline
2517          */
2518         while (*cmd && *str && *cmd == *str) {
2519                 cmd++;
2520                 str++;
2521         }
2522         if (*cmd == '\n')
2523                 cmd++;
2524         if (*str || *cmd)
2525                 return 0;
2526         return 1;
2527 }
2528
2529 struct rdev_sysfs_entry {
2530         struct attribute attr;
2531         ssize_t (*show)(struct md_rdev *, char *);
2532         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2533 };
2534
2535 static ssize_t
2536 state_show(struct md_rdev *rdev, char *page)
2537 {
2538         char *sep = "";
2539         size_t len = 0;
2540
2541         if (test_bit(Faulty, &rdev->flags) ||
2542             rdev->badblocks.unacked_exist) {
2543                 len+= sprintf(page+len, "%sfaulty",sep);
2544                 sep = ",";
2545         }
2546         if (test_bit(In_sync, &rdev->flags)) {
2547                 len += sprintf(page+len, "%sin_sync",sep);
2548                 sep = ",";
2549         }
2550         if (test_bit(WriteMostly, &rdev->flags)) {
2551                 len += sprintf(page+len, "%swrite_mostly",sep);
2552                 sep = ",";
2553         }
2554         if (test_bit(Blocked, &rdev->flags) ||
2555             (rdev->badblocks.unacked_exist
2556              && !test_bit(Faulty, &rdev->flags))) {
2557                 len += sprintf(page+len, "%sblocked", sep);
2558                 sep = ",";
2559         }
2560         if (!test_bit(Faulty, &rdev->flags) &&
2561             !test_bit(In_sync, &rdev->flags)) {
2562                 len += sprintf(page+len, "%sspare", sep);
2563                 sep = ",";
2564         }
2565         if (test_bit(WriteErrorSeen, &rdev->flags)) {
2566                 len += sprintf(page+len, "%swrite_error", sep);
2567                 sep = ",";
2568         }
2569         return len+sprintf(page+len, "\n");
2570 }
2571
2572 static ssize_t
2573 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 {
2575         /* can write
2576          *  faulty  - simulates an error
2577          *  remove  - disconnects the device
2578          *  writemostly - sets write_mostly
2579          *  -writemostly - clears write_mostly
2580          *  blocked - sets the Blocked flags
2581          *  -blocked - clears the Blocked and possibly simulates an error
2582          *  insync - sets Insync providing device isn't active
2583          *  write_error - sets WriteErrorSeen
2584          *  -write_error - clears WriteErrorSeen
2585          */
2586         int err = -EINVAL;
2587         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2588                 md_error(rdev->mddev, rdev);
2589                 if (test_bit(Faulty, &rdev->flags))
2590                         err = 0;
2591                 else
2592                         err = -EBUSY;
2593         } else if (cmd_match(buf, "remove")) {
2594                 if (rdev->raid_disk >= 0)
2595                         err = -EBUSY;
2596                 else {
2597                         struct mddev *mddev = rdev->mddev;
2598                         kick_rdev_from_array(rdev);
2599                         if (mddev->pers)
2600                                 md_update_sb(mddev, 1);
2601                         md_new_event(mddev);
2602                         err = 0;
2603                 }
2604         } else if (cmd_match(buf, "writemostly")) {
2605                 set_bit(WriteMostly, &rdev->flags);
2606                 err = 0;
2607         } else if (cmd_match(buf, "-writemostly")) {
2608                 clear_bit(WriteMostly, &rdev->flags);
2609                 err = 0;
2610         } else if (cmd_match(buf, "blocked")) {
2611                 set_bit(Blocked, &rdev->flags);
2612                 err = 0;
2613         } else if (cmd_match(buf, "-blocked")) {
2614                 if (!test_bit(Faulty, &rdev->flags) &&
2615                     rdev->badblocks.unacked_exist) {
2616                         /* metadata handler doesn't understand badblocks,
2617                          * so we need to fail the device
2618                          */
2619                         md_error(rdev->mddev, rdev);
2620                 }
2621                 clear_bit(Blocked, &rdev->flags);
2622                 clear_bit(BlockedBadBlocks, &rdev->flags);
2623                 wake_up(&rdev->blocked_wait);
2624                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2625                 md_wakeup_thread(rdev->mddev->thread);
2626
2627                 err = 0;
2628         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2629                 set_bit(In_sync, &rdev->flags);
2630                 err = 0;
2631         } else if (cmd_match(buf, "write_error")) {
2632                 set_bit(WriteErrorSeen, &rdev->flags);
2633                 err = 0;
2634         } else if (cmd_match(buf, "-write_error")) {
2635                 clear_bit(WriteErrorSeen, &rdev->flags);
2636                 err = 0;
2637         }
2638         if (!err)
2639                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2640         return err ? err : len;
2641 }
2642 static struct rdev_sysfs_entry rdev_state =
2643 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2644
2645 static ssize_t
2646 errors_show(struct md_rdev *rdev, char *page)
2647 {
2648         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2649 }
2650
2651 static ssize_t
2652 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2653 {
2654         char *e;
2655         unsigned long n = simple_strtoul(buf, &e, 10);
2656         if (*buf && (*e == 0 || *e == '\n')) {
2657                 atomic_set(&rdev->corrected_errors, n);
2658                 return len;
2659         }
2660         return -EINVAL;
2661 }
2662 static struct rdev_sysfs_entry rdev_errors =
2663 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2664
2665 static ssize_t
2666 slot_show(struct md_rdev *rdev, char *page)
2667 {
2668         if (rdev->raid_disk < 0)
2669                 return sprintf(page, "none\n");
2670         else
2671                 return sprintf(page, "%d\n", rdev->raid_disk);
2672 }
2673
2674 static ssize_t
2675 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2676 {
2677         char *e;
2678         int err;
2679         int slot = simple_strtoul(buf, &e, 10);
2680         if (strncmp(buf, "none", 4)==0)
2681                 slot = -1;
2682         else if (e==buf || (*e && *e!= '\n'))
2683                 return -EINVAL;
2684         if (rdev->mddev->pers && slot == -1) {
2685                 /* Setting 'slot' on an active array requires also
2686                  * updating the 'rd%d' link, and communicating
2687                  * with the personality with ->hot_*_disk.
2688                  * For now we only support removing
2689                  * failed/spare devices.  This normally happens automatically,
2690                  * but not when the metadata is externally managed.
2691                  */
2692                 if (rdev->raid_disk == -1)
2693                         return -EEXIST;
2694                 /* personality does all needed checks */
2695                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2696                         return -EINVAL;
2697                 err = rdev->mddev->pers->
2698                         hot_remove_disk(rdev->mddev, rdev->raid_disk);
2699                 if (err)
2700                         return err;
2701                 sysfs_unlink_rdev(rdev->mddev, rdev);
2702                 rdev->raid_disk = -1;
2703                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2704                 md_wakeup_thread(rdev->mddev->thread);
2705         } else if (rdev->mddev->pers) {
2706                 struct md_rdev *rdev2;
2707                 /* Activating a spare .. or possibly reactivating
2708                  * if we ever get bitmaps working here.
2709                  */
2710
2711                 if (rdev->raid_disk != -1)
2712                         return -EBUSY;
2713
2714                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2715                         return -EBUSY;
2716
2717                 if (rdev->mddev->pers->hot_add_disk == NULL)
2718                         return -EINVAL;
2719
2720                 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2721                         if (rdev2->raid_disk == slot)
2722                                 return -EEXIST;
2723
2724                 if (slot >= rdev->mddev->raid_disks &&
2725                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2726                         return -ENOSPC;
2727
2728                 rdev->raid_disk = slot;
2729                 if (test_bit(In_sync, &rdev->flags))
2730                         rdev->saved_raid_disk = slot;
2731                 else
2732                         rdev->saved_raid_disk = -1;
2733                 clear_bit(In_sync, &rdev->flags);
2734                 err = rdev->mddev->pers->
2735                         hot_add_disk(rdev->mddev, rdev);
2736                 if (err) {
2737                         rdev->raid_disk = -1;
2738                         return err;
2739                 } else
2740                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2741                 if (sysfs_link_rdev(rdev->mddev, rdev))
2742                         /* failure here is OK */;
2743                 /* don't wakeup anyone, leave that to userspace. */
2744         } else {
2745                 if (slot >= rdev->mddev->raid_disks &&
2746                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2747                         return -ENOSPC;
2748                 rdev->raid_disk = slot;
2749                 /* assume it is working */
2750                 clear_bit(Faulty, &rdev->flags);
2751                 clear_bit(WriteMostly, &rdev->flags);
2752                 set_bit(In_sync, &rdev->flags);
2753                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2754         }
2755         return len;
2756 }
2757
2758
2759 static struct rdev_sysfs_entry rdev_slot =
2760 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2761
2762 static ssize_t
2763 offset_show(struct md_rdev *rdev, char *page)
2764 {
2765         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2766 }
2767
2768 static ssize_t
2769 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2770 {
2771         char *e;
2772         unsigned long long offset = simple_strtoull(buf, &e, 10);
2773         if (e==buf || (*e && *e != '\n'))
2774                 return -EINVAL;
2775         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2776                 return -EBUSY;
2777         if (rdev->sectors && rdev->mddev->external)
2778                 /* Must set offset before size, so overlap checks
2779                  * can be sane */
2780                 return -EBUSY;
2781         rdev->data_offset = offset;
2782         return len;
2783 }
2784
2785 static struct rdev_sysfs_entry rdev_offset =
2786 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2787
2788 static ssize_t
2789 rdev_size_show(struct md_rdev *rdev, char *page)
2790 {
2791         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2792 }
2793
2794 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2795 {
2796         /* check if two start/length pairs overlap */
2797         if (s1+l1 <= s2)
2798                 return 0;
2799         if (s2+l2 <= s1)
2800                 return 0;
2801         return 1;
2802 }
2803
2804 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2805 {
2806         unsigned long long blocks;
2807         sector_t new;
2808
2809         if (strict_strtoull(buf, 10, &blocks) < 0)
2810                 return -EINVAL;
2811
2812         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2813                 return -EINVAL; /* sector conversion overflow */
2814
2815         new = blocks * 2;
2816         if (new != blocks * 2)
2817                 return -EINVAL; /* unsigned long long to sector_t overflow */
2818
2819         *sectors = new;
2820         return 0;
2821 }
2822
2823 static ssize_t
2824 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2825 {
2826         struct mddev *my_mddev = rdev->mddev;
2827         sector_t oldsectors = rdev->sectors;
2828         sector_t sectors;
2829
2830         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2831                 return -EINVAL;
2832         if (my_mddev->pers && rdev->raid_disk >= 0) {
2833                 if (my_mddev->persistent) {
2834                         sectors = super_types[my_mddev->major_version].
2835                                 rdev_size_change(rdev, sectors);
2836                         if (!sectors)
2837                                 return -EBUSY;
2838                 } else if (!sectors)
2839                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2840                                 rdev->data_offset;
2841         }
2842         if (sectors < my_mddev->dev_sectors)
2843                 return -EINVAL; /* component must fit device */
2844
2845         rdev->sectors = sectors;
2846         if (sectors > oldsectors && my_mddev->external) {
2847                 /* need to check that all other rdevs with the same ->bdev
2848                  * do not overlap.  We need to unlock the mddev to avoid
2849                  * a deadlock.  We have already changed rdev->sectors, and if
2850                  * we have to change it back, we will have the lock again.
2851                  */
2852                 struct mddev *mddev;
2853                 int overlap = 0;
2854                 struct list_head *tmp;
2855
2856                 mddev_unlock(my_mddev);
2857                 for_each_mddev(mddev, tmp) {
2858                         struct md_rdev *rdev2;
2859
2860                         mddev_lock(mddev);
2861                         list_for_each_entry(rdev2, &mddev->disks, same_set)
2862                                 if (rdev->bdev == rdev2->bdev &&
2863                                     rdev != rdev2 &&
2864                                     overlaps(rdev->data_offset, rdev->sectors,
2865                                              rdev2->data_offset,
2866                                              rdev2->sectors)) {
2867                                         overlap = 1;
2868                                         break;
2869                                 }
2870                         mddev_unlock(mddev);
2871                         if (overlap) {
2872                                 mddev_put(mddev);
2873                                 break;
2874                         }
2875                 }
2876                 mddev_lock(my_mddev);
2877                 if (overlap) {
2878                         /* Someone else could have slipped in a size
2879                          * change here, but doing so is just silly.
2880                          * We put oldsectors back because we *know* it is
2881                          * safe, and trust userspace not to race with
2882                          * itself
2883                          */
2884                         rdev->sectors = oldsectors;
2885                         return -EBUSY;
2886                 }
2887         }
2888         return len;
2889 }
2890
2891 static struct rdev_sysfs_entry rdev_size =
2892 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2893
2894
2895 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2896 {
2897         unsigned long long recovery_start = rdev->recovery_offset;
2898
2899         if (test_bit(In_sync, &rdev->flags) ||
2900             recovery_start == MaxSector)
2901                 return sprintf(page, "none\n");
2902
2903         return sprintf(page, "%llu\n", recovery_start);
2904 }
2905
2906 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2907 {
2908         unsigned long long recovery_start;
2909
2910         if (cmd_match(buf, "none"))
2911                 recovery_start = MaxSector;
2912         else if (strict_strtoull(buf, 10, &recovery_start))
2913                 return -EINVAL;
2914
2915         if (rdev->mddev->pers &&
2916             rdev->raid_disk >= 0)
2917                 return -EBUSY;
2918
2919         rdev->recovery_offset = recovery_start;
2920         if (recovery_start == MaxSector)
2921                 set_bit(In_sync, &rdev->flags);
2922         else
2923                 clear_bit(In_sync, &rdev->flags);
2924         return len;
2925 }
2926
2927 static struct rdev_sysfs_entry rdev_recovery_start =
2928 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2929
2930
2931 static ssize_t
2932 badblocks_show(struct badblocks *bb, char *page, int unack);
2933 static ssize_t
2934 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2935
2936 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2937 {
2938         return badblocks_show(&rdev->badblocks, page, 0);
2939 }
2940 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2941 {
2942         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2943         /* Maybe that ack was all we needed */
2944         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2945                 wake_up(&rdev->blocked_wait);
2946         return rv;
2947 }
2948 static struct rdev_sysfs_entry rdev_bad_blocks =
2949 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2950
2951
2952 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2953 {
2954         return badblocks_show(&rdev->badblocks, page, 1);
2955 }
2956 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2957 {
2958         return badblocks_store(&rdev->badblocks, page, len, 1);
2959 }
2960 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2961 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2962
2963 static struct attribute *rdev_default_attrs[] = {
2964         &rdev_state.attr,
2965         &rdev_errors.attr,
2966         &rdev_slot.attr,
2967         &rdev_offset.attr,
2968         &rdev_size.attr,
2969         &rdev_recovery_start.attr,
2970         &rdev_bad_blocks.attr,
2971         &rdev_unack_bad_blocks.attr,
2972         NULL,
2973 };
2974 static ssize_t
2975 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2976 {
2977         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2978         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2979         struct mddev *mddev = rdev->mddev;
2980         ssize_t rv;
2981
2982         if (!entry->show)
2983                 return -EIO;
2984
2985         rv = mddev ? mddev_lock(mddev) : -EBUSY;
2986         if (!rv) {
2987                 if (rdev->mddev == NULL)
2988                         rv = -EBUSY;
2989                 else
2990                         rv = entry->show(rdev, page);
2991                 mddev_unlock(mddev);
2992         }
2993         return rv;
2994 }
2995
2996 static ssize_t
2997 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2998               const char *page, size_t length)
2999 {
3000         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3001         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3002         ssize_t rv;
3003         struct mddev *mddev = rdev->mddev;
3004
3005         if (!entry->store)
3006                 return -EIO;
3007         if (!capable(CAP_SYS_ADMIN))
3008                 return -EACCES;
3009         rv = mddev ? mddev_lock(mddev): -EBUSY;
3010         if (!rv) {
3011                 if (rdev->mddev == NULL)
3012                         rv = -EBUSY;
3013                 else
3014                         rv = entry->store(rdev, page, length);
3015                 mddev_unlock(mddev);
3016         }
3017         return rv;
3018 }
3019
3020 static void rdev_free(struct kobject *ko)
3021 {
3022         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3023         kfree(rdev);
3024 }
3025 static const struct sysfs_ops rdev_sysfs_ops = {
3026         .show           = rdev_attr_show,
3027         .store          = rdev_attr_store,
3028 };
3029 static struct kobj_type rdev_ktype = {
3030         .release        = rdev_free,
3031         .sysfs_ops      = &rdev_sysfs_ops,
3032         .default_attrs  = rdev_default_attrs,
3033 };
3034
3035 int md_rdev_init(struct md_rdev *rdev)
3036 {
3037         rdev->desc_nr = -1;
3038         rdev->saved_raid_disk = -1;
3039         rdev->raid_disk = -1;
3040         rdev->flags = 0;
3041         rdev->data_offset = 0;
3042         rdev->sb_events = 0;
3043         rdev->last_read_error.tv_sec  = 0;
3044         rdev->last_read_error.tv_nsec = 0;
3045         rdev->sb_loaded = 0;
3046         rdev->bb_page = NULL;
3047         atomic_set(&rdev->nr_pending, 0);
3048         atomic_set(&rdev->read_errors, 0);
3049         atomic_set(&rdev->corrected_errors, 0);
3050
3051         INIT_LIST_HEAD(&rdev->same_set);
3052         init_waitqueue_head(&rdev->blocked_wait);
3053
3054         /* Add space to store bad block list.
3055          * This reserves the space even on arrays where it cannot
3056          * be used - I wonder if that matters
3057          */
3058         rdev->badblocks.count = 0;
3059         rdev->badblocks.shift = 0;
3060         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3061         seqlock_init(&rdev->badblocks.lock);
3062         if (rdev->badblocks.page == NULL)
3063                 return -ENOMEM;
3064
3065         return 0;
3066 }
3067 EXPORT_SYMBOL_GPL(md_rdev_init);
3068 /*
3069  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3070  *
3071  * mark the device faulty if:
3072  *
3073  *   - the device is nonexistent (zero size)
3074  *   - the device has no valid superblock
3075  *
3076  * a faulty rdev _never_ has rdev->sb set.
3077  */
3078 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3079 {
3080         char b[BDEVNAME_SIZE];
3081         int err;
3082         struct md_rdev *rdev;
3083         sector_t size;
3084
3085         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3086         if (!rdev) {
3087                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3088                 return ERR_PTR(-ENOMEM);
3089         }
3090
3091         err = md_rdev_init(rdev);
3092         if (err)
3093                 goto abort_free;
3094         err = alloc_disk_sb(rdev);
3095         if (err)
3096                 goto abort_free;
3097
3098         err = lock_rdev(rdev, newdev, super_format == -2);
3099         if (err)
3100                 goto abort_free;
3101
3102         kobject_init(&rdev->kobj, &rdev_ktype);
3103
3104         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3105         if (!size) {
3106                 printk(KERN_WARNING 
3107                         "md: %s has zero or unknown size, marking faulty!\n",
3108                         bdevname(rdev->bdev,b));
3109                 err = -EINVAL;
3110                 goto abort_free;
3111         }
3112
3113         if (super_format >= 0) {
3114                 err = super_types[super_format].
3115                         load_super(rdev, NULL, super_minor);
3116                 if (err == -EINVAL) {
3117                         printk(KERN_WARNING
3118                                 "md: %s does not have a valid v%d.%d "
3119                                "superblock, not importing!\n",
3120                                 bdevname(rdev->bdev,b),
3121                                super_format, super_minor);
3122                         goto abort_free;
3123                 }
3124                 if (err < 0) {
3125                         printk(KERN_WARNING 
3126                                 "md: could not read %s's sb, not importing!\n",
3127                                 bdevname(rdev->bdev,b));
3128                         goto abort_free;
3129                 }
3130         }
3131         if (super_format == -1)
3132                 /* hot-add for 0.90, or non-persistent: so no badblocks */
3133                 rdev->badblocks.shift = -1;
3134
3135         return rdev;
3136
3137 abort_free:
3138         if (rdev->bdev)
3139                 unlock_rdev(rdev);
3140         free_disk_sb(rdev);
3141         kfree(rdev->badblocks.page);
3142         kfree(rdev);
3143         return ERR_PTR(err);
3144 }
3145
3146 /*
3147  * Check a full RAID array for plausibility
3148  */
3149
3150
3151 static void analyze_sbs(struct mddev * mddev)
3152 {
3153         int i;
3154         struct md_rdev *rdev, *freshest, *tmp;
3155         char b[BDEVNAME_SIZE];
3156
3157         freshest = NULL;
3158         rdev_for_each(rdev, tmp, mddev)
3159                 switch (super_types[mddev->major_version].
3160                         load_super(rdev, freshest, mddev->minor_version)) {
3161                 case 1:
3162                         freshest = rdev;
3163                         break;
3164                 case 0:
3165                         break;
3166                 default:
3167                         printk( KERN_ERR \
3168                                 "md: fatal superblock inconsistency in %s"
3169                                 " -- removing from array\n", 
3170                                 bdevname(rdev->bdev,b));
3171                         kick_rdev_from_array(rdev);
3172                 }
3173
3174
3175         super_types[mddev->major_version].
3176                 validate_super(mddev, freshest);
3177
3178         i = 0;
3179         rdev_for_each(rdev, tmp, mddev) {
3180                 if (mddev->max_disks &&
3181                     (rdev->desc_nr >= mddev->max_disks ||
3182                      i > mddev->max_disks)) {
3183                         printk(KERN_WARNING
3184                                "md: %s: %s: only %d devices permitted\n",
3185                                mdname(mddev), bdevname(rdev->bdev, b),
3186                                mddev->max_disks);
3187                         kick_rdev_from_array(rdev);
3188                         continue;
3189                 }
3190                 if (rdev != freshest)
3191                         if (super_types[mddev->major_version].
3192                             validate_super(mddev, rdev)) {
3193                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3194                                         " from array!\n",
3195                                         bdevname(rdev->bdev,b));
3196                                 kick_rdev_from_array(rdev);
3197                                 continue;
3198                         }
3199                 if (mddev->level == LEVEL_MULTIPATH) {
3200                         rdev->desc_nr = i++;
3201                         rdev->raid_disk = rdev->desc_nr;
3202                         set_bit(In_sync, &rdev->flags);
3203                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3204                         rdev->raid_disk = -1;
3205                         clear_bit(In_sync, &rdev->flags);
3206                 }
3207         }
3208 }
3209
3210 /* Read a fixed-point number.
3211  * Numbers in sysfs attributes should be in "standard" units where
3212  * possible, so time should be in seconds.
3213  * However we internally use a a much smaller unit such as 
3214  * milliseconds or jiffies.
3215  * This function takes a decimal number with a possible fractional
3216  * component, and produces an integer which is the result of
3217  * multiplying that number by 10^'scale'.
3218  * all without any floating-point arithmetic.
3219  */
3220 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3221 {
3222         unsigned long result = 0;
3223         long decimals = -1;
3224         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3225                 if (*cp == '.')
3226                         decimals = 0;
3227                 else if (decimals < scale) {
3228                         unsigned int value;
3229                         value = *cp - '0';
3230                         result = result * 10 + value;
3231                         if (decimals >= 0)
3232                                 decimals++;
3233                 }
3234                 cp++;
3235         }
3236         if (*cp == '\n')
3237                 cp++;
3238         if (*cp)
3239                 return -EINVAL;
3240         if (decimals < 0)
3241                 decimals = 0;
3242         while (decimals < scale) {
3243                 result *= 10;
3244                 decimals ++;
3245         }
3246         *res = result;
3247         return 0;
3248 }
3249
3250
3251 static void md_safemode_timeout(unsigned long data);
3252
3253 static ssize_t
3254 safe_delay_show(struct mddev *mddev, char *page)
3255 {
3256         int msec = (mddev->safemode_delay*1000)/HZ;
3257         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3258 }
3259 static ssize_t
3260 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3261 {
3262         unsigned long msec;
3263
3264         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3265                 return -EINVAL;
3266         if (msec == 0)
3267                 mddev->safemode_delay = 0;
3268         else {
3269                 unsigned long old_delay = mddev->safemode_delay;
3270                 mddev->safemode_delay = (msec*HZ)/1000;
3271                 if (mddev->safemode_delay == 0)
3272                         mddev->safemode_delay = 1;
3273                 if (mddev->safemode_delay < old_delay)
3274                         md_safemode_timeout((unsigned long)mddev);
3275         }
3276         return len;
3277 }
3278 static struct md_sysfs_entry md_safe_delay =
3279 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3280
3281 static ssize_t
3282 level_show(struct mddev *mddev, char *page)
3283 {
3284         struct md_personality *p = mddev->pers;
3285         if (p)
3286                 return sprintf(page, "%s\n", p->name);
3287         else if (mddev->clevel[0])
3288                 return sprintf(page, "%s\n", mddev->clevel);
3289         else if (mddev->level != LEVEL_NONE)
3290                 return sprintf(page, "%d\n", mddev->level);
3291         else
3292                 return 0;
3293 }
3294
3295 static ssize_t
3296 level_store(struct mddev *mddev, const char *buf, size_t len)
3297 {
3298         char clevel[16];
3299         ssize_t rv = len;
3300         struct md_personality *pers;
3301         long level;
3302         void *priv;
3303         struct md_rdev *rdev;
3304
3305         if (mddev->pers == NULL) {
3306                 if (len == 0)
3307                         return 0;
3308                 if (len >= sizeof(mddev->clevel))
3309                         return -ENOSPC;
3310                 strncpy(mddev->clevel, buf, len);
3311                 if (mddev->clevel[len-1] == '\n')
3312                         len--;
3313                 mddev->clevel[len] = 0;
3314                 mddev->level = LEVEL_NONE;
3315                 return rv;
3316         }
3317
3318         /* request to change the personality.  Need to ensure:
3319          *  - array is not engaged in resync/recovery/reshape
3320          *  - old personality can be suspended
3321          *  - new personality will access other array.
3322          */
3323
3324         if (mddev->sync_thread ||
3325             mddev->reshape_position != MaxSector ||
3326             mddev->sysfs_active)
3327                 return -EBUSY;
3328
3329         if (!mddev->pers->quiesce) {
3330                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3331                        mdname(mddev), mddev->pers->name);
3332                 return -EINVAL;
3333         }
3334
3335         /* Now find the new personality */
3336         if (len == 0 || len >= sizeof(clevel))
3337                 return -EINVAL;
3338         strncpy(clevel, buf, len);
3339         if (clevel[len-1] == '\n')
3340                 len--;
3341         clevel[len] = 0;
3342         if (strict_strtol(clevel, 10, &level))
3343                 level = LEVEL_NONE;
3344
3345         if (request_module("md-%s", clevel) != 0)
3346                 request_module("md-level-%s", clevel);
3347         spin_lock(&pers_lock);
3348         pers = find_pers(level, clevel);
3349         if (!pers || !try_module_get(pers->owner)) {
3350                 spin_unlock(&pers_lock);
3351                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3352                 return -EINVAL;
3353         }
3354         spin_unlock(&pers_lock);
3355
3356         if (pers == mddev->pers) {
3357                 /* Nothing to do! */
3358                 module_put(pers->owner);
3359                 return rv;
3360         }
3361         if (!pers->takeover) {
3362                 module_put(pers->owner);
3363                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3364                        mdname(mddev), clevel);
3365                 return -EINVAL;
3366         }
3367
3368         list_for_each_entry(rdev, &mddev->disks, same_set)
3369                 rdev->new_raid_disk = rdev->raid_disk;
3370
3371         /* ->takeover must set new_* and/or delta_disks
3372          * if it succeeds, and may set them when it fails.
3373          */
3374         priv = pers->takeover(mddev);
3375         if (IS_ERR(priv)) {
3376                 mddev->new_level = mddev->level;
3377                 mddev->new_layout = mddev->layout;
3378                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3379                 mddev->raid_disks -= mddev->delta_disks;
3380                 mddev->delta_disks = 0;
3381                 module_put(pers->owner);
3382                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3383                        mdname(mddev), clevel);
3384                 return PTR_ERR(priv);
3385         }
3386
3387         /* Looks like we have a winner */
3388         mddev_suspend(mddev);
3389         mddev->pers->stop(mddev);
3390         
3391         if (mddev->pers->sync_request == NULL &&
3392             pers->sync_request != NULL) {
3393                 /* need to add the md_redundancy_group */
3394                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3395                         printk(KERN_WARNING
3396                                "md: cannot register extra attributes for %s\n",
3397                                mdname(mddev));
3398                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3399         }               
3400         if (mddev->pers->sync_request != NULL &&
3401             pers->sync_request == NULL) {
3402                 /* need to remove the md_redundancy_group */
3403                 if (mddev->to_remove == NULL)
3404                         mddev->to_remove = &md_redundancy_group;
3405         }
3406
3407         if (mddev->pers->sync_request == NULL &&
3408             mddev->external) {
3409                 /* We are converting from a no-redundancy array
3410                  * to a redundancy array and metadata is managed
3411                  * externally so we need to be sure that writes
3412                  * won't block due to a need to transition
3413                  *      clean->dirty
3414                  * until external management is started.
3415                  */
3416                 mddev->in_sync = 0;
3417                 mddev->safemode_delay = 0;
3418                 mddev->safemode = 0;
3419         }
3420
3421         list_for_each_entry(rdev, &mddev->disks, same_set) {
3422                 if (rdev->raid_disk < 0)
3423                         continue;
3424                 if (rdev->new_raid_disk >= mddev->raid_disks)
3425                         rdev->new_raid_disk = -1;
3426                 if (rdev->new_raid_disk == rdev->raid_disk)
3427                         continue;
3428                 sysfs_unlink_rdev(mddev, rdev);
3429         }
3430         list_for_each_entry(rdev, &mddev->disks, same_set) {
3431                 if (rdev->raid_disk < 0)
3432                         continue;
3433                 if (rdev->new_raid_disk == rdev->raid_disk)
3434                         continue;
3435                 rdev->raid_disk = rdev->new_raid_disk;
3436                 if (rdev->raid_disk < 0)
3437                         clear_bit(In_sync, &rdev->flags);
3438                 else {
3439                         if (sysfs_link_rdev(mddev, rdev))
3440                                 printk(KERN_WARNING "md: cannot register rd%d"
3441                                        " for %s after level change\n",
3442                                        rdev->raid_disk, mdname(mddev));
3443                 }
3444         }
3445
3446         module_put(mddev->pers->owner);
3447         mddev->pers = pers;
3448         mddev->private = priv;
3449         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3450         mddev->level = mddev->new_level;
3451         mddev->layout = mddev->new_layout;
3452         mddev->chunk_sectors = mddev->new_chunk_sectors;
3453         mddev->delta_disks = 0;
3454         mddev->degraded = 0;
3455         if (mddev->pers->sync_request == NULL) {
3456                 /* this is now an array without redundancy, so
3457                  * it must always be in_sync
3458                  */
3459                 mddev->in_sync = 1;
3460                 del_timer_sync(&mddev->safemode_timer);
3461         }
3462         pers->run(mddev);
3463         mddev_resume(mddev);
3464         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3465         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3466         md_wakeup_thread(mddev->thread);
3467         sysfs_notify(&mddev->kobj, NULL, "level");
3468         md_new_event(mddev);
3469         return rv;
3470 }
3471
3472 static struct md_sysfs_entry md_level =
3473 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3474
3475
3476 static ssize_t
3477 layout_show(struct mddev *mddev, char *page)
3478 {
3479         /* just a number, not meaningful for all levels */
3480         if (mddev->reshape_position != MaxSector &&
3481             mddev->layout != mddev->new_layout)
3482                 return sprintf(page, "%d (%d)\n",
3483                                mddev->new_layout, mddev->layout);
3484         return sprintf(page, "%d\n", mddev->layout);
3485 }
3486
3487 static ssize_t
3488 layout_store(struct mddev *mddev, const char *buf, size_t len)
3489 {
3490         char *e;
3491         unsigned long n = simple_strtoul(buf, &e, 10);
3492
3493         if (!*buf || (*e && *e != '\n'))
3494                 return -EINVAL;
3495
3496         if (mddev->pers) {
3497                 int err;
3498                 if (mddev->pers->check_reshape == NULL)
3499                         return -EBUSY;
3500                 mddev->new_layout = n;
3501                 err = mddev->pers->check_reshape(mddev);
3502                 if (err) {
3503                         mddev->new_layout = mddev->layout;
3504                         return err;
3505                 }
3506         } else {
3507                 mddev->new_layout = n;
3508                 if (mddev->reshape_position == MaxSector)
3509                         mddev->layout = n;
3510         }
3511         return len;
3512 }
3513 static struct md_sysfs_entry md_layout =
3514 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3515
3516
3517 static ssize_t
3518 raid_disks_show(struct mddev *mddev, char *page)
3519 {
3520         if (mddev->raid_disks == 0)
3521                 return 0;
3522         if (mddev->reshape_position != MaxSector &&
3523             mddev->delta_disks != 0)
3524                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3525                                mddev->raid_disks - mddev->delta_disks);
3526         return sprintf(page, "%d\n", mddev->raid_disks);
3527 }
3528
3529 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3530
3531 static ssize_t
3532 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3533 {
3534         char *e;
3535         int rv = 0;
3536         unsigned long n = simple_strtoul(buf, &e, 10);
3537
3538         if (!*buf || (*e && *e != '\n'))
3539                 return -EINVAL;
3540
3541         if (mddev->pers)
3542                 rv = update_raid_disks(mddev, n);
3543         else if (mddev->reshape_position != MaxSector) {
3544                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3545                 mddev->delta_disks = n - olddisks;
3546                 mddev->raid_disks = n;
3547         } else
3548                 mddev->raid_disks = n;
3549         return rv ? rv : len;
3550 }
3551 static struct md_sysfs_entry md_raid_disks =
3552 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3553
3554 static ssize_t
3555 chunk_size_show(struct mddev *mddev, char *page)
3556 {
3557         if (mddev->reshape_position != MaxSector &&
3558             mddev->chunk_sectors != mddev->new_chunk_sectors)
3559                 return sprintf(page, "%d (%d)\n",
3560                                mddev->new_chunk_sectors << 9,
3561                                mddev->chunk_sectors << 9);
3562         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3563 }
3564
3565 static ssize_t
3566 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3567 {
3568         char *e;
3569         unsigned long n = simple_strtoul(buf, &e, 10);
3570
3571         if (!*buf || (*e && *e != '\n'))
3572                 return -EINVAL;
3573
3574         if (mddev->pers) {
3575                 int err;
3576                 if (mddev->pers->check_reshape == NULL)
3577                         return -EBUSY;
3578                 mddev->new_chunk_sectors = n >> 9;
3579                 err = mddev->pers->check_reshape(mddev);
3580                 if (err) {
3581                         mddev->new_chunk_sectors = mddev->chunk_sectors;
3582                         return err;
3583                 }
3584         } else {
3585                 mddev->new_chunk_sectors = n >> 9;
3586                 if (mddev->reshape_position == MaxSector)
3587                         mddev->chunk_sectors = n >> 9;
3588         }
3589         return len;
3590 }
3591 static struct md_sysfs_entry md_chunk_size =
3592 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3593
3594 static ssize_t
3595 resync_start_show(struct mddev *mddev, char *page)
3596 {
3597         if (mddev->recovery_cp == MaxSector)
3598                 return sprintf(page, "none\n");
3599         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3600 }
3601
3602 static ssize_t
3603 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3604 {
3605         char *e;
3606         unsigned long long n = simple_strtoull(buf, &e, 10);
3607
3608         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3609                 return -EBUSY;
3610         if (cmd_match(buf, "none"))
3611                 n = MaxSector;
3612         else if (!*buf || (*e && *e != '\n'))
3613                 return -EINVAL;
3614
3615         mddev->recovery_cp = n;
3616         return len;
3617 }
3618 static struct md_sysfs_entry md_resync_start =
3619 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3620
3621 /*
3622  * The array state can be:
3623  *
3624  * clear
3625  *     No devices, no size, no level
3626  *     Equivalent to STOP_ARRAY ioctl
3627  * inactive
3628  *     May have some settings, but array is not active
3629  *        all IO results in error
3630  *     When written, doesn't tear down array, but just stops it
3631  * suspended (not supported yet)
3632  *     All IO requests will block. The array can be reconfigured.
3633  *     Writing this, if accepted, will block until array is quiescent
3634  * readonly
3635  *     no resync can happen.  no superblocks get written.
3636  *     write requests fail
3637  * read-auto
3638  *     like readonly, but behaves like 'clean' on a write request.
3639  *
3640  * clean - no pending writes, but otherwise active.
3641  *     When written to inactive array, starts without resync
3642  *     If a write request arrives then
3643  *       if metadata is known, mark 'dirty' and switch to 'active'.
3644  *       if not known, block and switch to write-pending
3645  *     If written to an active array that has pending writes, then fails.
3646  * active
3647  *     fully active: IO and resync can be happening.
3648  *     When written to inactive array, starts with resync
3649  *
3650  * write-pending
3651  *     clean, but writes are blocked waiting for 'active' to be written.
3652  *
3653  * active-idle
3654  *     like active, but no writes have been seen for a while (100msec).
3655  *
3656  */
3657 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3658                    write_pending, active_idle, bad_word};
3659 static char *array_states[] = {
3660         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3661         "write-pending", "active-idle", NULL };
3662
3663 static int match_word(const char *word, char **list)
3664 {
3665         int n;
3666         for (n=0; list[n]; n++)
3667                 if (cmd_match(word, list[n]))
3668                         break;
3669         return n;
3670 }
3671
3672 static ssize_t
3673 array_state_show(struct mddev *mddev, char *page)
3674 {
3675         enum array_state st = inactive;
3676
3677         if (mddev->pers)
3678                 switch(mddev->ro) {
3679                 case 1:
3680                         st = readonly;
3681                         break;
3682                 case 2:
3683                         st = read_auto;
3684                         break;
3685                 case 0:
3686                         if (mddev->in_sync)
3687                                 st = clean;
3688                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3689                                 st = write_pending;
3690                         else if (mddev->safemode)
3691                                 st = active_idle;
3692                         else
3693                                 st = active;
3694                 }
3695         else {
3696                 if (list_empty(&mddev->disks) &&
3697                     mddev->raid_disks == 0 &&
3698                     mddev->dev_sectors == 0)
3699                         st = clear;
3700                 else
3701                         st = inactive;
3702         }
3703         return sprintf(page, "%s\n", array_states[st]);
3704 }
3705
3706 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3707 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3708 static int do_md_run(struct mddev * mddev);
3709 static int restart_array(struct mddev *mddev);
3710
3711 static ssize_t
3712 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3713 {
3714         int err = -EINVAL;
3715         enum array_state st = match_word(buf, array_states);
3716         switch(st) {
3717         case bad_word:
3718                 break;
3719         case clear:
3720                 /* stopping an active array */
3721                 if (atomic_read(&mddev->openers) > 0)
3722                         return -EBUSY;
3723                 err = do_md_stop(mddev, 0, NULL);
3724                 break;
3725         case inactive:
3726                 /* stopping an active array */
3727                 if (mddev->pers) {
3728                         if (atomic_read(&mddev->openers) > 0)
3729                                 return -EBUSY;
3730                         err = do_md_stop(mddev, 2, NULL);
3731                 } else
3732                         err = 0; /* already inactive */
3733                 break;
3734         case suspended:
3735                 break; /* not supported yet */
3736         case readonly:
3737                 if (mddev->pers)
3738                         err = md_set_readonly(mddev, NULL);
3739                 else {
3740                         mddev->ro = 1;
3741                         set_disk_ro(mddev->gendisk, 1);
3742                         err = do_md_run(mddev);
3743                 }
3744                 break;
3745         case read_auto:
3746                 if (mddev->pers) {
3747                         if (mddev->ro == 0)
3748                                 err = md_set_readonly(mddev, NULL);
3749                         else if (mddev->ro == 1)
3750                                 err = restart_array(mddev);
3751                         if (err == 0) {
3752                                 mddev->ro = 2;
3753                                 set_disk_ro(mddev->gendisk, 0);
3754                         }
3755                 } else {
3756                         mddev->ro = 2;
3757                         err = do_md_run(mddev);
3758                 }
3759                 break;
3760         case clean:
3761                 if (mddev->pers) {
3762                         restart_array(mddev);
3763                         spin_lock_irq(&mddev->write_lock);
3764                         if (atomic_read(&mddev->writes_pending) == 0) {
3765                                 if (mddev->in_sync == 0) {
3766                                         mddev->in_sync = 1;
3767                                         if (mddev->safemode == 1)
3768                                                 mddev->safemode = 0;
3769                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3770                                 }
3771                                 err = 0;
3772                         } else
3773                                 err = -EBUSY;
3774                         spin_unlock_irq(&mddev->write_lock);
3775                 } else
3776                         err = -EINVAL;
3777                 break;
3778         case active:
3779                 if (mddev->pers) {
3780                         restart_array(mddev);
3781                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3782                         wake_up(&mddev->sb_wait);
3783                         err = 0;
3784                 } else {
3785                         mddev->ro = 0;
3786                         set_disk_ro(mddev->gendisk, 0);
3787                         err = do_md_run(mddev);
3788                 }
3789                 break;
3790         case write_pending:
3791         case active_idle:
3792                 /* these cannot be set */
3793                 break;
3794         }
3795         if (err)
3796                 return err;
3797         else {
3798                 if (mddev->hold_active == UNTIL_IOCTL)
3799                         mddev->hold_active = 0;
3800                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3801                 return len;
3802         }
3803 }
3804 static struct md_sysfs_entry md_array_state =
3805 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3806
3807 static ssize_t
3808 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3809         return sprintf(page, "%d\n",
3810                        atomic_read(&mddev->max_corr_read_errors));
3811 }
3812
3813 static ssize_t
3814 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3815 {
3816         char *e;
3817         unsigned long n = simple_strtoul(buf, &e, 10);
3818
3819         if (*buf && (*e == 0 || *e == '\n')) {
3820                 atomic_set(&mddev->max_corr_read_errors, n);
3821                 return len;
3822         }
3823         return -EINVAL;
3824 }
3825
3826 static struct md_sysfs_entry max_corr_read_errors =
3827 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3828         max_corrected_read_errors_store);
3829
3830 static ssize_t
3831 null_show(struct mddev *mddev, char *page)
3832 {
3833         return -EINVAL;
3834 }
3835
3836 static ssize_t
3837 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3838 {
3839         /* buf must be %d:%d\n? giving major and minor numbers */
3840         /* The new device is added to the array.
3841          * If the array has a persistent superblock, we read the
3842          * superblock to initialise info and check validity.
3843          * Otherwise, only checking done is that in bind_rdev_to_array,
3844          * which mainly checks size.
3845          */
3846         char *e;
3847         int major = simple_strtoul(buf, &e, 10);
3848         int minor;
3849         dev_t dev;
3850         struct md_rdev *rdev;
3851         int err;
3852
3853         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3854                 return -EINVAL;
3855         minor = simple_strtoul(e+1, &e, 10);
3856         if (*e && *e != '\n')
3857                 return -EINVAL;
3858         dev = MKDEV(major, minor);
3859         if (major != MAJOR(dev) ||
3860             minor != MINOR(dev))
3861                 return -EOVERFLOW;
3862
3863
3864         if (mddev->persistent) {
3865                 rdev = md_import_device(dev, mddev->major_version,
3866                                         mddev->minor_version);
3867                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3868                         struct md_rdev *rdev0
3869                                 = list_entry(mddev->disks.next,
3870                                              struct md_rdev, same_set);
3871                         err = super_types[mddev->major_version]
3872                                 .load_super(rdev, rdev0, mddev->minor_version);
3873                         if (err < 0)
3874                                 goto out;
3875                 }
3876         } else if (mddev->external)
3877                 rdev = md_import_device(dev, -2, -1);
3878         else
3879                 rdev = md_import_device(dev, -1, -1);
3880
3881         if (IS_ERR(rdev))
3882                 return PTR_ERR(rdev);
3883         err = bind_rdev_to_array(rdev, mddev);
3884  out:
3885         if (err)
3886                 export_rdev(rdev);
3887         return err ? err : len;
3888 }
3889
3890 static struct md_sysfs_entry md_new_device =
3891 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3892
3893 static ssize_t
3894 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3895 {
3896         char *end;
3897         unsigned long chunk, end_chunk;
3898
3899         if (!mddev->bitmap)
3900                 goto out;
3901         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3902         while (*buf) {
3903                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3904                 if (buf == end) break;
3905                 if (*end == '-') { /* range */
3906                         buf = end + 1;
3907                         end_chunk = simple_strtoul(buf, &end, 0);
3908                         if (buf == end) break;
3909                 }
3910                 if (*end && !isspace(*end)) break;
3911                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3912                 buf = skip_spaces(end);
3913         }
3914         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3915 out:
3916         return len;
3917 }
3918
3919 static struct md_sysfs_entry md_bitmap =
3920 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3921
3922 static ssize_t
3923 size_show(struct mddev *mddev, char *page)
3924 {
3925         return sprintf(page, "%llu\n",
3926                 (unsigned long long)mddev->dev_sectors / 2);
3927 }
3928
3929 static int update_size(struct mddev *mddev, sector_t num_sectors);
3930
3931 static ssize_t
3932 size_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934         /* If array is inactive, we can reduce the component size, but
3935          * not increase it (except from 0).
3936          * If array is active, we can try an on-line resize
3937          */
3938         sector_t sectors;
3939         int err = strict_blocks_to_sectors(buf, &sectors);
3940
3941         if (err < 0)
3942                 return err;
3943         if (mddev->pers) {
3944                 err = update_size(mddev, sectors);
3945                 md_update_sb(mddev, 1);
3946         } else {
3947                 if (mddev->dev_sectors == 0 ||
3948                     mddev->dev_sectors > sectors)
3949                         mddev->dev_sectors = sectors;
3950                 else
3951                         err = -ENOSPC;
3952         }
3953         return err ? err : len;
3954 }
3955
3956 static struct md_sysfs_entry md_size =
3957 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3958
3959
3960 /* Metdata version.
3961  * This is one of
3962  *   'none' for arrays with no metadata (good luck...)
3963  *   'external' for arrays with externally managed metadata,
3964  * or N.M for internally known formats
3965  */
3966 static ssize_t
3967 metadata_show(struct mddev *mddev, char *page)
3968 {
3969         if (mddev->persistent)
3970                 return sprintf(page, "%d.%d\n",
3971                                mddev->major_version, mddev->minor_version);
3972         else if (mddev->external)
3973                 return sprintf(page, "external:%s\n", mddev->metadata_type);
3974         else
3975                 return sprintf(page, "none\n");
3976 }
3977
3978 static ssize_t
3979 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3980 {
3981         int major, minor;
3982         char *e;
3983         /* Changing the details of 'external' metadata is
3984          * always permitted.  Otherwise there must be
3985          * no devices attached to the array.
3986          */
3987         if (mddev->external && strncmp(buf, "external:", 9) == 0)
3988                 ;
3989         else if (!list_empty(&mddev->disks))
3990                 return -EBUSY;
3991
3992         if (cmd_match(buf, "none")) {
3993                 mddev->persistent = 0;
3994                 mddev->external = 0;
3995                 mddev->major_version = 0;
3996                 mddev->minor_version = 90;
3997                 return len;
3998         }
3999         if (strncmp(buf, "external:", 9) == 0) {
4000                 size_t namelen = len-9;
4001                 if (namelen >= sizeof(mddev->metadata_type))
4002                         namelen = sizeof(mddev->metadata_type)-1;
4003                 strncpy(mddev->metadata_type, buf+9, namelen);
4004                 mddev->metadata_type[namelen] = 0;
4005                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4006                         mddev->metadata_type[--namelen] = 0;
4007                 mddev->persistent = 0;
4008                 mddev->external = 1;
4009                 mddev->major_version = 0;
4010                 mddev->minor_version = 90;
4011                 return len;
4012         }
4013         major = simple_strtoul(buf, &e, 10);
4014         if (e==buf || *e != '.')
4015                 return -EINVAL;
4016         buf = e+1;
4017         minor = simple_strtoul(buf, &e, 10);
4018         if (e==buf || (*e && *e != '\n') )
4019                 return -EINVAL;
4020         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4021                 return -ENOENT;
4022         mddev->major_version = major;
4023         mddev->minor_version = minor;
4024         mddev->persistent = 1;
4025         mddev->external = 0;
4026         return len;
4027 }
4028
4029 static struct md_sysfs_entry md_metadata =
4030 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4031
4032 static ssize_t
4033 action_show(struct mddev *mddev, char *page)
4034 {
4035         char *type = "idle";
4036         if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4037                 type = "frozen";
4038         else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4039             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4040                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4041                         type = "reshape";
4042                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4043                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4044                                 type = "resync";
4045                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4046                                 type = "check";
4047                         else
4048                                 type = "repair";
4049                 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4050                         type = "recover";
4051         }
4052         return sprintf(page, "%s\n", type);
4053 }
4054
4055 static void reap_sync_thread(struct mddev *mddev);
4056
4057 static ssize_t
4058 action_store(struct mddev *mddev, const char *page, size_t len)
4059 {
4060         if (!mddev->pers || !mddev->pers->sync_request)
4061                 return -EINVAL;
4062
4063         if (cmd_match(page, "frozen"))
4064                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4065         else
4066                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4067
4068         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4069                 if (mddev->sync_thread) {
4070                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4071                         reap_sync_thread(mddev);
4072                 }
4073         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4074                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4075                 return -EBUSY;
4076         else if (cmd_match(page, "resync"))
4077                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4078         else if (cmd_match(page, "recover")) {
4079                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4080                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4081         } else if (cmd_match(page, "reshape")) {
4082                 int err;
4083                 if (mddev->pers->start_reshape == NULL)
4084                         return -EINVAL;
4085                 err = mddev->pers->start_reshape(mddev);
4086                 if (err)
4087                         return err;
4088                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4089         } else {
4090                 if (cmd_match(page, "check"))
4091                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4092                 else if (!cmd_match(page, "repair"))
4093                         return -EINVAL;
4094                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4095                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4096         }
4097         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4098         md_wakeup_thread(mddev->thread);
4099         sysfs_notify_dirent_safe(mddev->sysfs_action);
4100         return len;
4101 }
4102
4103 static ssize_t
4104 mismatch_cnt_show(struct mddev *mddev, char *page)
4105 {
4106         return sprintf(page, "%llu\n",
4107                        (unsigned long long) mddev->resync_mismatches);
4108 }
4109
4110 static struct md_sysfs_entry md_scan_mode =
4111 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4112
4113
4114 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4115
4116 static ssize_t
4117 sync_min_show(struct mddev *mddev, char *page)
4118 {
4119         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4120                        mddev->sync_speed_min ? "local": "system");
4121 }
4122
4123 static ssize_t
4124 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126         int min;
4127         char *e;
4128         if (strncmp(buf, "system", 6)==0) {
4129                 mddev->sync_speed_min = 0;
4130                 return len;
4131         }
4132         min = simple_strtoul(buf, &e, 10);
4133         if (buf == e || (*e && *e != '\n') || min <= 0)
4134                 return -EINVAL;
4135         mddev->sync_speed_min = min;
4136         return len;
4137 }
4138
4139 static struct md_sysfs_entry md_sync_min =
4140 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4141
4142 static ssize_t
4143 sync_max_show(struct mddev *mddev, char *page)
4144 {
4145         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4146                        mddev->sync_speed_max ? "local": "system");
4147 }
4148
4149 static ssize_t
4150 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4151 {
4152         int max;
4153         char *e;
4154         if (strncmp(buf, "system", 6)==0) {
4155                 mddev->sync_speed_max = 0;
4156                 return len;
4157         }
4158         max = simple_strtoul(buf, &e, 10);
4159         if (buf == e || (*e && *e != '\n') || max <= 0)
4160                 return -EINVAL;
4161         mddev->sync_speed_max = max;
4162         return len;
4163 }
4164
4165 static struct md_sysfs_entry md_sync_max =
4166 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4167
4168 static ssize_t
4169 degraded_show(struct mddev *mddev, char *page)
4170 {
4171         return sprintf(page, "%d\n", mddev->degraded);
4172 }
4173 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4174
4175 static ssize_t
4176 sync_force_parallel_show(struct mddev *mddev, char *page)
4177 {
4178         return sprintf(page, "%d\n", mddev->parallel_resync);
4179 }
4180
4181 static ssize_t
4182 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4183 {
4184         long n;
4185
4186         if (strict_strtol(buf, 10, &n))
4187                 return -EINVAL;
4188
4189         if (n != 0 && n != 1)
4190                 return -EINVAL;
4191
4192         mddev->parallel_resync = n;
4193
4194         if (mddev->sync_thread)
4195                 wake_up(&resync_wait);
4196
4197         return len;
4198 }
4199
4200 /* force parallel resync, even with shared block devices */
4201 static struct md_sysfs_entry md_sync_force_parallel =
4202 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4203        sync_force_parallel_show, sync_force_parallel_store);
4204
4205 static ssize_t
4206 sync_speed_show(struct mddev *mddev, char *page)
4207 {
4208         unsigned long resync, dt, db;
4209         if (mddev->curr_resync == 0)
4210                 return sprintf(page, "none\n");
4211         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4212         dt = (jiffies - mddev->resync_mark) / HZ;
4213         if (!dt) dt++;
4214         db = resync - mddev->resync_mark_cnt;
4215         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4216 }
4217
4218 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4219
4220 static ssize_t
4221 sync_completed_show(struct mddev *mddev, char *page)
4222 {
4223         unsigned long long max_sectors, resync;
4224
4225         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4226                 return sprintf(page, "none\n");
4227
4228         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4229                 max_sectors = mddev->resync_max_sectors;
4230         else
4231                 max_sectors = mddev->dev_sectors;
4232
4233         resync = mddev->curr_resync_completed;
4234         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4235 }
4236
4237 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4238
4239 static ssize_t
4240 min_sync_show(struct mddev *mddev, char *page)
4241 {
4242         return sprintf(page, "%llu\n",
4243                        (unsigned long long)mddev->resync_min);
4244 }
4245 static ssize_t
4246 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4247 {
4248         unsigned long long min;
4249         if (strict_strtoull(buf, 10, &min))
4250                 return -EINVAL;
4251         if (min > mddev->resync_max)
4252                 return -EINVAL;
4253         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4254                 return -EBUSY;
4255
4256         /* Must be a multiple of chunk_size */
4257         if (mddev->chunk_sectors) {
4258                 sector_t temp = min;
4259                 if (sector_div(temp, mddev->chunk_sectors))
4260                         return -EINVAL;
4261         }
4262         mddev->resync_min = min;
4263
4264         return len;
4265 }
4266
4267 static struct md_sysfs_entry md_min_sync =
4268 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4269
4270 static ssize_t
4271 max_sync_show(struct mddev *mddev, char *page)
4272 {
4273         if (mddev->resync_max == MaxSector)
4274                 return sprintf(page, "max\n");
4275         else
4276                 return sprintf(page, "%llu\n",
4277                                (unsigned long long)mddev->resync_max);
4278 }
4279 static ssize_t
4280 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4281 {
4282         if (strncmp(buf, "max", 3) == 0)
4283                 mddev->resync_max = MaxSector;
4284         else {
4285                 unsigned long long max;
4286                 if (strict_strtoull(buf, 10, &max))
4287                         return -EINVAL;
4288                 if (max < mddev->resync_min)
4289                         return -EINVAL;
4290                 if (max < mddev->resync_max &&
4291                     mddev->ro == 0 &&
4292                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293                         return -EBUSY;
4294
4295                 /* Must be a multiple of chunk_size */
4296                 if (mddev->chunk_sectors) {
4297                         sector_t temp = max;
4298                         if (sector_div(temp, mddev->chunk_sectors))
4299                                 return -EINVAL;
4300                 }
4301                 mddev->resync_max = max;
4302         }
4303         wake_up(&mddev->recovery_wait);
4304         return len;
4305 }
4306
4307 static struct md_sysfs_entry md_max_sync =
4308 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4309
4310 static ssize_t
4311 suspend_lo_show(struct mddev *mddev, char *page)
4312 {
4313         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4314 }
4315
4316 static ssize_t
4317 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4318 {
4319         char *e;
4320         unsigned long long new = simple_strtoull(buf, &e, 10);
4321         unsigned long long old = mddev->suspend_lo;
4322
4323         if (mddev->pers == NULL || 
4324             mddev->pers->quiesce == NULL)
4325                 return -EINVAL;
4326         if (buf == e || (*e && *e != '\n'))
4327                 return -EINVAL;
4328
4329         mddev->suspend_lo = new;
4330         if (new >= old)
4331                 /* Shrinking suspended region */
4332                 mddev->pers->quiesce(mddev, 2);
4333         else {
4334                 /* Expanding suspended region - need to wait */
4335                 mddev->pers->quiesce(mddev, 1);
4336                 mddev->pers->quiesce(mddev, 0);
4337         }
4338         return len;
4339 }
4340 static struct md_sysfs_entry md_suspend_lo =
4341 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4342
4343
4344 static ssize_t
4345 suspend_hi_show(struct mddev *mddev, char *page)
4346 {
4347         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4348 }
4349
4350 static ssize_t
4351 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4352 {
4353         char *e;
4354         unsigned long long new = simple_strtoull(buf, &e, 10);
4355         unsigned long long old = mddev->suspend_hi;
4356
4357         if (mddev->pers == NULL ||
4358             mddev->pers->quiesce == NULL)
4359                 return -EINVAL;
4360         if (buf == e || (*e && *e != '\n'))
4361                 return -EINVAL;
4362
4363         mddev->suspend_hi = new;
4364         if (new <= old)
4365                 /* Shrinking suspended region */
4366                 mddev->pers->quiesce(mddev, 2);
4367         else {
4368                 /* Expanding suspended region - need to wait */
4369                 mddev->pers->quiesce(mddev, 1);
4370                 mddev->pers->quiesce(mddev, 0);
4371         }
4372         return len;
4373 }
4374 static struct md_sysfs_entry md_suspend_hi =
4375 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4376
4377 static ssize_t
4378 reshape_position_show(struct mddev *mddev, char *page)
4379 {
4380         if (mddev->reshape_position != MaxSector)
4381                 return sprintf(page, "%llu\n",
4382                                (unsigned long long)mddev->reshape_position);
4383         strcpy(page, "none\n");
4384         return 5;
4385 }
4386
4387 static ssize_t
4388 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4389 {
4390         char *e;
4391         unsigned long long new = simple_strtoull(buf, &e, 10);
4392         if (mddev->pers)
4393                 return -EBUSY;
4394         if (buf == e || (*e && *e != '\n'))
4395                 return -EINVAL;
4396         mddev->reshape_position = new;
4397         mddev->delta_disks = 0;
4398         mddev->new_level = mddev->level;
4399         mddev->new_layout = mddev->layout;
4400         mddev->new_chunk_sectors = mddev->chunk_sectors;
4401         return len;
4402 }
4403
4404 static struct md_sysfs_entry md_reshape_position =
4405 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4406        reshape_position_store);
4407
4408 static ssize_t
4409 array_size_show(struct mddev *mddev, char *page)
4410 {
4411         if (mddev->external_size)
4412                 return sprintf(page, "%llu\n",
4413                                (unsigned long long)mddev->array_sectors/2);
4414         else
4415                 return sprintf(page, "default\n");
4416 }
4417
4418 static ssize_t
4419 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4420 {
4421         sector_t sectors;
4422
4423         if (strncmp(buf, "default", 7) == 0) {
4424                 if (mddev->pers)
4425                         sectors = mddev->pers->size(mddev, 0, 0);
4426                 else
4427                         sectors = mddev->array_sectors;
4428
4429                 mddev->external_size = 0;
4430         } else {
4431                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4432                         return -EINVAL;
4433                 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4434                         return -E2BIG;
4435
4436                 mddev->external_size = 1;
4437         }
4438
4439         mddev->array_sectors = sectors;
4440         if (mddev->pers) {
4441                 set_capacity(mddev->gendisk, mddev->array_sectors);
4442                 revalidate_disk(mddev->gendisk);
4443         }
4444         return len;
4445 }
4446
4447 static struct md_sysfs_entry md_array_size =
4448 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4449        array_size_store);
4450
4451 static struct attribute *md_default_attrs[] = {
4452         &md_level.attr,
4453         &md_layout.attr,
4454         &md_raid_disks.attr,
4455         &md_chunk_size.attr,
4456         &md_size.attr,
4457         &md_resync_start.attr,
4458         &md_metadata.attr,
4459         &md_new_device.attr,
4460         &md_safe_delay.attr,
4461         &md_array_state.attr,
4462         &md_reshape_position.attr,
4463         &md_array_size.attr,
4464         &max_corr_read_errors.attr,
4465         NULL,
4466 };
4467
4468 static struct attribute *md_redundancy_attrs[] = {
4469         &md_scan_mode.attr,
4470         &md_mismatches.attr,
4471         &md_sync_min.attr,
4472         &md_sync_max.attr,
4473         &md_sync_speed.attr,
4474         &md_sync_force_parallel.attr,
4475         &md_sync_completed.attr,
4476         &md_min_sync.attr,
4477         &md_max_sync.attr,
4478         &md_suspend_lo.attr,
4479         &md_suspend_hi.attr,
4480         &md_bitmap.attr,
4481         &md_degraded.attr,
4482         NULL,
4483 };
4484 static struct attribute_group md_redundancy_group = {
4485         .name = NULL,
4486         .attrs = md_redundancy_attrs,
4487 };
4488
4489
4490 static ssize_t
4491 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4492 {
4493         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4494         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4495         ssize_t rv;
4496
4497         if (!entry->show)
4498                 return -EIO;
4499         spin_lock(&all_mddevs_lock);
4500         if (list_empty(&mddev->all_mddevs)) {
4501                 spin_unlock(&all_mddevs_lock);
4502                 return -EBUSY;
4503         }
4504         mddev_get(mddev);
4505         spin_unlock(&all_mddevs_lock);
4506
4507         rv = mddev_lock(mddev);
4508         if (!rv) {
4509                 rv = entry->show(mddev, page);
4510                 mddev_unlock(mddev);
4511         }
4512         mddev_put(mddev);
4513         return rv;
4514 }
4515
4516 static ssize_t
4517 md_attr_store(struct kobject *kobj, struct attribute *attr,
4518               const char *page, size_t length)
4519 {
4520         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4521         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4522         ssize_t rv;
4523
4524         if (!entry->store)
4525                 return -EIO;
4526         if (!capable(CAP_SYS_ADMIN))
4527                 return -EACCES;
4528         spin_lock(&all_mddevs_lock);
4529         if (list_empty(&mddev->all_mddevs)) {
4530                 spin_unlock(&all_mddevs_lock);
4531                 return -EBUSY;
4532         }
4533         mddev_get(mddev);
4534         spin_unlock(&all_mddevs_lock);
4535         rv = mddev_lock(mddev);
4536         if (!rv) {
4537                 rv = entry->store(mddev, page, length);
4538                 mddev_unlock(mddev);
4539         }
4540         mddev_put(mddev);
4541         return rv;
4542 }
4543
4544 static void md_free(struct kobject *ko)
4545 {
4546         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4547
4548         if (mddev->sysfs_state)
4549                 sysfs_put(mddev->sysfs_state);
4550
4551         if (mddev->gendisk) {
4552                 del_gendisk(mddev->gendisk);
4553                 put_disk(mddev->gendisk);
4554         }
4555         if (mddev->queue)
4556                 blk_cleanup_queue(mddev->queue);
4557
4558         kfree(mddev);
4559 }
4560
4561 static const struct sysfs_ops md_sysfs_ops = {
4562         .show   = md_attr_show,
4563         .store  = md_attr_store,
4564 };
4565 static struct kobj_type md_ktype = {
4566         .release        = md_free,
4567         .sysfs_ops      = &md_sysfs_ops,
4568         .default_attrs  = md_default_attrs,
4569 };
4570
4571 int mdp_major = 0;
4572
4573 static void mddev_delayed_delete(struct work_struct *ws)
4574 {
4575         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4576
4577         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4578         kobject_del(&mddev->kobj);
4579         kobject_put(&mddev->kobj);
4580 }
4581
4582 static int md_alloc(dev_t dev, char *name)
4583 {
4584         static DEFINE_MUTEX(disks_mutex);
4585         struct mddev *mddev = mddev_find(dev);
4586         struct gendisk *disk;
4587         int partitioned;
4588         int shift;
4589         int unit;
4590         int error;
4591
4592         if (!mddev)
4593                 return -ENODEV;
4594
4595         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4596         shift = partitioned ? MdpMinorShift : 0;
4597         unit = MINOR(mddev->unit) >> shift;
4598
4599         /* wait for any previous instance of this device to be
4600          * completely removed (mddev_delayed_delete).
4601          */
4602         flush_workqueue(md_misc_wq);
4603
4604         mutex_lock(&disks_mutex);
4605         error = -EEXIST;
4606         if (mddev->gendisk)
4607                 goto abort;
4608
4609         if (name) {
4610                 /* Need to ensure that 'name' is not a duplicate.
4611                  */
4612                 struct mddev *mddev2;
4613                 spin_lock(&all_mddevs_lock);
4614
4615                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4616                         if (mddev2->gendisk &&
4617                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4618                                 spin_unlock(&all_mddevs_lock);
4619                                 goto abort;
4620                         }
4621                 spin_unlock(&all_mddevs_lock);
4622         }
4623
4624         error = -ENOMEM;
4625         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4626         if (!mddev->queue)
4627                 goto abort;
4628         mddev->queue->queuedata = mddev;
4629
4630         blk_queue_make_request(mddev->queue, md_make_request);
4631
4632         disk = alloc_disk(1 << shift);
4633         if (!disk) {
4634                 blk_cleanup_queue(mddev->queue);
4635                 mddev->queue = NULL;
4636                 goto abort;
4637         }
4638         disk->major = MAJOR(mddev->unit);
4639         disk->first_minor = unit << shift;
4640         if (name)
4641                 strcpy(disk->disk_name, name);
4642         else if (partitioned)
4643                 sprintf(disk->disk_name, "md_d%d", unit);
4644         else
4645                 sprintf(disk->disk_name, "md%d", unit);
4646         disk->fops = &md_fops;
4647         disk->private_data = mddev;
4648         disk->queue = mddev->queue;
4649         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4650         /* Allow extended partitions.  This makes the
4651          * 'mdp' device redundant, but we can't really
4652          * remove it now.
4653          */
4654         disk->flags |= GENHD_FL_EXT_DEVT;
4655         mddev->gendisk = disk;
4656         /* As soon as we call add_disk(), another thread could get
4657          * through to md_open, so make sure it doesn't get too far
4658          */
4659         mutex_lock(&mddev->open_mutex);
4660         add_disk(disk);
4661
4662         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4663                                      &disk_to_dev(disk)->kobj, "%s", "md");
4664         if (error) {
4665                 /* This isn't possible, but as kobject_init_and_add is marked
4666                  * __must_check, we must do something with the result
4667                  */
4668                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4669                        disk->disk_name);
4670                 error = 0;
4671         }
4672         if (mddev->kobj.sd &&
4673             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4674                 printk(KERN_DEBUG "pointless warning\n");
4675         mutex_unlock(&mddev->open_mutex);
4676  abort:
4677         mutex_unlock(&disks_mutex);
4678         if (!error && mddev->kobj.sd) {
4679                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4680                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4681         }
4682         mddev_put(mddev);
4683         return error;
4684 }
4685
4686 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4687 {
4688         md_alloc(dev, NULL);
4689         return NULL;
4690 }
4691
4692 static int add_named_array(const char *val, struct kernel_param *kp)
4693 {
4694         /* val must be "md_*" where * is not all digits.
4695          * We allocate an array with a large free minor number, and
4696          * set the name to val.  val must not already be an active name.
4697          */
4698         int len = strlen(val);
4699         char buf[DISK_NAME_LEN];
4700
4701         while (len && val[len-1] == '\n')
4702                 len--;
4703         if (len >= DISK_NAME_LEN)
4704                 return -E2BIG;
4705         strlcpy(buf, val, len+1);
4706         if (strncmp(buf, "md_", 3) != 0)
4707                 return -EINVAL;
4708         return md_alloc(0, buf);
4709 }
4710
4711 static void md_safemode_timeout(unsigned long data)
4712 {
4713         struct mddev *mddev = (struct mddev *) data;
4714
4715         if (!atomic_read(&mddev->writes_pending)) {
4716                 mddev->safemode = 1;
4717                 if (mddev->external)
4718                         sysfs_notify_dirent_safe(mddev->sysfs_state);
4719         }
4720         md_wakeup_thread(mddev->thread);
4721 }
4722
4723 static int start_dirty_degraded;
4724
4725 int md_run(struct mddev *mddev)
4726 {
4727         int err;
4728         struct md_rdev *rdev;
4729         struct md_personality *pers;
4730
4731         if (list_empty(&mddev->disks))
4732                 /* cannot run an array with no devices.. */
4733                 return -EINVAL;
4734
4735         if (mddev->pers)
4736                 return -EBUSY;
4737         /* Cannot run until previous stop completes properly */
4738         if (mddev->sysfs_active)
4739                 return -EBUSY;
4740
4741         /*
4742          * Analyze all RAID superblock(s)
4743          */
4744         if (!mddev->raid_disks) {
4745                 if (!mddev->persistent)
4746                         return -EINVAL;
4747                 analyze_sbs(mddev);
4748         }
4749
4750         if (mddev->level != LEVEL_NONE)
4751                 request_module("md-level-%d", mddev->level);
4752         else if (mddev->clevel[0])
4753                 request_module("md-%s", mddev->clevel);
4754
4755         /*
4756          * Drop all container device buffers, from now on
4757          * the only valid external interface is through the md
4758          * device.
4759          */
4760         list_for_each_entry(rdev, &mddev->disks, same_set) {
4761                 if (test_bit(Faulty, &rdev->flags))
4762                         continue;
4763                 sync_blockdev(rdev->bdev);
4764                 invalidate_bdev(rdev->bdev);
4765
4766                 /* perform some consistency tests on the device.
4767                  * We don't want the data to overlap the metadata,
4768                  * Internal Bitmap issues have been handled elsewhere.
4769                  */
4770                 if (rdev->meta_bdev) {
4771                         /* Nothing to check */;
4772                 } else if (rdev->data_offset < rdev->sb_start) {
4773                         if (mddev->dev_sectors &&
4774                             rdev->data_offset + mddev->dev_sectors
4775                             > rdev->sb_start) {
4776                                 printk("md: %s: data overlaps metadata\n",
4777                                        mdname(mddev));
4778                                 return -EINVAL;
4779                         }
4780                 } else {
4781                         if (rdev->sb_start + rdev->sb_size/512
4782                             > rdev->data_offset) {
4783                                 printk("md: %s: metadata overlaps data\n",
4784                                        mdname(mddev));
4785                                 return -EINVAL;
4786                         }
4787                 }
4788                 sysfs_notify_dirent_safe(rdev->sysfs_state);
4789         }
4790
4791         if (mddev->bio_set == NULL)
4792                 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4793                                                sizeof(struct mddev *));
4794
4795         spin_lock(&pers_lock);
4796         pers = find_pers(mddev->level, mddev->clevel);
4797         if (!pers || !try_module_get(pers->owner)) {
4798                 spin_unlock(&pers_lock);
4799                 if (mddev->level != LEVEL_NONE)
4800                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4801                                mddev->level);
4802                 else
4803                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4804                                mddev->clevel);
4805                 return -EINVAL;
4806         }
4807         mddev->pers = pers;
4808         spin_unlock(&pers_lock);
4809         if (mddev->level != pers->level) {
4810                 mddev->level = pers->level;
4811                 mddev->new_level = pers->level;
4812         }
4813         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4814
4815         if (mddev->reshape_position != MaxSector &&
4816             pers->start_reshape == NULL) {
4817                 /* This personality cannot handle reshaping... */
4818                 mddev->pers = NULL;
4819                 module_put(pers->owner);
4820                 return -EINVAL;
4821         }
4822
4823         if (pers->sync_request) {
4824                 /* Warn if this is a potentially silly
4825                  * configuration.
4826                  */
4827                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4828                 struct md_rdev *rdev2;
4829                 int warned = 0;
4830
4831                 list_for_each_entry(rdev, &mddev->disks, same_set)
4832                         list_for_each_entry(rdev2, &mddev->disks, same_set) {
4833                                 if (rdev < rdev2 &&
4834                                     rdev->bdev->bd_contains ==
4835                                     rdev2->bdev->bd_contains) {
4836                                         printk(KERN_WARNING
4837                                                "%s: WARNING: %s appears to be"
4838                                                " on the same physical disk as"
4839                                                " %s.\n",
4840                                                mdname(mddev),
4841                                                bdevname(rdev->bdev,b),
4842                                                bdevname(rdev2->bdev,b2));
4843                                         warned = 1;
4844                                 }
4845                         }
4846
4847                 if (warned)
4848                         printk(KERN_WARNING
4849                                "True protection against single-disk"
4850                                " failure might be compromised.\n");
4851         }
4852
4853         mddev->recovery = 0;
4854         /* may be over-ridden by personality */
4855         mddev->resync_max_sectors = mddev->dev_sectors;
4856
4857         mddev->ok_start_degraded = start_dirty_degraded;
4858
4859         if (start_readonly && mddev->ro == 0)
4860                 mddev->ro = 2; /* read-only, but switch on first write */
4861
4862         err = mddev->pers->run(mddev);
4863         if (err)
4864                 printk(KERN_ERR "md: pers->run() failed ...\n");
4865         else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4866                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4867                           " but 'external_size' not in effect?\n", __func__);
4868                 printk(KERN_ERR
4869                        "md: invalid array_size %llu > default size %llu\n",
4870                        (unsigned long long)mddev->array_sectors / 2,
4871                        (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4872                 err = -EINVAL;
4873                 mddev->pers->stop(mddev);
4874         }
4875         if (err == 0 && mddev->pers->sync_request) {
4876                 err = bitmap_create(mddev);
4877                 if (err) {
4878                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4879                                mdname(mddev), err);
4880                         mddev->pers->stop(mddev);
4881                 }
4882         }
4883         if (err) {
4884                 module_put(mddev->pers->owner);
4885                 mddev->pers = NULL;
4886                 bitmap_destroy(mddev);
4887                 return err;
4888         }
4889         if (mddev->pers->sync_request) {
4890                 if (mddev->kobj.sd &&
4891                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4892                         printk(KERN_WARNING
4893                                "md: cannot register extra attributes for %s\n",
4894                                mdname(mddev));
4895                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4896         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4897                 mddev->ro = 0;
4898
4899         atomic_set(&mddev->writes_pending,0);
4900         atomic_set(&mddev->max_corr_read_errors,
4901                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4902         mddev->safemode = 0;
4903         mddev->safemode_timer.function = md_safemode_timeout;
4904         mddev->safemode_timer.data = (unsigned long) mddev;
4905         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4906         mddev->in_sync = 1;
4907         smp_wmb();
4908         mddev->ready = 1;
4909         list_for_each_entry(rdev, &mddev->disks, same_set)
4910                 if (rdev->raid_disk >= 0)
4911                         if (sysfs_link_rdev(mddev, rdev))
4912                                 /* failure here is OK */;
4913         
4914         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4915         
4916         if (mddev->flags)
4917                 md_update_sb(mddev, 0);
4918
4919         md_new_event(mddev);
4920         sysfs_notify_dirent_safe(mddev->sysfs_state);
4921         sysfs_notify_dirent_safe(mddev->sysfs_action);
4922         sysfs_notify(&mddev->kobj, NULL, "degraded");
4923         return 0;
4924 }
4925 EXPORT_SYMBOL_GPL(md_run);
4926
4927 static int do_md_run(struct mddev *mddev)
4928 {
4929         int err;
4930
4931         err = md_run(mddev);
4932         if (err)
4933                 goto out;
4934         err = bitmap_load(mddev);
4935         if (err) {
4936                 bitmap_destroy(mddev);
4937                 goto out;
4938         }
4939
4940         md_wakeup_thread(mddev->thread);
4941         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4942
4943         set_capacity(mddev->gendisk, mddev->array_sectors);
4944         revalidate_disk(mddev->gendisk);
4945         mddev->changed = 1;
4946         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4947 out:
4948         return err;
4949 }
4950
4951 static int restart_array(struct mddev *mddev)
4952 {
4953         struct gendisk *disk = mddev->gendisk;
4954
4955         /* Complain if it has no devices */
4956         if (list_empty(&mddev->disks))
4957                 return -ENXIO;
4958         if (!mddev->pers)
4959                 return -EINVAL;
4960         if (!mddev->ro)
4961                 return -EBUSY;
4962         mddev->safemode = 0;
4963         mddev->ro = 0;
4964         set_disk_ro(disk, 0);
4965         printk(KERN_INFO "md: %s switched to read-write mode.\n",
4966                 mdname(mddev));
4967         /* Kick recovery or resync if necessary */
4968         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4969         md_wakeup_thread(mddev->thread);
4970         md_wakeup_thread(mddev->sync_thread);
4971         sysfs_notify_dirent_safe(mddev->sysfs_state);
4972         return 0;
4973 }
4974
4975 /* similar to deny_write_access, but accounts for our holding a reference
4976  * to the file ourselves */
4977 static int deny_bitmap_write_access(struct file * file)
4978 {
4979         struct inode *inode = file->f_mapping->host;
4980
4981         spin_lock(&inode->i_lock);
4982         if (atomic_read(&inode->i_writecount) > 1) {
4983                 spin_unlock(&inode->i_lock);
4984                 return -ETXTBSY;
4985         }
4986         atomic_set(&inode->i_writecount, -1);
4987         spin_unlock(&inode->i_lock);
4988
4989         return 0;
4990 }
4991
4992 void restore_bitmap_write_access(struct file *file)
4993 {
4994         struct inode *inode = file->f_mapping->host;
4995
4996         spin_lock(&inode->i_lock);
4997         atomic_set(&inode->i_writecount, 1);
4998         spin_unlock(&inode->i_lock);
4999 }
5000
5001 static void md_clean(struct mddev *mddev)
5002 {
5003         mddev->array_sectors = 0;
5004         mddev->external_size = 0;
5005         mddev->dev_sectors = 0;
5006         mddev->raid_disks = 0;
5007         mddev->recovery_cp = 0;
5008         mddev->resync_min = 0;
5009         mddev->resync_max = MaxSector;
5010         mddev->reshape_position = MaxSector;
5011         mddev->external = 0;
5012         mddev->persistent = 0;
5013         mddev->level = LEVEL_NONE;
5014         mddev->clevel[0] = 0;
5015         mddev->flags = 0;
5016         mddev->ro = 0;
5017         mddev->metadata_type[0] = 0;
5018         mddev->chunk_sectors = 0;
5019         mddev->ctime = mddev->utime = 0;
5020         mddev->layout = 0;
5021         mddev->max_disks = 0;
5022         mddev->events = 0;
5023         mddev->can_decrease_events = 0;
5024         mddev->delta_disks = 0;
5025         mddev->new_level = LEVEL_NONE;
5026         mddev->new_layout = 0;
5027         mddev->new_chunk_sectors = 0;
5028         mddev->curr_resync = 0;
5029         mddev->resync_mismatches = 0;
5030         mddev->suspend_lo = mddev->suspend_hi = 0;
5031         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5032         mddev->recovery = 0;
5033         mddev->in_sync = 0;
5034         mddev->changed = 0;
5035         mddev->degraded = 0;
5036         mddev->safemode = 0;
5037         mddev->bitmap_info.offset = 0;
5038         mddev->bitmap_info.default_offset = 0;
5039         mddev->bitmap_info.chunksize = 0;
5040         mddev->bitmap_info.daemon_sleep = 0;
5041         mddev->bitmap_info.max_write_behind = 0;
5042 }
5043
5044 static void __md_stop_writes(struct mddev *mddev)
5045 {
5046         if (mddev->sync_thread) {
5047                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5048                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5049                 reap_sync_thread(mddev);
5050         }
5051
5052         del_timer_sync(&mddev->safemode_timer);
5053
5054         bitmap_flush(mddev);
5055         md_super_wait(mddev);
5056
5057         if (!mddev->in_sync || mddev->flags) {
5058                 /* mark array as shutdown cleanly */
5059                 mddev->in_sync = 1;
5060                 md_update_sb(mddev, 1);
5061         }
5062 }
5063
5064 void md_stop_writes(struct mddev *mddev)
5065 {
5066         mddev_lock(mddev);
5067         __md_stop_writes(mddev);
5068         mddev_unlock(mddev);
5069 }
5070 EXPORT_SYMBOL_GPL(md_stop_writes);
5071
5072 void md_stop(struct mddev *mddev)
5073 {
5074         mddev->ready = 0;
5075         mddev->pers->stop(mddev);
5076         if (mddev->pers->sync_request && mddev->to_remove == NULL)
5077                 mddev->to_remove = &md_redundancy_group;
5078         module_put(mddev->pers->owner);
5079         mddev->pers = NULL;
5080         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5081 }
5082 EXPORT_SYMBOL_GPL(md_stop);
5083
5084 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5085 {
5086         int err = 0;
5087         mutex_lock(&mddev->open_mutex);
5088         if (atomic_read(&mddev->openers) > !!bdev) {
5089                 printk("md: %s still in use.\n",mdname(mddev));
5090                 err = -EBUSY;
5091                 goto out;
5092         }
5093         if (bdev)
5094                 sync_blockdev(bdev);
5095         if (mddev->pers) {
5096                 __md_stop_writes(mddev);
5097
5098                 err  = -ENXIO;
5099                 if (mddev->ro==1)
5100                         goto out;
5101                 mddev->ro = 1;
5102                 set_disk_ro(mddev->gendisk, 1);
5103                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5104                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5105                 err = 0;        
5106         }
5107 out:
5108         mutex_unlock(&mddev->open_mutex);
5109         return err;
5110 }
5111
5112 /* mode:
5113  *   0 - completely stop and dis-assemble array
5114  *   2 - stop but do not disassemble array
5115  */
5116 static int do_md_stop(struct mddev * mddev, int mode,
5117                       struct block_device *bdev)
5118 {
5119         struct gendisk *disk = mddev->gendisk;
5120         struct md_rdev *rdev;
5121
5122         mutex_lock(&mddev->open_mutex);
5123         if (atomic_read(&mddev->openers) > !!bdev ||
5124             mddev->sysfs_active) {
5125                 printk("md: %s still in use.\n",mdname(mddev));
5126                 mutex_unlock(&mddev->open_mutex);
5127                 return -EBUSY;
5128         }
5129         if (bdev)
5130                 /* It is possible IO was issued on some other
5131                  * open file which was closed before we took ->open_mutex.
5132                  * As that was not the last close __blkdev_put will not
5133                  * have called sync_blockdev, so we must.
5134                  */
5135                 sync_blockdev(bdev);
5136
5137         if (mddev->pers) {
5138                 if (mddev->ro)
5139                         set_disk_ro(disk, 0);
5140
5141                 __md_stop_writes(mddev);
5142                 md_stop(mddev);
5143                 mddev->queue->merge_bvec_fn = NULL;
5144                 mddev->queue->backing_dev_info.congested_fn = NULL;
5145
5146                 /* tell userspace to handle 'inactive' */
5147                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5148
5149                 list_for_each_entry(rdev, &mddev->disks, same_set)
5150                         if (rdev->raid_disk >= 0)
5151                                 sysfs_unlink_rdev(mddev, rdev);
5152
5153                 set_capacity(disk, 0);
5154                 mutex_unlock(&mddev->open_mutex);
5155                 mddev->changed = 1;
5156                 revalidate_disk(disk);
5157
5158                 if (mddev->ro)
5159                         mddev->ro = 0;
5160         } else
5161                 mutex_unlock(&mddev->open_mutex);
5162         /*
5163          * Free resources if final stop
5164          */
5165         if (mode == 0) {
5166                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5167
5168                 bitmap_destroy(mddev);
5169                 if (mddev->bitmap_info.file) {
5170                         restore_bitmap_write_access(mddev->bitmap_info.file);
5171                         fput(mddev->bitmap_info.file);
5172                         mddev->bitmap_info.file = NULL;
5173                 }
5174                 mddev->bitmap_info.offset = 0;
5175
5176                 export_array(mddev);
5177
5178                 md_clean(mddev);
5179                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5180                 if (mddev->hold_active == UNTIL_STOP)
5181                         mddev->hold_active = 0;
5182         }
5183         blk_integrity_unregister(disk);
5184         md_new_event(mddev);
5185         sysfs_notify_dirent_safe(mddev->sysfs_state);
5186         return 0;
5187 }
5188
5189 #ifndef MODULE
5190 static void autorun_array(struct mddev *mddev)
5191 {
5192         struct md_rdev *rdev;
5193         int err;
5194
5195         if (list_empty(&mddev->disks))
5196                 return;
5197
5198         printk(KERN_INFO "md: running: ");
5199
5200         list_for_each_entry(rdev, &mddev->disks, same_set) {
5201                 char b[BDEVNAME_SIZE];
5202                 printk("<%s>", bdevname(rdev->bdev,b));
5203         }
5204         printk("\n");
5205
5206         err = do_md_run(mddev);
5207         if (err) {
5208                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5209                 do_md_stop(mddev, 0, NULL);
5210         }
5211 }
5212
5213 /*
5214  * lets try to run arrays based on all disks that have arrived
5215  * until now. (those are in pending_raid_disks)
5216  *
5217  * the method: pick the first pending disk, collect all disks with
5218  * the same UUID, remove all from the pending list and put them into
5219  * the 'same_array' list. Then order this list based on superblock
5220  * update time (freshest comes first), kick out 'old' disks and
5221  * compare superblocks. If everything's fine then run it.
5222  *
5223  * If "unit" is allocated, then bump its reference count
5224  */
5225 static void autorun_devices(int part)
5226 {
5227         struct md_rdev *rdev0, *rdev, *tmp;
5228         struct mddev *mddev;
5229         char b[BDEVNAME_SIZE];
5230
5231         printk(KERN_INFO "md: autorun ...\n");
5232         while (!list_empty(&pending_raid_disks)) {
5233                 int unit;
5234                 dev_t dev;
5235                 LIST_HEAD(candidates);
5236                 rdev0 = list_entry(pending_raid_disks.next,
5237                                          struct md_rdev, same_set);
5238
5239                 printk(KERN_INFO "md: considering %s ...\n",
5240                         bdevname(rdev0->bdev,b));
5241                 INIT_LIST_HEAD(&candidates);
5242                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5243                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5244                                 printk(KERN_INFO "md:  adding %s ...\n",
5245                                         bdevname(rdev->bdev,b));
5246                                 list_move(&rdev->same_set, &candidates);
5247                         }
5248                 /*
5249                  * now we have a set of devices, with all of them having
5250                  * mostly sane superblocks. It's time to allocate the
5251                  * mddev.
5252                  */
5253                 if (part) {
5254                         dev = MKDEV(mdp_major,
5255                                     rdev0->preferred_minor << MdpMinorShift);
5256                         unit = MINOR(dev) >> MdpMinorShift;
5257                 } else {
5258                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5259                         unit = MINOR(dev);
5260                 }
5261                 if (rdev0->preferred_minor != unit) {
5262                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5263                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5264                         break;
5265                 }
5266
5267                 md_probe(dev, NULL, NULL);
5268                 mddev = mddev_find(dev);
5269                 if (!mddev || !mddev->gendisk) {
5270                         if (mddev)
5271                                 mddev_put(mddev);
5272                         printk(KERN_ERR
5273                                 "md: cannot allocate memory for md drive.\n");
5274                         break;
5275                 }
5276                 if (mddev_lock(mddev)) 
5277                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5278                                mdname(mddev));
5279                 else if (mddev->raid_disks || mddev->major_version
5280                          || !list_empty(&mddev->disks)) {
5281                         printk(KERN_WARNING 
5282                                 "md: %s already running, cannot run %s\n",
5283                                 mdname(mddev), bdevname(rdev0->bdev,b));
5284                         mddev_unlock(mddev);
5285                 } else {
5286                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5287                         mddev->persistent = 1;
5288                         rdev_for_each_list(rdev, tmp, &candidates) {
5289                                 list_del_init(&rdev->same_set);
5290                                 if (bind_rdev_to_array(rdev, mddev))
5291                                         export_rdev(rdev);
5292                         }
5293                         autorun_array(mddev);
5294                         mddev_unlock(mddev);
5295                 }
5296                 /* on success, candidates will be empty, on error
5297                  * it won't...
5298                  */
5299                 rdev_for_each_list(rdev, tmp, &candidates) {
5300                         list_del_init(&rdev->same_set);
5301                         export_rdev(rdev);
5302                 }
5303                 mddev_put(mddev);
5304         }
5305         printk(KERN_INFO "md: ... autorun DONE.\n");
5306 }
5307 #endif /* !MODULE */
5308
5309 static int get_version(void __user * arg)
5310 {
5311         mdu_version_t ver;
5312
5313         ver.major = MD_MAJOR_VERSION;
5314         ver.minor = MD_MINOR_VERSION;
5315         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5316
5317         if (copy_to_user(arg, &ver, sizeof(ver)))
5318                 return -EFAULT;
5319
5320         return 0;
5321 }
5322
5323 static int get_array_info(struct mddev * mddev, void __user * arg)
5324 {
5325         mdu_array_info_t info;
5326         int nr,working,insync,failed,spare;
5327         struct md_rdev *rdev;
5328
5329         nr=working=insync=failed=spare=0;
5330         list_for_each_entry(rdev, &mddev->disks, same_set) {
5331                 nr++;
5332                 if (test_bit(Faulty, &rdev->flags))
5333                         failed++;
5334                 else {
5335                         working++;
5336                         if (test_bit(In_sync, &rdev->flags))
5337                                 insync++;       
5338                         else
5339                                 spare++;
5340                 }
5341         }
5342
5343         info.major_version = mddev->major_version;
5344         info.minor_version = mddev->minor_version;
5345         info.patch_version = MD_PATCHLEVEL_VERSION;
5346         info.ctime         = mddev->ctime;
5347         info.level         = mddev->level;
5348         info.size          = mddev->dev_sectors / 2;
5349         if (info.size != mddev->dev_sectors / 2) /* overflow */
5350                 info.size = -1;
5351         info.nr_disks      = nr;
5352         info.raid_disks    = mddev->raid_disks;
5353         info.md_minor      = mddev->md_minor;
5354         info.not_persistent= !mddev->persistent;
5355
5356         info.utime         = mddev->utime;
5357         info.state         = 0;
5358         if (mddev->in_sync)
5359                 info.state = (1<<MD_SB_CLEAN);
5360         if (mddev->bitmap && mddev->bitmap_info.offset)
5361                 info.state = (1<<MD_SB_BITMAP_PRESENT);
5362         info.active_disks  = insync;
5363         info.working_disks = working;
5364         info.failed_disks  = failed;
5365         info.spare_disks   = spare;
5366
5367         info.layout        = mddev->layout;
5368         info.chunk_size    = mddev->chunk_sectors << 9;
5369
5370         if (copy_to_user(arg, &info, sizeof(info)))
5371                 return -EFAULT;
5372
5373         return 0;
5374 }
5375
5376 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5377 {
5378         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5379         char *ptr, *buf = NULL;
5380         int err = -ENOMEM;
5381
5382         if (md_allow_write(mddev))
5383                 file = kmalloc(sizeof(*file), GFP_NOIO);
5384         else
5385                 file = kmalloc(sizeof(*file), GFP_KERNEL);
5386
5387         if (!file)
5388                 goto out;
5389
5390         /* bitmap disabled, zero the first byte and copy out */
5391         if (!mddev->bitmap || !mddev->bitmap->file) {
5392                 file->pathname[0] = '\0';
5393                 goto copy_out;
5394         }
5395
5396         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5397         if (!buf)
5398                 goto out;
5399
5400         ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5401         if (IS_ERR(ptr))
5402                 goto out;
5403
5404         strcpy(file->pathname, ptr);
5405
5406 copy_out:
5407         err = 0;
5408         if (copy_to_user(arg, file, sizeof(*file)))
5409                 err = -EFAULT;
5410 out:
5411         kfree(buf);
5412         kfree(file);
5413         return err;
5414 }
5415
5416 static int get_disk_info(struct mddev * mddev, void __user * arg)
5417 {
5418         mdu_disk_info_t info;
5419         struct md_rdev *rdev;
5420
5421         if (copy_from_user(&info, arg, sizeof(info)))
5422                 return -EFAULT;
5423
5424         rdev = find_rdev_nr(mddev, info.number);
5425         if (rdev) {
5426                 info.major = MAJOR(rdev->bdev->bd_dev);
5427                 info.minor = MINOR(rdev->bdev->bd_dev);
5428                 info.raid_disk = rdev->raid_disk;
5429                 info.state = 0;
5430                 if (test_bit(Faulty, &rdev->flags))
5431                         info.state |= (1<<MD_DISK_FAULTY);
5432                 else if (test_bit(In_sync, &rdev->flags)) {
5433                         info.state |= (1<<MD_DISK_ACTIVE);
5434                         info.state |= (1<<MD_DISK_SYNC);
5435                 }
5436                 if (test_bit(WriteMostly, &rdev->flags))
5437                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5438         } else {
5439                 info.major = info.minor = 0;
5440                 info.raid_disk = -1;
5441                 info.state = (1<<MD_DISK_REMOVED);
5442         }
5443
5444         if (copy_to_user(arg, &info, sizeof(info)))
5445                 return -EFAULT;
5446
5447         return 0;
5448 }
5449
5450 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5451 {
5452         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5453         struct md_rdev *rdev;
5454         dev_t dev = MKDEV(info->major,info->minor);
5455
5456         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5457                 return -EOVERFLOW;
5458
5459         if (!mddev->raid_disks) {
5460                 int err;
5461                 /* expecting a device which has a superblock */
5462                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5463                 if (IS_ERR(rdev)) {
5464                         printk(KERN_WARNING 
5465                                 "md: md_import_device returned %ld\n",
5466                                 PTR_ERR(rdev));
5467                         return PTR_ERR(rdev);
5468                 }
5469                 if (!list_empty(&mddev->disks)) {
5470                         struct md_rdev *rdev0
5471                                 = list_entry(mddev->disks.next,
5472                                              struct md_rdev, same_set);
5473                         err = super_types[mddev->major_version]
5474                                 .load_super(rdev, rdev0, mddev->minor_version);
5475                         if (err < 0) {
5476                                 printk(KERN_WARNING 
5477                                         "md: %s has different UUID to %s\n",
5478                                         bdevname(rdev->bdev,b), 
5479                                         bdevname(rdev0->bdev,b2));
5480                                 export_rdev(rdev);
5481                                 return -EINVAL;
5482                         }
5483                 }
5484                 err = bind_rdev_to_array(rdev, mddev);
5485                 if (err)
5486                         export_rdev(rdev);
5487                 return err;
5488         }
5489
5490         /*
5491          * add_new_disk can be used once the array is assembled
5492          * to add "hot spares".  They must already have a superblock
5493          * written
5494          */
5495         if (mddev->pers) {
5496                 int err;
5497                 if (!mddev->pers->hot_add_disk) {
5498                         printk(KERN_WARNING 
5499                                 "%s: personality does not support diskops!\n",
5500                                mdname(mddev));
5501                         return -EINVAL;
5502                 }
5503                 if (mddev->persistent)
5504                         rdev = md_import_device(dev, mddev->major_version,
5505                                                 mddev->minor_version);
5506                 else
5507                         rdev = md_import_device(dev, -1, -1);
5508                 if (IS_ERR(rdev)) {
5509                         printk(KERN_WARNING 
5510                                 "md: md_import_device returned %ld\n",
5511                                 PTR_ERR(rdev));
5512                         return PTR_ERR(rdev);
5513                 }
5514                 /* set saved_raid_disk if appropriate */
5515                 if (!mddev->persistent) {
5516                         if (info->state & (1<<MD_DISK_SYNC)  &&
5517                             info->raid_disk < mddev->raid_disks) {
5518                                 rdev->raid_disk = info->raid_disk;
5519                                 set_bit(In_sync, &rdev->flags);
5520                         } else
5521                                 rdev->raid_disk = -1;
5522                 } else
5523                         super_types[mddev->major_version].
5524                                 validate_super(mddev, rdev);
5525                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5526                     (!test_bit(In_sync, &rdev->flags) ||
5527                      rdev->raid_disk != info->raid_disk)) {
5528                         /* This was a hot-add request, but events doesn't
5529                          * match, so reject it.
5530                          */
5531                         export_rdev(rdev);
5532                         return -EINVAL;
5533                 }
5534
5535                 if (test_bit(In_sync, &rdev->flags))
5536                         rdev->saved_raid_disk = rdev->raid_disk;
5537                 else
5538                         rdev->saved_raid_disk = -1;
5539
5540                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5541                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5542                         set_bit(WriteMostly, &rdev->flags);
5543                 else
5544                         clear_bit(WriteMostly, &rdev->flags);
5545
5546                 rdev->raid_disk = -1;
5547                 err = bind_rdev_to_array(rdev, mddev);
5548                 if (!err && !mddev->pers->hot_remove_disk) {
5549                         /* If there is hot_add_disk but no hot_remove_disk
5550                          * then added disks for geometry changes,
5551                          * and should be added immediately.
5552                          */
5553                         super_types[mddev->major_version].
5554                                 validate_super(mddev, rdev);
5555                         err = mddev->pers->hot_add_disk(mddev, rdev);
5556                         if (err)
5557                                 unbind_rdev_from_array(rdev);
5558                 }
5559                 if (err)
5560                         export_rdev(rdev);
5561                 else
5562                         sysfs_notify_dirent_safe(rdev->sysfs_state);
5563
5564                 md_update_sb(mddev, 1);
5565                 if (mddev->degraded)
5566                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5567                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5568                 if (!err)
5569                         md_new_event(mddev);
5570                 md_wakeup_thread(mddev->thread);
5571                 return err;
5572         }
5573
5574         /* otherwise, add_new_disk is only allowed
5575          * for major_version==0 superblocks
5576          */
5577         if (mddev->major_version != 0) {
5578                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5579                        mdname(mddev));
5580                 return -EINVAL;
5581         }
5582
5583         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5584                 int err;
5585                 rdev = md_import_device(dev, -1, 0);
5586                 if (IS_ERR(rdev)) {
5587                         printk(KERN_WARNING 
5588                                 "md: error, md_import_device() returned %ld\n",
5589                                 PTR_ERR(rdev));
5590                         return PTR_ERR(rdev);
5591                 }
5592                 rdev->desc_nr = info->number;
5593                 if (info->raid_disk < mddev->raid_disks)
5594                         rdev->raid_disk = info->raid_disk;
5595                 else
5596                         rdev->raid_disk = -1;
5597
5598                 if (rdev->raid_disk < mddev->raid_disks)
5599                         if (info->state & (1<<MD_DISK_SYNC))
5600                                 set_bit(In_sync, &rdev->flags);
5601
5602                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5603                         set_bit(WriteMostly, &rdev->flags);
5604
5605                 if (!mddev->persistent) {
5606                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5607                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5608                 } else
5609                         rdev->sb_start = calc_dev_sboffset(rdev);
5610                 rdev->sectors = rdev->sb_start;
5611
5612                 err = bind_rdev_to_array(rdev, mddev);
5613                 if (err) {
5614                         export_rdev(rdev);
5615                         return err;
5616                 }
5617         }
5618
5619         return 0;
5620 }
5621
5622 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5623 {
5624         char b[BDEVNAME_SIZE];
5625         struct md_rdev *rdev;
5626
5627         rdev = find_rdev(mddev, dev);
5628         if (!rdev)
5629                 return -ENXIO;
5630
5631         if (rdev->raid_disk >= 0)
5632                 goto busy;
5633
5634         kick_rdev_from_array(rdev);
5635         md_update_sb(mddev, 1);
5636         md_new_event(mddev);
5637
5638         return 0;
5639 busy:
5640         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5641                 bdevname(rdev->bdev,b), mdname(mddev));
5642         return -EBUSY;
5643 }
5644
5645 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5646 {
5647         char b[BDEVNAME_SIZE];
5648         int err;
5649         struct md_rdev *rdev;
5650
5651         if (!mddev->pers)
5652                 return -ENODEV;
5653
5654         if (mddev->major_version != 0) {
5655                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5656                         " version-0 superblocks.\n",
5657                         mdname(mddev));
5658                 return -EINVAL;
5659         }
5660         if (!mddev->pers->hot_add_disk) {
5661                 printk(KERN_WARNING 
5662                         "%s: personality does not support diskops!\n",
5663                         mdname(mddev));
5664                 return -EINVAL;
5665         }
5666
5667         rdev = md_import_device(dev, -1, 0);
5668         if (IS_ERR(rdev)) {
5669                 printk(KERN_WARNING 
5670                         "md: error, md_import_device() returned %ld\n",
5671                         PTR_ERR(rdev));
5672                 return -EINVAL;
5673         }
5674
5675         if (mddev->persistent)
5676                 rdev->sb_start = calc_dev_sboffset(rdev);
5677         else
5678                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5679
5680         rdev->sectors = rdev->sb_start;
5681
5682         if (test_bit(Faulty, &rdev->flags)) {
5683                 printk(KERN_WARNING 
5684                         "md: can not hot-add faulty %s disk to %s!\n",
5685                         bdevname(rdev->bdev,b), mdname(mddev));
5686                 err = -EINVAL;
5687                 goto abort_export;
5688         }
5689         clear_bit(In_sync, &rdev->flags);
5690         rdev->desc_nr = -1;
5691         rdev->saved_raid_disk = -1;
5692         err = bind_rdev_to_array(rdev, mddev);
5693         if (err)
5694                 goto abort_export;
5695
5696         /*
5697          * The rest should better be atomic, we can have disk failures
5698          * noticed in interrupt contexts ...
5699          */
5700
5701         rdev->raid_disk = -1;
5702
5703         md_update_sb(mddev, 1);
5704
5705         /*
5706          * Kick recovery, maybe this spare has to be added to the
5707          * array immediately.
5708          */
5709         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5710         md_wakeup_thread(mddev->thread);
5711         md_new_event(mddev);
5712         return 0;
5713
5714 abort_export:
5715         export_rdev(rdev);
5716         return err;
5717 }
5718
5719 static int set_bitmap_file(struct mddev *mddev, int fd)
5720 {
5721         int err;
5722
5723         if (mddev->pers) {
5724                 if (!mddev->pers->quiesce)
5725                         return -EBUSY;
5726                 if (mddev->recovery || mddev->sync_thread)
5727                         return -EBUSY;
5728                 /* we should be able to change the bitmap.. */
5729         }
5730
5731
5732         if (fd >= 0) {
5733                 if (mddev->bitmap)
5734                         return -EEXIST; /* cannot add when bitmap is present */
5735                 mddev->bitmap_info.file = fget(fd);
5736
5737                 if (mddev->bitmap_info.file == NULL) {
5738                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5739                                mdname(mddev));
5740                         return -EBADF;
5741                 }
5742
5743                 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5744                 if (err) {
5745                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5746                                mdname(mddev));
5747                         fput(mddev->bitmap_info.file);
5748                         mddev->bitmap_info.file = NULL;
5749                         return err;
5750                 }
5751                 mddev->bitmap_info.offset = 0; /* file overrides offset */
5752         } else if (mddev->bitmap == NULL)
5753                 return -ENOENT; /* cannot remove what isn't there */
5754         err = 0;
5755         if (mddev->pers) {
5756                 mddev->pers->quiesce(mddev, 1);
5757                 if (fd >= 0) {
5758                         err = bitmap_create(mddev);
5759                         if (!err)
5760                                 err = bitmap_load(mddev);
5761                 }
5762                 if (fd < 0 || err) {
5763                         bitmap_destroy(mddev);
5764                         fd = -1; /* make sure to put the file */
5765                 }
5766                 mddev->pers->quiesce(mddev, 0);
5767         }
5768         if (fd < 0) {
5769                 if (mddev->bitmap_info.file) {
5770                         restore_bitmap_write_access(mddev->bitmap_info.file);
5771                         fput(mddev->bitmap_info.file);
5772                 }
5773                 mddev->bitmap_info.file = NULL;
5774         }
5775
5776         return err;
5777 }
5778
5779 /*
5780  * set_array_info is used two different ways
5781  * The original usage is when creating a new array.
5782  * In this usage, raid_disks is > 0 and it together with
5783  *  level, size, not_persistent,layout,chunksize determine the
5784  *  shape of the array.
5785  *  This will always create an array with a type-0.90.0 superblock.
5786  * The newer usage is when assembling an array.
5787  *  In this case raid_disks will be 0, and the major_version field is
5788  *  use to determine which style super-blocks are to be found on the devices.
5789  *  The minor and patch _version numbers are also kept incase the
5790  *  super_block handler wishes to interpret them.
5791  */
5792 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5793 {
5794
5795         if (info->raid_disks == 0) {
5796                 /* just setting version number for superblock loading */
5797                 if (info->major_version < 0 ||
5798                     info->major_version >= ARRAY_SIZE(super_types) ||
5799                     super_types[info->major_version].name == NULL) {
5800                         /* maybe try to auto-load a module? */
5801                         printk(KERN_INFO 
5802                                 "md: superblock version %d not known\n",
5803                                 info->major_version);
5804                         return -EINVAL;
5805                 }
5806                 mddev->major_version = info->major_version;
5807                 mddev->minor_version = info->minor_version;
5808                 mddev->patch_version = info->patch_version;
5809                 mddev->persistent = !info->not_persistent;
5810                 /* ensure mddev_put doesn't delete this now that there
5811                  * is some minimal configuration.
5812                  */
5813                 mddev->ctime         = get_seconds();
5814                 return 0;
5815         }
5816         mddev->major_version = MD_MAJOR_VERSION;
5817         mddev->minor_version = MD_MINOR_VERSION;
5818         mddev->patch_version = MD_PATCHLEVEL_VERSION;
5819         mddev->ctime         = get_seconds();
5820
5821         mddev->level         = info->level;
5822         mddev->clevel[0]     = 0;
5823         mddev->dev_sectors   = 2 * (sector_t)info->size;
5824         mddev->raid_disks    = info->raid_disks;
5825         /* don't set md_minor, it is determined by which /dev/md* was
5826          * openned
5827          */
5828         if (info->state & (1<<MD_SB_CLEAN))
5829                 mddev->recovery_cp = MaxSector;
5830         else
5831                 mddev->recovery_cp = 0;
5832         mddev->persistent    = ! info->not_persistent;
5833         mddev->external      = 0;
5834
5835         mddev->layout        = info->layout;
5836         mddev->chunk_sectors = info->chunk_size >> 9;
5837
5838         mddev->max_disks     = MD_SB_DISKS;
5839
5840         if (mddev->persistent)
5841                 mddev->flags         = 0;
5842         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5843
5844         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5845         mddev->bitmap_info.offset = 0;
5846
5847         mddev->reshape_position = MaxSector;
5848
5849         /*
5850          * Generate a 128 bit UUID
5851          */
5852         get_random_bytes(mddev->uuid, 16);
5853
5854         mddev->new_level = mddev->level;
5855         mddev->new_chunk_sectors = mddev->chunk_sectors;
5856         mddev->new_layout = mddev->layout;
5857         mddev->delta_disks = 0;
5858
5859         return 0;
5860 }
5861
5862 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5863 {
5864         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5865
5866         if (mddev->external_size)
5867                 return;
5868
5869         mddev->array_sectors = array_sectors;
5870 }
5871 EXPORT_SYMBOL(md_set_array_sectors);
5872
5873 static int update_size(struct mddev *mddev, sector_t num_sectors)
5874 {
5875         struct md_rdev *rdev;
5876         int rv;
5877         int fit = (num_sectors == 0);
5878
5879         if (mddev->pers->resize == NULL)
5880                 return -EINVAL;
5881         /* The "num_sectors" is the number of sectors of each device that
5882          * is used.  This can only make sense for arrays with redundancy.
5883          * linear and raid0 always use whatever space is available. We can only
5884          * consider changing this number if no resync or reconstruction is
5885          * happening, and if the new size is acceptable. It must fit before the
5886          * sb_start or, if that is <data_offset, it must fit before the size
5887          * of each device.  If num_sectors is zero, we find the largest size
5888          * that fits.
5889          */
5890         if (mddev->sync_thread)
5891                 return -EBUSY;
5892         if (mddev->bitmap)
5893                 /* Sorry, cannot grow a bitmap yet, just remove it,
5894                  * grow, and re-add.
5895                  */
5896                 return -EBUSY;
5897         list_for_each_entry(rdev, &mddev->disks, same_set) {
5898                 sector_t avail = rdev->sectors;
5899
5900                 if (fit && (num_sectors == 0 || num_sectors > avail))
5901                         num_sectors = avail;
5902                 if (avail < num_sectors)
5903                         return -ENOSPC;
5904         }
5905         rv = mddev->pers->resize(mddev, num_sectors);
5906         if (!rv)
5907                 revalidate_disk(mddev->gendisk);
5908         return rv;
5909 }
5910
5911 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5912 {
5913         int rv;
5914         /* change the number of raid disks */
5915         if (mddev->pers->check_reshape == NULL)
5916                 return -EINVAL;
5917         if (raid_disks <= 0 ||
5918             (mddev->max_disks && raid_disks >= mddev->max_disks))
5919                 return -EINVAL;
5920         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5921                 return -EBUSY;
5922         mddev->delta_disks = raid_disks - mddev->raid_disks;
5923
5924         rv = mddev->pers->check_reshape(mddev);
5925         if (rv < 0)
5926                 mddev->delta_disks = 0;
5927         return rv;
5928 }
5929
5930
5931 /*
5932  * update_array_info is used to change the configuration of an
5933  * on-line array.
5934  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5935  * fields in the info are checked against the array.
5936  * Any differences that cannot be handled will cause an error.
5937  * Normally, only one change can be managed at a time.
5938  */
5939 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5940 {
5941         int rv = 0;
5942         int cnt = 0;
5943         int state = 0;
5944
5945         /* calculate expected state,ignoring low bits */
5946         if (mddev->bitmap && mddev->bitmap_info.offset)
5947                 state |= (1 << MD_SB_BITMAP_PRESENT);
5948
5949         if (mddev->major_version != info->major_version ||
5950             mddev->minor_version != info->minor_version ||
5951 /*          mddev->patch_version != info->patch_version || */
5952             mddev->ctime         != info->ctime         ||
5953             mddev->level         != info->level         ||
5954 /*          mddev->layout        != info->layout        || */
5955             !mddev->persistent   != info->not_persistent||
5956             mddev->chunk_sectors != info->chunk_size >> 9 ||
5957             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5958             ((state^info->state) & 0xfffffe00)
5959                 )
5960                 return -EINVAL;
5961         /* Check there is only one change */
5962         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5963                 cnt++;
5964         if (mddev->raid_disks != info->raid_disks)
5965                 cnt++;
5966         if (mddev->layout != info->layout)
5967                 cnt++;
5968         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5969                 cnt++;
5970         if (cnt == 0)
5971                 return 0;
5972         if (cnt > 1)
5973                 return -EINVAL;
5974
5975         if (mddev->layout != info->layout) {
5976                 /* Change layout
5977                  * we don't need to do anything at the md level, the
5978                  * personality will take care of it all.
5979                  */
5980                 if (mddev->pers->check_reshape == NULL)
5981                         return -EINVAL;
5982                 else {
5983                         mddev->new_layout = info->layout;
5984                         rv = mddev->pers->check_reshape(mddev);
5985                         if (rv)
5986                                 mddev->new_layout = mddev->layout;
5987                         return rv;
5988                 }
5989         }
5990         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5991                 rv = update_size(mddev, (sector_t)info->size * 2);
5992
5993         if (mddev->raid_disks    != info->raid_disks)
5994                 rv = update_raid_disks(mddev, info->raid_disks);
5995
5996         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5997                 if (mddev->pers->quiesce == NULL)
5998                         return -EINVAL;
5999                 if (mddev->recovery || mddev->sync_thread)
6000                         return -EBUSY;
6001                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6002                         /* add the bitmap */
6003                         if (mddev->bitmap)
6004                                 return -EEXIST;
6005                         if (mddev->bitmap_info.default_offset == 0)
6006                                 return -EINVAL;
6007                         mddev->bitmap_info.offset =
6008                                 mddev->bitmap_info.default_offset;
6009                         mddev->pers->quiesce(mddev, 1);
6010                         rv = bitmap_create(mddev);
6011                         if (!rv)
6012                                 rv = bitmap_load(mddev);
6013                         if (rv)
6014                                 bitmap_destroy(mddev);
6015                         mddev->pers->quiesce(mddev, 0);
6016                 } else {
6017                         /* remove the bitmap */
6018                         if (!mddev->bitmap)
6019                                 return -ENOENT;
6020                         if (mddev->bitmap->file)
6021                                 return -EINVAL;
6022                         mddev->pers->quiesce(mddev, 1);
6023                         bitmap_destroy(mddev);
6024                         mddev->pers->quiesce(mddev, 0);
6025                         mddev->bitmap_info.offset = 0;
6026                 }
6027         }
6028         md_update_sb(mddev, 1);
6029         return rv;
6030 }
6031
6032 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6033 {
6034         struct md_rdev *rdev;
6035
6036         if (mddev->pers == NULL)
6037                 return -ENODEV;
6038
6039         rdev = find_rdev(mddev, dev);
6040         if (!rdev)
6041                 return -ENODEV;
6042
6043         md_error(mddev, rdev);
6044         if (!test_bit(Faulty, &rdev->flags))
6045                 return -EBUSY;
6046         return 0;
6047 }
6048
6049 /*
6050  * We have a problem here : there is no easy way to give a CHS
6051  * virtual geometry. We currently pretend that we have a 2 heads
6052  * 4 sectors (with a BIG number of cylinders...). This drives
6053  * dosfs just mad... ;-)
6054  */
6055 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6056 {
6057         struct mddev *mddev = bdev->bd_disk->private_data;
6058
6059         geo->heads = 2;
6060         geo->sectors = 4;
6061         geo->cylinders = mddev->array_sectors / 8;
6062         return 0;
6063 }
6064
6065 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6066                         unsigned int cmd, unsigned long arg)
6067 {
6068         int err = 0;
6069         void __user *argp = (void __user *)arg;
6070         struct mddev *mddev = NULL;
6071         int ro;
6072
6073         if (!capable(CAP_SYS_ADMIN))
6074                 return -EACCES;
6075
6076         /*
6077          * Commands dealing with the RAID driver but not any
6078          * particular array:
6079          */
6080         switch (cmd)
6081         {
6082                 case RAID_VERSION:
6083                         err = get_version(argp);
6084                         goto done;
6085
6086                 case PRINT_RAID_DEBUG:
6087                         err = 0;
6088                         md_print_devices();
6089                         goto done;
6090
6091 #ifndef MODULE
6092                 case RAID_AUTORUN:
6093                         err = 0;
6094                         autostart_arrays(arg);
6095                         goto done;
6096 #endif
6097                 default:;
6098         }
6099
6100         /*
6101          * Commands creating/starting a new array:
6102          */
6103
6104         mddev = bdev->bd_disk->private_data;
6105
6106         if (!mddev) {
6107                 BUG();
6108                 goto abort;
6109         }
6110
6111         err = mddev_lock(mddev);
6112         if (err) {
6113                 printk(KERN_INFO 
6114                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6115                         err, cmd);
6116                 goto abort;
6117         }
6118
6119         switch (cmd)
6120         {
6121                 case SET_ARRAY_INFO:
6122                         {
6123                                 mdu_array_info_t info;
6124                                 if (!arg)
6125                                         memset(&info, 0, sizeof(info));
6126                                 else if (copy_from_user(&info, argp, sizeof(info))) {
6127                                         err = -EFAULT;
6128                                         goto abort_unlock;
6129                                 }
6130                                 if (mddev->pers) {
6131                                         err = update_array_info(mddev, &info);
6132                                         if (err) {
6133                                                 printk(KERN_WARNING "md: couldn't update"
6134                                                        " array info. %d\n", err);
6135                                                 goto abort_unlock;
6136                                         }
6137                                         goto done_unlock;
6138                                 }
6139                                 if (!list_empty(&mddev->disks)) {
6140                                         printk(KERN_WARNING
6141                                                "md: array %s already has disks!\n",
6142                                                mdname(mddev));
6143                                         err = -EBUSY;
6144                                         goto abort_unlock;
6145                                 }
6146                                 if (mddev->raid_disks) {
6147                                         printk(KERN_WARNING
6148                                                "md: array %s already initialised!\n",
6149                                                mdname(mddev));
6150                                         err = -EBUSY;
6151                                         goto abort_unlock;
6152                                 }
6153                                 err = set_array_info(mddev, &info);
6154                                 if (err) {
6155                                         printk(KERN_WARNING "md: couldn't set"
6156                                                " array info. %d\n", err);
6157                                         goto abort_unlock;
6158                                 }
6159                         }
6160                         goto done_unlock;
6161
6162                 default:;
6163         }
6164
6165         /*
6166          * Commands querying/configuring an existing array:
6167          */
6168         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6169          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6170         if ((!mddev->raid_disks && !mddev->external)
6171             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6172             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6173             && cmd != GET_BITMAP_FILE) {
6174                 err = -ENODEV;
6175                 goto abort_unlock;
6176         }
6177
6178         /*
6179          * Commands even a read-only array can execute:
6180          */
6181         switch (cmd)
6182         {
6183                 case GET_ARRAY_INFO:
6184                         err = get_array_info(mddev, argp);
6185                         goto done_unlock;
6186
6187                 case GET_BITMAP_FILE:
6188                         err = get_bitmap_file(mddev, argp);
6189                         goto done_unlock;
6190
6191                 case GET_DISK_INFO:
6192                         err = get_disk_info(mddev, argp);
6193                         goto done_unlock;
6194
6195                 case RESTART_ARRAY_RW:
6196                         err = restart_array(mddev);
6197                         goto done_unlock;
6198
6199                 case STOP_ARRAY:
6200                         err = do_md_stop(mddev, 0, bdev);
6201                         goto done_unlock;
6202
6203                 case STOP_ARRAY_RO:
6204                         err = md_set_readonly(mddev, bdev);
6205                         goto done_unlock;
6206
6207                 case BLKROSET:
6208                         if (get_user(ro, (int __user *)(arg))) {
6209                                 err = -EFAULT;
6210                                 goto done_unlock;
6211                         }
6212                         err = -EINVAL;
6213
6214                         /* if the bdev is going readonly the value of mddev->ro
6215                          * does not matter, no writes are coming
6216                          */
6217                         if (ro)
6218                                 goto done_unlock;
6219
6220                         /* are we are already prepared for writes? */
6221                         if (mddev->ro != 1)
6222                                 goto done_unlock;
6223
6224                         /* transitioning to readauto need only happen for
6225                          * arrays that call md_write_start
6226                          */
6227                         if (mddev->pers) {
6228                                 err = restart_array(mddev);
6229                                 if (err == 0) {
6230                                         mddev->ro = 2;
6231                                         set_disk_ro(mddev->gendisk, 0);
6232                                 }
6233                         }
6234                         goto done_unlock;
6235         }
6236
6237         /*
6238          * The remaining ioctls are changing the state of the
6239          * superblock, so we do not allow them on read-only arrays.
6240          * However non-MD ioctls (e.g. get-size) will still come through
6241          * here and hit the 'default' below, so only disallow
6242          * 'md' ioctls, and switch to rw mode if started auto-readonly.
6243          */
6244         if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6245                 if (mddev->ro == 2) {
6246                         mddev->ro = 0;
6247                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6248                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6249                         md_wakeup_thread(mddev->thread);
6250                 } else {
6251                         err = -EROFS;
6252                         goto abort_unlock;
6253                 }
6254         }
6255
6256         switch (cmd)
6257         {
6258                 case ADD_NEW_DISK:
6259                 {
6260                         mdu_disk_info_t info;
6261                         if (copy_from_user(&info, argp, sizeof(info)))
6262                                 err = -EFAULT;
6263                         else
6264                                 err = add_new_disk(mddev, &info);
6265                         goto done_unlock;
6266                 }
6267
6268                 case HOT_REMOVE_DISK:
6269                         err = hot_remove_disk(mddev, new_decode_dev(arg));
6270                         goto done_unlock;
6271
6272                 case HOT_ADD_DISK:
6273                         err = hot_add_disk(mddev, new_decode_dev(arg));
6274                         goto done_unlock;
6275
6276                 case SET_DISK_FAULTY:
6277                         err = set_disk_faulty(mddev, new_decode_dev(arg));
6278                         goto done_unlock;
6279
6280                 case RUN_ARRAY:
6281                         err = do_md_run(mddev);
6282                         goto done_unlock;
6283
6284                 case SET_BITMAP_FILE:
6285                         err = set_bitmap_file(mddev, (int)arg);
6286                         goto done_unlock;
6287
6288                 default:
6289                         err = -EINVAL;
6290                         goto abort_unlock;
6291         }
6292
6293 done_unlock:
6294 abort_unlock:
6295         if (mddev->hold_active == UNTIL_IOCTL &&
6296             err != -EINVAL)
6297                 mddev->hold_active = 0;
6298         mddev_unlock(mddev);
6299
6300         return err;
6301 done:
6302         if (err)
6303                 MD_BUG();
6304 abort:
6305         return err;
6306 }
6307 #ifdef CONFIG_COMPAT
6308 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6309                     unsigned int cmd, unsigned long arg)
6310 {
6311         switch (cmd) {
6312         case HOT_REMOVE_DISK:
6313         case HOT_ADD_DISK:
6314         case SET_DISK_FAULTY:
6315         case SET_BITMAP_FILE:
6316                 /* These take in integer arg, do not convert */
6317                 break;
6318         default:
6319                 arg = (unsigned long)compat_ptr(arg);
6320                 break;
6321         }
6322
6323         return md_ioctl(bdev, mode, cmd, arg);
6324 }
6325 #endif /* CONFIG_COMPAT */
6326
6327 static int md_open(struct block_device *bdev, fmode_t mode)
6328 {
6329         /*
6330          * Succeed if we can lock the mddev, which confirms that
6331          * it isn't being stopped right now.
6332          */
6333         struct mddev *mddev = mddev_find(bdev->bd_dev);
6334         int err;
6335
6336         if (mddev->gendisk != bdev->bd_disk) {
6337                 /* we are racing with mddev_put which is discarding this
6338                  * bd_disk.
6339                  */
6340                 mddev_put(mddev);
6341                 /* Wait until bdev->bd_disk is definitely gone */
6342                 flush_workqueue(md_misc_wq);
6343                 /* Then retry the open from the top */
6344                 return -ERESTARTSYS;
6345         }
6346         BUG_ON(mddev != bdev->bd_disk->private_data);
6347
6348         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6349                 goto out;
6350
6351         err = 0;
6352         atomic_inc(&mddev->openers);
6353         mutex_unlock(&mddev->open_mutex);
6354
6355         check_disk_change(bdev);
6356  out:
6357         return err;
6358 }
6359
6360 static int md_release(struct gendisk *disk, fmode_t mode)
6361 {
6362         struct mddev *mddev = disk->private_data;
6363
6364         BUG_ON(!mddev);
6365         atomic_dec(&mddev->openers);
6366         mddev_put(mddev);
6367
6368         return 0;
6369 }
6370
6371 static int md_media_changed(struct gendisk *disk)
6372 {
6373         struct mddev *mddev = disk->private_data;
6374
6375         return mddev->changed;
6376 }
6377
6378 static int md_revalidate(struct gendisk *disk)
6379 {
6380         struct mddev *mddev = disk->private_data;
6381
6382         mddev->changed = 0;
6383         return 0;
6384 }
6385 static const struct block_device_operations md_fops =
6386 {
6387         .owner          = THIS_MODULE,
6388         .open           = md_open,
6389         .release        = md_release,
6390         .ioctl          = md_ioctl,
6391 #ifdef CONFIG_COMPAT
6392         .compat_ioctl   = md_compat_ioctl,
6393 #endif
6394         .getgeo         = md_getgeo,
6395         .media_changed  = md_media_changed,
6396         .revalidate_disk= md_revalidate,
6397 };
6398
6399 static int md_thread(void * arg)
6400 {
6401         struct md_thread *thread = arg;
6402
6403         /*
6404          * md_thread is a 'system-thread', it's priority should be very
6405          * high. We avoid resource deadlocks individually in each
6406          * raid personality. (RAID5 does preallocation) We also use RR and
6407          * the very same RT priority as kswapd, thus we will never get
6408          * into a priority inversion deadlock.
6409          *
6410          * we definitely have to have equal or higher priority than
6411          * bdflush, otherwise bdflush will deadlock if there are too
6412          * many dirty RAID5 blocks.
6413          */
6414
6415         allow_signal(SIGKILL);
6416         while (!kthread_should_stop()) {
6417
6418                 /* We need to wait INTERRUPTIBLE so that
6419                  * we don't add to the load-average.
6420                  * That means we need to be sure no signals are
6421                  * pending
6422                  */
6423                 if (signal_pending(current))
6424                         flush_signals(current);
6425
6426                 wait_event_interruptible_timeout
6427                         (thread->wqueue,
6428                          test_bit(THREAD_WAKEUP, &thread->flags)
6429                          || kthread_should_stop(),
6430                          thread->timeout);
6431
6432                 clear_bit(THREAD_WAKEUP, &thread->flags);
6433                 if (!kthread_should_stop())
6434                         thread->run(thread->mddev);
6435         }
6436
6437         return 0;
6438 }
6439
6440 void md_wakeup_thread(struct md_thread *thread)
6441 {
6442         if (thread) {
6443                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6444                 set_bit(THREAD_WAKEUP, &thread->flags);
6445                 wake_up(&thread->wqueue);
6446         }
6447 }
6448
6449 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6450                                  const char *name)
6451 {
6452         struct md_thread *thread;
6453
6454         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6455         if (!thread)
6456                 return NULL;
6457
6458         init_waitqueue_head(&thread->wqueue);
6459
6460         thread->run = run;
6461         thread->mddev = mddev;
6462         thread->timeout = MAX_SCHEDULE_TIMEOUT;
6463         thread->tsk = kthread_run(md_thread, thread,
6464                                   "%s_%s",
6465                                   mdname(thread->mddev),
6466                                   name ?: mddev->pers->name);
6467         if (IS_ERR(thread->tsk)) {
6468                 kfree(thread);
6469                 return NULL;
6470         }
6471         return thread;
6472 }
6473
6474 void md_unregister_thread(struct md_thread **threadp)
6475 {
6476         struct md_thread *thread = *threadp;
6477         if (!thread)
6478                 return;
6479         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6480         /* Locking ensures that mddev_unlock does not wake_up a
6481          * non-existent thread
6482          */
6483         spin_lock(&pers_lock);
6484         *threadp = NULL;
6485         spin_unlock(&pers_lock);
6486
6487         kthread_stop(thread->tsk);
6488         kfree(thread);
6489 }
6490
6491 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6492 {
6493         if (!mddev) {
6494                 MD_BUG();
6495                 return;
6496         }
6497
6498         if (!rdev || test_bit(Faulty, &rdev->flags))
6499                 return;
6500
6501         if (!mddev->pers || !mddev->pers->error_handler)
6502                 return;
6503         mddev->pers->error_handler(mddev,rdev);
6504         if (mddev->degraded)
6505                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6506         sysfs_notify_dirent_safe(rdev->sysfs_state);
6507         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6508         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6509         md_wakeup_thread(mddev->thread);
6510         if (mddev->event_work.func)
6511                 queue_work(md_misc_wq, &mddev->event_work);
6512         md_new_event_inintr(mddev);
6513 }
6514
6515 /* seq_file implementation /proc/mdstat */
6516
6517 static void status_unused(struct seq_file *seq)
6518 {
6519         int i = 0;
6520         struct md_rdev *rdev;
6521
6522         seq_printf(seq, "unused devices: ");
6523
6524         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6525                 char b[BDEVNAME_SIZE];
6526                 i++;
6527                 seq_printf(seq, "%s ",
6528                               bdevname(rdev->bdev,b));
6529         }
6530         if (!i)
6531                 seq_printf(seq, "<none>");
6532
6533         seq_printf(seq, "\n");
6534 }
6535
6536
6537 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6538 {
6539         sector_t max_sectors, resync, res;
6540         unsigned long dt, db;
6541         sector_t rt;
6542         int scale;
6543         unsigned int per_milli;
6544
6545         resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6546
6547         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6548                 max_sectors = mddev->resync_max_sectors;
6549         else
6550                 max_sectors = mddev->dev_sectors;
6551
6552         /*
6553          * Should not happen.
6554          */
6555         if (!max_sectors) {
6556                 MD_BUG();
6557                 return;
6558         }
6559         /* Pick 'scale' such that (resync>>scale)*1000 will fit
6560          * in a sector_t, and (max_sectors>>scale) will fit in a
6561          * u32, as those are the requirements for sector_div.
6562          * Thus 'scale' must be at least 10
6563          */
6564         scale = 10;
6565         if (sizeof(sector_t) > sizeof(unsigned long)) {
6566                 while ( max_sectors/2 > (1ULL<<(scale+32)))
6567                         scale++;
6568         }
6569         res = (resync>>scale)*1000;
6570         sector_div(res, (u32)((max_sectors>>scale)+1));
6571
6572         per_milli = res;
6573         {
6574                 int i, x = per_milli/50, y = 20-x;
6575                 seq_printf(seq, "[");
6576                 for (i = 0; i < x; i++)
6577                         seq_printf(seq, "=");
6578                 seq_printf(seq, ">");
6579                 for (i = 0; i < y; i++)
6580                         seq_printf(seq, ".");
6581                 seq_printf(seq, "] ");
6582         }
6583         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6584                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6585                     "reshape" :
6586                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6587                      "check" :
6588                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6589                       "resync" : "recovery"))),
6590                    per_milli/10, per_milli % 10,
6591                    (unsigned long long) resync/2,
6592                    (unsigned long long) max_sectors/2);
6593
6594         /*
6595          * dt: time from mark until now
6596          * db: blocks written from mark until now
6597          * rt: remaining time
6598          *
6599          * rt is a sector_t, so could be 32bit or 64bit.
6600          * So we divide before multiply in case it is 32bit and close
6601          * to the limit.
6602          * We scale the divisor (db) by 32 to avoid losing precision
6603          * near the end of resync when the number of remaining sectors
6604          * is close to 'db'.
6605          * We then divide rt by 32 after multiplying by db to compensate.
6606          * The '+1' avoids division by zero if db is very small.
6607          */
6608         dt = ((jiffies - mddev->resync_mark) / HZ);
6609         if (!dt) dt++;
6610         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6611                 - mddev->resync_mark_cnt;
6612
6613         rt = max_sectors - resync;    /* number of remaining sectors */
6614         sector_div(rt, db/32+1);
6615         rt *= dt;
6616         rt >>= 5;
6617
6618         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6619                    ((unsigned long)rt % 60)/6);
6620
6621         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6622 }
6623
6624 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6625 {
6626         struct list_head *tmp;
6627         loff_t l = *pos;
6628         struct mddev *mddev;
6629
6630         if (l >= 0x10000)
6631                 return NULL;
6632         if (!l--)
6633                 /* header */
6634                 return (void*)1;
6635
6636         spin_lock(&all_mddevs_lock);
6637         list_for_each(tmp,&all_mddevs)
6638                 if (!l--) {
6639                         mddev = list_entry(tmp, struct mddev, all_mddevs);
6640                         mddev_get(mddev);
6641                         spin_unlock(&all_mddevs_lock);
6642                         return mddev;
6643                 }
6644         spin_unlock(&all_mddevs_lock);
6645         if (!l--)
6646                 return (void*)2;/* tail */
6647         return NULL;
6648 }
6649
6650 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6651 {
6652         struct list_head *tmp;
6653         struct mddev *next_mddev, *mddev = v;
6654         
6655         ++*pos;
6656         if (v == (void*)2)
6657                 return NULL;
6658
6659         spin_lock(&all_mddevs_lock);
6660         if (v == (void*)1)
6661                 tmp = all_mddevs.next;
6662         else
6663                 tmp = mddev->all_mddevs.next;
6664         if (tmp != &all_mddevs)
6665                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6666         else {
6667                 next_mddev = (void*)2;
6668                 *pos = 0x10000;
6669         }               
6670         spin_unlock(&all_mddevs_lock);
6671
6672         if (v != (void*)1)
6673                 mddev_put(mddev);
6674         return next_mddev;
6675
6676 }
6677
6678 static void md_seq_stop(struct seq_file *seq, void *v)
6679 {
6680         struct mddev *mddev = v;
6681
6682         if (mddev && v != (void*)1 && v != (void*)2)
6683                 mddev_put(mddev);
6684 }
6685
6686 static int md_seq_show(struct seq_file *seq, void *v)
6687 {
6688         struct mddev *mddev = v;
6689         sector_t sectors;
6690         struct md_rdev *rdev;
6691         struct bitmap *bitmap;
6692
6693         if (v == (void*)1) {
6694                 struct md_personality *pers;
6695                 seq_printf(seq, "Personalities : ");
6696                 spin_lock(&pers_lock);
6697                 list_for_each_entry(pers, &pers_list, list)
6698                         seq_printf(seq, "[%s] ", pers->name);
6699
6700                 spin_unlock(&pers_lock);
6701                 seq_printf(seq, "\n");
6702                 seq->poll_event = atomic_read(&md_event_count);
6703                 return 0;
6704         }
6705         if (v == (void*)2) {
6706                 status_unused(seq);
6707                 return 0;
6708         }
6709
6710         if (mddev_lock(mddev) < 0)
6711                 return -EINTR;
6712
6713         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6714                 seq_printf(seq, "%s : %sactive", mdname(mddev),
6715                                                 mddev->pers ? "" : "in");
6716                 if (mddev->pers) {
6717                         if (mddev->ro==1)
6718                                 seq_printf(seq, " (read-only)");
6719                         if (mddev->ro==2)
6720                                 seq_printf(seq, " (auto-read-only)");
6721                         seq_printf(seq, " %s", mddev->pers->name);
6722                 }
6723
6724                 sectors = 0;
6725                 list_for_each_entry(rdev, &mddev->disks, same_set) {
6726                         char b[BDEVNAME_SIZE];
6727                         seq_printf(seq, " %s[%d]",
6728                                 bdevname(rdev->bdev,b), rdev->desc_nr);
6729                         if (test_bit(WriteMostly, &rdev->flags))
6730                                 seq_printf(seq, "(W)");
6731                         if (test_bit(Faulty, &rdev->flags)) {
6732                                 seq_printf(seq, "(F)");
6733                                 continue;
6734                         } else if (rdev->raid_disk < 0)
6735                                 seq_printf(seq, "(S)"); /* spare */
6736                         sectors += rdev->sectors;
6737                 }
6738
6739                 if (!list_empty(&mddev->disks)) {
6740                         if (mddev->pers)
6741                                 seq_printf(seq, "\n      %llu blocks",
6742                                            (unsigned long long)
6743                                            mddev->array_sectors / 2);
6744                         else
6745                                 seq_printf(seq, "\n      %llu blocks",
6746                                            (unsigned long long)sectors / 2);
6747                 }
6748                 if (mddev->persistent) {
6749                         if (mddev->major_version != 0 ||
6750                             mddev->minor_version != 90) {
6751                                 seq_printf(seq," super %d.%d",
6752                                            mddev->major_version,
6753                                            mddev->minor_version);
6754                         }
6755                 } else if (mddev->external)
6756                         seq_printf(seq, " super external:%s",
6757                                    mddev->metadata_type);
6758                 else
6759                         seq_printf(seq, " super non-persistent");
6760
6761                 if (mddev->pers) {
6762                         mddev->pers->status(seq, mddev);
6763                         seq_printf(seq, "\n      ");
6764                         if (mddev->pers->sync_request) {
6765                                 if (mddev->curr_resync > 2) {
6766                                         status_resync(seq, mddev);
6767                                         seq_printf(seq, "\n      ");
6768                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6769                                         seq_printf(seq, "\tresync=DELAYED\n      ");
6770                                 else if (mddev->recovery_cp < MaxSector)
6771                                         seq_printf(seq, "\tresync=PENDING\n      ");
6772                         }
6773                 } else
6774                         seq_printf(seq, "\n       ");
6775
6776                 if ((bitmap = mddev->bitmap)) {
6777                         unsigned long chunk_kb;
6778                         unsigned long flags;
6779                         spin_lock_irqsave(&bitmap->lock, flags);
6780                         chunk_kb = mddev->bitmap_info.chunksize >> 10;
6781                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6782                                 "%lu%s chunk",
6783                                 bitmap->pages - bitmap->missing_pages,
6784                                 bitmap->pages,
6785                                 (bitmap->pages - bitmap->missing_pages)
6786                                         << (PAGE_SHIFT - 10),
6787                                 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6788                                 chunk_kb ? "KB" : "B");
6789                         if (bitmap->file) {
6790                                 seq_printf(seq, ", file: ");
6791                                 seq_path(seq, &bitmap->file->f_path, " \t\n");
6792                         }
6793
6794                         seq_printf(seq, "\n");
6795                         spin_unlock_irqrestore(&bitmap->lock, flags);
6796                 }
6797
6798                 seq_printf(seq, "\n");
6799         }
6800         mddev_unlock(mddev);
6801         
6802         return 0;
6803 }
6804
6805 static const struct seq_operations md_seq_ops = {
6806         .start  = md_seq_start,
6807         .next   = md_seq_next,
6808         .stop   = md_seq_stop,
6809         .show   = md_seq_show,
6810 };
6811
6812 static int md_seq_open(struct inode *inode, struct file *file)
6813 {
6814         struct seq_file *seq;
6815         int error;
6816
6817         error = seq_open(file, &md_seq_ops);
6818         if (error)
6819                 return error;
6820
6821         seq = file->private_data;
6822         seq->poll_event = atomic_read(&md_event_count);
6823         return error;
6824 }
6825
6826 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6827 {
6828         struct seq_file *seq = filp->private_data;
6829         int mask;
6830
6831         poll_wait(filp, &md_event_waiters, wait);
6832
6833         /* always allow read */
6834         mask = POLLIN | POLLRDNORM;
6835
6836         if (seq->poll_event != atomic_read(&md_event_count))
6837                 mask |= POLLERR | POLLPRI;
6838         return mask;
6839 }
6840
6841 static const struct file_operations md_seq_fops = {
6842         .owner          = THIS_MODULE,
6843         .open           = md_seq_open,
6844         .read           = seq_read,
6845         .llseek         = seq_lseek,
6846         .release        = seq_release_private,
6847         .poll           = mdstat_poll,
6848 };
6849
6850 int register_md_personality(struct md_personality *p)
6851 {
6852         spin_lock(&pers_lock);
6853         list_add_tail(&p->list, &pers_list);
6854         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6855         spin_unlock(&pers_lock);
6856         return 0;
6857 }
6858
6859 int unregister_md_personality(struct md_personality *p)
6860 {
6861         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6862         spin_lock(&pers_lock);
6863         list_del_init(&p->list);
6864         spin_unlock(&pers_lock);
6865         return 0;
6866 }
6867
6868 static int is_mddev_idle(struct mddev *mddev, int init)
6869 {
6870         struct md_rdev * rdev;
6871         int idle;
6872         int curr_events;
6873
6874         idle = 1;
6875         rcu_read_lock();
6876         rdev_for_each_rcu(rdev, mddev) {
6877                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6878                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6879                               (int)part_stat_read(&disk->part0, sectors[1]) -
6880                               atomic_read(&disk->sync_io);
6881                 /* sync IO will cause sync_io to increase before the disk_stats
6882                  * as sync_io is counted when a request starts, and
6883                  * disk_stats is counted when it completes.
6884                  * So resync activity will cause curr_events to be smaller than
6885                  * when there was no such activity.
6886                  * non-sync IO will cause disk_stat to increase without
6887                  * increasing sync_io so curr_events will (eventually)
6888                  * be larger than it was before.  Once it becomes
6889                  * substantially larger, the test below will cause
6890                  * the array to appear non-idle, and resync will slow
6891                  * down.
6892                  * If there is a lot of outstanding resync activity when
6893                  * we set last_event to curr_events, then all that activity
6894                  * completing might cause the array to appear non-idle
6895                  * and resync will be slowed down even though there might
6896                  * not have been non-resync activity.  This will only
6897                  * happen once though.  'last_events' will soon reflect
6898                  * the state where there is little or no outstanding
6899                  * resync requests, and further resync activity will
6900                  * always make curr_events less than last_events.
6901                  *
6902                  */
6903                 if (init || curr_events - rdev->last_events > 64) {
6904                         rdev->last_events = curr_events;
6905                         idle = 0;
6906                 }
6907         }
6908         rcu_read_unlock();
6909         return idle;
6910 }
6911
6912 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6913 {
6914         /* another "blocks" (512byte) blocks have been synced */
6915         atomic_sub(blocks, &mddev->recovery_active);
6916         wake_up(&mddev->recovery_wait);
6917         if (!ok) {
6918                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6919                 md_wakeup_thread(mddev->thread);
6920                 // stop recovery, signal do_sync ....
6921         }
6922 }
6923
6924
6925 /* md_write_start(mddev, bi)
6926  * If we need to update some array metadata (e.g. 'active' flag
6927  * in superblock) before writing, schedule a superblock update
6928  * and wait for it to complete.
6929  */
6930 void md_write_start(struct mddev *mddev, struct bio *bi)
6931 {
6932         int did_change = 0;
6933         if (bio_data_dir(bi) != WRITE)
6934                 return;
6935
6936         BUG_ON(mddev->ro == 1);
6937         if (mddev->ro == 2) {
6938                 /* need to switch to read/write */
6939                 mddev->ro = 0;
6940                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6941                 md_wakeup_thread(mddev->thread);
6942                 md_wakeup_thread(mddev->sync_thread);
6943                 did_change = 1;
6944         }
6945         atomic_inc(&mddev->writes_pending);
6946         if (mddev->safemode == 1)
6947                 mddev->safemode = 0;
6948         if (mddev->in_sync) {
6949                 spin_lock_irq(&mddev->write_lock);
6950                 if (mddev->in_sync) {
6951                         mddev->in_sync = 0;
6952                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6953                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
6954                         md_wakeup_thread(mddev->thread);
6955                         did_change = 1;
6956                 }
6957                 spin_unlock_irq(&mddev->write_lock);
6958         }
6959         if (did_change)
6960                 sysfs_notify_dirent_safe(mddev->sysfs_state);
6961         wait_event(mddev->sb_wait,
6962                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6963 }
6964
6965 void md_write_end(struct mddev *mddev)
6966 {
6967         if (atomic_dec_and_test(&mddev->writes_pending)) {
6968                 if (mddev->safemode == 2)
6969                         md_wakeup_thread(mddev->thread);
6970                 else if (mddev->safemode_delay)
6971                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6972         }
6973 }
6974
6975 /* md_allow_write(mddev)
6976  * Calling this ensures that the array is marked 'active' so that writes
6977  * may proceed without blocking.  It is important to call this before
6978  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6979  * Must be called with mddev_lock held.
6980  *
6981  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6982  * is dropped, so return -EAGAIN after notifying userspace.
6983  */
6984 int md_allow_write(struct mddev *mddev)
6985 {
6986         if (!mddev->pers)
6987                 return 0;
6988         if (mddev->ro)
6989                 return 0;
6990         if (!mddev->pers->sync_request)
6991                 return 0;
6992
6993         spin_lock_irq(&mddev->write_lock);
6994         if (mddev->in_sync) {
6995                 mddev->in_sync = 0;
6996                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6997                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6998                 if (mddev->safemode_delay &&
6999                     mddev->safemode == 0)
7000                         mddev->safemode = 1;
7001                 spin_unlock_irq(&mddev->write_lock);
7002                 md_update_sb(mddev, 0);
7003                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7004         } else
7005                 spin_unlock_irq(&mddev->write_lock);
7006
7007         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7008                 return -EAGAIN;
7009         else
7010                 return 0;
7011 }
7012 EXPORT_SYMBOL_GPL(md_allow_write);
7013
7014 #define SYNC_MARKS      10
7015 #define SYNC_MARK_STEP  (3*HZ)
7016 void md_do_sync(struct mddev *mddev)
7017 {
7018         struct mddev *mddev2;
7019         unsigned int currspeed = 0,
7020                  window;
7021         sector_t max_sectors,j, io_sectors;
7022         unsigned long mark[SYNC_MARKS];
7023         sector_t mark_cnt[SYNC_MARKS];
7024         int last_mark,m;
7025         struct list_head *tmp;
7026         sector_t last_check;
7027         int skipped = 0;
7028         struct md_rdev *rdev;
7029         char *desc;
7030
7031         /* just incase thread restarts... */
7032         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7033                 return;
7034         if (mddev->ro) /* never try to sync a read-only array */
7035                 return;
7036
7037         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7038                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7039                         desc = "data-check";
7040                 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7041                         desc = "requested-resync";
7042                 else
7043                         desc = "resync";
7044         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7045                 desc = "reshape";
7046         else
7047                 desc = "recovery";
7048
7049         /* we overload curr_resync somewhat here.
7050          * 0 == not engaged in resync at all
7051          * 2 == checking that there is no conflict with another sync
7052          * 1 == like 2, but have yielded to allow conflicting resync to
7053          *              commense
7054          * other == active in resync - this many blocks
7055          *
7056          * Before starting a resync we must have set curr_resync to
7057          * 2, and then checked that every "conflicting" array has curr_resync
7058          * less than ours.  When we find one that is the same or higher
7059          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7060          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7061          * This will mean we have to start checking from the beginning again.
7062          *
7063          */
7064
7065         do {
7066                 mddev->curr_resync = 2;
7067
7068         try_again:
7069                 if (kthread_should_stop())
7070                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7071
7072                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7073                         goto skip;
7074                 for_each_mddev(mddev2, tmp) {
7075                         if (mddev2 == mddev)
7076                                 continue;
7077                         if (!mddev->parallel_resync
7078                         &&  mddev2->curr_resync
7079                         &&  match_mddev_units(mddev, mddev2)) {
7080                                 DEFINE_WAIT(wq);
7081                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7082                                         /* arbitrarily yield */
7083                                         mddev->curr_resync = 1;
7084                                         wake_up(&resync_wait);
7085                                 }
7086                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7087                                         /* no need to wait here, we can wait the next
7088                                          * time 'round when curr_resync == 2
7089                                          */
7090                                         continue;
7091                                 /* We need to wait 'interruptible' so as not to
7092                                  * contribute to the load average, and not to
7093                                  * be caught by 'softlockup'
7094                                  */
7095                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7096                                 if (!kthread_should_stop() &&
7097                                     mddev2->curr_resync >= mddev->curr_resync) {
7098                                         printk(KERN_INFO "md: delaying %s of %s"
7099                                                " until %s has finished (they"
7100                                                " share one or more physical units)\n",
7101                                                desc, mdname(mddev), mdname(mddev2));
7102                                         mddev_put(mddev2);
7103                                         if (signal_pending(current))
7104                                                 flush_signals(current);
7105                                         schedule();
7106                                         finish_wait(&resync_wait, &wq);
7107                                         goto try_again;
7108                                 }
7109                                 finish_wait(&resync_wait, &wq);
7110                         }
7111                 }
7112         } while (mddev->curr_resync < 2);
7113
7114         j = 0;
7115         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7116                 /* resync follows the size requested by the personality,
7117                  * which defaults to physical size, but can be virtual size
7118                  */
7119                 max_sectors = mddev->resync_max_sectors;
7120                 mddev->resync_mismatches = 0;
7121                 /* we don't use the checkpoint if there's a bitmap */
7122                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7123                         j = mddev->resync_min;
7124                 else if (!mddev->bitmap)
7125                         j = mddev->recovery_cp;
7126
7127         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7128                 max_sectors = mddev->dev_sectors;
7129         else {
7130                 /* recovery follows the physical size of devices */
7131                 max_sectors = mddev->dev_sectors;
7132                 j = MaxSector;
7133                 rcu_read_lock();
7134                 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7135                         if (rdev->raid_disk >= 0 &&
7136                             !test_bit(Faulty, &rdev->flags) &&
7137                             !test_bit(In_sync, &rdev->flags) &&
7138                             rdev->recovery_offset < j)
7139                                 j = rdev->recovery_offset;
7140                 rcu_read_unlock();
7141         }
7142
7143         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7144         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7145                 " %d KB/sec/disk.\n", speed_min(mddev));
7146         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7147                "(but not more than %d KB/sec) for %s.\n",
7148                speed_max(mddev), desc);
7149
7150         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7151
7152         io_sectors = 0;
7153         for (m = 0; m < SYNC_MARKS; m++) {
7154                 mark[m] = jiffies;
7155                 mark_cnt[m] = io_sectors;
7156         }
7157         last_mark = 0;
7158         mddev->resync_mark = mark[last_mark];
7159         mddev->resync_mark_cnt = mark_cnt[last_mark];
7160
7161         /*
7162          * Tune reconstruction:
7163          */
7164         window = 32*(PAGE_SIZE/512);
7165         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7166                 window/2, (unsigned long long)max_sectors/2);
7167
7168         atomic_set(&mddev->recovery_active, 0);
7169         last_check = 0;
7170
7171         if (j>2) {
7172                 printk(KERN_INFO 
7173                        "md: resuming %s of %s from checkpoint.\n",
7174                        desc, mdname(mddev));
7175                 mddev->curr_resync = j;
7176         }
7177         mddev->curr_resync_completed = j;
7178
7179         while (j < max_sectors) {
7180                 sector_t sectors;
7181
7182                 skipped = 0;
7183
7184                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7185                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7186                       (mddev->curr_resync - mddev->curr_resync_completed)
7187                       > (max_sectors >> 4)) ||
7188                      (j - mddev->curr_resync_completed)*2
7189                      >= mddev->resync_max - mddev->curr_resync_completed
7190                             )) {
7191                         /* time to update curr_resync_completed */
7192                         wait_event(mddev->recovery_wait,
7193                                    atomic_read(&mddev->recovery_active) == 0);
7194                         mddev->curr_resync_completed = j;
7195                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7196                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7197                 }
7198
7199                 while (j >= mddev->resync_max && !kthread_should_stop()) {
7200                         /* As this condition is controlled by user-space,
7201                          * we can block indefinitely, so use '_interruptible'
7202                          * to avoid triggering warnings.
7203                          */
7204                         flush_signals(current); /* just in case */
7205                         wait_event_interruptible(mddev->recovery_wait,
7206                                                  mddev->resync_max > j
7207                                                  || kthread_should_stop());
7208                 }
7209
7210                 if (kthread_should_stop())
7211                         goto interrupted;
7212
7213                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7214                                                   currspeed < speed_min(mddev));
7215                 if (sectors == 0) {
7216                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7217                         goto out;
7218                 }
7219
7220                 if (!skipped) { /* actual IO requested */
7221                         io_sectors += sectors;
7222                         atomic_add(sectors, &mddev->recovery_active);
7223                 }
7224
7225                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7226                         break;
7227
7228                 j += sectors;
7229                 if (j>1) mddev->curr_resync = j;
7230                 mddev->curr_mark_cnt = io_sectors;
7231                 if (last_check == 0)
7232                         /* this is the earliest that rebuild will be
7233                          * visible in /proc/mdstat
7234                          */
7235                         md_new_event(mddev);
7236
7237                 if (last_check + window > io_sectors || j == max_sectors)
7238                         continue;
7239
7240                 last_check = io_sectors;
7241         repeat:
7242                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7243                         /* step marks */
7244                         int next = (last_mark+1) % SYNC_MARKS;
7245
7246                         mddev->resync_mark = mark[next];
7247                         mddev->resync_mark_cnt = mark_cnt[next];
7248                         mark[next] = jiffies;
7249                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7250                         last_mark = next;
7251                 }
7252
7253
7254                 if (kthread_should_stop())
7255                         goto interrupted;
7256
7257
7258                 /*
7259                  * this loop exits only if either when we are slower than
7260                  * the 'hard' speed limit, or the system was IO-idle for
7261                  * a jiffy.
7262                  * the system might be non-idle CPU-wise, but we only care
7263                  * about not overloading the IO subsystem. (things like an
7264                  * e2fsck being done on the RAID array should execute fast)
7265                  */
7266                 cond_resched();
7267
7268                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7269                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7270
7271                 if (currspeed > speed_min(mddev)) {
7272                         if ((currspeed > speed_max(mddev)) ||
7273                                         !is_mddev_idle(mddev, 0)) {
7274                                 msleep(500);
7275                                 goto repeat;
7276                         }
7277                 }
7278         }
7279         printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7280         /*
7281          * this also signals 'finished resyncing' to md_stop
7282          */
7283  out:
7284         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7285
7286         /* tell personality that we are finished */
7287         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7288
7289         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7290             mddev->curr_resync > 2) {
7291                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7292                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7293                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7294                                         printk(KERN_INFO
7295                                                "md: checkpointing %s of %s.\n",
7296                                                desc, mdname(mddev));
7297                                         mddev->recovery_cp = mddev->curr_resync;
7298                                 }
7299                         } else
7300                                 mddev->recovery_cp = MaxSector;
7301                 } else {
7302                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7303                                 mddev->curr_resync = MaxSector;
7304                         rcu_read_lock();
7305                         list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7306                                 if (rdev->raid_disk >= 0 &&
7307                                     mddev->delta_disks >= 0 &&
7308                                     !test_bit(Faulty, &rdev->flags) &&
7309                                     !test_bit(In_sync, &rdev->flags) &&
7310                                     rdev->recovery_offset < mddev->curr_resync)
7311                                         rdev->recovery_offset = mddev->curr_resync;
7312                         rcu_read_unlock();
7313                 }
7314         }
7315         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7316
7317  skip:
7318         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7319                 /* We completed so min/max setting can be forgotten if used. */
7320                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7321                         mddev->resync_min = 0;
7322                 mddev->resync_max = MaxSector;
7323         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7324                 mddev->resync_min = mddev->curr_resync_completed;
7325         mddev->curr_resync = 0;
7326         wake_up(&resync_wait);
7327         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7328         md_wakeup_thread(mddev->thread);
7329         return;
7330
7331  interrupted:
7332         /*
7333          * got a signal, exit.
7334          */
7335         printk(KERN_INFO
7336                "md: md_do_sync() got signal ... exiting\n");
7337         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7338         goto out;
7339
7340 }
7341 EXPORT_SYMBOL_GPL(md_do_sync);
7342
7343 static int remove_and_add_spares(struct mddev *mddev)
7344 {
7345         struct md_rdev *rdev;
7346         int spares = 0;
7347
7348         mddev->curr_resync_completed = 0;
7349
7350         list_for_each_entry(rdev, &mddev->disks, same_set)
7351                 if (rdev->raid_disk >= 0 &&
7352                     !test_bit(Blocked, &rdev->flags) &&
7353                     (test_bit(Faulty, &rdev->flags) ||
7354                      ! test_bit(In_sync, &rdev->flags)) &&
7355                     atomic_read(&rdev->nr_pending)==0) {
7356                         if (mddev->pers->hot_remove_disk(
7357                                     mddev, rdev->raid_disk)==0) {
7358                                 sysfs_unlink_rdev(mddev, rdev);
7359                                 rdev->raid_disk = -1;
7360                         }
7361                 }
7362
7363         if (mddev->degraded) {
7364                 list_for_each_entry(rdev, &mddev->disks, same_set) {
7365                         if (rdev->raid_disk >= 0 &&
7366                             !test_bit(In_sync, &rdev->flags) &&
7367                             !test_bit(Faulty, &rdev->flags))
7368                                 spares++;
7369                         if (rdev->raid_disk < 0
7370                             && !test_bit(Faulty, &rdev->flags)) {
7371                                 rdev->recovery_offset = 0;
7372                                 if (mddev->pers->
7373                                     hot_add_disk(mddev, rdev) == 0) {
7374                                         if (sysfs_link_rdev(mddev, rdev))
7375                                                 /* failure here is OK */;
7376                                         spares++;
7377                                         md_new_event(mddev);
7378                                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7379                                 }
7380                         }
7381                 }
7382         }
7383         return spares;
7384 }
7385
7386 static void reap_sync_thread(struct mddev *mddev)
7387 {
7388         struct md_rdev *rdev;
7389
7390         /* resync has finished, collect result */
7391         md_unregister_thread(&mddev->sync_thread);
7392         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7393             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7394                 /* success...*/
7395                 /* activate any spares */
7396                 if (mddev->pers->spare_active(mddev))
7397                         sysfs_notify(&mddev->kobj, NULL,
7398                                      "degraded");
7399         }
7400         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7401             mddev->pers->finish_reshape)
7402                 mddev->pers->finish_reshape(mddev);
7403
7404         /* If array is no-longer degraded, then any saved_raid_disk
7405          * information must be scrapped.  Also if any device is now
7406          * In_sync we must scrape the saved_raid_disk for that device
7407          * do the superblock for an incrementally recovered device
7408          * written out.
7409          */
7410         list_for_each_entry(rdev, &mddev->disks, same_set)
7411                 if (!mddev->degraded ||
7412                     test_bit(In_sync, &rdev->flags))
7413                         rdev->saved_raid_disk = -1;
7414
7415         md_update_sb(mddev, 1);
7416         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7417         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7418         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7419         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7420         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7421         /* flag recovery needed just to double check */
7422         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7423         sysfs_notify_dirent_safe(mddev->sysfs_action);
7424         md_new_event(mddev);
7425         if (mddev->event_work.func)
7426                 queue_work(md_misc_wq, &mddev->event_work);
7427 }
7428
7429 /*
7430  * This routine is regularly called by all per-raid-array threads to
7431  * deal with generic issues like resync and super-block update.
7432  * Raid personalities that don't have a thread (linear/raid0) do not
7433  * need this as they never do any recovery or update the superblock.
7434  *
7435  * It does not do any resync itself, but rather "forks" off other threads
7436  * to do that as needed.
7437  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7438  * "->recovery" and create a thread at ->sync_thread.
7439  * When the thread finishes it sets MD_RECOVERY_DONE
7440  * and wakeups up this thread which will reap the thread and finish up.
7441  * This thread also removes any faulty devices (with nr_pending == 0).
7442  *
7443  * The overall approach is:
7444  *  1/ if the superblock needs updating, update it.
7445  *  2/ If a recovery thread is running, don't do anything else.
7446  *  3/ If recovery has finished, clean up, possibly marking spares active.
7447  *  4/ If there are any faulty devices, remove them.
7448  *  5/ If array is degraded, try to add spares devices
7449  *  6/ If array has spares or is not in-sync, start a resync thread.
7450  */
7451 void md_check_recovery(struct mddev *mddev)
7452 {
7453         if (mddev->suspended)
7454                 return;
7455
7456         if (mddev->bitmap)
7457                 bitmap_daemon_work(mddev);
7458
7459         if (signal_pending(current)) {
7460                 if (mddev->pers->sync_request && !mddev->external) {
7461                         printk(KERN_INFO "md: %s in immediate safe mode\n",
7462                                mdname(mddev));
7463                         mddev->safemode = 2;
7464                 }
7465                 flush_signals(current);
7466         }
7467
7468         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7469                 return;
7470         if ( ! (
7471                 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7472                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7473                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7474                 (mddev->external == 0 && mddev->safemode == 1) ||
7475                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7476                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7477                 ))
7478                 return;
7479
7480         if (mddev_trylock(mddev)) {
7481                 int spares = 0;
7482
7483                 if (mddev->ro) {
7484                         /* Only thing we do on a ro array is remove
7485                          * failed devices.
7486                          */
7487                         struct md_rdev *rdev;
7488                         list_for_each_entry(rdev, &mddev->disks, same_set)
7489                                 if (rdev->raid_disk >= 0 &&
7490                                     !test_bit(Blocked, &rdev->flags) &&
7491                                     test_bit(Faulty, &rdev->flags) &&
7492                                     atomic_read(&rdev->nr_pending)==0) {
7493                                         if (mddev->pers->hot_remove_disk(
7494                                                     mddev, rdev->raid_disk)==0) {
7495                                                 sysfs_unlink_rdev(mddev, rdev);
7496                                                 rdev->raid_disk = -1;
7497                                         }
7498                                 }
7499                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7500                         goto unlock;
7501                 }
7502
7503                 if (!mddev->external) {
7504                         int did_change = 0;
7505                         spin_lock_irq(&mddev->write_lock);
7506                         if (mddev->safemode &&
7507                             !atomic_read(&mddev->writes_pending) &&
7508                             !mddev->in_sync &&
7509                             mddev->recovery_cp == MaxSector) {
7510                                 mddev->in_sync = 1;
7511                                 did_change = 1;
7512                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7513                         }
7514                         if (mddev->safemode == 1)
7515                                 mddev->safemode = 0;
7516                         spin_unlock_irq(&mddev->write_lock);
7517                         if (did_change)
7518                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7519                 }
7520
7521                 if (mddev->flags)
7522                         md_update_sb(mddev, 0);
7523
7524                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7525                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7526                         /* resync/recovery still happening */
7527                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7528                         goto unlock;
7529                 }
7530                 if (mddev->sync_thread) {
7531                         reap_sync_thread(mddev);
7532                         goto unlock;
7533                 }
7534                 /* Set RUNNING before clearing NEEDED to avoid
7535                  * any transients in the value of "sync_action".
7536                  */
7537                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7538                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7539                 /* Clear some bits that don't mean anything, but
7540                  * might be left set
7541                  */
7542                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7543                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7544
7545                 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7546                         goto unlock;
7547                 /* no recovery is running.
7548                  * remove any failed drives, then
7549                  * add spares if possible.
7550                  * Spare are also removed and re-added, to allow
7551                  * the personality to fail the re-add.
7552                  */
7553
7554                 if (mddev->reshape_position != MaxSector) {
7555                         if (mddev->pers->check_reshape == NULL ||
7556                             mddev->pers->check_reshape(mddev) != 0)
7557                                 /* Cannot proceed */
7558                                 goto unlock;
7559                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7560                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7561                 } else if ((spares = remove_and_add_spares(mddev))) {
7562                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7563                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7564                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7565                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7566                 } else if (mddev->recovery_cp < MaxSector) {
7567                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7568                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7569                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7570                         /* nothing to be done ... */
7571                         goto unlock;
7572
7573                 if (mddev->pers->sync_request) {
7574                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7575                                 /* We are adding a device or devices to an array
7576                                  * which has the bitmap stored on all devices.
7577                                  * So make sure all bitmap pages get written
7578                                  */
7579                                 bitmap_write_all(mddev->bitmap);
7580                         }
7581                         mddev->sync_thread = md_register_thread(md_do_sync,
7582                                                                 mddev,
7583                                                                 "resync");
7584                         if (!mddev->sync_thread) {
7585                                 printk(KERN_ERR "%s: could not start resync"
7586                                         " thread...\n", 
7587                                         mdname(mddev));
7588                                 /* leave the spares where they are, it shouldn't hurt */
7589                                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7590                                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7591                                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7592                                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7593                                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7594                         } else
7595                                 md_wakeup_thread(mddev->sync_thread);
7596                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7597                         md_new_event(mddev);
7598                 }
7599         unlock:
7600                 if (!mddev->sync_thread) {
7601                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7602                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7603                                                &mddev->recovery))
7604                                 if (mddev->sysfs_action)
7605                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
7606                 }
7607                 mddev_unlock(mddev);
7608         }
7609 }
7610
7611 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7612 {
7613         sysfs_notify_dirent_safe(rdev->sysfs_state);
7614         wait_event_timeout(rdev->blocked_wait,
7615                            !test_bit(Blocked, &rdev->flags) &&
7616                            !test_bit(BlockedBadBlocks, &rdev->flags),
7617                            msecs_to_jiffies(5000));
7618         rdev_dec_pending(rdev, mddev);
7619 }
7620 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7621
7622
7623 /* Bad block management.
7624  * We can record which blocks on each device are 'bad' and so just
7625  * fail those blocks, or that stripe, rather than the whole device.
7626  * Entries in the bad-block table are 64bits wide.  This comprises:
7627  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7628  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7629  *  A 'shift' can be set so that larger blocks are tracked and
7630  *  consequently larger devices can be covered.
7631  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7632  *
7633  * Locking of the bad-block table uses a seqlock so md_is_badblock
7634  * might need to retry if it is very unlucky.
7635  * We will sometimes want to check for bad blocks in a bi_end_io function,
7636  * so we use the write_seqlock_irq variant.
7637  *
7638  * When looking for a bad block we specify a range and want to
7639  * know if any block in the range is bad.  So we binary-search
7640  * to the last range that starts at-or-before the given endpoint,
7641  * (or "before the sector after the target range")
7642  * then see if it ends after the given start.
7643  * We return
7644  *  0 if there are no known bad blocks in the range
7645  *  1 if there are known bad block which are all acknowledged
7646  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7647  * plus the start/length of the first bad section we overlap.
7648  */
7649 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7650                    sector_t *first_bad, int *bad_sectors)
7651 {
7652         int hi;
7653         int lo = 0;
7654         u64 *p = bb->page;
7655         int rv = 0;
7656         sector_t target = s + sectors;
7657         unsigned seq;
7658
7659         if (bb->shift > 0) {
7660                 /* round the start down, and the end up */
7661                 s >>= bb->shift;
7662                 target += (1<<bb->shift) - 1;
7663                 target >>= bb->shift;
7664                 sectors = target - s;
7665         }
7666         /* 'target' is now the first block after the bad range */
7667
7668 retry:
7669         seq = read_seqbegin(&bb->lock);
7670
7671         hi = bb->count;
7672
7673         /* Binary search between lo and hi for 'target'
7674          * i.e. for the last range that starts before 'target'
7675          */
7676         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7677          * are known not to be the last range before target.
7678          * VARIANT: hi-lo is the number of possible
7679          * ranges, and decreases until it reaches 1
7680          */
7681         while (hi - lo > 1) {
7682                 int mid = (lo + hi) / 2;
7683                 sector_t a = BB_OFFSET(p[mid]);
7684                 if (a < target)
7685                         /* This could still be the one, earlier ranges
7686                          * could not. */
7687                         lo = mid;
7688                 else
7689                         /* This and later ranges are definitely out. */
7690                         hi = mid;
7691         }
7692         /* 'lo' might be the last that started before target, but 'hi' isn't */
7693         if (hi > lo) {
7694                 /* need to check all range that end after 's' to see if
7695                  * any are unacknowledged.
7696                  */
7697                 while (lo >= 0 &&
7698                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7699                         if (BB_OFFSET(p[lo]) < target) {
7700                                 /* starts before the end, and finishes after
7701                                  * the start, so they must overlap
7702                                  */
7703                                 if (rv != -1 && BB_ACK(p[lo]))
7704                                         rv = 1;
7705                                 else
7706                                         rv = -1;
7707                                 *first_bad = BB_OFFSET(p[lo]);
7708                                 *bad_sectors = BB_LEN(p[lo]);
7709                         }
7710                         lo--;
7711                 }
7712         }
7713
7714         if (read_seqretry(&bb->lock, seq))
7715                 goto retry;
7716
7717         return rv;
7718 }
7719 EXPORT_SYMBOL_GPL(md_is_badblock);
7720
7721 /*
7722  * Add a range of bad blocks to the table.
7723  * This might extend the table, or might contract it
7724  * if two adjacent ranges can be merged.
7725  * We binary-search to find the 'insertion' point, then
7726  * decide how best to handle it.
7727  */
7728 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7729                             int acknowledged)
7730 {
7731         u64 *p;
7732         int lo, hi;
7733         int rv = 1;
7734
7735         if (bb->shift < 0)
7736                 /* badblocks are disabled */
7737                 return 0;
7738
7739         if (bb->shift) {
7740                 /* round the start down, and the end up */
7741                 sector_t next = s + sectors;
7742                 s >>= bb->shift;
7743                 next += (1<<bb->shift) - 1;
7744                 next >>= bb->shift;
7745                 sectors = next - s;
7746         }
7747
7748         write_seqlock_irq(&bb->lock);
7749
7750         p = bb->page;
7751         lo = 0;
7752         hi = bb->count;
7753         /* Find the last range that starts at-or-before 's' */
7754         while (hi - lo > 1) {
7755                 int mid = (lo + hi) / 2;
7756                 sector_t a = BB_OFFSET(p[mid]);
7757                 if (a <= s)
7758                         lo = mid;
7759                 else
7760                         hi = mid;
7761         }
7762         if (hi > lo && BB_OFFSET(p[lo]) > s)
7763                 hi = lo;
7764
7765         if (hi > lo) {
7766                 /* we found a range that might merge with the start
7767                  * of our new range
7768                  */
7769                 sector_t a = BB_OFFSET(p[lo]);
7770                 sector_t e = a + BB_LEN(p[lo]);
7771                 int ack = BB_ACK(p[lo]);
7772                 if (e >= s) {
7773                         /* Yes, we can merge with a previous range */
7774                         if (s == a && s + sectors >= e)
7775                                 /* new range covers old */
7776                                 ack = acknowledged;
7777                         else
7778                                 ack = ack && acknowledged;
7779
7780                         if (e < s + sectors)
7781                                 e = s + sectors;
7782                         if (e - a <= BB_MAX_LEN) {
7783                                 p[lo] = BB_MAKE(a, e-a, ack);
7784                                 s = e;
7785                         } else {
7786                                 /* does not all fit in one range,
7787                                  * make p[lo] maximal
7788                                  */
7789                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7790                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7791                                 s = a + BB_MAX_LEN;
7792                         }
7793                         sectors = e - s;
7794                 }
7795         }
7796         if (sectors && hi < bb->count) {
7797                 /* 'hi' points to the first range that starts after 's'.
7798                  * Maybe we can merge with the start of that range */
7799                 sector_t a = BB_OFFSET(p[hi]);
7800                 sector_t e = a + BB_LEN(p[hi]);
7801                 int ack = BB_ACK(p[hi]);
7802                 if (a <= s + sectors) {
7803                         /* merging is possible */
7804                         if (e <= s + sectors) {
7805                                 /* full overlap */
7806                                 e = s + sectors;
7807                                 ack = acknowledged;
7808                         } else
7809                                 ack = ack && acknowledged;
7810
7811                         a = s;
7812                         if (e - a <= BB_MAX_LEN) {
7813                                 p[hi] = BB_MAKE(a, e-a, ack);
7814                                 s = e;
7815                         } else {
7816                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7817                                 s = a + BB_MAX_LEN;
7818                         }
7819                         sectors = e - s;
7820                         lo = hi;
7821                         hi++;
7822                 }
7823         }
7824         if (sectors == 0 && hi < bb->count) {
7825                 /* we might be able to combine lo and hi */
7826                 /* Note: 's' is at the end of 'lo' */
7827                 sector_t a = BB_OFFSET(p[hi]);
7828                 int lolen = BB_LEN(p[lo]);
7829                 int hilen = BB_LEN(p[hi]);
7830                 int newlen = lolen + hilen - (s - a);
7831                 if (s >= a && newlen < BB_MAX_LEN) {
7832                         /* yes, we can combine them */
7833                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7834                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7835                         memmove(p + hi, p + hi + 1,
7836                                 (bb->count - hi - 1) * 8);
7837                         bb->count--;
7838                 }
7839         }
7840         while (sectors) {
7841                 /* didn't merge (it all).
7842                  * Need to add a range just before 'hi' */
7843                 if (bb->count >= MD_MAX_BADBLOCKS) {
7844                         /* No room for more */
7845                         rv = 0;
7846                         break;
7847                 } else {
7848                         int this_sectors = sectors;
7849                         memmove(p + hi + 1, p + hi,
7850                                 (bb->count - hi) * 8);
7851                         bb->count++;
7852
7853                         if (this_sectors > BB_MAX_LEN)
7854                                 this_sectors = BB_MAX_LEN;
7855                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7856                         sectors -= this_sectors;
7857                         s += this_sectors;
7858                 }
7859         }
7860
7861         bb->changed = 1;
7862         if (!acknowledged)
7863                 bb->unacked_exist = 1;
7864         write_sequnlock_irq(&bb->lock);
7865
7866         return rv;
7867 }
7868
7869 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7870                        int acknowledged)
7871 {
7872         int rv = md_set_badblocks(&rdev->badblocks,
7873                                   s + rdev->data_offset, sectors, acknowledged);
7874         if (rv) {
7875                 /* Make sure they get written out promptly */
7876                 sysfs_notify_dirent_safe(rdev->sysfs_state);
7877                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7878                 md_wakeup_thread(rdev->mddev->thread);
7879         }
7880         return rv;
7881 }
7882 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7883
7884 /*
7885  * Remove a range of bad blocks from the table.
7886  * This may involve extending the table if we spilt a region,
7887  * but it must not fail.  So if the table becomes full, we just
7888  * drop the remove request.
7889  */
7890 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7891 {
7892         u64 *p;
7893         int lo, hi;
7894         sector_t target = s + sectors;
7895         int rv = 0;
7896
7897         if (bb->shift > 0) {
7898                 /* When clearing we round the start up and the end down.
7899                  * This should not matter as the shift should align with
7900                  * the block size and no rounding should ever be needed.
7901                  * However it is better the think a block is bad when it
7902                  * isn't than to think a block is not bad when it is.
7903                  */
7904                 s += (1<<bb->shift) - 1;
7905                 s >>= bb->shift;
7906                 target >>= bb->shift;
7907                 sectors = target - s;
7908         }
7909
7910         write_seqlock_irq(&bb->lock);
7911
7912         p = bb->page;
7913         lo = 0;
7914         hi = bb->count;
7915         /* Find the last range that starts before 'target' */
7916         while (hi - lo > 1) {
7917                 int mid = (lo + hi) / 2;
7918                 sector_t a = BB_OFFSET(p[mid]);
7919                 if (a < target)
7920                         lo = mid;
7921                 else
7922                         hi = mid;
7923         }
7924         if (hi > lo) {
7925                 /* p[lo] is the last range that could overlap the
7926                  * current range.  Earlier ranges could also overlap,
7927                  * but only this one can overlap the end of the range.
7928                  */
7929                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7930                         /* Partial overlap, leave the tail of this range */
7931                         int ack = BB_ACK(p[lo]);
7932                         sector_t a = BB_OFFSET(p[lo]);
7933                         sector_t end = a + BB_LEN(p[lo]);
7934
7935                         if (a < s) {
7936                                 /* we need to split this range */
7937                                 if (bb->count >= MD_MAX_BADBLOCKS) {
7938                                         rv = 0;
7939                                         goto out;
7940                                 }
7941                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7942                                 bb->count++;
7943                                 p[lo] = BB_MAKE(a, s-a, ack);
7944                                 lo++;
7945                         }
7946                         p[lo] = BB_MAKE(target, end - target, ack);
7947                         /* there is no longer an overlap */
7948                         hi = lo;
7949                         lo--;
7950                 }
7951                 while (lo >= 0 &&
7952                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7953                         /* This range does overlap */
7954                         if (BB_OFFSET(p[lo]) < s) {
7955                                 /* Keep the early parts of this range. */
7956                                 int ack = BB_ACK(p[lo]);
7957                                 sector_t start = BB_OFFSET(p[lo]);
7958                                 p[lo] = BB_MAKE(start, s - start, ack);
7959                                 /* now low doesn't overlap, so.. */
7960                                 break;
7961                         }
7962                         lo--;
7963                 }
7964                 /* 'lo' is strictly before, 'hi' is strictly after,
7965                  * anything between needs to be discarded
7966                  */
7967                 if (hi - lo > 1) {
7968                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7969                         bb->count -= (hi - lo - 1);
7970                 }
7971         }
7972
7973         bb->changed = 1;
7974 out:
7975         write_sequnlock_irq(&bb->lock);
7976         return rv;
7977 }
7978
7979 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7980 {
7981         return md_clear_badblocks(&rdev->badblocks,
7982                                   s + rdev->data_offset,
7983                                   sectors);
7984 }
7985 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7986
7987 /*
7988  * Acknowledge all bad blocks in a list.
7989  * This only succeeds if ->changed is clear.  It is used by
7990  * in-kernel metadata updates
7991  */
7992 void md_ack_all_badblocks(struct badblocks *bb)
7993 {
7994         if (bb->page == NULL || bb->changed)
7995                 /* no point even trying */
7996                 return;
7997         write_seqlock_irq(&bb->lock);
7998
7999         if (bb->changed == 0) {
8000                 u64 *p = bb->page;
8001                 int i;
8002                 for (i = 0; i < bb->count ; i++) {
8003                         if (!BB_ACK(p[i])) {
8004                                 sector_t start = BB_OFFSET(p[i]);
8005                                 int len = BB_LEN(p[i]);
8006                                 p[i] = BB_MAKE(start, len, 1);
8007                         }
8008                 }
8009                 bb->unacked_exist = 0;
8010         }
8011         write_sequnlock_irq(&bb->lock);
8012 }
8013 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8014
8015 /* sysfs access to bad-blocks list.
8016  * We present two files.
8017  * 'bad-blocks' lists sector numbers and lengths of ranges that
8018  *    are recorded as bad.  The list is truncated to fit within
8019  *    the one-page limit of sysfs.
8020  *    Writing "sector length" to this file adds an acknowledged
8021  *    bad block list.
8022  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8023  *    been acknowledged.  Writing to this file adds bad blocks
8024  *    without acknowledging them.  This is largely for testing.
8025  */
8026
8027 static ssize_t
8028 badblocks_show(struct badblocks *bb, char *page, int unack)
8029 {
8030         size_t len;
8031         int i;
8032         u64 *p = bb->page;
8033         unsigned seq;
8034
8035         if (bb->shift < 0)
8036                 return 0;
8037
8038 retry:
8039         seq = read_seqbegin(&bb->lock);
8040
8041         len = 0;
8042         i = 0;
8043
8044         while (len < PAGE_SIZE && i < bb->count) {
8045                 sector_t s = BB_OFFSET(p[i]);
8046                 unsigned int length = BB_LEN(p[i]);
8047                 int ack = BB_ACK(p[i]);
8048                 i++;
8049
8050                 if (unack && ack)
8051                         continue;
8052
8053                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8054                                 (unsigned long long)s << bb->shift,
8055                                 length << bb->shift);
8056         }
8057         if (unack && len == 0)
8058                 bb->unacked_exist = 0;
8059
8060         if (read_seqretry(&bb->lock, seq))
8061                 goto retry;
8062
8063         return len;
8064 }
8065
8066 #define DO_DEBUG 1
8067
8068 static ssize_t
8069 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8070 {
8071         unsigned long long sector;
8072         int length;
8073         char newline;
8074 #ifdef DO_DEBUG
8075         /* Allow clearing via sysfs *only* for testing/debugging.
8076          * Normally only a successful write may clear a badblock
8077          */
8078         int clear = 0;
8079         if (page[0] == '-') {
8080                 clear = 1;
8081                 page++;
8082         }
8083 #endif /* DO_DEBUG */
8084
8085         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8086         case 3:
8087                 if (newline != '\n')
8088                         return -EINVAL;
8089         case 2:
8090                 if (length <= 0)
8091                         return -EINVAL;
8092                 break;
8093         default:
8094                 return -EINVAL;
8095         }
8096
8097 #ifdef DO_DEBUG
8098         if (clear) {
8099                 md_clear_badblocks(bb, sector, length);
8100                 return len;
8101         }
8102 #endif /* DO_DEBUG */
8103         if (md_set_badblocks(bb, sector, length, !unack))
8104                 return len;
8105         else
8106                 return -ENOSPC;
8107 }
8108
8109 static int md_notify_reboot(struct notifier_block *this,
8110                             unsigned long code, void *x)
8111 {
8112         struct list_head *tmp;
8113         struct mddev *mddev;
8114         int need_delay = 0;
8115
8116         for_each_mddev(mddev, tmp) {
8117                 if (mddev_trylock(mddev)) {
8118                         if (mddev->pers)
8119                                 __md_stop_writes(mddev);
8120                         mddev->safemode = 2;
8121                         mddev_unlock(mddev);
8122                 }
8123                 need_delay = 1;
8124         }
8125         /*
8126          * certain more exotic SCSI devices are known to be
8127          * volatile wrt too early system reboots. While the
8128          * right place to handle this issue is the given
8129          * driver, we do want to have a safe RAID driver ...
8130          */
8131         if (need_delay)
8132                 mdelay(1000*1);
8133
8134         return NOTIFY_DONE;
8135 }
8136
8137 static struct notifier_block md_notifier = {
8138         .notifier_call  = md_notify_reboot,
8139         .next           = NULL,
8140         .priority       = INT_MAX, /* before any real devices */
8141 };
8142
8143 static void md_geninit(void)
8144 {
8145         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8146
8147         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8148 }
8149
8150 static int __init md_init(void)
8151 {
8152         int ret = -ENOMEM;
8153
8154         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8155         if (!md_wq)
8156                 goto err_wq;
8157
8158         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8159         if (!md_misc_wq)
8160                 goto err_misc_wq;
8161
8162         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8163                 goto err_md;
8164
8165         if ((ret = register_blkdev(0, "mdp")) < 0)
8166                 goto err_mdp;
8167         mdp_major = ret;
8168
8169         blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8170                             md_probe, NULL, NULL);
8171         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8172                             md_probe, NULL, NULL);
8173
8174         register_reboot_notifier(&md_notifier);
8175         raid_table_header = register_sysctl_table(raid_root_table);
8176
8177         md_geninit();
8178         return 0;
8179
8180 err_mdp:
8181         unregister_blkdev(MD_MAJOR, "md");
8182 err_md:
8183         destroy_workqueue(md_misc_wq);
8184 err_misc_wq:
8185         destroy_workqueue(md_wq);
8186 err_wq:
8187         return ret;
8188 }
8189
8190 #ifndef MODULE
8191
8192 /*
8193  * Searches all registered partitions for autorun RAID arrays
8194  * at boot time.
8195  */
8196
8197 static LIST_HEAD(all_detected_devices);
8198 struct detected_devices_node {
8199         struct list_head list;
8200         dev_t dev;
8201 };
8202
8203 void md_autodetect_dev(dev_t dev)
8204 {
8205         struct detected_devices_node *node_detected_dev;
8206
8207         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8208         if (node_detected_dev) {
8209                 node_detected_dev->dev = dev;
8210                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8211         } else {
8212                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8213                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8214         }
8215 }
8216
8217
8218 static void autostart_arrays(int part)
8219 {
8220         struct md_rdev *rdev;
8221         struct detected_devices_node *node_detected_dev;
8222         dev_t dev;
8223         int i_scanned, i_passed;
8224
8225         i_scanned = 0;
8226         i_passed = 0;
8227
8228         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8229
8230         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8231                 i_scanned++;
8232                 node_detected_dev = list_entry(all_detected_devices.next,
8233                                         struct detected_devices_node, list);
8234                 list_del(&node_detected_dev->list);
8235                 dev = node_detected_dev->dev;
8236                 kfree(node_detected_dev);
8237                 rdev = md_import_device(dev,0, 90);
8238                 if (IS_ERR(rdev))
8239                         continue;
8240
8241                 if (test_bit(Faulty, &rdev->flags)) {
8242                         MD_BUG();
8243                         continue;
8244                 }
8245                 set_bit(AutoDetected, &rdev->flags);
8246                 list_add(&rdev->same_set, &pending_raid_disks);
8247                 i_passed++;
8248         }
8249
8250         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8251                                                 i_scanned, i_passed);
8252
8253         autorun_devices(part);
8254 }
8255
8256 #endif /* !MODULE */
8257
8258 static __exit void md_exit(void)
8259 {
8260         struct mddev *mddev;
8261         struct list_head *tmp;
8262
8263         blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8264         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8265
8266         unregister_blkdev(MD_MAJOR,"md");
8267         unregister_blkdev(mdp_major, "mdp");
8268         unregister_reboot_notifier(&md_notifier);
8269         unregister_sysctl_table(raid_table_header);
8270         remove_proc_entry("mdstat", NULL);
8271         for_each_mddev(mddev, tmp) {
8272                 export_array(mddev);
8273                 mddev->hold_active = 0;
8274         }
8275         destroy_workqueue(md_misc_wq);
8276         destroy_workqueue(md_wq);
8277 }
8278
8279 subsys_initcall(md_init);
8280 module_exit(md_exit)
8281
8282 static int get_ro(char *buffer, struct kernel_param *kp)
8283 {
8284         return sprintf(buffer, "%d", start_readonly);
8285 }
8286 static int set_ro(const char *val, struct kernel_param *kp)
8287 {
8288         char *e;
8289         int num = simple_strtoul(val, &e, 10);
8290         if (*val && (*e == '\0' || *e == '\n')) {
8291                 start_readonly = num;
8292                 return 0;
8293         }
8294         return -EINVAL;
8295 }
8296
8297 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8298 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8299
8300 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8301
8302 EXPORT_SYMBOL(register_md_personality);
8303 EXPORT_SYMBOL(unregister_md_personality);
8304 EXPORT_SYMBOL(md_error);
8305 EXPORT_SYMBOL(md_done_sync);
8306 EXPORT_SYMBOL(md_write_start);
8307 EXPORT_SYMBOL(md_write_end);
8308 EXPORT_SYMBOL(md_register_thread);
8309 EXPORT_SYMBOL(md_unregister_thread);
8310 EXPORT_SYMBOL(md_wakeup_thread);
8311 EXPORT_SYMBOL(md_check_recovery);
8312 MODULE_LICENSE("GPL");
8313 MODULE_DESCRIPTION("MD RAID framework");
8314 MODULE_ALIAS("md");
8315 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);