]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include "md.h"
24 #include "raid5.h"
25 #include "bitmap.h"
26
27 /*
28  * metadata/data stored in disk with 4k size unit (a block) regardless
29  * underneath hardware sector size. only works with PAGE_SIZE == 4096
30  */
31 #define BLOCK_SECTORS (8)
32
33 /*
34  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35  *
36  * In write through mode, the reclaim runs every log->max_free_space.
37  * This can prevent the recovery scans for too long
38  */
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48
49 /*
50  * We only need 2 bios per I/O unit to make progress, but ensure we
51  * have a few more available to not get too tight.
52  */
53 #define R5L_POOL_SIZE   4
54
55 /*
56  * r5c journal modes of the array: write-back or write-through.
57  * write-through mode has identical behavior as existing log only
58  * implementation.
59  */
60 enum r5c_journal_mode {
61         R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62         R5C_JOURNAL_MODE_WRITE_BACK = 1,
63 };
64
65 static char *r5c_journal_mode_str[] = {"write-through",
66                                        "write-back"};
67 /*
68  * raid5 cache state machine
69  *
70  * With the RAID cache, each stripe works in two phases:
71  *      - caching phase
72  *      - writing-out phase
73  *
74  * These two phases are controlled by bit STRIPE_R5C_CACHING:
75  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77  *
78  * When there is no journal, or the journal is in write-through mode,
79  * the stripe is always in writing-out phase.
80  *
81  * For write-back journal, the stripe is sent to caching phase on write
82  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83  * the write-out phase by clearing STRIPE_R5C_CACHING.
84  *
85  * Stripes in caching phase do not write the raid disks. Instead, all
86  * writes are committed from the log device. Therefore, a stripe in
87  * caching phase handles writes as:
88  *      - write to log device
89  *      - return IO
90  *
91  * Stripes in writing-out phase handle writes as:
92  *      - calculate parity
93  *      - write pending data and parity to journal
94  *      - write data and parity to raid disks
95  *      - return IO for pending writes
96  */
97
98 struct r5l_log {
99         struct md_rdev *rdev;
100
101         u32 uuid_checksum;
102
103         sector_t device_size;           /* log device size, round to
104                                          * BLOCK_SECTORS */
105         sector_t max_free_space;        /* reclaim run if free space is at
106                                          * this size */
107
108         sector_t last_checkpoint;       /* log tail. where recovery scan
109                                          * starts from */
110         u64 last_cp_seq;                /* log tail sequence */
111
112         sector_t log_start;             /* log head. where new data appends */
113         u64 seq;                        /* log head sequence */
114
115         sector_t next_checkpoint;
116
117         struct mutex io_mutex;
118         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
119
120         spinlock_t io_list_lock;
121         struct list_head running_ios;   /* io_units which are still running,
122                                          * and have not yet been completely
123                                          * written to the log */
124         struct list_head io_end_ios;    /* io_units which have been completely
125                                          * written to the log but not yet written
126                                          * to the RAID */
127         struct list_head flushing_ios;  /* io_units which are waiting for log
128                                          * cache flush */
129         struct list_head finished_ios;  /* io_units which settle down in log disk */
130         struct bio flush_bio;
131
132         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
133
134         struct kmem_cache *io_kc;
135         mempool_t *io_pool;
136         struct bio_set *bs;
137         mempool_t *meta_pool;
138
139         struct md_thread *reclaim_thread;
140         unsigned long reclaim_target;   /* number of space that need to be
141                                          * reclaimed.  if it's 0, reclaim spaces
142                                          * used by io_units which are in
143                                          * IO_UNIT_STRIPE_END state (eg, reclaim
144                                          * dones't wait for specific io_unit
145                                          * switching to IO_UNIT_STRIPE_END
146                                          * state) */
147         wait_queue_head_t iounit_wait;
148
149         struct list_head no_space_stripes; /* pending stripes, log has no space */
150         spinlock_t no_space_stripes_lock;
151
152         bool need_cache_flush;
153
154         /* for r5c_cache */
155         enum r5c_journal_mode r5c_journal_mode;
156
157         /* all stripes in r5cache, in the order of seq at sh->log_start */
158         struct list_head stripe_in_journal_list;
159
160         spinlock_t stripe_in_journal_lock;
161         atomic_t stripe_in_journal_count;
162
163         /* to submit async io_units, to fulfill ordering of flush */
164         struct work_struct deferred_io_work;
165         /* to disable write back during in degraded mode */
166         struct work_struct disable_writeback_work;
167 };
168
169 /*
170  * an IO range starts from a meta data block and end at the next meta data
171  * block. The io unit's the meta data block tracks data/parity followed it. io
172  * unit is written to log disk with normal write, as we always flush log disk
173  * first and then start move data to raid disks, there is no requirement to
174  * write io unit with FLUSH/FUA
175  */
176 struct r5l_io_unit {
177         struct r5l_log *log;
178
179         struct page *meta_page; /* store meta block */
180         int meta_offset;        /* current offset in meta_page */
181
182         struct bio *current_bio;/* current_bio accepting new data */
183
184         atomic_t pending_stripe;/* how many stripes not flushed to raid */
185         u64 seq;                /* seq number of the metablock */
186         sector_t log_start;     /* where the io_unit starts */
187         sector_t log_end;       /* where the io_unit ends */
188         struct list_head log_sibling; /* log->running_ios */
189         struct list_head stripe_list; /* stripes added to the io_unit */
190
191         int state;
192         bool need_split_bio;
193         struct bio *split_bio;
194
195         unsigned int has_flush:1;      /* include flush request */
196         unsigned int has_fua:1;        /* include fua request */
197         unsigned int has_null_flush:1; /* include empty flush request */
198         /*
199          * io isn't sent yet, flush/fua request can only be submitted till it's
200          * the first IO in running_ios list
201          */
202         unsigned int io_deferred:1;
203
204         struct bio_list flush_barriers;   /* size == 0 flush bios */
205 };
206
207 /* r5l_io_unit state */
208 enum r5l_io_unit_state {
209         IO_UNIT_RUNNING = 0,    /* accepting new IO */
210         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
211                                  * don't accepting new bio */
212         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
213         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
214 };
215
216 bool r5c_is_writeback(struct r5l_log *log)
217 {
218         return (log != NULL &&
219                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
220 }
221
222 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
223 {
224         start += inc;
225         if (start >= log->device_size)
226                 start = start - log->device_size;
227         return start;
228 }
229
230 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
231                                   sector_t end)
232 {
233         if (end >= start)
234                 return end - start;
235         else
236                 return end + log->device_size - start;
237 }
238
239 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
240 {
241         sector_t used_size;
242
243         used_size = r5l_ring_distance(log, log->last_checkpoint,
244                                         log->log_start);
245
246         return log->device_size > used_size + size;
247 }
248
249 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
250                                     enum r5l_io_unit_state state)
251 {
252         if (WARN_ON(io->state >= state))
253                 return;
254         io->state = state;
255 }
256
257 static void
258 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
259                               struct bio_list *return_bi)
260 {
261         struct bio *wbi, *wbi2;
262
263         wbi = dev->written;
264         dev->written = NULL;
265         while (wbi && wbi->bi_iter.bi_sector <
266                dev->sector + STRIPE_SECTORS) {
267                 wbi2 = r5_next_bio(wbi, dev->sector);
268                 if (!raid5_dec_bi_active_stripes(wbi)) {
269                         md_write_end(conf->mddev);
270                         bio_list_add(return_bi, wbi);
271                 }
272                 wbi = wbi2;
273         }
274 }
275
276 void r5c_handle_cached_data_endio(struct r5conf *conf,
277           struct stripe_head *sh, int disks, struct bio_list *return_bi)
278 {
279         int i;
280
281         for (i = sh->disks; i--; ) {
282                 if (sh->dev[i].written) {
283                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
284                         r5c_return_dev_pending_writes(conf, &sh->dev[i],
285                                                       return_bi);
286                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
287                                         STRIPE_SECTORS,
288                                         !test_bit(STRIPE_DEGRADED, &sh->state),
289                                         0);
290                 }
291         }
292 }
293
294 /* Check whether we should flush some stripes to free up stripe cache */
295 void r5c_check_stripe_cache_usage(struct r5conf *conf)
296 {
297         int total_cached;
298
299         if (!r5c_is_writeback(conf->log))
300                 return;
301
302         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
303                 atomic_read(&conf->r5c_cached_full_stripes);
304
305         /*
306          * The following condition is true for either of the following:
307          *   - stripe cache pressure high:
308          *          total_cached > 3/4 min_nr_stripes ||
309          *          empty_inactive_list_nr > 0
310          *   - stripe cache pressure moderate:
311          *          total_cached > 1/2 min_nr_stripes
312          */
313         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
314             atomic_read(&conf->empty_inactive_list_nr) > 0)
315                 r5l_wake_reclaim(conf->log, 0);
316 }
317
318 /*
319  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
320  * stripes in the cache
321  */
322 void r5c_check_cached_full_stripe(struct r5conf *conf)
323 {
324         if (!r5c_is_writeback(conf->log))
325                 return;
326
327         /*
328          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
329          * or a full stripe (chunk size / 4k stripes).
330          */
331         if (atomic_read(&conf->r5c_cached_full_stripes) >=
332             min(R5C_FULL_STRIPE_FLUSH_BATCH,
333                 conf->chunk_sectors >> STRIPE_SHIFT))
334                 r5l_wake_reclaim(conf->log, 0);
335 }
336
337 /*
338  * Total log space (in sectors) needed to flush all data in cache
339  *
340  * Currently, writing-out phase automatically includes all pending writes
341  * to the same sector. So the reclaim of each stripe takes up to
342  * (conf->raid_disks + 1) pages of log space.
343  *
344  * To totally avoid deadlock due to log space, the code reserves
345  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
346  * necessary in most cases.
347  *
348  * To improve this, we will need writing-out phase to be able to NOT include
349  * pending writes, which will reduce the requirement to
350  * (conf->max_degraded + 1) pages per stripe in cache.
351  */
352 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
353 {
354         struct r5l_log *log = conf->log;
355
356         if (!r5c_is_writeback(log))
357                 return 0;
358
359         return BLOCK_SECTORS * (conf->raid_disks + 1) *
360                 atomic_read(&log->stripe_in_journal_count);
361 }
362
363 /*
364  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
365  *
366  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
367  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
368  * device is less than 2x of reclaim_required_space.
369  */
370 static inline void r5c_update_log_state(struct r5l_log *log)
371 {
372         struct r5conf *conf = log->rdev->mddev->private;
373         sector_t free_space;
374         sector_t reclaim_space;
375         bool wake_reclaim = false;
376
377         if (!r5c_is_writeback(log))
378                 return;
379
380         free_space = r5l_ring_distance(log, log->log_start,
381                                        log->last_checkpoint);
382         reclaim_space = r5c_log_required_to_flush_cache(conf);
383         if (free_space < 2 * reclaim_space)
384                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
385         else {
386                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
387                         wake_reclaim = true;
388                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
389         }
390         if (free_space < 3 * reclaim_space)
391                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
392         else
393                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
394
395         if (wake_reclaim)
396                 r5l_wake_reclaim(log, 0);
397 }
398
399 /*
400  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
401  * This function should only be called in write-back mode.
402  */
403 void r5c_make_stripe_write_out(struct stripe_head *sh)
404 {
405         struct r5conf *conf = sh->raid_conf;
406         struct r5l_log *log = conf->log;
407
408         BUG_ON(!r5c_is_writeback(log));
409
410         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
411         clear_bit(STRIPE_R5C_CACHING, &sh->state);
412
413         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
414                 atomic_inc(&conf->preread_active_stripes);
415
416         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
417                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
418                 atomic_dec(&conf->r5c_cached_partial_stripes);
419         }
420
421         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
422                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
423                 atomic_dec(&conf->r5c_cached_full_stripes);
424         }
425 }
426
427 static void r5c_handle_data_cached(struct stripe_head *sh)
428 {
429         int i;
430
431         for (i = sh->disks; i--; )
432                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
433                         set_bit(R5_InJournal, &sh->dev[i].flags);
434                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
435                 }
436         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
437 }
438
439 /*
440  * this journal write must contain full parity,
441  * it may also contain some data pages
442  */
443 static void r5c_handle_parity_cached(struct stripe_head *sh)
444 {
445         int i;
446
447         for (i = sh->disks; i--; )
448                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
449                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
450 }
451
452 /*
453  * Setting proper flags after writing (or flushing) data and/or parity to the
454  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
455  */
456 static void r5c_finish_cache_stripe(struct stripe_head *sh)
457 {
458         struct r5l_log *log = sh->raid_conf->log;
459
460         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
461                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
462                 /*
463                  * Set R5_InJournal for parity dev[pd_idx]. This means
464                  * all data AND parity in the journal. For RAID 6, it is
465                  * NOT necessary to set the flag for dev[qd_idx], as the
466                  * two parities are written out together.
467                  */
468                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
469         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
470                 r5c_handle_data_cached(sh);
471         } else {
472                 r5c_handle_parity_cached(sh);
473                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
474         }
475 }
476
477 static void r5l_io_run_stripes(struct r5l_io_unit *io)
478 {
479         struct stripe_head *sh, *next;
480
481         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
482                 list_del_init(&sh->log_list);
483
484                 r5c_finish_cache_stripe(sh);
485
486                 set_bit(STRIPE_HANDLE, &sh->state);
487                 raid5_release_stripe(sh);
488         }
489 }
490
491 static void r5l_log_run_stripes(struct r5l_log *log)
492 {
493         struct r5l_io_unit *io, *next;
494
495         assert_spin_locked(&log->io_list_lock);
496
497         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
498                 /* don't change list order */
499                 if (io->state < IO_UNIT_IO_END)
500                         break;
501
502                 list_move_tail(&io->log_sibling, &log->finished_ios);
503                 r5l_io_run_stripes(io);
504         }
505 }
506
507 static void r5l_move_to_end_ios(struct r5l_log *log)
508 {
509         struct r5l_io_unit *io, *next;
510
511         assert_spin_locked(&log->io_list_lock);
512
513         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
514                 /* don't change list order */
515                 if (io->state < IO_UNIT_IO_END)
516                         break;
517                 list_move_tail(&io->log_sibling, &log->io_end_ios);
518         }
519 }
520
521 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
522 static void r5l_log_endio(struct bio *bio)
523 {
524         struct r5l_io_unit *io = bio->bi_private;
525         struct r5l_io_unit *io_deferred;
526         struct r5l_log *log = io->log;
527         unsigned long flags;
528
529         if (bio->bi_error)
530                 md_error(log->rdev->mddev, log->rdev);
531
532         bio_put(bio);
533         mempool_free(io->meta_page, log->meta_pool);
534
535         spin_lock_irqsave(&log->io_list_lock, flags);
536         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
537         if (log->need_cache_flush)
538                 r5l_move_to_end_ios(log);
539         else
540                 r5l_log_run_stripes(log);
541         if (!list_empty(&log->running_ios)) {
542                 /*
543                  * FLUSH/FUA io_unit is deferred because of ordering, now we
544                  * can dispatch it
545                  */
546                 io_deferred = list_first_entry(&log->running_ios,
547                                                struct r5l_io_unit, log_sibling);
548                 if (io_deferred->io_deferred)
549                         schedule_work(&log->deferred_io_work);
550         }
551
552         spin_unlock_irqrestore(&log->io_list_lock, flags);
553
554         if (log->need_cache_flush)
555                 md_wakeup_thread(log->rdev->mddev->thread);
556
557         if (io->has_null_flush) {
558                 struct bio *bi;
559
560                 WARN_ON(bio_list_empty(&io->flush_barriers));
561                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
562                         bio_endio(bi);
563                         atomic_dec(&io->pending_stripe);
564                 }
565                 if (atomic_read(&io->pending_stripe) == 0)
566                         __r5l_stripe_write_finished(io);
567         }
568 }
569
570 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
571 {
572         unsigned long flags;
573
574         spin_lock_irqsave(&log->io_list_lock, flags);
575         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
576         spin_unlock_irqrestore(&log->io_list_lock, flags);
577
578         if (io->has_flush)
579                 io->current_bio->bi_opf |= REQ_PREFLUSH;
580         if (io->has_fua)
581                 io->current_bio->bi_opf |= REQ_FUA;
582         submit_bio(io->current_bio);
583
584         if (!io->split_bio)
585                 return;
586
587         if (io->has_flush)
588                 io->split_bio->bi_opf |= REQ_PREFLUSH;
589         if (io->has_fua)
590                 io->split_bio->bi_opf |= REQ_FUA;
591         submit_bio(io->split_bio);
592 }
593
594 /* deferred io_unit will be dispatched here */
595 static void r5l_submit_io_async(struct work_struct *work)
596 {
597         struct r5l_log *log = container_of(work, struct r5l_log,
598                                            deferred_io_work);
599         struct r5l_io_unit *io = NULL;
600         unsigned long flags;
601
602         spin_lock_irqsave(&log->io_list_lock, flags);
603         if (!list_empty(&log->running_ios)) {
604                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
605                                       log_sibling);
606                 if (!io->io_deferred)
607                         io = NULL;
608                 else
609                         io->io_deferred = 0;
610         }
611         spin_unlock_irqrestore(&log->io_list_lock, flags);
612         if (io)
613                 r5l_do_submit_io(log, io);
614 }
615
616 static void r5c_disable_writeback_async(struct work_struct *work)
617 {
618         struct r5l_log *log = container_of(work, struct r5l_log,
619                                            disable_writeback_work);
620         struct mddev *mddev = log->rdev->mddev;
621
622         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
623                 return;
624         pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
625                 mdname(mddev));
626         mddev_suspend(mddev);
627         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
628         mddev_resume(mddev);
629 }
630
631 static void r5l_submit_current_io(struct r5l_log *log)
632 {
633         struct r5l_io_unit *io = log->current_io;
634         struct bio *bio;
635         struct r5l_meta_block *block;
636         unsigned long flags;
637         u32 crc;
638         bool do_submit = true;
639
640         if (!io)
641                 return;
642
643         block = page_address(io->meta_page);
644         block->meta_size = cpu_to_le32(io->meta_offset);
645         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
646         block->checksum = cpu_to_le32(crc);
647         bio = io->current_bio;
648
649         log->current_io = NULL;
650         spin_lock_irqsave(&log->io_list_lock, flags);
651         if (io->has_flush || io->has_fua) {
652                 if (io != list_first_entry(&log->running_ios,
653                                            struct r5l_io_unit, log_sibling)) {
654                         io->io_deferred = 1;
655                         do_submit = false;
656                 }
657         }
658         spin_unlock_irqrestore(&log->io_list_lock, flags);
659         if (do_submit)
660                 r5l_do_submit_io(log, io);
661 }
662
663 static struct bio *r5l_bio_alloc(struct r5l_log *log)
664 {
665         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
666
667         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
668         bio->bi_bdev = log->rdev->bdev;
669         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
670
671         return bio;
672 }
673
674 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
675 {
676         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
677
678         r5c_update_log_state(log);
679         /*
680          * If we filled up the log device start from the beginning again,
681          * which will require a new bio.
682          *
683          * Note: for this to work properly the log size needs to me a multiple
684          * of BLOCK_SECTORS.
685          */
686         if (log->log_start == 0)
687                 io->need_split_bio = true;
688
689         io->log_end = log->log_start;
690 }
691
692 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
693 {
694         struct r5l_io_unit *io;
695         struct r5l_meta_block *block;
696
697         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
698         if (!io)
699                 return NULL;
700         memset(io, 0, sizeof(*io));
701
702         io->log = log;
703         INIT_LIST_HEAD(&io->log_sibling);
704         INIT_LIST_HEAD(&io->stripe_list);
705         bio_list_init(&io->flush_barriers);
706         io->state = IO_UNIT_RUNNING;
707
708         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
709         block = page_address(io->meta_page);
710         clear_page(block);
711         block->magic = cpu_to_le32(R5LOG_MAGIC);
712         block->version = R5LOG_VERSION;
713         block->seq = cpu_to_le64(log->seq);
714         block->position = cpu_to_le64(log->log_start);
715
716         io->log_start = log->log_start;
717         io->meta_offset = sizeof(struct r5l_meta_block);
718         io->seq = log->seq++;
719
720         io->current_bio = r5l_bio_alloc(log);
721         io->current_bio->bi_end_io = r5l_log_endio;
722         io->current_bio->bi_private = io;
723         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
724
725         r5_reserve_log_entry(log, io);
726
727         spin_lock_irq(&log->io_list_lock);
728         list_add_tail(&io->log_sibling, &log->running_ios);
729         spin_unlock_irq(&log->io_list_lock);
730
731         return io;
732 }
733
734 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
735 {
736         if (log->current_io &&
737             log->current_io->meta_offset + payload_size > PAGE_SIZE)
738                 r5l_submit_current_io(log);
739
740         if (!log->current_io) {
741                 log->current_io = r5l_new_meta(log);
742                 if (!log->current_io)
743                         return -ENOMEM;
744         }
745
746         return 0;
747 }
748
749 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
750                                     sector_t location,
751                                     u32 checksum1, u32 checksum2,
752                                     bool checksum2_valid)
753 {
754         struct r5l_io_unit *io = log->current_io;
755         struct r5l_payload_data_parity *payload;
756
757         payload = page_address(io->meta_page) + io->meta_offset;
758         payload->header.type = cpu_to_le16(type);
759         payload->header.flags = cpu_to_le16(0);
760         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
761                                     (PAGE_SHIFT - 9));
762         payload->location = cpu_to_le64(location);
763         payload->checksum[0] = cpu_to_le32(checksum1);
764         if (checksum2_valid)
765                 payload->checksum[1] = cpu_to_le32(checksum2);
766
767         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
768                 sizeof(__le32) * (1 + !!checksum2_valid);
769 }
770
771 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
772 {
773         struct r5l_io_unit *io = log->current_io;
774
775         if (io->need_split_bio) {
776                 BUG_ON(io->split_bio);
777                 io->split_bio = io->current_bio;
778                 io->current_bio = r5l_bio_alloc(log);
779                 bio_chain(io->current_bio, io->split_bio);
780                 io->need_split_bio = false;
781         }
782
783         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
784                 BUG();
785
786         r5_reserve_log_entry(log, io);
787 }
788
789 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
790                            int data_pages, int parity_pages)
791 {
792         int i;
793         int meta_size;
794         int ret;
795         struct r5l_io_unit *io;
796
797         meta_size =
798                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
799                  * data_pages) +
800                 sizeof(struct r5l_payload_data_parity) +
801                 sizeof(__le32) * parity_pages;
802
803         ret = r5l_get_meta(log, meta_size);
804         if (ret)
805                 return ret;
806
807         io = log->current_io;
808
809         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
810                 io->has_flush = 1;
811
812         for (i = 0; i < sh->disks; i++) {
813                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
814                     test_bit(R5_InJournal, &sh->dev[i].flags))
815                         continue;
816                 if (i == sh->pd_idx || i == sh->qd_idx)
817                         continue;
818                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
819                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
820                         io->has_fua = 1;
821                         /*
822                          * we need to flush journal to make sure recovery can
823                          * reach the data with fua flag
824                          */
825                         io->has_flush = 1;
826                 }
827                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
828                                         raid5_compute_blocknr(sh, i, 0),
829                                         sh->dev[i].log_checksum, 0, false);
830                 r5l_append_payload_page(log, sh->dev[i].page);
831         }
832
833         if (parity_pages == 2) {
834                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
835                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
836                                         sh->dev[sh->qd_idx].log_checksum, true);
837                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
838                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
839         } else if (parity_pages == 1) {
840                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
841                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
842                                         0, false);
843                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
844         } else  /* Just writing data, not parity, in caching phase */
845                 BUG_ON(parity_pages != 0);
846
847         list_add_tail(&sh->log_list, &io->stripe_list);
848         atomic_inc(&io->pending_stripe);
849         sh->log_io = io;
850
851         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
852                 return 0;
853
854         if (sh->log_start == MaxSector) {
855                 BUG_ON(!list_empty(&sh->r5c));
856                 sh->log_start = io->log_start;
857                 spin_lock_irq(&log->stripe_in_journal_lock);
858                 list_add_tail(&sh->r5c,
859                               &log->stripe_in_journal_list);
860                 spin_unlock_irq(&log->stripe_in_journal_lock);
861                 atomic_inc(&log->stripe_in_journal_count);
862         }
863         return 0;
864 }
865
866 /* add stripe to no_space_stripes, and then wake up reclaim */
867 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
868                                            struct stripe_head *sh)
869 {
870         spin_lock(&log->no_space_stripes_lock);
871         list_add_tail(&sh->log_list, &log->no_space_stripes);
872         spin_unlock(&log->no_space_stripes_lock);
873 }
874
875 /*
876  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
877  * data from log to raid disks), so we shouldn't wait for reclaim here
878  */
879 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
880 {
881         struct r5conf *conf = sh->raid_conf;
882         int write_disks = 0;
883         int data_pages, parity_pages;
884         int reserve;
885         int i;
886         int ret = 0;
887         bool wake_reclaim = false;
888
889         if (!log)
890                 return -EAGAIN;
891         /* Don't support stripe batch */
892         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
893             test_bit(STRIPE_SYNCING, &sh->state)) {
894                 /* the stripe is written to log, we start writing it to raid */
895                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
896                 return -EAGAIN;
897         }
898
899         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
900
901         for (i = 0; i < sh->disks; i++) {
902                 void *addr;
903
904                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
905                     test_bit(R5_InJournal, &sh->dev[i].flags))
906                         continue;
907
908                 write_disks++;
909                 /* checksum is already calculated in last run */
910                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
911                         continue;
912                 addr = kmap_atomic(sh->dev[i].page);
913                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
914                                                     addr, PAGE_SIZE);
915                 kunmap_atomic(addr);
916         }
917         parity_pages = 1 + !!(sh->qd_idx >= 0);
918         data_pages = write_disks - parity_pages;
919
920         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
921         /*
922          * The stripe must enter state machine again to finish the write, so
923          * don't delay.
924          */
925         clear_bit(STRIPE_DELAYED, &sh->state);
926         atomic_inc(&sh->count);
927
928         mutex_lock(&log->io_mutex);
929         /* meta + data */
930         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
931
932         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
933                 if (!r5l_has_free_space(log, reserve)) {
934                         r5l_add_no_space_stripe(log, sh);
935                         wake_reclaim = true;
936                 } else {
937                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
938                         if (ret) {
939                                 spin_lock_irq(&log->io_list_lock);
940                                 list_add_tail(&sh->log_list,
941                                               &log->no_mem_stripes);
942                                 spin_unlock_irq(&log->io_list_lock);
943                         }
944                 }
945         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
946                 /*
947                  * log space critical, do not process stripes that are
948                  * not in cache yet (sh->log_start == MaxSector).
949                  */
950                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
951                     sh->log_start == MaxSector) {
952                         r5l_add_no_space_stripe(log, sh);
953                         wake_reclaim = true;
954                         reserve = 0;
955                 } else if (!r5l_has_free_space(log, reserve)) {
956                         if (sh->log_start == log->last_checkpoint)
957                                 BUG();
958                         else
959                                 r5l_add_no_space_stripe(log, sh);
960                 } else {
961                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
962                         if (ret) {
963                                 spin_lock_irq(&log->io_list_lock);
964                                 list_add_tail(&sh->log_list,
965                                               &log->no_mem_stripes);
966                                 spin_unlock_irq(&log->io_list_lock);
967                         }
968                 }
969         }
970
971         mutex_unlock(&log->io_mutex);
972         if (wake_reclaim)
973                 r5l_wake_reclaim(log, reserve);
974         return 0;
975 }
976
977 void r5l_write_stripe_run(struct r5l_log *log)
978 {
979         if (!log)
980                 return;
981         mutex_lock(&log->io_mutex);
982         r5l_submit_current_io(log);
983         mutex_unlock(&log->io_mutex);
984 }
985
986 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
987 {
988         if (!log)
989                 return -ENODEV;
990
991         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
992                 /*
993                  * in write through (journal only)
994                  * we flush log disk cache first, then write stripe data to
995                  * raid disks. So if bio is finished, the log disk cache is
996                  * flushed already. The recovery guarantees we can recovery
997                  * the bio from log disk, so we don't need to flush again
998                  */
999                 if (bio->bi_iter.bi_size == 0) {
1000                         bio_endio(bio);
1001                         return 0;
1002                 }
1003                 bio->bi_opf &= ~REQ_PREFLUSH;
1004         } else {
1005                 /* write back (with cache) */
1006                 if (bio->bi_iter.bi_size == 0) {
1007                         mutex_lock(&log->io_mutex);
1008                         r5l_get_meta(log, 0);
1009                         bio_list_add(&log->current_io->flush_barriers, bio);
1010                         log->current_io->has_flush = 1;
1011                         log->current_io->has_null_flush = 1;
1012                         atomic_inc(&log->current_io->pending_stripe);
1013                         r5l_submit_current_io(log);
1014                         mutex_unlock(&log->io_mutex);
1015                         return 0;
1016                 }
1017         }
1018         return -EAGAIN;
1019 }
1020
1021 /* This will run after log space is reclaimed */
1022 static void r5l_run_no_space_stripes(struct r5l_log *log)
1023 {
1024         struct stripe_head *sh;
1025
1026         spin_lock(&log->no_space_stripes_lock);
1027         while (!list_empty(&log->no_space_stripes)) {
1028                 sh = list_first_entry(&log->no_space_stripes,
1029                                       struct stripe_head, log_list);
1030                 list_del_init(&sh->log_list);
1031                 set_bit(STRIPE_HANDLE, &sh->state);
1032                 raid5_release_stripe(sh);
1033         }
1034         spin_unlock(&log->no_space_stripes_lock);
1035 }
1036
1037 /*
1038  * calculate new last_checkpoint
1039  * for write through mode, returns log->next_checkpoint
1040  * for write back, returns log_start of first sh in stripe_in_journal_list
1041  */
1042 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1043 {
1044         struct stripe_head *sh;
1045         struct r5l_log *log = conf->log;
1046         sector_t new_cp;
1047         unsigned long flags;
1048
1049         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1050                 return log->next_checkpoint;
1051
1052         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1053         if (list_empty(&conf->log->stripe_in_journal_list)) {
1054                 /* all stripes flushed */
1055                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1056                 return log->next_checkpoint;
1057         }
1058         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1059                               struct stripe_head, r5c);
1060         new_cp = sh->log_start;
1061         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1062         return new_cp;
1063 }
1064
1065 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1066 {
1067         struct r5conf *conf = log->rdev->mddev->private;
1068
1069         return r5l_ring_distance(log, log->last_checkpoint,
1070                                  r5c_calculate_new_cp(conf));
1071 }
1072
1073 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1074 {
1075         struct stripe_head *sh;
1076
1077         assert_spin_locked(&log->io_list_lock);
1078
1079         if (!list_empty(&log->no_mem_stripes)) {
1080                 sh = list_first_entry(&log->no_mem_stripes,
1081                                       struct stripe_head, log_list);
1082                 list_del_init(&sh->log_list);
1083                 set_bit(STRIPE_HANDLE, &sh->state);
1084                 raid5_release_stripe(sh);
1085         }
1086 }
1087
1088 static bool r5l_complete_finished_ios(struct r5l_log *log)
1089 {
1090         struct r5l_io_unit *io, *next;
1091         bool found = false;
1092
1093         assert_spin_locked(&log->io_list_lock);
1094
1095         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1096                 /* don't change list order */
1097                 if (io->state < IO_UNIT_STRIPE_END)
1098                         break;
1099
1100                 log->next_checkpoint = io->log_start;
1101
1102                 list_del(&io->log_sibling);
1103                 mempool_free(io, log->io_pool);
1104                 r5l_run_no_mem_stripe(log);
1105
1106                 found = true;
1107         }
1108
1109         return found;
1110 }
1111
1112 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1113 {
1114         struct r5l_log *log = io->log;
1115         struct r5conf *conf = log->rdev->mddev->private;
1116         unsigned long flags;
1117
1118         spin_lock_irqsave(&log->io_list_lock, flags);
1119         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1120
1121         if (!r5l_complete_finished_ios(log)) {
1122                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1123                 return;
1124         }
1125
1126         if (r5l_reclaimable_space(log) > log->max_free_space ||
1127             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1128                 r5l_wake_reclaim(log, 0);
1129
1130         spin_unlock_irqrestore(&log->io_list_lock, flags);
1131         wake_up(&log->iounit_wait);
1132 }
1133
1134 void r5l_stripe_write_finished(struct stripe_head *sh)
1135 {
1136         struct r5l_io_unit *io;
1137
1138         io = sh->log_io;
1139         sh->log_io = NULL;
1140
1141         if (io && atomic_dec_and_test(&io->pending_stripe))
1142                 __r5l_stripe_write_finished(io);
1143 }
1144
1145 static void r5l_log_flush_endio(struct bio *bio)
1146 {
1147         struct r5l_log *log = container_of(bio, struct r5l_log,
1148                 flush_bio);
1149         unsigned long flags;
1150         struct r5l_io_unit *io;
1151
1152         if (bio->bi_error)
1153                 md_error(log->rdev->mddev, log->rdev);
1154
1155         spin_lock_irqsave(&log->io_list_lock, flags);
1156         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1157                 r5l_io_run_stripes(io);
1158         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1159         spin_unlock_irqrestore(&log->io_list_lock, flags);
1160 }
1161
1162 /*
1163  * Starting dispatch IO to raid.
1164  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1165  * broken meta in the middle of a log causes recovery can't find meta at the
1166  * head of log. If operations require meta at the head persistent in log, we
1167  * must make sure meta before it persistent in log too. A case is:
1168  *
1169  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1170  * data/parity must be persistent in log before we do the write to raid disks.
1171  *
1172  * The solution is we restrictly maintain io_unit list order. In this case, we
1173  * only write stripes of an io_unit to raid disks till the io_unit is the first
1174  * one whose data/parity is in log.
1175  */
1176 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1177 {
1178         bool do_flush;
1179
1180         if (!log || !log->need_cache_flush)
1181                 return;
1182
1183         spin_lock_irq(&log->io_list_lock);
1184         /* flush bio is running */
1185         if (!list_empty(&log->flushing_ios)) {
1186                 spin_unlock_irq(&log->io_list_lock);
1187                 return;
1188         }
1189         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1190         do_flush = !list_empty(&log->flushing_ios);
1191         spin_unlock_irq(&log->io_list_lock);
1192
1193         if (!do_flush)
1194                 return;
1195         bio_reset(&log->flush_bio);
1196         log->flush_bio.bi_bdev = log->rdev->bdev;
1197         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1198         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1199         submit_bio(&log->flush_bio);
1200 }
1201
1202 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1203 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1204         sector_t end)
1205 {
1206         struct block_device *bdev = log->rdev->bdev;
1207         struct mddev *mddev;
1208
1209         r5l_write_super(log, end);
1210
1211         if (!blk_queue_discard(bdev_get_queue(bdev)))
1212                 return;
1213
1214         mddev = log->rdev->mddev;
1215         /*
1216          * Discard could zero data, so before discard we must make sure
1217          * superblock is updated to new log tail. Updating superblock (either
1218          * directly call md_update_sb() or depend on md thread) must hold
1219          * reconfig mutex. On the other hand, raid5_quiesce is called with
1220          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1221          * for all IO finish, hence waitting for reclaim thread, while reclaim
1222          * thread is calling this function and waitting for reconfig mutex. So
1223          * there is a deadlock. We workaround this issue with a trylock.
1224          * FIXME: we could miss discard if we can't take reconfig mutex
1225          */
1226         set_mask_bits(&mddev->sb_flags, 0,
1227                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1228         if (!mddev_trylock(mddev))
1229                 return;
1230         md_update_sb(mddev, 1);
1231         mddev_unlock(mddev);
1232
1233         /* discard IO error really doesn't matter, ignore it */
1234         if (log->last_checkpoint < end) {
1235                 blkdev_issue_discard(bdev,
1236                                 log->last_checkpoint + log->rdev->data_offset,
1237                                 end - log->last_checkpoint, GFP_NOIO, 0);
1238         } else {
1239                 blkdev_issue_discard(bdev,
1240                                 log->last_checkpoint + log->rdev->data_offset,
1241                                 log->device_size - log->last_checkpoint,
1242                                 GFP_NOIO, 0);
1243                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1244                                 GFP_NOIO, 0);
1245         }
1246 }
1247
1248 /*
1249  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1250  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1251  *
1252  * must hold conf->device_lock
1253  */
1254 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1255 {
1256         BUG_ON(list_empty(&sh->lru));
1257         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1258         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1259
1260         /*
1261          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1262          * raid5_release_stripe() while holding conf->device_lock
1263          */
1264         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1265         assert_spin_locked(&conf->device_lock);
1266
1267         list_del_init(&sh->lru);
1268         atomic_inc(&sh->count);
1269
1270         set_bit(STRIPE_HANDLE, &sh->state);
1271         atomic_inc(&conf->active_stripes);
1272         r5c_make_stripe_write_out(sh);
1273
1274         raid5_release_stripe(sh);
1275 }
1276
1277 /*
1278  * if num == 0, flush all full stripes
1279  * if num > 0, flush all full stripes. If less than num full stripes are
1280  *             flushed, flush some partial stripes until totally num stripes are
1281  *             flushed or there is no more cached stripes.
1282  */
1283 void r5c_flush_cache(struct r5conf *conf, int num)
1284 {
1285         int count;
1286         struct stripe_head *sh, *next;
1287
1288         assert_spin_locked(&conf->device_lock);
1289         if (!conf->log)
1290                 return;
1291
1292         count = 0;
1293         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1294                 r5c_flush_stripe(conf, sh);
1295                 count++;
1296         }
1297
1298         if (count >= num)
1299                 return;
1300         list_for_each_entry_safe(sh, next,
1301                                  &conf->r5c_partial_stripe_list, lru) {
1302                 r5c_flush_stripe(conf, sh);
1303                 if (++count >= num)
1304                         break;
1305         }
1306 }
1307
1308 static void r5c_do_reclaim(struct r5conf *conf)
1309 {
1310         struct r5l_log *log = conf->log;
1311         struct stripe_head *sh;
1312         int count = 0;
1313         unsigned long flags;
1314         int total_cached;
1315         int stripes_to_flush;
1316
1317         if (!r5c_is_writeback(log))
1318                 return;
1319
1320         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1321                 atomic_read(&conf->r5c_cached_full_stripes);
1322
1323         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1324             atomic_read(&conf->empty_inactive_list_nr) > 0)
1325                 /*
1326                  * if stripe cache pressure high, flush all full stripes and
1327                  * some partial stripes
1328                  */
1329                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1330         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1331                  atomic_read(&conf->r5c_cached_full_stripes) >
1332                  R5C_FULL_STRIPE_FLUSH_BATCH)
1333                 /*
1334                  * if stripe cache pressure moderate, or if there is many full
1335                  * stripes,flush all full stripes
1336                  */
1337                 stripes_to_flush = 0;
1338         else
1339                 /* no need to flush */
1340                 stripes_to_flush = -1;
1341
1342         if (stripes_to_flush >= 0) {
1343                 spin_lock_irqsave(&conf->device_lock, flags);
1344                 r5c_flush_cache(conf, stripes_to_flush);
1345                 spin_unlock_irqrestore(&conf->device_lock, flags);
1346         }
1347
1348         /* if log space is tight, flush stripes on stripe_in_journal_list */
1349         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1350                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1351                 spin_lock(&conf->device_lock);
1352                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1353                         /*
1354                          * stripes on stripe_in_journal_list could be in any
1355                          * state of the stripe_cache state machine. In this
1356                          * case, we only want to flush stripe on
1357                          * r5c_cached_full/partial_stripes. The following
1358                          * condition makes sure the stripe is on one of the
1359                          * two lists.
1360                          */
1361                         if (!list_empty(&sh->lru) &&
1362                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1363                             atomic_read(&sh->count) == 0) {
1364                                 r5c_flush_stripe(conf, sh);
1365                         }
1366                         if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1367                                 break;
1368                 }
1369                 spin_unlock(&conf->device_lock);
1370                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1371         }
1372
1373         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1374                 r5l_run_no_space_stripes(log);
1375
1376         md_wakeup_thread(conf->mddev->thread);
1377 }
1378
1379 static void r5l_do_reclaim(struct r5l_log *log)
1380 {
1381         struct r5conf *conf = log->rdev->mddev->private;
1382         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1383         sector_t reclaimable;
1384         sector_t next_checkpoint;
1385         bool write_super;
1386
1387         spin_lock_irq(&log->io_list_lock);
1388         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1389                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1390         /*
1391          * move proper io_unit to reclaim list. We should not change the order.
1392          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1393          * shouldn't reuse space of an unreclaimable io_unit
1394          */
1395         while (1) {
1396                 reclaimable = r5l_reclaimable_space(log);
1397                 if (reclaimable >= reclaim_target ||
1398                     (list_empty(&log->running_ios) &&
1399                      list_empty(&log->io_end_ios) &&
1400                      list_empty(&log->flushing_ios) &&
1401                      list_empty(&log->finished_ios)))
1402                         break;
1403
1404                 md_wakeup_thread(log->rdev->mddev->thread);
1405                 wait_event_lock_irq(log->iounit_wait,
1406                                     r5l_reclaimable_space(log) > reclaimable,
1407                                     log->io_list_lock);
1408         }
1409
1410         next_checkpoint = r5c_calculate_new_cp(conf);
1411         spin_unlock_irq(&log->io_list_lock);
1412
1413         if (reclaimable == 0 || !write_super)
1414                 return;
1415
1416         /*
1417          * write_super will flush cache of each raid disk. We must write super
1418          * here, because the log area might be reused soon and we don't want to
1419          * confuse recovery
1420          */
1421         r5l_write_super_and_discard_space(log, next_checkpoint);
1422
1423         mutex_lock(&log->io_mutex);
1424         log->last_checkpoint = next_checkpoint;
1425         r5c_update_log_state(log);
1426         mutex_unlock(&log->io_mutex);
1427
1428         r5l_run_no_space_stripes(log);
1429 }
1430
1431 static void r5l_reclaim_thread(struct md_thread *thread)
1432 {
1433         struct mddev *mddev = thread->mddev;
1434         struct r5conf *conf = mddev->private;
1435         struct r5l_log *log = conf->log;
1436
1437         if (!log)
1438                 return;
1439         r5c_do_reclaim(conf);
1440         r5l_do_reclaim(log);
1441 }
1442
1443 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1444 {
1445         unsigned long target;
1446         unsigned long new = (unsigned long)space; /* overflow in theory */
1447
1448         if (!log)
1449                 return;
1450         do {
1451                 target = log->reclaim_target;
1452                 if (new < target)
1453                         return;
1454         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1455         md_wakeup_thread(log->reclaim_thread);
1456 }
1457
1458 void r5l_quiesce(struct r5l_log *log, int state)
1459 {
1460         struct mddev *mddev;
1461         if (!log || state == 2)
1462                 return;
1463         if (state == 0)
1464                 kthread_unpark(log->reclaim_thread->tsk);
1465         else if (state == 1) {
1466                 /* make sure r5l_write_super_and_discard_space exits */
1467                 mddev = log->rdev->mddev;
1468                 wake_up(&mddev->sb_wait);
1469                 kthread_park(log->reclaim_thread->tsk);
1470                 r5l_wake_reclaim(log, MaxSector);
1471                 r5l_do_reclaim(log);
1472         }
1473 }
1474
1475 bool r5l_log_disk_error(struct r5conf *conf)
1476 {
1477         struct r5l_log *log;
1478         bool ret;
1479         /* don't allow write if journal disk is missing */
1480         rcu_read_lock();
1481         log = rcu_dereference(conf->log);
1482
1483         if (!log)
1484                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1485         else
1486                 ret = test_bit(Faulty, &log->rdev->flags);
1487         rcu_read_unlock();
1488         return ret;
1489 }
1490
1491 struct r5l_recovery_ctx {
1492         struct page *meta_page;         /* current meta */
1493         sector_t meta_total_blocks;     /* total size of current meta and data */
1494         sector_t pos;                   /* recovery position */
1495         u64 seq;                        /* recovery position seq */
1496         int data_parity_stripes;        /* number of data_parity stripes */
1497         int data_only_stripes;          /* number of data_only stripes */
1498         struct list_head cached_list;
1499 };
1500
1501 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1502                                         struct r5l_recovery_ctx *ctx)
1503 {
1504         struct page *page = ctx->meta_page;
1505         struct r5l_meta_block *mb;
1506         u32 crc, stored_crc;
1507
1508         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1509                           false))
1510                 return -EIO;
1511
1512         mb = page_address(page);
1513         stored_crc = le32_to_cpu(mb->checksum);
1514         mb->checksum = 0;
1515
1516         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1517             le64_to_cpu(mb->seq) != ctx->seq ||
1518             mb->version != R5LOG_VERSION ||
1519             le64_to_cpu(mb->position) != ctx->pos)
1520                 return -EINVAL;
1521
1522         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1523         if (stored_crc != crc)
1524                 return -EINVAL;
1525
1526         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1527                 return -EINVAL;
1528
1529         ctx->meta_total_blocks = BLOCK_SECTORS;
1530
1531         return 0;
1532 }
1533
1534 static void
1535 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1536                                      struct page *page,
1537                                      sector_t pos, u64 seq)
1538 {
1539         struct r5l_meta_block *mb;
1540
1541         mb = page_address(page);
1542         clear_page(mb);
1543         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1544         mb->version = R5LOG_VERSION;
1545         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1546         mb->seq = cpu_to_le64(seq);
1547         mb->position = cpu_to_le64(pos);
1548 }
1549
1550 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1551                                           u64 seq)
1552 {
1553         struct page *page;
1554         struct r5l_meta_block *mb;
1555
1556         page = alloc_page(GFP_KERNEL);
1557         if (!page)
1558                 return -ENOMEM;
1559         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1560         mb = page_address(page);
1561         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1562                                              mb, PAGE_SIZE));
1563         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1564                           REQ_FUA, false)) {
1565                 __free_page(page);
1566                 return -EIO;
1567         }
1568         __free_page(page);
1569         return 0;
1570 }
1571
1572 /*
1573  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1574  * to mark valid (potentially not flushed) data in the journal.
1575  *
1576  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1577  * so there should not be any mismatch here.
1578  */
1579 static void r5l_recovery_load_data(struct r5l_log *log,
1580                                    struct stripe_head *sh,
1581                                    struct r5l_recovery_ctx *ctx,
1582                                    struct r5l_payload_data_parity *payload,
1583                                    sector_t log_offset)
1584 {
1585         struct mddev *mddev = log->rdev->mddev;
1586         struct r5conf *conf = mddev->private;
1587         int dd_idx;
1588
1589         raid5_compute_sector(conf,
1590                              le64_to_cpu(payload->location), 0,
1591                              &dd_idx, sh);
1592         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1593                      sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1594         sh->dev[dd_idx].log_checksum =
1595                 le32_to_cpu(payload->checksum[0]);
1596         ctx->meta_total_blocks += BLOCK_SECTORS;
1597
1598         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1599         set_bit(STRIPE_R5C_CACHING, &sh->state);
1600 }
1601
1602 static void r5l_recovery_load_parity(struct r5l_log *log,
1603                                      struct stripe_head *sh,
1604                                      struct r5l_recovery_ctx *ctx,
1605                                      struct r5l_payload_data_parity *payload,
1606                                      sector_t log_offset)
1607 {
1608         struct mddev *mddev = log->rdev->mddev;
1609         struct r5conf *conf = mddev->private;
1610
1611         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1612         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1613                      sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1614         sh->dev[sh->pd_idx].log_checksum =
1615                 le32_to_cpu(payload->checksum[0]);
1616         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1617
1618         if (sh->qd_idx >= 0) {
1619                 sync_page_io(log->rdev,
1620                              r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1621                              PAGE_SIZE, sh->dev[sh->qd_idx].page,
1622                              REQ_OP_READ, 0, false);
1623                 sh->dev[sh->qd_idx].log_checksum =
1624                         le32_to_cpu(payload->checksum[1]);
1625                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1626         }
1627         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1628 }
1629
1630 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1631 {
1632         int i;
1633
1634         sh->state = 0;
1635         sh->log_start = MaxSector;
1636         for (i = sh->disks; i--; )
1637                 sh->dev[i].flags = 0;
1638 }
1639
1640 static void
1641 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1642                                struct stripe_head *sh,
1643                                struct r5l_recovery_ctx *ctx)
1644 {
1645         struct md_rdev *rdev, *rrdev;
1646         int disk_index;
1647         int data_count = 0;
1648
1649         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1650                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1651                         continue;
1652                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1653                         continue;
1654                 data_count++;
1655         }
1656
1657         /*
1658          * stripes that only have parity must have been flushed
1659          * before the crash that we are now recovering from, so
1660          * there is nothing more to recovery.
1661          */
1662         if (data_count == 0)
1663                 goto out;
1664
1665         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1666                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1667                         continue;
1668
1669                 /* in case device is broken */
1670                 rcu_read_lock();
1671                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1672                 if (rdev) {
1673                         atomic_inc(&rdev->nr_pending);
1674                         rcu_read_unlock();
1675                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1676                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1677                                      false);
1678                         rdev_dec_pending(rdev, rdev->mddev);
1679                         rcu_read_lock();
1680                 }
1681                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1682                 if (rrdev) {
1683                         atomic_inc(&rrdev->nr_pending);
1684                         rcu_read_unlock();
1685                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1686                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1687                                      false);
1688                         rdev_dec_pending(rrdev, rrdev->mddev);
1689                         rcu_read_lock();
1690                 }
1691                 rcu_read_unlock();
1692         }
1693         ctx->data_parity_stripes++;
1694 out:
1695         r5l_recovery_reset_stripe(sh);
1696 }
1697
1698 static struct stripe_head *
1699 r5c_recovery_alloc_stripe(struct r5conf *conf,
1700                           sector_t stripe_sect)
1701 {
1702         struct stripe_head *sh;
1703
1704         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1705         if (!sh)
1706                 return NULL;  /* no more stripe available */
1707
1708         r5l_recovery_reset_stripe(sh);
1709
1710         return sh;
1711 }
1712
1713 static struct stripe_head *
1714 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1715 {
1716         struct stripe_head *sh;
1717
1718         list_for_each_entry(sh, list, lru)
1719                 if (sh->sector == sect)
1720                         return sh;
1721         return NULL;
1722 }
1723
1724 static void
1725 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1726                           struct r5l_recovery_ctx *ctx)
1727 {
1728         struct stripe_head *sh, *next;
1729
1730         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1731                 r5l_recovery_reset_stripe(sh);
1732                 list_del_init(&sh->lru);
1733                 raid5_release_stripe(sh);
1734         }
1735 }
1736
1737 static void
1738 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1739                             struct r5l_recovery_ctx *ctx)
1740 {
1741         struct stripe_head *sh, *next;
1742
1743         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1744                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1745                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1746                         list_del_init(&sh->lru);
1747                         raid5_release_stripe(sh);
1748                 }
1749 }
1750
1751 /* if matches return 0; otherwise return -EINVAL */
1752 static int
1753 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1754                                   sector_t log_offset, __le32 log_checksum)
1755 {
1756         void *addr;
1757         u32 checksum;
1758
1759         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1760                      page, REQ_OP_READ, 0, false);
1761         addr = kmap_atomic(page);
1762         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1763         kunmap_atomic(addr);
1764         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1765 }
1766
1767 /*
1768  * before loading data to stripe cache, we need verify checksum for all data,
1769  * if there is mismatch for any data page, we drop all data in the mata block
1770  */
1771 static int
1772 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1773                                          struct r5l_recovery_ctx *ctx)
1774 {
1775         struct mddev *mddev = log->rdev->mddev;
1776         struct r5conf *conf = mddev->private;
1777         struct r5l_meta_block *mb = page_address(ctx->meta_page);
1778         sector_t mb_offset = sizeof(struct r5l_meta_block);
1779         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1780         struct page *page;
1781         struct r5l_payload_data_parity *payload;
1782
1783         page = alloc_page(GFP_KERNEL);
1784         if (!page)
1785                 return -ENOMEM;
1786
1787         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1788                 payload = (void *)mb + mb_offset;
1789
1790                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1791                         if (r5l_recovery_verify_data_checksum(
1792                                     log, page, log_offset,
1793                                     payload->checksum[0]) < 0)
1794                                 goto mismatch;
1795                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1796                         if (r5l_recovery_verify_data_checksum(
1797                                     log, page, log_offset,
1798                                     payload->checksum[0]) < 0)
1799                                 goto mismatch;
1800                         if (conf->max_degraded == 2 && /* q for RAID 6 */
1801                             r5l_recovery_verify_data_checksum(
1802                                     log, page,
1803                                     r5l_ring_add(log, log_offset,
1804                                                  BLOCK_SECTORS),
1805                                     payload->checksum[1]) < 0)
1806                                 goto mismatch;
1807                 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1808                         goto mismatch;
1809
1810                 log_offset = r5l_ring_add(log, log_offset,
1811                                           le32_to_cpu(payload->size));
1812
1813                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1814                         sizeof(__le32) *
1815                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1816         }
1817
1818         put_page(page);
1819         return 0;
1820
1821 mismatch:
1822         put_page(page);
1823         return -EINVAL;
1824 }
1825
1826 /*
1827  * Analyze all data/parity pages in one meta block
1828  * Returns:
1829  * 0 for success
1830  * -EINVAL for unknown playload type
1831  * -EAGAIN for checksum mismatch of data page
1832  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1833  */
1834 static int
1835 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1836                                 struct r5l_recovery_ctx *ctx,
1837                                 struct list_head *cached_stripe_list)
1838 {
1839         struct mddev *mddev = log->rdev->mddev;
1840         struct r5conf *conf = mddev->private;
1841         struct r5l_meta_block *mb;
1842         struct r5l_payload_data_parity *payload;
1843         int mb_offset;
1844         sector_t log_offset;
1845         sector_t stripe_sect;
1846         struct stripe_head *sh;
1847         int ret;
1848
1849         /*
1850          * for mismatch in data blocks, we will drop all data in this mb, but
1851          * we will still read next mb for other data with FLUSH flag, as
1852          * io_unit could finish out of order.
1853          */
1854         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1855         if (ret == -EINVAL)
1856                 return -EAGAIN;
1857         else if (ret)
1858                 return ret;   /* -ENOMEM duo to alloc_page() failed */
1859
1860         mb = page_address(ctx->meta_page);
1861         mb_offset = sizeof(struct r5l_meta_block);
1862         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1863
1864         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1865                 int dd;
1866
1867                 payload = (void *)mb + mb_offset;
1868                 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1869                         raid5_compute_sector(
1870                                 conf, le64_to_cpu(payload->location), 0, &dd,
1871                                 NULL)
1872                         : le64_to_cpu(payload->location);
1873
1874                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1875                                                 stripe_sect);
1876
1877                 if (!sh) {
1878                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
1879                         /*
1880                          * cannot get stripe from raid5_get_active_stripe
1881                          * try replay some stripes
1882                          */
1883                         if (!sh) {
1884                                 r5c_recovery_replay_stripes(
1885                                         cached_stripe_list, ctx);
1886                                 sh = r5c_recovery_alloc_stripe(
1887                                         conf, stripe_sect);
1888                         }
1889                         if (!sh) {
1890                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1891                                         mdname(mddev),
1892                                         conf->min_nr_stripes * 2);
1893                                 raid5_set_cache_size(mddev,
1894                                                      conf->min_nr_stripes * 2);
1895                                 sh = r5c_recovery_alloc_stripe(conf,
1896                                                                stripe_sect);
1897                         }
1898                         if (!sh) {
1899                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1900                                        mdname(mddev));
1901                                 return -ENOMEM;
1902                         }
1903                         list_add_tail(&sh->lru, cached_stripe_list);
1904                 }
1905
1906                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1907                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1908                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1909                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
1910                                 list_move_tail(&sh->lru, cached_stripe_list);
1911                         }
1912                         r5l_recovery_load_data(log, sh, ctx, payload,
1913                                                log_offset);
1914                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1915                         r5l_recovery_load_parity(log, sh, ctx, payload,
1916                                                  log_offset);
1917                 else
1918                         return -EINVAL;
1919
1920                 log_offset = r5l_ring_add(log, log_offset,
1921                                           le32_to_cpu(payload->size));
1922
1923                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1924                         sizeof(__le32) *
1925                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1926         }
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * Load the stripe into cache. The stripe will be written out later by
1933  * the stripe cache state machine.
1934  */
1935 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1936                                          struct stripe_head *sh)
1937 {
1938         struct r5dev *dev;
1939         int i;
1940
1941         for (i = sh->disks; i--; ) {
1942                 dev = sh->dev + i;
1943                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1944                         set_bit(R5_InJournal, &dev->flags);
1945                         set_bit(R5_UPTODATE, &dev->flags);
1946                 }
1947         }
1948 }
1949
1950 /*
1951  * Scan through the log for all to-be-flushed data
1952  *
1953  * For stripes with data and parity, namely Data-Parity stripe
1954  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1955  *
1956  * For stripes with only data, namely Data-Only stripe
1957  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1958  *
1959  * For a stripe, if we see data after parity, we should discard all previous
1960  * data and parity for this stripe, as these data are already flushed to
1961  * the array.
1962  *
1963  * At the end of the scan, we return the new journal_tail, which points to
1964  * first data-only stripe on the journal device, or next invalid meta block.
1965  */
1966 static int r5c_recovery_flush_log(struct r5l_log *log,
1967                                   struct r5l_recovery_ctx *ctx)
1968 {
1969         struct stripe_head *sh;
1970         int ret = 0;
1971
1972         /* scan through the log */
1973         while (1) {
1974                 if (r5l_recovery_read_meta_block(log, ctx))
1975                         break;
1976
1977                 ret = r5c_recovery_analyze_meta_block(log, ctx,
1978                                                       &ctx->cached_list);
1979                 /*
1980                  * -EAGAIN means mismatch in data block, in this case, we still
1981                  * try scan the next metablock
1982                  */
1983                 if (ret && ret != -EAGAIN)
1984                         break;   /* ret == -EINVAL or -ENOMEM */
1985                 ctx->seq++;
1986                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1987         }
1988
1989         if (ret == -ENOMEM) {
1990                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1991                 return ret;
1992         }
1993
1994         /* replay data-parity stripes */
1995         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1996
1997         /* load data-only stripes to stripe cache */
1998         list_for_each_entry(sh, &ctx->cached_list, lru) {
1999                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2000                 r5c_recovery_load_one_stripe(log, sh);
2001                 ctx->data_only_stripes++;
2002         }
2003
2004         return 0;
2005 }
2006
2007 /*
2008  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2009  * log will start here. but we can't let superblock point to last valid
2010  * meta block. The log might looks like:
2011  * | meta 1| meta 2| meta 3|
2012  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2013  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2014  * happens again, new recovery will start from meta 1. Since meta 2n is
2015  * valid now, recovery will think meta 3 is valid, which is wrong.
2016  * The solution is we create a new meta in meta2 with its seq == meta
2017  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2018  * will not think meta 3 is a valid meta, because its seq doesn't match
2019  */
2020
2021 /*
2022  * Before recovery, the log looks like the following
2023  *
2024  *   ---------------------------------------------
2025  *   |           valid log        | invalid log  |
2026  *   ---------------------------------------------
2027  *   ^
2028  *   |- log->last_checkpoint
2029  *   |- log->last_cp_seq
2030  *
2031  * Now we scan through the log until we see invalid entry
2032  *
2033  *   ---------------------------------------------
2034  *   |           valid log        | invalid log  |
2035  *   ---------------------------------------------
2036  *   ^                            ^
2037  *   |- log->last_checkpoint      |- ctx->pos
2038  *   |- log->last_cp_seq          |- ctx->seq
2039  *
2040  * From this point, we need to increase seq number by 10 to avoid
2041  * confusing next recovery.
2042  *
2043  *   ---------------------------------------------
2044  *   |           valid log        | invalid log  |
2045  *   ---------------------------------------------
2046  *   ^                              ^
2047  *   |- log->last_checkpoint        |- ctx->pos+1
2048  *   |- log->last_cp_seq            |- ctx->seq+10001
2049  *
2050  * However, it is not safe to start the state machine yet, because data only
2051  * parities are not yet secured in RAID. To save these data only parities, we
2052  * rewrite them from seq+11.
2053  *
2054  *   -----------------------------------------------------------------
2055  *   |           valid log        | data only stripes | invalid log  |
2056  *   -----------------------------------------------------------------
2057  *   ^                                                ^
2058  *   |- log->last_checkpoint                          |- ctx->pos+n
2059  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2060  *
2061  * If failure happens again during this process, the recovery can safe start
2062  * again from log->last_checkpoint.
2063  *
2064  * Once data only stripes are rewritten to journal, we move log_tail
2065  *
2066  *   -----------------------------------------------------------------
2067  *   |     old log        |    data only stripes    | invalid log  |
2068  *   -----------------------------------------------------------------
2069  *                        ^                         ^
2070  *                        |- log->last_checkpoint   |- ctx->pos+n
2071  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2072  *
2073  * Then we can safely start the state machine. If failure happens from this
2074  * point on, the recovery will start from new log->last_checkpoint.
2075  */
2076 static int
2077 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2078                                        struct r5l_recovery_ctx *ctx)
2079 {
2080         struct stripe_head *sh;
2081         struct mddev *mddev = log->rdev->mddev;
2082         struct page *page;
2083         sector_t next_checkpoint = MaxSector;
2084
2085         page = alloc_page(GFP_KERNEL);
2086         if (!page) {
2087                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2088                        mdname(mddev));
2089                 return -ENOMEM;
2090         }
2091
2092         WARN_ON(list_empty(&ctx->cached_list));
2093
2094         list_for_each_entry(sh, &ctx->cached_list, lru) {
2095                 struct r5l_meta_block *mb;
2096                 int i;
2097                 int offset;
2098                 sector_t write_pos;
2099
2100                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2101                 r5l_recovery_create_empty_meta_block(log, page,
2102                                                      ctx->pos, ctx->seq);
2103                 mb = page_address(page);
2104                 offset = le32_to_cpu(mb->meta_size);
2105                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2106
2107                 for (i = sh->disks; i--; ) {
2108                         struct r5dev *dev = &sh->dev[i];
2109                         struct r5l_payload_data_parity *payload;
2110                         void *addr;
2111
2112                         if (test_bit(R5_InJournal, &dev->flags)) {
2113                                 payload = (void *)mb + offset;
2114                                 payload->header.type = cpu_to_le16(
2115                                         R5LOG_PAYLOAD_DATA);
2116                                 payload->size = BLOCK_SECTORS;
2117                                 payload->location = cpu_to_le64(
2118                                         raid5_compute_blocknr(sh, i, 0));
2119                                 addr = kmap_atomic(dev->page);
2120                                 payload->checksum[0] = cpu_to_le32(
2121                                         crc32c_le(log->uuid_checksum, addr,
2122                                                   PAGE_SIZE));
2123                                 kunmap_atomic(addr);
2124                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2125                                              dev->page, REQ_OP_WRITE, 0, false);
2126                                 write_pos = r5l_ring_add(log, write_pos,
2127                                                          BLOCK_SECTORS);
2128                                 offset += sizeof(__le32) +
2129                                         sizeof(struct r5l_payload_data_parity);
2130
2131                         }
2132                 }
2133                 mb->meta_size = cpu_to_le32(offset);
2134                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2135                                                      mb, PAGE_SIZE));
2136                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2137                              REQ_OP_WRITE, REQ_FUA, false);
2138                 sh->log_start = ctx->pos;
2139                 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2140                 atomic_inc(&log->stripe_in_journal_count);
2141                 ctx->pos = write_pos;
2142                 ctx->seq += 1;
2143                 next_checkpoint = sh->log_start;
2144         }
2145         log->next_checkpoint = next_checkpoint;
2146         __free_page(page);
2147         return 0;
2148 }
2149
2150 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2151                                                  struct r5l_recovery_ctx *ctx)
2152 {
2153         struct mddev *mddev = log->rdev->mddev;
2154         struct r5conf *conf = mddev->private;
2155         struct stripe_head *sh, *next;
2156
2157         if (ctx->data_only_stripes == 0)
2158                 return;
2159
2160         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2161
2162         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2163                 r5c_make_stripe_write_out(sh);
2164                 set_bit(STRIPE_HANDLE, &sh->state);
2165                 list_del_init(&sh->lru);
2166                 raid5_release_stripe(sh);
2167         }
2168
2169         md_wakeup_thread(conf->mddev->thread);
2170         /* reuse conf->wait_for_quiescent in recovery */
2171         wait_event(conf->wait_for_quiescent,
2172                    atomic_read(&conf->active_stripes) == 0);
2173
2174         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2175 }
2176
2177 static int r5l_recovery_log(struct r5l_log *log)
2178 {
2179         struct mddev *mddev = log->rdev->mddev;
2180         struct r5l_recovery_ctx ctx;
2181         int ret;
2182         sector_t pos;
2183
2184         ctx.pos = log->last_checkpoint;
2185         ctx.seq = log->last_cp_seq;
2186         ctx.meta_page = alloc_page(GFP_KERNEL);
2187         ctx.data_only_stripes = 0;
2188         ctx.data_parity_stripes = 0;
2189         INIT_LIST_HEAD(&ctx.cached_list);
2190
2191         if (!ctx.meta_page)
2192                 return -ENOMEM;
2193
2194         ret = r5c_recovery_flush_log(log, &ctx);
2195         __free_page(ctx.meta_page);
2196
2197         if (ret)
2198                 return ret;
2199
2200         pos = ctx.pos;
2201         ctx.seq += 10000;
2202
2203
2204         if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2205                 pr_debug("md/raid:%s: starting from clean shutdown\n",
2206                          mdname(mddev));
2207         else
2208                 pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2209                          mdname(mddev), ctx.data_only_stripes,
2210                          ctx.data_parity_stripes);
2211
2212         if (ctx.data_only_stripes == 0) {
2213                 log->next_checkpoint = ctx.pos;
2214                 r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq++);
2215                 ctx.pos = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
2216         } else if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2217                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2218                        mdname(mddev));
2219                 return -EIO;
2220         }
2221
2222         log->log_start = ctx.pos;
2223         log->seq = ctx.seq;
2224         log->last_checkpoint = pos;
2225         r5l_write_super(log, pos);
2226
2227         r5c_recovery_flush_data_only_stripes(log, &ctx);
2228         return 0;
2229 }
2230
2231 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2232 {
2233         struct mddev *mddev = log->rdev->mddev;
2234
2235         log->rdev->journal_tail = cp;
2236         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2237 }
2238
2239 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2240 {
2241         struct r5conf *conf = mddev->private;
2242         int ret;
2243
2244         if (!conf->log)
2245                 return 0;
2246
2247         switch (conf->log->r5c_journal_mode) {
2248         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2249                 ret = snprintf(
2250                         page, PAGE_SIZE, "[%s] %s\n",
2251                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2252                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2253                 break;
2254         case R5C_JOURNAL_MODE_WRITE_BACK:
2255                 ret = snprintf(
2256                         page, PAGE_SIZE, "%s [%s]\n",
2257                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2258                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2259                 break;
2260         default:
2261                 ret = 0;
2262         }
2263         return ret;
2264 }
2265
2266 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2267                                       const char *page, size_t length)
2268 {
2269         struct r5conf *conf = mddev->private;
2270         struct r5l_log *log = conf->log;
2271         int val = -1, i;
2272         int len = length;
2273
2274         if (!log)
2275                 return -ENODEV;
2276
2277         if (len && page[len - 1] == '\n')
2278                 len -= 1;
2279         for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2280                 if (strlen(r5c_journal_mode_str[i]) == len &&
2281                     strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2282                         val = i;
2283                         break;
2284                 }
2285         if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2286             val > R5C_JOURNAL_MODE_WRITE_BACK)
2287                 return -EINVAL;
2288
2289         if (raid5_calc_degraded(conf) > 0 &&
2290             val == R5C_JOURNAL_MODE_WRITE_BACK)
2291                 return -EINVAL;
2292
2293         mddev_suspend(mddev);
2294         conf->log->r5c_journal_mode = val;
2295         mddev_resume(mddev);
2296
2297         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2298                  mdname(mddev), val, r5c_journal_mode_str[val]);
2299         return length;
2300 }
2301
2302 struct md_sysfs_entry
2303 r5c_journal_mode = __ATTR(journal_mode, 0644,
2304                           r5c_journal_mode_show, r5c_journal_mode_store);
2305
2306 /*
2307  * Try handle write operation in caching phase. This function should only
2308  * be called in write-back mode.
2309  *
2310  * If all outstanding writes can be handled in caching phase, returns 0
2311  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2312  * and returns -EAGAIN
2313  */
2314 int r5c_try_caching_write(struct r5conf *conf,
2315                           struct stripe_head *sh,
2316                           struct stripe_head_state *s,
2317                           int disks)
2318 {
2319         struct r5l_log *log = conf->log;
2320         int i;
2321         struct r5dev *dev;
2322         int to_cache = 0;
2323
2324         BUG_ON(!r5c_is_writeback(log));
2325
2326         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2327                 /*
2328                  * There are two different scenarios here:
2329                  *  1. The stripe has some data cached, and it is sent to
2330                  *     write-out phase for reclaim
2331                  *  2. The stripe is clean, and this is the first write
2332                  *
2333                  * For 1, return -EAGAIN, so we continue with
2334                  * handle_stripe_dirtying().
2335                  *
2336                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2337                  * write.
2338                  */
2339
2340                 /* case 1: anything injournal or anything in written */
2341                 if (s->injournal > 0 || s->written > 0)
2342                         return -EAGAIN;
2343                 /* case 2 */
2344                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2345         }
2346
2347         /*
2348          * When run in degraded mode, array is set to write-through mode.
2349          * This check helps drain pending write safely in the transition to
2350          * write-through mode.
2351          */
2352         if (s->failed) {
2353                 r5c_make_stripe_write_out(sh);
2354                 return -EAGAIN;
2355         }
2356
2357         for (i = disks; i--; ) {
2358                 dev = &sh->dev[i];
2359                 /* if non-overwrite, use writing-out phase */
2360                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2361                     !test_bit(R5_InJournal, &dev->flags)) {
2362                         r5c_make_stripe_write_out(sh);
2363                         return -EAGAIN;
2364                 }
2365         }
2366
2367         for (i = disks; i--; ) {
2368                 dev = &sh->dev[i];
2369                 if (dev->towrite) {
2370                         set_bit(R5_Wantwrite, &dev->flags);
2371                         set_bit(R5_Wantdrain, &dev->flags);
2372                         set_bit(R5_LOCKED, &dev->flags);
2373                         to_cache++;
2374                 }
2375         }
2376
2377         if (to_cache) {
2378                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2379                 /*
2380                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2381                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2382                  * r5c_handle_data_cached()
2383                  */
2384                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2385         }
2386
2387         return 0;
2388 }
2389
2390 /*
2391  * free extra pages (orig_page) we allocated for prexor
2392  */
2393 void r5c_release_extra_page(struct stripe_head *sh)
2394 {
2395         struct r5conf *conf = sh->raid_conf;
2396         int i;
2397         bool using_disk_info_extra_page;
2398
2399         using_disk_info_extra_page =
2400                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2401
2402         for (i = sh->disks; i--; )
2403                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2404                         struct page *p = sh->dev[i].orig_page;
2405
2406                         sh->dev[i].orig_page = sh->dev[i].page;
2407                         clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2408
2409                         if (!using_disk_info_extra_page)
2410                                 put_page(p);
2411                 }
2412
2413         if (using_disk_info_extra_page) {
2414                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2415                 md_wakeup_thread(conf->mddev->thread);
2416         }
2417 }
2418
2419 void r5c_use_extra_page(struct stripe_head *sh)
2420 {
2421         struct r5conf *conf = sh->raid_conf;
2422         int i;
2423         struct r5dev *dev;
2424
2425         for (i = sh->disks; i--; ) {
2426                 dev = &sh->dev[i];
2427                 if (dev->orig_page != dev->page)
2428                         put_page(dev->orig_page);
2429                 dev->orig_page = conf->disks[i].extra_page;
2430         }
2431 }
2432
2433 /*
2434  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2435  * stripe is committed to RAID disks.
2436  */
2437 void r5c_finish_stripe_write_out(struct r5conf *conf,
2438                                  struct stripe_head *sh,
2439                                  struct stripe_head_state *s)
2440 {
2441         int i;
2442         int do_wakeup = 0;
2443
2444         if (!conf->log ||
2445             !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2446                 return;
2447
2448         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2449         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2450
2451         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2452                 return;
2453
2454         for (i = sh->disks; i--; ) {
2455                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2456                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2457                         do_wakeup = 1;
2458         }
2459
2460         /*
2461          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2462          * We updated R5_InJournal, so we also update s->injournal.
2463          */
2464         s->injournal = 0;
2465
2466         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467                 if (atomic_dec_and_test(&conf->pending_full_writes))
2468                         md_wakeup_thread(conf->mddev->thread);
2469
2470         if (do_wakeup)
2471                 wake_up(&conf->wait_for_overlap);
2472
2473         spin_lock_irq(&conf->log->stripe_in_journal_lock);
2474         list_del_init(&sh->r5c);
2475         spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2476         sh->log_start = MaxSector;
2477         atomic_dec(&conf->log->stripe_in_journal_count);
2478         r5c_update_log_state(conf->log);
2479 }
2480
2481 int
2482 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2483                struct stripe_head_state *s)
2484 {
2485         struct r5conf *conf = sh->raid_conf;
2486         int pages = 0;
2487         int reserve;
2488         int i;
2489         int ret = 0;
2490
2491         BUG_ON(!log);
2492
2493         for (i = 0; i < sh->disks; i++) {
2494                 void *addr;
2495
2496                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2497                         continue;
2498                 addr = kmap_atomic(sh->dev[i].page);
2499                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2500                                                     addr, PAGE_SIZE);
2501                 kunmap_atomic(addr);
2502                 pages++;
2503         }
2504         WARN_ON(pages == 0);
2505
2506         /*
2507          * The stripe must enter state machine again to call endio, so
2508          * don't delay.
2509          */
2510         clear_bit(STRIPE_DELAYED, &sh->state);
2511         atomic_inc(&sh->count);
2512
2513         mutex_lock(&log->io_mutex);
2514         /* meta + data */
2515         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2516
2517         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2518             sh->log_start == MaxSector)
2519                 r5l_add_no_space_stripe(log, sh);
2520         else if (!r5l_has_free_space(log, reserve)) {
2521                 if (sh->log_start == log->last_checkpoint)
2522                         BUG();
2523                 else
2524                         r5l_add_no_space_stripe(log, sh);
2525         } else {
2526                 ret = r5l_log_stripe(log, sh, pages, 0);
2527                 if (ret) {
2528                         spin_lock_irq(&log->io_list_lock);
2529                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2530                         spin_unlock_irq(&log->io_list_lock);
2531                 }
2532         }
2533
2534         mutex_unlock(&log->io_mutex);
2535         return 0;
2536 }
2537
2538 static int r5l_load_log(struct r5l_log *log)
2539 {
2540         struct md_rdev *rdev = log->rdev;
2541         struct page *page;
2542         struct r5l_meta_block *mb;
2543         sector_t cp = log->rdev->journal_tail;
2544         u32 stored_crc, expected_crc;
2545         bool create_super = false;
2546         int ret = 0;
2547
2548         /* Make sure it's valid */
2549         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2550                 cp = 0;
2551         page = alloc_page(GFP_KERNEL);
2552         if (!page)
2553                 return -ENOMEM;
2554
2555         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2556                 ret = -EIO;
2557                 goto ioerr;
2558         }
2559         mb = page_address(page);
2560
2561         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2562             mb->version != R5LOG_VERSION) {
2563                 create_super = true;
2564                 goto create;
2565         }
2566         stored_crc = le32_to_cpu(mb->checksum);
2567         mb->checksum = 0;
2568         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2569         if (stored_crc != expected_crc) {
2570                 create_super = true;
2571                 goto create;
2572         }
2573         if (le64_to_cpu(mb->position) != cp) {
2574                 create_super = true;
2575                 goto create;
2576         }
2577 create:
2578         if (create_super) {
2579                 log->last_cp_seq = prandom_u32();
2580                 cp = 0;
2581                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2582                 /*
2583                  * Make sure super points to correct address. Log might have
2584                  * data very soon. If super hasn't correct log tail address,
2585                  * recovery can't find the log
2586                  */
2587                 r5l_write_super(log, cp);
2588         } else
2589                 log->last_cp_seq = le64_to_cpu(mb->seq);
2590
2591         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2592         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2593         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2594                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2595         log->last_checkpoint = cp;
2596
2597         __free_page(page);
2598
2599         if (create_super) {
2600                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2601                 log->seq = log->last_cp_seq + 1;
2602                 log->next_checkpoint = cp;
2603         } else
2604                 ret = r5l_recovery_log(log);
2605
2606         r5c_update_log_state(log);
2607         return ret;
2608 ioerr:
2609         __free_page(page);
2610         return ret;
2611 }
2612
2613 void r5c_update_on_rdev_error(struct mddev *mddev)
2614 {
2615         struct r5conf *conf = mddev->private;
2616         struct r5l_log *log = conf->log;
2617
2618         if (!log)
2619                 return;
2620
2621         if (raid5_calc_degraded(conf) > 0 &&
2622             conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2623                 schedule_work(&log->disable_writeback_work);
2624 }
2625
2626 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2627 {
2628         struct request_queue *q = bdev_get_queue(rdev->bdev);
2629         struct r5l_log *log;
2630
2631         if (PAGE_SIZE != 4096)
2632                 return -EINVAL;
2633
2634         /*
2635          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2636          * raid_disks r5l_payload_data_parity.
2637          *
2638          * Write journal and cache does not work for very big array
2639          * (raid_disks > 203)
2640          */
2641         if (sizeof(struct r5l_meta_block) +
2642             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2643              conf->raid_disks) > PAGE_SIZE) {
2644                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2645                        mdname(conf->mddev), conf->raid_disks);
2646                 return -EINVAL;
2647         }
2648
2649         log = kzalloc(sizeof(*log), GFP_KERNEL);
2650         if (!log)
2651                 return -ENOMEM;
2652         log->rdev = rdev;
2653
2654         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2655
2656         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2657                                        sizeof(rdev->mddev->uuid));
2658
2659         mutex_init(&log->io_mutex);
2660
2661         spin_lock_init(&log->io_list_lock);
2662         INIT_LIST_HEAD(&log->running_ios);
2663         INIT_LIST_HEAD(&log->io_end_ios);
2664         INIT_LIST_HEAD(&log->flushing_ios);
2665         INIT_LIST_HEAD(&log->finished_ios);
2666         bio_init(&log->flush_bio, NULL, 0);
2667
2668         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2669         if (!log->io_kc)
2670                 goto io_kc;
2671
2672         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2673         if (!log->io_pool)
2674                 goto io_pool;
2675
2676         log->bs = bioset_create(R5L_POOL_SIZE, 0);
2677         if (!log->bs)
2678                 goto io_bs;
2679
2680         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2681         if (!log->meta_pool)
2682                 goto out_mempool;
2683
2684         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2685                                                  log->rdev->mddev, "reclaim");
2686         if (!log->reclaim_thread)
2687                 goto reclaim_thread;
2688         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2689
2690         init_waitqueue_head(&log->iounit_wait);
2691
2692         INIT_LIST_HEAD(&log->no_mem_stripes);
2693
2694         INIT_LIST_HEAD(&log->no_space_stripes);
2695         spin_lock_init(&log->no_space_stripes_lock);
2696
2697         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2698         INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
2699
2700         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2701         INIT_LIST_HEAD(&log->stripe_in_journal_list);
2702         spin_lock_init(&log->stripe_in_journal_lock);
2703         atomic_set(&log->stripe_in_journal_count, 0);
2704
2705         rcu_assign_pointer(conf->log, log);
2706
2707         if (r5l_load_log(log))
2708                 goto error;
2709
2710         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2711         return 0;
2712
2713 error:
2714         rcu_assign_pointer(conf->log, NULL);
2715         md_unregister_thread(&log->reclaim_thread);
2716 reclaim_thread:
2717         mempool_destroy(log->meta_pool);
2718 out_mempool:
2719         bioset_free(log->bs);
2720 io_bs:
2721         mempool_destroy(log->io_pool);
2722 io_pool:
2723         kmem_cache_destroy(log->io_kc);
2724 io_kc:
2725         kfree(log);
2726         return -EINVAL;
2727 }
2728
2729 void r5l_exit_log(struct r5l_log *log)
2730 {
2731         flush_work(&log->disable_writeback_work);
2732         md_unregister_thread(&log->reclaim_thread);
2733         mempool_destroy(log->meta_pool);
2734         bioset_free(log->bs);
2735         mempool_destroy(log->io_pool);
2736         kmem_cache_destroy(log->io_kc);
2737         kfree(log);
2738 }