]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
md/raid10: avoid reading from known bad blocks - part 1
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include <linux/ratelimit.h>
26 #include "md.h"
27 #include "raid10.h"
28 #include "raid0.h"
29 #include "bitmap.h"
30
31 /*
32  * RAID10 provides a combination of RAID0 and RAID1 functionality.
33  * The layout of data is defined by
34  *    chunk_size
35  *    raid_disks
36  *    near_copies (stored in low byte of layout)
37  *    far_copies (stored in second byte of layout)
38  *    far_offset (stored in bit 16 of layout )
39  *
40  * The data to be stored is divided into chunks using chunksize.
41  * Each device is divided into far_copies sections.
42  * In each section, chunks are laid out in a style similar to raid0, but
43  * near_copies copies of each chunk is stored (each on a different drive).
44  * The starting device for each section is offset near_copies from the starting
45  * device of the previous section.
46  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
47  * drive.
48  * near_copies and far_copies must be at least one, and their product is at most
49  * raid_disks.
50  *
51  * If far_offset is true, then the far_copies are handled a bit differently.
52  * The copies are still in different stripes, but instead of be very far apart
53  * on disk, there are adjacent stripes.
54  */
55
56 /*
57  * Number of guaranteed r10bios in case of extreme VM load:
58  */
59 #define NR_RAID10_BIOS 256
60
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66         conf_t *conf = data;
67         int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69         /* allocate a r10bio with room for raid_disks entries in the bios array */
70         return kzalloc(size, gfp_flags);
71 }
72
73 static void r10bio_pool_free(void *r10_bio, void *data)
74 {
75         kfree(r10_bio);
76 }
77
78 /* Maximum size of each resync request */
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
81 /* amount of memory to reserve for resync requests */
82 #define RESYNC_WINDOW (1024*1024)
83 /* maximum number of concurrent requests, memory permitting */
84 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
85
86 /*
87  * When performing a resync, we need to read and compare, so
88  * we need as many pages are there are copies.
89  * When performing a recovery, we need 2 bios, one for read,
90  * one for write (we recover only one drive per r10buf)
91  *
92  */
93 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 {
95         conf_t *conf = data;
96         struct page *page;
97         r10bio_t *r10_bio;
98         struct bio *bio;
99         int i, j;
100         int nalloc;
101
102         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
103         if (!r10_bio)
104                 return NULL;
105
106         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107                 nalloc = conf->copies; /* resync */
108         else
109                 nalloc = 2; /* recovery */
110
111         /*
112          * Allocate bios.
113          */
114         for (j = nalloc ; j-- ; ) {
115                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
116                 if (!bio)
117                         goto out_free_bio;
118                 r10_bio->devs[j].bio = bio;
119         }
120         /*
121          * Allocate RESYNC_PAGES data pages and attach them
122          * where needed.
123          */
124         for (j = 0 ; j < nalloc; j++) {
125                 bio = r10_bio->devs[j].bio;
126                 for (i = 0; i < RESYNC_PAGES; i++) {
127                         if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128                                                 &conf->mddev->recovery)) {
129                                 /* we can share bv_page's during recovery */
130                                 struct bio *rbio = r10_bio->devs[0].bio;
131                                 page = rbio->bi_io_vec[i].bv_page;
132                                 get_page(page);
133                         } else
134                                 page = alloc_page(gfp_flags);
135                         if (unlikely(!page))
136                                 goto out_free_pages;
137
138                         bio->bi_io_vec[i].bv_page = page;
139                 }
140         }
141
142         return r10_bio;
143
144 out_free_pages:
145         for ( ; i > 0 ; i--)
146                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147         while (j--)
148                 for (i = 0; i < RESYNC_PAGES ; i++)
149                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150         j = -1;
151 out_free_bio:
152         while ( ++j < nalloc )
153                 bio_put(r10_bio->devs[j].bio);
154         r10bio_pool_free(r10_bio, conf);
155         return NULL;
156 }
157
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160         int i;
161         conf_t *conf = data;
162         r10bio_t *r10bio = __r10_bio;
163         int j;
164
165         for (j=0; j < conf->copies; j++) {
166                 struct bio *bio = r10bio->devs[j].bio;
167                 if (bio) {
168                         for (i = 0; i < RESYNC_PAGES; i++) {
169                                 safe_put_page(bio->bi_io_vec[i].bv_page);
170                                 bio->bi_io_vec[i].bv_page = NULL;
171                         }
172                         bio_put(bio);
173                 }
174         }
175         r10bio_pool_free(r10bio, conf);
176 }
177
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180         int i;
181
182         for (i = 0; i < conf->copies; i++) {
183                 struct bio **bio = & r10_bio->devs[i].bio;
184                 if (*bio && *bio != IO_BLOCKED)
185                         bio_put(*bio);
186                 *bio = NULL;
187         }
188 }
189
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192         conf_t *conf = r10_bio->mddev->private;
193
194         put_all_bios(conf, r10_bio);
195         mempool_free(r10_bio, conf->r10bio_pool);
196 }
197
198 static void put_buf(r10bio_t *r10_bio)
199 {
200         conf_t *conf = r10_bio->mddev->private;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         lower_barrier(conf);
205 }
206
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209         unsigned long flags;
210         mddev_t *mddev = r10_bio->mddev;
211         conf_t *conf = mddev->private;
212
213         spin_lock_irqsave(&conf->device_lock, flags);
214         list_add(&r10_bio->retry_list, &conf->retry_list);
215         conf->nr_queued ++;
216         spin_unlock_irqrestore(&conf->device_lock, flags);
217
218         /* wake up frozen array... */
219         wake_up(&conf->wait_barrier);
220
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r10bio_t *r10_bio)
230 {
231         struct bio *bio = r10_bio->master_bio;
232         int done;
233         conf_t *conf = r10_bio->mddev->private;
234
235         if (bio->bi_phys_segments) {
236                 unsigned long flags;
237                 spin_lock_irqsave(&conf->device_lock, flags);
238                 bio->bi_phys_segments--;
239                 done = (bio->bi_phys_segments == 0);
240                 spin_unlock_irqrestore(&conf->device_lock, flags);
241         } else
242                 done = 1;
243         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245         if (done) {
246                 bio_endio(bio, 0);
247                 /*
248                  * Wake up any possible resync thread that waits for the device
249                  * to go idle.
250                  */
251                 allow_barrier(conf);
252         }
253         free_r10bio(r10_bio);
254 }
255
256 /*
257  * Update disk head position estimator based on IRQ completion info.
258  */
259 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260 {
261         conf_t *conf = r10_bio->mddev->private;
262
263         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264                 r10_bio->devs[slot].addr + (r10_bio->sectors);
265 }
266
267 /*
268  * Find the disk number which triggered given bio
269  */
270 static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio, struct bio *bio)
271 {
272         int slot;
273
274         for (slot = 0; slot < conf->copies; slot++)
275                 if (r10_bio->devs[slot].bio == bio)
276                         break;
277
278         BUG_ON(slot == conf->copies);
279         update_head_pos(slot, r10_bio);
280
281         return r10_bio->devs[slot].devnum;
282 }
283
284 static void raid10_end_read_request(struct bio *bio, int error)
285 {
286         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
287         r10bio_t *r10_bio = bio->bi_private;
288         int slot, dev;
289         conf_t *conf = r10_bio->mddev->private;
290
291
292         slot = r10_bio->read_slot;
293         dev = r10_bio->devs[slot].devnum;
294         /*
295          * this branch is our 'one mirror IO has finished' event handler:
296          */
297         update_head_pos(slot, r10_bio);
298
299         if (uptodate) {
300                 /*
301                  * Set R10BIO_Uptodate in our master bio, so that
302                  * we will return a good error code to the higher
303                  * levels even if IO on some other mirrored buffer fails.
304                  *
305                  * The 'master' represents the composite IO operation to
306                  * user-side. So if something waits for IO, then it will
307                  * wait for the 'master' bio.
308                  */
309                 set_bit(R10BIO_Uptodate, &r10_bio->state);
310                 raid_end_bio_io(r10_bio);
311                 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
312         } else {
313                 /*
314                  * oops, read error - keep the refcount on the rdev
315                  */
316                 char b[BDEVNAME_SIZE];
317                 printk_ratelimited(KERN_ERR
318                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
319                                    mdname(conf->mddev),
320                                    bdevname(conf->mirrors[dev].rdev->bdev, b),
321                                    (unsigned long long)r10_bio->sector);
322                 set_bit(R10BIO_ReadError, &r10_bio->state);
323                 reschedule_retry(r10_bio);
324         }
325 }
326
327 static void raid10_end_write_request(struct bio *bio, int error)
328 {
329         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
330         r10bio_t *r10_bio = bio->bi_private;
331         int dev;
332         conf_t *conf = r10_bio->mddev->private;
333
334         dev = find_bio_disk(conf, r10_bio, bio);
335
336         /*
337          * this branch is our 'one mirror IO has finished' event handler:
338          */
339         if (!uptodate) {
340                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
341                 /* an I/O failed, we can't clear the bitmap */
342                 set_bit(R10BIO_Degraded, &r10_bio->state);
343         } else
344                 /*
345                  * Set R10BIO_Uptodate in our master bio, so that
346                  * we will return a good error code for to the higher
347                  * levels even if IO on some other mirrored buffer fails.
348                  *
349                  * The 'master' represents the composite IO operation to
350                  * user-side. So if something waits for IO, then it will
351                  * wait for the 'master' bio.
352                  */
353                 set_bit(R10BIO_Uptodate, &r10_bio->state);
354
355         /*
356          *
357          * Let's see if all mirrored write operations have finished
358          * already.
359          */
360         if (atomic_dec_and_test(&r10_bio->remaining)) {
361                 /* clear the bitmap if all writes complete successfully */
362                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
363                                 r10_bio->sectors,
364                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
365                                 0);
366                 md_write_end(r10_bio->mddev);
367                 raid_end_bio_io(r10_bio);
368         }
369
370         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
371 }
372
373
374 /*
375  * RAID10 layout manager
376  * As well as the chunksize and raid_disks count, there are two
377  * parameters: near_copies and far_copies.
378  * near_copies * far_copies must be <= raid_disks.
379  * Normally one of these will be 1.
380  * If both are 1, we get raid0.
381  * If near_copies == raid_disks, we get raid1.
382  *
383  * Chunks are laid out in raid0 style with near_copies copies of the
384  * first chunk, followed by near_copies copies of the next chunk and
385  * so on.
386  * If far_copies > 1, then after 1/far_copies of the array has been assigned
387  * as described above, we start again with a device offset of near_copies.
388  * So we effectively have another copy of the whole array further down all
389  * the drives, but with blocks on different drives.
390  * With this layout, and block is never stored twice on the one device.
391  *
392  * raid10_find_phys finds the sector offset of a given virtual sector
393  * on each device that it is on.
394  *
395  * raid10_find_virt does the reverse mapping, from a device and a
396  * sector offset to a virtual address
397  */
398
399 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
400 {
401         int n,f;
402         sector_t sector;
403         sector_t chunk;
404         sector_t stripe;
405         int dev;
406
407         int slot = 0;
408
409         /* now calculate first sector/dev */
410         chunk = r10bio->sector >> conf->chunk_shift;
411         sector = r10bio->sector & conf->chunk_mask;
412
413         chunk *= conf->near_copies;
414         stripe = chunk;
415         dev = sector_div(stripe, conf->raid_disks);
416         if (conf->far_offset)
417                 stripe *= conf->far_copies;
418
419         sector += stripe << conf->chunk_shift;
420
421         /* and calculate all the others */
422         for (n=0; n < conf->near_copies; n++) {
423                 int d = dev;
424                 sector_t s = sector;
425                 r10bio->devs[slot].addr = sector;
426                 r10bio->devs[slot].devnum = d;
427                 slot++;
428
429                 for (f = 1; f < conf->far_copies; f++) {
430                         d += conf->near_copies;
431                         if (d >= conf->raid_disks)
432                                 d -= conf->raid_disks;
433                         s += conf->stride;
434                         r10bio->devs[slot].devnum = d;
435                         r10bio->devs[slot].addr = s;
436                         slot++;
437                 }
438                 dev++;
439                 if (dev >= conf->raid_disks) {
440                         dev = 0;
441                         sector += (conf->chunk_mask + 1);
442                 }
443         }
444         BUG_ON(slot != conf->copies);
445 }
446
447 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
448 {
449         sector_t offset, chunk, vchunk;
450
451         offset = sector & conf->chunk_mask;
452         if (conf->far_offset) {
453                 int fc;
454                 chunk = sector >> conf->chunk_shift;
455                 fc = sector_div(chunk, conf->far_copies);
456                 dev -= fc * conf->near_copies;
457                 if (dev < 0)
458                         dev += conf->raid_disks;
459         } else {
460                 while (sector >= conf->stride) {
461                         sector -= conf->stride;
462                         if (dev < conf->near_copies)
463                                 dev += conf->raid_disks - conf->near_copies;
464                         else
465                                 dev -= conf->near_copies;
466                 }
467                 chunk = sector >> conf->chunk_shift;
468         }
469         vchunk = chunk * conf->raid_disks + dev;
470         sector_div(vchunk, conf->near_copies);
471         return (vchunk << conf->chunk_shift) + offset;
472 }
473
474 /**
475  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
476  *      @q: request queue
477  *      @bvm: properties of new bio
478  *      @biovec: the request that could be merged to it.
479  *
480  *      Return amount of bytes we can accept at this offset
481  *      If near_copies == raid_disk, there are no striping issues,
482  *      but in that case, the function isn't called at all.
483  */
484 static int raid10_mergeable_bvec(struct request_queue *q,
485                                  struct bvec_merge_data *bvm,
486                                  struct bio_vec *biovec)
487 {
488         mddev_t *mddev = q->queuedata;
489         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
490         int max;
491         unsigned int chunk_sectors = mddev->chunk_sectors;
492         unsigned int bio_sectors = bvm->bi_size >> 9;
493
494         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
495         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
496         if (max <= biovec->bv_len && bio_sectors == 0)
497                 return biovec->bv_len;
498         else
499                 return max;
500 }
501
502 /*
503  * This routine returns the disk from which the requested read should
504  * be done. There is a per-array 'next expected sequential IO' sector
505  * number - if this matches on the next IO then we use the last disk.
506  * There is also a per-disk 'last know head position' sector that is
507  * maintained from IRQ contexts, both the normal and the resync IO
508  * completion handlers update this position correctly. If there is no
509  * perfect sequential match then we pick the disk whose head is closest.
510  *
511  * If there are 2 mirrors in the same 2 devices, performance degrades
512  * because position is mirror, not device based.
513  *
514  * The rdev for the device selected will have nr_pending incremented.
515  */
516
517 /*
518  * FIXME: possibly should rethink readbalancing and do it differently
519  * depending on near_copies / far_copies geometry.
520  */
521 static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
522 {
523         const sector_t this_sector = r10_bio->sector;
524         int disk, slot;
525         int sectors = r10_bio->sectors;
526         int best_good_sectors;
527         sector_t new_distance, best_dist;
528         mdk_rdev_t *rdev;
529         int do_balance;
530         int best_slot;
531
532         raid10_find_phys(conf, r10_bio);
533         rcu_read_lock();
534 retry:
535         sectors = r10_bio->sectors;
536         best_slot = -1;
537         best_dist = MaxSector;
538         best_good_sectors = 0;
539         do_balance = 1;
540         /*
541          * Check if we can balance. We can balance on the whole
542          * device if no resync is going on (recovery is ok), or below
543          * the resync window. We take the first readable disk when
544          * above the resync window.
545          */
546         if (conf->mddev->recovery_cp < MaxSector
547             && (this_sector + sectors >= conf->next_resync))
548                 do_balance = 0;
549
550         for (slot = 0; slot < conf->copies ; slot++) {
551                 sector_t first_bad;
552                 int bad_sectors;
553                 sector_t dev_sector;
554
555                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
556                         continue;
557                 disk = r10_bio->devs[slot].devnum;
558                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
559                 if (rdev == NULL)
560                         continue;
561                 if (!test_bit(In_sync, &rdev->flags))
562                         continue;
563
564                 dev_sector = r10_bio->devs[slot].addr;
565                 if (is_badblock(rdev, dev_sector, sectors,
566                                 &first_bad, &bad_sectors)) {
567                         if (best_dist < MaxSector)
568                                 /* Already have a better slot */
569                                 continue;
570                         if (first_bad <= dev_sector) {
571                                 /* Cannot read here.  If this is the
572                                  * 'primary' device, then we must not read
573                                  * beyond 'bad_sectors' from another device.
574                                  */
575                                 bad_sectors -= (dev_sector - first_bad);
576                                 if (!do_balance && sectors > bad_sectors)
577                                         sectors = bad_sectors;
578                                 if (best_good_sectors > sectors)
579                                         best_good_sectors = sectors;
580                         } else {
581                                 sector_t good_sectors =
582                                         first_bad - dev_sector;
583                                 if (good_sectors > best_good_sectors) {
584                                         best_good_sectors = good_sectors;
585                                         best_slot = slot;
586                                 }
587                                 if (!do_balance)
588                                         /* Must read from here */
589                                         break;
590                         }
591                         continue;
592                 } else
593                         best_good_sectors = sectors;
594
595                 if (!do_balance)
596                         break;
597
598                 /* This optimisation is debatable, and completely destroys
599                  * sequential read speed for 'far copies' arrays.  So only
600                  * keep it for 'near' arrays, and review those later.
601                  */
602                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
603                         break;
604
605                 /* for far > 1 always use the lowest address */
606                 if (conf->far_copies > 1)
607                         new_distance = r10_bio->devs[slot].addr;
608                 else
609                         new_distance = abs(r10_bio->devs[slot].addr -
610                                            conf->mirrors[disk].head_position);
611                 if (new_distance < best_dist) {
612                         best_dist = new_distance;
613                         best_slot = slot;
614                 }
615         }
616         if (slot == conf->copies)
617                 slot = best_slot;
618
619         if (slot >= 0) {
620                 disk = r10_bio->devs[slot].devnum;
621                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
622                 if (!rdev)
623                         goto retry;
624                 atomic_inc(&rdev->nr_pending);
625                 if (test_bit(Faulty, &rdev->flags)) {
626                         /* Cannot risk returning a device that failed
627                          * before we inc'ed nr_pending
628                          */
629                         rdev_dec_pending(rdev, conf->mddev);
630                         goto retry;
631                 }
632                 r10_bio->read_slot = slot;
633         } else
634                 disk = -1;
635         rcu_read_unlock();
636         *max_sectors = best_good_sectors;
637
638         return disk;
639 }
640
641 static int raid10_congested(void *data, int bits)
642 {
643         mddev_t *mddev = data;
644         conf_t *conf = mddev->private;
645         int i, ret = 0;
646
647         if (mddev_congested(mddev, bits))
648                 return 1;
649         rcu_read_lock();
650         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
651                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
652                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
653                         struct request_queue *q = bdev_get_queue(rdev->bdev);
654
655                         ret |= bdi_congested(&q->backing_dev_info, bits);
656                 }
657         }
658         rcu_read_unlock();
659         return ret;
660 }
661
662 static void flush_pending_writes(conf_t *conf)
663 {
664         /* Any writes that have been queued but are awaiting
665          * bitmap updates get flushed here.
666          */
667         spin_lock_irq(&conf->device_lock);
668
669         if (conf->pending_bio_list.head) {
670                 struct bio *bio;
671                 bio = bio_list_get(&conf->pending_bio_list);
672                 spin_unlock_irq(&conf->device_lock);
673                 /* flush any pending bitmap writes to disk
674                  * before proceeding w/ I/O */
675                 bitmap_unplug(conf->mddev->bitmap);
676
677                 while (bio) { /* submit pending writes */
678                         struct bio *next = bio->bi_next;
679                         bio->bi_next = NULL;
680                         generic_make_request(bio);
681                         bio = next;
682                 }
683         } else
684                 spin_unlock_irq(&conf->device_lock);
685 }
686
687 /* Barriers....
688  * Sometimes we need to suspend IO while we do something else,
689  * either some resync/recovery, or reconfigure the array.
690  * To do this we raise a 'barrier'.
691  * The 'barrier' is a counter that can be raised multiple times
692  * to count how many activities are happening which preclude
693  * normal IO.
694  * We can only raise the barrier if there is no pending IO.
695  * i.e. if nr_pending == 0.
696  * We choose only to raise the barrier if no-one is waiting for the
697  * barrier to go down.  This means that as soon as an IO request
698  * is ready, no other operations which require a barrier will start
699  * until the IO request has had a chance.
700  *
701  * So: regular IO calls 'wait_barrier'.  When that returns there
702  *    is no backgroup IO happening,  It must arrange to call
703  *    allow_barrier when it has finished its IO.
704  * backgroup IO calls must call raise_barrier.  Once that returns
705  *    there is no normal IO happeing.  It must arrange to call
706  *    lower_barrier when the particular background IO completes.
707  */
708
709 static void raise_barrier(conf_t *conf, int force)
710 {
711         BUG_ON(force && !conf->barrier);
712         spin_lock_irq(&conf->resync_lock);
713
714         /* Wait until no block IO is waiting (unless 'force') */
715         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
716                             conf->resync_lock, );
717
718         /* block any new IO from starting */
719         conf->barrier++;
720
721         /* Now wait for all pending IO to complete */
722         wait_event_lock_irq(conf->wait_barrier,
723                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
724                             conf->resync_lock, );
725
726         spin_unlock_irq(&conf->resync_lock);
727 }
728
729 static void lower_barrier(conf_t *conf)
730 {
731         unsigned long flags;
732         spin_lock_irqsave(&conf->resync_lock, flags);
733         conf->barrier--;
734         spin_unlock_irqrestore(&conf->resync_lock, flags);
735         wake_up(&conf->wait_barrier);
736 }
737
738 static void wait_barrier(conf_t *conf)
739 {
740         spin_lock_irq(&conf->resync_lock);
741         if (conf->barrier) {
742                 conf->nr_waiting++;
743                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
744                                     conf->resync_lock,
745                                     );
746                 conf->nr_waiting--;
747         }
748         conf->nr_pending++;
749         spin_unlock_irq(&conf->resync_lock);
750 }
751
752 static void allow_barrier(conf_t *conf)
753 {
754         unsigned long flags;
755         spin_lock_irqsave(&conf->resync_lock, flags);
756         conf->nr_pending--;
757         spin_unlock_irqrestore(&conf->resync_lock, flags);
758         wake_up(&conf->wait_barrier);
759 }
760
761 static void freeze_array(conf_t *conf)
762 {
763         /* stop syncio and normal IO and wait for everything to
764          * go quiet.
765          * We increment barrier and nr_waiting, and then
766          * wait until nr_pending match nr_queued+1
767          * This is called in the context of one normal IO request
768          * that has failed. Thus any sync request that might be pending
769          * will be blocked by nr_pending, and we need to wait for
770          * pending IO requests to complete or be queued for re-try.
771          * Thus the number queued (nr_queued) plus this request (1)
772          * must match the number of pending IOs (nr_pending) before
773          * we continue.
774          */
775         spin_lock_irq(&conf->resync_lock);
776         conf->barrier++;
777         conf->nr_waiting++;
778         wait_event_lock_irq(conf->wait_barrier,
779                             conf->nr_pending == conf->nr_queued+1,
780                             conf->resync_lock,
781                             flush_pending_writes(conf));
782
783         spin_unlock_irq(&conf->resync_lock);
784 }
785
786 static void unfreeze_array(conf_t *conf)
787 {
788         /* reverse the effect of the freeze */
789         spin_lock_irq(&conf->resync_lock);
790         conf->barrier--;
791         conf->nr_waiting--;
792         wake_up(&conf->wait_barrier);
793         spin_unlock_irq(&conf->resync_lock);
794 }
795
796 static int make_request(mddev_t *mddev, struct bio * bio)
797 {
798         conf_t *conf = mddev->private;
799         mirror_info_t *mirror;
800         r10bio_t *r10_bio;
801         struct bio *read_bio;
802         int i;
803         int chunk_sects = conf->chunk_mask + 1;
804         const int rw = bio_data_dir(bio);
805         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
806         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
807         unsigned long flags;
808         mdk_rdev_t *blocked_rdev;
809         int plugged;
810
811         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
812                 md_flush_request(mddev, bio);
813                 return 0;
814         }
815
816         /* If this request crosses a chunk boundary, we need to
817          * split it.  This will only happen for 1 PAGE (or less) requests.
818          */
819         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
820                       > chunk_sects &&
821                     conf->near_copies < conf->raid_disks)) {
822                 struct bio_pair *bp;
823                 /* Sanity check -- queue functions should prevent this happening */
824                 if (bio->bi_vcnt != 1 ||
825                     bio->bi_idx != 0)
826                         goto bad_map;
827                 /* This is a one page bio that upper layers
828                  * refuse to split for us, so we need to split it.
829                  */
830                 bp = bio_split(bio,
831                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
832
833                 /* Each of these 'make_request' calls will call 'wait_barrier'.
834                  * If the first succeeds but the second blocks due to the resync
835                  * thread raising the barrier, we will deadlock because the
836                  * IO to the underlying device will be queued in generic_make_request
837                  * and will never complete, so will never reduce nr_pending.
838                  * So increment nr_waiting here so no new raise_barriers will
839                  * succeed, and so the second wait_barrier cannot block.
840                  */
841                 spin_lock_irq(&conf->resync_lock);
842                 conf->nr_waiting++;
843                 spin_unlock_irq(&conf->resync_lock);
844
845                 if (make_request(mddev, &bp->bio1))
846                         generic_make_request(&bp->bio1);
847                 if (make_request(mddev, &bp->bio2))
848                         generic_make_request(&bp->bio2);
849
850                 spin_lock_irq(&conf->resync_lock);
851                 conf->nr_waiting--;
852                 wake_up(&conf->wait_barrier);
853                 spin_unlock_irq(&conf->resync_lock);
854
855                 bio_pair_release(bp);
856                 return 0;
857         bad_map:
858                 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
859                        " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
860                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
861
862                 bio_io_error(bio);
863                 return 0;
864         }
865
866         md_write_start(mddev, bio);
867
868         /*
869          * Register the new request and wait if the reconstruction
870          * thread has put up a bar for new requests.
871          * Continue immediately if no resync is active currently.
872          */
873         wait_barrier(conf);
874
875         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
876
877         r10_bio->master_bio = bio;
878         r10_bio->sectors = bio->bi_size >> 9;
879
880         r10_bio->mddev = mddev;
881         r10_bio->sector = bio->bi_sector;
882         r10_bio->state = 0;
883
884         /* We might need to issue multiple reads to different
885          * devices if there are bad blocks around, so we keep
886          * track of the number of reads in bio->bi_phys_segments.
887          * If this is 0, there is only one r10_bio and no locking
888          * will be needed when the request completes.  If it is
889          * non-zero, then it is the number of not-completed requests.
890          */
891         bio->bi_phys_segments = 0;
892         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
893
894         if (rw == READ) {
895                 /*
896                  * read balancing logic:
897                  */
898                 int max_sectors;
899                 int disk;
900                 int slot;
901
902 read_again:
903                 disk = read_balance(conf, r10_bio, &max_sectors);
904                 slot = r10_bio->read_slot;
905                 if (disk < 0) {
906                         raid_end_bio_io(r10_bio);
907                         return 0;
908                 }
909                 mirror = conf->mirrors + disk;
910
911                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
912                 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
913                             max_sectors);
914
915                 r10_bio->devs[slot].bio = read_bio;
916
917                 read_bio->bi_sector = r10_bio->devs[slot].addr +
918                         mirror->rdev->data_offset;
919                 read_bio->bi_bdev = mirror->rdev->bdev;
920                 read_bio->bi_end_io = raid10_end_read_request;
921                 read_bio->bi_rw = READ | do_sync;
922                 read_bio->bi_private = r10_bio;
923
924                 if (max_sectors < r10_bio->sectors) {
925                         /* Could not read all from this device, so we will
926                          * need another r10_bio.
927                          */
928                         int sectors_handled;
929
930                         sectors_handled = (r10_bio->sectors + max_sectors
931                                            - bio->bi_sector);
932                         r10_bio->sectors = max_sectors;
933                         spin_lock_irq(&conf->device_lock);
934                         if (bio->bi_phys_segments == 0)
935                                 bio->bi_phys_segments = 2;
936                         else
937                                 bio->bi_phys_segments++;
938                         spin_unlock(&conf->device_lock);
939                         /* Cannot call generic_make_request directly
940                          * as that will be queued in __generic_make_request
941                          * and subsequent mempool_alloc might block
942                          * waiting for it.  so hand bio over to raid10d.
943                          */
944                         reschedule_retry(r10_bio);
945
946                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
947
948                         r10_bio->master_bio = bio;
949                         r10_bio->sectors = ((bio->bi_size >> 9)
950                                             - sectors_handled);
951                         r10_bio->state = 0;
952                         r10_bio->mddev = mddev;
953                         r10_bio->sector = bio->bi_sector + sectors_handled;
954                         goto read_again;
955                 } else
956                         generic_make_request(read_bio);
957                 return 0;
958         }
959
960         /*
961          * WRITE:
962          */
963         /* first select target devices under rcu_lock and
964          * inc refcount on their rdev.  Record them by setting
965          * bios[x] to bio
966          */
967         plugged = mddev_check_plugged(mddev);
968
969         raid10_find_phys(conf, r10_bio);
970  retry_write:
971         blocked_rdev = NULL;
972         rcu_read_lock();
973         for (i = 0;  i < conf->copies; i++) {
974                 int d = r10_bio->devs[i].devnum;
975                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
976                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
977                         atomic_inc(&rdev->nr_pending);
978                         blocked_rdev = rdev;
979                         break;
980                 }
981                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
982                         atomic_inc(&rdev->nr_pending);
983                         r10_bio->devs[i].bio = bio;
984                 } else {
985                         r10_bio->devs[i].bio = NULL;
986                         set_bit(R10BIO_Degraded, &r10_bio->state);
987                 }
988         }
989         rcu_read_unlock();
990
991         if (unlikely(blocked_rdev)) {
992                 /* Have to wait for this device to get unblocked, then retry */
993                 int j;
994                 int d;
995
996                 for (j = 0; j < i; j++)
997                         if (r10_bio->devs[j].bio) {
998                                 d = r10_bio->devs[j].devnum;
999                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1000                         }
1001                 allow_barrier(conf);
1002                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1003                 wait_barrier(conf);
1004                 goto retry_write;
1005         }
1006
1007         atomic_set(&r10_bio->remaining, 1);
1008         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
1009
1010         for (i = 0; i < conf->copies; i++) {
1011                 struct bio *mbio;
1012                 int d = r10_bio->devs[i].devnum;
1013                 if (!r10_bio->devs[i].bio)
1014                         continue;
1015
1016                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1017                 r10_bio->devs[i].bio = mbio;
1018
1019                 mbio->bi_sector = r10_bio->devs[i].addr+
1020                         conf->mirrors[d].rdev->data_offset;
1021                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1022                 mbio->bi_end_io = raid10_end_write_request;
1023                 mbio->bi_rw = WRITE | do_sync | do_fua;
1024                 mbio->bi_private = r10_bio;
1025
1026                 atomic_inc(&r10_bio->remaining);
1027                 spin_lock_irqsave(&conf->device_lock, flags);
1028                 bio_list_add(&conf->pending_bio_list, mbio);
1029                 spin_unlock_irqrestore(&conf->device_lock, flags);
1030         }
1031
1032         if (atomic_dec_and_test(&r10_bio->remaining)) {
1033                 /* This matches the end of raid10_end_write_request() */
1034                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1035                                 r10_bio->sectors,
1036                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
1037                                 0);
1038                 md_write_end(mddev);
1039                 raid_end_bio_io(r10_bio);
1040         }
1041
1042         /* In case raid10d snuck in to freeze_array */
1043         wake_up(&conf->wait_barrier);
1044
1045         if (do_sync || !mddev->bitmap || !plugged)
1046                 md_wakeup_thread(mddev->thread);
1047         return 0;
1048 }
1049
1050 static void status(struct seq_file *seq, mddev_t *mddev)
1051 {
1052         conf_t *conf = mddev->private;
1053         int i;
1054
1055         if (conf->near_copies < conf->raid_disks)
1056                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1057         if (conf->near_copies > 1)
1058                 seq_printf(seq, " %d near-copies", conf->near_copies);
1059         if (conf->far_copies > 1) {
1060                 if (conf->far_offset)
1061                         seq_printf(seq, " %d offset-copies", conf->far_copies);
1062                 else
1063                         seq_printf(seq, " %d far-copies", conf->far_copies);
1064         }
1065         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1066                                         conf->raid_disks - mddev->degraded);
1067         for (i = 0; i < conf->raid_disks; i++)
1068                 seq_printf(seq, "%s",
1069                               conf->mirrors[i].rdev &&
1070                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1071         seq_printf(seq, "]");
1072 }
1073
1074 /* check if there are enough drives for
1075  * every block to appear on atleast one.
1076  * Don't consider the device numbered 'ignore'
1077  * as we might be about to remove it.
1078  */
1079 static int enough(conf_t *conf, int ignore)
1080 {
1081         int first = 0;
1082
1083         do {
1084                 int n = conf->copies;
1085                 int cnt = 0;
1086                 while (n--) {
1087                         if (conf->mirrors[first].rdev &&
1088                             first != ignore)
1089                                 cnt++;
1090                         first = (first+1) % conf->raid_disks;
1091                 }
1092                 if (cnt == 0)
1093                         return 0;
1094         } while (first != 0);
1095         return 1;
1096 }
1097
1098 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1099 {
1100         char b[BDEVNAME_SIZE];
1101         conf_t *conf = mddev->private;
1102
1103         /*
1104          * If it is not operational, then we have already marked it as dead
1105          * else if it is the last working disks, ignore the error, let the
1106          * next level up know.
1107          * else mark the drive as failed
1108          */
1109         if (test_bit(In_sync, &rdev->flags)
1110             && !enough(conf, rdev->raid_disk))
1111                 /*
1112                  * Don't fail the drive, just return an IO error.
1113                  */
1114                 return;
1115         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1116                 unsigned long flags;
1117                 spin_lock_irqsave(&conf->device_lock, flags);
1118                 mddev->degraded++;
1119                 spin_unlock_irqrestore(&conf->device_lock, flags);
1120                 /*
1121                  * if recovery is running, make sure it aborts.
1122                  */
1123                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1124         }
1125         set_bit(Blocked, &rdev->flags);
1126         set_bit(Faulty, &rdev->flags);
1127         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1128         printk(KERN_ALERT
1129                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1130                "md/raid10:%s: Operation continuing on %d devices.\n",
1131                mdname(mddev), bdevname(rdev->bdev, b),
1132                mdname(mddev), conf->raid_disks - mddev->degraded);
1133 }
1134
1135 static void print_conf(conf_t *conf)
1136 {
1137         int i;
1138         mirror_info_t *tmp;
1139
1140         printk(KERN_DEBUG "RAID10 conf printout:\n");
1141         if (!conf) {
1142                 printk(KERN_DEBUG "(!conf)\n");
1143                 return;
1144         }
1145         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1146                 conf->raid_disks);
1147
1148         for (i = 0; i < conf->raid_disks; i++) {
1149                 char b[BDEVNAME_SIZE];
1150                 tmp = conf->mirrors + i;
1151                 if (tmp->rdev)
1152                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1153                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1154                                 !test_bit(Faulty, &tmp->rdev->flags),
1155                                 bdevname(tmp->rdev->bdev,b));
1156         }
1157 }
1158
1159 static void close_sync(conf_t *conf)
1160 {
1161         wait_barrier(conf);
1162         allow_barrier(conf);
1163
1164         mempool_destroy(conf->r10buf_pool);
1165         conf->r10buf_pool = NULL;
1166 }
1167
1168 static int raid10_spare_active(mddev_t *mddev)
1169 {
1170         int i;
1171         conf_t *conf = mddev->private;
1172         mirror_info_t *tmp;
1173         int count = 0;
1174         unsigned long flags;
1175
1176         /*
1177          * Find all non-in_sync disks within the RAID10 configuration
1178          * and mark them in_sync
1179          */
1180         for (i = 0; i < conf->raid_disks; i++) {
1181                 tmp = conf->mirrors + i;
1182                 if (tmp->rdev
1183                     && !test_bit(Faulty, &tmp->rdev->flags)
1184                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1185                         count++;
1186                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
1187                 }
1188         }
1189         spin_lock_irqsave(&conf->device_lock, flags);
1190         mddev->degraded -= count;
1191         spin_unlock_irqrestore(&conf->device_lock, flags);
1192
1193         print_conf(conf);
1194         return count;
1195 }
1196
1197
1198 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1199 {
1200         conf_t *conf = mddev->private;
1201         int err = -EEXIST;
1202         int mirror;
1203         int first = 0;
1204         int last = conf->raid_disks - 1;
1205
1206         if (rdev->badblocks.count)
1207                 return -EINVAL;
1208
1209         if (mddev->recovery_cp < MaxSector)
1210                 /* only hot-add to in-sync arrays, as recovery is
1211                  * very different from resync
1212                  */
1213                 return -EBUSY;
1214         if (!enough(conf, -1))
1215                 return -EINVAL;
1216
1217         if (rdev->raid_disk >= 0)
1218                 first = last = rdev->raid_disk;
1219
1220         if (rdev->saved_raid_disk >= first &&
1221             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1222                 mirror = rdev->saved_raid_disk;
1223         else
1224                 mirror = first;
1225         for ( ; mirror <= last ; mirror++) {
1226                 mirror_info_t *p = &conf->mirrors[mirror];
1227                 if (p->recovery_disabled == mddev->recovery_disabled)
1228                         continue;
1229                 if (!p->rdev)
1230                         continue;
1231
1232                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1233                                   rdev->data_offset << 9);
1234                 /* as we don't honour merge_bvec_fn, we must
1235                  * never risk violating it, so limit
1236                  * ->max_segments to one lying with a single
1237                  * page, as a one page request is never in
1238                  * violation.
1239                  */
1240                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1241                         blk_queue_max_segments(mddev->queue, 1);
1242                         blk_queue_segment_boundary(mddev->queue,
1243                                                    PAGE_CACHE_SIZE - 1);
1244                 }
1245
1246                 p->head_position = 0;
1247                 rdev->raid_disk = mirror;
1248                 err = 0;
1249                 if (rdev->saved_raid_disk != mirror)
1250                         conf->fullsync = 1;
1251                 rcu_assign_pointer(p->rdev, rdev);
1252                 break;
1253         }
1254
1255         md_integrity_add_rdev(rdev, mddev);
1256         print_conf(conf);
1257         return err;
1258 }
1259
1260 static int raid10_remove_disk(mddev_t *mddev, int number)
1261 {
1262         conf_t *conf = mddev->private;
1263         int err = 0;
1264         mdk_rdev_t *rdev;
1265         mirror_info_t *p = conf->mirrors+ number;
1266
1267         print_conf(conf);
1268         rdev = p->rdev;
1269         if (rdev) {
1270                 if (test_bit(In_sync, &rdev->flags) ||
1271                     atomic_read(&rdev->nr_pending)) {
1272                         err = -EBUSY;
1273                         goto abort;
1274                 }
1275                 /* Only remove faulty devices in recovery
1276                  * is not possible.
1277                  */
1278                 if (!test_bit(Faulty, &rdev->flags) &&
1279                     mddev->recovery_disabled != p->recovery_disabled &&
1280                     enough(conf, -1)) {
1281                         err = -EBUSY;
1282                         goto abort;
1283                 }
1284                 p->rdev = NULL;
1285                 synchronize_rcu();
1286                 if (atomic_read(&rdev->nr_pending)) {
1287                         /* lost the race, try later */
1288                         err = -EBUSY;
1289                         p->rdev = rdev;
1290                         goto abort;
1291                 }
1292                 err = md_integrity_register(mddev);
1293         }
1294 abort:
1295
1296         print_conf(conf);
1297         return err;
1298 }
1299
1300
1301 static void end_sync_read(struct bio *bio, int error)
1302 {
1303         r10bio_t *r10_bio = bio->bi_private;
1304         conf_t *conf = r10_bio->mddev->private;
1305         int d;
1306
1307         d = find_bio_disk(conf, r10_bio, bio);
1308
1309         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1310                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1311         else {
1312                 atomic_add(r10_bio->sectors,
1313                            &conf->mirrors[d].rdev->corrected_errors);
1314                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1315                         md_error(r10_bio->mddev,
1316                                  conf->mirrors[d].rdev);
1317         }
1318
1319         /* for reconstruct, we always reschedule after a read.
1320          * for resync, only after all reads
1321          */
1322         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1323         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1324             atomic_dec_and_test(&r10_bio->remaining)) {
1325                 /* we have read all the blocks,
1326                  * do the comparison in process context in raid10d
1327                  */
1328                 reschedule_retry(r10_bio);
1329         }
1330 }
1331
1332 static void end_sync_write(struct bio *bio, int error)
1333 {
1334         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1335         r10bio_t *r10_bio = bio->bi_private;
1336         mddev_t *mddev = r10_bio->mddev;
1337         conf_t *conf = mddev->private;
1338         int d;
1339
1340         d = find_bio_disk(conf, r10_bio, bio);
1341
1342         if (!uptodate)
1343                 md_error(mddev, conf->mirrors[d].rdev);
1344
1345         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1346         while (atomic_dec_and_test(&r10_bio->remaining)) {
1347                 if (r10_bio->master_bio == NULL) {
1348                         /* the primary of several recovery bios */
1349                         sector_t s = r10_bio->sectors;
1350                         put_buf(r10_bio);
1351                         md_done_sync(mddev, s, 1);
1352                         break;
1353                 } else {
1354                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1355                         put_buf(r10_bio);
1356                         r10_bio = r10_bio2;
1357                 }
1358         }
1359 }
1360
1361 /*
1362  * Note: sync and recover and handled very differently for raid10
1363  * This code is for resync.
1364  * For resync, we read through virtual addresses and read all blocks.
1365  * If there is any error, we schedule a write.  The lowest numbered
1366  * drive is authoritative.
1367  * However requests come for physical address, so we need to map.
1368  * For every physical address there are raid_disks/copies virtual addresses,
1369  * which is always are least one, but is not necessarly an integer.
1370  * This means that a physical address can span multiple chunks, so we may
1371  * have to submit multiple io requests for a single sync request.
1372  */
1373 /*
1374  * We check if all blocks are in-sync and only write to blocks that
1375  * aren't in sync
1376  */
1377 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1378 {
1379         conf_t *conf = mddev->private;
1380         int i, first;
1381         struct bio *tbio, *fbio;
1382
1383         atomic_set(&r10_bio->remaining, 1);
1384
1385         /* find the first device with a block */
1386         for (i=0; i<conf->copies; i++)
1387                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1388                         break;
1389
1390         if (i == conf->copies)
1391                 goto done;
1392
1393         first = i;
1394         fbio = r10_bio->devs[i].bio;
1395
1396         /* now find blocks with errors */
1397         for (i=0 ; i < conf->copies ; i++) {
1398                 int  j, d;
1399                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1400
1401                 tbio = r10_bio->devs[i].bio;
1402
1403                 if (tbio->bi_end_io != end_sync_read)
1404                         continue;
1405                 if (i == first)
1406                         continue;
1407                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1408                         /* We know that the bi_io_vec layout is the same for
1409                          * both 'first' and 'i', so we just compare them.
1410                          * All vec entries are PAGE_SIZE;
1411                          */
1412                         for (j = 0; j < vcnt; j++)
1413                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1414                                            page_address(tbio->bi_io_vec[j].bv_page),
1415                                            PAGE_SIZE))
1416                                         break;
1417                         if (j == vcnt)
1418                                 continue;
1419                         mddev->resync_mismatches += r10_bio->sectors;
1420                 }
1421                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1422                         /* Don't fix anything. */
1423                         continue;
1424                 /* Ok, we need to write this bio
1425                  * First we need to fixup bv_offset, bv_len and
1426                  * bi_vecs, as the read request might have corrupted these
1427                  */
1428                 tbio->bi_vcnt = vcnt;
1429                 tbio->bi_size = r10_bio->sectors << 9;
1430                 tbio->bi_idx = 0;
1431                 tbio->bi_phys_segments = 0;
1432                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1433                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1434                 tbio->bi_next = NULL;
1435                 tbio->bi_rw = WRITE;
1436                 tbio->bi_private = r10_bio;
1437                 tbio->bi_sector = r10_bio->devs[i].addr;
1438
1439                 for (j=0; j < vcnt ; j++) {
1440                         tbio->bi_io_vec[j].bv_offset = 0;
1441                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1442
1443                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1444                                page_address(fbio->bi_io_vec[j].bv_page),
1445                                PAGE_SIZE);
1446                 }
1447                 tbio->bi_end_io = end_sync_write;
1448
1449                 d = r10_bio->devs[i].devnum;
1450                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1451                 atomic_inc(&r10_bio->remaining);
1452                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1453
1454                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1455                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1456                 generic_make_request(tbio);
1457         }
1458
1459 done:
1460         if (atomic_dec_and_test(&r10_bio->remaining)) {
1461                 md_done_sync(mddev, r10_bio->sectors, 1);
1462                 put_buf(r10_bio);
1463         }
1464 }
1465
1466 /*
1467  * Now for the recovery code.
1468  * Recovery happens across physical sectors.
1469  * We recover all non-is_sync drives by finding the virtual address of
1470  * each, and then choose a working drive that also has that virt address.
1471  * There is a separate r10_bio for each non-in_sync drive.
1472  * Only the first two slots are in use. The first for reading,
1473  * The second for writing.
1474  *
1475  */
1476
1477 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1478 {
1479         conf_t *conf = mddev->private;
1480         int d;
1481         struct bio *wbio;
1482
1483         /*
1484          * share the pages with the first bio
1485          * and submit the write request
1486          */
1487         wbio = r10_bio->devs[1].bio;
1488         d = r10_bio->devs[1].devnum;
1489
1490         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1491         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1492         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1493                 generic_make_request(wbio);
1494         else {
1495                 printk(KERN_NOTICE
1496                        "md/raid10:%s: recovery aborted due to read error\n",
1497                        mdname(mddev));
1498                 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1499                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1500                 bio_endio(wbio, 0);
1501         }
1502 }
1503
1504
1505 /*
1506  * Used by fix_read_error() to decay the per rdev read_errors.
1507  * We halve the read error count for every hour that has elapsed
1508  * since the last recorded read error.
1509  *
1510  */
1511 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1512 {
1513         struct timespec cur_time_mon;
1514         unsigned long hours_since_last;
1515         unsigned int read_errors = atomic_read(&rdev->read_errors);
1516
1517         ktime_get_ts(&cur_time_mon);
1518
1519         if (rdev->last_read_error.tv_sec == 0 &&
1520             rdev->last_read_error.tv_nsec == 0) {
1521                 /* first time we've seen a read error */
1522                 rdev->last_read_error = cur_time_mon;
1523                 return;
1524         }
1525
1526         hours_since_last = (cur_time_mon.tv_sec -
1527                             rdev->last_read_error.tv_sec) / 3600;
1528
1529         rdev->last_read_error = cur_time_mon;
1530
1531         /*
1532          * if hours_since_last is > the number of bits in read_errors
1533          * just set read errors to 0. We do this to avoid
1534          * overflowing the shift of read_errors by hours_since_last.
1535          */
1536         if (hours_since_last >= 8 * sizeof(read_errors))
1537                 atomic_set(&rdev->read_errors, 0);
1538         else
1539                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1540 }
1541
1542 /*
1543  * This is a kernel thread which:
1544  *
1545  *      1.      Retries failed read operations on working mirrors.
1546  *      2.      Updates the raid superblock when problems encounter.
1547  *      3.      Performs writes following reads for array synchronising.
1548  */
1549
1550 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1551 {
1552         int sect = 0; /* Offset from r10_bio->sector */
1553         int sectors = r10_bio->sectors;
1554         mdk_rdev_t*rdev;
1555         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1556         int d = r10_bio->devs[r10_bio->read_slot].devnum;
1557
1558         /* still own a reference to this rdev, so it cannot
1559          * have been cleared recently.
1560          */
1561         rdev = conf->mirrors[d].rdev;
1562
1563         if (test_bit(Faulty, &rdev->flags))
1564                 /* drive has already been failed, just ignore any
1565                    more fix_read_error() attempts */
1566                 return;
1567
1568         check_decay_read_errors(mddev, rdev);
1569         atomic_inc(&rdev->read_errors);
1570         if (atomic_read(&rdev->read_errors) > max_read_errors) {
1571                 char b[BDEVNAME_SIZE];
1572                 bdevname(rdev->bdev, b);
1573
1574                 printk(KERN_NOTICE
1575                        "md/raid10:%s: %s: Raid device exceeded "
1576                        "read_error threshold [cur %d:max %d]\n",
1577                        mdname(mddev), b,
1578                        atomic_read(&rdev->read_errors), max_read_errors);
1579                 printk(KERN_NOTICE
1580                        "md/raid10:%s: %s: Failing raid device\n",
1581                        mdname(mddev), b);
1582                 md_error(mddev, conf->mirrors[d].rdev);
1583                 return;
1584         }
1585
1586         while(sectors) {
1587                 int s = sectors;
1588                 int sl = r10_bio->read_slot;
1589                 int success = 0;
1590                 int start;
1591
1592                 if (s > (PAGE_SIZE>>9))
1593                         s = PAGE_SIZE >> 9;
1594
1595                 rcu_read_lock();
1596                 do {
1597                         d = r10_bio->devs[sl].devnum;
1598                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1599                         if (rdev &&
1600                             test_bit(In_sync, &rdev->flags)) {
1601                                 atomic_inc(&rdev->nr_pending);
1602                                 rcu_read_unlock();
1603                                 success = sync_page_io(rdev,
1604                                                        r10_bio->devs[sl].addr +
1605                                                        sect,
1606                                                        s<<9,
1607                                                        conf->tmppage, READ, false);
1608                                 rdev_dec_pending(rdev, mddev);
1609                                 rcu_read_lock();
1610                                 if (success)
1611                                         break;
1612                         }
1613                         sl++;
1614                         if (sl == conf->copies)
1615                                 sl = 0;
1616                 } while (!success && sl != r10_bio->read_slot);
1617                 rcu_read_unlock();
1618
1619                 if (!success) {
1620                         /* Cannot read from anywhere -- bye bye array */
1621                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1622                         md_error(mddev, conf->mirrors[dn].rdev);
1623                         break;
1624                 }
1625
1626                 start = sl;
1627                 /* write it back and re-read */
1628                 rcu_read_lock();
1629                 while (sl != r10_bio->read_slot) {
1630                         char b[BDEVNAME_SIZE];
1631
1632                         if (sl==0)
1633                                 sl = conf->copies;
1634                         sl--;
1635                         d = r10_bio->devs[sl].devnum;
1636                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1637                         if (!rdev ||
1638                             !test_bit(In_sync, &rdev->flags))
1639                                 continue;
1640
1641                         atomic_inc(&rdev->nr_pending);
1642                         rcu_read_unlock();
1643                         if (sync_page_io(rdev,
1644                                          r10_bio->devs[sl].addr +
1645                                          sect,
1646                                          s<<9, conf->tmppage, WRITE, false)
1647                             == 0) {
1648                                 /* Well, this device is dead */
1649                                 printk(KERN_NOTICE
1650                                        "md/raid10:%s: read correction "
1651                                        "write failed"
1652                                        " (%d sectors at %llu on %s)\n",
1653                                        mdname(mddev), s,
1654                                        (unsigned long long)(
1655                                                sect + rdev->data_offset),
1656                                        bdevname(rdev->bdev, b));
1657                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1658                                        "drive\n",
1659                                        mdname(mddev),
1660                                        bdevname(rdev->bdev, b));
1661                                 md_error(mddev, rdev);
1662                         }
1663                         rdev_dec_pending(rdev, mddev);
1664                         rcu_read_lock();
1665                 }
1666                 sl = start;
1667                 while (sl != r10_bio->read_slot) {
1668                         char b[BDEVNAME_SIZE];
1669
1670                         if (sl==0)
1671                                 sl = conf->copies;
1672                         sl--;
1673                         d = r10_bio->devs[sl].devnum;
1674                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1675                         if (!rdev ||
1676                             !test_bit(In_sync, &rdev->flags))
1677                                 continue;
1678
1679                         atomic_inc(&rdev->nr_pending);
1680                         rcu_read_unlock();
1681                         if (sync_page_io(rdev,
1682                                          r10_bio->devs[sl].addr +
1683                                          sect,
1684                                          s<<9, conf->tmppage,
1685                                          READ, false) == 0) {
1686                                 /* Well, this device is dead */
1687                                 printk(KERN_NOTICE
1688                                        "md/raid10:%s: unable to read back "
1689                                        "corrected sectors"
1690                                        " (%d sectors at %llu on %s)\n",
1691                                        mdname(mddev), s,
1692                                        (unsigned long long)(
1693                                                sect + rdev->data_offset),
1694                                        bdevname(rdev->bdev, b));
1695                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1696                                        "drive\n",
1697                                        mdname(mddev),
1698                                        bdevname(rdev->bdev, b));
1699
1700                                 md_error(mddev, rdev);
1701                         } else {
1702                                 printk(KERN_INFO
1703                                        "md/raid10:%s: read error corrected"
1704                                        " (%d sectors at %llu on %s)\n",
1705                                        mdname(mddev), s,
1706                                        (unsigned long long)(
1707                                                sect + rdev->data_offset),
1708                                        bdevname(rdev->bdev, b));
1709                                 atomic_add(s, &rdev->corrected_errors);
1710                         }
1711
1712                         rdev_dec_pending(rdev, mddev);
1713                         rcu_read_lock();
1714                 }
1715                 rcu_read_unlock();
1716
1717                 sectors -= s;
1718                 sect += s;
1719         }
1720 }
1721
1722 static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
1723 {
1724         int slot = r10_bio->read_slot;
1725         int mirror = r10_bio->devs[slot].devnum;
1726         struct bio *bio;
1727         conf_t *conf = mddev->private;
1728         mdk_rdev_t *rdev;
1729         char b[BDEVNAME_SIZE];
1730         unsigned long do_sync;
1731         int max_sectors;
1732
1733         /* we got a read error. Maybe the drive is bad.  Maybe just
1734          * the block and we can fix it.
1735          * We freeze all other IO, and try reading the block from
1736          * other devices.  When we find one, we re-write
1737          * and check it that fixes the read error.
1738          * This is all done synchronously while the array is
1739          * frozen.
1740          */
1741         if (mddev->ro == 0) {
1742                 freeze_array(conf);
1743                 fix_read_error(conf, mddev, r10_bio);
1744                 unfreeze_array(conf);
1745         }
1746         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1747
1748         bio = r10_bio->devs[slot].bio;
1749         r10_bio->devs[slot].bio =
1750                 mddev->ro ? IO_BLOCKED : NULL;
1751         mirror = read_balance(conf, r10_bio, &max_sectors);
1752         if (mirror == -1 || max_sectors < r10_bio->sectors) {
1753                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1754                        " read error for block %llu\n",
1755                        mdname(mddev),
1756                        bdevname(bio->bi_bdev, b),
1757                        (unsigned long long)r10_bio->sector);
1758                 raid_end_bio_io(r10_bio);
1759                 bio_put(bio);
1760                 return;
1761         }
1762
1763         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1764         bio_put(bio);
1765         slot = r10_bio->read_slot;
1766         rdev = conf->mirrors[mirror].rdev;
1767         printk_ratelimited(
1768                 KERN_ERR
1769                 "md/raid10:%s: %s: redirecting"
1770                 "sector %llu to another mirror\n",
1771                 mdname(mddev),
1772                 bdevname(rdev->bdev, b),
1773                 (unsigned long long)r10_bio->sector);
1774         bio = bio_clone_mddev(r10_bio->master_bio,
1775                               GFP_NOIO, mddev);
1776         r10_bio->devs[slot].bio = bio;
1777         bio->bi_sector = r10_bio->devs[slot].addr
1778                 + rdev->data_offset;
1779         bio->bi_bdev = rdev->bdev;
1780         bio->bi_rw = READ | do_sync;
1781         bio->bi_private = r10_bio;
1782         bio->bi_end_io = raid10_end_read_request;
1783         generic_make_request(bio);
1784 }
1785
1786 static void raid10d(mddev_t *mddev)
1787 {
1788         r10bio_t *r10_bio;
1789         unsigned long flags;
1790         conf_t *conf = mddev->private;
1791         struct list_head *head = &conf->retry_list;
1792         struct blk_plug plug;
1793
1794         md_check_recovery(mddev);
1795
1796         blk_start_plug(&plug);
1797         for (;;) {
1798
1799                 flush_pending_writes(conf);
1800
1801                 spin_lock_irqsave(&conf->device_lock, flags);
1802                 if (list_empty(head)) {
1803                         spin_unlock_irqrestore(&conf->device_lock, flags);
1804                         break;
1805                 }
1806                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1807                 list_del(head->prev);
1808                 conf->nr_queued--;
1809                 spin_unlock_irqrestore(&conf->device_lock, flags);
1810
1811                 mddev = r10_bio->mddev;
1812                 conf = mddev->private;
1813                 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1814                         sync_request_write(mddev, r10_bio);
1815                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1816                         recovery_request_write(mddev, r10_bio);
1817                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
1818                         handle_read_error(mddev, r10_bio);
1819                 else {
1820                         /* just a partial read to be scheduled from a
1821                          * separate context
1822                          */
1823                         int slot = r10_bio->read_slot;
1824                         generic_make_request(r10_bio->devs[slot].bio);
1825                 }
1826
1827                 cond_resched();
1828                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
1829                         md_check_recovery(mddev);
1830         }
1831         blk_finish_plug(&plug);
1832 }
1833
1834
1835 static int init_resync(conf_t *conf)
1836 {
1837         int buffs;
1838
1839         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1840         BUG_ON(conf->r10buf_pool);
1841         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1842         if (!conf->r10buf_pool)
1843                 return -ENOMEM;
1844         conf->next_resync = 0;
1845         return 0;
1846 }
1847
1848 /*
1849  * perform a "sync" on one "block"
1850  *
1851  * We need to make sure that no normal I/O request - particularly write
1852  * requests - conflict with active sync requests.
1853  *
1854  * This is achieved by tracking pending requests and a 'barrier' concept
1855  * that can be installed to exclude normal IO requests.
1856  *
1857  * Resync and recovery are handled very differently.
1858  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1859  *
1860  * For resync, we iterate over virtual addresses, read all copies,
1861  * and update if there are differences.  If only one copy is live,
1862  * skip it.
1863  * For recovery, we iterate over physical addresses, read a good
1864  * value for each non-in_sync drive, and over-write.
1865  *
1866  * So, for recovery we may have several outstanding complex requests for a
1867  * given address, one for each out-of-sync device.  We model this by allocating
1868  * a number of r10_bio structures, one for each out-of-sync device.
1869  * As we setup these structures, we collect all bio's together into a list
1870  * which we then process collectively to add pages, and then process again
1871  * to pass to generic_make_request.
1872  *
1873  * The r10_bio structures are linked using a borrowed master_bio pointer.
1874  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1875  * has its remaining count decremented to 0, the whole complex operation
1876  * is complete.
1877  *
1878  */
1879
1880 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1881                              int *skipped, int go_faster)
1882 {
1883         conf_t *conf = mddev->private;
1884         r10bio_t *r10_bio;
1885         struct bio *biolist = NULL, *bio;
1886         sector_t max_sector, nr_sectors;
1887         int i;
1888         int max_sync;
1889         sector_t sync_blocks;
1890
1891         sector_t sectors_skipped = 0;
1892         int chunks_skipped = 0;
1893
1894         if (!conf->r10buf_pool)
1895                 if (init_resync(conf))
1896                         return 0;
1897
1898  skipped:
1899         max_sector = mddev->dev_sectors;
1900         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1901                 max_sector = mddev->resync_max_sectors;
1902         if (sector_nr >= max_sector) {
1903                 /* If we aborted, we need to abort the
1904                  * sync on the 'current' bitmap chucks (there can
1905                  * be several when recovering multiple devices).
1906                  * as we may have started syncing it but not finished.
1907                  * We can find the current address in
1908                  * mddev->curr_resync, but for recovery,
1909                  * we need to convert that to several
1910                  * virtual addresses.
1911                  */
1912                 if (mddev->curr_resync < max_sector) { /* aborted */
1913                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1914                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1915                                                 &sync_blocks, 1);
1916                         else for (i=0; i<conf->raid_disks; i++) {
1917                                 sector_t sect =
1918                                         raid10_find_virt(conf, mddev->curr_resync, i);
1919                                 bitmap_end_sync(mddev->bitmap, sect,
1920                                                 &sync_blocks, 1);
1921                         }
1922                 } else /* completed sync */
1923                         conf->fullsync = 0;
1924
1925                 bitmap_close_sync(mddev->bitmap);
1926                 close_sync(conf);
1927                 *skipped = 1;
1928                 return sectors_skipped;
1929         }
1930         if (chunks_skipped >= conf->raid_disks) {
1931                 /* if there has been nothing to do on any drive,
1932                  * then there is nothing to do at all..
1933                  */
1934                 *skipped = 1;
1935                 return (max_sector - sector_nr) + sectors_skipped;
1936         }
1937
1938         if (max_sector > mddev->resync_max)
1939                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1940
1941         /* make sure whole request will fit in a chunk - if chunks
1942          * are meaningful
1943          */
1944         if (conf->near_copies < conf->raid_disks &&
1945             max_sector > (sector_nr | conf->chunk_mask))
1946                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1947         /*
1948          * If there is non-resync activity waiting for us then
1949          * put in a delay to throttle resync.
1950          */
1951         if (!go_faster && conf->nr_waiting)
1952                 msleep_interruptible(1000);
1953
1954         /* Again, very different code for resync and recovery.
1955          * Both must result in an r10bio with a list of bios that
1956          * have bi_end_io, bi_sector, bi_bdev set,
1957          * and bi_private set to the r10bio.
1958          * For recovery, we may actually create several r10bios
1959          * with 2 bios in each, that correspond to the bios in the main one.
1960          * In this case, the subordinate r10bios link back through a
1961          * borrowed master_bio pointer, and the counter in the master
1962          * includes a ref from each subordinate.
1963          */
1964         /* First, we decide what to do and set ->bi_end_io
1965          * To end_sync_read if we want to read, and
1966          * end_sync_write if we will want to write.
1967          */
1968
1969         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1970         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1971                 /* recovery... the complicated one */
1972                 int j, k;
1973                 r10_bio = NULL;
1974
1975                 for (i=0 ; i<conf->raid_disks; i++) {
1976                         int still_degraded;
1977                         r10bio_t *rb2;
1978                         sector_t sect;
1979                         int must_sync;
1980
1981                         if (conf->mirrors[i].rdev == NULL ||
1982                             test_bit(In_sync, &conf->mirrors[i].rdev->flags)) 
1983                                 continue;
1984
1985                         still_degraded = 0;
1986                         /* want to reconstruct this device */
1987                         rb2 = r10_bio;
1988                         sect = raid10_find_virt(conf, sector_nr, i);
1989                         /* Unless we are doing a full sync, we only need
1990                          * to recover the block if it is set in the bitmap
1991                          */
1992                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
1993                                                       &sync_blocks, 1);
1994                         if (sync_blocks < max_sync)
1995                                 max_sync = sync_blocks;
1996                         if (!must_sync &&
1997                             !conf->fullsync) {
1998                                 /* yep, skip the sync_blocks here, but don't assume
1999                                  * that there will never be anything to do here
2000                                  */
2001                                 chunks_skipped = -1;
2002                                 continue;
2003                         }
2004
2005                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2006                         raise_barrier(conf, rb2 != NULL);
2007                         atomic_set(&r10_bio->remaining, 0);
2008
2009                         r10_bio->master_bio = (struct bio*)rb2;
2010                         if (rb2)
2011                                 atomic_inc(&rb2->remaining);
2012                         r10_bio->mddev = mddev;
2013                         set_bit(R10BIO_IsRecover, &r10_bio->state);
2014                         r10_bio->sector = sect;
2015
2016                         raid10_find_phys(conf, r10_bio);
2017
2018                         /* Need to check if the array will still be
2019                          * degraded
2020                          */
2021                         for (j=0; j<conf->raid_disks; j++)
2022                                 if (conf->mirrors[j].rdev == NULL ||
2023                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2024                                         still_degraded = 1;
2025                                         break;
2026                                 }
2027
2028                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
2029                                                       &sync_blocks, still_degraded);
2030
2031                         for (j=0; j<conf->copies;j++) {
2032                                 int d = r10_bio->devs[j].devnum;
2033                                 if (!conf->mirrors[d].rdev ||
2034                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2035                                         continue;
2036                                 /* This is where we read from */
2037                                 bio = r10_bio->devs[0].bio;
2038                                 bio->bi_next = biolist;
2039                                 biolist = bio;
2040                                 bio->bi_private = r10_bio;
2041                                 bio->bi_end_io = end_sync_read;
2042                                 bio->bi_rw = READ;
2043                                 bio->bi_sector = r10_bio->devs[j].addr +
2044                                         conf->mirrors[d].rdev->data_offset;
2045                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2046                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2047                                 atomic_inc(&r10_bio->remaining);
2048                                 /* and we write to 'i' */
2049
2050                                 for (k=0; k<conf->copies; k++)
2051                                         if (r10_bio->devs[k].devnum == i)
2052                                                 break;
2053                                 BUG_ON(k == conf->copies);
2054                                 bio = r10_bio->devs[1].bio;
2055                                 bio->bi_next = biolist;
2056                                 biolist = bio;
2057                                 bio->bi_private = r10_bio;
2058                                 bio->bi_end_io = end_sync_write;
2059                                 bio->bi_rw = WRITE;
2060                                 bio->bi_sector = r10_bio->devs[k].addr +
2061                                         conf->mirrors[i].rdev->data_offset;
2062                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2063
2064                                 r10_bio->devs[0].devnum = d;
2065                                 r10_bio->devs[1].devnum = i;
2066
2067                                 break;
2068                         }
2069                         if (j == conf->copies) {
2070                                 /* Cannot recover, so abort the recovery */
2071                                 put_buf(r10_bio);
2072                                 if (rb2)
2073                                         atomic_dec(&rb2->remaining);
2074                                 r10_bio = rb2;
2075                                 if (!test_and_set_bit(MD_RECOVERY_INTR,
2076                                                       &mddev->recovery))
2077                                         printk(KERN_INFO "md/raid10:%s: insufficient "
2078                                                "working devices for recovery.\n",
2079                                                mdname(mddev));
2080                                 break;
2081                         }
2082                 }
2083                 if (biolist == NULL) {
2084                         while (r10_bio) {
2085                                 r10bio_t *rb2 = r10_bio;
2086                                 r10_bio = (r10bio_t*) rb2->master_bio;
2087                                 rb2->master_bio = NULL;
2088                                 put_buf(rb2);
2089                         }
2090                         goto giveup;
2091                 }
2092         } else {
2093                 /* resync. Schedule a read for every block at this virt offset */
2094                 int count = 0;
2095
2096                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2097
2098                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2099                                        &sync_blocks, mddev->degraded) &&
2100                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2101                                                  &mddev->recovery)) {
2102                         /* We can skip this block */
2103                         *skipped = 1;
2104                         return sync_blocks + sectors_skipped;
2105                 }
2106                 if (sync_blocks < max_sync)
2107                         max_sync = sync_blocks;
2108                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2109
2110                 r10_bio->mddev = mddev;
2111                 atomic_set(&r10_bio->remaining, 0);
2112                 raise_barrier(conf, 0);
2113                 conf->next_resync = sector_nr;
2114
2115                 r10_bio->master_bio = NULL;
2116                 r10_bio->sector = sector_nr;
2117                 set_bit(R10BIO_IsSync, &r10_bio->state);
2118                 raid10_find_phys(conf, r10_bio);
2119                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2120
2121                 for (i=0; i<conf->copies; i++) {
2122                         int d = r10_bio->devs[i].devnum;
2123                         bio = r10_bio->devs[i].bio;
2124                         bio->bi_end_io = NULL;
2125                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2126                         if (conf->mirrors[d].rdev == NULL ||
2127                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2128                                 continue;
2129                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130                         atomic_inc(&r10_bio->remaining);
2131                         bio->bi_next = biolist;
2132                         biolist = bio;
2133                         bio->bi_private = r10_bio;
2134                         bio->bi_end_io = end_sync_read;
2135                         bio->bi_rw = READ;
2136                         bio->bi_sector = r10_bio->devs[i].addr +
2137                                 conf->mirrors[d].rdev->data_offset;
2138                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2139                         count++;
2140                 }
2141
2142                 if (count < 2) {
2143                         for (i=0; i<conf->copies; i++) {
2144                                 int d = r10_bio->devs[i].devnum;
2145                                 if (r10_bio->devs[i].bio->bi_end_io)
2146                                         rdev_dec_pending(conf->mirrors[d].rdev,
2147                                                          mddev);
2148                         }
2149                         put_buf(r10_bio);
2150                         biolist = NULL;
2151                         goto giveup;
2152                 }
2153         }
2154
2155         for (bio = biolist; bio ; bio=bio->bi_next) {
2156
2157                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2158                 if (bio->bi_end_io)
2159                         bio->bi_flags |= 1 << BIO_UPTODATE;
2160                 bio->bi_vcnt = 0;
2161                 bio->bi_idx = 0;
2162                 bio->bi_phys_segments = 0;
2163                 bio->bi_size = 0;
2164         }
2165
2166         nr_sectors = 0;
2167         if (sector_nr + max_sync < max_sector)
2168                 max_sector = sector_nr + max_sync;
2169         do {
2170                 struct page *page;
2171                 int len = PAGE_SIZE;
2172                 if (sector_nr + (len>>9) > max_sector)
2173                         len = (max_sector - sector_nr) << 9;
2174                 if (len == 0)
2175                         break;
2176                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2177                         struct bio *bio2;
2178                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2179                         if (bio_add_page(bio, page, len, 0))
2180                                 continue;
2181
2182                         /* stop here */
2183                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2184                         for (bio2 = biolist;
2185                              bio2 && bio2 != bio;
2186                              bio2 = bio2->bi_next) {
2187                                 /* remove last page from this bio */
2188                                 bio2->bi_vcnt--;
2189                                 bio2->bi_size -= len;
2190                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2191                         }
2192                         goto bio_full;
2193                 }
2194                 nr_sectors += len>>9;
2195                 sector_nr += len>>9;
2196         } while (biolist->bi_vcnt < RESYNC_PAGES);
2197  bio_full:
2198         r10_bio->sectors = nr_sectors;
2199
2200         while (biolist) {
2201                 bio = biolist;
2202                 biolist = biolist->bi_next;
2203
2204                 bio->bi_next = NULL;
2205                 r10_bio = bio->bi_private;
2206                 r10_bio->sectors = nr_sectors;
2207
2208                 if (bio->bi_end_io == end_sync_read) {
2209                         md_sync_acct(bio->bi_bdev, nr_sectors);
2210                         generic_make_request(bio);
2211                 }
2212         }
2213
2214         if (sectors_skipped)
2215                 /* pretend they weren't skipped, it makes
2216                  * no important difference in this case
2217                  */
2218                 md_done_sync(mddev, sectors_skipped, 1);
2219
2220         return sectors_skipped + nr_sectors;
2221  giveup:
2222         /* There is nowhere to write, so all non-sync
2223          * drives must be failed, so try the next chunk...
2224          */
2225         if (sector_nr + max_sync < max_sector)
2226                 max_sector = sector_nr + max_sync;
2227
2228         sectors_skipped += (max_sector - sector_nr);
2229         chunks_skipped ++;
2230         sector_nr = max_sector;
2231         goto skipped;
2232 }
2233
2234 static sector_t
2235 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2236 {
2237         sector_t size;
2238         conf_t *conf = mddev->private;
2239
2240         if (!raid_disks)
2241                 raid_disks = conf->raid_disks;
2242         if (!sectors)
2243                 sectors = conf->dev_sectors;
2244
2245         size = sectors >> conf->chunk_shift;
2246         sector_div(size, conf->far_copies);
2247         size = size * raid_disks;
2248         sector_div(size, conf->near_copies);
2249
2250         return size << conf->chunk_shift;
2251 }
2252
2253
2254 static conf_t *setup_conf(mddev_t *mddev)
2255 {
2256         conf_t *conf = NULL;
2257         int nc, fc, fo;
2258         sector_t stride, size;
2259         int err = -EINVAL;
2260
2261         if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2262             !is_power_of_2(mddev->new_chunk_sectors)) {
2263                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2264                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2265                        mdname(mddev), PAGE_SIZE);
2266                 goto out;
2267         }
2268
2269         nc = mddev->new_layout & 255;
2270         fc = (mddev->new_layout >> 8) & 255;
2271         fo = mddev->new_layout & (1<<16);
2272
2273         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2274             (mddev->new_layout >> 17)) {
2275                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2276                        mdname(mddev), mddev->new_layout);
2277                 goto out;
2278         }
2279
2280         err = -ENOMEM;
2281         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2282         if (!conf)
2283                 goto out;
2284
2285         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2286                                 GFP_KERNEL);
2287         if (!conf->mirrors)
2288                 goto out;
2289
2290         conf->tmppage = alloc_page(GFP_KERNEL);
2291         if (!conf->tmppage)
2292                 goto out;
2293
2294
2295         conf->raid_disks = mddev->raid_disks;
2296         conf->near_copies = nc;
2297         conf->far_copies = fc;
2298         conf->copies = nc*fc;
2299         conf->far_offset = fo;
2300         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2301         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2302
2303         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2304                                            r10bio_pool_free, conf);
2305         if (!conf->r10bio_pool)
2306                 goto out;
2307
2308         size = mddev->dev_sectors >> conf->chunk_shift;
2309         sector_div(size, fc);
2310         size = size * conf->raid_disks;
2311         sector_div(size, nc);
2312         /* 'size' is now the number of chunks in the array */
2313         /* calculate "used chunks per device" in 'stride' */
2314         stride = size * conf->copies;
2315
2316         /* We need to round up when dividing by raid_disks to
2317          * get the stride size.
2318          */
2319         stride += conf->raid_disks - 1;
2320         sector_div(stride, conf->raid_disks);
2321
2322         conf->dev_sectors = stride << conf->chunk_shift;
2323
2324         if (fo)
2325                 stride = 1;
2326         else
2327                 sector_div(stride, fc);
2328         conf->stride = stride << conf->chunk_shift;
2329
2330
2331         spin_lock_init(&conf->device_lock);
2332         INIT_LIST_HEAD(&conf->retry_list);
2333
2334         spin_lock_init(&conf->resync_lock);
2335         init_waitqueue_head(&conf->wait_barrier);
2336
2337         conf->thread = md_register_thread(raid10d, mddev, NULL);
2338         if (!conf->thread)
2339                 goto out;
2340
2341         conf->mddev = mddev;
2342         return conf;
2343
2344  out:
2345         printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2346                mdname(mddev));
2347         if (conf) {
2348                 if (conf->r10bio_pool)
2349                         mempool_destroy(conf->r10bio_pool);
2350                 kfree(conf->mirrors);
2351                 safe_put_page(conf->tmppage);
2352                 kfree(conf);
2353         }
2354         return ERR_PTR(err);
2355 }
2356
2357 static int run(mddev_t *mddev)
2358 {
2359         conf_t *conf;
2360         int i, disk_idx, chunk_size;
2361         mirror_info_t *disk;
2362         mdk_rdev_t *rdev;
2363         sector_t size;
2364
2365         /*
2366          * copy the already verified devices into our private RAID10
2367          * bookkeeping area. [whatever we allocate in run(),
2368          * should be freed in stop()]
2369          */
2370
2371         if (mddev->private == NULL) {
2372                 conf = setup_conf(mddev);
2373                 if (IS_ERR(conf))
2374                         return PTR_ERR(conf);
2375                 mddev->private = conf;
2376         }
2377         conf = mddev->private;
2378         if (!conf)
2379                 goto out;
2380
2381         mddev->thread = conf->thread;
2382         conf->thread = NULL;
2383
2384         chunk_size = mddev->chunk_sectors << 9;
2385         blk_queue_io_min(mddev->queue, chunk_size);
2386         if (conf->raid_disks % conf->near_copies)
2387                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2388         else
2389                 blk_queue_io_opt(mddev->queue, chunk_size *
2390                                  (conf->raid_disks / conf->near_copies));
2391
2392         list_for_each_entry(rdev, &mddev->disks, same_set) {
2393
2394                 if (rdev->badblocks.count) {
2395                         printk(KERN_ERR "md/raid10: cannot handle bad blocks yet\n");
2396                         goto out_free_conf;
2397                 }
2398                 disk_idx = rdev->raid_disk;
2399                 if (disk_idx >= conf->raid_disks
2400                     || disk_idx < 0)
2401                         continue;
2402                 disk = conf->mirrors + disk_idx;
2403
2404                 disk->rdev = rdev;
2405                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2406                                   rdev->data_offset << 9);
2407                 /* as we don't honour merge_bvec_fn, we must never risk
2408                  * violating it, so limit max_segments to 1 lying
2409                  * within a single page.
2410                  */
2411                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2412                         blk_queue_max_segments(mddev->queue, 1);
2413                         blk_queue_segment_boundary(mddev->queue,
2414                                                    PAGE_CACHE_SIZE - 1);
2415                 }
2416
2417                 disk->head_position = 0;
2418         }
2419         /* need to check that every block has at least one working mirror */
2420         if (!enough(conf, -1)) {
2421                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2422                        mdname(mddev));
2423                 goto out_free_conf;
2424         }
2425
2426         mddev->degraded = 0;
2427         for (i = 0; i < conf->raid_disks; i++) {
2428
2429                 disk = conf->mirrors + i;
2430
2431                 if (!disk->rdev ||
2432                     !test_bit(In_sync, &disk->rdev->flags)) {
2433                         disk->head_position = 0;
2434                         mddev->degraded++;
2435                         if (disk->rdev)
2436                                 conf->fullsync = 1;
2437                 }
2438         }
2439
2440         if (mddev->recovery_cp != MaxSector)
2441                 printk(KERN_NOTICE "md/raid10:%s: not clean"
2442                        " -- starting background reconstruction\n",
2443                        mdname(mddev));
2444         printk(KERN_INFO
2445                 "md/raid10:%s: active with %d out of %d devices\n",
2446                 mdname(mddev), conf->raid_disks - mddev->degraded,
2447                 conf->raid_disks);
2448         /*
2449          * Ok, everything is just fine now
2450          */
2451         mddev->dev_sectors = conf->dev_sectors;
2452         size = raid10_size(mddev, 0, 0);
2453         md_set_array_sectors(mddev, size);
2454         mddev->resync_max_sectors = size;
2455
2456         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2457         mddev->queue->backing_dev_info.congested_data = mddev;
2458
2459         /* Calculate max read-ahead size.
2460          * We need to readahead at least twice a whole stripe....
2461          * maybe...
2462          */
2463         {
2464                 int stripe = conf->raid_disks *
2465                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2466                 stripe /= conf->near_copies;
2467                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2468                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2469         }
2470
2471         if (conf->near_copies < conf->raid_disks)
2472                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2473
2474         if (md_integrity_register(mddev))
2475                 goto out_free_conf;
2476
2477         return 0;
2478
2479 out_free_conf:
2480         md_unregister_thread(mddev->thread);
2481         if (conf->r10bio_pool)
2482                 mempool_destroy(conf->r10bio_pool);
2483         safe_put_page(conf->tmppage);
2484         kfree(conf->mirrors);
2485         kfree(conf);
2486         mddev->private = NULL;
2487 out:
2488         return -EIO;
2489 }
2490
2491 static int stop(mddev_t *mddev)
2492 {
2493         conf_t *conf = mddev->private;
2494
2495         raise_barrier(conf, 0);
2496         lower_barrier(conf);
2497
2498         md_unregister_thread(mddev->thread);
2499         mddev->thread = NULL;
2500         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2501         if (conf->r10bio_pool)
2502                 mempool_destroy(conf->r10bio_pool);
2503         kfree(conf->mirrors);
2504         kfree(conf);
2505         mddev->private = NULL;
2506         return 0;
2507 }
2508
2509 static void raid10_quiesce(mddev_t *mddev, int state)
2510 {
2511         conf_t *conf = mddev->private;
2512
2513         switch(state) {
2514         case 1:
2515                 raise_barrier(conf, 0);
2516                 break;
2517         case 0:
2518                 lower_barrier(conf);
2519                 break;
2520         }
2521 }
2522
2523 static void *raid10_takeover_raid0(mddev_t *mddev)
2524 {
2525         mdk_rdev_t *rdev;
2526         conf_t *conf;
2527
2528         if (mddev->degraded > 0) {
2529                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2530                        mdname(mddev));
2531                 return ERR_PTR(-EINVAL);
2532         }
2533
2534         /* Set new parameters */
2535         mddev->new_level = 10;
2536         /* new layout: far_copies = 1, near_copies = 2 */
2537         mddev->new_layout = (1<<8) + 2;
2538         mddev->new_chunk_sectors = mddev->chunk_sectors;
2539         mddev->delta_disks = mddev->raid_disks;
2540         mddev->raid_disks *= 2;
2541         /* make sure it will be not marked as dirty */
2542         mddev->recovery_cp = MaxSector;
2543
2544         conf = setup_conf(mddev);
2545         if (!IS_ERR(conf)) {
2546                 list_for_each_entry(rdev, &mddev->disks, same_set)
2547                         if (rdev->raid_disk >= 0)
2548                                 rdev->new_raid_disk = rdev->raid_disk * 2;
2549                 conf->barrier = 1;
2550         }
2551
2552         return conf;
2553 }
2554
2555 static void *raid10_takeover(mddev_t *mddev)
2556 {
2557         struct raid0_private_data *raid0_priv;
2558
2559         /* raid10 can take over:
2560          *  raid0 - providing it has only two drives
2561          */
2562         if (mddev->level == 0) {
2563                 /* for raid0 takeover only one zone is supported */
2564                 raid0_priv = mddev->private;
2565                 if (raid0_priv->nr_strip_zones > 1) {
2566                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2567                                " with more than one zone.\n",
2568                                mdname(mddev));
2569                         return ERR_PTR(-EINVAL);
2570                 }
2571                 return raid10_takeover_raid0(mddev);
2572         }
2573         return ERR_PTR(-EINVAL);
2574 }
2575
2576 static struct mdk_personality raid10_personality =
2577 {
2578         .name           = "raid10",
2579         .level          = 10,
2580         .owner          = THIS_MODULE,
2581         .make_request   = make_request,
2582         .run            = run,
2583         .stop           = stop,
2584         .status         = status,
2585         .error_handler  = error,
2586         .hot_add_disk   = raid10_add_disk,
2587         .hot_remove_disk= raid10_remove_disk,
2588         .spare_active   = raid10_spare_active,
2589         .sync_request   = sync_request,
2590         .quiesce        = raid10_quiesce,
2591         .size           = raid10_size,
2592         .takeover       = raid10_takeover,
2593 };
2594
2595 static int __init raid_init(void)
2596 {
2597         return register_md_personality(&raid10_personality);
2598 }
2599
2600 static void raid_exit(void)
2601 {
2602         unregister_md_personality(&raid10_personality);
2603 }
2604
2605 module_init(raid_init);
2606 module_exit(raid_exit);
2607 MODULE_LICENSE("GPL");
2608 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2609 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2610 MODULE_ALIAS("md-raid10");
2611 MODULE_ALIAS("md-level-10");