]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid10.c
Merge branches 'iommu/fixes', 'arm/omap', 'arm/smmu', 'arm/shmobile', 'x86/amd',...
[karo-tx-linux.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34  * RAID10 provides a combination of RAID0 and RAID1 functionality.
35  * The layout of data is defined by
36  *    chunk_size
37  *    raid_disks
38  *    near_copies (stored in low byte of layout)
39  *    far_copies (stored in second byte of layout)
40  *    far_offset (stored in bit 16 of layout )
41  *    use_far_sets (stored in bit 17 of layout )
42  *
43  * The data to be stored is divided into chunks using chunksize.  Each device
44  * is divided into far_copies sections.   In each section, chunks are laid out
45  * in a style similar to raid0, but near_copies copies of each chunk is stored
46  * (each on a different drive).  The starting device for each section is offset
47  * near_copies from the starting device of the previous section.  Thus there
48  * are (near_copies * far_copies) of each chunk, and each is on a different
49  * drive.  near_copies and far_copies must be at least one, and their product
50  * is at most raid_disks.
51  *
52  * If far_offset is true, then the far_copies are handled a bit differently.
53  * The copies are still in different stripes, but instead of being very far
54  * apart on disk, there are adjacent stripes.
55  *
56  * The far and offset algorithms are handled slightly differently if
57  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
58  * sets that are (near_copies * far_copies) in size.  The far copied stripes
59  * are still shifted by 'near_copies' devices, but this shifting stays confined
60  * to the set rather than the entire array.  This is done to improve the number
61  * of device combinations that can fail without causing the array to fail.
62  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63  * on a device):
64  *    A B C D    A B C D E
65  *      ...         ...
66  *    D A B C    E A B C D
67  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68  *    [A B] [C D]    [A B] [C D E]
69  *    |...| |...|    |...| | ... |
70  *    [B A] [D C]    [B A] [E C D]
71  */
72
73 /*
74  * Number of guaranteed r10bios in case of extreme VM load:
75  */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79  * device without failing the first device, or trying to over-write to
80  * correct the read error.  To keep track of bad blocks on a per-bio
81  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82  */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85  * bad-block marking which must be done from process context.  So we record
86  * the success by setting devs[n].bio to IO_MADE_GOOD
87  */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93  * the raid10 thread, we become 'congested' to provide back-pressure
94  * for writeback.
95  */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102                                 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109         struct r10conf *conf = data;
110         int size = offsetof(struct r10bio, devs[conf->copies]);
111
112         /* allocate a r10bio with room for raid_disks entries in the
113          * bios array */
114         return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119         kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131  * When performing a resync, we need to read and compare, so
132  * we need as many pages are there are copies.
133  * When performing a recovery, we need 2 bios, one for read,
134  * one for write (we recover only one drive per r10buf)
135  *
136  */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139         struct r10conf *conf = data;
140         struct page *page;
141         struct r10bio *r10_bio;
142         struct bio *bio;
143         int i, j;
144         int nalloc;
145
146         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147         if (!r10_bio)
148                 return NULL;
149
150         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152                 nalloc = conf->copies; /* resync */
153         else
154                 nalloc = 2; /* recovery */
155
156         /*
157          * Allocate bios.
158          */
159         for (j = nalloc ; j-- ; ) {
160                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161                 if (!bio)
162                         goto out_free_bio;
163                 r10_bio->devs[j].bio = bio;
164                 if (!conf->have_replacement)
165                         continue;
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].repl_bio = bio;
170         }
171         /*
172          * Allocate RESYNC_PAGES data pages and attach them
173          * where needed.
174          */
175         for (j = 0 ; j < nalloc; j++) {
176                 struct bio *rbio = r10_bio->devs[j].repl_bio;
177                 bio = r10_bio->devs[j].bio;
178                 for (i = 0; i < RESYNC_PAGES; i++) {
179                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180                                                &conf->mddev->recovery)) {
181                                 /* we can share bv_page's during recovery
182                                  * and reshape */
183                                 struct bio *rbio = r10_bio->devs[0].bio;
184                                 page = rbio->bi_io_vec[i].bv_page;
185                                 get_page(page);
186                         } else
187                                 page = alloc_page(gfp_flags);
188                         if (unlikely(!page))
189                                 goto out_free_pages;
190
191                         bio->bi_io_vec[i].bv_page = page;
192                         if (rbio)
193                                 rbio->bi_io_vec[i].bv_page = page;
194                 }
195         }
196
197         return r10_bio;
198
199 out_free_pages:
200         for ( ; i > 0 ; i--)
201                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202         while (j--)
203                 for (i = 0; i < RESYNC_PAGES ; i++)
204                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205         j = 0;
206 out_free_bio:
207         for ( ; j < nalloc; j++) {
208                 if (r10_bio->devs[j].bio)
209                         bio_put(r10_bio->devs[j].bio);
210                 if (r10_bio->devs[j].repl_bio)
211                         bio_put(r10_bio->devs[j].repl_bio);
212         }
213         r10bio_pool_free(r10_bio, conf);
214         return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219         int i;
220         struct r10conf *conf = data;
221         struct r10bio *r10bio = __r10_bio;
222         int j;
223
224         for (j=0; j < conf->copies; j++) {
225                 struct bio *bio = r10bio->devs[j].bio;
226                 if (bio) {
227                         for (i = 0; i < RESYNC_PAGES; i++) {
228                                 safe_put_page(bio->bi_io_vec[i].bv_page);
229                                 bio->bi_io_vec[i].bv_page = NULL;
230                         }
231                         bio_put(bio);
232                 }
233                 bio = r10bio->devs[j].repl_bio;
234                 if (bio)
235                         bio_put(bio);
236         }
237         r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242         int i;
243
244         for (i = 0; i < conf->copies; i++) {
245                 struct bio **bio = & r10_bio->devs[i].bio;
246                 if (!BIO_SPECIAL(*bio))
247                         bio_put(*bio);
248                 *bio = NULL;
249                 bio = &r10_bio->devs[i].repl_bio;
250                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251                         bio_put(*bio);
252                 *bio = NULL;
253         }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258         struct r10conf *conf = r10_bio->mddev->private;
259
260         put_all_bios(conf, r10_bio);
261         mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266         struct r10conf *conf = r10_bio->mddev->private;
267
268         mempool_free(r10_bio, conf->r10buf_pool);
269
270         lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275         unsigned long flags;
276         struct mddev *mddev = r10_bio->mddev;
277         struct r10conf *conf = mddev->private;
278
279         spin_lock_irqsave(&conf->device_lock, flags);
280         list_add(&r10_bio->retry_list, &conf->retry_list);
281         conf->nr_queued ++;
282         spin_unlock_irqrestore(&conf->device_lock, flags);
283
284         /* wake up frozen array... */
285         wake_up(&conf->wait_barrier);
286
287         md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291  * raid_end_bio_io() is called when we have finished servicing a mirrored
292  * operation and are ready to return a success/failure code to the buffer
293  * cache layer.
294  */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297         struct bio *bio = r10_bio->master_bio;
298         int done;
299         struct r10conf *conf = r10_bio->mddev->private;
300
301         if (bio->bi_phys_segments) {
302                 unsigned long flags;
303                 spin_lock_irqsave(&conf->device_lock, flags);
304                 bio->bi_phys_segments--;
305                 done = (bio->bi_phys_segments == 0);
306                 spin_unlock_irqrestore(&conf->device_lock, flags);
307         } else
308                 done = 1;
309         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311         if (done) {
312                 bio_endio(bio, 0);
313                 /*
314                  * Wake up any possible resync thread that waits for the device
315                  * to go idle.
316                  */
317                 allow_barrier(conf);
318         }
319         free_r10bio(r10_bio);
320 }
321
322 /*
323  * Update disk head position estimator based on IRQ completion info.
324  */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327         struct r10conf *conf = r10_bio->mddev->private;
328
329         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330                 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334  * Find the disk number which triggered given bio
335  */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337                          struct bio *bio, int *slotp, int *replp)
338 {
339         int slot;
340         int repl = 0;
341
342         for (slot = 0; slot < conf->copies; slot++) {
343                 if (r10_bio->devs[slot].bio == bio)
344                         break;
345                 if (r10_bio->devs[slot].repl_bio == bio) {
346                         repl = 1;
347                         break;
348                 }
349         }
350
351         BUG_ON(slot == conf->copies);
352         update_head_pos(slot, r10_bio);
353
354         if (slotp)
355                 *slotp = slot;
356         if (replp)
357                 *replp = repl;
358         return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364         struct r10bio *r10_bio = bio->bi_private;
365         int slot, dev;
366         struct md_rdev *rdev;
367         struct r10conf *conf = r10_bio->mddev->private;
368
369
370         slot = r10_bio->read_slot;
371         dev = r10_bio->devs[slot].devnum;
372         rdev = r10_bio->devs[slot].rdev;
373         /*
374          * this branch is our 'one mirror IO has finished' event handler:
375          */
376         update_head_pos(slot, r10_bio);
377
378         if (uptodate) {
379                 /*
380                  * Set R10BIO_Uptodate in our master bio, so that
381                  * we will return a good error code to the higher
382                  * levels even if IO on some other mirrored buffer fails.
383                  *
384                  * The 'master' represents the composite IO operation to
385                  * user-side. So if something waits for IO, then it will
386                  * wait for the 'master' bio.
387                  */
388                 set_bit(R10BIO_Uptodate, &r10_bio->state);
389         } else {
390                 /* If all other devices that store this block have
391                  * failed, we want to return the error upwards rather
392                  * than fail the last device.  Here we redefine
393                  * "uptodate" to mean "Don't want to retry"
394                  */
395                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396                              rdev->raid_disk))
397                         uptodate = 1;
398         }
399         if (uptodate) {
400                 raid_end_bio_io(r10_bio);
401                 rdev_dec_pending(rdev, conf->mddev);
402         } else {
403                 /*
404                  * oops, read error - keep the refcount on the rdev
405                  */
406                 char b[BDEVNAME_SIZE];
407                 printk_ratelimited(KERN_ERR
408                                    "md/raid10:%s: %s: rescheduling sector %llu\n",
409                                    mdname(conf->mddev),
410                                    bdevname(rdev->bdev, b),
411                                    (unsigned long long)r10_bio->sector);
412                 set_bit(R10BIO_ReadError, &r10_bio->state);
413                 reschedule_retry(r10_bio);
414         }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419         /* clear the bitmap if all writes complete successfully */
420         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421                         r10_bio->sectors,
422                         !test_bit(R10BIO_Degraded, &r10_bio->state),
423                         0);
424         md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429         if (atomic_dec_and_test(&r10_bio->remaining)) {
430                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431                         reschedule_retry(r10_bio);
432                 else {
433                         close_write(r10_bio);
434                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435                                 reschedule_retry(r10_bio);
436                         else
437                                 raid_end_bio_io(r10_bio);
438                 }
439         }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445         struct r10bio *r10_bio = bio->bi_private;
446         int dev;
447         int dec_rdev = 1;
448         struct r10conf *conf = r10_bio->mddev->private;
449         int slot, repl;
450         struct md_rdev *rdev = NULL;
451
452         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454         if (repl)
455                 rdev = conf->mirrors[dev].replacement;
456         if (!rdev) {
457                 smp_rmb();
458                 repl = 0;
459                 rdev = conf->mirrors[dev].rdev;
460         }
461         /*
462          * this branch is our 'one mirror IO has finished' event handler:
463          */
464         if (!uptodate) {
465                 if (repl)
466                         /* Never record new bad blocks to replacement,
467                          * just fail it.
468                          */
469                         md_error(rdev->mddev, rdev);
470                 else {
471                         set_bit(WriteErrorSeen, &rdev->flags);
472                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
473                                 set_bit(MD_RECOVERY_NEEDED,
474                                         &rdev->mddev->recovery);
475                         set_bit(R10BIO_WriteError, &r10_bio->state);
476                         dec_rdev = 0;
477                 }
478         } else {
479                 /*
480                  * Set R10BIO_Uptodate in our master bio, so that
481                  * we will return a good error code for to the higher
482                  * levels even if IO on some other mirrored buffer fails.
483                  *
484                  * The 'master' represents the composite IO operation to
485                  * user-side. So if something waits for IO, then it will
486                  * wait for the 'master' bio.
487                  */
488                 sector_t first_bad;
489                 int bad_sectors;
490
491                 /*
492                  * Do not set R10BIO_Uptodate if the current device is
493                  * rebuilding or Faulty. This is because we cannot use
494                  * such device for properly reading the data back (we could
495                  * potentially use it, if the current write would have felt
496                  * before rdev->recovery_offset, but for simplicity we don't
497                  * check this here.
498                  */
499                 if (test_bit(In_sync, &rdev->flags) &&
500                     !test_bit(Faulty, &rdev->flags))
501                         set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503                 /* Maybe we can clear some bad blocks. */
504                 if (is_badblock(rdev,
505                                 r10_bio->devs[slot].addr,
506                                 r10_bio->sectors,
507                                 &first_bad, &bad_sectors)) {
508                         bio_put(bio);
509                         if (repl)
510                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511                         else
512                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513                         dec_rdev = 0;
514                         set_bit(R10BIO_MadeGood, &r10_bio->state);
515                 }
516         }
517
518         /*
519          *
520          * Let's see if all mirrored write operations have finished
521          * already.
522          */
523         one_write_done(r10_bio);
524         if (dec_rdev)
525                 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529  * RAID10 layout manager
530  * As well as the chunksize and raid_disks count, there are two
531  * parameters: near_copies and far_copies.
532  * near_copies * far_copies must be <= raid_disks.
533  * Normally one of these will be 1.
534  * If both are 1, we get raid0.
535  * If near_copies == raid_disks, we get raid1.
536  *
537  * Chunks are laid out in raid0 style with near_copies copies of the
538  * first chunk, followed by near_copies copies of the next chunk and
539  * so on.
540  * If far_copies > 1, then after 1/far_copies of the array has been assigned
541  * as described above, we start again with a device offset of near_copies.
542  * So we effectively have another copy of the whole array further down all
543  * the drives, but with blocks on different drives.
544  * With this layout, and block is never stored twice on the one device.
545  *
546  * raid10_find_phys finds the sector offset of a given virtual sector
547  * on each device that it is on.
548  *
549  * raid10_find_virt does the reverse mapping, from a device and a
550  * sector offset to a virtual address
551  */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555         int n,f;
556         sector_t sector;
557         sector_t chunk;
558         sector_t stripe;
559         int dev;
560         int slot = 0;
561         int last_far_set_start, last_far_set_size;
562
563         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564         last_far_set_start *= geo->far_set_size;
565
566         last_far_set_size = geo->far_set_size;
567         last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569         /* now calculate first sector/dev */
570         chunk = r10bio->sector >> geo->chunk_shift;
571         sector = r10bio->sector & geo->chunk_mask;
572
573         chunk *= geo->near_copies;
574         stripe = chunk;
575         dev = sector_div(stripe, geo->raid_disks);
576         if (geo->far_offset)
577                 stripe *= geo->far_copies;
578
579         sector += stripe << geo->chunk_shift;
580
581         /* and calculate all the others */
582         for (n = 0; n < geo->near_copies; n++) {
583                 int d = dev;
584                 int set;
585                 sector_t s = sector;
586                 r10bio->devs[slot].devnum = d;
587                 r10bio->devs[slot].addr = s;
588                 slot++;
589
590                 for (f = 1; f < geo->far_copies; f++) {
591                         set = d / geo->far_set_size;
592                         d += geo->near_copies;
593
594                         if ((geo->raid_disks % geo->far_set_size) &&
595                             (d > last_far_set_start)) {
596                                 d -= last_far_set_start;
597                                 d %= last_far_set_size;
598                                 d += last_far_set_start;
599                         } else {
600                                 d %= geo->far_set_size;
601                                 d += geo->far_set_size * set;
602                         }
603                         s += geo->stride;
604                         r10bio->devs[slot].devnum = d;
605                         r10bio->devs[slot].addr = s;
606                         slot++;
607                 }
608                 dev++;
609                 if (dev >= geo->raid_disks) {
610                         dev = 0;
611                         sector += (geo->chunk_mask + 1);
612                 }
613         }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618         struct geom *geo = &conf->geo;
619
620         if (conf->reshape_progress != MaxSector &&
621             ((r10bio->sector >= conf->reshape_progress) !=
622              conf->mddev->reshape_backwards)) {
623                 set_bit(R10BIO_Previous, &r10bio->state);
624                 geo = &conf->prev;
625         } else
626                 clear_bit(R10BIO_Previous, &r10bio->state);
627
628         __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633         sector_t offset, chunk, vchunk;
634         /* Never use conf->prev as this is only called during resync
635          * or recovery, so reshape isn't happening
636          */
637         struct geom *geo = &conf->geo;
638         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639         int far_set_size = geo->far_set_size;
640         int last_far_set_start;
641
642         if (geo->raid_disks % geo->far_set_size) {
643                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644                 last_far_set_start *= geo->far_set_size;
645
646                 if (dev >= last_far_set_start) {
647                         far_set_size = geo->far_set_size;
648                         far_set_size += (geo->raid_disks % geo->far_set_size);
649                         far_set_start = last_far_set_start;
650                 }
651         }
652
653         offset = sector & geo->chunk_mask;
654         if (geo->far_offset) {
655                 int fc;
656                 chunk = sector >> geo->chunk_shift;
657                 fc = sector_div(chunk, geo->far_copies);
658                 dev -= fc * geo->near_copies;
659                 if (dev < far_set_start)
660                         dev += far_set_size;
661         } else {
662                 while (sector >= geo->stride) {
663                         sector -= geo->stride;
664                         if (dev < (geo->near_copies + far_set_start))
665                                 dev += far_set_size - geo->near_copies;
666                         else
667                                 dev -= geo->near_copies;
668                 }
669                 chunk = sector >> geo->chunk_shift;
670         }
671         vchunk = chunk * geo->raid_disks + dev;
672         sector_div(vchunk, geo->near_copies);
673         return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678  *      @q: request queue
679  *      @bvm: properties of new bio
680  *      @biovec: the request that could be merged to it.
681  *
682  *      Return amount of bytes we can accept at this offset
683  *      This requires checking for end-of-chunk if near_copies != raid_disks,
684  *      and for subordinate merge_bvec_fns if merge_check_needed.
685  */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687                                  struct bvec_merge_data *bvm,
688                                  struct bio_vec *biovec)
689 {
690         struct mddev *mddev = q->queuedata;
691         struct r10conf *conf = mddev->private;
692         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693         int max;
694         unsigned int chunk_sectors;
695         unsigned int bio_sectors = bvm->bi_size >> 9;
696         struct geom *geo = &conf->geo;
697
698         chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699         if (conf->reshape_progress != MaxSector &&
700             ((sector >= conf->reshape_progress) !=
701              conf->mddev->reshape_backwards))
702                 geo = &conf->prev;
703
704         if (geo->near_copies < geo->raid_disks) {
705                 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706                                         + bio_sectors)) << 9;
707                 if (max < 0)
708                         /* bio_add cannot handle a negative return */
709                         max = 0;
710                 if (max <= biovec->bv_len && bio_sectors == 0)
711                         return biovec->bv_len;
712         } else
713                 max = biovec->bv_len;
714
715         if (mddev->merge_check_needed) {
716                 struct {
717                         struct r10bio r10_bio;
718                         struct r10dev devs[conf->copies];
719                 } on_stack;
720                 struct r10bio *r10_bio = &on_stack.r10_bio;
721                 int s;
722                 if (conf->reshape_progress != MaxSector) {
723                         /* Cannot give any guidance during reshape */
724                         if (max <= biovec->bv_len && bio_sectors == 0)
725                                 return biovec->bv_len;
726                         return 0;
727                 }
728                 r10_bio->sector = sector;
729                 raid10_find_phys(conf, r10_bio);
730                 rcu_read_lock();
731                 for (s = 0; s < conf->copies; s++) {
732                         int disk = r10_bio->devs[s].devnum;
733                         struct md_rdev *rdev = rcu_dereference(
734                                 conf->mirrors[disk].rdev);
735                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
736                                 struct request_queue *q =
737                                         bdev_get_queue(rdev->bdev);
738                                 if (q->merge_bvec_fn) {
739                                         bvm->bi_sector = r10_bio->devs[s].addr
740                                                 + rdev->data_offset;
741                                         bvm->bi_bdev = rdev->bdev;
742                                         max = min(max, q->merge_bvec_fn(
743                                                           q, bvm, biovec));
744                                 }
745                         }
746                         rdev = rcu_dereference(conf->mirrors[disk].replacement);
747                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
748                                 struct request_queue *q =
749                                         bdev_get_queue(rdev->bdev);
750                                 if (q->merge_bvec_fn) {
751                                         bvm->bi_sector = r10_bio->devs[s].addr
752                                                 + rdev->data_offset;
753                                         bvm->bi_bdev = rdev->bdev;
754                                         max = min(max, q->merge_bvec_fn(
755                                                           q, bvm, biovec));
756                                 }
757                         }
758                 }
759                 rcu_read_unlock();
760         }
761         return max;
762 }
763
764 /*
765  * This routine returns the disk from which the requested read should
766  * be done. There is a per-array 'next expected sequential IO' sector
767  * number - if this matches on the next IO then we use the last disk.
768  * There is also a per-disk 'last know head position' sector that is
769  * maintained from IRQ contexts, both the normal and the resync IO
770  * completion handlers update this position correctly. If there is no
771  * perfect sequential match then we pick the disk whose head is closest.
772  *
773  * If there are 2 mirrors in the same 2 devices, performance degrades
774  * because position is mirror, not device based.
775  *
776  * The rdev for the device selected will have nr_pending incremented.
777  */
778
779 /*
780  * FIXME: possibly should rethink readbalancing and do it differently
781  * depending on near_copies / far_copies geometry.
782  */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784                                     struct r10bio *r10_bio,
785                                     int *max_sectors)
786 {
787         const sector_t this_sector = r10_bio->sector;
788         int disk, slot;
789         int sectors = r10_bio->sectors;
790         int best_good_sectors;
791         sector_t new_distance, best_dist;
792         struct md_rdev *best_rdev, *rdev = NULL;
793         int do_balance;
794         int best_slot;
795         struct geom *geo = &conf->geo;
796
797         raid10_find_phys(conf, r10_bio);
798         rcu_read_lock();
799 retry:
800         sectors = r10_bio->sectors;
801         best_slot = -1;
802         best_rdev = NULL;
803         best_dist = MaxSector;
804         best_good_sectors = 0;
805         do_balance = 1;
806         /*
807          * Check if we can balance. We can balance on the whole
808          * device if no resync is going on (recovery is ok), or below
809          * the resync window. We take the first readable disk when
810          * above the resync window.
811          */
812         if (conf->mddev->recovery_cp < MaxSector
813             && (this_sector + sectors >= conf->next_resync))
814                 do_balance = 0;
815
816         for (slot = 0; slot < conf->copies ; slot++) {
817                 sector_t first_bad;
818                 int bad_sectors;
819                 sector_t dev_sector;
820
821                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822                         continue;
823                 disk = r10_bio->devs[slot].devnum;
824                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826                     test_bit(Unmerged, &rdev->flags) ||
827                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
829                 if (rdev == NULL ||
830                     test_bit(Faulty, &rdev->flags) ||
831                     test_bit(Unmerged, &rdev->flags))
832                         continue;
833                 if (!test_bit(In_sync, &rdev->flags) &&
834                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835                         continue;
836
837                 dev_sector = r10_bio->devs[slot].addr;
838                 if (is_badblock(rdev, dev_sector, sectors,
839                                 &first_bad, &bad_sectors)) {
840                         if (best_dist < MaxSector)
841                                 /* Already have a better slot */
842                                 continue;
843                         if (first_bad <= dev_sector) {
844                                 /* Cannot read here.  If this is the
845                                  * 'primary' device, then we must not read
846                                  * beyond 'bad_sectors' from another device.
847                                  */
848                                 bad_sectors -= (dev_sector - first_bad);
849                                 if (!do_balance && sectors > bad_sectors)
850                                         sectors = bad_sectors;
851                                 if (best_good_sectors > sectors)
852                                         best_good_sectors = sectors;
853                         } else {
854                                 sector_t good_sectors =
855                                         first_bad - dev_sector;
856                                 if (good_sectors > best_good_sectors) {
857                                         best_good_sectors = good_sectors;
858                                         best_slot = slot;
859                                         best_rdev = rdev;
860                                 }
861                                 if (!do_balance)
862                                         /* Must read from here */
863                                         break;
864                         }
865                         continue;
866                 } else
867                         best_good_sectors = sectors;
868
869                 if (!do_balance)
870                         break;
871
872                 /* This optimisation is debatable, and completely destroys
873                  * sequential read speed for 'far copies' arrays.  So only
874                  * keep it for 'near' arrays, and review those later.
875                  */
876                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877                         break;
878
879                 /* for far > 1 always use the lowest address */
880                 if (geo->far_copies > 1)
881                         new_distance = r10_bio->devs[slot].addr;
882                 else
883                         new_distance = abs(r10_bio->devs[slot].addr -
884                                            conf->mirrors[disk].head_position);
885                 if (new_distance < best_dist) {
886                         best_dist = new_distance;
887                         best_slot = slot;
888                         best_rdev = rdev;
889                 }
890         }
891         if (slot >= conf->copies) {
892                 slot = best_slot;
893                 rdev = best_rdev;
894         }
895
896         if (slot >= 0) {
897                 atomic_inc(&rdev->nr_pending);
898                 if (test_bit(Faulty, &rdev->flags)) {
899                         /* Cannot risk returning a device that failed
900                          * before we inc'ed nr_pending
901                          */
902                         rdev_dec_pending(rdev, conf->mddev);
903                         goto retry;
904                 }
905                 r10_bio->read_slot = slot;
906         } else
907                 rdev = NULL;
908         rcu_read_unlock();
909         *max_sectors = best_good_sectors;
910
911         return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916         struct r10conf *conf = mddev->private;
917         int i, ret = 0;
918
919         if ((bits & (1 << BDI_async_congested)) &&
920             conf->pending_count >= max_queued_requests)
921                 return 1;
922
923         rcu_read_lock();
924         for (i = 0;
925              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926                      && ret == 0;
927              i++) {
928                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930                         struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932                         ret |= bdi_congested(&q->backing_dev_info, bits);
933                 }
934         }
935         rcu_read_unlock();
936         return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942         struct mddev *mddev = data;
943
944         return mddev_congested(mddev, bits) ||
945                 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950         /* Any writes that have been queued but are awaiting
951          * bitmap updates get flushed here.
952          */
953         spin_lock_irq(&conf->device_lock);
954
955         if (conf->pending_bio_list.head) {
956                 struct bio *bio;
957                 bio = bio_list_get(&conf->pending_bio_list);
958                 conf->pending_count = 0;
959                 spin_unlock_irq(&conf->device_lock);
960                 /* flush any pending bitmap writes to disk
961                  * before proceeding w/ I/O */
962                 bitmap_unplug(conf->mddev->bitmap);
963                 wake_up(&conf->wait_barrier);
964
965                 while (bio) { /* submit pending writes */
966                         struct bio *next = bio->bi_next;
967                         bio->bi_next = NULL;
968                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970                                 /* Just ignore it */
971                                 bio_endio(bio, 0);
972                         else
973                                 generic_make_request(bio);
974                         bio = next;
975                 }
976         } else
977                 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981  * Sometimes we need to suspend IO while we do something else,
982  * either some resync/recovery, or reconfigure the array.
983  * To do this we raise a 'barrier'.
984  * The 'barrier' is a counter that can be raised multiple times
985  * to count how many activities are happening which preclude
986  * normal IO.
987  * We can only raise the barrier if there is no pending IO.
988  * i.e. if nr_pending == 0.
989  * We choose only to raise the barrier if no-one is waiting for the
990  * barrier to go down.  This means that as soon as an IO request
991  * is ready, no other operations which require a barrier will start
992  * until the IO request has had a chance.
993  *
994  * So: regular IO calls 'wait_barrier'.  When that returns there
995  *    is no backgroup IO happening,  It must arrange to call
996  *    allow_barrier when it has finished its IO.
997  * backgroup IO calls must call raise_barrier.  Once that returns
998  *    there is no normal IO happeing.  It must arrange to call
999  *    lower_barrier when the particular background IO completes.
1000  */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004         BUG_ON(force && !conf->barrier);
1005         spin_lock_irq(&conf->resync_lock);
1006
1007         /* Wait until no block IO is waiting (unless 'force') */
1008         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009                             conf->resync_lock);
1010
1011         /* block any new IO from starting */
1012         conf->barrier++;
1013
1014         /* Now wait for all pending IO to complete */
1015         wait_event_lock_irq(conf->wait_barrier,
1016                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017                             conf->resync_lock);
1018
1019         spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024         unsigned long flags;
1025         spin_lock_irqsave(&conf->resync_lock, flags);
1026         conf->barrier--;
1027         spin_unlock_irqrestore(&conf->resync_lock, flags);
1028         wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033         spin_lock_irq(&conf->resync_lock);
1034         if (conf->barrier) {
1035                 conf->nr_waiting++;
1036                 /* Wait for the barrier to drop.
1037                  * However if there are already pending
1038                  * requests (preventing the barrier from
1039                  * rising completely), and the
1040                  * pre-process bio queue isn't empty,
1041                  * then don't wait, as we need to empty
1042                  * that queue to get the nr_pending
1043                  * count down.
1044                  */
1045                 wait_event_lock_irq(conf->wait_barrier,
1046                                     !conf->barrier ||
1047                                     (conf->nr_pending &&
1048                                      current->bio_list &&
1049                                      !bio_list_empty(current->bio_list)),
1050                                     conf->resync_lock);
1051                 conf->nr_waiting--;
1052         }
1053         conf->nr_pending++;
1054         spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059         unsigned long flags;
1060         spin_lock_irqsave(&conf->resync_lock, flags);
1061         conf->nr_pending--;
1062         spin_unlock_irqrestore(&conf->resync_lock, flags);
1063         wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068         /* stop syncio and normal IO and wait for everything to
1069          * go quiet.
1070          * We increment barrier and nr_waiting, and then
1071          * wait until nr_pending match nr_queued+extra
1072          * This is called in the context of one normal IO request
1073          * that has failed. Thus any sync request that might be pending
1074          * will be blocked by nr_pending, and we need to wait for
1075          * pending IO requests to complete or be queued for re-try.
1076          * Thus the number queued (nr_queued) plus this request (extra)
1077          * must match the number of pending IOs (nr_pending) before
1078          * we continue.
1079          */
1080         spin_lock_irq(&conf->resync_lock);
1081         conf->barrier++;
1082         conf->nr_waiting++;
1083         wait_event_lock_irq_cmd(conf->wait_barrier,
1084                                 conf->nr_pending == conf->nr_queued+extra,
1085                                 conf->resync_lock,
1086                                 flush_pending_writes(conf));
1087
1088         spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093         /* reverse the effect of the freeze */
1094         spin_lock_irq(&conf->resync_lock);
1095         conf->barrier--;
1096         conf->nr_waiting--;
1097         wake_up(&conf->wait_barrier);
1098         spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102                                    struct md_rdev *rdev)
1103 {
1104         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105             test_bit(R10BIO_Previous, &r10_bio->state))
1106                 return rdev->data_offset;
1107         else
1108                 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112         struct blk_plug_cb      cb;
1113         struct bio_list         pending;
1114         int                     pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120                                                    cb);
1121         struct mddev *mddev = plug->cb.data;
1122         struct r10conf *conf = mddev->private;
1123         struct bio *bio;
1124
1125         if (from_schedule || current->bio_list) {
1126                 spin_lock_irq(&conf->device_lock);
1127                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128                 conf->pending_count += plug->pending_cnt;
1129                 spin_unlock_irq(&conf->device_lock);
1130                 wake_up(&conf->wait_barrier);
1131                 md_wakeup_thread(mddev->thread);
1132                 kfree(plug);
1133                 return;
1134         }
1135
1136         /* we aren't scheduling, so we can do the write-out directly. */
1137         bio = bio_list_get(&plug->pending);
1138         bitmap_unplug(mddev->bitmap);
1139         wake_up(&conf->wait_barrier);
1140
1141         while (bio) { /* submit pending writes */
1142                 struct bio *next = bio->bi_next;
1143                 bio->bi_next = NULL;
1144                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146                         /* Just ignore it */
1147                         bio_endio(bio, 0);
1148                 else
1149                         generic_make_request(bio);
1150                 bio = next;
1151         }
1152         kfree(plug);
1153 }
1154
1155 static void __make_request(struct mddev *mddev, struct bio *bio)
1156 {
1157         struct r10conf *conf = mddev->private;
1158         struct r10bio *r10_bio;
1159         struct bio *read_bio;
1160         int i;
1161         const int rw = bio_data_dir(bio);
1162         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163         const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164         const unsigned long do_discard = (bio->bi_rw
1165                                           & (REQ_DISCARD | REQ_SECURE));
1166         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167         unsigned long flags;
1168         struct md_rdev *blocked_rdev;
1169         struct blk_plug_cb *cb;
1170         struct raid10_plug_cb *plug = NULL;
1171         int sectors_handled;
1172         int max_sectors;
1173         int sectors;
1174
1175         /*
1176          * Register the new request and wait if the reconstruction
1177          * thread has put up a bar for new requests.
1178          * Continue immediately if no resync is active currently.
1179          */
1180         wait_barrier(conf);
1181
1182         sectors = bio_sectors(bio);
1183         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184             bio->bi_iter.bi_sector < conf->reshape_progress &&
1185             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186                 /* IO spans the reshape position.  Need to wait for
1187                  * reshape to pass
1188                  */
1189                 allow_barrier(conf);
1190                 wait_event(conf->wait_barrier,
1191                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1193                            sectors);
1194                 wait_barrier(conf);
1195         }
1196         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197             bio_data_dir(bio) == WRITE &&
1198             (mddev->reshape_backwards
1199              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203                 /* Need to update reshape_position in metadata */
1204                 mddev->reshape_position = conf->reshape_progress;
1205                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207                 md_wakeup_thread(mddev->thread);
1208                 wait_event(mddev->sb_wait,
1209                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210
1211                 conf->reshape_safe = mddev->reshape_position;
1212         }
1213
1214         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215
1216         r10_bio->master_bio = bio;
1217         r10_bio->sectors = sectors;
1218
1219         r10_bio->mddev = mddev;
1220         r10_bio->sector = bio->bi_iter.bi_sector;
1221         r10_bio->state = 0;
1222
1223         /* We might need to issue multiple reads to different
1224          * devices if there are bad blocks around, so we keep
1225          * track of the number of reads in bio->bi_phys_segments.
1226          * If this is 0, there is only one r10_bio and no locking
1227          * will be needed when the request completes.  If it is
1228          * non-zero, then it is the number of not-completed requests.
1229          */
1230         bio->bi_phys_segments = 0;
1231         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232
1233         if (rw == READ) {
1234                 /*
1235                  * read balancing logic:
1236                  */
1237                 struct md_rdev *rdev;
1238                 int slot;
1239
1240 read_again:
1241                 rdev = read_balance(conf, r10_bio, &max_sectors);
1242                 if (!rdev) {
1243                         raid_end_bio_io(r10_bio);
1244                         return;
1245                 }
1246                 slot = r10_bio->read_slot;
1247
1248                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249                 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250                          max_sectors);
1251
1252                 r10_bio->devs[slot].bio = read_bio;
1253                 r10_bio->devs[slot].rdev = rdev;
1254
1255                 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256                         choose_data_offset(r10_bio, rdev);
1257                 read_bio->bi_bdev = rdev->bdev;
1258                 read_bio->bi_end_io = raid10_end_read_request;
1259                 read_bio->bi_rw = READ | do_sync;
1260                 read_bio->bi_private = r10_bio;
1261
1262                 if (max_sectors < r10_bio->sectors) {
1263                         /* Could not read all from this device, so we will
1264                          * need another r10_bio.
1265                          */
1266                         sectors_handled = (r10_bio->sector + max_sectors
1267                                            - bio->bi_iter.bi_sector);
1268                         r10_bio->sectors = max_sectors;
1269                         spin_lock_irq(&conf->device_lock);
1270                         if (bio->bi_phys_segments == 0)
1271                                 bio->bi_phys_segments = 2;
1272                         else
1273                                 bio->bi_phys_segments++;
1274                         spin_unlock_irq(&conf->device_lock);
1275                         /* Cannot call generic_make_request directly
1276                          * as that will be queued in __generic_make_request
1277                          * and subsequent mempool_alloc might block
1278                          * waiting for it.  so hand bio over to raid10d.
1279                          */
1280                         reschedule_retry(r10_bio);
1281
1282                         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283
1284                         r10_bio->master_bio = bio;
1285                         r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286                         r10_bio->state = 0;
1287                         r10_bio->mddev = mddev;
1288                         r10_bio->sector = bio->bi_iter.bi_sector +
1289                                 sectors_handled;
1290                         goto read_again;
1291                 } else
1292                         generic_make_request(read_bio);
1293                 return;
1294         }
1295
1296         /*
1297          * WRITE:
1298          */
1299         if (conf->pending_count >= max_queued_requests) {
1300                 md_wakeup_thread(mddev->thread);
1301                 wait_event(conf->wait_barrier,
1302                            conf->pending_count < max_queued_requests);
1303         }
1304         /* first select target devices under rcu_lock and
1305          * inc refcount on their rdev.  Record them by setting
1306          * bios[x] to bio
1307          * If there are known/acknowledged bad blocks on any device
1308          * on which we have seen a write error, we want to avoid
1309          * writing to those blocks.  This potentially requires several
1310          * writes to write around the bad blocks.  Each set of writes
1311          * gets its own r10_bio with a set of bios attached.  The number
1312          * of r10_bios is recored in bio->bi_phys_segments just as with
1313          * the read case.
1314          */
1315
1316         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317         raid10_find_phys(conf, r10_bio);
1318 retry_write:
1319         blocked_rdev = NULL;
1320         rcu_read_lock();
1321         max_sectors = r10_bio->sectors;
1322
1323         for (i = 0;  i < conf->copies; i++) {
1324                 int d = r10_bio->devs[i].devnum;
1325                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326                 struct md_rdev *rrdev = rcu_dereference(
1327                         conf->mirrors[d].replacement);
1328                 if (rdev == rrdev)
1329                         rrdev = NULL;
1330                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331                         atomic_inc(&rdev->nr_pending);
1332                         blocked_rdev = rdev;
1333                         break;
1334                 }
1335                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336                         atomic_inc(&rrdev->nr_pending);
1337                         blocked_rdev = rrdev;
1338                         break;
1339                 }
1340                 if (rdev && (test_bit(Faulty, &rdev->flags)
1341                              || test_bit(Unmerged, &rdev->flags)))
1342                         rdev = NULL;
1343                 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344                               || test_bit(Unmerged, &rrdev->flags)))
1345                         rrdev = NULL;
1346
1347                 r10_bio->devs[i].bio = NULL;
1348                 r10_bio->devs[i].repl_bio = NULL;
1349
1350                 if (!rdev && !rrdev) {
1351                         set_bit(R10BIO_Degraded, &r10_bio->state);
1352                         continue;
1353                 }
1354                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355                         sector_t first_bad;
1356                         sector_t dev_sector = r10_bio->devs[i].addr;
1357                         int bad_sectors;
1358                         int is_bad;
1359
1360                         is_bad = is_badblock(rdev, dev_sector,
1361                                              max_sectors,
1362                                              &first_bad, &bad_sectors);
1363                         if (is_bad < 0) {
1364                                 /* Mustn't write here until the bad block
1365                                  * is acknowledged
1366                                  */
1367                                 atomic_inc(&rdev->nr_pending);
1368                                 set_bit(BlockedBadBlocks, &rdev->flags);
1369                                 blocked_rdev = rdev;
1370                                 break;
1371                         }
1372                         if (is_bad && first_bad <= dev_sector) {
1373                                 /* Cannot write here at all */
1374                                 bad_sectors -= (dev_sector - first_bad);
1375                                 if (bad_sectors < max_sectors)
1376                                         /* Mustn't write more than bad_sectors
1377                                          * to other devices yet
1378                                          */
1379                                         max_sectors = bad_sectors;
1380                                 /* We don't set R10BIO_Degraded as that
1381                                  * only applies if the disk is missing,
1382                                  * so it might be re-added, and we want to
1383                                  * know to recover this chunk.
1384                                  * In this case the device is here, and the
1385                                  * fact that this chunk is not in-sync is
1386                                  * recorded in the bad block log.
1387                                  */
1388                                 continue;
1389                         }
1390                         if (is_bad) {
1391                                 int good_sectors = first_bad - dev_sector;
1392                                 if (good_sectors < max_sectors)
1393                                         max_sectors = good_sectors;
1394                         }
1395                 }
1396                 if (rdev) {
1397                         r10_bio->devs[i].bio = bio;
1398                         atomic_inc(&rdev->nr_pending);
1399                 }
1400                 if (rrdev) {
1401                         r10_bio->devs[i].repl_bio = bio;
1402                         atomic_inc(&rrdev->nr_pending);
1403                 }
1404         }
1405         rcu_read_unlock();
1406
1407         if (unlikely(blocked_rdev)) {
1408                 /* Have to wait for this device to get unblocked, then retry */
1409                 int j;
1410                 int d;
1411
1412                 for (j = 0; j < i; j++) {
1413                         if (r10_bio->devs[j].bio) {
1414                                 d = r10_bio->devs[j].devnum;
1415                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416                         }
1417                         if (r10_bio->devs[j].repl_bio) {
1418                                 struct md_rdev *rdev;
1419                                 d = r10_bio->devs[j].devnum;
1420                                 rdev = conf->mirrors[d].replacement;
1421                                 if (!rdev) {
1422                                         /* Race with remove_disk */
1423                                         smp_mb();
1424                                         rdev = conf->mirrors[d].rdev;
1425                                 }
1426                                 rdev_dec_pending(rdev, mddev);
1427                         }
1428                 }
1429                 allow_barrier(conf);
1430                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431                 wait_barrier(conf);
1432                 goto retry_write;
1433         }
1434
1435         if (max_sectors < r10_bio->sectors) {
1436                 /* We are splitting this into multiple parts, so
1437                  * we need to prepare for allocating another r10_bio.
1438                  */
1439                 r10_bio->sectors = max_sectors;
1440                 spin_lock_irq(&conf->device_lock);
1441                 if (bio->bi_phys_segments == 0)
1442                         bio->bi_phys_segments = 2;
1443                 else
1444                         bio->bi_phys_segments++;
1445                 spin_unlock_irq(&conf->device_lock);
1446         }
1447         sectors_handled = r10_bio->sector + max_sectors -
1448                 bio->bi_iter.bi_sector;
1449
1450         atomic_set(&r10_bio->remaining, 1);
1451         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452
1453         for (i = 0; i < conf->copies; i++) {
1454                 struct bio *mbio;
1455                 int d = r10_bio->devs[i].devnum;
1456                 if (r10_bio->devs[i].bio) {
1457                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1458                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460                                  max_sectors);
1461                         r10_bio->devs[i].bio = mbio;
1462
1463                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1464                                            choose_data_offset(r10_bio,
1465                                                               rdev));
1466                         mbio->bi_bdev = rdev->bdev;
1467                         mbio->bi_end_io = raid10_end_write_request;
1468                         mbio->bi_rw =
1469                                 WRITE | do_sync | do_fua | do_discard | do_same;
1470                         mbio->bi_private = r10_bio;
1471
1472                         atomic_inc(&r10_bio->remaining);
1473
1474                         cb = blk_check_plugged(raid10_unplug, mddev,
1475                                                sizeof(*plug));
1476                         if (cb)
1477                                 plug = container_of(cb, struct raid10_plug_cb,
1478                                                     cb);
1479                         else
1480                                 plug = NULL;
1481                         spin_lock_irqsave(&conf->device_lock, flags);
1482                         if (plug) {
1483                                 bio_list_add(&plug->pending, mbio);
1484                                 plug->pending_cnt++;
1485                         } else {
1486                                 bio_list_add(&conf->pending_bio_list, mbio);
1487                                 conf->pending_count++;
1488                         }
1489                         spin_unlock_irqrestore(&conf->device_lock, flags);
1490                         if (!plug)
1491                                 md_wakeup_thread(mddev->thread);
1492                 }
1493
1494                 if (r10_bio->devs[i].repl_bio) {
1495                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1496                         if (rdev == NULL) {
1497                                 /* Replacement just got moved to main 'rdev' */
1498                                 smp_mb();
1499                                 rdev = conf->mirrors[d].rdev;
1500                         }
1501                         mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503                                  max_sectors);
1504                         r10_bio->devs[i].repl_bio = mbio;
1505
1506                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1507                                            choose_data_offset(
1508                                                    r10_bio, rdev));
1509                         mbio->bi_bdev = rdev->bdev;
1510                         mbio->bi_end_io = raid10_end_write_request;
1511                         mbio->bi_rw =
1512                                 WRITE | do_sync | do_fua | do_discard | do_same;
1513                         mbio->bi_private = r10_bio;
1514
1515                         atomic_inc(&r10_bio->remaining);
1516                         spin_lock_irqsave(&conf->device_lock, flags);
1517                         bio_list_add(&conf->pending_bio_list, mbio);
1518                         conf->pending_count++;
1519                         spin_unlock_irqrestore(&conf->device_lock, flags);
1520                         if (!mddev_check_plugged(mddev))
1521                                 md_wakeup_thread(mddev->thread);
1522                 }
1523         }
1524
1525         /* Don't remove the bias on 'remaining' (one_write_done) until
1526          * after checking if we need to go around again.
1527          */
1528
1529         if (sectors_handled < bio_sectors(bio)) {
1530                 one_write_done(r10_bio);
1531                 /* We need another r10_bio.  It has already been counted
1532                  * in bio->bi_phys_segments.
1533                  */
1534                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535
1536                 r10_bio->master_bio = bio;
1537                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538
1539                 r10_bio->mddev = mddev;
1540                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541                 r10_bio->state = 0;
1542                 goto retry_write;
1543         }
1544         one_write_done(r10_bio);
1545 }
1546
1547 static void make_request(struct mddev *mddev, struct bio *bio)
1548 {
1549         struct r10conf *conf = mddev->private;
1550         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551         int chunk_sects = chunk_mask + 1;
1552
1553         struct bio *split;
1554
1555         if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556                 md_flush_request(mddev, bio);
1557                 return;
1558         }
1559
1560         md_write_start(mddev, bio);
1561
1562
1563         do {
1564
1565                 /*
1566                  * If this request crosses a chunk boundary, we need to split
1567                  * it.
1568                  */
1569                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570                              bio_sectors(bio) > chunk_sects
1571                              && (conf->geo.near_copies < conf->geo.raid_disks
1572                                  || conf->prev.near_copies <
1573                                  conf->prev.raid_disks))) {
1574                         split = bio_split(bio, chunk_sects -
1575                                           (bio->bi_iter.bi_sector &
1576                                            (chunk_sects - 1)),
1577                                           GFP_NOIO, fs_bio_set);
1578                         bio_chain(split, bio);
1579                 } else {
1580                         split = bio;
1581                 }
1582
1583                 __make_request(mddev, split);
1584         } while (split != bio);
1585
1586         /* In case raid10d snuck in to freeze_array */
1587         wake_up(&conf->wait_barrier);
1588 }
1589
1590 static void status(struct seq_file *seq, struct mddev *mddev)
1591 {
1592         struct r10conf *conf = mddev->private;
1593         int i;
1594
1595         if (conf->geo.near_copies < conf->geo.raid_disks)
1596                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597         if (conf->geo.near_copies > 1)
1598                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599         if (conf->geo.far_copies > 1) {
1600                 if (conf->geo.far_offset)
1601                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602                 else
1603                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1604         }
1605         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606                                         conf->geo.raid_disks - mddev->degraded);
1607         for (i = 0; i < conf->geo.raid_disks; i++)
1608                 seq_printf(seq, "%s",
1609                               conf->mirrors[i].rdev &&
1610                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1611         seq_printf(seq, "]");
1612 }
1613
1614 /* check if there are enough drives for
1615  * every block to appear on atleast one.
1616  * Don't consider the device numbered 'ignore'
1617  * as we might be about to remove it.
1618  */
1619 static int _enough(struct r10conf *conf, int previous, int ignore)
1620 {
1621         int first = 0;
1622         int has_enough = 0;
1623         int disks, ncopies;
1624         if (previous) {
1625                 disks = conf->prev.raid_disks;
1626                 ncopies = conf->prev.near_copies;
1627         } else {
1628                 disks = conf->geo.raid_disks;
1629                 ncopies = conf->geo.near_copies;
1630         }
1631
1632         rcu_read_lock();
1633         do {
1634                 int n = conf->copies;
1635                 int cnt = 0;
1636                 int this = first;
1637                 while (n--) {
1638                         struct md_rdev *rdev;
1639                         if (this != ignore &&
1640                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641                             test_bit(In_sync, &rdev->flags))
1642                                 cnt++;
1643                         this = (this+1) % disks;
1644                 }
1645                 if (cnt == 0)
1646                         goto out;
1647                 first = (first + ncopies) % disks;
1648         } while (first != 0);
1649         has_enough = 1;
1650 out:
1651         rcu_read_unlock();
1652         return has_enough;
1653 }
1654
1655 static int enough(struct r10conf *conf, int ignore)
1656 {
1657         /* when calling 'enough', both 'prev' and 'geo' must
1658          * be stable.
1659          * This is ensured if ->reconfig_mutex or ->device_lock
1660          * is held.
1661          */
1662         return _enough(conf, 0, ignore) &&
1663                 _enough(conf, 1, ignore);
1664 }
1665
1666 static void error(struct mddev *mddev, struct md_rdev *rdev)
1667 {
1668         char b[BDEVNAME_SIZE];
1669         struct r10conf *conf = mddev->private;
1670         unsigned long flags;
1671
1672         /*
1673          * If it is not operational, then we have already marked it as dead
1674          * else if it is the last working disks, ignore the error, let the
1675          * next level up know.
1676          * else mark the drive as failed
1677          */
1678         spin_lock_irqsave(&conf->device_lock, flags);
1679         if (test_bit(In_sync, &rdev->flags)
1680             && !enough(conf, rdev->raid_disk)) {
1681                 /*
1682                  * Don't fail the drive, just return an IO error.
1683                  */
1684                 spin_unlock_irqrestore(&conf->device_lock, flags);
1685                 return;
1686         }
1687         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1688                 mddev->degraded++;
1689                         /*
1690                  * if recovery is running, make sure it aborts.
1691                  */
1692                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693         }
1694         set_bit(Blocked, &rdev->flags);
1695         set_bit(Faulty, &rdev->flags);
1696         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1697         spin_unlock_irqrestore(&conf->device_lock, flags);
1698         printk(KERN_ALERT
1699                "md/raid10:%s: Disk failure on %s, disabling device.\n"
1700                "md/raid10:%s: Operation continuing on %d devices.\n",
1701                mdname(mddev), bdevname(rdev->bdev, b),
1702                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1703 }
1704
1705 static void print_conf(struct r10conf *conf)
1706 {
1707         int i;
1708         struct raid10_info *tmp;
1709
1710         printk(KERN_DEBUG "RAID10 conf printout:\n");
1711         if (!conf) {
1712                 printk(KERN_DEBUG "(!conf)\n");
1713                 return;
1714         }
1715         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1716                 conf->geo.raid_disks);
1717
1718         for (i = 0; i < conf->geo.raid_disks; i++) {
1719                 char b[BDEVNAME_SIZE];
1720                 tmp = conf->mirrors + i;
1721                 if (tmp->rdev)
1722                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1723                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1724                                 !test_bit(Faulty, &tmp->rdev->flags),
1725                                 bdevname(tmp->rdev->bdev,b));
1726         }
1727 }
1728
1729 static void close_sync(struct r10conf *conf)
1730 {
1731         wait_barrier(conf);
1732         allow_barrier(conf);
1733
1734         mempool_destroy(conf->r10buf_pool);
1735         conf->r10buf_pool = NULL;
1736 }
1737
1738 static int raid10_spare_active(struct mddev *mddev)
1739 {
1740         int i;
1741         struct r10conf *conf = mddev->private;
1742         struct raid10_info *tmp;
1743         int count = 0;
1744         unsigned long flags;
1745
1746         /*
1747          * Find all non-in_sync disks within the RAID10 configuration
1748          * and mark them in_sync
1749          */
1750         for (i = 0; i < conf->geo.raid_disks; i++) {
1751                 tmp = conf->mirrors + i;
1752                 if (tmp->replacement
1753                     && tmp->replacement->recovery_offset == MaxSector
1754                     && !test_bit(Faulty, &tmp->replacement->flags)
1755                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1756                         /* Replacement has just become active */
1757                         if (!tmp->rdev
1758                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1759                                 count++;
1760                         if (tmp->rdev) {
1761                                 /* Replaced device not technically faulty,
1762                                  * but we need to be sure it gets removed
1763                                  * and never re-added.
1764                                  */
1765                                 set_bit(Faulty, &tmp->rdev->flags);
1766                                 sysfs_notify_dirent_safe(
1767                                         tmp->rdev->sysfs_state);
1768                         }
1769                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1770                 } else if (tmp->rdev
1771                            && tmp->rdev->recovery_offset == MaxSector
1772                            && !test_bit(Faulty, &tmp->rdev->flags)
1773                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1774                         count++;
1775                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1776                 }
1777         }
1778         spin_lock_irqsave(&conf->device_lock, flags);
1779         mddev->degraded -= count;
1780         spin_unlock_irqrestore(&conf->device_lock, flags);
1781
1782         print_conf(conf);
1783         return count;
1784 }
1785
1786
1787 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788 {
1789         struct r10conf *conf = mddev->private;
1790         int err = -EEXIST;
1791         int mirror;
1792         int first = 0;
1793         int last = conf->geo.raid_disks - 1;
1794         struct request_queue *q = bdev_get_queue(rdev->bdev);
1795
1796         if (mddev->recovery_cp < MaxSector)
1797                 /* only hot-add to in-sync arrays, as recovery is
1798                  * very different from resync
1799                  */
1800                 return -EBUSY;
1801         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802                 return -EINVAL;
1803
1804         if (rdev->raid_disk >= 0)
1805                 first = last = rdev->raid_disk;
1806
1807         if (q->merge_bvec_fn) {
1808                 set_bit(Unmerged, &rdev->flags);
1809                 mddev->merge_check_needed = 1;
1810         }
1811
1812         if (rdev->saved_raid_disk >= first &&
1813             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814                 mirror = rdev->saved_raid_disk;
1815         else
1816                 mirror = first;
1817         for ( ; mirror <= last ; mirror++) {
1818                 struct raid10_info *p = &conf->mirrors[mirror];
1819                 if (p->recovery_disabled == mddev->recovery_disabled)
1820                         continue;
1821                 if (p->rdev) {
1822                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823                             p->replacement != NULL)
1824                                 continue;
1825                         clear_bit(In_sync, &rdev->flags);
1826                         set_bit(Replacement, &rdev->flags);
1827                         rdev->raid_disk = mirror;
1828                         err = 0;
1829                         if (mddev->gendisk)
1830                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1831                                                   rdev->data_offset << 9);
1832                         conf->fullsync = 1;
1833                         rcu_assign_pointer(p->replacement, rdev);
1834                         break;
1835                 }
1836
1837                 if (mddev->gendisk)
1838                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1839                                           rdev->data_offset << 9);
1840
1841                 p->head_position = 0;
1842                 p->recovery_disabled = mddev->recovery_disabled - 1;
1843                 rdev->raid_disk = mirror;
1844                 err = 0;
1845                 if (rdev->saved_raid_disk != mirror)
1846                         conf->fullsync = 1;
1847                 rcu_assign_pointer(p->rdev, rdev);
1848                 break;
1849         }
1850         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1851                 /* Some requests might not have seen this new
1852                  * merge_bvec_fn.  We must wait for them to complete
1853                  * before merging the device fully.
1854                  * First we make sure any code which has tested
1855                  * our function has submitted the request, then
1856                  * we wait for all outstanding requests to complete.
1857                  */
1858                 synchronize_sched();
1859                 freeze_array(conf, 0);
1860                 unfreeze_array(conf);
1861                 clear_bit(Unmerged, &rdev->flags);
1862         }
1863         md_integrity_add_rdev(rdev, mddev);
1864         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1865                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1866
1867         print_conf(conf);
1868         return err;
1869 }
1870
1871 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1872 {
1873         struct r10conf *conf = mddev->private;
1874         int err = 0;
1875         int number = rdev->raid_disk;
1876         struct md_rdev **rdevp;
1877         struct raid10_info *p = conf->mirrors + number;
1878
1879         print_conf(conf);
1880         if (rdev == p->rdev)
1881                 rdevp = &p->rdev;
1882         else if (rdev == p->replacement)
1883                 rdevp = &p->replacement;
1884         else
1885                 return 0;
1886
1887         if (test_bit(In_sync, &rdev->flags) ||
1888             atomic_read(&rdev->nr_pending)) {
1889                 err = -EBUSY;
1890                 goto abort;
1891         }
1892         /* Only remove faulty devices if recovery
1893          * is not possible.
1894          */
1895         if (!test_bit(Faulty, &rdev->flags) &&
1896             mddev->recovery_disabled != p->recovery_disabled &&
1897             (!p->replacement || p->replacement == rdev) &&
1898             number < conf->geo.raid_disks &&
1899             enough(conf, -1)) {
1900                 err = -EBUSY;
1901                 goto abort;
1902         }
1903         *rdevp = NULL;
1904         synchronize_rcu();
1905         if (atomic_read(&rdev->nr_pending)) {
1906                 /* lost the race, try later */
1907                 err = -EBUSY;
1908                 *rdevp = rdev;
1909                 goto abort;
1910         } else if (p->replacement) {
1911                 /* We must have just cleared 'rdev' */
1912                 p->rdev = p->replacement;
1913                 clear_bit(Replacement, &p->replacement->flags);
1914                 smp_mb(); /* Make sure other CPUs may see both as identical
1915                            * but will never see neither -- if they are careful.
1916                            */
1917                 p->replacement = NULL;
1918                 clear_bit(WantReplacement, &rdev->flags);
1919         } else
1920                 /* We might have just remove the Replacement as faulty
1921                  * Clear the flag just in case
1922                  */
1923                 clear_bit(WantReplacement, &rdev->flags);
1924
1925         err = md_integrity_register(mddev);
1926
1927 abort:
1928
1929         print_conf(conf);
1930         return err;
1931 }
1932
1933
1934 static void end_sync_read(struct bio *bio, int error)
1935 {
1936         struct r10bio *r10_bio = bio->bi_private;
1937         struct r10conf *conf = r10_bio->mddev->private;
1938         int d;
1939
1940         if (bio == r10_bio->master_bio) {
1941                 /* this is a reshape read */
1942                 d = r10_bio->read_slot; /* really the read dev */
1943         } else
1944                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1945
1946         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1947                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1948         else
1949                 /* The write handler will notice the lack of
1950                  * R10BIO_Uptodate and record any errors etc
1951                  */
1952                 atomic_add(r10_bio->sectors,
1953                            &conf->mirrors[d].rdev->corrected_errors);
1954
1955         /* for reconstruct, we always reschedule after a read.
1956          * for resync, only after all reads
1957          */
1958         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1959         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1960             atomic_dec_and_test(&r10_bio->remaining)) {
1961                 /* we have read all the blocks,
1962                  * do the comparison in process context in raid10d
1963                  */
1964                 reschedule_retry(r10_bio);
1965         }
1966 }
1967
1968 static void end_sync_request(struct r10bio *r10_bio)
1969 {
1970         struct mddev *mddev = r10_bio->mddev;
1971
1972         while (atomic_dec_and_test(&r10_bio->remaining)) {
1973                 if (r10_bio->master_bio == NULL) {
1974                         /* the primary of several recovery bios */
1975                         sector_t s = r10_bio->sectors;
1976                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977                             test_bit(R10BIO_WriteError, &r10_bio->state))
1978                                 reschedule_retry(r10_bio);
1979                         else
1980                                 put_buf(r10_bio);
1981                         md_done_sync(mddev, s, 1);
1982                         break;
1983                 } else {
1984                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1985                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1986                             test_bit(R10BIO_WriteError, &r10_bio->state))
1987                                 reschedule_retry(r10_bio);
1988                         else
1989                                 put_buf(r10_bio);
1990                         r10_bio = r10_bio2;
1991                 }
1992         }
1993 }
1994
1995 static void end_sync_write(struct bio *bio, int error)
1996 {
1997         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1998         struct r10bio *r10_bio = bio->bi_private;
1999         struct mddev *mddev = r10_bio->mddev;
2000         struct r10conf *conf = mddev->private;
2001         int d;
2002         sector_t first_bad;
2003         int bad_sectors;
2004         int slot;
2005         int repl;
2006         struct md_rdev *rdev = NULL;
2007
2008         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2009         if (repl)
2010                 rdev = conf->mirrors[d].replacement;
2011         else
2012                 rdev = conf->mirrors[d].rdev;
2013
2014         if (!uptodate) {
2015                 if (repl)
2016                         md_error(mddev, rdev);
2017                 else {
2018                         set_bit(WriteErrorSeen, &rdev->flags);
2019                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2020                                 set_bit(MD_RECOVERY_NEEDED,
2021                                         &rdev->mddev->recovery);
2022                         set_bit(R10BIO_WriteError, &r10_bio->state);
2023                 }
2024         } else if (is_badblock(rdev,
2025                              r10_bio->devs[slot].addr,
2026                              r10_bio->sectors,
2027                              &first_bad, &bad_sectors))
2028                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2029
2030         rdev_dec_pending(rdev, mddev);
2031
2032         end_sync_request(r10_bio);
2033 }
2034
2035 /*
2036  * Note: sync and recover and handled very differently for raid10
2037  * This code is for resync.
2038  * For resync, we read through virtual addresses and read all blocks.
2039  * If there is any error, we schedule a write.  The lowest numbered
2040  * drive is authoritative.
2041  * However requests come for physical address, so we need to map.
2042  * For every physical address there are raid_disks/copies virtual addresses,
2043  * which is always are least one, but is not necessarly an integer.
2044  * This means that a physical address can span multiple chunks, so we may
2045  * have to submit multiple io requests for a single sync request.
2046  */
2047 /*
2048  * We check if all blocks are in-sync and only write to blocks that
2049  * aren't in sync
2050  */
2051 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2052 {
2053         struct r10conf *conf = mddev->private;
2054         int i, first;
2055         struct bio *tbio, *fbio;
2056         int vcnt;
2057
2058         atomic_set(&r10_bio->remaining, 1);
2059
2060         /* find the first device with a block */
2061         for (i=0; i<conf->copies; i++)
2062                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2063                         break;
2064
2065         if (i == conf->copies)
2066                 goto done;
2067
2068         first = i;
2069         fbio = r10_bio->devs[i].bio;
2070
2071         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2072         /* now find blocks with errors */
2073         for (i=0 ; i < conf->copies ; i++) {
2074                 int  j, d;
2075
2076                 tbio = r10_bio->devs[i].bio;
2077
2078                 if (tbio->bi_end_io != end_sync_read)
2079                         continue;
2080                 if (i == first)
2081                         continue;
2082                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2083                         /* We know that the bi_io_vec layout is the same for
2084                          * both 'first' and 'i', so we just compare them.
2085                          * All vec entries are PAGE_SIZE;
2086                          */
2087                         int sectors = r10_bio->sectors;
2088                         for (j = 0; j < vcnt; j++) {
2089                                 int len = PAGE_SIZE;
2090                                 if (sectors < (len / 512))
2091                                         len = sectors * 512;
2092                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2093                                            page_address(tbio->bi_io_vec[j].bv_page),
2094                                            len))
2095                                         break;
2096                                 sectors -= len/512;
2097                         }
2098                         if (j == vcnt)
2099                                 continue;
2100                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102                                 /* Don't fix anything. */
2103                                 continue;
2104                 }
2105                 /* Ok, we need to write this bio, either to correct an
2106                  * inconsistency or to correct an unreadable block.
2107                  * First we need to fixup bv_offset, bv_len and
2108                  * bi_vecs, as the read request might have corrupted these
2109                  */
2110                 bio_reset(tbio);
2111
2112                 tbio->bi_vcnt = vcnt;
2113                 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2114                 tbio->bi_rw = WRITE;
2115                 tbio->bi_private = r10_bio;
2116                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2117
2118                 for (j=0; j < vcnt ; j++) {
2119                         tbio->bi_io_vec[j].bv_offset = 0;
2120                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2121
2122                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2123                                page_address(fbio->bi_io_vec[j].bv_page),
2124                                PAGE_SIZE);
2125                 }
2126                 tbio->bi_end_io = end_sync_write;
2127
2128                 d = r10_bio->devs[i].devnum;
2129                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130                 atomic_inc(&r10_bio->remaining);
2131                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132
2133                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2135                 generic_make_request(tbio);
2136         }
2137
2138         /* Now write out to any replacement devices
2139          * that are active
2140          */
2141         for (i = 0; i < conf->copies; i++) {
2142                 int j, d;
2143
2144                 tbio = r10_bio->devs[i].repl_bio;
2145                 if (!tbio || !tbio->bi_end_io)
2146                         continue;
2147                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148                     && r10_bio->devs[i].bio != fbio)
2149                         for (j = 0; j < vcnt; j++)
2150                                 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2151                                        page_address(fbio->bi_io_vec[j].bv_page),
2152                                        PAGE_SIZE);
2153                 d = r10_bio->devs[i].devnum;
2154                 atomic_inc(&r10_bio->remaining);
2155                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2156                              bio_sectors(tbio));
2157                 generic_make_request(tbio);
2158         }
2159
2160 done:
2161         if (atomic_dec_and_test(&r10_bio->remaining)) {
2162                 md_done_sync(mddev, r10_bio->sectors, 1);
2163                 put_buf(r10_bio);
2164         }
2165 }
2166
2167 /*
2168  * Now for the recovery code.
2169  * Recovery happens across physical sectors.
2170  * We recover all non-is_sync drives by finding the virtual address of
2171  * each, and then choose a working drive that also has that virt address.
2172  * There is a separate r10_bio for each non-in_sync drive.
2173  * Only the first two slots are in use. The first for reading,
2174  * The second for writing.
2175  *
2176  */
2177 static void fix_recovery_read_error(struct r10bio *r10_bio)
2178 {
2179         /* We got a read error during recovery.
2180          * We repeat the read in smaller page-sized sections.
2181          * If a read succeeds, write it to the new device or record
2182          * a bad block if we cannot.
2183          * If a read fails, record a bad block on both old and
2184          * new devices.
2185          */
2186         struct mddev *mddev = r10_bio->mddev;
2187         struct r10conf *conf = mddev->private;
2188         struct bio *bio = r10_bio->devs[0].bio;
2189         sector_t sect = 0;
2190         int sectors = r10_bio->sectors;
2191         int idx = 0;
2192         int dr = r10_bio->devs[0].devnum;
2193         int dw = r10_bio->devs[1].devnum;
2194
2195         while (sectors) {
2196                 int s = sectors;
2197                 struct md_rdev *rdev;
2198                 sector_t addr;
2199                 int ok;
2200
2201                 if (s > (PAGE_SIZE>>9))
2202                         s = PAGE_SIZE >> 9;
2203
2204                 rdev = conf->mirrors[dr].rdev;
2205                 addr = r10_bio->devs[0].addr + sect,
2206                 ok = sync_page_io(rdev,
2207                                   addr,
2208                                   s << 9,
2209                                   bio->bi_io_vec[idx].bv_page,
2210                                   READ, false);
2211                 if (ok) {
2212                         rdev = conf->mirrors[dw].rdev;
2213                         addr = r10_bio->devs[1].addr + sect;
2214                         ok = sync_page_io(rdev,
2215                                           addr,
2216                                           s << 9,
2217                                           bio->bi_io_vec[idx].bv_page,
2218                                           WRITE, false);
2219                         if (!ok) {
2220                                 set_bit(WriteErrorSeen, &rdev->flags);
2221                                 if (!test_and_set_bit(WantReplacement,
2222                                                       &rdev->flags))
2223                                         set_bit(MD_RECOVERY_NEEDED,
2224                                                 &rdev->mddev->recovery);
2225                         }
2226                 }
2227                 if (!ok) {
2228                         /* We don't worry if we cannot set a bad block -
2229                          * it really is bad so there is no loss in not
2230                          * recording it yet
2231                          */
2232                         rdev_set_badblocks(rdev, addr, s, 0);
2233
2234                         if (rdev != conf->mirrors[dw].rdev) {
2235                                 /* need bad block on destination too */
2236                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237                                 addr = r10_bio->devs[1].addr + sect;
2238                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239                                 if (!ok) {
2240                                         /* just abort the recovery */
2241                                         printk(KERN_NOTICE
2242                                                "md/raid10:%s: recovery aborted"
2243                                                " due to read error\n",
2244                                                mdname(mddev));
2245
2246                                         conf->mirrors[dw].recovery_disabled
2247                                                 = mddev->recovery_disabled;
2248                                         set_bit(MD_RECOVERY_INTR,
2249                                                 &mddev->recovery);
2250                                         break;
2251                                 }
2252                         }
2253                 }
2254
2255                 sectors -= s;
2256                 sect += s;
2257                 idx++;
2258         }
2259 }
2260
2261 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262 {
2263         struct r10conf *conf = mddev->private;
2264         int d;
2265         struct bio *wbio, *wbio2;
2266
2267         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268                 fix_recovery_read_error(r10_bio);
2269                 end_sync_request(r10_bio);
2270                 return;
2271         }
2272
2273         /*
2274          * share the pages with the first bio
2275          * and submit the write request
2276          */
2277         d = r10_bio->devs[1].devnum;
2278         wbio = r10_bio->devs[1].bio;
2279         wbio2 = r10_bio->devs[1].repl_bio;
2280         /* Need to test wbio2->bi_end_io before we call
2281          * generic_make_request as if the former is NULL,
2282          * the latter is free to free wbio2.
2283          */
2284         if (wbio2 && !wbio2->bi_end_io)
2285                 wbio2 = NULL;
2286         if (wbio->bi_end_io) {
2287                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289                 generic_make_request(wbio);
2290         }
2291         if (wbio2) {
2292                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2294                              bio_sectors(wbio2));
2295                 generic_make_request(wbio2);
2296         }
2297 }
2298
2299
2300 /*
2301  * Used by fix_read_error() to decay the per rdev read_errors.
2302  * We halve the read error count for every hour that has elapsed
2303  * since the last recorded read error.
2304  *
2305  */
2306 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307 {
2308         struct timespec cur_time_mon;
2309         unsigned long hours_since_last;
2310         unsigned int read_errors = atomic_read(&rdev->read_errors);
2311
2312         ktime_get_ts(&cur_time_mon);
2313
2314         if (rdev->last_read_error.tv_sec == 0 &&
2315             rdev->last_read_error.tv_nsec == 0) {
2316                 /* first time we've seen a read error */
2317                 rdev->last_read_error = cur_time_mon;
2318                 return;
2319         }
2320
2321         hours_since_last = (cur_time_mon.tv_sec -
2322                             rdev->last_read_error.tv_sec) / 3600;
2323
2324         rdev->last_read_error = cur_time_mon;
2325
2326         /*
2327          * if hours_since_last is > the number of bits in read_errors
2328          * just set read errors to 0. We do this to avoid
2329          * overflowing the shift of read_errors by hours_since_last.
2330          */
2331         if (hours_since_last >= 8 * sizeof(read_errors))
2332                 atomic_set(&rdev->read_errors, 0);
2333         else
2334                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2335 }
2336
2337 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2338                             int sectors, struct page *page, int rw)
2339 {
2340         sector_t first_bad;
2341         int bad_sectors;
2342
2343         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2344             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2345                 return -1;
2346         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2347                 /* success */
2348                 return 1;
2349         if (rw == WRITE) {
2350                 set_bit(WriteErrorSeen, &rdev->flags);
2351                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2352                         set_bit(MD_RECOVERY_NEEDED,
2353                                 &rdev->mddev->recovery);
2354         }
2355         /* need to record an error - either for the block or the device */
2356         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2357                 md_error(rdev->mddev, rdev);
2358         return 0;
2359 }
2360
2361 /*
2362  * This is a kernel thread which:
2363  *
2364  *      1.      Retries failed read operations on working mirrors.
2365  *      2.      Updates the raid superblock when problems encounter.
2366  *      3.      Performs writes following reads for array synchronising.
2367  */
2368
2369 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2370 {
2371         int sect = 0; /* Offset from r10_bio->sector */
2372         int sectors = r10_bio->sectors;
2373         struct md_rdev*rdev;
2374         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2375         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2376
2377         /* still own a reference to this rdev, so it cannot
2378          * have been cleared recently.
2379          */
2380         rdev = conf->mirrors[d].rdev;
2381
2382         if (test_bit(Faulty, &rdev->flags))
2383                 /* drive has already been failed, just ignore any
2384                    more fix_read_error() attempts */
2385                 return;
2386
2387         check_decay_read_errors(mddev, rdev);
2388         atomic_inc(&rdev->read_errors);
2389         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2390                 char b[BDEVNAME_SIZE];
2391                 bdevname(rdev->bdev, b);
2392
2393                 printk(KERN_NOTICE
2394                        "md/raid10:%s: %s: Raid device exceeded "
2395                        "read_error threshold [cur %d:max %d]\n",
2396                        mdname(mddev), b,
2397                        atomic_read(&rdev->read_errors), max_read_errors);
2398                 printk(KERN_NOTICE
2399                        "md/raid10:%s: %s: Failing raid device\n",
2400                        mdname(mddev), b);
2401                 md_error(mddev, conf->mirrors[d].rdev);
2402                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2403                 return;
2404         }
2405
2406         while(sectors) {
2407                 int s = sectors;
2408                 int sl = r10_bio->read_slot;
2409                 int success = 0;
2410                 int start;
2411
2412                 if (s > (PAGE_SIZE>>9))
2413                         s = PAGE_SIZE >> 9;
2414
2415                 rcu_read_lock();
2416                 do {
2417                         sector_t first_bad;
2418                         int bad_sectors;
2419
2420                         d = r10_bio->devs[sl].devnum;
2421                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2422                         if (rdev &&
2423                             !test_bit(Unmerged, &rdev->flags) &&
2424                             test_bit(In_sync, &rdev->flags) &&
2425                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2426                                         &first_bad, &bad_sectors) == 0) {
2427                                 atomic_inc(&rdev->nr_pending);
2428                                 rcu_read_unlock();
2429                                 success = sync_page_io(rdev,
2430                                                        r10_bio->devs[sl].addr +
2431                                                        sect,
2432                                                        s<<9,
2433                                                        conf->tmppage, READ, false);
2434                                 rdev_dec_pending(rdev, mddev);
2435                                 rcu_read_lock();
2436                                 if (success)
2437                                         break;
2438                         }
2439                         sl++;
2440                         if (sl == conf->copies)
2441                                 sl = 0;
2442                 } while (!success && sl != r10_bio->read_slot);
2443                 rcu_read_unlock();
2444
2445                 if (!success) {
2446                         /* Cannot read from anywhere, just mark the block
2447                          * as bad on the first device to discourage future
2448                          * reads.
2449                          */
2450                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451                         rdev = conf->mirrors[dn].rdev;
2452
2453                         if (!rdev_set_badblocks(
2454                                     rdev,
2455                                     r10_bio->devs[r10_bio->read_slot].addr
2456                                     + sect,
2457                                     s, 0)) {
2458                                 md_error(mddev, rdev);
2459                                 r10_bio->devs[r10_bio->read_slot].bio
2460                                         = IO_BLOCKED;
2461                         }
2462                         break;
2463                 }
2464
2465                 start = sl;
2466                 /* write it back and re-read */
2467                 rcu_read_lock();
2468                 while (sl != r10_bio->read_slot) {
2469                         char b[BDEVNAME_SIZE];
2470
2471                         if (sl==0)
2472                                 sl = conf->copies;
2473                         sl--;
2474                         d = r10_bio->devs[sl].devnum;
2475                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2476                         if (!rdev ||
2477                             test_bit(Unmerged, &rdev->flags) ||
2478                             !test_bit(In_sync, &rdev->flags))
2479                                 continue;
2480
2481                         atomic_inc(&rdev->nr_pending);
2482                         rcu_read_unlock();
2483                         if (r10_sync_page_io(rdev,
2484                                              r10_bio->devs[sl].addr +
2485                                              sect,
2486                                              s, conf->tmppage, WRITE)
2487                             == 0) {
2488                                 /* Well, this device is dead */
2489                                 printk(KERN_NOTICE
2490                                        "md/raid10:%s: read correction "
2491                                        "write failed"
2492                                        " (%d sectors at %llu on %s)\n",
2493                                        mdname(mddev), s,
2494                                        (unsigned long long)(
2495                                                sect +
2496                                                choose_data_offset(r10_bio,
2497                                                                   rdev)),
2498                                        bdevname(rdev->bdev, b));
2499                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2500                                        "drive\n",
2501                                        mdname(mddev),
2502                                        bdevname(rdev->bdev, b));
2503                         }
2504                         rdev_dec_pending(rdev, mddev);
2505                         rcu_read_lock();
2506                 }
2507                 sl = start;
2508                 while (sl != r10_bio->read_slot) {
2509                         char b[BDEVNAME_SIZE];
2510
2511                         if (sl==0)
2512                                 sl = conf->copies;
2513                         sl--;
2514                         d = r10_bio->devs[sl].devnum;
2515                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2516                         if (!rdev ||
2517                             !test_bit(In_sync, &rdev->flags))
2518                                 continue;
2519
2520                         atomic_inc(&rdev->nr_pending);
2521                         rcu_read_unlock();
2522                         switch (r10_sync_page_io(rdev,
2523                                              r10_bio->devs[sl].addr +
2524                                              sect,
2525                                              s, conf->tmppage,
2526                                                  READ)) {
2527                         case 0:
2528                                 /* Well, this device is dead */
2529                                 printk(KERN_NOTICE
2530                                        "md/raid10:%s: unable to read back "
2531                                        "corrected sectors"
2532                                        " (%d sectors at %llu on %s)\n",
2533                                        mdname(mddev), s,
2534                                        (unsigned long long)(
2535                                                sect +
2536                                                choose_data_offset(r10_bio, rdev)),
2537                                        bdevname(rdev->bdev, b));
2538                                 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2539                                        "drive\n",
2540                                        mdname(mddev),
2541                                        bdevname(rdev->bdev, b));
2542                                 break;
2543                         case 1:
2544                                 printk(KERN_INFO
2545                                        "md/raid10:%s: read error corrected"
2546                                        " (%d sectors at %llu on %s)\n",
2547                                        mdname(mddev), s,
2548                                        (unsigned long long)(
2549                                                sect +
2550                                                choose_data_offset(r10_bio, rdev)),
2551                                        bdevname(rdev->bdev, b));
2552                                 atomic_add(s, &rdev->corrected_errors);
2553                         }
2554
2555                         rdev_dec_pending(rdev, mddev);
2556                         rcu_read_lock();
2557                 }
2558                 rcu_read_unlock();
2559
2560                 sectors -= s;
2561                 sect += s;
2562         }
2563 }
2564
2565 static int narrow_write_error(struct r10bio *r10_bio, int i)
2566 {
2567         struct bio *bio = r10_bio->master_bio;
2568         struct mddev *mddev = r10_bio->mddev;
2569         struct r10conf *conf = mddev->private;
2570         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2571         /* bio has the data to be written to slot 'i' where
2572          * we just recently had a write error.
2573          * We repeatedly clone the bio and trim down to one block,
2574          * then try the write.  Where the write fails we record
2575          * a bad block.
2576          * It is conceivable that the bio doesn't exactly align with
2577          * blocks.  We must handle this.
2578          *
2579          * We currently own a reference to the rdev.
2580          */
2581
2582         int block_sectors;
2583         sector_t sector;
2584         int sectors;
2585         int sect_to_write = r10_bio->sectors;
2586         int ok = 1;
2587
2588         if (rdev->badblocks.shift < 0)
2589                 return 0;
2590
2591         block_sectors = 1 << rdev->badblocks.shift;
2592         sector = r10_bio->sector;
2593         sectors = ((r10_bio->sector + block_sectors)
2594                    & ~(sector_t)(block_sectors - 1))
2595                 - sector;
2596
2597         while (sect_to_write) {
2598                 struct bio *wbio;
2599                 if (sectors > sect_to_write)
2600                         sectors = sect_to_write;
2601                 /* Write at 'sector' for 'sectors' */
2602                 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2603                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2604                 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2605                                    choose_data_offset(r10_bio, rdev) +
2606                                    (sector - r10_bio->sector));
2607                 wbio->bi_bdev = rdev->bdev;
2608                 if (submit_bio_wait(WRITE, wbio) == 0)
2609                         /* Failure! */
2610                         ok = rdev_set_badblocks(rdev, sector,
2611                                                 sectors, 0)
2612                                 && ok;
2613
2614                 bio_put(wbio);
2615                 sect_to_write -= sectors;
2616                 sector += sectors;
2617                 sectors = block_sectors;
2618         }
2619         return ok;
2620 }
2621
2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623 {
2624         int slot = r10_bio->read_slot;
2625         struct bio *bio;
2626         struct r10conf *conf = mddev->private;
2627         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628         char b[BDEVNAME_SIZE];
2629         unsigned long do_sync;
2630         int max_sectors;
2631
2632         /* we got a read error. Maybe the drive is bad.  Maybe just
2633          * the block and we can fix it.
2634          * We freeze all other IO, and try reading the block from
2635          * other devices.  When we find one, we re-write
2636          * and check it that fixes the read error.
2637          * This is all done synchronously while the array is
2638          * frozen.
2639          */
2640         bio = r10_bio->devs[slot].bio;
2641         bdevname(bio->bi_bdev, b);
2642         bio_put(bio);
2643         r10_bio->devs[slot].bio = NULL;
2644
2645         if (mddev->ro == 0) {
2646                 freeze_array(conf, 1);
2647                 fix_read_error(conf, mddev, r10_bio);
2648                 unfreeze_array(conf);
2649         } else
2650                 r10_bio->devs[slot].bio = IO_BLOCKED;
2651
2652         rdev_dec_pending(rdev, mddev);
2653
2654 read_more:
2655         rdev = read_balance(conf, r10_bio, &max_sectors);
2656         if (rdev == NULL) {
2657                 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2658                        " read error for block %llu\n",
2659                        mdname(mddev), b,
2660                        (unsigned long long)r10_bio->sector);
2661                 raid_end_bio_io(r10_bio);
2662                 return;
2663         }
2664
2665         do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2666         slot = r10_bio->read_slot;
2667         printk_ratelimited(
2668                 KERN_ERR
2669                 "md/raid10:%s: %s: redirecting "
2670                 "sector %llu to another mirror\n",
2671                 mdname(mddev),
2672                 bdevname(rdev->bdev, b),
2673                 (unsigned long long)r10_bio->sector);
2674         bio = bio_clone_mddev(r10_bio->master_bio,
2675                               GFP_NOIO, mddev);
2676         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2677         r10_bio->devs[slot].bio = bio;
2678         r10_bio->devs[slot].rdev = rdev;
2679         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2680                 + choose_data_offset(r10_bio, rdev);
2681         bio->bi_bdev = rdev->bdev;
2682         bio->bi_rw = READ | do_sync;
2683         bio->bi_private = r10_bio;
2684         bio->bi_end_io = raid10_end_read_request;
2685         if (max_sectors < r10_bio->sectors) {
2686                 /* Drat - have to split this up more */
2687                 struct bio *mbio = r10_bio->master_bio;
2688                 int sectors_handled =
2689                         r10_bio->sector + max_sectors
2690                         - mbio->bi_iter.bi_sector;
2691                 r10_bio->sectors = max_sectors;
2692                 spin_lock_irq(&conf->device_lock);
2693                 if (mbio->bi_phys_segments == 0)
2694                         mbio->bi_phys_segments = 2;
2695                 else
2696                         mbio->bi_phys_segments++;
2697                 spin_unlock_irq(&conf->device_lock);
2698                 generic_make_request(bio);
2699
2700                 r10_bio = mempool_alloc(conf->r10bio_pool,
2701                                         GFP_NOIO);
2702                 r10_bio->master_bio = mbio;
2703                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2704                 r10_bio->state = 0;
2705                 set_bit(R10BIO_ReadError,
2706                         &r10_bio->state);
2707                 r10_bio->mddev = mddev;
2708                 r10_bio->sector = mbio->bi_iter.bi_sector
2709                         + sectors_handled;
2710
2711                 goto read_more;
2712         } else
2713                 generic_make_request(bio);
2714 }
2715
2716 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2717 {
2718         /* Some sort of write request has finished and it
2719          * succeeded in writing where we thought there was a
2720          * bad block.  So forget the bad block.
2721          * Or possibly if failed and we need to record
2722          * a bad block.
2723          */
2724         int m;
2725         struct md_rdev *rdev;
2726
2727         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2728             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2729                 for (m = 0; m < conf->copies; m++) {
2730                         int dev = r10_bio->devs[m].devnum;
2731                         rdev = conf->mirrors[dev].rdev;
2732                         if (r10_bio->devs[m].bio == NULL)
2733                                 continue;
2734                         if (test_bit(BIO_UPTODATE,
2735                                      &r10_bio->devs[m].bio->bi_flags)) {
2736                                 rdev_clear_badblocks(
2737                                         rdev,
2738                                         r10_bio->devs[m].addr,
2739                                         r10_bio->sectors, 0);
2740                         } else {
2741                                 if (!rdev_set_badblocks(
2742                                             rdev,
2743                                             r10_bio->devs[m].addr,
2744                                             r10_bio->sectors, 0))
2745                                         md_error(conf->mddev, rdev);
2746                         }
2747                         rdev = conf->mirrors[dev].replacement;
2748                         if (r10_bio->devs[m].repl_bio == NULL)
2749                                 continue;
2750                         if (test_bit(BIO_UPTODATE,
2751                                      &r10_bio->devs[m].repl_bio->bi_flags)) {
2752                                 rdev_clear_badblocks(
2753                                         rdev,
2754                                         r10_bio->devs[m].addr,
2755                                         r10_bio->sectors, 0);
2756                         } else {
2757                                 if (!rdev_set_badblocks(
2758                                             rdev,
2759                                             r10_bio->devs[m].addr,
2760                                             r10_bio->sectors, 0))
2761                                         md_error(conf->mddev, rdev);
2762                         }
2763                 }
2764                 put_buf(r10_bio);
2765         } else {
2766                 for (m = 0; m < conf->copies; m++) {
2767                         int dev = r10_bio->devs[m].devnum;
2768                         struct bio *bio = r10_bio->devs[m].bio;
2769                         rdev = conf->mirrors[dev].rdev;
2770                         if (bio == IO_MADE_GOOD) {
2771                                 rdev_clear_badblocks(
2772                                         rdev,
2773                                         r10_bio->devs[m].addr,
2774                                         r10_bio->sectors, 0);
2775                                 rdev_dec_pending(rdev, conf->mddev);
2776                         } else if (bio != NULL &&
2777                                    !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2778                                 if (!narrow_write_error(r10_bio, m)) {
2779                                         md_error(conf->mddev, rdev);
2780                                         set_bit(R10BIO_Degraded,
2781                                                 &r10_bio->state);
2782                                 }
2783                                 rdev_dec_pending(rdev, conf->mddev);
2784                         }
2785                         bio = r10_bio->devs[m].repl_bio;
2786                         rdev = conf->mirrors[dev].replacement;
2787                         if (rdev && bio == IO_MADE_GOOD) {
2788                                 rdev_clear_badblocks(
2789                                         rdev,
2790                                         r10_bio->devs[m].addr,
2791                                         r10_bio->sectors, 0);
2792                                 rdev_dec_pending(rdev, conf->mddev);
2793                         }
2794                 }
2795                 if (test_bit(R10BIO_WriteError,
2796                              &r10_bio->state))
2797                         close_write(r10_bio);
2798                 raid_end_bio_io(r10_bio);
2799         }
2800 }
2801
2802 static void raid10d(struct md_thread *thread)
2803 {
2804         struct mddev *mddev = thread->mddev;
2805         struct r10bio *r10_bio;
2806         unsigned long flags;
2807         struct r10conf *conf = mddev->private;
2808         struct list_head *head = &conf->retry_list;
2809         struct blk_plug plug;
2810
2811         md_check_recovery(mddev);
2812
2813         blk_start_plug(&plug);
2814         for (;;) {
2815
2816                 flush_pending_writes(conf);
2817
2818                 spin_lock_irqsave(&conf->device_lock, flags);
2819                 if (list_empty(head)) {
2820                         spin_unlock_irqrestore(&conf->device_lock, flags);
2821                         break;
2822                 }
2823                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2824                 list_del(head->prev);
2825                 conf->nr_queued--;
2826                 spin_unlock_irqrestore(&conf->device_lock, flags);
2827
2828                 mddev = r10_bio->mddev;
2829                 conf = mddev->private;
2830                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2831                     test_bit(R10BIO_WriteError, &r10_bio->state))
2832                         handle_write_completed(conf, r10_bio);
2833                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2834                         reshape_request_write(mddev, r10_bio);
2835                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2836                         sync_request_write(mddev, r10_bio);
2837                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2838                         recovery_request_write(mddev, r10_bio);
2839                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2840                         handle_read_error(mddev, r10_bio);
2841                 else {
2842                         /* just a partial read to be scheduled from a
2843                          * separate context
2844                          */
2845                         int slot = r10_bio->read_slot;
2846                         generic_make_request(r10_bio->devs[slot].bio);
2847                 }
2848
2849                 cond_resched();
2850                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2851                         md_check_recovery(mddev);
2852         }
2853         blk_finish_plug(&plug);
2854 }
2855
2856
2857 static int init_resync(struct r10conf *conf)
2858 {
2859         int buffs;
2860         int i;
2861
2862         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863         BUG_ON(conf->r10buf_pool);
2864         conf->have_replacement = 0;
2865         for (i = 0; i < conf->geo.raid_disks; i++)
2866                 if (conf->mirrors[i].replacement)
2867                         conf->have_replacement = 1;
2868         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869         if (!conf->r10buf_pool)
2870                 return -ENOMEM;
2871         conf->next_resync = 0;
2872         return 0;
2873 }
2874
2875 /*
2876  * perform a "sync" on one "block"
2877  *
2878  * We need to make sure that no normal I/O request - particularly write
2879  * requests - conflict with active sync requests.
2880  *
2881  * This is achieved by tracking pending requests and a 'barrier' concept
2882  * that can be installed to exclude normal IO requests.
2883  *
2884  * Resync and recovery are handled very differently.
2885  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886  *
2887  * For resync, we iterate over virtual addresses, read all copies,
2888  * and update if there are differences.  If only one copy is live,
2889  * skip it.
2890  * For recovery, we iterate over physical addresses, read a good
2891  * value for each non-in_sync drive, and over-write.
2892  *
2893  * So, for recovery we may have several outstanding complex requests for a
2894  * given address, one for each out-of-sync device.  We model this by allocating
2895  * a number of r10_bio structures, one for each out-of-sync device.
2896  * As we setup these structures, we collect all bio's together into a list
2897  * which we then process collectively to add pages, and then process again
2898  * to pass to generic_make_request.
2899  *
2900  * The r10_bio structures are linked using a borrowed master_bio pointer.
2901  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2902  * has its remaining count decremented to 0, the whole complex operation
2903  * is complete.
2904  *
2905  */
2906
2907 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2908                              int *skipped, int go_faster)
2909 {
2910         struct r10conf *conf = mddev->private;
2911         struct r10bio *r10_bio;
2912         struct bio *biolist = NULL, *bio;
2913         sector_t max_sector, nr_sectors;
2914         int i;
2915         int max_sync;
2916         sector_t sync_blocks;
2917         sector_t sectors_skipped = 0;
2918         int chunks_skipped = 0;
2919         sector_t chunk_mask = conf->geo.chunk_mask;
2920
2921         if (!conf->r10buf_pool)
2922                 if (init_resync(conf))
2923                         return 0;
2924
2925         /*
2926          * Allow skipping a full rebuild for incremental assembly
2927          * of a clean array, like RAID1 does.
2928          */
2929         if (mddev->bitmap == NULL &&
2930             mddev->recovery_cp == MaxSector &&
2931             mddev->reshape_position == MaxSector &&
2932             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935             conf->fullsync == 0) {
2936                 *skipped = 1;
2937                 return mddev->dev_sectors - sector_nr;
2938         }
2939
2940  skipped:
2941         max_sector = mddev->dev_sectors;
2942         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944                 max_sector = mddev->resync_max_sectors;
2945         if (sector_nr >= max_sector) {
2946                 /* If we aborted, we need to abort the
2947                  * sync on the 'current' bitmap chucks (there can
2948                  * be several when recovering multiple devices).
2949                  * as we may have started syncing it but not finished.
2950                  * We can find the current address in
2951                  * mddev->curr_resync, but for recovery,
2952                  * we need to convert that to several
2953                  * virtual addresses.
2954                  */
2955                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2956                         end_reshape(conf);
2957                         return 0;
2958                 }
2959
2960                 if (mddev->curr_resync < max_sector) { /* aborted */
2961                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963                                                 &sync_blocks, 1);
2964                         else for (i = 0; i < conf->geo.raid_disks; i++) {
2965                                 sector_t sect =
2966                                         raid10_find_virt(conf, mddev->curr_resync, i);
2967                                 bitmap_end_sync(mddev->bitmap, sect,
2968                                                 &sync_blocks, 1);
2969                         }
2970                 } else {
2971                         /* completed sync */
2972                         if ((!mddev->bitmap || conf->fullsync)
2973                             && conf->have_replacement
2974                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975                                 /* Completed a full sync so the replacements
2976                                  * are now fully recovered.
2977                                  */
2978                                 for (i = 0; i < conf->geo.raid_disks; i++)
2979                                         if (conf->mirrors[i].replacement)
2980                                                 conf->mirrors[i].replacement
2981                                                         ->recovery_offset
2982                                                         = MaxSector;
2983                         }
2984                         conf->fullsync = 0;
2985                 }
2986                 bitmap_close_sync(mddev->bitmap);
2987                 close_sync(conf);
2988                 *skipped = 1;
2989                 return sectors_skipped;
2990         }
2991
2992         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993                 return reshape_request(mddev, sector_nr, skipped);
2994
2995         if (chunks_skipped >= conf->geo.raid_disks) {
2996                 /* if there has been nothing to do on any drive,
2997                  * then there is nothing to do at all..
2998                  */
2999                 *skipped = 1;
3000                 return (max_sector - sector_nr) + sectors_skipped;
3001         }
3002
3003         if (max_sector > mddev->resync_max)
3004                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005
3006         /* make sure whole request will fit in a chunk - if chunks
3007          * are meaningful
3008          */
3009         if (conf->geo.near_copies < conf->geo.raid_disks &&
3010             max_sector > (sector_nr | chunk_mask))
3011                 max_sector = (sector_nr | chunk_mask) + 1;
3012         /*
3013          * If there is non-resync activity waiting for us then
3014          * put in a delay to throttle resync.
3015          */
3016         if (!go_faster && conf->nr_waiting)
3017                 msleep_interruptible(1000);
3018
3019         /* Again, very different code for resync and recovery.
3020          * Both must result in an r10bio with a list of bios that
3021          * have bi_end_io, bi_sector, bi_bdev set,
3022          * and bi_private set to the r10bio.
3023          * For recovery, we may actually create several r10bios
3024          * with 2 bios in each, that correspond to the bios in the main one.
3025          * In this case, the subordinate r10bios link back through a
3026          * borrowed master_bio pointer, and the counter in the master
3027          * includes a ref from each subordinate.
3028          */
3029         /* First, we decide what to do and set ->bi_end_io
3030          * To end_sync_read if we want to read, and
3031          * end_sync_write if we will want to write.
3032          */
3033
3034         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036                 /* recovery... the complicated one */
3037                 int j;
3038                 r10_bio = NULL;
3039
3040                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041                         int still_degraded;
3042                         struct r10bio *rb2;
3043                         sector_t sect;
3044                         int must_sync;
3045                         int any_working;
3046                         struct raid10_info *mirror = &conf->mirrors[i];
3047
3048                         if ((mirror->rdev == NULL ||
3049                              test_bit(In_sync, &mirror->rdev->flags))
3050                             &&
3051                             (mirror->replacement == NULL ||
3052                              test_bit(Faulty,
3053                                       &mirror->replacement->flags)))
3054                                 continue;
3055
3056                         still_degraded = 0;
3057                         /* want to reconstruct this device */
3058                         rb2 = r10_bio;
3059                         sect = raid10_find_virt(conf, sector_nr, i);
3060                         if (sect >= mddev->resync_max_sectors) {
3061                                 /* last stripe is not complete - don't
3062                                  * try to recover this sector.
3063                                  */
3064                                 continue;
3065                         }
3066                         /* Unless we are doing a full sync, or a replacement
3067                          * we only need to recover the block if it is set in
3068                          * the bitmap
3069                          */
3070                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071                                                       &sync_blocks, 1);
3072                         if (sync_blocks < max_sync)
3073                                 max_sync = sync_blocks;
3074                         if (!must_sync &&
3075                             mirror->replacement == NULL &&
3076                             !conf->fullsync) {
3077                                 /* yep, skip the sync_blocks here, but don't assume
3078                                  * that there will never be anything to do here
3079                                  */
3080                                 chunks_skipped = -1;
3081                                 continue;
3082                         }
3083
3084                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3085                         raise_barrier(conf, rb2 != NULL);
3086                         atomic_set(&r10_bio->remaining, 0);
3087
3088                         r10_bio->master_bio = (struct bio*)rb2;
3089                         if (rb2)
3090                                 atomic_inc(&rb2->remaining);
3091                         r10_bio->mddev = mddev;
3092                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3093                         r10_bio->sector = sect;
3094
3095                         raid10_find_phys(conf, r10_bio);
3096
3097                         /* Need to check if the array will still be
3098                          * degraded
3099                          */
3100                         for (j = 0; j < conf->geo.raid_disks; j++)
3101                                 if (conf->mirrors[j].rdev == NULL ||
3102                                     test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3103                                         still_degraded = 1;
3104                                         break;
3105                                 }
3106
3107                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108                                                       &sync_blocks, still_degraded);
3109
3110                         any_working = 0;
3111                         for (j=0; j<conf->copies;j++) {
3112                                 int k;
3113                                 int d = r10_bio->devs[j].devnum;
3114                                 sector_t from_addr, to_addr;
3115                                 struct md_rdev *rdev;
3116                                 sector_t sector, first_bad;
3117                                 int bad_sectors;
3118                                 if (!conf->mirrors[d].rdev ||
3119                                     !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3120                                         continue;
3121                                 /* This is where we read from */
3122                                 any_working = 1;
3123                                 rdev = conf->mirrors[d].rdev;
3124                                 sector = r10_bio->devs[j].addr;
3125
3126                                 if (is_badblock(rdev, sector, max_sync,
3127                                                 &first_bad, &bad_sectors)) {
3128                                         if (first_bad > sector)
3129                                                 max_sync = first_bad - sector;
3130                                         else {
3131                                                 bad_sectors -= (sector
3132                                                                 - first_bad);
3133                                                 if (max_sync > bad_sectors)
3134                                                         max_sync = bad_sectors;
3135                                                 continue;
3136                                         }
3137                                 }
3138                                 bio = r10_bio->devs[0].bio;
3139                                 bio_reset(bio);
3140                                 bio->bi_next = biolist;
3141                                 biolist = bio;
3142                                 bio->bi_private = r10_bio;
3143                                 bio->bi_end_io = end_sync_read;
3144                                 bio->bi_rw = READ;
3145                                 from_addr = r10_bio->devs[j].addr;
3146                                 bio->bi_iter.bi_sector = from_addr +
3147                                         rdev->data_offset;
3148                                 bio->bi_bdev = rdev->bdev;
3149                                 atomic_inc(&rdev->nr_pending);
3150                                 /* and we write to 'i' (if not in_sync) */
3151
3152                                 for (k=0; k<conf->copies; k++)
3153                                         if (r10_bio->devs[k].devnum == i)
3154                                                 break;
3155                                 BUG_ON(k == conf->copies);
3156                                 to_addr = r10_bio->devs[k].addr;
3157                                 r10_bio->devs[0].devnum = d;
3158                                 r10_bio->devs[0].addr = from_addr;
3159                                 r10_bio->devs[1].devnum = i;
3160                                 r10_bio->devs[1].addr = to_addr;
3161
3162                                 rdev = mirror->rdev;
3163                                 if (!test_bit(In_sync, &rdev->flags)) {
3164                                         bio = r10_bio->devs[1].bio;
3165                                         bio_reset(bio);
3166                                         bio->bi_next = biolist;
3167                                         biolist = bio;
3168                                         bio->bi_private = r10_bio;
3169                                         bio->bi_end_io = end_sync_write;
3170                                         bio->bi_rw = WRITE;
3171                                         bio->bi_iter.bi_sector = to_addr
3172                                                 + rdev->data_offset;
3173                                         bio->bi_bdev = rdev->bdev;
3174                                         atomic_inc(&r10_bio->remaining);
3175                                 } else
3176                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3177
3178                                 /* and maybe write to replacement */
3179                                 bio = r10_bio->devs[1].repl_bio;
3180                                 if (bio)
3181                                         bio->bi_end_io = NULL;
3182                                 rdev = mirror->replacement;
3183                                 /* Note: if rdev != NULL, then bio
3184                                  * cannot be NULL as r10buf_pool_alloc will
3185                                  * have allocated it.
3186                                  * So the second test here is pointless.
3187                                  * But it keeps semantic-checkers happy, and
3188                                  * this comment keeps human reviewers
3189                                  * happy.
3190                                  */
3191                                 if (rdev == NULL || bio == NULL ||
3192                                     test_bit(Faulty, &rdev->flags))
3193                                         break;
3194                                 bio_reset(bio);
3195                                 bio->bi_next = biolist;
3196                                 biolist = bio;
3197                                 bio->bi_private = r10_bio;
3198                                 bio->bi_end_io = end_sync_write;
3199                                 bio->bi_rw = WRITE;
3200                                 bio->bi_iter.bi_sector = to_addr +
3201                                         rdev->data_offset;
3202                                 bio->bi_bdev = rdev->bdev;
3203                                 atomic_inc(&r10_bio->remaining);
3204                                 break;
3205                         }
3206                         if (j == conf->copies) {
3207                                 /* Cannot recover, so abort the recovery or
3208                                  * record a bad block */
3209                                 if (any_working) {
3210                                         /* problem is that there are bad blocks
3211                                          * on other device(s)
3212                                          */
3213                                         int k;
3214                                         for (k = 0; k < conf->copies; k++)
3215                                                 if (r10_bio->devs[k].devnum == i)
3216                                                         break;
3217                                         if (!test_bit(In_sync,
3218                                                       &mirror->rdev->flags)
3219                                             && !rdev_set_badblocks(
3220                                                     mirror->rdev,
3221                                                     r10_bio->devs[k].addr,
3222                                                     max_sync, 0))
3223                                                 any_working = 0;
3224                                         if (mirror->replacement &&
3225                                             !rdev_set_badblocks(
3226                                                     mirror->replacement,
3227                                                     r10_bio->devs[k].addr,
3228                                                     max_sync, 0))
3229                                                 any_working = 0;
3230                                 }
3231                                 if (!any_working)  {
3232                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3233                                                               &mddev->recovery))
3234                                                 printk(KERN_INFO "md/raid10:%s: insufficient "
3235                                                        "working devices for recovery.\n",
3236                                                        mdname(mddev));
3237                                         mirror->recovery_disabled
3238                                                 = mddev->recovery_disabled;
3239                                 }
3240                                 put_buf(r10_bio);
3241                                 if (rb2)
3242                                         atomic_dec(&rb2->remaining);
3243                                 r10_bio = rb2;
3244                                 break;
3245                         }
3246                 }
3247                 if (biolist == NULL) {
3248                         while (r10_bio) {
3249                                 struct r10bio *rb2 = r10_bio;
3250                                 r10_bio = (struct r10bio*) rb2->master_bio;
3251                                 rb2->master_bio = NULL;
3252                                 put_buf(rb2);
3253                         }
3254                         goto giveup;
3255                 }
3256         } else {
3257                 /* resync. Schedule a read for every block at this virt offset */
3258                 int count = 0;
3259
3260                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3261
3262                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3263                                        &sync_blocks, mddev->degraded) &&
3264                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3265                                                  &mddev->recovery)) {
3266                         /* We can skip this block */
3267                         *skipped = 1;
3268                         return sync_blocks + sectors_skipped;
3269                 }
3270                 if (sync_blocks < max_sync)
3271                         max_sync = sync_blocks;
3272                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3273
3274                 r10_bio->mddev = mddev;
3275                 atomic_set(&r10_bio->remaining, 0);
3276                 raise_barrier(conf, 0);
3277                 conf->next_resync = sector_nr;
3278
3279                 r10_bio->master_bio = NULL;
3280                 r10_bio->sector = sector_nr;
3281                 set_bit(R10BIO_IsSync, &r10_bio->state);
3282                 raid10_find_phys(conf, r10_bio);
3283                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3284
3285                 for (i = 0; i < conf->copies; i++) {
3286                         int d = r10_bio->devs[i].devnum;
3287                         sector_t first_bad, sector;
3288                         int bad_sectors;
3289
3290                         if (r10_bio->devs[i].repl_bio)
3291                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3292
3293                         bio = r10_bio->devs[i].bio;
3294                         bio_reset(bio);
3295                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3296                         if (conf->mirrors[d].rdev == NULL ||
3297                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3298                                 continue;
3299                         sector = r10_bio->devs[i].addr;
3300                         if (is_badblock(conf->mirrors[d].rdev,
3301                                         sector, max_sync,
3302                                         &first_bad, &bad_sectors)) {
3303                                 if (first_bad > sector)
3304                                         max_sync = first_bad - sector;
3305                                 else {
3306                                         bad_sectors -= (sector - first_bad);
3307                                         if (max_sync > bad_sectors)
3308                                                 max_sync = bad_sectors;
3309                                         continue;
3310                                 }
3311                         }
3312                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3313                         atomic_inc(&r10_bio->remaining);
3314                         bio->bi_next = biolist;
3315                         biolist = bio;
3316                         bio->bi_private = r10_bio;
3317                         bio->bi_end_io = end_sync_read;
3318                         bio->bi_rw = READ;
3319                         bio->bi_iter.bi_sector = sector +
3320                                 conf->mirrors[d].rdev->data_offset;
3321                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3322                         count++;
3323
3324                         if (conf->mirrors[d].replacement == NULL ||
3325                             test_bit(Faulty,
3326                                      &conf->mirrors[d].replacement->flags))
3327                                 continue;
3328
3329                         /* Need to set up for writing to the replacement */
3330                         bio = r10_bio->devs[i].repl_bio;
3331                         bio_reset(bio);
3332                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
3333
3334                         sector = r10_bio->devs[i].addr;
3335                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3336                         bio->bi_next = biolist;
3337                         biolist = bio;
3338                         bio->bi_private = r10_bio;
3339                         bio->bi_end_io = end_sync_write;
3340                         bio->bi_rw = WRITE;
3341                         bio->bi_iter.bi_sector = sector +
3342                                 conf->mirrors[d].replacement->data_offset;
3343                         bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3344                         count++;
3345                 }
3346
3347                 if (count < 2) {
3348                         for (i=0; i<conf->copies; i++) {
3349                                 int d = r10_bio->devs[i].devnum;
3350                                 if (r10_bio->devs[i].bio->bi_end_io)
3351                                         rdev_dec_pending(conf->mirrors[d].rdev,
3352                                                          mddev);
3353                                 if (r10_bio->devs[i].repl_bio &&
3354                                     r10_bio->devs[i].repl_bio->bi_end_io)
3355                                         rdev_dec_pending(
3356                                                 conf->mirrors[d].replacement,
3357                                                 mddev);
3358                         }
3359                         put_buf(r10_bio);
3360                         biolist = NULL;
3361                         goto giveup;
3362                 }
3363         }
3364
3365         nr_sectors = 0;
3366         if (sector_nr + max_sync < max_sector)
3367                 max_sector = sector_nr + max_sync;
3368         do {
3369                 struct page *page;
3370                 int len = PAGE_SIZE;
3371                 if (sector_nr + (len>>9) > max_sector)
3372                         len = (max_sector - sector_nr) << 9;
3373                 if (len == 0)
3374                         break;
3375                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3376                         struct bio *bio2;
3377                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3378                         if (bio_add_page(bio, page, len, 0))
3379                                 continue;
3380
3381                         /* stop here */
3382                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3383                         for (bio2 = biolist;
3384                              bio2 && bio2 != bio;
3385                              bio2 = bio2->bi_next) {
3386                                 /* remove last page from this bio */
3387                                 bio2->bi_vcnt--;
3388                                 bio2->bi_iter.bi_size -= len;
3389                                 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3390                         }
3391                         goto bio_full;
3392                 }
3393                 nr_sectors += len>>9;
3394                 sector_nr += len>>9;
3395         } while (biolist->bi_vcnt < RESYNC_PAGES);
3396  bio_full:
3397         r10_bio->sectors = nr_sectors;
3398
3399         while (biolist) {
3400                 bio = biolist;
3401                 biolist = biolist->bi_next;
3402
3403                 bio->bi_next = NULL;
3404                 r10_bio = bio->bi_private;
3405                 r10_bio->sectors = nr_sectors;
3406
3407                 if (bio->bi_end_io == end_sync_read) {
3408                         md_sync_acct(bio->bi_bdev, nr_sectors);
3409                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3410                         generic_make_request(bio);
3411                 }
3412         }
3413
3414         if (sectors_skipped)
3415                 /* pretend they weren't skipped, it makes
3416                  * no important difference in this case
3417                  */
3418                 md_done_sync(mddev, sectors_skipped, 1);
3419
3420         return sectors_skipped + nr_sectors;
3421  giveup:
3422         /* There is nowhere to write, so all non-sync
3423          * drives must be failed or in resync, all drives
3424          * have a bad block, so try the next chunk...
3425          */
3426         if (sector_nr + max_sync < max_sector)
3427                 max_sector = sector_nr + max_sync;
3428
3429         sectors_skipped += (max_sector - sector_nr);
3430         chunks_skipped ++;
3431         sector_nr = max_sector;
3432         goto skipped;
3433 }
3434
3435 static sector_t
3436 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437 {
3438         sector_t size;
3439         struct r10conf *conf = mddev->private;
3440
3441         if (!raid_disks)
3442                 raid_disks = min(conf->geo.raid_disks,
3443                                  conf->prev.raid_disks);
3444         if (!sectors)
3445                 sectors = conf->dev_sectors;
3446
3447         size = sectors >> conf->geo.chunk_shift;
3448         sector_div(size, conf->geo.far_copies);
3449         size = size * raid_disks;
3450         sector_div(size, conf->geo.near_copies);
3451
3452         return size << conf->geo.chunk_shift;
3453 }
3454
3455 static void calc_sectors(struct r10conf *conf, sector_t size)
3456 {
3457         /* Calculate the number of sectors-per-device that will
3458          * actually be used, and set conf->dev_sectors and
3459          * conf->stride
3460          */
3461
3462         size = size >> conf->geo.chunk_shift;
3463         sector_div(size, conf->geo.far_copies);
3464         size = size * conf->geo.raid_disks;
3465         sector_div(size, conf->geo.near_copies);
3466         /* 'size' is now the number of chunks in the array */
3467         /* calculate "used chunks per device" */
3468         size = size * conf->copies;
3469
3470         /* We need to round up when dividing by raid_disks to
3471          * get the stride size.
3472          */
3473         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474
3475         conf->dev_sectors = size << conf->geo.chunk_shift;
3476
3477         if (conf->geo.far_offset)
3478                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3479         else {
3480                 sector_div(size, conf->geo.far_copies);
3481                 conf->geo.stride = size << conf->geo.chunk_shift;
3482         }
3483 }
3484
3485 enum geo_type {geo_new, geo_old, geo_start};
3486 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487 {
3488         int nc, fc, fo;
3489         int layout, chunk, disks;
3490         switch (new) {
3491         case geo_old:
3492                 layout = mddev->layout;
3493                 chunk = mddev->chunk_sectors;
3494                 disks = mddev->raid_disks - mddev->delta_disks;
3495                 break;
3496         case geo_new:
3497                 layout = mddev->new_layout;
3498                 chunk = mddev->new_chunk_sectors;
3499                 disks = mddev->raid_disks;
3500                 break;
3501         default: /* avoid 'may be unused' warnings */
3502         case geo_start: /* new when starting reshape - raid_disks not
3503                          * updated yet. */
3504                 layout = mddev->new_layout;
3505                 chunk = mddev->new_chunk_sectors;
3506                 disks = mddev->raid_disks + mddev->delta_disks;
3507                 break;
3508         }
3509         if (layout >> 18)
3510                 return -1;
3511         if (chunk < (PAGE_SIZE >> 9) ||
3512             !is_power_of_2(chunk))
3513                 return -2;
3514         nc = layout & 255;
3515         fc = (layout >> 8) & 255;
3516         fo = layout & (1<<16);
3517         geo->raid_disks = disks;
3518         geo->near_copies = nc;
3519         geo->far_copies = fc;
3520         geo->far_offset = fo;
3521         geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3522         geo->chunk_mask = chunk - 1;
3523         geo->chunk_shift = ffz(~chunk);
3524         return nc*fc;
3525 }
3526
3527 static struct r10conf *setup_conf(struct mddev *mddev)
3528 {
3529         struct r10conf *conf = NULL;
3530         int err = -EINVAL;
3531         struct geom geo;
3532         int copies;
3533
3534         copies = setup_geo(&geo, mddev, geo_new);
3535
3536         if (copies == -2) {
3537                 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538                        "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539                        mdname(mddev), PAGE_SIZE);
3540                 goto out;
3541         }
3542
3543         if (copies < 2 || copies > mddev->raid_disks) {
3544                 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545                        mdname(mddev), mddev->new_layout);
3546                 goto out;
3547         }
3548
3549         err = -ENOMEM;
3550         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551         if (!conf)
3552                 goto out;
3553
3554         /* FIXME calc properly */
3555         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556                                                             max(0,-mddev->delta_disks)),
3557                                 GFP_KERNEL);
3558         if (!conf->mirrors)
3559                 goto out;
3560
3561         conf->tmppage = alloc_page(GFP_KERNEL);
3562         if (!conf->tmppage)
3563                 goto out;
3564
3565         conf->geo = geo;
3566         conf->copies = copies;
3567         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568                                            r10bio_pool_free, conf);
3569         if (!conf->r10bio_pool)
3570                 goto out;
3571
3572         calc_sectors(conf, mddev->dev_sectors);
3573         if (mddev->reshape_position == MaxSector) {
3574                 conf->prev = conf->geo;
3575                 conf->reshape_progress = MaxSector;
3576         } else {
3577                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578                         err = -EINVAL;
3579                         goto out;
3580                 }
3581                 conf->reshape_progress = mddev->reshape_position;
3582                 if (conf->prev.far_offset)
3583                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3584                 else
3585                         /* far_copies must be 1 */
3586                         conf->prev.stride = conf->dev_sectors;
3587         }
3588         spin_lock_init(&conf->device_lock);
3589         INIT_LIST_HEAD(&conf->retry_list);
3590
3591         spin_lock_init(&conf->resync_lock);
3592         init_waitqueue_head(&conf->wait_barrier);
3593
3594         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595         if (!conf->thread)
3596                 goto out;
3597
3598         conf->mddev = mddev;
3599         return conf;
3600
3601  out:
3602         if (err == -ENOMEM)
3603                 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604                        mdname(mddev));
3605         if (conf) {
3606                 if (conf->r10bio_pool)
3607                         mempool_destroy(conf->r10bio_pool);
3608                 kfree(conf->mirrors);
3609                 safe_put_page(conf->tmppage);
3610                 kfree(conf);
3611         }
3612         return ERR_PTR(err);
3613 }
3614
3615 static int run(struct mddev *mddev)
3616 {
3617         struct r10conf *conf;
3618         int i, disk_idx, chunk_size;
3619         struct raid10_info *disk;
3620         struct md_rdev *rdev;
3621         sector_t size;
3622         sector_t min_offset_diff = 0;
3623         int first = 1;
3624         bool discard_supported = false;
3625
3626         if (mddev->private == NULL) {
3627                 conf = setup_conf(mddev);
3628                 if (IS_ERR(conf))
3629                         return PTR_ERR(conf);
3630                 mddev->private = conf;
3631         }
3632         conf = mddev->private;
3633         if (!conf)
3634                 goto out;
3635
3636         mddev->thread = conf->thread;
3637         conf->thread = NULL;
3638
3639         chunk_size = mddev->chunk_sectors << 9;
3640         if (mddev->queue) {
3641                 blk_queue_max_discard_sectors(mddev->queue,
3642                                               mddev->chunk_sectors);
3643                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3644                 blk_queue_io_min(mddev->queue, chunk_size);
3645                 if (conf->geo.raid_disks % conf->geo.near_copies)
3646                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647                 else
3648                         blk_queue_io_opt(mddev->queue, chunk_size *
3649                                          (conf->geo.raid_disks / conf->geo.near_copies));
3650         }
3651
3652         rdev_for_each(rdev, mddev) {
3653                 long long diff;
3654                 struct request_queue *q;
3655
3656                 disk_idx = rdev->raid_disk;
3657                 if (disk_idx < 0)
3658                         continue;
3659                 if (disk_idx >= conf->geo.raid_disks &&
3660                     disk_idx >= conf->prev.raid_disks)
3661                         continue;
3662                 disk = conf->mirrors + disk_idx;
3663
3664                 if (test_bit(Replacement, &rdev->flags)) {
3665                         if (disk->replacement)
3666                                 goto out_free_conf;
3667                         disk->replacement = rdev;
3668                 } else {
3669                         if (disk->rdev)
3670                                 goto out_free_conf;
3671                         disk->rdev = rdev;
3672                 }
3673                 q = bdev_get_queue(rdev->bdev);
3674                 if (q->merge_bvec_fn)
3675                         mddev->merge_check_needed = 1;
3676                 diff = (rdev->new_data_offset - rdev->data_offset);
3677                 if (!mddev->reshape_backwards)
3678                         diff = -diff;
3679                 if (diff < 0)
3680                         diff = 0;
3681                 if (first || diff < min_offset_diff)
3682                         min_offset_diff = diff;
3683
3684                 if (mddev->gendisk)
3685                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3686                                           rdev->data_offset << 9);
3687
3688                 disk->head_position = 0;
3689
3690                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691                         discard_supported = true;
3692         }
3693
3694         if (mddev->queue) {
3695                 if (discard_supported)
3696                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697                                                 mddev->queue);
3698                 else
3699                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700                                                   mddev->queue);
3701         }
3702         /* need to check that every block has at least one working mirror */
3703         if (!enough(conf, -1)) {
3704                 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705                        mdname(mddev));
3706                 goto out_free_conf;
3707         }
3708
3709         if (conf->reshape_progress != MaxSector) {
3710                 /* must ensure that shape change is supported */
3711                 if (conf->geo.far_copies != 1 &&
3712                     conf->geo.far_offset == 0)
3713                         goto out_free_conf;
3714                 if (conf->prev.far_copies != 1 &&
3715                     conf->prev.far_offset == 0)
3716                         goto out_free_conf;
3717         }
3718
3719         mddev->degraded = 0;
3720         for (i = 0;
3721              i < conf->geo.raid_disks
3722                      || i < conf->prev.raid_disks;
3723              i++) {
3724
3725                 disk = conf->mirrors + i;
3726
3727                 if (!disk->rdev && disk->replacement) {
3728                         /* The replacement is all we have - use it */
3729                         disk->rdev = disk->replacement;
3730                         disk->replacement = NULL;
3731                         clear_bit(Replacement, &disk->rdev->flags);
3732                 }
3733
3734                 if (!disk->rdev ||
3735                     !test_bit(In_sync, &disk->rdev->flags)) {
3736                         disk->head_position = 0;
3737                         mddev->degraded++;
3738                         if (disk->rdev &&
3739                             disk->rdev->saved_raid_disk < 0)
3740                                 conf->fullsync = 1;
3741                 }
3742                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3743         }
3744
3745         if (mddev->recovery_cp != MaxSector)
3746                 printk(KERN_NOTICE "md/raid10:%s: not clean"
3747                        " -- starting background reconstruction\n",
3748                        mdname(mddev));
3749         printk(KERN_INFO
3750                 "md/raid10:%s: active with %d out of %d devices\n",
3751                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752                 conf->geo.raid_disks);
3753         /*
3754          * Ok, everything is just fine now
3755          */
3756         mddev->dev_sectors = conf->dev_sectors;
3757         size = raid10_size(mddev, 0, 0);
3758         md_set_array_sectors(mddev, size);
3759         mddev->resync_max_sectors = size;
3760
3761         if (mddev->queue) {
3762                 int stripe = conf->geo.raid_disks *
3763                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764                 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765                 mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767                 /* Calculate max read-ahead size.
3768                  * We need to readahead at least twice a whole stripe....
3769                  * maybe...
3770                  */
3771                 stripe /= conf->geo.near_copies;
3772                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775         }
3776
3777
3778         if (md_integrity_register(mddev))
3779                 goto out_free_conf;
3780
3781         if (conf->reshape_progress != MaxSector) {
3782                 unsigned long before_length, after_length;
3783
3784                 before_length = ((1 << conf->prev.chunk_shift) *
3785                                  conf->prev.far_copies);
3786                 after_length = ((1 << conf->geo.chunk_shift) *
3787                                 conf->geo.far_copies);
3788
3789                 if (max(before_length, after_length) > min_offset_diff) {
3790                         /* This cannot work */
3791                         printk("md/raid10: offset difference not enough to continue reshape\n");
3792                         goto out_free_conf;
3793                 }
3794                 conf->offset_diff = min_offset_diff;
3795
3796                 conf->reshape_safe = conf->reshape_progress;
3797                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802                                                         "reshape");
3803         }
3804
3805         return 0;
3806
3807 out_free_conf:
3808         md_unregister_thread(&mddev->thread);
3809         if (conf->r10bio_pool)
3810                 mempool_destroy(conf->r10bio_pool);
3811         safe_put_page(conf->tmppage);
3812         kfree(conf->mirrors);
3813         kfree(conf);
3814         mddev->private = NULL;
3815 out:
3816         return -EIO;
3817 }
3818
3819 static int stop(struct mddev *mddev)
3820 {
3821         struct r10conf *conf = mddev->private;
3822
3823         raise_barrier(conf, 0);
3824         lower_barrier(conf);
3825
3826         md_unregister_thread(&mddev->thread);
3827         if (mddev->queue)
3828                 /* the unplug fn references 'conf'*/
3829                 blk_sync_queue(mddev->queue);
3830
3831         if (conf->r10bio_pool)
3832                 mempool_destroy(conf->r10bio_pool);
3833         safe_put_page(conf->tmppage);
3834         kfree(conf->mirrors);
3835         kfree(conf);
3836         mddev->private = NULL;
3837         return 0;
3838 }
3839
3840 static void raid10_quiesce(struct mddev *mddev, int state)
3841 {
3842         struct r10conf *conf = mddev->private;
3843
3844         switch(state) {
3845         case 1:
3846                 raise_barrier(conf, 0);
3847                 break;
3848         case 0:
3849                 lower_barrier(conf);
3850                 break;
3851         }
3852 }
3853
3854 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855 {
3856         /* Resize of 'far' arrays is not supported.
3857          * For 'near' and 'offset' arrays we can set the
3858          * number of sectors used to be an appropriate multiple
3859          * of the chunk size.
3860          * For 'offset', this is far_copies*chunksize.
3861          * For 'near' the multiplier is the LCM of
3862          * near_copies and raid_disks.
3863          * So if far_copies > 1 && !far_offset, fail.
3864          * Else find LCM(raid_disks, near_copy)*far_copies and
3865          * multiply by chunk_size.  Then round to this number.
3866          * This is mostly done by raid10_size()
3867          */
3868         struct r10conf *conf = mddev->private;
3869         sector_t oldsize, size;
3870
3871         if (mddev->reshape_position != MaxSector)
3872                 return -EBUSY;
3873
3874         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875                 return -EINVAL;
3876
3877         oldsize = raid10_size(mddev, 0, 0);
3878         size = raid10_size(mddev, sectors, 0);
3879         if (mddev->external_size &&
3880             mddev->array_sectors > size)
3881                 return -EINVAL;
3882         if (mddev->bitmap) {
3883                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884                 if (ret)
3885                         return ret;
3886         }
3887         md_set_array_sectors(mddev, size);
3888         set_capacity(mddev->gendisk, mddev->array_sectors);
3889         revalidate_disk(mddev->gendisk);
3890         if (sectors > mddev->dev_sectors &&
3891             mddev->recovery_cp > oldsize) {
3892                 mddev->recovery_cp = oldsize;
3893                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894         }
3895         calc_sectors(conf, sectors);
3896         mddev->dev_sectors = conf->dev_sectors;
3897         mddev->resync_max_sectors = size;
3898         return 0;
3899 }
3900
3901 static void *raid10_takeover_raid0(struct mddev *mddev)
3902 {
3903         struct md_rdev *rdev;
3904         struct r10conf *conf;
3905
3906         if (mddev->degraded > 0) {
3907                 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908                        mdname(mddev));
3909                 return ERR_PTR(-EINVAL);
3910         }
3911
3912         /* Set new parameters */
3913         mddev->new_level = 10;
3914         /* new layout: far_copies = 1, near_copies = 2 */
3915         mddev->new_layout = (1<<8) + 2;
3916         mddev->new_chunk_sectors = mddev->chunk_sectors;
3917         mddev->delta_disks = mddev->raid_disks;
3918         mddev->raid_disks *= 2;
3919         /* make sure it will be not marked as dirty */
3920         mddev->recovery_cp = MaxSector;
3921
3922         conf = setup_conf(mddev);
3923         if (!IS_ERR(conf)) {
3924                 rdev_for_each(rdev, mddev)
3925                         if (rdev->raid_disk >= 0)
3926                                 rdev->new_raid_disk = rdev->raid_disk * 2;
3927                 conf->barrier = 1;
3928         }
3929
3930         return conf;
3931 }
3932
3933 static void *raid10_takeover(struct mddev *mddev)
3934 {
3935         struct r0conf *raid0_conf;
3936
3937         /* raid10 can take over:
3938          *  raid0 - providing it has only two drives
3939          */
3940         if (mddev->level == 0) {
3941                 /* for raid0 takeover only one zone is supported */
3942                 raid0_conf = mddev->private;
3943                 if (raid0_conf->nr_strip_zones > 1) {
3944                         printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945                                " with more than one zone.\n",
3946                                mdname(mddev));
3947                         return ERR_PTR(-EINVAL);
3948                 }
3949                 return raid10_takeover_raid0(mddev);
3950         }
3951         return ERR_PTR(-EINVAL);
3952 }
3953
3954 static int raid10_check_reshape(struct mddev *mddev)
3955 {
3956         /* Called when there is a request to change
3957          * - layout (to ->new_layout)
3958          * - chunk size (to ->new_chunk_sectors)
3959          * - raid_disks (by delta_disks)
3960          * or when trying to restart a reshape that was ongoing.
3961          *
3962          * We need to validate the request and possibly allocate
3963          * space if that might be an issue later.
3964          *
3965          * Currently we reject any reshape of a 'far' mode array,
3966          * allow chunk size to change if new is generally acceptable,
3967          * allow raid_disks to increase, and allow
3968          * a switch between 'near' mode and 'offset' mode.
3969          */
3970         struct r10conf *conf = mddev->private;
3971         struct geom geo;
3972
3973         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974                 return -EINVAL;
3975
3976         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977                 /* mustn't change number of copies */
3978                 return -EINVAL;
3979         if (geo.far_copies > 1 && !geo.far_offset)
3980                 /* Cannot switch to 'far' mode */
3981                 return -EINVAL;
3982
3983         if (mddev->array_sectors & geo.chunk_mask)
3984                         /* not factor of array size */
3985                         return -EINVAL;
3986
3987         if (!enough(conf, -1))
3988                 return -EINVAL;
3989
3990         kfree(conf->mirrors_new);
3991         conf->mirrors_new = NULL;
3992         if (mddev->delta_disks > 0) {
3993                 /* allocate new 'mirrors' list */
3994                 conf->mirrors_new = kzalloc(
3995                         sizeof(struct raid10_info)
3996                         *(mddev->raid_disks +
3997                           mddev->delta_disks),
3998                         GFP_KERNEL);
3999                 if (!conf->mirrors_new)
4000                         return -ENOMEM;
4001         }
4002         return 0;
4003 }
4004
4005 /*
4006  * Need to check if array has failed when deciding whether to:
4007  *  - start an array
4008  *  - remove non-faulty devices
4009  *  - add a spare
4010  *  - allow a reshape
4011  * This determination is simple when no reshape is happening.
4012  * However if there is a reshape, we need to carefully check
4013  * both the before and after sections.
4014  * This is because some failed devices may only affect one
4015  * of the two sections, and some non-in_sync devices may
4016  * be insync in the section most affected by failed devices.
4017  */
4018 static int calc_degraded(struct r10conf *conf)
4019 {
4020         int degraded, degraded2;
4021         int i;
4022
4023         rcu_read_lock();
4024         degraded = 0;
4025         /* 'prev' section first */
4026         for (i = 0; i < conf->prev.raid_disks; i++) {
4027                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028                 if (!rdev || test_bit(Faulty, &rdev->flags))
4029                         degraded++;
4030                 else if (!test_bit(In_sync, &rdev->flags))
4031                         /* When we can reduce the number of devices in
4032                          * an array, this might not contribute to
4033                          * 'degraded'.  It does now.
4034                          */
4035                         degraded++;
4036         }
4037         rcu_read_unlock();
4038         if (conf->geo.raid_disks == conf->prev.raid_disks)
4039                 return degraded;
4040         rcu_read_lock();
4041         degraded2 = 0;
4042         for (i = 0; i < conf->geo.raid_disks; i++) {
4043                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044                 if (!rdev || test_bit(Faulty, &rdev->flags))
4045                         degraded2++;
4046                 else if (!test_bit(In_sync, &rdev->flags)) {
4047                         /* If reshape is increasing the number of devices,
4048                          * this section has already been recovered, so
4049                          * it doesn't contribute to degraded.
4050                          * else it does.
4051                          */
4052                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053                                 degraded2++;
4054                 }
4055         }
4056         rcu_read_unlock();
4057         if (degraded2 > degraded)
4058                 return degraded2;
4059         return degraded;
4060 }
4061
4062 static int raid10_start_reshape(struct mddev *mddev)
4063 {
4064         /* A 'reshape' has been requested. This commits
4065          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066          * This also checks if there are enough spares and adds them
4067          * to the array.
4068          * We currently require enough spares to make the final
4069          * array non-degraded.  We also require that the difference
4070          * between old and new data_offset - on each device - is
4071          * enough that we never risk over-writing.
4072          */
4073
4074         unsigned long before_length, after_length;
4075         sector_t min_offset_diff = 0;
4076         int first = 1;
4077         struct geom new;
4078         struct r10conf *conf = mddev->private;
4079         struct md_rdev *rdev;
4080         int spares = 0;
4081         int ret;
4082
4083         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084                 return -EBUSY;
4085
4086         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087                 return -EINVAL;
4088
4089         before_length = ((1 << conf->prev.chunk_shift) *
4090                          conf->prev.far_copies);
4091         after_length = ((1 << conf->geo.chunk_shift) *
4092                         conf->geo.far_copies);
4093
4094         rdev_for_each(rdev, mddev) {
4095                 if (!test_bit(In_sync, &rdev->flags)
4096                     && !test_bit(Faulty, &rdev->flags))
4097                         spares++;
4098                 if (rdev->raid_disk >= 0) {
4099                         long long diff = (rdev->new_data_offset
4100                                           - rdev->data_offset);
4101                         if (!mddev->reshape_backwards)
4102                                 diff = -diff;
4103                         if (diff < 0)
4104                                 diff = 0;
4105                         if (first || diff < min_offset_diff)
4106                                 min_offset_diff = diff;
4107                 }
4108         }
4109
4110         if (max(before_length, after_length) > min_offset_diff)
4111                 return -EINVAL;
4112
4113         if (spares < mddev->delta_disks)
4114                 return -EINVAL;
4115
4116         conf->offset_diff = min_offset_diff;
4117         spin_lock_irq(&conf->device_lock);
4118         if (conf->mirrors_new) {
4119                 memcpy(conf->mirrors_new, conf->mirrors,
4120                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4121                 smp_mb();
4122                 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123                 conf->mirrors_old = conf->mirrors;
4124                 conf->mirrors = conf->mirrors_new;
4125                 conf->mirrors_new = NULL;
4126         }
4127         setup_geo(&conf->geo, mddev, geo_start);
4128         smp_mb();
4129         if (mddev->reshape_backwards) {
4130                 sector_t size = raid10_size(mddev, 0, 0);
4131                 if (size < mddev->array_sectors) {
4132                         spin_unlock_irq(&conf->device_lock);
4133                         printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134                                mdname(mddev));
4135                         return -EINVAL;
4136                 }
4137                 mddev->resync_max_sectors = size;
4138                 conf->reshape_progress = size;
4139         } else
4140                 conf->reshape_progress = 0;
4141         spin_unlock_irq(&conf->device_lock);
4142
4143         if (mddev->delta_disks && mddev->bitmap) {
4144                 ret = bitmap_resize(mddev->bitmap,
4145                                     raid10_size(mddev, 0,
4146                                                 conf->geo.raid_disks),
4147                                     0, 0);
4148                 if (ret)
4149                         goto abort;
4150         }
4151         if (mddev->delta_disks > 0) {
4152                 rdev_for_each(rdev, mddev)
4153                         if (rdev->raid_disk < 0 &&
4154                             !test_bit(Faulty, &rdev->flags)) {
4155                                 if (raid10_add_disk(mddev, rdev) == 0) {
4156                                         if (rdev->raid_disk >=
4157                                             conf->prev.raid_disks)
4158                                                 set_bit(In_sync, &rdev->flags);
4159                                         else
4160                                                 rdev->recovery_offset = 0;
4161
4162                                         if (sysfs_link_rdev(mddev, rdev))
4163                                                 /* Failure here  is OK */;
4164                                 }
4165                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4166                                    && !test_bit(Faulty, &rdev->flags)) {
4167                                 /* This is a spare that was manually added */
4168                                 set_bit(In_sync, &rdev->flags);
4169                         }
4170         }
4171         /* When a reshape changes the number of devices,
4172          * ->degraded is measured against the larger of the
4173          * pre and  post numbers.
4174          */
4175         spin_lock_irq(&conf->device_lock);
4176         mddev->degraded = calc_degraded(conf);
4177         spin_unlock_irq(&conf->device_lock);
4178         mddev->raid_disks = conf->geo.raid_disks;
4179         mddev->reshape_position = conf->reshape_progress;
4180         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188                                                 "reshape");
4189         if (!mddev->sync_thread) {
4190                 ret = -EAGAIN;
4191                 goto abort;
4192         }
4193         conf->reshape_checkpoint = jiffies;
4194         md_wakeup_thread(mddev->sync_thread);
4195         md_new_event(mddev);
4196         return 0;
4197
4198 abort:
4199         mddev->recovery = 0;
4200         spin_lock_irq(&conf->device_lock);
4201         conf->geo = conf->prev;
4202         mddev->raid_disks = conf->geo.raid_disks;
4203         rdev_for_each(rdev, mddev)
4204                 rdev->new_data_offset = rdev->data_offset;
4205         smp_wmb();
4206         conf->reshape_progress = MaxSector;
4207         mddev->reshape_position = MaxSector;
4208         spin_unlock_irq(&conf->device_lock);
4209         return ret;
4210 }
4211
4212 /* Calculate the last device-address that could contain
4213  * any block from the chunk that includes the array-address 's'
4214  * and report the next address.
4215  * i.e. the address returned will be chunk-aligned and after
4216  * any data that is in the chunk containing 's'.
4217  */
4218 static sector_t last_dev_address(sector_t s, struct geom *geo)
4219 {
4220         s = (s | geo->chunk_mask) + 1;
4221         s >>= geo->chunk_shift;
4222         s *= geo->near_copies;
4223         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224         s *= geo->far_copies;
4225         s <<= geo->chunk_shift;
4226         return s;
4227 }
4228
4229 /* Calculate the first device-address that could contain
4230  * any block from the chunk that includes the array-address 's'.
4231  * This too will be the start of a chunk
4232  */
4233 static sector_t first_dev_address(sector_t s, struct geom *geo)
4234 {
4235         s >>= geo->chunk_shift;
4236         s *= geo->near_copies;
4237         sector_div(s, geo->raid_disks);
4238         s *= geo->far_copies;
4239         s <<= geo->chunk_shift;
4240         return s;
4241 }
4242
4243 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244                                 int *skipped)
4245 {
4246         /* We simply copy at most one chunk (smallest of old and new)
4247          * at a time, possibly less if that exceeds RESYNC_PAGES,
4248          * or we hit a bad block or something.
4249          * This might mean we pause for normal IO in the middle of
4250          * a chunk, but that is not a problem was mddev->reshape_position
4251          * can record any location.
4252          *
4253          * If we will want to write to a location that isn't
4254          * yet recorded as 'safe' (i.e. in metadata on disk) then
4255          * we need to flush all reshape requests and update the metadata.
4256          *
4257          * When reshaping forwards (e.g. to more devices), we interpret
4258          * 'safe' as the earliest block which might not have been copied
4259          * down yet.  We divide this by previous stripe size and multiply
4260          * by previous stripe length to get lowest device offset that we
4261          * cannot write to yet.
4262          * We interpret 'sector_nr' as an address that we want to write to.
4263          * From this we use last_device_address() to find where we might
4264          * write to, and first_device_address on the  'safe' position.
4265          * If this 'next' write position is after the 'safe' position,
4266          * we must update the metadata to increase the 'safe' position.
4267          *
4268          * When reshaping backwards, we round in the opposite direction
4269          * and perform the reverse test:  next write position must not be
4270          * less than current safe position.
4271          *
4272          * In all this the minimum difference in data offsets
4273          * (conf->offset_diff - always positive) allows a bit of slack,
4274          * so next can be after 'safe', but not by more than offset_disk
4275          *
4276          * We need to prepare all the bios here before we start any IO
4277          * to ensure the size we choose is acceptable to all devices.
4278          * The means one for each copy for write-out and an extra one for
4279          * read-in.
4280          * We store the read-in bio in ->master_bio and the others in
4281          * ->devs[x].bio and ->devs[x].repl_bio.
4282          */
4283         struct r10conf *conf = mddev->private;
4284         struct r10bio *r10_bio;
4285         sector_t next, safe, last;
4286         int max_sectors;
4287         int nr_sectors;
4288         int s;
4289         struct md_rdev *rdev;
4290         int need_flush = 0;
4291         struct bio *blist;
4292         struct bio *bio, *read_bio;
4293         int sectors_done = 0;
4294
4295         if (sector_nr == 0) {
4296                 /* If restarting in the middle, skip the initial sectors */
4297                 if (mddev->reshape_backwards &&
4298                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299                         sector_nr = (raid10_size(mddev, 0, 0)
4300                                      - conf->reshape_progress);
4301                 } else if (!mddev->reshape_backwards &&
4302                            conf->reshape_progress > 0)
4303                         sector_nr = conf->reshape_progress;
4304                 if (sector_nr) {
4305                         mddev->curr_resync_completed = sector_nr;
4306                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307                         *skipped = 1;
4308                         return sector_nr;
4309                 }
4310         }
4311
4312         /* We don't use sector_nr to track where we are up to
4313          * as that doesn't work well for ->reshape_backwards.
4314          * So just use ->reshape_progress.
4315          */
4316         if (mddev->reshape_backwards) {
4317                 /* 'next' is the earliest device address that we might
4318                  * write to for this chunk in the new layout
4319                  */
4320                 next = first_dev_address(conf->reshape_progress - 1,
4321                                          &conf->geo);
4322
4323                 /* 'safe' is the last device address that we might read from
4324                  * in the old layout after a restart
4325                  */
4326                 safe = last_dev_address(conf->reshape_safe - 1,
4327                                         &conf->prev);
4328
4329                 if (next + conf->offset_diff < safe)
4330                         need_flush = 1;
4331
4332                 last = conf->reshape_progress - 1;
4333                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334                                                & conf->prev.chunk_mask);
4335                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337         } else {
4338                 /* 'next' is after the last device address that we
4339                  * might write to for this chunk in the new layout
4340                  */
4341                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343                 /* 'safe' is the earliest device address that we might
4344                  * read from in the old layout after a restart
4345                  */
4346                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348                 /* Need to update metadata if 'next' might be beyond 'safe'
4349                  * as that would possibly corrupt data
4350                  */
4351                 if (next > safe + conf->offset_diff)
4352                         need_flush = 1;
4353
4354                 sector_nr = conf->reshape_progress;
4355                 last  = sector_nr | (conf->geo.chunk_mask
4356                                      & conf->prev.chunk_mask);
4357
4358                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360         }
4361
4362         if (need_flush ||
4363             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364                 /* Need to update reshape_position in metadata */
4365                 wait_barrier(conf);
4366                 mddev->reshape_position = conf->reshape_progress;
4367                 if (mddev->reshape_backwards)
4368                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369                                 - conf->reshape_progress;
4370                 else
4371                         mddev->curr_resync_completed = conf->reshape_progress;
4372                 conf->reshape_checkpoint = jiffies;
4373                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374                 md_wakeup_thread(mddev->thread);
4375                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4377                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4378                         allow_barrier(conf);
4379                         return sectors_done;
4380                 }
4381                 conf->reshape_safe = mddev->reshape_position;
4382                 allow_barrier(conf);
4383         }
4384
4385 read_more:
4386         /* Now schedule reads for blocks from sector_nr to last */
4387         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4388         raise_barrier(conf, sectors_done != 0);
4389         atomic_set(&r10_bio->remaining, 0);
4390         r10_bio->mddev = mddev;
4391         r10_bio->sector = sector_nr;
4392         set_bit(R10BIO_IsReshape, &r10_bio->state);
4393         r10_bio->sectors = last - sector_nr + 1;
4394         rdev = read_balance(conf, r10_bio, &max_sectors);
4395         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4396
4397         if (!rdev) {
4398                 /* Cannot read from here, so need to record bad blocks
4399                  * on all the target devices.
4400                  */
4401                 // FIXME
4402                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4403                 return sectors_done;
4404         }
4405
4406         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4407
4408         read_bio->bi_bdev = rdev->bdev;
4409         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4410                                + rdev->data_offset);
4411         read_bio->bi_private = r10_bio;
4412         read_bio->bi_end_io = end_sync_read;
4413         read_bio->bi_rw = READ;
4414         read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4415         read_bio->bi_flags |= 1 << BIO_UPTODATE;
4416         read_bio->bi_vcnt = 0;
4417         read_bio->bi_iter.bi_size = 0;
4418         r10_bio->master_bio = read_bio;
4419         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4420
4421         /* Now find the locations in the new layout */
4422         __raid10_find_phys(&conf->geo, r10_bio);
4423
4424         blist = read_bio;
4425         read_bio->bi_next = NULL;
4426
4427         for (s = 0; s < conf->copies*2; s++) {
4428                 struct bio *b;
4429                 int d = r10_bio->devs[s/2].devnum;
4430                 struct md_rdev *rdev2;
4431                 if (s&1) {
4432                         rdev2 = conf->mirrors[d].replacement;
4433                         b = r10_bio->devs[s/2].repl_bio;
4434                 } else {
4435                         rdev2 = conf->mirrors[d].rdev;
4436                         b = r10_bio->devs[s/2].bio;
4437                 }
4438                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4439                         continue;
4440
4441                 bio_reset(b);
4442                 b->bi_bdev = rdev2->bdev;
4443                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4444                         rdev2->new_data_offset;
4445                 b->bi_private = r10_bio;
4446                 b->bi_end_io = end_reshape_write;
4447                 b->bi_rw = WRITE;
4448                 b->bi_next = blist;
4449                 blist = b;
4450         }
4451
4452         /* Now add as many pages as possible to all of these bios. */
4453
4454         nr_sectors = 0;
4455         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457                 int len = (max_sectors - s) << 9;
4458                 if (len > PAGE_SIZE)
4459                         len = PAGE_SIZE;
4460                 for (bio = blist; bio ; bio = bio->bi_next) {
4461                         struct bio *bio2;
4462                         if (bio_add_page(bio, page, len, 0))
4463                                 continue;
4464
4465                         /* Didn't fit, must stop */
4466                         for (bio2 = blist;
4467                              bio2 && bio2 != bio;
4468                              bio2 = bio2->bi_next) {
4469                                 /* Remove last page from this bio */
4470                                 bio2->bi_vcnt--;
4471                                 bio2->bi_iter.bi_size -= len;
4472                                 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473                         }
4474                         goto bio_full;
4475                 }
4476                 sector_nr += len >> 9;
4477                 nr_sectors += len >> 9;
4478         }
4479 bio_full:
4480         r10_bio->sectors = nr_sectors;
4481
4482         /* Now submit the read */
4483         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484         atomic_inc(&r10_bio->remaining);
4485         read_bio->bi_next = NULL;
4486         generic_make_request(read_bio);
4487         sector_nr += nr_sectors;
4488         sectors_done += nr_sectors;
4489         if (sector_nr <= last)
4490                 goto read_more;
4491
4492         /* Now that we have done the whole section we can
4493          * update reshape_progress
4494          */
4495         if (mddev->reshape_backwards)
4496                 conf->reshape_progress -= sectors_done;
4497         else
4498                 conf->reshape_progress += sectors_done;
4499
4500         return sectors_done;
4501 }
4502
4503 static void end_reshape_request(struct r10bio *r10_bio);
4504 static int handle_reshape_read_error(struct mddev *mddev,
4505                                      struct r10bio *r10_bio);
4506 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507 {
4508         /* Reshape read completed.  Hopefully we have a block
4509          * to write out.
4510          * If we got a read error then we do sync 1-page reads from
4511          * elsewhere until we find the data - or give up.
4512          */
4513         struct r10conf *conf = mddev->private;
4514         int s;
4515
4516         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518                         /* Reshape has been aborted */
4519                         md_done_sync(mddev, r10_bio->sectors, 0);
4520                         return;
4521                 }
4522
4523         /* We definitely have the data in the pages, schedule the
4524          * writes.
4525          */
4526         atomic_set(&r10_bio->remaining, 1);
4527         for (s = 0; s < conf->copies*2; s++) {
4528                 struct bio *b;
4529                 int d = r10_bio->devs[s/2].devnum;
4530                 struct md_rdev *rdev;
4531                 if (s&1) {
4532                         rdev = conf->mirrors[d].replacement;
4533                         b = r10_bio->devs[s/2].repl_bio;
4534                 } else {
4535                         rdev = conf->mirrors[d].rdev;
4536                         b = r10_bio->devs[s/2].bio;
4537                 }
4538                 if (!rdev || test_bit(Faulty, &rdev->flags))
4539                         continue;
4540                 atomic_inc(&rdev->nr_pending);
4541                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542                 atomic_inc(&r10_bio->remaining);
4543                 b->bi_next = NULL;
4544                 generic_make_request(b);
4545         }
4546         end_reshape_request(r10_bio);
4547 }
4548
4549 static void end_reshape(struct r10conf *conf)
4550 {
4551         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552                 return;
4553
4554         spin_lock_irq(&conf->device_lock);
4555         conf->prev = conf->geo;
4556         md_finish_reshape(conf->mddev);
4557         smp_wmb();
4558         conf->reshape_progress = MaxSector;
4559         spin_unlock_irq(&conf->device_lock);
4560
4561         /* read-ahead size must cover two whole stripes, which is
4562          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563          */
4564         if (conf->mddev->queue) {
4565                 int stripe = conf->geo.raid_disks *
4566                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567                 stripe /= conf->geo.near_copies;
4568                 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569                         conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570         }
4571         conf->fullsync = 0;
4572 }
4573
4574
4575 static int handle_reshape_read_error(struct mddev *mddev,
4576                                      struct r10bio *r10_bio)
4577 {
4578         /* Use sync reads to get the blocks from somewhere else */
4579         int sectors = r10_bio->sectors;
4580         struct r10conf *conf = mddev->private;
4581         struct {
4582                 struct r10bio r10_bio;
4583                 struct r10dev devs[conf->copies];
4584         } on_stack;
4585         struct r10bio *r10b = &on_stack.r10_bio;
4586         int slot = 0;
4587         int idx = 0;
4588         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589
4590         r10b->sector = r10_bio->sector;
4591         __raid10_find_phys(&conf->prev, r10b);
4592
4593         while (sectors) {
4594                 int s = sectors;
4595                 int success = 0;
4596                 int first_slot = slot;
4597
4598                 if (s > (PAGE_SIZE >> 9))
4599                         s = PAGE_SIZE >> 9;
4600
4601                 while (!success) {
4602                         int d = r10b->devs[slot].devnum;
4603                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4604                         sector_t addr;
4605                         if (rdev == NULL ||
4606                             test_bit(Faulty, &rdev->flags) ||
4607                             !test_bit(In_sync, &rdev->flags))
4608                                 goto failed;
4609
4610                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611                         success = sync_page_io(rdev,
4612                                                addr,
4613                                                s << 9,
4614                                                bvec[idx].bv_page,
4615                                                READ, false);
4616                         if (success)
4617                                 break;
4618                 failed:
4619                         slot++;
4620                         if (slot >= conf->copies)
4621                                 slot = 0;
4622                         if (slot == first_slot)
4623                                 break;
4624                 }
4625                 if (!success) {
4626                         /* couldn't read this block, must give up */
4627                         set_bit(MD_RECOVERY_INTR,
4628                                 &mddev->recovery);
4629                         return -EIO;
4630                 }
4631                 sectors -= s;
4632                 idx++;
4633         }
4634         return 0;
4635 }
4636
4637 static void end_reshape_write(struct bio *bio, int error)
4638 {
4639         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640         struct r10bio *r10_bio = bio->bi_private;
4641         struct mddev *mddev = r10_bio->mddev;
4642         struct r10conf *conf = mddev->private;
4643         int d;
4644         int slot;
4645         int repl;
4646         struct md_rdev *rdev = NULL;
4647
4648         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649         if (repl)
4650                 rdev = conf->mirrors[d].replacement;
4651         if (!rdev) {
4652                 smp_mb();
4653                 rdev = conf->mirrors[d].rdev;
4654         }
4655
4656         if (!uptodate) {
4657                 /* FIXME should record badblock */
4658                 md_error(mddev, rdev);
4659         }
4660
4661         rdev_dec_pending(rdev, mddev);
4662         end_reshape_request(r10_bio);
4663 }
4664
4665 static void end_reshape_request(struct r10bio *r10_bio)
4666 {
4667         if (!atomic_dec_and_test(&r10_bio->remaining))
4668                 return;
4669         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670         bio_put(r10_bio->master_bio);
4671         put_buf(r10_bio);
4672 }
4673
4674 static void raid10_finish_reshape(struct mddev *mddev)
4675 {
4676         struct r10conf *conf = mddev->private;
4677
4678         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679                 return;
4680
4681         if (mddev->delta_disks > 0) {
4682                 sector_t size = raid10_size(mddev, 0, 0);
4683                 md_set_array_sectors(mddev, size);
4684                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685                         mddev->recovery_cp = mddev->resync_max_sectors;
4686                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687                 }
4688                 mddev->resync_max_sectors = size;
4689                 set_capacity(mddev->gendisk, mddev->array_sectors);
4690                 revalidate_disk(mddev->gendisk);
4691         } else {
4692                 int d;
4693                 for (d = conf->geo.raid_disks ;
4694                      d < conf->geo.raid_disks - mddev->delta_disks;
4695                      d++) {
4696                         struct md_rdev *rdev = conf->mirrors[d].rdev;
4697                         if (rdev)
4698                                 clear_bit(In_sync, &rdev->flags);
4699                         rdev = conf->mirrors[d].replacement;
4700                         if (rdev)
4701                                 clear_bit(In_sync, &rdev->flags);
4702                 }
4703         }
4704         mddev->layout = mddev->new_layout;
4705         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706         mddev->reshape_position = MaxSector;
4707         mddev->delta_disks = 0;
4708         mddev->reshape_backwards = 0;
4709 }
4710
4711 static struct md_personality raid10_personality =
4712 {
4713         .name           = "raid10",
4714         .level          = 10,
4715         .owner          = THIS_MODULE,
4716         .make_request   = make_request,
4717         .run            = run,
4718         .stop           = stop,
4719         .status         = status,
4720         .error_handler  = error,
4721         .hot_add_disk   = raid10_add_disk,
4722         .hot_remove_disk= raid10_remove_disk,
4723         .spare_active   = raid10_spare_active,
4724         .sync_request   = sync_request,
4725         .quiesce        = raid10_quiesce,
4726         .size           = raid10_size,
4727         .resize         = raid10_resize,
4728         .takeover       = raid10_takeover,
4729         .check_reshape  = raid10_check_reshape,
4730         .start_reshape  = raid10_start_reshape,
4731         .finish_reshape = raid10_finish_reshape,
4732 };
4733
4734 static int __init raid_init(void)
4735 {
4736         return register_md_personality(&raid10_personality);
4737 }
4738
4739 static void raid_exit(void)
4740 {
4741         unregister_md_personality(&raid10_personality);
4742 }
4743
4744 module_init(raid_init);
4745 module_exit(raid_exit);
4746 MODULE_LICENSE("GPL");
4747 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749 MODULE_ALIAS("md-raid10");
4750 MODULE_ALIAS("md-level-10");
4751
4752 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);