]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5-cache.c
Merge remote-tracking branches 'spi/topic/rockchip', 'spi/topic/rspi', 'spi/topic...
[karo-tx-linux.git] / drivers / md / raid5-cache.c
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include "md.h"
24 #include "raid5.h"
25 #include "bitmap.h"
26
27 /*
28  * metadata/data stored in disk with 4k size unit (a block) regardless
29  * underneath hardware sector size. only works with PAGE_SIZE == 4096
30  */
31 #define BLOCK_SECTORS (8)
32
33 /*
34  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
35  *
36  * In write through mode, the reclaim runs every log->max_free_space.
37  * This can prevent the recovery scans for too long
38  */
39 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
40 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
41
42 /* wake up reclaim thread periodically */
43 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
44 /* start flush with these full stripes */
45 #define R5C_FULL_STRIPE_FLUSH_BATCH 256
46 /* reclaim stripes in groups */
47 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
48
49 /*
50  * We only need 2 bios per I/O unit to make progress, but ensure we
51  * have a few more available to not get too tight.
52  */
53 #define R5L_POOL_SIZE   4
54
55 /*
56  * r5c journal modes of the array: write-back or write-through.
57  * write-through mode has identical behavior as existing log only
58  * implementation.
59  */
60 enum r5c_journal_mode {
61         R5C_JOURNAL_MODE_WRITE_THROUGH = 0,
62         R5C_JOURNAL_MODE_WRITE_BACK = 1,
63 };
64
65 static char *r5c_journal_mode_str[] = {"write-through",
66                                        "write-back"};
67 /*
68  * raid5 cache state machine
69  *
70  * With the RAID cache, each stripe works in two phases:
71  *      - caching phase
72  *      - writing-out phase
73  *
74  * These two phases are controlled by bit STRIPE_R5C_CACHING:
75  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
76  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
77  *
78  * When there is no journal, or the journal is in write-through mode,
79  * the stripe is always in writing-out phase.
80  *
81  * For write-back journal, the stripe is sent to caching phase on write
82  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
83  * the write-out phase by clearing STRIPE_R5C_CACHING.
84  *
85  * Stripes in caching phase do not write the raid disks. Instead, all
86  * writes are committed from the log device. Therefore, a stripe in
87  * caching phase handles writes as:
88  *      - write to log device
89  *      - return IO
90  *
91  * Stripes in writing-out phase handle writes as:
92  *      - calculate parity
93  *      - write pending data and parity to journal
94  *      - write data and parity to raid disks
95  *      - return IO for pending writes
96  */
97
98 struct r5l_log {
99         struct md_rdev *rdev;
100
101         u32 uuid_checksum;
102
103         sector_t device_size;           /* log device size, round to
104                                          * BLOCK_SECTORS */
105         sector_t max_free_space;        /* reclaim run if free space is at
106                                          * this size */
107
108         sector_t last_checkpoint;       /* log tail. where recovery scan
109                                          * starts from */
110         u64 last_cp_seq;                /* log tail sequence */
111
112         sector_t log_start;             /* log head. where new data appends */
113         u64 seq;                        /* log head sequence */
114
115         sector_t next_checkpoint;
116
117         struct mutex io_mutex;
118         struct r5l_io_unit *current_io; /* current io_unit accepting new data */
119
120         spinlock_t io_list_lock;
121         struct list_head running_ios;   /* io_units which are still running,
122                                          * and have not yet been completely
123                                          * written to the log */
124         struct list_head io_end_ios;    /* io_units which have been completely
125                                          * written to the log but not yet written
126                                          * to the RAID */
127         struct list_head flushing_ios;  /* io_units which are waiting for log
128                                          * cache flush */
129         struct list_head finished_ios;  /* io_units which settle down in log disk */
130         struct bio flush_bio;
131
132         struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
133
134         struct kmem_cache *io_kc;
135         mempool_t *io_pool;
136         struct bio_set *bs;
137         mempool_t *meta_pool;
138
139         struct md_thread *reclaim_thread;
140         unsigned long reclaim_target;   /* number of space that need to be
141                                          * reclaimed.  if it's 0, reclaim spaces
142                                          * used by io_units which are in
143                                          * IO_UNIT_STRIPE_END state (eg, reclaim
144                                          * dones't wait for specific io_unit
145                                          * switching to IO_UNIT_STRIPE_END
146                                          * state) */
147         wait_queue_head_t iounit_wait;
148
149         struct list_head no_space_stripes; /* pending stripes, log has no space */
150         spinlock_t no_space_stripes_lock;
151
152         bool need_cache_flush;
153
154         /* for r5c_cache */
155         enum r5c_journal_mode r5c_journal_mode;
156
157         /* all stripes in r5cache, in the order of seq at sh->log_start */
158         struct list_head stripe_in_journal_list;
159
160         spinlock_t stripe_in_journal_lock;
161         atomic_t stripe_in_journal_count;
162
163         /* to submit async io_units, to fulfill ordering of flush */
164         struct work_struct deferred_io_work;
165 };
166
167 /*
168  * an IO range starts from a meta data block and end at the next meta data
169  * block. The io unit's the meta data block tracks data/parity followed it. io
170  * unit is written to log disk with normal write, as we always flush log disk
171  * first and then start move data to raid disks, there is no requirement to
172  * write io unit with FLUSH/FUA
173  */
174 struct r5l_io_unit {
175         struct r5l_log *log;
176
177         struct page *meta_page; /* store meta block */
178         int meta_offset;        /* current offset in meta_page */
179
180         struct bio *current_bio;/* current_bio accepting new data */
181
182         atomic_t pending_stripe;/* how many stripes not flushed to raid */
183         u64 seq;                /* seq number of the metablock */
184         sector_t log_start;     /* where the io_unit starts */
185         sector_t log_end;       /* where the io_unit ends */
186         struct list_head log_sibling; /* log->running_ios */
187         struct list_head stripe_list; /* stripes added to the io_unit */
188
189         int state;
190         bool need_split_bio;
191         struct bio *split_bio;
192
193         unsigned int has_flush:1;      /* include flush request */
194         unsigned int has_fua:1;        /* include fua request */
195         unsigned int has_null_flush:1; /* include empty flush request */
196         /*
197          * io isn't sent yet, flush/fua request can only be submitted till it's
198          * the first IO in running_ios list
199          */
200         unsigned int io_deferred:1;
201
202         struct bio_list flush_barriers;   /* size == 0 flush bios */
203 };
204
205 /* r5l_io_unit state */
206 enum r5l_io_unit_state {
207         IO_UNIT_RUNNING = 0,    /* accepting new IO */
208         IO_UNIT_IO_START = 1,   /* io_unit bio start writing to log,
209                                  * don't accepting new bio */
210         IO_UNIT_IO_END = 2,     /* io_unit bio finish writing to log */
211         IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
212 };
213
214 bool r5c_is_writeback(struct r5l_log *log)
215 {
216         return (log != NULL &&
217                 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
218 }
219
220 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
221 {
222         start += inc;
223         if (start >= log->device_size)
224                 start = start - log->device_size;
225         return start;
226 }
227
228 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
229                                   sector_t end)
230 {
231         if (end >= start)
232                 return end - start;
233         else
234                 return end + log->device_size - start;
235 }
236
237 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
238 {
239         sector_t used_size;
240
241         used_size = r5l_ring_distance(log, log->last_checkpoint,
242                                         log->log_start);
243
244         return log->device_size > used_size + size;
245 }
246
247 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
248                                     enum r5l_io_unit_state state)
249 {
250         if (WARN_ON(io->state >= state))
251                 return;
252         io->state = state;
253 }
254
255 static void
256 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev,
257                               struct bio_list *return_bi)
258 {
259         struct bio *wbi, *wbi2;
260
261         wbi = dev->written;
262         dev->written = NULL;
263         while (wbi && wbi->bi_iter.bi_sector <
264                dev->sector + STRIPE_SECTORS) {
265                 wbi2 = r5_next_bio(wbi, dev->sector);
266                 if (!raid5_dec_bi_active_stripes(wbi)) {
267                         md_write_end(conf->mddev);
268                         bio_list_add(return_bi, wbi);
269                 }
270                 wbi = wbi2;
271         }
272 }
273
274 void r5c_handle_cached_data_endio(struct r5conf *conf,
275           struct stripe_head *sh, int disks, struct bio_list *return_bi)
276 {
277         int i;
278
279         for (i = sh->disks; i--; ) {
280                 if (sh->dev[i].written) {
281                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
282                         r5c_return_dev_pending_writes(conf, &sh->dev[i],
283                                                       return_bi);
284                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
285                                         STRIPE_SECTORS,
286                                         !test_bit(STRIPE_DEGRADED, &sh->state),
287                                         0);
288                 }
289         }
290 }
291
292 /* Check whether we should flush some stripes to free up stripe cache */
293 void r5c_check_stripe_cache_usage(struct r5conf *conf)
294 {
295         int total_cached;
296
297         if (!r5c_is_writeback(conf->log))
298                 return;
299
300         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
301                 atomic_read(&conf->r5c_cached_full_stripes);
302
303         /*
304          * The following condition is true for either of the following:
305          *   - stripe cache pressure high:
306          *          total_cached > 3/4 min_nr_stripes ||
307          *          empty_inactive_list_nr > 0
308          *   - stripe cache pressure moderate:
309          *          total_cached > 1/2 min_nr_stripes
310          */
311         if (total_cached > conf->min_nr_stripes * 1 / 2 ||
312             atomic_read(&conf->empty_inactive_list_nr) > 0)
313                 r5l_wake_reclaim(conf->log, 0);
314 }
315
316 /*
317  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
318  * stripes in the cache
319  */
320 void r5c_check_cached_full_stripe(struct r5conf *conf)
321 {
322         if (!r5c_is_writeback(conf->log))
323                 return;
324
325         /*
326          * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
327          * or a full stripe (chunk size / 4k stripes).
328          */
329         if (atomic_read(&conf->r5c_cached_full_stripes) >=
330             min(R5C_FULL_STRIPE_FLUSH_BATCH,
331                 conf->chunk_sectors >> STRIPE_SHIFT))
332                 r5l_wake_reclaim(conf->log, 0);
333 }
334
335 /*
336  * Total log space (in sectors) needed to flush all data in cache
337  *
338  * Currently, writing-out phase automatically includes all pending writes
339  * to the same sector. So the reclaim of each stripe takes up to
340  * (conf->raid_disks + 1) pages of log space.
341  *
342  * To totally avoid deadlock due to log space, the code reserves
343  * (conf->raid_disks + 1) pages for each stripe in cache, which is not
344  * necessary in most cases.
345  *
346  * To improve this, we will need writing-out phase to be able to NOT include
347  * pending writes, which will reduce the requirement to
348  * (conf->max_degraded + 1) pages per stripe in cache.
349  */
350 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
351 {
352         struct r5l_log *log = conf->log;
353
354         if (!r5c_is_writeback(log))
355                 return 0;
356
357         return BLOCK_SECTORS * (conf->raid_disks + 1) *
358                 atomic_read(&log->stripe_in_journal_count);
359 }
360
361 /*
362  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
363  *
364  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
365  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
366  * device is less than 2x of reclaim_required_space.
367  */
368 static inline void r5c_update_log_state(struct r5l_log *log)
369 {
370         struct r5conf *conf = log->rdev->mddev->private;
371         sector_t free_space;
372         sector_t reclaim_space;
373         bool wake_reclaim = false;
374
375         if (!r5c_is_writeback(log))
376                 return;
377
378         free_space = r5l_ring_distance(log, log->log_start,
379                                        log->last_checkpoint);
380         reclaim_space = r5c_log_required_to_flush_cache(conf);
381         if (free_space < 2 * reclaim_space)
382                 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
383         else {
384                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
385                         wake_reclaim = true;
386                 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
387         }
388         if (free_space < 3 * reclaim_space)
389                 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
390         else
391                 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
392
393         if (wake_reclaim)
394                 r5l_wake_reclaim(log, 0);
395 }
396
397 /*
398  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
399  * This function should only be called in write-back mode.
400  */
401 void r5c_make_stripe_write_out(struct stripe_head *sh)
402 {
403         struct r5conf *conf = sh->raid_conf;
404         struct r5l_log *log = conf->log;
405
406         BUG_ON(!r5c_is_writeback(log));
407
408         WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
409         clear_bit(STRIPE_R5C_CACHING, &sh->state);
410
411         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
412                 atomic_inc(&conf->preread_active_stripes);
413
414         if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
415                 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
416                 atomic_dec(&conf->r5c_cached_partial_stripes);
417         }
418
419         if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
420                 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
421                 atomic_dec(&conf->r5c_cached_full_stripes);
422         }
423 }
424
425 static void r5c_handle_data_cached(struct stripe_head *sh)
426 {
427         int i;
428
429         for (i = sh->disks; i--; )
430                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
431                         set_bit(R5_InJournal, &sh->dev[i].flags);
432                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
433                 }
434         clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
435 }
436
437 /*
438  * this journal write must contain full parity,
439  * it may also contain some data pages
440  */
441 static void r5c_handle_parity_cached(struct stripe_head *sh)
442 {
443         int i;
444
445         for (i = sh->disks; i--; )
446                 if (test_bit(R5_InJournal, &sh->dev[i].flags))
447                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
448 }
449
450 /*
451  * Setting proper flags after writing (or flushing) data and/or parity to the
452  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
453  */
454 static void r5c_finish_cache_stripe(struct stripe_head *sh)
455 {
456         struct r5l_log *log = sh->raid_conf->log;
457
458         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
459                 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
460                 /*
461                  * Set R5_InJournal for parity dev[pd_idx]. This means
462                  * all data AND parity in the journal. For RAID 6, it is
463                  * NOT necessary to set the flag for dev[qd_idx], as the
464                  * two parities are written out together.
465                  */
466                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
467         } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
468                 r5c_handle_data_cached(sh);
469         } else {
470                 r5c_handle_parity_cached(sh);
471                 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
472         }
473 }
474
475 static void r5l_io_run_stripes(struct r5l_io_unit *io)
476 {
477         struct stripe_head *sh, *next;
478
479         list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
480                 list_del_init(&sh->log_list);
481
482                 r5c_finish_cache_stripe(sh);
483
484                 set_bit(STRIPE_HANDLE, &sh->state);
485                 raid5_release_stripe(sh);
486         }
487 }
488
489 static void r5l_log_run_stripes(struct r5l_log *log)
490 {
491         struct r5l_io_unit *io, *next;
492
493         assert_spin_locked(&log->io_list_lock);
494
495         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
496                 /* don't change list order */
497                 if (io->state < IO_UNIT_IO_END)
498                         break;
499
500                 list_move_tail(&io->log_sibling, &log->finished_ios);
501                 r5l_io_run_stripes(io);
502         }
503 }
504
505 static void r5l_move_to_end_ios(struct r5l_log *log)
506 {
507         struct r5l_io_unit *io, *next;
508
509         assert_spin_locked(&log->io_list_lock);
510
511         list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
512                 /* don't change list order */
513                 if (io->state < IO_UNIT_IO_END)
514                         break;
515                 list_move_tail(&io->log_sibling, &log->io_end_ios);
516         }
517 }
518
519 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
520 static void r5l_log_endio(struct bio *bio)
521 {
522         struct r5l_io_unit *io = bio->bi_private;
523         struct r5l_io_unit *io_deferred;
524         struct r5l_log *log = io->log;
525         unsigned long flags;
526
527         if (bio->bi_error)
528                 md_error(log->rdev->mddev, log->rdev);
529
530         bio_put(bio);
531         mempool_free(io->meta_page, log->meta_pool);
532
533         spin_lock_irqsave(&log->io_list_lock, flags);
534         __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
535         if (log->need_cache_flush)
536                 r5l_move_to_end_ios(log);
537         else
538                 r5l_log_run_stripes(log);
539         if (!list_empty(&log->running_ios)) {
540                 /*
541                  * FLUSH/FUA io_unit is deferred because of ordering, now we
542                  * can dispatch it
543                  */
544                 io_deferred = list_first_entry(&log->running_ios,
545                                                struct r5l_io_unit, log_sibling);
546                 if (io_deferred->io_deferred)
547                         schedule_work(&log->deferred_io_work);
548         }
549
550         spin_unlock_irqrestore(&log->io_list_lock, flags);
551
552         if (log->need_cache_flush)
553                 md_wakeup_thread(log->rdev->mddev->thread);
554
555         if (io->has_null_flush) {
556                 struct bio *bi;
557
558                 WARN_ON(bio_list_empty(&io->flush_barriers));
559                 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
560                         bio_endio(bi);
561                         atomic_dec(&io->pending_stripe);
562                 }
563                 if (atomic_read(&io->pending_stripe) == 0)
564                         __r5l_stripe_write_finished(io);
565         }
566 }
567
568 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
569 {
570         unsigned long flags;
571
572         spin_lock_irqsave(&log->io_list_lock, flags);
573         __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
574         spin_unlock_irqrestore(&log->io_list_lock, flags);
575
576         if (io->has_flush)
577                 io->current_bio->bi_opf |= REQ_PREFLUSH;
578         if (io->has_fua)
579                 io->current_bio->bi_opf |= REQ_FUA;
580         submit_bio(io->current_bio);
581
582         if (!io->split_bio)
583                 return;
584
585         if (io->has_flush)
586                 io->split_bio->bi_opf |= REQ_PREFLUSH;
587         if (io->has_fua)
588                 io->split_bio->bi_opf |= REQ_FUA;
589         submit_bio(io->split_bio);
590 }
591
592 /* deferred io_unit will be dispatched here */
593 static void r5l_submit_io_async(struct work_struct *work)
594 {
595         struct r5l_log *log = container_of(work, struct r5l_log,
596                                            deferred_io_work);
597         struct r5l_io_unit *io = NULL;
598         unsigned long flags;
599
600         spin_lock_irqsave(&log->io_list_lock, flags);
601         if (!list_empty(&log->running_ios)) {
602                 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
603                                       log_sibling);
604                 if (!io->io_deferred)
605                         io = NULL;
606                 else
607                         io->io_deferred = 0;
608         }
609         spin_unlock_irqrestore(&log->io_list_lock, flags);
610         if (io)
611                 r5l_do_submit_io(log, io);
612 }
613
614 static void r5l_submit_current_io(struct r5l_log *log)
615 {
616         struct r5l_io_unit *io = log->current_io;
617         struct bio *bio;
618         struct r5l_meta_block *block;
619         unsigned long flags;
620         u32 crc;
621         bool do_submit = true;
622
623         if (!io)
624                 return;
625
626         block = page_address(io->meta_page);
627         block->meta_size = cpu_to_le32(io->meta_offset);
628         crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
629         block->checksum = cpu_to_le32(crc);
630         bio = io->current_bio;
631
632         log->current_io = NULL;
633         spin_lock_irqsave(&log->io_list_lock, flags);
634         if (io->has_flush || io->has_fua) {
635                 if (io != list_first_entry(&log->running_ios,
636                                            struct r5l_io_unit, log_sibling)) {
637                         io->io_deferred = 1;
638                         do_submit = false;
639                 }
640         }
641         spin_unlock_irqrestore(&log->io_list_lock, flags);
642         if (do_submit)
643                 r5l_do_submit_io(log, io);
644 }
645
646 static struct bio *r5l_bio_alloc(struct r5l_log *log)
647 {
648         struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
649
650         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
651         bio->bi_bdev = log->rdev->bdev;
652         bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
653
654         return bio;
655 }
656
657 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
658 {
659         log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
660
661         r5c_update_log_state(log);
662         /*
663          * If we filled up the log device start from the beginning again,
664          * which will require a new bio.
665          *
666          * Note: for this to work properly the log size needs to me a multiple
667          * of BLOCK_SECTORS.
668          */
669         if (log->log_start == 0)
670                 io->need_split_bio = true;
671
672         io->log_end = log->log_start;
673 }
674
675 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
676 {
677         struct r5l_io_unit *io;
678         struct r5l_meta_block *block;
679
680         io = mempool_alloc(log->io_pool, GFP_ATOMIC);
681         if (!io)
682                 return NULL;
683         memset(io, 0, sizeof(*io));
684
685         io->log = log;
686         INIT_LIST_HEAD(&io->log_sibling);
687         INIT_LIST_HEAD(&io->stripe_list);
688         bio_list_init(&io->flush_barriers);
689         io->state = IO_UNIT_RUNNING;
690
691         io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
692         block = page_address(io->meta_page);
693         clear_page(block);
694         block->magic = cpu_to_le32(R5LOG_MAGIC);
695         block->version = R5LOG_VERSION;
696         block->seq = cpu_to_le64(log->seq);
697         block->position = cpu_to_le64(log->log_start);
698
699         io->log_start = log->log_start;
700         io->meta_offset = sizeof(struct r5l_meta_block);
701         io->seq = log->seq++;
702
703         io->current_bio = r5l_bio_alloc(log);
704         io->current_bio->bi_end_io = r5l_log_endio;
705         io->current_bio->bi_private = io;
706         bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
707
708         r5_reserve_log_entry(log, io);
709
710         spin_lock_irq(&log->io_list_lock);
711         list_add_tail(&io->log_sibling, &log->running_ios);
712         spin_unlock_irq(&log->io_list_lock);
713
714         return io;
715 }
716
717 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
718 {
719         if (log->current_io &&
720             log->current_io->meta_offset + payload_size > PAGE_SIZE)
721                 r5l_submit_current_io(log);
722
723         if (!log->current_io) {
724                 log->current_io = r5l_new_meta(log);
725                 if (!log->current_io)
726                         return -ENOMEM;
727         }
728
729         return 0;
730 }
731
732 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
733                                     sector_t location,
734                                     u32 checksum1, u32 checksum2,
735                                     bool checksum2_valid)
736 {
737         struct r5l_io_unit *io = log->current_io;
738         struct r5l_payload_data_parity *payload;
739
740         payload = page_address(io->meta_page) + io->meta_offset;
741         payload->header.type = cpu_to_le16(type);
742         payload->header.flags = cpu_to_le16(0);
743         payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
744                                     (PAGE_SHIFT - 9));
745         payload->location = cpu_to_le64(location);
746         payload->checksum[0] = cpu_to_le32(checksum1);
747         if (checksum2_valid)
748                 payload->checksum[1] = cpu_to_le32(checksum2);
749
750         io->meta_offset += sizeof(struct r5l_payload_data_parity) +
751                 sizeof(__le32) * (1 + !!checksum2_valid);
752 }
753
754 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
755 {
756         struct r5l_io_unit *io = log->current_io;
757
758         if (io->need_split_bio) {
759                 BUG_ON(io->split_bio);
760                 io->split_bio = io->current_bio;
761                 io->current_bio = r5l_bio_alloc(log);
762                 bio_chain(io->current_bio, io->split_bio);
763                 io->need_split_bio = false;
764         }
765
766         if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
767                 BUG();
768
769         r5_reserve_log_entry(log, io);
770 }
771
772 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
773                            int data_pages, int parity_pages)
774 {
775         int i;
776         int meta_size;
777         int ret;
778         struct r5l_io_unit *io;
779
780         meta_size =
781                 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
782                  * data_pages) +
783                 sizeof(struct r5l_payload_data_parity) +
784                 sizeof(__le32) * parity_pages;
785
786         ret = r5l_get_meta(log, meta_size);
787         if (ret)
788                 return ret;
789
790         io = log->current_io;
791
792         if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
793                 io->has_flush = 1;
794
795         for (i = 0; i < sh->disks; i++) {
796                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
797                     test_bit(R5_InJournal, &sh->dev[i].flags))
798                         continue;
799                 if (i == sh->pd_idx || i == sh->qd_idx)
800                         continue;
801                 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
802                     log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
803                         io->has_fua = 1;
804                         /*
805                          * we need to flush journal to make sure recovery can
806                          * reach the data with fua flag
807                          */
808                         io->has_flush = 1;
809                 }
810                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
811                                         raid5_compute_blocknr(sh, i, 0),
812                                         sh->dev[i].log_checksum, 0, false);
813                 r5l_append_payload_page(log, sh->dev[i].page);
814         }
815
816         if (parity_pages == 2) {
817                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
818                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
819                                         sh->dev[sh->qd_idx].log_checksum, true);
820                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
821                 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
822         } else if (parity_pages == 1) {
823                 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
824                                         sh->sector, sh->dev[sh->pd_idx].log_checksum,
825                                         0, false);
826                 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
827         } else  /* Just writing data, not parity, in caching phase */
828                 BUG_ON(parity_pages != 0);
829
830         list_add_tail(&sh->log_list, &io->stripe_list);
831         atomic_inc(&io->pending_stripe);
832         sh->log_io = io;
833
834         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
835                 return 0;
836
837         if (sh->log_start == MaxSector) {
838                 BUG_ON(!list_empty(&sh->r5c));
839                 sh->log_start = io->log_start;
840                 spin_lock_irq(&log->stripe_in_journal_lock);
841                 list_add_tail(&sh->r5c,
842                               &log->stripe_in_journal_list);
843                 spin_unlock_irq(&log->stripe_in_journal_lock);
844                 atomic_inc(&log->stripe_in_journal_count);
845         }
846         return 0;
847 }
848
849 /* add stripe to no_space_stripes, and then wake up reclaim */
850 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
851                                            struct stripe_head *sh)
852 {
853         spin_lock(&log->no_space_stripes_lock);
854         list_add_tail(&sh->log_list, &log->no_space_stripes);
855         spin_unlock(&log->no_space_stripes_lock);
856 }
857
858 /*
859  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
860  * data from log to raid disks), so we shouldn't wait for reclaim here
861  */
862 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
863 {
864         struct r5conf *conf = sh->raid_conf;
865         int write_disks = 0;
866         int data_pages, parity_pages;
867         int reserve;
868         int i;
869         int ret = 0;
870         bool wake_reclaim = false;
871
872         if (!log)
873                 return -EAGAIN;
874         /* Don't support stripe batch */
875         if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
876             test_bit(STRIPE_SYNCING, &sh->state)) {
877                 /* the stripe is written to log, we start writing it to raid */
878                 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
879                 return -EAGAIN;
880         }
881
882         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
883
884         for (i = 0; i < sh->disks; i++) {
885                 void *addr;
886
887                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
888                     test_bit(R5_InJournal, &sh->dev[i].flags))
889                         continue;
890
891                 write_disks++;
892                 /* checksum is already calculated in last run */
893                 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
894                         continue;
895                 addr = kmap_atomic(sh->dev[i].page);
896                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
897                                                     addr, PAGE_SIZE);
898                 kunmap_atomic(addr);
899         }
900         parity_pages = 1 + !!(sh->qd_idx >= 0);
901         data_pages = write_disks - parity_pages;
902
903         set_bit(STRIPE_LOG_TRAPPED, &sh->state);
904         /*
905          * The stripe must enter state machine again to finish the write, so
906          * don't delay.
907          */
908         clear_bit(STRIPE_DELAYED, &sh->state);
909         atomic_inc(&sh->count);
910
911         mutex_lock(&log->io_mutex);
912         /* meta + data */
913         reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
914
915         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
916                 if (!r5l_has_free_space(log, reserve)) {
917                         r5l_add_no_space_stripe(log, sh);
918                         wake_reclaim = true;
919                 } else {
920                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
921                         if (ret) {
922                                 spin_lock_irq(&log->io_list_lock);
923                                 list_add_tail(&sh->log_list,
924                                               &log->no_mem_stripes);
925                                 spin_unlock_irq(&log->io_list_lock);
926                         }
927                 }
928         } else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
929                 /*
930                  * log space critical, do not process stripes that are
931                  * not in cache yet (sh->log_start == MaxSector).
932                  */
933                 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
934                     sh->log_start == MaxSector) {
935                         r5l_add_no_space_stripe(log, sh);
936                         wake_reclaim = true;
937                         reserve = 0;
938                 } else if (!r5l_has_free_space(log, reserve)) {
939                         if (sh->log_start == log->last_checkpoint)
940                                 BUG();
941                         else
942                                 r5l_add_no_space_stripe(log, sh);
943                 } else {
944                         ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
945                         if (ret) {
946                                 spin_lock_irq(&log->io_list_lock);
947                                 list_add_tail(&sh->log_list,
948                                               &log->no_mem_stripes);
949                                 spin_unlock_irq(&log->io_list_lock);
950                         }
951                 }
952         }
953
954         mutex_unlock(&log->io_mutex);
955         if (wake_reclaim)
956                 r5l_wake_reclaim(log, reserve);
957         return 0;
958 }
959
960 void r5l_write_stripe_run(struct r5l_log *log)
961 {
962         if (!log)
963                 return;
964         mutex_lock(&log->io_mutex);
965         r5l_submit_current_io(log);
966         mutex_unlock(&log->io_mutex);
967 }
968
969 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
970 {
971         if (!log)
972                 return -ENODEV;
973
974         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
975                 /*
976                  * in write through (journal only)
977                  * we flush log disk cache first, then write stripe data to
978                  * raid disks. So if bio is finished, the log disk cache is
979                  * flushed already. The recovery guarantees we can recovery
980                  * the bio from log disk, so we don't need to flush again
981                  */
982                 if (bio->bi_iter.bi_size == 0) {
983                         bio_endio(bio);
984                         return 0;
985                 }
986                 bio->bi_opf &= ~REQ_PREFLUSH;
987         } else {
988                 /* write back (with cache) */
989                 if (bio->bi_iter.bi_size == 0) {
990                         mutex_lock(&log->io_mutex);
991                         r5l_get_meta(log, 0);
992                         bio_list_add(&log->current_io->flush_barriers, bio);
993                         log->current_io->has_flush = 1;
994                         log->current_io->has_null_flush = 1;
995                         atomic_inc(&log->current_io->pending_stripe);
996                         r5l_submit_current_io(log);
997                         mutex_unlock(&log->io_mutex);
998                         return 0;
999                 }
1000         }
1001         return -EAGAIN;
1002 }
1003
1004 /* This will run after log space is reclaimed */
1005 static void r5l_run_no_space_stripes(struct r5l_log *log)
1006 {
1007         struct stripe_head *sh;
1008
1009         spin_lock(&log->no_space_stripes_lock);
1010         while (!list_empty(&log->no_space_stripes)) {
1011                 sh = list_first_entry(&log->no_space_stripes,
1012                                       struct stripe_head, log_list);
1013                 list_del_init(&sh->log_list);
1014                 set_bit(STRIPE_HANDLE, &sh->state);
1015                 raid5_release_stripe(sh);
1016         }
1017         spin_unlock(&log->no_space_stripes_lock);
1018 }
1019
1020 /*
1021  * calculate new last_checkpoint
1022  * for write through mode, returns log->next_checkpoint
1023  * for write back, returns log_start of first sh in stripe_in_journal_list
1024  */
1025 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1026 {
1027         struct stripe_head *sh;
1028         struct r5l_log *log = conf->log;
1029         sector_t new_cp;
1030         unsigned long flags;
1031
1032         if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1033                 return log->next_checkpoint;
1034
1035         spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1036         if (list_empty(&conf->log->stripe_in_journal_list)) {
1037                 /* all stripes flushed */
1038                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1039                 return log->next_checkpoint;
1040         }
1041         sh = list_first_entry(&conf->log->stripe_in_journal_list,
1042                               struct stripe_head, r5c);
1043         new_cp = sh->log_start;
1044         spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1045         return new_cp;
1046 }
1047
1048 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1049 {
1050         struct r5conf *conf = log->rdev->mddev->private;
1051
1052         return r5l_ring_distance(log, log->last_checkpoint,
1053                                  r5c_calculate_new_cp(conf));
1054 }
1055
1056 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1057 {
1058         struct stripe_head *sh;
1059
1060         assert_spin_locked(&log->io_list_lock);
1061
1062         if (!list_empty(&log->no_mem_stripes)) {
1063                 sh = list_first_entry(&log->no_mem_stripes,
1064                                       struct stripe_head, log_list);
1065                 list_del_init(&sh->log_list);
1066                 set_bit(STRIPE_HANDLE, &sh->state);
1067                 raid5_release_stripe(sh);
1068         }
1069 }
1070
1071 static bool r5l_complete_finished_ios(struct r5l_log *log)
1072 {
1073         struct r5l_io_unit *io, *next;
1074         bool found = false;
1075
1076         assert_spin_locked(&log->io_list_lock);
1077
1078         list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1079                 /* don't change list order */
1080                 if (io->state < IO_UNIT_STRIPE_END)
1081                         break;
1082
1083                 log->next_checkpoint = io->log_start;
1084
1085                 list_del(&io->log_sibling);
1086                 mempool_free(io, log->io_pool);
1087                 r5l_run_no_mem_stripe(log);
1088
1089                 found = true;
1090         }
1091
1092         return found;
1093 }
1094
1095 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1096 {
1097         struct r5l_log *log = io->log;
1098         struct r5conf *conf = log->rdev->mddev->private;
1099         unsigned long flags;
1100
1101         spin_lock_irqsave(&log->io_list_lock, flags);
1102         __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1103
1104         if (!r5l_complete_finished_ios(log)) {
1105                 spin_unlock_irqrestore(&log->io_list_lock, flags);
1106                 return;
1107         }
1108
1109         if (r5l_reclaimable_space(log) > log->max_free_space ||
1110             test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1111                 r5l_wake_reclaim(log, 0);
1112
1113         spin_unlock_irqrestore(&log->io_list_lock, flags);
1114         wake_up(&log->iounit_wait);
1115 }
1116
1117 void r5l_stripe_write_finished(struct stripe_head *sh)
1118 {
1119         struct r5l_io_unit *io;
1120
1121         io = sh->log_io;
1122         sh->log_io = NULL;
1123
1124         if (io && atomic_dec_and_test(&io->pending_stripe))
1125                 __r5l_stripe_write_finished(io);
1126 }
1127
1128 static void r5l_log_flush_endio(struct bio *bio)
1129 {
1130         struct r5l_log *log = container_of(bio, struct r5l_log,
1131                 flush_bio);
1132         unsigned long flags;
1133         struct r5l_io_unit *io;
1134
1135         if (bio->bi_error)
1136                 md_error(log->rdev->mddev, log->rdev);
1137
1138         spin_lock_irqsave(&log->io_list_lock, flags);
1139         list_for_each_entry(io, &log->flushing_ios, log_sibling)
1140                 r5l_io_run_stripes(io);
1141         list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1142         spin_unlock_irqrestore(&log->io_list_lock, flags);
1143 }
1144
1145 /*
1146  * Starting dispatch IO to raid.
1147  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1148  * broken meta in the middle of a log causes recovery can't find meta at the
1149  * head of log. If operations require meta at the head persistent in log, we
1150  * must make sure meta before it persistent in log too. A case is:
1151  *
1152  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1153  * data/parity must be persistent in log before we do the write to raid disks.
1154  *
1155  * The solution is we restrictly maintain io_unit list order. In this case, we
1156  * only write stripes of an io_unit to raid disks till the io_unit is the first
1157  * one whose data/parity is in log.
1158  */
1159 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1160 {
1161         bool do_flush;
1162
1163         if (!log || !log->need_cache_flush)
1164                 return;
1165
1166         spin_lock_irq(&log->io_list_lock);
1167         /* flush bio is running */
1168         if (!list_empty(&log->flushing_ios)) {
1169                 spin_unlock_irq(&log->io_list_lock);
1170                 return;
1171         }
1172         list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1173         do_flush = !list_empty(&log->flushing_ios);
1174         spin_unlock_irq(&log->io_list_lock);
1175
1176         if (!do_flush)
1177                 return;
1178         bio_reset(&log->flush_bio);
1179         log->flush_bio.bi_bdev = log->rdev->bdev;
1180         log->flush_bio.bi_end_io = r5l_log_flush_endio;
1181         log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1182         submit_bio(&log->flush_bio);
1183 }
1184
1185 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1186 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1187         sector_t end)
1188 {
1189         struct block_device *bdev = log->rdev->bdev;
1190         struct mddev *mddev;
1191
1192         r5l_write_super(log, end);
1193
1194         if (!blk_queue_discard(bdev_get_queue(bdev)))
1195                 return;
1196
1197         mddev = log->rdev->mddev;
1198         /*
1199          * Discard could zero data, so before discard we must make sure
1200          * superblock is updated to new log tail. Updating superblock (either
1201          * directly call md_update_sb() or depend on md thread) must hold
1202          * reconfig mutex. On the other hand, raid5_quiesce is called with
1203          * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1204          * for all IO finish, hence waitting for reclaim thread, while reclaim
1205          * thread is calling this function and waitting for reconfig mutex. So
1206          * there is a deadlock. We workaround this issue with a trylock.
1207          * FIXME: we could miss discard if we can't take reconfig mutex
1208          */
1209         set_mask_bits(&mddev->sb_flags, 0,
1210                 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1211         if (!mddev_trylock(mddev))
1212                 return;
1213         md_update_sb(mddev, 1);
1214         mddev_unlock(mddev);
1215
1216         /* discard IO error really doesn't matter, ignore it */
1217         if (log->last_checkpoint < end) {
1218                 blkdev_issue_discard(bdev,
1219                                 log->last_checkpoint + log->rdev->data_offset,
1220                                 end - log->last_checkpoint, GFP_NOIO, 0);
1221         } else {
1222                 blkdev_issue_discard(bdev,
1223                                 log->last_checkpoint + log->rdev->data_offset,
1224                                 log->device_size - log->last_checkpoint,
1225                                 GFP_NOIO, 0);
1226                 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1227                                 GFP_NOIO, 0);
1228         }
1229 }
1230
1231 /*
1232  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1233  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1234  *
1235  * must hold conf->device_lock
1236  */
1237 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1238 {
1239         BUG_ON(list_empty(&sh->lru));
1240         BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1241         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1242
1243         /*
1244          * The stripe is not ON_RELEASE_LIST, so it is safe to call
1245          * raid5_release_stripe() while holding conf->device_lock
1246          */
1247         BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1248         assert_spin_locked(&conf->device_lock);
1249
1250         list_del_init(&sh->lru);
1251         atomic_inc(&sh->count);
1252
1253         set_bit(STRIPE_HANDLE, &sh->state);
1254         atomic_inc(&conf->active_stripes);
1255         r5c_make_stripe_write_out(sh);
1256
1257         raid5_release_stripe(sh);
1258 }
1259
1260 /*
1261  * if num == 0, flush all full stripes
1262  * if num > 0, flush all full stripes. If less than num full stripes are
1263  *             flushed, flush some partial stripes until totally num stripes are
1264  *             flushed or there is no more cached stripes.
1265  */
1266 void r5c_flush_cache(struct r5conf *conf, int num)
1267 {
1268         int count;
1269         struct stripe_head *sh, *next;
1270
1271         assert_spin_locked(&conf->device_lock);
1272         if (!conf->log)
1273                 return;
1274
1275         count = 0;
1276         list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1277                 r5c_flush_stripe(conf, sh);
1278                 count++;
1279         }
1280
1281         if (count >= num)
1282                 return;
1283         list_for_each_entry_safe(sh, next,
1284                                  &conf->r5c_partial_stripe_list, lru) {
1285                 r5c_flush_stripe(conf, sh);
1286                 if (++count >= num)
1287                         break;
1288         }
1289 }
1290
1291 static void r5c_do_reclaim(struct r5conf *conf)
1292 {
1293         struct r5l_log *log = conf->log;
1294         struct stripe_head *sh;
1295         int count = 0;
1296         unsigned long flags;
1297         int total_cached;
1298         int stripes_to_flush;
1299
1300         if (!r5c_is_writeback(log))
1301                 return;
1302
1303         total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1304                 atomic_read(&conf->r5c_cached_full_stripes);
1305
1306         if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1307             atomic_read(&conf->empty_inactive_list_nr) > 0)
1308                 /*
1309                  * if stripe cache pressure high, flush all full stripes and
1310                  * some partial stripes
1311                  */
1312                 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1313         else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1314                  atomic_read(&conf->r5c_cached_full_stripes) >
1315                  R5C_FULL_STRIPE_FLUSH_BATCH)
1316                 /*
1317                  * if stripe cache pressure moderate, or if there is many full
1318                  * stripes,flush all full stripes
1319                  */
1320                 stripes_to_flush = 0;
1321         else
1322                 /* no need to flush */
1323                 stripes_to_flush = -1;
1324
1325         if (stripes_to_flush >= 0) {
1326                 spin_lock_irqsave(&conf->device_lock, flags);
1327                 r5c_flush_cache(conf, stripes_to_flush);
1328                 spin_unlock_irqrestore(&conf->device_lock, flags);
1329         }
1330
1331         /* if log space is tight, flush stripes on stripe_in_journal_list */
1332         if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1333                 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1334                 spin_lock(&conf->device_lock);
1335                 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1336                         /*
1337                          * stripes on stripe_in_journal_list could be in any
1338                          * state of the stripe_cache state machine. In this
1339                          * case, we only want to flush stripe on
1340                          * r5c_cached_full/partial_stripes. The following
1341                          * condition makes sure the stripe is on one of the
1342                          * two lists.
1343                          */
1344                         if (!list_empty(&sh->lru) &&
1345                             !test_bit(STRIPE_HANDLE, &sh->state) &&
1346                             atomic_read(&sh->count) == 0) {
1347                                 r5c_flush_stripe(conf, sh);
1348                         }
1349                         if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1350                                 break;
1351                 }
1352                 spin_unlock(&conf->device_lock);
1353                 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1354         }
1355
1356         if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1357                 r5l_run_no_space_stripes(log);
1358
1359         md_wakeup_thread(conf->mddev->thread);
1360 }
1361
1362 static void r5l_do_reclaim(struct r5l_log *log)
1363 {
1364         struct r5conf *conf = log->rdev->mddev->private;
1365         sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1366         sector_t reclaimable;
1367         sector_t next_checkpoint;
1368         bool write_super;
1369
1370         spin_lock_irq(&log->io_list_lock);
1371         write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1372                 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1373         /*
1374          * move proper io_unit to reclaim list. We should not change the order.
1375          * reclaimable/unreclaimable io_unit can be mixed in the list, we
1376          * shouldn't reuse space of an unreclaimable io_unit
1377          */
1378         while (1) {
1379                 reclaimable = r5l_reclaimable_space(log);
1380                 if (reclaimable >= reclaim_target ||
1381                     (list_empty(&log->running_ios) &&
1382                      list_empty(&log->io_end_ios) &&
1383                      list_empty(&log->flushing_ios) &&
1384                      list_empty(&log->finished_ios)))
1385                         break;
1386
1387                 md_wakeup_thread(log->rdev->mddev->thread);
1388                 wait_event_lock_irq(log->iounit_wait,
1389                                     r5l_reclaimable_space(log) > reclaimable,
1390                                     log->io_list_lock);
1391         }
1392
1393         next_checkpoint = r5c_calculate_new_cp(conf);
1394         spin_unlock_irq(&log->io_list_lock);
1395
1396         BUG_ON(reclaimable < 0);
1397
1398         if (reclaimable == 0 || !write_super)
1399                 return;
1400
1401         /*
1402          * write_super will flush cache of each raid disk. We must write super
1403          * here, because the log area might be reused soon and we don't want to
1404          * confuse recovery
1405          */
1406         r5l_write_super_and_discard_space(log, next_checkpoint);
1407
1408         mutex_lock(&log->io_mutex);
1409         log->last_checkpoint = next_checkpoint;
1410         r5c_update_log_state(log);
1411         mutex_unlock(&log->io_mutex);
1412
1413         r5l_run_no_space_stripes(log);
1414 }
1415
1416 static void r5l_reclaim_thread(struct md_thread *thread)
1417 {
1418         struct mddev *mddev = thread->mddev;
1419         struct r5conf *conf = mddev->private;
1420         struct r5l_log *log = conf->log;
1421
1422         if (!log)
1423                 return;
1424         r5c_do_reclaim(conf);
1425         r5l_do_reclaim(log);
1426 }
1427
1428 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1429 {
1430         unsigned long target;
1431         unsigned long new = (unsigned long)space; /* overflow in theory */
1432
1433         if (!log)
1434                 return;
1435         do {
1436                 target = log->reclaim_target;
1437                 if (new < target)
1438                         return;
1439         } while (cmpxchg(&log->reclaim_target, target, new) != target);
1440         md_wakeup_thread(log->reclaim_thread);
1441 }
1442
1443 void r5l_quiesce(struct r5l_log *log, int state)
1444 {
1445         struct mddev *mddev;
1446         if (!log || state == 2)
1447                 return;
1448         if (state == 0)
1449                 kthread_unpark(log->reclaim_thread->tsk);
1450         else if (state == 1) {
1451                 /* make sure r5l_write_super_and_discard_space exits */
1452                 mddev = log->rdev->mddev;
1453                 wake_up(&mddev->sb_wait);
1454                 kthread_park(log->reclaim_thread->tsk);
1455                 r5l_wake_reclaim(log, MaxSector);
1456                 r5l_do_reclaim(log);
1457         }
1458 }
1459
1460 bool r5l_log_disk_error(struct r5conf *conf)
1461 {
1462         struct r5l_log *log;
1463         bool ret;
1464         /* don't allow write if journal disk is missing */
1465         rcu_read_lock();
1466         log = rcu_dereference(conf->log);
1467
1468         if (!log)
1469                 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1470         else
1471                 ret = test_bit(Faulty, &log->rdev->flags);
1472         rcu_read_unlock();
1473         return ret;
1474 }
1475
1476 struct r5l_recovery_ctx {
1477         struct page *meta_page;         /* current meta */
1478         sector_t meta_total_blocks;     /* total size of current meta and data */
1479         sector_t pos;                   /* recovery position */
1480         u64 seq;                        /* recovery position seq */
1481         int data_parity_stripes;        /* number of data_parity stripes */
1482         int data_only_stripes;          /* number of data_only stripes */
1483         struct list_head cached_list;
1484 };
1485
1486 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1487                                         struct r5l_recovery_ctx *ctx)
1488 {
1489         struct page *page = ctx->meta_page;
1490         struct r5l_meta_block *mb;
1491         u32 crc, stored_crc;
1492
1493         if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
1494                           false))
1495                 return -EIO;
1496
1497         mb = page_address(page);
1498         stored_crc = le32_to_cpu(mb->checksum);
1499         mb->checksum = 0;
1500
1501         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1502             le64_to_cpu(mb->seq) != ctx->seq ||
1503             mb->version != R5LOG_VERSION ||
1504             le64_to_cpu(mb->position) != ctx->pos)
1505                 return -EINVAL;
1506
1507         crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1508         if (stored_crc != crc)
1509                 return -EINVAL;
1510
1511         if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1512                 return -EINVAL;
1513
1514         ctx->meta_total_blocks = BLOCK_SECTORS;
1515
1516         return 0;
1517 }
1518
1519 static void
1520 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1521                                      struct page *page,
1522                                      sector_t pos, u64 seq)
1523 {
1524         struct r5l_meta_block *mb;
1525
1526         mb = page_address(page);
1527         clear_page(mb);
1528         mb->magic = cpu_to_le32(R5LOG_MAGIC);
1529         mb->version = R5LOG_VERSION;
1530         mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1531         mb->seq = cpu_to_le64(seq);
1532         mb->position = cpu_to_le64(pos);
1533 }
1534
1535 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1536                                           u64 seq)
1537 {
1538         struct page *page;
1539         struct r5l_meta_block *mb;
1540
1541         page = alloc_page(GFP_KERNEL);
1542         if (!page)
1543                 return -ENOMEM;
1544         r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1545         mb = page_address(page);
1546         mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1547                                              mb, PAGE_SIZE));
1548         if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1549                           REQ_FUA, false)) {
1550                 __free_page(page);
1551                 return -EIO;
1552         }
1553         __free_page(page);
1554         return 0;
1555 }
1556
1557 /*
1558  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1559  * to mark valid (potentially not flushed) data in the journal.
1560  *
1561  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1562  * so there should not be any mismatch here.
1563  */
1564 static void r5l_recovery_load_data(struct r5l_log *log,
1565                                    struct stripe_head *sh,
1566                                    struct r5l_recovery_ctx *ctx,
1567                                    struct r5l_payload_data_parity *payload,
1568                                    sector_t log_offset)
1569 {
1570         struct mddev *mddev = log->rdev->mddev;
1571         struct r5conf *conf = mddev->private;
1572         int dd_idx;
1573
1574         raid5_compute_sector(conf,
1575                              le64_to_cpu(payload->location), 0,
1576                              &dd_idx, sh);
1577         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1578                      sh->dev[dd_idx].page, REQ_OP_READ, 0, false);
1579         sh->dev[dd_idx].log_checksum =
1580                 le32_to_cpu(payload->checksum[0]);
1581         ctx->meta_total_blocks += BLOCK_SECTORS;
1582
1583         set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1584         set_bit(STRIPE_R5C_CACHING, &sh->state);
1585 }
1586
1587 static void r5l_recovery_load_parity(struct r5l_log *log,
1588                                      struct stripe_head *sh,
1589                                      struct r5l_recovery_ctx *ctx,
1590                                      struct r5l_payload_data_parity *payload,
1591                                      sector_t log_offset)
1592 {
1593         struct mddev *mddev = log->rdev->mddev;
1594         struct r5conf *conf = mddev->private;
1595
1596         ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1597         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1598                      sh->dev[sh->pd_idx].page, REQ_OP_READ, 0, false);
1599         sh->dev[sh->pd_idx].log_checksum =
1600                 le32_to_cpu(payload->checksum[0]);
1601         set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1602
1603         if (sh->qd_idx >= 0) {
1604                 sync_page_io(log->rdev,
1605                              r5l_ring_add(log, log_offset, BLOCK_SECTORS),
1606                              PAGE_SIZE, sh->dev[sh->qd_idx].page,
1607                              REQ_OP_READ, 0, false);
1608                 sh->dev[sh->qd_idx].log_checksum =
1609                         le32_to_cpu(payload->checksum[1]);
1610                 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1611         }
1612         clear_bit(STRIPE_R5C_CACHING, &sh->state);
1613 }
1614
1615 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1616 {
1617         int i;
1618
1619         sh->state = 0;
1620         sh->log_start = MaxSector;
1621         for (i = sh->disks; i--; )
1622                 sh->dev[i].flags = 0;
1623 }
1624
1625 static void
1626 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1627                                struct stripe_head *sh,
1628                                struct r5l_recovery_ctx *ctx)
1629 {
1630         struct md_rdev *rdev, *rrdev;
1631         int disk_index;
1632         int data_count = 0;
1633
1634         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1635                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1636                         continue;
1637                 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1638                         continue;
1639                 data_count++;
1640         }
1641
1642         /*
1643          * stripes that only have parity must have been flushed
1644          * before the crash that we are now recovering from, so
1645          * there is nothing more to recovery.
1646          */
1647         if (data_count == 0)
1648                 goto out;
1649
1650         for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1651                 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1652                         continue;
1653
1654                 /* in case device is broken */
1655                 rcu_read_lock();
1656                 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1657                 if (rdev) {
1658                         atomic_inc(&rdev->nr_pending);
1659                         rcu_read_unlock();
1660                         sync_page_io(rdev, sh->sector, PAGE_SIZE,
1661                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1662                                      false);
1663                         rdev_dec_pending(rdev, rdev->mddev);
1664                         rcu_read_lock();
1665                 }
1666                 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1667                 if (rrdev) {
1668                         atomic_inc(&rrdev->nr_pending);
1669                         rcu_read_unlock();
1670                         sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1671                                      sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1672                                      false);
1673                         rdev_dec_pending(rrdev, rrdev->mddev);
1674                         rcu_read_lock();
1675                 }
1676                 rcu_read_unlock();
1677         }
1678         ctx->data_parity_stripes++;
1679 out:
1680         r5l_recovery_reset_stripe(sh);
1681 }
1682
1683 static struct stripe_head *
1684 r5c_recovery_alloc_stripe(struct r5conf *conf,
1685                           sector_t stripe_sect,
1686                           sector_t log_start)
1687 {
1688         struct stripe_head *sh;
1689
1690         sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1691         if (!sh)
1692                 return NULL;  /* no more stripe available */
1693
1694         r5l_recovery_reset_stripe(sh);
1695         sh->log_start = log_start;
1696
1697         return sh;
1698 }
1699
1700 static struct stripe_head *
1701 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1702 {
1703         struct stripe_head *sh;
1704
1705         list_for_each_entry(sh, list, lru)
1706                 if (sh->sector == sect)
1707                         return sh;
1708         return NULL;
1709 }
1710
1711 static void
1712 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1713                           struct r5l_recovery_ctx *ctx)
1714 {
1715         struct stripe_head *sh, *next;
1716
1717         list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1718                 r5l_recovery_reset_stripe(sh);
1719                 list_del_init(&sh->lru);
1720                 raid5_release_stripe(sh);
1721         }
1722 }
1723
1724 static void
1725 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1726                             struct r5l_recovery_ctx *ctx)
1727 {
1728         struct stripe_head *sh, *next;
1729
1730         list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1731                 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1732                         r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1733                         list_del_init(&sh->lru);
1734                         raid5_release_stripe(sh);
1735                 }
1736 }
1737
1738 /* if matches return 0; otherwise return -EINVAL */
1739 static int
1740 r5l_recovery_verify_data_checksum(struct r5l_log *log, struct page *page,
1741                                   sector_t log_offset, __le32 log_checksum)
1742 {
1743         void *addr;
1744         u32 checksum;
1745
1746         sync_page_io(log->rdev, log_offset, PAGE_SIZE,
1747                      page, REQ_OP_READ, 0, false);
1748         addr = kmap_atomic(page);
1749         checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1750         kunmap_atomic(addr);
1751         return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1752 }
1753
1754 /*
1755  * before loading data to stripe cache, we need verify checksum for all data,
1756  * if there is mismatch for any data page, we drop all data in the mata block
1757  */
1758 static int
1759 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1760                                          struct r5l_recovery_ctx *ctx)
1761 {
1762         struct mddev *mddev = log->rdev->mddev;
1763         struct r5conf *conf = mddev->private;
1764         struct r5l_meta_block *mb = page_address(ctx->meta_page);
1765         sector_t mb_offset = sizeof(struct r5l_meta_block);
1766         sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1767         struct page *page;
1768         struct r5l_payload_data_parity *payload;
1769
1770         page = alloc_page(GFP_KERNEL);
1771         if (!page)
1772                 return -ENOMEM;
1773
1774         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1775                 payload = (void *)mb + mb_offset;
1776
1777                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1778                         if (r5l_recovery_verify_data_checksum(
1779                                     log, page, log_offset,
1780                                     payload->checksum[0]) < 0)
1781                                 goto mismatch;
1782                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY) {
1783                         if (r5l_recovery_verify_data_checksum(
1784                                     log, page, log_offset,
1785                                     payload->checksum[0]) < 0)
1786                                 goto mismatch;
1787                         if (conf->max_degraded == 2 && /* q for RAID 6 */
1788                             r5l_recovery_verify_data_checksum(
1789                                     log, page,
1790                                     r5l_ring_add(log, log_offset,
1791                                                  BLOCK_SECTORS),
1792                                     payload->checksum[1]) < 0)
1793                                 goto mismatch;
1794                 } else /* not R5LOG_PAYLOAD_DATA or R5LOG_PAYLOAD_PARITY */
1795                         goto mismatch;
1796
1797                 log_offset = r5l_ring_add(log, log_offset,
1798                                           le32_to_cpu(payload->size));
1799
1800                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1801                         sizeof(__le32) *
1802                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1803         }
1804
1805         put_page(page);
1806         return 0;
1807
1808 mismatch:
1809         put_page(page);
1810         return -EINVAL;
1811 }
1812
1813 /*
1814  * Analyze all data/parity pages in one meta block
1815  * Returns:
1816  * 0 for success
1817  * -EINVAL for unknown playload type
1818  * -EAGAIN for checksum mismatch of data page
1819  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
1820  */
1821 static int
1822 r5c_recovery_analyze_meta_block(struct r5l_log *log,
1823                                 struct r5l_recovery_ctx *ctx,
1824                                 struct list_head *cached_stripe_list)
1825 {
1826         struct mddev *mddev = log->rdev->mddev;
1827         struct r5conf *conf = mddev->private;
1828         struct r5l_meta_block *mb;
1829         struct r5l_payload_data_parity *payload;
1830         int mb_offset;
1831         sector_t log_offset;
1832         sector_t stripe_sect;
1833         struct stripe_head *sh;
1834         int ret;
1835
1836         /*
1837          * for mismatch in data blocks, we will drop all data in this mb, but
1838          * we will still read next mb for other data with FLUSH flag, as
1839          * io_unit could finish out of order.
1840          */
1841         ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
1842         if (ret == -EINVAL)
1843                 return -EAGAIN;
1844         else if (ret)
1845                 return ret;   /* -ENOMEM duo to alloc_page() failed */
1846
1847         mb = page_address(ctx->meta_page);
1848         mb_offset = sizeof(struct r5l_meta_block);
1849         log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1850
1851         while (mb_offset < le32_to_cpu(mb->meta_size)) {
1852                 int dd;
1853
1854                 payload = (void *)mb + mb_offset;
1855                 stripe_sect = (payload->header.type == R5LOG_PAYLOAD_DATA) ?
1856                         raid5_compute_sector(
1857                                 conf, le64_to_cpu(payload->location), 0, &dd,
1858                                 NULL)
1859                         : le64_to_cpu(payload->location);
1860
1861                 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
1862                                                 stripe_sect);
1863
1864                 if (!sh) {
1865                         sh = r5c_recovery_alloc_stripe(conf, stripe_sect, ctx->pos);
1866                         /*
1867                          * cannot get stripe from raid5_get_active_stripe
1868                          * try replay some stripes
1869                          */
1870                         if (!sh) {
1871                                 r5c_recovery_replay_stripes(
1872                                         cached_stripe_list, ctx);
1873                                 sh = r5c_recovery_alloc_stripe(
1874                                         conf, stripe_sect, ctx->pos);
1875                         }
1876                         if (!sh) {
1877                                 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
1878                                         mdname(mddev),
1879                                         conf->min_nr_stripes * 2);
1880                                 raid5_set_cache_size(mddev,
1881                                                      conf->min_nr_stripes * 2);
1882                                 sh = r5c_recovery_alloc_stripe(
1883                                         conf, stripe_sect, ctx->pos);
1884                         }
1885                         if (!sh) {
1886                                 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
1887                                        mdname(mddev));
1888                                 return -ENOMEM;
1889                         }
1890                         list_add_tail(&sh->lru, cached_stripe_list);
1891                 }
1892
1893                 if (payload->header.type == R5LOG_PAYLOAD_DATA) {
1894                         if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
1895                             test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
1896                                 r5l_recovery_replay_one_stripe(conf, sh, ctx);
1897                                 sh->log_start = ctx->pos;
1898                                 list_move_tail(&sh->lru, cached_stripe_list);
1899                         }
1900                         r5l_recovery_load_data(log, sh, ctx, payload,
1901                                                log_offset);
1902                 } else if (payload->header.type == R5LOG_PAYLOAD_PARITY)
1903                         r5l_recovery_load_parity(log, sh, ctx, payload,
1904                                                  log_offset);
1905                 else
1906                         return -EINVAL;
1907
1908                 log_offset = r5l_ring_add(log, log_offset,
1909                                           le32_to_cpu(payload->size));
1910
1911                 mb_offset += sizeof(struct r5l_payload_data_parity) +
1912                         sizeof(__le32) *
1913                         (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
1914         }
1915
1916         return 0;
1917 }
1918
1919 /*
1920  * Load the stripe into cache. The stripe will be written out later by
1921  * the stripe cache state machine.
1922  */
1923 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
1924                                          struct stripe_head *sh)
1925 {
1926         struct r5dev *dev;
1927         int i;
1928
1929         for (i = sh->disks; i--; ) {
1930                 dev = sh->dev + i;
1931                 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
1932                         set_bit(R5_InJournal, &dev->flags);
1933                         set_bit(R5_UPTODATE, &dev->flags);
1934                 }
1935         }
1936         list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
1937         atomic_inc(&log->stripe_in_journal_count);
1938 }
1939
1940 /*
1941  * Scan through the log for all to-be-flushed data
1942  *
1943  * For stripes with data and parity, namely Data-Parity stripe
1944  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
1945  *
1946  * For stripes with only data, namely Data-Only stripe
1947  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
1948  *
1949  * For a stripe, if we see data after parity, we should discard all previous
1950  * data and parity for this stripe, as these data are already flushed to
1951  * the array.
1952  *
1953  * At the end of the scan, we return the new journal_tail, which points to
1954  * first data-only stripe on the journal device, or next invalid meta block.
1955  */
1956 static int r5c_recovery_flush_log(struct r5l_log *log,
1957                                   struct r5l_recovery_ctx *ctx)
1958 {
1959         struct stripe_head *sh;
1960         int ret = 0;
1961
1962         /* scan through the log */
1963         while (1) {
1964                 if (r5l_recovery_read_meta_block(log, ctx))
1965                         break;
1966
1967                 ret = r5c_recovery_analyze_meta_block(log, ctx,
1968                                                       &ctx->cached_list);
1969                 /*
1970                  * -EAGAIN means mismatch in data block, in this case, we still
1971                  * try scan the next metablock
1972                  */
1973                 if (ret && ret != -EAGAIN)
1974                         break;   /* ret == -EINVAL or -ENOMEM */
1975                 ctx->seq++;
1976                 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1977         }
1978
1979         if (ret == -ENOMEM) {
1980                 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
1981                 return ret;
1982         }
1983
1984         /* replay data-parity stripes */
1985         r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
1986
1987         /* load data-only stripes to stripe cache */
1988         list_for_each_entry(sh, &ctx->cached_list, lru) {
1989                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1990                 r5c_recovery_load_one_stripe(log, sh);
1991                 ctx->data_only_stripes++;
1992         }
1993
1994         return 0;
1995 }
1996
1997 /*
1998  * we did a recovery. Now ctx.pos points to an invalid meta block. New
1999  * log will start here. but we can't let superblock point to last valid
2000  * meta block. The log might looks like:
2001  * | meta 1| meta 2| meta 3|
2002  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2003  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2004  * happens again, new recovery will start from meta 1. Since meta 2n is
2005  * valid now, recovery will think meta 3 is valid, which is wrong.
2006  * The solution is we create a new meta in meta2 with its seq == meta
2007  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2008  * will not think meta 3 is a valid meta, because its seq doesn't match
2009  */
2010
2011 /*
2012  * Before recovery, the log looks like the following
2013  *
2014  *   ---------------------------------------------
2015  *   |           valid log        | invalid log  |
2016  *   ---------------------------------------------
2017  *   ^
2018  *   |- log->last_checkpoint
2019  *   |- log->last_cp_seq
2020  *
2021  * Now we scan through the log until we see invalid entry
2022  *
2023  *   ---------------------------------------------
2024  *   |           valid log        | invalid log  |
2025  *   ---------------------------------------------
2026  *   ^                            ^
2027  *   |- log->last_checkpoint      |- ctx->pos
2028  *   |- log->last_cp_seq          |- ctx->seq
2029  *
2030  * From this point, we need to increase seq number by 10 to avoid
2031  * confusing next recovery.
2032  *
2033  *   ---------------------------------------------
2034  *   |           valid log        | invalid log  |
2035  *   ---------------------------------------------
2036  *   ^                              ^
2037  *   |- log->last_checkpoint        |- ctx->pos+1
2038  *   |- log->last_cp_seq            |- ctx->seq+10001
2039  *
2040  * However, it is not safe to start the state machine yet, because data only
2041  * parities are not yet secured in RAID. To save these data only parities, we
2042  * rewrite them from seq+11.
2043  *
2044  *   -----------------------------------------------------------------
2045  *   |           valid log        | data only stripes | invalid log  |
2046  *   -----------------------------------------------------------------
2047  *   ^                                                ^
2048  *   |- log->last_checkpoint                          |- ctx->pos+n
2049  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2050  *
2051  * If failure happens again during this process, the recovery can safe start
2052  * again from log->last_checkpoint.
2053  *
2054  * Once data only stripes are rewritten to journal, we move log_tail
2055  *
2056  *   -----------------------------------------------------------------
2057  *   |     old log        |    data only stripes    | invalid log  |
2058  *   -----------------------------------------------------------------
2059  *                        ^                         ^
2060  *                        |- log->last_checkpoint   |- ctx->pos+n
2061  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2062  *
2063  * Then we can safely start the state machine. If failure happens from this
2064  * point on, the recovery will start from new log->last_checkpoint.
2065  */
2066 static int
2067 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2068                                        struct r5l_recovery_ctx *ctx)
2069 {
2070         struct stripe_head *sh, *next;
2071         struct mddev *mddev = log->rdev->mddev;
2072         struct page *page;
2073
2074         page = alloc_page(GFP_KERNEL);
2075         if (!page) {
2076                 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2077                        mdname(mddev));
2078                 return -ENOMEM;
2079         }
2080
2081         list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2082                 struct r5l_meta_block *mb;
2083                 int i;
2084                 int offset;
2085                 sector_t write_pos;
2086
2087                 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2088                 r5l_recovery_create_empty_meta_block(log, page,
2089                                                      ctx->pos, ctx->seq);
2090                 mb = page_address(page);
2091                 offset = le32_to_cpu(mb->meta_size);
2092                 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2093
2094                 for (i = sh->disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         struct r5l_payload_data_parity *payload;
2097                         void *addr;
2098
2099                         if (test_bit(R5_InJournal, &dev->flags)) {
2100                                 payload = (void *)mb + offset;
2101                                 payload->header.type = cpu_to_le16(
2102                                         R5LOG_PAYLOAD_DATA);
2103                                 payload->size = BLOCK_SECTORS;
2104                                 payload->location = cpu_to_le64(
2105                                         raid5_compute_blocknr(sh, i, 0));
2106                                 addr = kmap_atomic(dev->page);
2107                                 payload->checksum[0] = cpu_to_le32(
2108                                         crc32c_le(log->uuid_checksum, addr,
2109                                                   PAGE_SIZE));
2110                                 kunmap_atomic(addr);
2111                                 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2112                                              dev->page, REQ_OP_WRITE, 0, false);
2113                                 write_pos = r5l_ring_add(log, write_pos,
2114                                                          BLOCK_SECTORS);
2115                                 offset += sizeof(__le32) +
2116                                         sizeof(struct r5l_payload_data_parity);
2117
2118                         }
2119                 }
2120                 mb->meta_size = cpu_to_le32(offset);
2121                 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2122                                                      mb, PAGE_SIZE));
2123                 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2124                              REQ_OP_WRITE, REQ_FUA, false);
2125                 sh->log_start = ctx->pos;
2126                 ctx->pos = write_pos;
2127                 ctx->seq += 1;
2128
2129                 list_del_init(&sh->lru);
2130                 raid5_release_stripe(sh);
2131         }
2132         __free_page(page);
2133         return 0;
2134 }
2135
2136 static int r5l_recovery_log(struct r5l_log *log)
2137 {
2138         struct mddev *mddev = log->rdev->mddev;
2139         struct r5l_recovery_ctx ctx;
2140         int ret;
2141         sector_t pos;
2142         struct stripe_head *sh;
2143
2144         ctx.pos = log->last_checkpoint;
2145         ctx.seq = log->last_cp_seq;
2146         ctx.meta_page = alloc_page(GFP_KERNEL);
2147         ctx.data_only_stripes = 0;
2148         ctx.data_parity_stripes = 0;
2149         INIT_LIST_HEAD(&ctx.cached_list);
2150
2151         if (!ctx.meta_page)
2152                 return -ENOMEM;
2153
2154         ret = r5c_recovery_flush_log(log, &ctx);
2155         __free_page(ctx.meta_page);
2156
2157         if (ret)
2158                 return ret;
2159
2160         pos = ctx.pos;
2161         ctx.seq += 10000;
2162
2163         if (ctx.data_only_stripes == 0) {
2164                 log->next_checkpoint = ctx.pos;
2165                 r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq++);
2166                 ctx.pos = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
2167         } else {
2168                 sh = list_last_entry(&ctx.cached_list, struct stripe_head, lru);
2169                 log->next_checkpoint = sh->log_start;
2170         }
2171
2172         if ((ctx.data_only_stripes == 0) && (ctx.data_parity_stripes == 0))
2173                 pr_debug("md/raid:%s: starting from clean shutdown\n",
2174                          mdname(mddev));
2175         else {
2176                 pr_debug("md/raid:%s: recoverying %d data-only stripes and %d data-parity stripes\n",
2177                          mdname(mddev), ctx.data_only_stripes,
2178                          ctx.data_parity_stripes);
2179
2180                 if (ctx.data_only_stripes > 0)
2181                         if (r5c_recovery_rewrite_data_only_stripes(log, &ctx)) {
2182                                 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2183                                        mdname(mddev));
2184                                 return -EIO;
2185                         }
2186         }
2187
2188         log->log_start = ctx.pos;
2189         log->seq = ctx.seq;
2190         log->last_checkpoint = pos;
2191         r5l_write_super(log, pos);
2192         return 0;
2193 }
2194
2195 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2196 {
2197         struct mddev *mddev = log->rdev->mddev;
2198
2199         log->rdev->journal_tail = cp;
2200         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2201 }
2202
2203 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2204 {
2205         struct r5conf *conf = mddev->private;
2206         int ret;
2207
2208         if (!conf->log)
2209                 return 0;
2210
2211         switch (conf->log->r5c_journal_mode) {
2212         case R5C_JOURNAL_MODE_WRITE_THROUGH:
2213                 ret = snprintf(
2214                         page, PAGE_SIZE, "[%s] %s\n",
2215                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2216                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2217                 break;
2218         case R5C_JOURNAL_MODE_WRITE_BACK:
2219                 ret = snprintf(
2220                         page, PAGE_SIZE, "%s [%s]\n",
2221                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2222                         r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2223                 break;
2224         default:
2225                 ret = 0;
2226         }
2227         return ret;
2228 }
2229
2230 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2231                                       const char *page, size_t length)
2232 {
2233         struct r5conf *conf = mddev->private;
2234         struct r5l_log *log = conf->log;
2235         int val = -1, i;
2236         int len = length;
2237
2238         if (!log)
2239                 return -ENODEV;
2240
2241         if (len && page[len - 1] == '\n')
2242                 len -= 1;
2243         for (i = 0; i < ARRAY_SIZE(r5c_journal_mode_str); i++)
2244                 if (strlen(r5c_journal_mode_str[i]) == len &&
2245                     strncmp(page, r5c_journal_mode_str[i], len) == 0) {
2246                         val = i;
2247                         break;
2248                 }
2249         if (val < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2250             val > R5C_JOURNAL_MODE_WRITE_BACK)
2251                 return -EINVAL;
2252
2253         mddev_suspend(mddev);
2254         conf->log->r5c_journal_mode = val;
2255         mddev_resume(mddev);
2256
2257         pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2258                  mdname(mddev), val, r5c_journal_mode_str[val]);
2259         return length;
2260 }
2261
2262 struct md_sysfs_entry
2263 r5c_journal_mode = __ATTR(journal_mode, 0644,
2264                           r5c_journal_mode_show, r5c_journal_mode_store);
2265
2266 /*
2267  * Try handle write operation in caching phase. This function should only
2268  * be called in write-back mode.
2269  *
2270  * If all outstanding writes can be handled in caching phase, returns 0
2271  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2272  * and returns -EAGAIN
2273  */
2274 int r5c_try_caching_write(struct r5conf *conf,
2275                           struct stripe_head *sh,
2276                           struct stripe_head_state *s,
2277                           int disks)
2278 {
2279         struct r5l_log *log = conf->log;
2280         int i;
2281         struct r5dev *dev;
2282         int to_cache = 0;
2283
2284         BUG_ON(!r5c_is_writeback(log));
2285
2286         if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2287                 /*
2288                  * There are two different scenarios here:
2289                  *  1. The stripe has some data cached, and it is sent to
2290                  *     write-out phase for reclaim
2291                  *  2. The stripe is clean, and this is the first write
2292                  *
2293                  * For 1, return -EAGAIN, so we continue with
2294                  * handle_stripe_dirtying().
2295                  *
2296                  * For 2, set STRIPE_R5C_CACHING and continue with caching
2297                  * write.
2298                  */
2299
2300                 /* case 1: anything injournal or anything in written */
2301                 if (s->injournal > 0 || s->written > 0)
2302                         return -EAGAIN;
2303                 /* case 2 */
2304                 set_bit(STRIPE_R5C_CACHING, &sh->state);
2305         }
2306
2307         for (i = disks; i--; ) {
2308                 dev = &sh->dev[i];
2309                 /* if non-overwrite, use writing-out phase */
2310                 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2311                     !test_bit(R5_InJournal, &dev->flags)) {
2312                         r5c_make_stripe_write_out(sh);
2313                         return -EAGAIN;
2314                 }
2315         }
2316
2317         for (i = disks; i--; ) {
2318                 dev = &sh->dev[i];
2319                 if (dev->towrite) {
2320                         set_bit(R5_Wantwrite, &dev->flags);
2321                         set_bit(R5_Wantdrain, &dev->flags);
2322                         set_bit(R5_LOCKED, &dev->flags);
2323                         to_cache++;
2324                 }
2325         }
2326
2327         if (to_cache) {
2328                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2329                 /*
2330                  * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2331                  * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2332                  * r5c_handle_data_cached()
2333                  */
2334                 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2335         }
2336
2337         return 0;
2338 }
2339
2340 /*
2341  * free extra pages (orig_page) we allocated for prexor
2342  */
2343 void r5c_release_extra_page(struct stripe_head *sh)
2344 {
2345         struct r5conf *conf = sh->raid_conf;
2346         int i;
2347         bool using_disk_info_extra_page;
2348
2349         using_disk_info_extra_page =
2350                 sh->dev[0].orig_page == conf->disks[0].extra_page;
2351
2352         for (i = sh->disks; i--; )
2353                 if (sh->dev[i].page != sh->dev[i].orig_page) {
2354                         struct page *p = sh->dev[i].orig_page;
2355
2356                         sh->dev[i].orig_page = sh->dev[i].page;
2357                         if (!using_disk_info_extra_page)
2358                                 put_page(p);
2359                 }
2360
2361         if (using_disk_info_extra_page) {
2362                 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2363                 md_wakeup_thread(conf->mddev->thread);
2364         }
2365 }
2366
2367 void r5c_use_extra_page(struct stripe_head *sh)
2368 {
2369         struct r5conf *conf = sh->raid_conf;
2370         int i;
2371         struct r5dev *dev;
2372
2373         for (i = sh->disks; i--; ) {
2374                 dev = &sh->dev[i];
2375                 if (dev->orig_page != dev->page)
2376                         put_page(dev->orig_page);
2377                 dev->orig_page = conf->disks[i].extra_page;
2378         }
2379 }
2380
2381 /*
2382  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2383  * stripe is committed to RAID disks.
2384  */
2385 void r5c_finish_stripe_write_out(struct r5conf *conf,
2386                                  struct stripe_head *sh,
2387                                  struct stripe_head_state *s)
2388 {
2389         int i;
2390         int do_wakeup = 0;
2391
2392         if (!conf->log ||
2393             !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2394                 return;
2395
2396         WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2397         clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2398
2399         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2400                 return;
2401
2402         for (i = sh->disks; i--; ) {
2403                 clear_bit(R5_InJournal, &sh->dev[i].flags);
2404                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2405                         do_wakeup = 1;
2406         }
2407
2408         /*
2409          * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2410          * We updated R5_InJournal, so we also update s->injournal.
2411          */
2412         s->injournal = 0;
2413
2414         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2415                 if (atomic_dec_and_test(&conf->pending_full_writes))
2416                         md_wakeup_thread(conf->mddev->thread);
2417
2418         if (do_wakeup)
2419                 wake_up(&conf->wait_for_overlap);
2420
2421         if (conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2422                 return;
2423
2424         spin_lock_irq(&conf->log->stripe_in_journal_lock);
2425         list_del_init(&sh->r5c);
2426         spin_unlock_irq(&conf->log->stripe_in_journal_lock);
2427         sh->log_start = MaxSector;
2428         atomic_dec(&conf->log->stripe_in_journal_count);
2429         r5c_update_log_state(conf->log);
2430 }
2431
2432 int
2433 r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
2434                struct stripe_head_state *s)
2435 {
2436         struct r5conf *conf = sh->raid_conf;
2437         int pages = 0;
2438         int reserve;
2439         int i;
2440         int ret = 0;
2441
2442         BUG_ON(!log);
2443
2444         for (i = 0; i < sh->disks; i++) {
2445                 void *addr;
2446
2447                 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2448                         continue;
2449                 addr = kmap_atomic(sh->dev[i].page);
2450                 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2451                                                     addr, PAGE_SIZE);
2452                 kunmap_atomic(addr);
2453                 pages++;
2454         }
2455         WARN_ON(pages == 0);
2456
2457         /*
2458          * The stripe must enter state machine again to call endio, so
2459          * don't delay.
2460          */
2461         clear_bit(STRIPE_DELAYED, &sh->state);
2462         atomic_inc(&sh->count);
2463
2464         mutex_lock(&log->io_mutex);
2465         /* meta + data */
2466         reserve = (1 + pages) << (PAGE_SHIFT - 9);
2467
2468         if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2469             sh->log_start == MaxSector)
2470                 r5l_add_no_space_stripe(log, sh);
2471         else if (!r5l_has_free_space(log, reserve)) {
2472                 if (sh->log_start == log->last_checkpoint)
2473                         BUG();
2474                 else
2475                         r5l_add_no_space_stripe(log, sh);
2476         } else {
2477                 ret = r5l_log_stripe(log, sh, pages, 0);
2478                 if (ret) {
2479                         spin_lock_irq(&log->io_list_lock);
2480                         list_add_tail(&sh->log_list, &log->no_mem_stripes);
2481                         spin_unlock_irq(&log->io_list_lock);
2482                 }
2483         }
2484
2485         mutex_unlock(&log->io_mutex);
2486         return 0;
2487 }
2488
2489 static int r5l_load_log(struct r5l_log *log)
2490 {
2491         struct md_rdev *rdev = log->rdev;
2492         struct page *page;
2493         struct r5l_meta_block *mb;
2494         sector_t cp = log->rdev->journal_tail;
2495         u32 stored_crc, expected_crc;
2496         bool create_super = false;
2497         int ret = 0;
2498
2499         /* Make sure it's valid */
2500         if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2501                 cp = 0;
2502         page = alloc_page(GFP_KERNEL);
2503         if (!page)
2504                 return -ENOMEM;
2505
2506         if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2507                 ret = -EIO;
2508                 goto ioerr;
2509         }
2510         mb = page_address(page);
2511
2512         if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2513             mb->version != R5LOG_VERSION) {
2514                 create_super = true;
2515                 goto create;
2516         }
2517         stored_crc = le32_to_cpu(mb->checksum);
2518         mb->checksum = 0;
2519         expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2520         if (stored_crc != expected_crc) {
2521                 create_super = true;
2522                 goto create;
2523         }
2524         if (le64_to_cpu(mb->position) != cp) {
2525                 create_super = true;
2526                 goto create;
2527         }
2528 create:
2529         if (create_super) {
2530                 log->last_cp_seq = prandom_u32();
2531                 cp = 0;
2532                 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2533                 /*
2534                  * Make sure super points to correct address. Log might have
2535                  * data very soon. If super hasn't correct log tail address,
2536                  * recovery can't find the log
2537                  */
2538                 r5l_write_super(log, cp);
2539         } else
2540                 log->last_cp_seq = le64_to_cpu(mb->seq);
2541
2542         log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2543         log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2544         if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2545                 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2546         log->last_checkpoint = cp;
2547
2548         __free_page(page);
2549
2550         if (create_super) {
2551                 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2552                 log->seq = log->last_cp_seq + 1;
2553                 log->next_checkpoint = cp;
2554         } else
2555                 ret = r5l_recovery_log(log);
2556
2557         r5c_update_log_state(log);
2558         return ret;
2559 ioerr:
2560         __free_page(page);
2561         return ret;
2562 }
2563
2564 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2565 {
2566         struct request_queue *q = bdev_get_queue(rdev->bdev);
2567         struct r5l_log *log;
2568
2569         if (PAGE_SIZE != 4096)
2570                 return -EINVAL;
2571
2572         /*
2573          * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
2574          * raid_disks r5l_payload_data_parity.
2575          *
2576          * Write journal and cache does not work for very big array
2577          * (raid_disks > 203)
2578          */
2579         if (sizeof(struct r5l_meta_block) +
2580             ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
2581              conf->raid_disks) > PAGE_SIZE) {
2582                 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
2583                        mdname(conf->mddev), conf->raid_disks);
2584                 return -EINVAL;
2585         }
2586
2587         log = kzalloc(sizeof(*log), GFP_KERNEL);
2588         if (!log)
2589                 return -ENOMEM;
2590         log->rdev = rdev;
2591
2592         log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
2593
2594         log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
2595                                        sizeof(rdev->mddev->uuid));
2596
2597         mutex_init(&log->io_mutex);
2598
2599         spin_lock_init(&log->io_list_lock);
2600         INIT_LIST_HEAD(&log->running_ios);
2601         INIT_LIST_HEAD(&log->io_end_ios);
2602         INIT_LIST_HEAD(&log->flushing_ios);
2603         INIT_LIST_HEAD(&log->finished_ios);
2604         bio_init(&log->flush_bio, NULL, 0);
2605
2606         log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
2607         if (!log->io_kc)
2608                 goto io_kc;
2609
2610         log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
2611         if (!log->io_pool)
2612                 goto io_pool;
2613
2614         log->bs = bioset_create(R5L_POOL_SIZE, 0);
2615         if (!log->bs)
2616                 goto io_bs;
2617
2618         log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
2619         if (!log->meta_pool)
2620                 goto out_mempool;
2621
2622         log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
2623                                                  log->rdev->mddev, "reclaim");
2624         if (!log->reclaim_thread)
2625                 goto reclaim_thread;
2626         log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
2627
2628         init_waitqueue_head(&log->iounit_wait);
2629
2630         INIT_LIST_HEAD(&log->no_mem_stripes);
2631
2632         INIT_LIST_HEAD(&log->no_space_stripes);
2633         spin_lock_init(&log->no_space_stripes_lock);
2634
2635         INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
2636
2637         log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2638         INIT_LIST_HEAD(&log->stripe_in_journal_list);
2639         spin_lock_init(&log->stripe_in_journal_lock);
2640         atomic_set(&log->stripe_in_journal_count, 0);
2641
2642         if (r5l_load_log(log))
2643                 goto error;
2644
2645         rcu_assign_pointer(conf->log, log);
2646         set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
2647         return 0;
2648
2649 error:
2650         md_unregister_thread(&log->reclaim_thread);
2651 reclaim_thread:
2652         mempool_destroy(log->meta_pool);
2653 out_mempool:
2654         bioset_free(log->bs);
2655 io_bs:
2656         mempool_destroy(log->io_pool);
2657 io_pool:
2658         kmem_cache_destroy(log->io_kc);
2659 io_kc:
2660         kfree(log);
2661         return -EINVAL;
2662 }
2663
2664 void r5l_exit_log(struct r5l_log *log)
2665 {
2666         md_unregister_thread(&log->reclaim_thread);
2667         mempool_destroy(log->meta_pool);
2668         bioset_free(log->bs);
2669         mempool_destroy(log->io_pool);
2670         kmem_cache_destroy(log->io_kc);
2671         kfree(log);
2672 }