]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/md/raid5.c
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[karo-tx-linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89  * order without overlap.  There may be several bio's per stripe+device, and
90  * a bio could span several devices.
91  * When walking this list for a particular stripe+device, we must never proceed
92  * beyond a bio that extends past this device, as the next bio might no longer
93  * be valid.
94  * This function is used to determine the 'next' bio in the list, given the sector
95  * of the current stripe+device
96  */
97 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
98 {
99         int sectors = bio_sectors(bio);
100         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
101                 return bio->bi_next;
102         else
103                 return NULL;
104 }
105
106 /*
107  * We maintain a biased count of active stripes in the bottom 16 bits of
108  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
109  */
110 static inline int raid5_bi_processed_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return (atomic_read(segments) >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         return atomic_sub_return(1, segments) & 0xffff;
120 }
121
122 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
123 {
124         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
125         atomic_inc(segments);
126 }
127
128 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
129         unsigned int cnt)
130 {
131         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
132         int old, new;
133
134         do {
135                 old = atomic_read(segments);
136                 new = (old & 0xffff) | (cnt << 16);
137         } while (atomic_cmpxchg(segments, old, new) != old);
138 }
139
140 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
141 {
142         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
143         atomic_set(segments, cnt);
144 }
145
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head *sh)
148 {
149         if (sh->ddf_layout)
150                 /* ddf always start from first device */
151                 return 0;
152         /* md starts just after Q block */
153         if (sh->qd_idx == sh->disks - 1)
154                 return 0;
155         else
156                 return sh->qd_idx + 1;
157 }
158 static inline int raid6_next_disk(int disk, int raid_disks)
159 {
160         disk++;
161         return (disk < raid_disks) ? disk : 0;
162 }
163
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165  * We need to map each disk to a 'slot', where the data disks are slot
166  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167  * is raid_disks-1.  This help does that mapping.
168  */
169 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
170                              int *count, int syndrome_disks)
171 {
172         int slot = *count;
173
174         if (sh->ddf_layout)
175                 (*count)++;
176         if (idx == sh->pd_idx)
177                 return syndrome_disks;
178         if (idx == sh->qd_idx)
179                 return syndrome_disks + 1;
180         if (!sh->ddf_layout)
181                 (*count)++;
182         return slot;
183 }
184
185 static void return_io(struct bio *return_bi)
186 {
187         struct bio *bi = return_bi;
188         while (bi) {
189
190                 return_bi = bi->bi_next;
191                 bi->bi_next = NULL;
192                 bi->bi_size = 0;
193                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
194                                          bi, 0);
195                 bio_endio(bi, 0);
196                 bi = return_bi;
197         }
198 }
199
200 static void print_raid5_conf (struct r5conf *conf);
201
202 static int stripe_operations_active(struct stripe_head *sh)
203 {
204         return sh->check_state || sh->reconstruct_state ||
205                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
206                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
207 }
208
209 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
210 {
211         struct r5conf *conf = sh->raid_conf;
212         struct r5worker_group *group;
213         int thread_cnt;
214         int i, cpu = sh->cpu;
215
216         if (!cpu_online(cpu)) {
217                 cpu = cpumask_any(cpu_online_mask);
218                 sh->cpu = cpu;
219         }
220
221         if (list_empty(&sh->lru)) {
222                 struct r5worker_group *group;
223                 group = conf->worker_groups + cpu_to_group(cpu);
224                 list_add_tail(&sh->lru, &group->handle_list);
225                 group->stripes_cnt++;
226                 sh->group = group;
227         }
228
229         if (conf->worker_cnt_per_group == 0) {
230                 md_wakeup_thread(conf->mddev->thread);
231                 return;
232         }
233
234         group = conf->worker_groups + cpu_to_group(sh->cpu);
235
236         group->workers[0].working = true;
237         /* at least one worker should run to avoid race */
238         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
239
240         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
241         /* wakeup more workers */
242         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
243                 if (group->workers[i].working == false) {
244                         group->workers[i].working = true;
245                         queue_work_on(sh->cpu, raid5_wq,
246                                       &group->workers[i].work);
247                         thread_cnt--;
248                 }
249         }
250 }
251
252 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
253 {
254         BUG_ON(!list_empty(&sh->lru));
255         BUG_ON(atomic_read(&conf->active_stripes)==0);
256         if (test_bit(STRIPE_HANDLE, &sh->state)) {
257                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
258                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
259                         list_add_tail(&sh->lru, &conf->delayed_list);
260                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
261                            sh->bm_seq - conf->seq_write > 0)
262                         list_add_tail(&sh->lru, &conf->bitmap_list);
263                 else {
264                         clear_bit(STRIPE_DELAYED, &sh->state);
265                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
266                         if (conf->worker_cnt_per_group == 0) {
267                                 list_add_tail(&sh->lru, &conf->handle_list);
268                         } else {
269                                 raid5_wakeup_stripe_thread(sh);
270                                 return;
271                         }
272                 }
273                 md_wakeup_thread(conf->mddev->thread);
274         } else {
275                 BUG_ON(stripe_operations_active(sh));
276                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277                         if (atomic_dec_return(&conf->preread_active_stripes)
278                             < IO_THRESHOLD)
279                                 md_wakeup_thread(conf->mddev->thread);
280                 atomic_dec(&conf->active_stripes);
281                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282                         list_add_tail(&sh->lru, &conf->inactive_list);
283                         wake_up(&conf->wait_for_stripe);
284                         if (conf->retry_read_aligned)
285                                 md_wakeup_thread(conf->mddev->thread);
286                 }
287         }
288 }
289
290 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
291 {
292         if (atomic_dec_and_test(&sh->count))
293                 do_release_stripe(conf, sh);
294 }
295
296 static struct llist_node *llist_reverse_order(struct llist_node *head)
297 {
298         struct llist_node *new_head = NULL;
299
300         while (head) {
301                 struct llist_node *tmp = head;
302                 head = head->next;
303                 tmp->next = new_head;
304                 new_head = tmp;
305         }
306
307         return new_head;
308 }
309
310 /* should hold conf->device_lock already */
311 static int release_stripe_list(struct r5conf *conf)
312 {
313         struct stripe_head *sh;
314         int count = 0;
315         struct llist_node *head;
316
317         head = llist_del_all(&conf->released_stripes);
318         head = llist_reverse_order(head);
319         while (head) {
320                 sh = llist_entry(head, struct stripe_head, release_list);
321                 head = llist_next(head);
322                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
323                 smp_mb();
324                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
325                 /*
326                  * Don't worry the bit is set here, because if the bit is set
327                  * again, the count is always > 1. This is true for
328                  * STRIPE_ON_UNPLUG_LIST bit too.
329                  */
330                 __release_stripe(conf, sh);
331                 count++;
332         }
333
334         return count;
335 }
336
337 static void release_stripe(struct stripe_head *sh)
338 {
339         struct r5conf *conf = sh->raid_conf;
340         unsigned long flags;
341         bool wakeup;
342
343         if (test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
344                 goto slow_path;
345         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
346         if (wakeup)
347                 md_wakeup_thread(conf->mddev->thread);
348         return;
349 slow_path:
350         local_irq_save(flags);
351         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
352         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
353                 do_release_stripe(conf, sh);
354                 spin_unlock(&conf->device_lock);
355         }
356         local_irq_restore(flags);
357 }
358
359 static inline void remove_hash(struct stripe_head *sh)
360 {
361         pr_debug("remove_hash(), stripe %llu\n",
362                 (unsigned long long)sh->sector);
363
364         hlist_del_init(&sh->hash);
365 }
366
367 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
368 {
369         struct hlist_head *hp = stripe_hash(conf, sh->sector);
370
371         pr_debug("insert_hash(), stripe %llu\n",
372                 (unsigned long long)sh->sector);
373
374         hlist_add_head(&sh->hash, hp);
375 }
376
377
378 /* find an idle stripe, make sure it is unhashed, and return it. */
379 static struct stripe_head *get_free_stripe(struct r5conf *conf)
380 {
381         struct stripe_head *sh = NULL;
382         struct list_head *first;
383
384         if (list_empty(&conf->inactive_list))
385                 goto out;
386         first = conf->inactive_list.next;
387         sh = list_entry(first, struct stripe_head, lru);
388         list_del_init(first);
389         remove_hash(sh);
390         atomic_inc(&conf->active_stripes);
391 out:
392         return sh;
393 }
394
395 static void shrink_buffers(struct stripe_head *sh)
396 {
397         struct page *p;
398         int i;
399         int num = sh->raid_conf->pool_size;
400
401         for (i = 0; i < num ; i++) {
402                 p = sh->dev[i].page;
403                 if (!p)
404                         continue;
405                 sh->dev[i].page = NULL;
406                 put_page(p);
407         }
408 }
409
410 static int grow_buffers(struct stripe_head *sh)
411 {
412         int i;
413         int num = sh->raid_conf->pool_size;
414
415         for (i = 0; i < num; i++) {
416                 struct page *page;
417
418                 if (!(page = alloc_page(GFP_KERNEL))) {
419                         return 1;
420                 }
421                 sh->dev[i].page = page;
422         }
423         return 0;
424 }
425
426 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
427 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
428                             struct stripe_head *sh);
429
430 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
431 {
432         struct r5conf *conf = sh->raid_conf;
433         int i;
434
435         BUG_ON(atomic_read(&sh->count) != 0);
436         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
437         BUG_ON(stripe_operations_active(sh));
438
439         pr_debug("init_stripe called, stripe %llu\n",
440                 (unsigned long long)sh->sector);
441
442         remove_hash(sh);
443
444         sh->generation = conf->generation - previous;
445         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
446         sh->sector = sector;
447         stripe_set_idx(sector, conf, previous, sh);
448         sh->state = 0;
449
450
451         for (i = sh->disks; i--; ) {
452                 struct r5dev *dev = &sh->dev[i];
453
454                 if (dev->toread || dev->read || dev->towrite || dev->written ||
455                     test_bit(R5_LOCKED, &dev->flags)) {
456                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
457                                (unsigned long long)sh->sector, i, dev->toread,
458                                dev->read, dev->towrite, dev->written,
459                                test_bit(R5_LOCKED, &dev->flags));
460                         WARN_ON(1);
461                 }
462                 dev->flags = 0;
463                 raid5_build_block(sh, i, previous);
464         }
465         insert_hash(conf, sh);
466         sh->cpu = smp_processor_id();
467 }
468
469 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
470                                          short generation)
471 {
472         struct stripe_head *sh;
473
474         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
475         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
476                 if (sh->sector == sector && sh->generation == generation)
477                         return sh;
478         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
479         return NULL;
480 }
481
482 /*
483  * Need to check if array has failed when deciding whether to:
484  *  - start an array
485  *  - remove non-faulty devices
486  *  - add a spare
487  *  - allow a reshape
488  * This determination is simple when no reshape is happening.
489  * However if there is a reshape, we need to carefully check
490  * both the before and after sections.
491  * This is because some failed devices may only affect one
492  * of the two sections, and some non-in_sync devices may
493  * be insync in the section most affected by failed devices.
494  */
495 static int calc_degraded(struct r5conf *conf)
496 {
497         int degraded, degraded2;
498         int i;
499
500         rcu_read_lock();
501         degraded = 0;
502         for (i = 0; i < conf->previous_raid_disks; i++) {
503                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
504                 if (rdev && test_bit(Faulty, &rdev->flags))
505                         rdev = rcu_dereference(conf->disks[i].replacement);
506                 if (!rdev || test_bit(Faulty, &rdev->flags))
507                         degraded++;
508                 else if (test_bit(In_sync, &rdev->flags))
509                         ;
510                 else
511                         /* not in-sync or faulty.
512                          * If the reshape increases the number of devices,
513                          * this is being recovered by the reshape, so
514                          * this 'previous' section is not in_sync.
515                          * If the number of devices is being reduced however,
516                          * the device can only be part of the array if
517                          * we are reverting a reshape, so this section will
518                          * be in-sync.
519                          */
520                         if (conf->raid_disks >= conf->previous_raid_disks)
521                                 degraded++;
522         }
523         rcu_read_unlock();
524         if (conf->raid_disks == conf->previous_raid_disks)
525                 return degraded;
526         rcu_read_lock();
527         degraded2 = 0;
528         for (i = 0; i < conf->raid_disks; i++) {
529                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
530                 if (rdev && test_bit(Faulty, &rdev->flags))
531                         rdev = rcu_dereference(conf->disks[i].replacement);
532                 if (!rdev || test_bit(Faulty, &rdev->flags))
533                         degraded2++;
534                 else if (test_bit(In_sync, &rdev->flags))
535                         ;
536                 else
537                         /* not in-sync or faulty.
538                          * If reshape increases the number of devices, this
539                          * section has already been recovered, else it
540                          * almost certainly hasn't.
541                          */
542                         if (conf->raid_disks <= conf->previous_raid_disks)
543                                 degraded2++;
544         }
545         rcu_read_unlock();
546         if (degraded2 > degraded)
547                 return degraded2;
548         return degraded;
549 }
550
551 static int has_failed(struct r5conf *conf)
552 {
553         int degraded;
554
555         if (conf->mddev->reshape_position == MaxSector)
556                 return conf->mddev->degraded > conf->max_degraded;
557
558         degraded = calc_degraded(conf);
559         if (degraded > conf->max_degraded)
560                 return 1;
561         return 0;
562 }
563
564 static struct stripe_head *
565 get_active_stripe(struct r5conf *conf, sector_t sector,
566                   int previous, int noblock, int noquiesce)
567 {
568         struct stripe_head *sh;
569
570         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
571
572         spin_lock_irq(&conf->device_lock);
573
574         do {
575                 wait_event_lock_irq(conf->wait_for_stripe,
576                                     conf->quiesce == 0 || noquiesce,
577                                     conf->device_lock);
578                 sh = __find_stripe(conf, sector, conf->generation - previous);
579                 if (!sh) {
580                         if (!conf->inactive_blocked)
581                                 sh = get_free_stripe(conf);
582                         if (noblock && sh == NULL)
583                                 break;
584                         if (!sh) {
585                                 conf->inactive_blocked = 1;
586                                 wait_event_lock_irq(conf->wait_for_stripe,
587                                                     !list_empty(&conf->inactive_list) &&
588                                                     (atomic_read(&conf->active_stripes)
589                                                      < (conf->max_nr_stripes *3/4)
590                                                      || !conf->inactive_blocked),
591                                                     conf->device_lock);
592                                 conf->inactive_blocked = 0;
593                         } else
594                                 init_stripe(sh, sector, previous);
595                 } else {
596                         if (atomic_read(&sh->count)) {
597                                 BUG_ON(!list_empty(&sh->lru)
598                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
599                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
600                                     && !test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
601                         } else {
602                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
603                                         atomic_inc(&conf->active_stripes);
604                                 if (list_empty(&sh->lru) &&
605                                     !test_bit(STRIPE_EXPANDING, &sh->state))
606                                         BUG();
607                                 list_del_init(&sh->lru);
608                                 if (sh->group) {
609                                         sh->group->stripes_cnt--;
610                                         sh->group = NULL;
611                                 }
612                         }
613                 }
614         } while (sh == NULL);
615
616         if (sh)
617                 atomic_inc(&sh->count);
618
619         spin_unlock_irq(&conf->device_lock);
620         return sh;
621 }
622
623 /* Determine if 'data_offset' or 'new_data_offset' should be used
624  * in this stripe_head.
625  */
626 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
627 {
628         sector_t progress = conf->reshape_progress;
629         /* Need a memory barrier to make sure we see the value
630          * of conf->generation, or ->data_offset that was set before
631          * reshape_progress was updated.
632          */
633         smp_rmb();
634         if (progress == MaxSector)
635                 return 0;
636         if (sh->generation == conf->generation - 1)
637                 return 0;
638         /* We are in a reshape, and this is a new-generation stripe,
639          * so use new_data_offset.
640          */
641         return 1;
642 }
643
644 static void
645 raid5_end_read_request(struct bio *bi, int error);
646 static void
647 raid5_end_write_request(struct bio *bi, int error);
648
649 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
650 {
651         struct r5conf *conf = sh->raid_conf;
652         int i, disks = sh->disks;
653
654         might_sleep();
655
656         for (i = disks; i--; ) {
657                 int rw;
658                 int replace_only = 0;
659                 struct bio *bi, *rbi;
660                 struct md_rdev *rdev, *rrdev = NULL;
661                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
662                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
663                                 rw = WRITE_FUA;
664                         else
665                                 rw = WRITE;
666                         if (test_bit(R5_Discard, &sh->dev[i].flags))
667                                 rw |= REQ_DISCARD;
668                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
669                         rw = READ;
670                 else if (test_and_clear_bit(R5_WantReplace,
671                                             &sh->dev[i].flags)) {
672                         rw = WRITE;
673                         replace_only = 1;
674                 } else
675                         continue;
676                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
677                         rw |= REQ_SYNC;
678
679                 bi = &sh->dev[i].req;
680                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
681
682                 rcu_read_lock();
683                 rrdev = rcu_dereference(conf->disks[i].replacement);
684                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
685                 rdev = rcu_dereference(conf->disks[i].rdev);
686                 if (!rdev) {
687                         rdev = rrdev;
688                         rrdev = NULL;
689                 }
690                 if (rw & WRITE) {
691                         if (replace_only)
692                                 rdev = NULL;
693                         if (rdev == rrdev)
694                                 /* We raced and saw duplicates */
695                                 rrdev = NULL;
696                 } else {
697                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
698                                 rdev = rrdev;
699                         rrdev = NULL;
700                 }
701
702                 if (rdev && test_bit(Faulty, &rdev->flags))
703                         rdev = NULL;
704                 if (rdev)
705                         atomic_inc(&rdev->nr_pending);
706                 if (rrdev && test_bit(Faulty, &rrdev->flags))
707                         rrdev = NULL;
708                 if (rrdev)
709                         atomic_inc(&rrdev->nr_pending);
710                 rcu_read_unlock();
711
712                 /* We have already checked bad blocks for reads.  Now
713                  * need to check for writes.  We never accept write errors
714                  * on the replacement, so we don't to check rrdev.
715                  */
716                 while ((rw & WRITE) && rdev &&
717                        test_bit(WriteErrorSeen, &rdev->flags)) {
718                         sector_t first_bad;
719                         int bad_sectors;
720                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
721                                               &first_bad, &bad_sectors);
722                         if (!bad)
723                                 break;
724
725                         if (bad < 0) {
726                                 set_bit(BlockedBadBlocks, &rdev->flags);
727                                 if (!conf->mddev->external &&
728                                     conf->mddev->flags) {
729                                         /* It is very unlikely, but we might
730                                          * still need to write out the
731                                          * bad block log - better give it
732                                          * a chance*/
733                                         md_check_recovery(conf->mddev);
734                                 }
735                                 /*
736                                  * Because md_wait_for_blocked_rdev
737                                  * will dec nr_pending, we must
738                                  * increment it first.
739                                  */
740                                 atomic_inc(&rdev->nr_pending);
741                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
742                         } else {
743                                 /* Acknowledged bad block - skip the write */
744                                 rdev_dec_pending(rdev, conf->mddev);
745                                 rdev = NULL;
746                         }
747                 }
748
749                 if (rdev) {
750                         if (s->syncing || s->expanding || s->expanded
751                             || s->replacing)
752                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
753
754                         set_bit(STRIPE_IO_STARTED, &sh->state);
755
756                         bio_reset(bi);
757                         bi->bi_bdev = rdev->bdev;
758                         bi->bi_rw = rw;
759                         bi->bi_end_io = (rw & WRITE)
760                                 ? raid5_end_write_request
761                                 : raid5_end_read_request;
762                         bi->bi_private = sh;
763
764                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
765                                 __func__, (unsigned long long)sh->sector,
766                                 bi->bi_rw, i);
767                         atomic_inc(&sh->count);
768                         if (use_new_offset(conf, sh))
769                                 bi->bi_sector = (sh->sector
770                                                  + rdev->new_data_offset);
771                         else
772                                 bi->bi_sector = (sh->sector
773                                                  + rdev->data_offset);
774                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
775                                 bi->bi_rw |= REQ_FLUSH;
776
777                         bi->bi_vcnt = 1;
778                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
779                         bi->bi_io_vec[0].bv_offset = 0;
780                         bi->bi_size = STRIPE_SIZE;
781                         if (rrdev)
782                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
783
784                         if (conf->mddev->gendisk)
785                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
786                                                       bi, disk_devt(conf->mddev->gendisk),
787                                                       sh->dev[i].sector);
788                         generic_make_request(bi);
789                 }
790                 if (rrdev) {
791                         if (s->syncing || s->expanding || s->expanded
792                             || s->replacing)
793                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
794
795                         set_bit(STRIPE_IO_STARTED, &sh->state);
796
797                         bio_reset(rbi);
798                         rbi->bi_bdev = rrdev->bdev;
799                         rbi->bi_rw = rw;
800                         BUG_ON(!(rw & WRITE));
801                         rbi->bi_end_io = raid5_end_write_request;
802                         rbi->bi_private = sh;
803
804                         pr_debug("%s: for %llu schedule op %ld on "
805                                  "replacement disc %d\n",
806                                 __func__, (unsigned long long)sh->sector,
807                                 rbi->bi_rw, i);
808                         atomic_inc(&sh->count);
809                         if (use_new_offset(conf, sh))
810                                 rbi->bi_sector = (sh->sector
811                                                   + rrdev->new_data_offset);
812                         else
813                                 rbi->bi_sector = (sh->sector
814                                                   + rrdev->data_offset);
815                         rbi->bi_vcnt = 1;
816                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
817                         rbi->bi_io_vec[0].bv_offset = 0;
818                         rbi->bi_size = STRIPE_SIZE;
819                         if (conf->mddev->gendisk)
820                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
821                                                       rbi, disk_devt(conf->mddev->gendisk),
822                                                       sh->dev[i].sector);
823                         generic_make_request(rbi);
824                 }
825                 if (!rdev && !rrdev) {
826                         if (rw & WRITE)
827                                 set_bit(STRIPE_DEGRADED, &sh->state);
828                         pr_debug("skip op %ld on disc %d for sector %llu\n",
829                                 bi->bi_rw, i, (unsigned long long)sh->sector);
830                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
831                         set_bit(STRIPE_HANDLE, &sh->state);
832                 }
833         }
834 }
835
836 static struct dma_async_tx_descriptor *
837 async_copy_data(int frombio, struct bio *bio, struct page *page,
838         sector_t sector, struct dma_async_tx_descriptor *tx)
839 {
840         struct bio_vec *bvl;
841         struct page *bio_page;
842         int i;
843         int page_offset;
844         struct async_submit_ctl submit;
845         enum async_tx_flags flags = 0;
846
847         if (bio->bi_sector >= sector)
848                 page_offset = (signed)(bio->bi_sector - sector) * 512;
849         else
850                 page_offset = (signed)(sector - bio->bi_sector) * -512;
851
852         if (frombio)
853                 flags |= ASYNC_TX_FENCE;
854         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
855
856         bio_for_each_segment(bvl, bio, i) {
857                 int len = bvl->bv_len;
858                 int clen;
859                 int b_offset = 0;
860
861                 if (page_offset < 0) {
862                         b_offset = -page_offset;
863                         page_offset += b_offset;
864                         len -= b_offset;
865                 }
866
867                 if (len > 0 && page_offset + len > STRIPE_SIZE)
868                         clen = STRIPE_SIZE - page_offset;
869                 else
870                         clen = len;
871
872                 if (clen > 0) {
873                         b_offset += bvl->bv_offset;
874                         bio_page = bvl->bv_page;
875                         if (frombio)
876                                 tx = async_memcpy(page, bio_page, page_offset,
877                                                   b_offset, clen, &submit);
878                         else
879                                 tx = async_memcpy(bio_page, page, b_offset,
880                                                   page_offset, clen, &submit);
881                 }
882                 /* chain the operations */
883                 submit.depend_tx = tx;
884
885                 if (clen < len) /* hit end of page */
886                         break;
887                 page_offset +=  len;
888         }
889
890         return tx;
891 }
892
893 static void ops_complete_biofill(void *stripe_head_ref)
894 {
895         struct stripe_head *sh = stripe_head_ref;
896         struct bio *return_bi = NULL;
897         int i;
898
899         pr_debug("%s: stripe %llu\n", __func__,
900                 (unsigned long long)sh->sector);
901
902         /* clear completed biofills */
903         for (i = sh->disks; i--; ) {
904                 struct r5dev *dev = &sh->dev[i];
905
906                 /* acknowledge completion of a biofill operation */
907                 /* and check if we need to reply to a read request,
908                  * new R5_Wantfill requests are held off until
909                  * !STRIPE_BIOFILL_RUN
910                  */
911                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
912                         struct bio *rbi, *rbi2;
913
914                         BUG_ON(!dev->read);
915                         rbi = dev->read;
916                         dev->read = NULL;
917                         while (rbi && rbi->bi_sector <
918                                 dev->sector + STRIPE_SECTORS) {
919                                 rbi2 = r5_next_bio(rbi, dev->sector);
920                                 if (!raid5_dec_bi_active_stripes(rbi)) {
921                                         rbi->bi_next = return_bi;
922                                         return_bi = rbi;
923                                 }
924                                 rbi = rbi2;
925                         }
926                 }
927         }
928         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
929
930         return_io(return_bi);
931
932         set_bit(STRIPE_HANDLE, &sh->state);
933         release_stripe(sh);
934 }
935
936 static void ops_run_biofill(struct stripe_head *sh)
937 {
938         struct dma_async_tx_descriptor *tx = NULL;
939         struct async_submit_ctl submit;
940         int i;
941
942         pr_debug("%s: stripe %llu\n", __func__,
943                 (unsigned long long)sh->sector);
944
945         for (i = sh->disks; i--; ) {
946                 struct r5dev *dev = &sh->dev[i];
947                 if (test_bit(R5_Wantfill, &dev->flags)) {
948                         struct bio *rbi;
949                         spin_lock_irq(&sh->stripe_lock);
950                         dev->read = rbi = dev->toread;
951                         dev->toread = NULL;
952                         spin_unlock_irq(&sh->stripe_lock);
953                         while (rbi && rbi->bi_sector <
954                                 dev->sector + STRIPE_SECTORS) {
955                                 tx = async_copy_data(0, rbi, dev->page,
956                                         dev->sector, tx);
957                                 rbi = r5_next_bio(rbi, dev->sector);
958                         }
959                 }
960         }
961
962         atomic_inc(&sh->count);
963         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
964         async_trigger_callback(&submit);
965 }
966
967 static void mark_target_uptodate(struct stripe_head *sh, int target)
968 {
969         struct r5dev *tgt;
970
971         if (target < 0)
972                 return;
973
974         tgt = &sh->dev[target];
975         set_bit(R5_UPTODATE, &tgt->flags);
976         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
977         clear_bit(R5_Wantcompute, &tgt->flags);
978 }
979
980 static void ops_complete_compute(void *stripe_head_ref)
981 {
982         struct stripe_head *sh = stripe_head_ref;
983
984         pr_debug("%s: stripe %llu\n", __func__,
985                 (unsigned long long)sh->sector);
986
987         /* mark the computed target(s) as uptodate */
988         mark_target_uptodate(sh, sh->ops.target);
989         mark_target_uptodate(sh, sh->ops.target2);
990
991         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
992         if (sh->check_state == check_state_compute_run)
993                 sh->check_state = check_state_compute_result;
994         set_bit(STRIPE_HANDLE, &sh->state);
995         release_stripe(sh);
996 }
997
998 /* return a pointer to the address conversion region of the scribble buffer */
999 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1000                                  struct raid5_percpu *percpu)
1001 {
1002         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1003 }
1004
1005 static struct dma_async_tx_descriptor *
1006 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1007 {
1008         int disks = sh->disks;
1009         struct page **xor_srcs = percpu->scribble;
1010         int target = sh->ops.target;
1011         struct r5dev *tgt = &sh->dev[target];
1012         struct page *xor_dest = tgt->page;
1013         int count = 0;
1014         struct dma_async_tx_descriptor *tx;
1015         struct async_submit_ctl submit;
1016         int i;
1017
1018         pr_debug("%s: stripe %llu block: %d\n",
1019                 __func__, (unsigned long long)sh->sector, target);
1020         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1021
1022         for (i = disks; i--; )
1023                 if (i != target)
1024                         xor_srcs[count++] = sh->dev[i].page;
1025
1026         atomic_inc(&sh->count);
1027
1028         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1029                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1030         if (unlikely(count == 1))
1031                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1032         else
1033                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1034
1035         return tx;
1036 }
1037
1038 /* set_syndrome_sources - populate source buffers for gen_syndrome
1039  * @srcs - (struct page *) array of size sh->disks
1040  * @sh - stripe_head to parse
1041  *
1042  * Populates srcs in proper layout order for the stripe and returns the
1043  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1044  * destination buffer is recorded in srcs[count] and the Q destination
1045  * is recorded in srcs[count+1]].
1046  */
1047 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1048 {
1049         int disks = sh->disks;
1050         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1051         int d0_idx = raid6_d0(sh);
1052         int count;
1053         int i;
1054
1055         for (i = 0; i < disks; i++)
1056                 srcs[i] = NULL;
1057
1058         count = 0;
1059         i = d0_idx;
1060         do {
1061                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1062
1063                 srcs[slot] = sh->dev[i].page;
1064                 i = raid6_next_disk(i, disks);
1065         } while (i != d0_idx);
1066
1067         return syndrome_disks;
1068 }
1069
1070 static struct dma_async_tx_descriptor *
1071 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1072 {
1073         int disks = sh->disks;
1074         struct page **blocks = percpu->scribble;
1075         int target;
1076         int qd_idx = sh->qd_idx;
1077         struct dma_async_tx_descriptor *tx;
1078         struct async_submit_ctl submit;
1079         struct r5dev *tgt;
1080         struct page *dest;
1081         int i;
1082         int count;
1083
1084         if (sh->ops.target < 0)
1085                 target = sh->ops.target2;
1086         else if (sh->ops.target2 < 0)
1087                 target = sh->ops.target;
1088         else
1089                 /* we should only have one valid target */
1090                 BUG();
1091         BUG_ON(target < 0);
1092         pr_debug("%s: stripe %llu block: %d\n",
1093                 __func__, (unsigned long long)sh->sector, target);
1094
1095         tgt = &sh->dev[target];
1096         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1097         dest = tgt->page;
1098
1099         atomic_inc(&sh->count);
1100
1101         if (target == qd_idx) {
1102                 count = set_syndrome_sources(blocks, sh);
1103                 blocks[count] = NULL; /* regenerating p is not necessary */
1104                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1105                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1106                                   ops_complete_compute, sh,
1107                                   to_addr_conv(sh, percpu));
1108                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1109         } else {
1110                 /* Compute any data- or p-drive using XOR */
1111                 count = 0;
1112                 for (i = disks; i-- ; ) {
1113                         if (i == target || i == qd_idx)
1114                                 continue;
1115                         blocks[count++] = sh->dev[i].page;
1116                 }
1117
1118                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1119                                   NULL, ops_complete_compute, sh,
1120                                   to_addr_conv(sh, percpu));
1121                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1122         }
1123
1124         return tx;
1125 }
1126
1127 static struct dma_async_tx_descriptor *
1128 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1129 {
1130         int i, count, disks = sh->disks;
1131         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1132         int d0_idx = raid6_d0(sh);
1133         int faila = -1, failb = -1;
1134         int target = sh->ops.target;
1135         int target2 = sh->ops.target2;
1136         struct r5dev *tgt = &sh->dev[target];
1137         struct r5dev *tgt2 = &sh->dev[target2];
1138         struct dma_async_tx_descriptor *tx;
1139         struct page **blocks = percpu->scribble;
1140         struct async_submit_ctl submit;
1141
1142         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1143                  __func__, (unsigned long long)sh->sector, target, target2);
1144         BUG_ON(target < 0 || target2 < 0);
1145         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1146         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1147
1148         /* we need to open-code set_syndrome_sources to handle the
1149          * slot number conversion for 'faila' and 'failb'
1150          */
1151         for (i = 0; i < disks ; i++)
1152                 blocks[i] = NULL;
1153         count = 0;
1154         i = d0_idx;
1155         do {
1156                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1157
1158                 blocks[slot] = sh->dev[i].page;
1159
1160                 if (i == target)
1161                         faila = slot;
1162                 if (i == target2)
1163                         failb = slot;
1164                 i = raid6_next_disk(i, disks);
1165         } while (i != d0_idx);
1166
1167         BUG_ON(faila == failb);
1168         if (failb < faila)
1169                 swap(faila, failb);
1170         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1171                  __func__, (unsigned long long)sh->sector, faila, failb);
1172
1173         atomic_inc(&sh->count);
1174
1175         if (failb == syndrome_disks+1) {
1176                 /* Q disk is one of the missing disks */
1177                 if (faila == syndrome_disks) {
1178                         /* Missing P+Q, just recompute */
1179                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1180                                           ops_complete_compute, sh,
1181                                           to_addr_conv(sh, percpu));
1182                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1183                                                   STRIPE_SIZE, &submit);
1184                 } else {
1185                         struct page *dest;
1186                         int data_target;
1187                         int qd_idx = sh->qd_idx;
1188
1189                         /* Missing D+Q: recompute D from P, then recompute Q */
1190                         if (target == qd_idx)
1191                                 data_target = target2;
1192                         else
1193                                 data_target = target;
1194
1195                         count = 0;
1196                         for (i = disks; i-- ; ) {
1197                                 if (i == data_target || i == qd_idx)
1198                                         continue;
1199                                 blocks[count++] = sh->dev[i].page;
1200                         }
1201                         dest = sh->dev[data_target].page;
1202                         init_async_submit(&submit,
1203                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1204                                           NULL, NULL, NULL,
1205                                           to_addr_conv(sh, percpu));
1206                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1207                                        &submit);
1208
1209                         count = set_syndrome_sources(blocks, sh);
1210                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1211                                           ops_complete_compute, sh,
1212                                           to_addr_conv(sh, percpu));
1213                         return async_gen_syndrome(blocks, 0, count+2,
1214                                                   STRIPE_SIZE, &submit);
1215                 }
1216         } else {
1217                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218                                   ops_complete_compute, sh,
1219                                   to_addr_conv(sh, percpu));
1220                 if (failb == syndrome_disks) {
1221                         /* We're missing D+P. */
1222                         return async_raid6_datap_recov(syndrome_disks+2,
1223                                                        STRIPE_SIZE, faila,
1224                                                        blocks, &submit);
1225                 } else {
1226                         /* We're missing D+D. */
1227                         return async_raid6_2data_recov(syndrome_disks+2,
1228                                                        STRIPE_SIZE, faila, failb,
1229                                                        blocks, &submit);
1230                 }
1231         }
1232 }
1233
1234
1235 static void ops_complete_prexor(void *stripe_head_ref)
1236 {
1237         struct stripe_head *sh = stripe_head_ref;
1238
1239         pr_debug("%s: stripe %llu\n", __func__,
1240                 (unsigned long long)sh->sector);
1241 }
1242
1243 static struct dma_async_tx_descriptor *
1244 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1245                struct dma_async_tx_descriptor *tx)
1246 {
1247         int disks = sh->disks;
1248         struct page **xor_srcs = percpu->scribble;
1249         int count = 0, pd_idx = sh->pd_idx, i;
1250         struct async_submit_ctl submit;
1251
1252         /* existing parity data subtracted */
1253         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1254
1255         pr_debug("%s: stripe %llu\n", __func__,
1256                 (unsigned long long)sh->sector);
1257
1258         for (i = disks; i--; ) {
1259                 struct r5dev *dev = &sh->dev[i];
1260                 /* Only process blocks that are known to be uptodate */
1261                 if (test_bit(R5_Wantdrain, &dev->flags))
1262                         xor_srcs[count++] = dev->page;
1263         }
1264
1265         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1266                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1267         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1268
1269         return tx;
1270 }
1271
1272 static struct dma_async_tx_descriptor *
1273 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1274 {
1275         int disks = sh->disks;
1276         int i;
1277
1278         pr_debug("%s: stripe %llu\n", __func__,
1279                 (unsigned long long)sh->sector);
1280
1281         for (i = disks; i--; ) {
1282                 struct r5dev *dev = &sh->dev[i];
1283                 struct bio *chosen;
1284
1285                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1286                         struct bio *wbi;
1287
1288                         spin_lock_irq(&sh->stripe_lock);
1289                         chosen = dev->towrite;
1290                         dev->towrite = NULL;
1291                         BUG_ON(dev->written);
1292                         wbi = dev->written = chosen;
1293                         spin_unlock_irq(&sh->stripe_lock);
1294
1295                         while (wbi && wbi->bi_sector <
1296                                 dev->sector + STRIPE_SECTORS) {
1297                                 if (wbi->bi_rw & REQ_FUA)
1298                                         set_bit(R5_WantFUA, &dev->flags);
1299                                 if (wbi->bi_rw & REQ_SYNC)
1300                                         set_bit(R5_SyncIO, &dev->flags);
1301                                 if (wbi->bi_rw & REQ_DISCARD)
1302                                         set_bit(R5_Discard, &dev->flags);
1303                                 else
1304                                         tx = async_copy_data(1, wbi, dev->page,
1305                                                 dev->sector, tx);
1306                                 wbi = r5_next_bio(wbi, dev->sector);
1307                         }
1308                 }
1309         }
1310
1311         return tx;
1312 }
1313
1314 static void ops_complete_reconstruct(void *stripe_head_ref)
1315 {
1316         struct stripe_head *sh = stripe_head_ref;
1317         int disks = sh->disks;
1318         int pd_idx = sh->pd_idx;
1319         int qd_idx = sh->qd_idx;
1320         int i;
1321         bool fua = false, sync = false, discard = false;
1322
1323         pr_debug("%s: stripe %llu\n", __func__,
1324                 (unsigned long long)sh->sector);
1325
1326         for (i = disks; i--; ) {
1327                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1328                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1329                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1330         }
1331
1332         for (i = disks; i--; ) {
1333                 struct r5dev *dev = &sh->dev[i];
1334
1335                 if (dev->written || i == pd_idx || i == qd_idx) {
1336                         if (!discard)
1337                                 set_bit(R5_UPTODATE, &dev->flags);
1338                         if (fua)
1339                                 set_bit(R5_WantFUA, &dev->flags);
1340                         if (sync)
1341                                 set_bit(R5_SyncIO, &dev->flags);
1342                 }
1343         }
1344
1345         if (sh->reconstruct_state == reconstruct_state_drain_run)
1346                 sh->reconstruct_state = reconstruct_state_drain_result;
1347         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1348                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1349         else {
1350                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1351                 sh->reconstruct_state = reconstruct_state_result;
1352         }
1353
1354         set_bit(STRIPE_HANDLE, &sh->state);
1355         release_stripe(sh);
1356 }
1357
1358 static void
1359 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1360                      struct dma_async_tx_descriptor *tx)
1361 {
1362         int disks = sh->disks;
1363         struct page **xor_srcs = percpu->scribble;
1364         struct async_submit_ctl submit;
1365         int count = 0, pd_idx = sh->pd_idx, i;
1366         struct page *xor_dest;
1367         int prexor = 0;
1368         unsigned long flags;
1369
1370         pr_debug("%s: stripe %llu\n", __func__,
1371                 (unsigned long long)sh->sector);
1372
1373         for (i = 0; i < sh->disks; i++) {
1374                 if (pd_idx == i)
1375                         continue;
1376                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1377                         break;
1378         }
1379         if (i >= sh->disks) {
1380                 atomic_inc(&sh->count);
1381                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1382                 ops_complete_reconstruct(sh);
1383                 return;
1384         }
1385         /* check if prexor is active which means only process blocks
1386          * that are part of a read-modify-write (written)
1387          */
1388         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1389                 prexor = 1;
1390                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1391                 for (i = disks; i--; ) {
1392                         struct r5dev *dev = &sh->dev[i];
1393                         if (dev->written)
1394                                 xor_srcs[count++] = dev->page;
1395                 }
1396         } else {
1397                 xor_dest = sh->dev[pd_idx].page;
1398                 for (i = disks; i--; ) {
1399                         struct r5dev *dev = &sh->dev[i];
1400                         if (i != pd_idx)
1401                                 xor_srcs[count++] = dev->page;
1402                 }
1403         }
1404
1405         /* 1/ if we prexor'd then the dest is reused as a source
1406          * 2/ if we did not prexor then we are redoing the parity
1407          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1408          * for the synchronous xor case
1409          */
1410         flags = ASYNC_TX_ACK |
1411                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1412
1413         atomic_inc(&sh->count);
1414
1415         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1416                           to_addr_conv(sh, percpu));
1417         if (unlikely(count == 1))
1418                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1419         else
1420                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1421 }
1422
1423 static void
1424 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1425                      struct dma_async_tx_descriptor *tx)
1426 {
1427         struct async_submit_ctl submit;
1428         struct page **blocks = percpu->scribble;
1429         int count, i;
1430
1431         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1432
1433         for (i = 0; i < sh->disks; i++) {
1434                 if (sh->pd_idx == i || sh->qd_idx == i)
1435                         continue;
1436                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1437                         break;
1438         }
1439         if (i >= sh->disks) {
1440                 atomic_inc(&sh->count);
1441                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1442                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1443                 ops_complete_reconstruct(sh);
1444                 return;
1445         }
1446
1447         count = set_syndrome_sources(blocks, sh);
1448
1449         atomic_inc(&sh->count);
1450
1451         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1452                           sh, to_addr_conv(sh, percpu));
1453         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1454 }
1455
1456 static void ops_complete_check(void *stripe_head_ref)
1457 {
1458         struct stripe_head *sh = stripe_head_ref;
1459
1460         pr_debug("%s: stripe %llu\n", __func__,
1461                 (unsigned long long)sh->sector);
1462
1463         sh->check_state = check_state_check_result;
1464         set_bit(STRIPE_HANDLE, &sh->state);
1465         release_stripe(sh);
1466 }
1467
1468 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1469 {
1470         int disks = sh->disks;
1471         int pd_idx = sh->pd_idx;
1472         int qd_idx = sh->qd_idx;
1473         struct page *xor_dest;
1474         struct page **xor_srcs = percpu->scribble;
1475         struct dma_async_tx_descriptor *tx;
1476         struct async_submit_ctl submit;
1477         int count;
1478         int i;
1479
1480         pr_debug("%s: stripe %llu\n", __func__,
1481                 (unsigned long long)sh->sector);
1482
1483         count = 0;
1484         xor_dest = sh->dev[pd_idx].page;
1485         xor_srcs[count++] = xor_dest;
1486         for (i = disks; i--; ) {
1487                 if (i == pd_idx || i == qd_idx)
1488                         continue;
1489                 xor_srcs[count++] = sh->dev[i].page;
1490         }
1491
1492         init_async_submit(&submit, 0, NULL, NULL, NULL,
1493                           to_addr_conv(sh, percpu));
1494         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1495                            &sh->ops.zero_sum_result, &submit);
1496
1497         atomic_inc(&sh->count);
1498         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1499         tx = async_trigger_callback(&submit);
1500 }
1501
1502 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1503 {
1504         struct page **srcs = percpu->scribble;
1505         struct async_submit_ctl submit;
1506         int count;
1507
1508         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1509                 (unsigned long long)sh->sector, checkp);
1510
1511         count = set_syndrome_sources(srcs, sh);
1512         if (!checkp)
1513                 srcs[count] = NULL;
1514
1515         atomic_inc(&sh->count);
1516         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1517                           sh, to_addr_conv(sh, percpu));
1518         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1519                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1520 }
1521
1522 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1523 {
1524         int overlap_clear = 0, i, disks = sh->disks;
1525         struct dma_async_tx_descriptor *tx = NULL;
1526         struct r5conf *conf = sh->raid_conf;
1527         int level = conf->level;
1528         struct raid5_percpu *percpu;
1529         unsigned long cpu;
1530
1531         cpu = get_cpu();
1532         percpu = per_cpu_ptr(conf->percpu, cpu);
1533         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1534                 ops_run_biofill(sh);
1535                 overlap_clear++;
1536         }
1537
1538         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1539                 if (level < 6)
1540                         tx = ops_run_compute5(sh, percpu);
1541                 else {
1542                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1543                                 tx = ops_run_compute6_1(sh, percpu);
1544                         else
1545                                 tx = ops_run_compute6_2(sh, percpu);
1546                 }
1547                 /* terminate the chain if reconstruct is not set to be run */
1548                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1549                         async_tx_ack(tx);
1550         }
1551
1552         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1553                 tx = ops_run_prexor(sh, percpu, tx);
1554
1555         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1556                 tx = ops_run_biodrain(sh, tx);
1557                 overlap_clear++;
1558         }
1559
1560         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1561                 if (level < 6)
1562                         ops_run_reconstruct5(sh, percpu, tx);
1563                 else
1564                         ops_run_reconstruct6(sh, percpu, tx);
1565         }
1566
1567         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1568                 if (sh->check_state == check_state_run)
1569                         ops_run_check_p(sh, percpu);
1570                 else if (sh->check_state == check_state_run_q)
1571                         ops_run_check_pq(sh, percpu, 0);
1572                 else if (sh->check_state == check_state_run_pq)
1573                         ops_run_check_pq(sh, percpu, 1);
1574                 else
1575                         BUG();
1576         }
1577
1578         if (overlap_clear)
1579                 for (i = disks; i--; ) {
1580                         struct r5dev *dev = &sh->dev[i];
1581                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1582                                 wake_up(&sh->raid_conf->wait_for_overlap);
1583                 }
1584         put_cpu();
1585 }
1586
1587 static int grow_one_stripe(struct r5conf *conf)
1588 {
1589         struct stripe_head *sh;
1590         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1591         if (!sh)
1592                 return 0;
1593
1594         sh->raid_conf = conf;
1595
1596         spin_lock_init(&sh->stripe_lock);
1597
1598         if (grow_buffers(sh)) {
1599                 shrink_buffers(sh);
1600                 kmem_cache_free(conf->slab_cache, sh);
1601                 return 0;
1602         }
1603         /* we just created an active stripe so... */
1604         atomic_set(&sh->count, 1);
1605         atomic_inc(&conf->active_stripes);
1606         INIT_LIST_HEAD(&sh->lru);
1607         release_stripe(sh);
1608         return 1;
1609 }
1610
1611 static int grow_stripes(struct r5conf *conf, int num)
1612 {
1613         struct kmem_cache *sc;
1614         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1615
1616         if (conf->mddev->gendisk)
1617                 sprintf(conf->cache_name[0],
1618                         "raid%d-%s", conf->level, mdname(conf->mddev));
1619         else
1620                 sprintf(conf->cache_name[0],
1621                         "raid%d-%p", conf->level, conf->mddev);
1622         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1623
1624         conf->active_name = 0;
1625         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1626                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1627                                0, 0, NULL);
1628         if (!sc)
1629                 return 1;
1630         conf->slab_cache = sc;
1631         conf->pool_size = devs;
1632         while (num--)
1633                 if (!grow_one_stripe(conf))
1634                         return 1;
1635         return 0;
1636 }
1637
1638 /**
1639  * scribble_len - return the required size of the scribble region
1640  * @num - total number of disks in the array
1641  *
1642  * The size must be enough to contain:
1643  * 1/ a struct page pointer for each device in the array +2
1644  * 2/ room to convert each entry in (1) to its corresponding dma
1645  *    (dma_map_page()) or page (page_address()) address.
1646  *
1647  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1648  * calculate over all devices (not just the data blocks), using zeros in place
1649  * of the P and Q blocks.
1650  */
1651 static size_t scribble_len(int num)
1652 {
1653         size_t len;
1654
1655         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1656
1657         return len;
1658 }
1659
1660 static int resize_stripes(struct r5conf *conf, int newsize)
1661 {
1662         /* Make all the stripes able to hold 'newsize' devices.
1663          * New slots in each stripe get 'page' set to a new page.
1664          *
1665          * This happens in stages:
1666          * 1/ create a new kmem_cache and allocate the required number of
1667          *    stripe_heads.
1668          * 2/ gather all the old stripe_heads and transfer the pages across
1669          *    to the new stripe_heads.  This will have the side effect of
1670          *    freezing the array as once all stripe_heads have been collected,
1671          *    no IO will be possible.  Old stripe heads are freed once their
1672          *    pages have been transferred over, and the old kmem_cache is
1673          *    freed when all stripes are done.
1674          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1675          *    we simple return a failre status - no need to clean anything up.
1676          * 4/ allocate new pages for the new slots in the new stripe_heads.
1677          *    If this fails, we don't bother trying the shrink the
1678          *    stripe_heads down again, we just leave them as they are.
1679          *    As each stripe_head is processed the new one is released into
1680          *    active service.
1681          *
1682          * Once step2 is started, we cannot afford to wait for a write,
1683          * so we use GFP_NOIO allocations.
1684          */
1685         struct stripe_head *osh, *nsh;
1686         LIST_HEAD(newstripes);
1687         struct disk_info *ndisks;
1688         unsigned long cpu;
1689         int err;
1690         struct kmem_cache *sc;
1691         int i;
1692
1693         if (newsize <= conf->pool_size)
1694                 return 0; /* never bother to shrink */
1695
1696         err = md_allow_write(conf->mddev);
1697         if (err)
1698                 return err;
1699
1700         /* Step 1 */
1701         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1702                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1703                                0, 0, NULL);
1704         if (!sc)
1705                 return -ENOMEM;
1706
1707         for (i = conf->max_nr_stripes; i; i--) {
1708                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1709                 if (!nsh)
1710                         break;
1711
1712                 nsh->raid_conf = conf;
1713                 spin_lock_init(&nsh->stripe_lock);
1714
1715                 list_add(&nsh->lru, &newstripes);
1716         }
1717         if (i) {
1718                 /* didn't get enough, give up */
1719                 while (!list_empty(&newstripes)) {
1720                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1721                         list_del(&nsh->lru);
1722                         kmem_cache_free(sc, nsh);
1723                 }
1724                 kmem_cache_destroy(sc);
1725                 return -ENOMEM;
1726         }
1727         /* Step 2 - Must use GFP_NOIO now.
1728          * OK, we have enough stripes, start collecting inactive
1729          * stripes and copying them over
1730          */
1731         list_for_each_entry(nsh, &newstripes, lru) {
1732                 spin_lock_irq(&conf->device_lock);
1733                 wait_event_lock_irq(conf->wait_for_stripe,
1734                                     !list_empty(&conf->inactive_list),
1735                                     conf->device_lock);
1736                 osh = get_free_stripe(conf);
1737                 spin_unlock_irq(&conf->device_lock);
1738                 atomic_set(&nsh->count, 1);
1739                 for(i=0; i<conf->pool_size; i++)
1740                         nsh->dev[i].page = osh->dev[i].page;
1741                 for( ; i<newsize; i++)
1742                         nsh->dev[i].page = NULL;
1743                 kmem_cache_free(conf->slab_cache, osh);
1744         }
1745         kmem_cache_destroy(conf->slab_cache);
1746
1747         /* Step 3.
1748          * At this point, we are holding all the stripes so the array
1749          * is completely stalled, so now is a good time to resize
1750          * conf->disks and the scribble region
1751          */
1752         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1753         if (ndisks) {
1754                 for (i=0; i<conf->raid_disks; i++)
1755                         ndisks[i] = conf->disks[i];
1756                 kfree(conf->disks);
1757                 conf->disks = ndisks;
1758         } else
1759                 err = -ENOMEM;
1760
1761         get_online_cpus();
1762         conf->scribble_len = scribble_len(newsize);
1763         for_each_present_cpu(cpu) {
1764                 struct raid5_percpu *percpu;
1765                 void *scribble;
1766
1767                 percpu = per_cpu_ptr(conf->percpu, cpu);
1768                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1769
1770                 if (scribble) {
1771                         kfree(percpu->scribble);
1772                         percpu->scribble = scribble;
1773                 } else {
1774                         err = -ENOMEM;
1775                         break;
1776                 }
1777         }
1778         put_online_cpus();
1779
1780         /* Step 4, return new stripes to service */
1781         while(!list_empty(&newstripes)) {
1782                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1783                 list_del_init(&nsh->lru);
1784
1785                 for (i=conf->raid_disks; i < newsize; i++)
1786                         if (nsh->dev[i].page == NULL) {
1787                                 struct page *p = alloc_page(GFP_NOIO);
1788                                 nsh->dev[i].page = p;
1789                                 if (!p)
1790                                         err = -ENOMEM;
1791                         }
1792                 release_stripe(nsh);
1793         }
1794         /* critical section pass, GFP_NOIO no longer needed */
1795
1796         conf->slab_cache = sc;
1797         conf->active_name = 1-conf->active_name;
1798         conf->pool_size = newsize;
1799         return err;
1800 }
1801
1802 static int drop_one_stripe(struct r5conf *conf)
1803 {
1804         struct stripe_head *sh;
1805
1806         spin_lock_irq(&conf->device_lock);
1807         sh = get_free_stripe(conf);
1808         spin_unlock_irq(&conf->device_lock);
1809         if (!sh)
1810                 return 0;
1811         BUG_ON(atomic_read(&sh->count));
1812         shrink_buffers(sh);
1813         kmem_cache_free(conf->slab_cache, sh);
1814         atomic_dec(&conf->active_stripes);
1815         return 1;
1816 }
1817
1818 static void shrink_stripes(struct r5conf *conf)
1819 {
1820         while (drop_one_stripe(conf))
1821                 ;
1822
1823         if (conf->slab_cache)
1824                 kmem_cache_destroy(conf->slab_cache);
1825         conf->slab_cache = NULL;
1826 }
1827
1828 static void raid5_end_read_request(struct bio * bi, int error)
1829 {
1830         struct stripe_head *sh = bi->bi_private;
1831         struct r5conf *conf = sh->raid_conf;
1832         int disks = sh->disks, i;
1833         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1834         char b[BDEVNAME_SIZE];
1835         struct md_rdev *rdev = NULL;
1836         sector_t s;
1837
1838         for (i=0 ; i<disks; i++)
1839                 if (bi == &sh->dev[i].req)
1840                         break;
1841
1842         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1843                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1844                 uptodate);
1845         if (i == disks) {
1846                 BUG();
1847                 return;
1848         }
1849         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1850                 /* If replacement finished while this request was outstanding,
1851                  * 'replacement' might be NULL already.
1852                  * In that case it moved down to 'rdev'.
1853                  * rdev is not removed until all requests are finished.
1854                  */
1855                 rdev = conf->disks[i].replacement;
1856         if (!rdev)
1857                 rdev = conf->disks[i].rdev;
1858
1859         if (use_new_offset(conf, sh))
1860                 s = sh->sector + rdev->new_data_offset;
1861         else
1862                 s = sh->sector + rdev->data_offset;
1863         if (uptodate) {
1864                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1865                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1866                         /* Note that this cannot happen on a
1867                          * replacement device.  We just fail those on
1868                          * any error
1869                          */
1870                         printk_ratelimited(
1871                                 KERN_INFO
1872                                 "md/raid:%s: read error corrected"
1873                                 " (%lu sectors at %llu on %s)\n",
1874                                 mdname(conf->mddev), STRIPE_SECTORS,
1875                                 (unsigned long long)s,
1876                                 bdevname(rdev->bdev, b));
1877                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1878                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1879                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1880                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1881                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1882
1883                 if (atomic_read(&rdev->read_errors))
1884                         atomic_set(&rdev->read_errors, 0);
1885         } else {
1886                 const char *bdn = bdevname(rdev->bdev, b);
1887                 int retry = 0;
1888                 int set_bad = 0;
1889
1890                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1891                 atomic_inc(&rdev->read_errors);
1892                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1893                         printk_ratelimited(
1894                                 KERN_WARNING
1895                                 "md/raid:%s: read error on replacement device "
1896                                 "(sector %llu on %s).\n",
1897                                 mdname(conf->mddev),
1898                                 (unsigned long long)s,
1899                                 bdn);
1900                 else if (conf->mddev->degraded >= conf->max_degraded) {
1901                         set_bad = 1;
1902                         printk_ratelimited(
1903                                 KERN_WARNING
1904                                 "md/raid:%s: read error not correctable "
1905                                 "(sector %llu on %s).\n",
1906                                 mdname(conf->mddev),
1907                                 (unsigned long long)s,
1908                                 bdn);
1909                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1910                         /* Oh, no!!! */
1911                         set_bad = 1;
1912                         printk_ratelimited(
1913                                 KERN_WARNING
1914                                 "md/raid:%s: read error NOT corrected!! "
1915                                 "(sector %llu on %s).\n",
1916                                 mdname(conf->mddev),
1917                                 (unsigned long long)s,
1918                                 bdn);
1919                 } else if (atomic_read(&rdev->read_errors)
1920                          > conf->max_nr_stripes)
1921                         printk(KERN_WARNING
1922                                "md/raid:%s: Too many read errors, failing device %s.\n",
1923                                mdname(conf->mddev), bdn);
1924                 else
1925                         retry = 1;
1926                 if (retry)
1927                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1928                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1929                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1930                         } else
1931                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1932                 else {
1933                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1934                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1935                         if (!(set_bad
1936                               && test_bit(In_sync, &rdev->flags)
1937                               && rdev_set_badblocks(
1938                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1939                                 md_error(conf->mddev, rdev);
1940                 }
1941         }
1942         rdev_dec_pending(rdev, conf->mddev);
1943         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1944         set_bit(STRIPE_HANDLE, &sh->state);
1945         release_stripe(sh);
1946 }
1947
1948 static void raid5_end_write_request(struct bio *bi, int error)
1949 {
1950         struct stripe_head *sh = bi->bi_private;
1951         struct r5conf *conf = sh->raid_conf;
1952         int disks = sh->disks, i;
1953         struct md_rdev *uninitialized_var(rdev);
1954         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1955         sector_t first_bad;
1956         int bad_sectors;
1957         int replacement = 0;
1958
1959         for (i = 0 ; i < disks; i++) {
1960                 if (bi == &sh->dev[i].req) {
1961                         rdev = conf->disks[i].rdev;
1962                         break;
1963                 }
1964                 if (bi == &sh->dev[i].rreq) {
1965                         rdev = conf->disks[i].replacement;
1966                         if (rdev)
1967                                 replacement = 1;
1968                         else
1969                                 /* rdev was removed and 'replacement'
1970                                  * replaced it.  rdev is not removed
1971                                  * until all requests are finished.
1972                                  */
1973                                 rdev = conf->disks[i].rdev;
1974                         break;
1975                 }
1976         }
1977         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1978                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1979                 uptodate);
1980         if (i == disks) {
1981                 BUG();
1982                 return;
1983         }
1984
1985         if (replacement) {
1986                 if (!uptodate)
1987                         md_error(conf->mddev, rdev);
1988                 else if (is_badblock(rdev, sh->sector,
1989                                      STRIPE_SECTORS,
1990                                      &first_bad, &bad_sectors))
1991                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1992         } else {
1993                 if (!uptodate) {
1994                         set_bit(WriteErrorSeen, &rdev->flags);
1995                         set_bit(R5_WriteError, &sh->dev[i].flags);
1996                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1997                                 set_bit(MD_RECOVERY_NEEDED,
1998                                         &rdev->mddev->recovery);
1999                 } else if (is_badblock(rdev, sh->sector,
2000                                        STRIPE_SECTORS,
2001                                        &first_bad, &bad_sectors)) {
2002                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2003                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2004                                 /* That was a successful write so make
2005                                  * sure it looks like we already did
2006                                  * a re-write.
2007                                  */
2008                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2009                 }
2010         }
2011         rdev_dec_pending(rdev, conf->mddev);
2012
2013         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2014                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2015         set_bit(STRIPE_HANDLE, &sh->state);
2016         release_stripe(sh);
2017 }
2018
2019 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2020         
2021 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2022 {
2023         struct r5dev *dev = &sh->dev[i];
2024
2025         bio_init(&dev->req);
2026         dev->req.bi_io_vec = &dev->vec;
2027         dev->req.bi_vcnt++;
2028         dev->req.bi_max_vecs++;
2029         dev->req.bi_private = sh;
2030         dev->vec.bv_page = dev->page;
2031
2032         bio_init(&dev->rreq);
2033         dev->rreq.bi_io_vec = &dev->rvec;
2034         dev->rreq.bi_vcnt++;
2035         dev->rreq.bi_max_vecs++;
2036         dev->rreq.bi_private = sh;
2037         dev->rvec.bv_page = dev->page;
2038
2039         dev->flags = 0;
2040         dev->sector = compute_blocknr(sh, i, previous);
2041 }
2042
2043 static void error(struct mddev *mddev, struct md_rdev *rdev)
2044 {
2045         char b[BDEVNAME_SIZE];
2046         struct r5conf *conf = mddev->private;
2047         unsigned long flags;
2048         pr_debug("raid456: error called\n");
2049
2050         spin_lock_irqsave(&conf->device_lock, flags);
2051         clear_bit(In_sync, &rdev->flags);
2052         mddev->degraded = calc_degraded(conf);
2053         spin_unlock_irqrestore(&conf->device_lock, flags);
2054         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2055
2056         set_bit(Blocked, &rdev->flags);
2057         set_bit(Faulty, &rdev->flags);
2058         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2059         printk(KERN_ALERT
2060                "md/raid:%s: Disk failure on %s, disabling device.\n"
2061                "md/raid:%s: Operation continuing on %d devices.\n",
2062                mdname(mddev),
2063                bdevname(rdev->bdev, b),
2064                mdname(mddev),
2065                conf->raid_disks - mddev->degraded);
2066 }
2067
2068 /*
2069  * Input: a 'big' sector number,
2070  * Output: index of the data and parity disk, and the sector # in them.
2071  */
2072 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2073                                      int previous, int *dd_idx,
2074                                      struct stripe_head *sh)
2075 {
2076         sector_t stripe, stripe2;
2077         sector_t chunk_number;
2078         unsigned int chunk_offset;
2079         int pd_idx, qd_idx;
2080         int ddf_layout = 0;
2081         sector_t new_sector;
2082         int algorithm = previous ? conf->prev_algo
2083                                  : conf->algorithm;
2084         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2085                                          : conf->chunk_sectors;
2086         int raid_disks = previous ? conf->previous_raid_disks
2087                                   : conf->raid_disks;
2088         int data_disks = raid_disks - conf->max_degraded;
2089
2090         /* First compute the information on this sector */
2091
2092         /*
2093          * Compute the chunk number and the sector offset inside the chunk
2094          */
2095         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2096         chunk_number = r_sector;
2097
2098         /*
2099          * Compute the stripe number
2100          */
2101         stripe = chunk_number;
2102         *dd_idx = sector_div(stripe, data_disks);
2103         stripe2 = stripe;
2104         /*
2105          * Select the parity disk based on the user selected algorithm.
2106          */
2107         pd_idx = qd_idx = -1;
2108         switch(conf->level) {
2109         case 4:
2110                 pd_idx = data_disks;
2111                 break;
2112         case 5:
2113                 switch (algorithm) {
2114                 case ALGORITHM_LEFT_ASYMMETRIC:
2115                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2116                         if (*dd_idx >= pd_idx)
2117                                 (*dd_idx)++;
2118                         break;
2119                 case ALGORITHM_RIGHT_ASYMMETRIC:
2120                         pd_idx = sector_div(stripe2, raid_disks);
2121                         if (*dd_idx >= pd_idx)
2122                                 (*dd_idx)++;
2123                         break;
2124                 case ALGORITHM_LEFT_SYMMETRIC:
2125                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2126                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2127                         break;
2128                 case ALGORITHM_RIGHT_SYMMETRIC:
2129                         pd_idx = sector_div(stripe2, raid_disks);
2130                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2131                         break;
2132                 case ALGORITHM_PARITY_0:
2133                         pd_idx = 0;
2134                         (*dd_idx)++;
2135                         break;
2136                 case ALGORITHM_PARITY_N:
2137                         pd_idx = data_disks;
2138                         break;
2139                 default:
2140                         BUG();
2141                 }
2142                 break;
2143         case 6:
2144
2145                 switch (algorithm) {
2146                 case ALGORITHM_LEFT_ASYMMETRIC:
2147                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2148                         qd_idx = pd_idx + 1;
2149                         if (pd_idx == raid_disks-1) {
2150                                 (*dd_idx)++;    /* Q D D D P */
2151                                 qd_idx = 0;
2152                         } else if (*dd_idx >= pd_idx)
2153                                 (*dd_idx) += 2; /* D D P Q D */
2154                         break;
2155                 case ALGORITHM_RIGHT_ASYMMETRIC:
2156                         pd_idx = sector_div(stripe2, raid_disks);
2157                         qd_idx = pd_idx + 1;
2158                         if (pd_idx == raid_disks-1) {
2159                                 (*dd_idx)++;    /* Q D D D P */
2160                                 qd_idx = 0;
2161                         } else if (*dd_idx >= pd_idx)
2162                                 (*dd_idx) += 2; /* D D P Q D */
2163                         break;
2164                 case ALGORITHM_LEFT_SYMMETRIC:
2165                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2166                         qd_idx = (pd_idx + 1) % raid_disks;
2167                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2168                         break;
2169                 case ALGORITHM_RIGHT_SYMMETRIC:
2170                         pd_idx = sector_div(stripe2, raid_disks);
2171                         qd_idx = (pd_idx + 1) % raid_disks;
2172                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2173                         break;
2174
2175                 case ALGORITHM_PARITY_0:
2176                         pd_idx = 0;
2177                         qd_idx = 1;
2178                         (*dd_idx) += 2;
2179                         break;
2180                 case ALGORITHM_PARITY_N:
2181                         pd_idx = data_disks;
2182                         qd_idx = data_disks + 1;
2183                         break;
2184
2185                 case ALGORITHM_ROTATING_ZERO_RESTART:
2186                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2187                          * of blocks for computing Q is different.
2188                          */
2189                         pd_idx = sector_div(stripe2, raid_disks);
2190                         qd_idx = pd_idx + 1;
2191                         if (pd_idx == raid_disks-1) {
2192                                 (*dd_idx)++;    /* Q D D D P */
2193                                 qd_idx = 0;
2194                         } else if (*dd_idx >= pd_idx)
2195                                 (*dd_idx) += 2; /* D D P Q D */
2196                         ddf_layout = 1;
2197                         break;
2198
2199                 case ALGORITHM_ROTATING_N_RESTART:
2200                         /* Same a left_asymmetric, by first stripe is
2201                          * D D D P Q  rather than
2202                          * Q D D D P
2203                          */
2204                         stripe2 += 1;
2205                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2206                         qd_idx = pd_idx + 1;
2207                         if (pd_idx == raid_disks-1) {
2208                                 (*dd_idx)++;    /* Q D D D P */
2209                                 qd_idx = 0;
2210                         } else if (*dd_idx >= pd_idx)
2211                                 (*dd_idx) += 2; /* D D P Q D */
2212                         ddf_layout = 1;
2213                         break;
2214
2215                 case ALGORITHM_ROTATING_N_CONTINUE:
2216                         /* Same as left_symmetric but Q is before P */
2217                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2218                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2219                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2220                         ddf_layout = 1;
2221                         break;
2222
2223                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2224                         /* RAID5 left_asymmetric, with Q on last device */
2225                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2226                         if (*dd_idx >= pd_idx)
2227                                 (*dd_idx)++;
2228                         qd_idx = raid_disks - 1;
2229                         break;
2230
2231                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2232                         pd_idx = sector_div(stripe2, raid_disks-1);
2233                         if (*dd_idx >= pd_idx)
2234                                 (*dd_idx)++;
2235                         qd_idx = raid_disks - 1;
2236                         break;
2237
2238                 case ALGORITHM_LEFT_SYMMETRIC_6:
2239                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2240                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2241                         qd_idx = raid_disks - 1;
2242                         break;
2243
2244                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2245                         pd_idx = sector_div(stripe2, raid_disks-1);
2246                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2247                         qd_idx = raid_disks - 1;
2248                         break;
2249
2250                 case ALGORITHM_PARITY_0_6:
2251                         pd_idx = 0;
2252                         (*dd_idx)++;
2253                         qd_idx = raid_disks - 1;
2254                         break;
2255
2256                 default:
2257                         BUG();
2258                 }
2259                 break;
2260         }
2261
2262         if (sh) {
2263                 sh->pd_idx = pd_idx;
2264                 sh->qd_idx = qd_idx;
2265                 sh->ddf_layout = ddf_layout;
2266         }
2267         /*
2268          * Finally, compute the new sector number
2269          */
2270         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2271         return new_sector;
2272 }
2273
2274
2275 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2276 {
2277         struct r5conf *conf = sh->raid_conf;
2278         int raid_disks = sh->disks;
2279         int data_disks = raid_disks - conf->max_degraded;
2280         sector_t new_sector = sh->sector, check;
2281         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2282                                          : conf->chunk_sectors;
2283         int algorithm = previous ? conf->prev_algo
2284                                  : conf->algorithm;
2285         sector_t stripe;
2286         int chunk_offset;
2287         sector_t chunk_number;
2288         int dummy1, dd_idx = i;
2289         sector_t r_sector;
2290         struct stripe_head sh2;
2291
2292
2293         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2294         stripe = new_sector;
2295
2296         if (i == sh->pd_idx)
2297                 return 0;
2298         switch(conf->level) {
2299         case 4: break;
2300         case 5:
2301                 switch (algorithm) {
2302                 case ALGORITHM_LEFT_ASYMMETRIC:
2303                 case ALGORITHM_RIGHT_ASYMMETRIC:
2304                         if (i > sh->pd_idx)
2305                                 i--;
2306                         break;
2307                 case ALGORITHM_LEFT_SYMMETRIC:
2308                 case ALGORITHM_RIGHT_SYMMETRIC:
2309                         if (i < sh->pd_idx)
2310                                 i += raid_disks;
2311                         i -= (sh->pd_idx + 1);
2312                         break;
2313                 case ALGORITHM_PARITY_0:
2314                         i -= 1;
2315                         break;
2316                 case ALGORITHM_PARITY_N:
2317                         break;
2318                 default:
2319                         BUG();
2320                 }
2321                 break;
2322         case 6:
2323                 if (i == sh->qd_idx)
2324                         return 0; /* It is the Q disk */
2325                 switch (algorithm) {
2326                 case ALGORITHM_LEFT_ASYMMETRIC:
2327                 case ALGORITHM_RIGHT_ASYMMETRIC:
2328                 case ALGORITHM_ROTATING_ZERO_RESTART:
2329                 case ALGORITHM_ROTATING_N_RESTART:
2330                         if (sh->pd_idx == raid_disks-1)
2331                                 i--;    /* Q D D D P */
2332                         else if (i > sh->pd_idx)
2333                                 i -= 2; /* D D P Q D */
2334                         break;
2335                 case ALGORITHM_LEFT_SYMMETRIC:
2336                 case ALGORITHM_RIGHT_SYMMETRIC:
2337                         if (sh->pd_idx == raid_disks-1)
2338                                 i--; /* Q D D D P */
2339                         else {
2340                                 /* D D P Q D */
2341                                 if (i < sh->pd_idx)
2342                                         i += raid_disks;
2343                                 i -= (sh->pd_idx + 2);
2344                         }
2345                         break;
2346                 case ALGORITHM_PARITY_0:
2347                         i -= 2;
2348                         break;
2349                 case ALGORITHM_PARITY_N:
2350                         break;
2351                 case ALGORITHM_ROTATING_N_CONTINUE:
2352                         /* Like left_symmetric, but P is before Q */
2353                         if (sh->pd_idx == 0)
2354                                 i--;    /* P D D D Q */
2355                         else {
2356                                 /* D D Q P D */
2357                                 if (i < sh->pd_idx)
2358                                         i += raid_disks;
2359                                 i -= (sh->pd_idx + 1);
2360                         }
2361                         break;
2362                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2363                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2364                         if (i > sh->pd_idx)
2365                                 i--;
2366                         break;
2367                 case ALGORITHM_LEFT_SYMMETRIC_6:
2368                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2369                         if (i < sh->pd_idx)
2370                                 i += data_disks + 1;
2371                         i -= (sh->pd_idx + 1);
2372                         break;
2373                 case ALGORITHM_PARITY_0_6:
2374                         i -= 1;
2375                         break;
2376                 default:
2377                         BUG();
2378                 }
2379                 break;
2380         }
2381
2382         chunk_number = stripe * data_disks + i;
2383         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2384
2385         check = raid5_compute_sector(conf, r_sector,
2386                                      previous, &dummy1, &sh2);
2387         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2388                 || sh2.qd_idx != sh->qd_idx) {
2389                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2390                        mdname(conf->mddev));
2391                 return 0;
2392         }
2393         return r_sector;
2394 }
2395
2396
2397 static void
2398 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2399                          int rcw, int expand)
2400 {
2401         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2402         struct r5conf *conf = sh->raid_conf;
2403         int level = conf->level;
2404
2405         if (rcw) {
2406
2407                 for (i = disks; i--; ) {
2408                         struct r5dev *dev = &sh->dev[i];
2409
2410                         if (dev->towrite) {
2411                                 set_bit(R5_LOCKED, &dev->flags);
2412                                 set_bit(R5_Wantdrain, &dev->flags);
2413                                 if (!expand)
2414                                         clear_bit(R5_UPTODATE, &dev->flags);
2415                                 s->locked++;
2416                         }
2417                 }
2418                 /* if we are not expanding this is a proper write request, and
2419                  * there will be bios with new data to be drained into the
2420                  * stripe cache
2421                  */
2422                 if (!expand) {
2423                         if (!s->locked)
2424                                 /* False alarm, nothing to do */
2425                                 return;
2426                         sh->reconstruct_state = reconstruct_state_drain_run;
2427                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2428                 } else
2429                         sh->reconstruct_state = reconstruct_state_run;
2430
2431                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2432
2433                 if (s->locked + conf->max_degraded == disks)
2434                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2435                                 atomic_inc(&conf->pending_full_writes);
2436         } else {
2437                 BUG_ON(level == 6);
2438                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2439                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2440
2441                 for (i = disks; i--; ) {
2442                         struct r5dev *dev = &sh->dev[i];
2443                         if (i == pd_idx)
2444                                 continue;
2445
2446                         if (dev->towrite &&
2447                             (test_bit(R5_UPTODATE, &dev->flags) ||
2448                              test_bit(R5_Wantcompute, &dev->flags))) {
2449                                 set_bit(R5_Wantdrain, &dev->flags);
2450                                 set_bit(R5_LOCKED, &dev->flags);
2451                                 clear_bit(R5_UPTODATE, &dev->flags);
2452                                 s->locked++;
2453                         }
2454                 }
2455                 if (!s->locked)
2456                         /* False alarm - nothing to do */
2457                         return;
2458                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2459                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2460                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2461                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2462         }
2463
2464         /* keep the parity disk(s) locked while asynchronous operations
2465          * are in flight
2466          */
2467         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2468         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2469         s->locked++;
2470
2471         if (level == 6) {
2472                 int qd_idx = sh->qd_idx;
2473                 struct r5dev *dev = &sh->dev[qd_idx];
2474
2475                 set_bit(R5_LOCKED, &dev->flags);
2476                 clear_bit(R5_UPTODATE, &dev->flags);
2477                 s->locked++;
2478         }
2479
2480         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2481                 __func__, (unsigned long long)sh->sector,
2482                 s->locked, s->ops_request);
2483 }
2484
2485 /*
2486  * Each stripe/dev can have one or more bion attached.
2487  * toread/towrite point to the first in a chain.
2488  * The bi_next chain must be in order.
2489  */
2490 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2491 {
2492         struct bio **bip;
2493         struct r5conf *conf = sh->raid_conf;
2494         int firstwrite=0;
2495
2496         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2497                 (unsigned long long)bi->bi_sector,
2498                 (unsigned long long)sh->sector);
2499
2500         /*
2501          * If several bio share a stripe. The bio bi_phys_segments acts as a
2502          * reference count to avoid race. The reference count should already be
2503          * increased before this function is called (for example, in
2504          * make_request()), so other bio sharing this stripe will not free the
2505          * stripe. If a stripe is owned by one stripe, the stripe lock will
2506          * protect it.
2507          */
2508         spin_lock_irq(&sh->stripe_lock);
2509         if (forwrite) {
2510                 bip = &sh->dev[dd_idx].towrite;
2511                 if (*bip == NULL)
2512                         firstwrite = 1;
2513         } else
2514                 bip = &sh->dev[dd_idx].toread;
2515         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2516                 if (bio_end_sector(*bip) > bi->bi_sector)
2517                         goto overlap;
2518                 bip = & (*bip)->bi_next;
2519         }
2520         if (*bip && (*bip)->bi_sector < bio_end_sector(bi))
2521                 goto overlap;
2522
2523         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2524         if (*bip)
2525                 bi->bi_next = *bip;
2526         *bip = bi;
2527         raid5_inc_bi_active_stripes(bi);
2528
2529         if (forwrite) {
2530                 /* check if page is covered */
2531                 sector_t sector = sh->dev[dd_idx].sector;
2532                 for (bi=sh->dev[dd_idx].towrite;
2533                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2534                              bi && bi->bi_sector <= sector;
2535                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2536                         if (bio_end_sector(bi) >= sector)
2537                                 sector = bio_end_sector(bi);
2538                 }
2539                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2540                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2541         }
2542
2543         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2544                 (unsigned long long)(*bip)->bi_sector,
2545                 (unsigned long long)sh->sector, dd_idx);
2546         spin_unlock_irq(&sh->stripe_lock);
2547
2548         if (conf->mddev->bitmap && firstwrite) {
2549                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2550                                   STRIPE_SECTORS, 0);
2551                 sh->bm_seq = conf->seq_flush+1;
2552                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2553         }
2554         return 1;
2555
2556  overlap:
2557         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2558         spin_unlock_irq(&sh->stripe_lock);
2559         return 0;
2560 }
2561
2562 static void end_reshape(struct r5conf *conf);
2563
2564 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2565                             struct stripe_head *sh)
2566 {
2567         int sectors_per_chunk =
2568                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2569         int dd_idx;
2570         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2571         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2572
2573         raid5_compute_sector(conf,
2574                              stripe * (disks - conf->max_degraded)
2575                              *sectors_per_chunk + chunk_offset,
2576                              previous,
2577                              &dd_idx, sh);
2578 }
2579
2580 static void
2581 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2582                                 struct stripe_head_state *s, int disks,
2583                                 struct bio **return_bi)
2584 {
2585         int i;
2586         for (i = disks; i--; ) {
2587                 struct bio *bi;
2588                 int bitmap_end = 0;
2589
2590                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2591                         struct md_rdev *rdev;
2592                         rcu_read_lock();
2593                         rdev = rcu_dereference(conf->disks[i].rdev);
2594                         if (rdev && test_bit(In_sync, &rdev->flags))
2595                                 atomic_inc(&rdev->nr_pending);
2596                         else
2597                                 rdev = NULL;
2598                         rcu_read_unlock();
2599                         if (rdev) {
2600                                 if (!rdev_set_badblocks(
2601                                             rdev,
2602                                             sh->sector,
2603                                             STRIPE_SECTORS, 0))
2604                                         md_error(conf->mddev, rdev);
2605                                 rdev_dec_pending(rdev, conf->mddev);
2606                         }
2607                 }
2608                 spin_lock_irq(&sh->stripe_lock);
2609                 /* fail all writes first */
2610                 bi = sh->dev[i].towrite;
2611                 sh->dev[i].towrite = NULL;
2612                 spin_unlock_irq(&sh->stripe_lock);
2613                 if (bi)
2614                         bitmap_end = 1;
2615
2616                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2617                         wake_up(&conf->wait_for_overlap);
2618
2619                 while (bi && bi->bi_sector <
2620                         sh->dev[i].sector + STRIPE_SECTORS) {
2621                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2622                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2623                         if (!raid5_dec_bi_active_stripes(bi)) {
2624                                 md_write_end(conf->mddev);
2625                                 bi->bi_next = *return_bi;
2626                                 *return_bi = bi;
2627                         }
2628                         bi = nextbi;
2629                 }
2630                 if (bitmap_end)
2631                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2632                                 STRIPE_SECTORS, 0, 0);
2633                 bitmap_end = 0;
2634                 /* and fail all 'written' */
2635                 bi = sh->dev[i].written;
2636                 sh->dev[i].written = NULL;
2637                 if (bi) bitmap_end = 1;
2638                 while (bi && bi->bi_sector <
2639                        sh->dev[i].sector + STRIPE_SECTORS) {
2640                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2641                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2642                         if (!raid5_dec_bi_active_stripes(bi)) {
2643                                 md_write_end(conf->mddev);
2644                                 bi->bi_next = *return_bi;
2645                                 *return_bi = bi;
2646                         }
2647                         bi = bi2;
2648                 }
2649
2650                 /* fail any reads if this device is non-operational and
2651                  * the data has not reached the cache yet.
2652                  */
2653                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2654                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2655                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2656                         spin_lock_irq(&sh->stripe_lock);
2657                         bi = sh->dev[i].toread;
2658                         sh->dev[i].toread = NULL;
2659                         spin_unlock_irq(&sh->stripe_lock);
2660                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2661                                 wake_up(&conf->wait_for_overlap);
2662                         while (bi && bi->bi_sector <
2663                                sh->dev[i].sector + STRIPE_SECTORS) {
2664                                 struct bio *nextbi =
2665                                         r5_next_bio(bi, sh->dev[i].sector);
2666                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2667                                 if (!raid5_dec_bi_active_stripes(bi)) {
2668                                         bi->bi_next = *return_bi;
2669                                         *return_bi = bi;
2670                                 }
2671                                 bi = nextbi;
2672                         }
2673                 }
2674                 if (bitmap_end)
2675                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2676                                         STRIPE_SECTORS, 0, 0);
2677                 /* If we were in the middle of a write the parity block might
2678                  * still be locked - so just clear all R5_LOCKED flags
2679                  */
2680                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2681         }
2682
2683         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2684                 if (atomic_dec_and_test(&conf->pending_full_writes))
2685                         md_wakeup_thread(conf->mddev->thread);
2686 }
2687
2688 static void
2689 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2690                    struct stripe_head_state *s)
2691 {
2692         int abort = 0;
2693         int i;
2694
2695         clear_bit(STRIPE_SYNCING, &sh->state);
2696         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2697                 wake_up(&conf->wait_for_overlap);
2698         s->syncing = 0;
2699         s->replacing = 0;
2700         /* There is nothing more to do for sync/check/repair.
2701          * Don't even need to abort as that is handled elsewhere
2702          * if needed, and not always wanted e.g. if there is a known
2703          * bad block here.
2704          * For recover/replace we need to record a bad block on all
2705          * non-sync devices, or abort the recovery
2706          */
2707         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2708                 /* During recovery devices cannot be removed, so
2709                  * locking and refcounting of rdevs is not needed
2710                  */
2711                 for (i = 0; i < conf->raid_disks; i++) {
2712                         struct md_rdev *rdev = conf->disks[i].rdev;
2713                         if (rdev
2714                             && !test_bit(Faulty, &rdev->flags)
2715                             && !test_bit(In_sync, &rdev->flags)
2716                             && !rdev_set_badblocks(rdev, sh->sector,
2717                                                    STRIPE_SECTORS, 0))
2718                                 abort = 1;
2719                         rdev = conf->disks[i].replacement;
2720                         if (rdev
2721                             && !test_bit(Faulty, &rdev->flags)
2722                             && !test_bit(In_sync, &rdev->flags)
2723                             && !rdev_set_badblocks(rdev, sh->sector,
2724                                                    STRIPE_SECTORS, 0))
2725                                 abort = 1;
2726                 }
2727                 if (abort)
2728                         conf->recovery_disabled =
2729                                 conf->mddev->recovery_disabled;
2730         }
2731         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2732 }
2733
2734 static int want_replace(struct stripe_head *sh, int disk_idx)
2735 {
2736         struct md_rdev *rdev;
2737         int rv = 0;
2738         /* Doing recovery so rcu locking not required */
2739         rdev = sh->raid_conf->disks[disk_idx].replacement;
2740         if (rdev
2741             && !test_bit(Faulty, &rdev->flags)
2742             && !test_bit(In_sync, &rdev->flags)
2743             && (rdev->recovery_offset <= sh->sector
2744                 || rdev->mddev->recovery_cp <= sh->sector))
2745                 rv = 1;
2746
2747         return rv;
2748 }
2749
2750 /* fetch_block - checks the given member device to see if its data needs
2751  * to be read or computed to satisfy a request.
2752  *
2753  * Returns 1 when no more member devices need to be checked, otherwise returns
2754  * 0 to tell the loop in handle_stripe_fill to continue
2755  */
2756 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2757                        int disk_idx, int disks)
2758 {
2759         struct r5dev *dev = &sh->dev[disk_idx];
2760         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2761                                   &sh->dev[s->failed_num[1]] };
2762
2763         /* is the data in this block needed, and can we get it? */
2764         if (!test_bit(R5_LOCKED, &dev->flags) &&
2765             !test_bit(R5_UPTODATE, &dev->flags) &&
2766             (dev->toread ||
2767              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2768              s->syncing || s->expanding ||
2769              (s->replacing && want_replace(sh, disk_idx)) ||
2770              (s->failed >= 1 && fdev[0]->toread) ||
2771              (s->failed >= 2 && fdev[1]->toread) ||
2772              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2773               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2774              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2775                 /* we would like to get this block, possibly by computing it,
2776                  * otherwise read it if the backing disk is insync
2777                  */
2778                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2779                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2780                 if ((s->uptodate == disks - 1) &&
2781                     (s->failed && (disk_idx == s->failed_num[0] ||
2782                                    disk_idx == s->failed_num[1]))) {
2783                         /* have disk failed, and we're requested to fetch it;
2784                          * do compute it
2785                          */
2786                         pr_debug("Computing stripe %llu block %d\n",
2787                                (unsigned long long)sh->sector, disk_idx);
2788                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2789                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2790                         set_bit(R5_Wantcompute, &dev->flags);
2791                         sh->ops.target = disk_idx;
2792                         sh->ops.target2 = -1; /* no 2nd target */
2793                         s->req_compute = 1;
2794                         /* Careful: from this point on 'uptodate' is in the eye
2795                          * of raid_run_ops which services 'compute' operations
2796                          * before writes. R5_Wantcompute flags a block that will
2797                          * be R5_UPTODATE by the time it is needed for a
2798                          * subsequent operation.
2799                          */
2800                         s->uptodate++;
2801                         return 1;
2802                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2803                         /* Computing 2-failure is *very* expensive; only
2804                          * do it if failed >= 2
2805                          */
2806                         int other;
2807                         for (other = disks; other--; ) {
2808                                 if (other == disk_idx)
2809                                         continue;
2810                                 if (!test_bit(R5_UPTODATE,
2811                                       &sh->dev[other].flags))
2812                                         break;
2813                         }
2814                         BUG_ON(other < 0);
2815                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2816                                (unsigned long long)sh->sector,
2817                                disk_idx, other);
2818                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2819                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2820                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2821                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2822                         sh->ops.target = disk_idx;
2823                         sh->ops.target2 = other;
2824                         s->uptodate += 2;
2825                         s->req_compute = 1;
2826                         return 1;
2827                 } else if (test_bit(R5_Insync, &dev->flags)) {
2828                         set_bit(R5_LOCKED, &dev->flags);
2829                         set_bit(R5_Wantread, &dev->flags);
2830                         s->locked++;
2831                         pr_debug("Reading block %d (sync=%d)\n",
2832                                 disk_idx, s->syncing);
2833                 }
2834         }
2835
2836         return 0;
2837 }
2838
2839 /**
2840  * handle_stripe_fill - read or compute data to satisfy pending requests.
2841  */
2842 static void handle_stripe_fill(struct stripe_head *sh,
2843                                struct stripe_head_state *s,
2844                                int disks)
2845 {
2846         int i;
2847
2848         /* look for blocks to read/compute, skip this if a compute
2849          * is already in flight, or if the stripe contents are in the
2850          * midst of changing due to a write
2851          */
2852         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2853             !sh->reconstruct_state)
2854                 for (i = disks; i--; )
2855                         if (fetch_block(sh, s, i, disks))
2856                                 break;
2857         set_bit(STRIPE_HANDLE, &sh->state);
2858 }
2859
2860
2861 /* handle_stripe_clean_event
2862  * any written block on an uptodate or failed drive can be returned.
2863  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2864  * never LOCKED, so we don't need to test 'failed' directly.
2865  */
2866 static void handle_stripe_clean_event(struct r5conf *conf,
2867         struct stripe_head *sh, int disks, struct bio **return_bi)
2868 {
2869         int i;
2870         struct r5dev *dev;
2871         int discard_pending = 0;
2872
2873         for (i = disks; i--; )
2874                 if (sh->dev[i].written) {
2875                         dev = &sh->dev[i];
2876                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2877                             (test_bit(R5_UPTODATE, &dev->flags) ||
2878                              test_bit(R5_Discard, &dev->flags))) {
2879                                 /* We can return any write requests */
2880                                 struct bio *wbi, *wbi2;
2881                                 pr_debug("Return write for disc %d\n", i);
2882                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2883                                         clear_bit(R5_UPTODATE, &dev->flags);
2884                                 wbi = dev->written;
2885                                 dev->written = NULL;
2886                                 while (wbi && wbi->bi_sector <
2887                                         dev->sector + STRIPE_SECTORS) {
2888                                         wbi2 = r5_next_bio(wbi, dev->sector);
2889                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2890                                                 md_write_end(conf->mddev);
2891                                                 wbi->bi_next = *return_bi;
2892                                                 *return_bi = wbi;
2893                                         }
2894                                         wbi = wbi2;
2895                                 }
2896                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2897                                                 STRIPE_SECTORS,
2898                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2899                                                 0);
2900                         } else if (test_bit(R5_Discard, &dev->flags))
2901                                 discard_pending = 1;
2902                 }
2903         if (!discard_pending &&
2904             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2905                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2906                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2907                 if (sh->qd_idx >= 0) {
2908                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2909                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2910                 }
2911                 /* now that discard is done we can proceed with any sync */
2912                 clear_bit(STRIPE_DISCARD, &sh->state);
2913                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2914                         set_bit(STRIPE_HANDLE, &sh->state);
2915
2916         }
2917
2918         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2919                 if (atomic_dec_and_test(&conf->pending_full_writes))
2920                         md_wakeup_thread(conf->mddev->thread);
2921 }
2922
2923 static void handle_stripe_dirtying(struct r5conf *conf,
2924                                    struct stripe_head *sh,
2925                                    struct stripe_head_state *s,
2926                                    int disks)
2927 {
2928         int rmw = 0, rcw = 0, i;
2929         sector_t recovery_cp = conf->mddev->recovery_cp;
2930
2931         /* RAID6 requires 'rcw' in current implementation.
2932          * Otherwise, check whether resync is now happening or should start.
2933          * If yes, then the array is dirty (after unclean shutdown or
2934          * initial creation), so parity in some stripes might be inconsistent.
2935          * In this case, we need to always do reconstruct-write, to ensure
2936          * that in case of drive failure or read-error correction, we
2937          * generate correct data from the parity.
2938          */
2939         if (conf->max_degraded == 2 ||
2940             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2941                 /* Calculate the real rcw later - for now make it
2942                  * look like rcw is cheaper
2943                  */
2944                 rcw = 1; rmw = 2;
2945                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2946                          conf->max_degraded, (unsigned long long)recovery_cp,
2947                          (unsigned long long)sh->sector);
2948         } else for (i = disks; i--; ) {
2949                 /* would I have to read this buffer for read_modify_write */
2950                 struct r5dev *dev = &sh->dev[i];
2951                 if ((dev->towrite || i == sh->pd_idx) &&
2952                     !test_bit(R5_LOCKED, &dev->flags) &&
2953                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2954                       test_bit(R5_Wantcompute, &dev->flags))) {
2955                         if (test_bit(R5_Insync, &dev->flags))
2956                                 rmw++;
2957                         else
2958                                 rmw += 2*disks;  /* cannot read it */
2959                 }
2960                 /* Would I have to read this buffer for reconstruct_write */
2961                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2962                     !test_bit(R5_LOCKED, &dev->flags) &&
2963                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2964                     test_bit(R5_Wantcompute, &dev->flags))) {
2965                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2966                         else
2967                                 rcw += 2*disks;
2968                 }
2969         }
2970         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2971                 (unsigned long long)sh->sector, rmw, rcw);
2972         set_bit(STRIPE_HANDLE, &sh->state);
2973         if (rmw < rcw && rmw > 0) {
2974                 /* prefer read-modify-write, but need to get some data */
2975                 if (conf->mddev->queue)
2976                         blk_add_trace_msg(conf->mddev->queue,
2977                                           "raid5 rmw %llu %d",
2978                                           (unsigned long long)sh->sector, rmw);
2979                 for (i = disks; i--; ) {
2980                         struct r5dev *dev = &sh->dev[i];
2981                         if ((dev->towrite || i == sh->pd_idx) &&
2982                             !test_bit(R5_LOCKED, &dev->flags) &&
2983                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2984                             test_bit(R5_Wantcompute, &dev->flags)) &&
2985                             test_bit(R5_Insync, &dev->flags)) {
2986                                 if (
2987                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2988                                         pr_debug("Read_old block "
2989                                                  "%d for r-m-w\n", i);
2990                                         set_bit(R5_LOCKED, &dev->flags);
2991                                         set_bit(R5_Wantread, &dev->flags);
2992                                         s->locked++;
2993                                 } else {
2994                                         set_bit(STRIPE_DELAYED, &sh->state);
2995                                         set_bit(STRIPE_HANDLE, &sh->state);
2996                                 }
2997                         }
2998                 }
2999         }
3000         if (rcw <= rmw && rcw > 0) {
3001                 /* want reconstruct write, but need to get some data */
3002                 int qread =0;
3003                 rcw = 0;
3004                 for (i = disks; i--; ) {
3005                         struct r5dev *dev = &sh->dev[i];
3006                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3007                             i != sh->pd_idx && i != sh->qd_idx &&
3008                             !test_bit(R5_LOCKED, &dev->flags) &&
3009                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3010                               test_bit(R5_Wantcompute, &dev->flags))) {
3011                                 rcw++;
3012                                 if (!test_bit(R5_Insync, &dev->flags))
3013                                         continue; /* it's a failed drive */
3014                                 if (
3015                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3016                                         pr_debug("Read_old block "
3017                                                 "%d for Reconstruct\n", i);
3018                                         set_bit(R5_LOCKED, &dev->flags);
3019                                         set_bit(R5_Wantread, &dev->flags);
3020                                         s->locked++;
3021                                         qread++;
3022                                 } else {
3023                                         set_bit(STRIPE_DELAYED, &sh->state);
3024                                         set_bit(STRIPE_HANDLE, &sh->state);
3025                                 }
3026                         }
3027                 }
3028                 if (rcw && conf->mddev->queue)
3029                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3030                                           (unsigned long long)sh->sector,
3031                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3032         }
3033         /* now if nothing is locked, and if we have enough data,
3034          * we can start a write request
3035          */
3036         /* since handle_stripe can be called at any time we need to handle the
3037          * case where a compute block operation has been submitted and then a
3038          * subsequent call wants to start a write request.  raid_run_ops only
3039          * handles the case where compute block and reconstruct are requested
3040          * simultaneously.  If this is not the case then new writes need to be
3041          * held off until the compute completes.
3042          */
3043         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3044             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3045             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3046                 schedule_reconstruction(sh, s, rcw == 0, 0);
3047 }
3048
3049 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3050                                 struct stripe_head_state *s, int disks)
3051 {
3052         struct r5dev *dev = NULL;
3053
3054         set_bit(STRIPE_HANDLE, &sh->state);
3055
3056         switch (sh->check_state) {
3057         case check_state_idle:
3058                 /* start a new check operation if there are no failures */
3059                 if (s->failed == 0) {
3060                         BUG_ON(s->uptodate != disks);
3061                         sh->check_state = check_state_run;
3062                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3063                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3064                         s->uptodate--;
3065                         break;
3066                 }
3067                 dev = &sh->dev[s->failed_num[0]];
3068                 /* fall through */
3069         case check_state_compute_result:
3070                 sh->check_state = check_state_idle;
3071                 if (!dev)
3072                         dev = &sh->dev[sh->pd_idx];
3073
3074                 /* check that a write has not made the stripe insync */
3075                 if (test_bit(STRIPE_INSYNC, &sh->state))
3076                         break;
3077
3078                 /* either failed parity check, or recovery is happening */
3079                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3080                 BUG_ON(s->uptodate != disks);
3081
3082                 set_bit(R5_LOCKED, &dev->flags);
3083                 s->locked++;
3084                 set_bit(R5_Wantwrite, &dev->flags);
3085
3086                 clear_bit(STRIPE_DEGRADED, &sh->state);
3087                 set_bit(STRIPE_INSYNC, &sh->state);
3088                 break;
3089         case check_state_run:
3090                 break; /* we will be called again upon completion */
3091         case check_state_check_result:
3092                 sh->check_state = check_state_idle;
3093
3094                 /* if a failure occurred during the check operation, leave
3095                  * STRIPE_INSYNC not set and let the stripe be handled again
3096                  */
3097                 if (s->failed)
3098                         break;
3099
3100                 /* handle a successful check operation, if parity is correct
3101                  * we are done.  Otherwise update the mismatch count and repair
3102                  * parity if !MD_RECOVERY_CHECK
3103                  */
3104                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3105                         /* parity is correct (on disc,
3106                          * not in buffer any more)
3107                          */
3108                         set_bit(STRIPE_INSYNC, &sh->state);
3109                 else {
3110                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3111                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3112                                 /* don't try to repair!! */
3113                                 set_bit(STRIPE_INSYNC, &sh->state);
3114                         else {
3115                                 sh->check_state = check_state_compute_run;
3116                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3117                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3118                                 set_bit(R5_Wantcompute,
3119                                         &sh->dev[sh->pd_idx].flags);
3120                                 sh->ops.target = sh->pd_idx;
3121                                 sh->ops.target2 = -1;
3122                                 s->uptodate++;
3123                         }
3124                 }
3125                 break;
3126         case check_state_compute_run:
3127                 break;
3128         default:
3129                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3130                        __func__, sh->check_state,
3131                        (unsigned long long) sh->sector);
3132                 BUG();
3133         }
3134 }
3135
3136
3137 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3138                                   struct stripe_head_state *s,
3139                                   int disks)
3140 {
3141         int pd_idx = sh->pd_idx;
3142         int qd_idx = sh->qd_idx;
3143         struct r5dev *dev;
3144
3145         set_bit(STRIPE_HANDLE, &sh->state);
3146
3147         BUG_ON(s->failed > 2);
3148
3149         /* Want to check and possibly repair P and Q.
3150          * However there could be one 'failed' device, in which
3151          * case we can only check one of them, possibly using the
3152          * other to generate missing data
3153          */
3154
3155         switch (sh->check_state) {
3156         case check_state_idle:
3157                 /* start a new check operation if there are < 2 failures */
3158                 if (s->failed == s->q_failed) {
3159                         /* The only possible failed device holds Q, so it
3160                          * makes sense to check P (If anything else were failed,
3161                          * we would have used P to recreate it).
3162                          */
3163                         sh->check_state = check_state_run;
3164                 }
3165                 if (!s->q_failed && s->failed < 2) {
3166                         /* Q is not failed, and we didn't use it to generate
3167                          * anything, so it makes sense to check it
3168                          */
3169                         if (sh->check_state == check_state_run)
3170                                 sh->check_state = check_state_run_pq;
3171                         else
3172                                 sh->check_state = check_state_run_q;
3173                 }
3174
3175                 /* discard potentially stale zero_sum_result */
3176                 sh->ops.zero_sum_result = 0;
3177
3178                 if (sh->check_state == check_state_run) {
3179                         /* async_xor_zero_sum destroys the contents of P */
3180                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3181                         s->uptodate--;
3182                 }
3183                 if (sh->check_state >= check_state_run &&
3184                     sh->check_state <= check_state_run_pq) {
3185                         /* async_syndrome_zero_sum preserves P and Q, so
3186                          * no need to mark them !uptodate here
3187                          */
3188                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3189                         break;
3190                 }
3191
3192                 /* we have 2-disk failure */
3193                 BUG_ON(s->failed != 2);
3194                 /* fall through */
3195         case check_state_compute_result:
3196                 sh->check_state = check_state_idle;
3197
3198                 /* check that a write has not made the stripe insync */
3199                 if (test_bit(STRIPE_INSYNC, &sh->state))
3200                         break;
3201
3202                 /* now write out any block on a failed drive,
3203                  * or P or Q if they were recomputed
3204                  */
3205                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3206                 if (s->failed == 2) {
3207                         dev = &sh->dev[s->failed_num[1]];
3208                         s->locked++;
3209                         set_bit(R5_LOCKED, &dev->flags);
3210                         set_bit(R5_Wantwrite, &dev->flags);
3211                 }
3212                 if (s->failed >= 1) {
3213                         dev = &sh->dev[s->failed_num[0]];
3214                         s->locked++;
3215                         set_bit(R5_LOCKED, &dev->flags);
3216                         set_bit(R5_Wantwrite, &dev->flags);
3217                 }
3218                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3219                         dev = &sh->dev[pd_idx];
3220                         s->locked++;
3221                         set_bit(R5_LOCKED, &dev->flags);
3222                         set_bit(R5_Wantwrite, &dev->flags);
3223                 }
3224                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3225                         dev = &sh->dev[qd_idx];
3226                         s->locked++;
3227                         set_bit(R5_LOCKED, &dev->flags);
3228                         set_bit(R5_Wantwrite, &dev->flags);
3229                 }
3230                 clear_bit(STRIPE_DEGRADED, &sh->state);
3231
3232                 set_bit(STRIPE_INSYNC, &sh->state);
3233                 break;
3234         case check_state_run:
3235         case check_state_run_q:
3236         case check_state_run_pq:
3237                 break; /* we will be called again upon completion */
3238         case check_state_check_result:
3239                 sh->check_state = check_state_idle;
3240
3241                 /* handle a successful check operation, if parity is correct
3242                  * we are done.  Otherwise update the mismatch count and repair
3243                  * parity if !MD_RECOVERY_CHECK
3244                  */
3245                 if (sh->ops.zero_sum_result == 0) {
3246                         /* both parities are correct */
3247                         if (!s->failed)
3248                                 set_bit(STRIPE_INSYNC, &sh->state);
3249                         else {
3250                                 /* in contrast to the raid5 case we can validate
3251                                  * parity, but still have a failure to write
3252                                  * back
3253                                  */
3254                                 sh->check_state = check_state_compute_result;
3255                                 /* Returning at this point means that we may go
3256                                  * off and bring p and/or q uptodate again so
3257                                  * we make sure to check zero_sum_result again
3258                                  * to verify if p or q need writeback
3259                                  */
3260                         }
3261                 } else {
3262                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3263                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3264                                 /* don't try to repair!! */
3265                                 set_bit(STRIPE_INSYNC, &sh->state);
3266                         else {
3267                                 int *target = &sh->ops.target;
3268
3269                                 sh->ops.target = -1;
3270                                 sh->ops.target2 = -1;
3271                                 sh->check_state = check_state_compute_run;
3272                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3273                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3274                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3275                                         set_bit(R5_Wantcompute,
3276                                                 &sh->dev[pd_idx].flags);
3277                                         *target = pd_idx;
3278                                         target = &sh->ops.target2;
3279                                         s->uptodate++;
3280                                 }
3281                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3282                                         set_bit(R5_Wantcompute,
3283                                                 &sh->dev[qd_idx].flags);
3284                                         *target = qd_idx;
3285                                         s->uptodate++;
3286                                 }
3287                         }
3288                 }
3289                 break;
3290         case check_state_compute_run:
3291                 break;
3292         default:
3293                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3294                        __func__, sh->check_state,
3295                        (unsigned long long) sh->sector);
3296                 BUG();
3297         }
3298 }
3299
3300 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3301 {
3302         int i;
3303
3304         /* We have read all the blocks in this stripe and now we need to
3305          * copy some of them into a target stripe for expand.
3306          */
3307         struct dma_async_tx_descriptor *tx = NULL;
3308         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3309         for (i = 0; i < sh->disks; i++)
3310                 if (i != sh->pd_idx && i != sh->qd_idx) {
3311                         int dd_idx, j;
3312                         struct stripe_head *sh2;
3313                         struct async_submit_ctl submit;
3314
3315                         sector_t bn = compute_blocknr(sh, i, 1);
3316                         sector_t s = raid5_compute_sector(conf, bn, 0,
3317                                                           &dd_idx, NULL);
3318                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3319                         if (sh2 == NULL)
3320                                 /* so far only the early blocks of this stripe
3321                                  * have been requested.  When later blocks
3322                                  * get requested, we will try again
3323                                  */
3324                                 continue;
3325                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3326                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3327                                 /* must have already done this block */
3328                                 release_stripe(sh2);
3329                                 continue;
3330                         }
3331
3332                         /* place all the copies on one channel */
3333                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3334                         tx = async_memcpy(sh2->dev[dd_idx].page,
3335                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3336                                           &submit);
3337
3338                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3339                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3340                         for (j = 0; j < conf->raid_disks; j++)
3341                                 if (j != sh2->pd_idx &&
3342                                     j != sh2->qd_idx &&
3343                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3344                                         break;
3345                         if (j == conf->raid_disks) {
3346                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3347                                 set_bit(STRIPE_HANDLE, &sh2->state);
3348                         }
3349                         release_stripe(sh2);
3350
3351                 }
3352         /* done submitting copies, wait for them to complete */
3353         async_tx_quiesce(&tx);
3354 }
3355
3356 /*
3357  * handle_stripe - do things to a stripe.
3358  *
3359  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3360  * state of various bits to see what needs to be done.
3361  * Possible results:
3362  *    return some read requests which now have data
3363  *    return some write requests which are safely on storage
3364  *    schedule a read on some buffers
3365  *    schedule a write of some buffers
3366  *    return confirmation of parity correctness
3367  *
3368  */
3369
3370 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3371 {
3372         struct r5conf *conf = sh->raid_conf;
3373         int disks = sh->disks;
3374         struct r5dev *dev;
3375         int i;
3376         int do_recovery = 0;
3377
3378         memset(s, 0, sizeof(*s));
3379
3380         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3381         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3382         s->failed_num[0] = -1;
3383         s->failed_num[1] = -1;
3384
3385         /* Now to look around and see what can be done */
3386         rcu_read_lock();
3387         for (i=disks; i--; ) {
3388                 struct md_rdev *rdev;
3389                 sector_t first_bad;
3390                 int bad_sectors;
3391                 int is_bad = 0;
3392
3393                 dev = &sh->dev[i];
3394
3395                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3396                          i, dev->flags,
3397                          dev->toread, dev->towrite, dev->written);
3398                 /* maybe we can reply to a read
3399                  *
3400                  * new wantfill requests are only permitted while
3401                  * ops_complete_biofill is guaranteed to be inactive
3402                  */
3403                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3404                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3405                         set_bit(R5_Wantfill, &dev->flags);
3406
3407                 /* now count some things */
3408                 if (test_bit(R5_LOCKED, &dev->flags))
3409                         s->locked++;
3410                 if (test_bit(R5_UPTODATE, &dev->flags))
3411                         s->uptodate++;
3412                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3413                         s->compute++;
3414                         BUG_ON(s->compute > 2);
3415                 }
3416
3417                 if (test_bit(R5_Wantfill, &dev->flags))
3418                         s->to_fill++;
3419                 else if (dev->toread)
3420                         s->to_read++;
3421                 if (dev->towrite) {
3422                         s->to_write++;
3423                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3424                                 s->non_overwrite++;
3425                 }
3426                 if (dev->written)
3427                         s->written++;
3428                 /* Prefer to use the replacement for reads, but only
3429                  * if it is recovered enough and has no bad blocks.
3430                  */
3431                 rdev = rcu_dereference(conf->disks[i].replacement);
3432                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3433                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3434                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3435                                  &first_bad, &bad_sectors))
3436                         set_bit(R5_ReadRepl, &dev->flags);
3437                 else {
3438                         if (rdev)
3439                                 set_bit(R5_NeedReplace, &dev->flags);
3440                         rdev = rcu_dereference(conf->disks[i].rdev);
3441                         clear_bit(R5_ReadRepl, &dev->flags);
3442                 }
3443                 if (rdev && test_bit(Faulty, &rdev->flags))
3444                         rdev = NULL;
3445                 if (rdev) {
3446                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3447                                              &first_bad, &bad_sectors);
3448                         if (s->blocked_rdev == NULL
3449                             && (test_bit(Blocked, &rdev->flags)
3450                                 || is_bad < 0)) {
3451                                 if (is_bad < 0)
3452                                         set_bit(BlockedBadBlocks,
3453                                                 &rdev->flags);
3454                                 s->blocked_rdev = rdev;
3455                                 atomic_inc(&rdev->nr_pending);
3456                         }
3457                 }
3458                 clear_bit(R5_Insync, &dev->flags);
3459                 if (!rdev)
3460                         /* Not in-sync */;
3461                 else if (is_bad) {
3462                         /* also not in-sync */
3463                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3464                             test_bit(R5_UPTODATE, &dev->flags)) {
3465                                 /* treat as in-sync, but with a read error
3466                                  * which we can now try to correct
3467                                  */
3468                                 set_bit(R5_Insync, &dev->flags);
3469                                 set_bit(R5_ReadError, &dev->flags);
3470                         }
3471                 } else if (test_bit(In_sync, &rdev->flags))
3472                         set_bit(R5_Insync, &dev->flags);
3473                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3474                         /* in sync if before recovery_offset */
3475                         set_bit(R5_Insync, &dev->flags);
3476                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3477                          test_bit(R5_Expanded, &dev->flags))
3478                         /* If we've reshaped into here, we assume it is Insync.
3479                          * We will shortly update recovery_offset to make
3480                          * it official.
3481                          */
3482                         set_bit(R5_Insync, &dev->flags);
3483
3484                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3485                         /* This flag does not apply to '.replacement'
3486                          * only to .rdev, so make sure to check that*/
3487                         struct md_rdev *rdev2 = rcu_dereference(
3488                                 conf->disks[i].rdev);
3489                         if (rdev2 == rdev)
3490                                 clear_bit(R5_Insync, &dev->flags);
3491                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3492                                 s->handle_bad_blocks = 1;
3493                                 atomic_inc(&rdev2->nr_pending);
3494                         } else
3495                                 clear_bit(R5_WriteError, &dev->flags);
3496                 }
3497                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3498                         /* This flag does not apply to '.replacement'
3499                          * only to .rdev, so make sure to check that*/
3500                         struct md_rdev *rdev2 = rcu_dereference(
3501                                 conf->disks[i].rdev);
3502                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3503                                 s->handle_bad_blocks = 1;
3504                                 atomic_inc(&rdev2->nr_pending);
3505                         } else
3506                                 clear_bit(R5_MadeGood, &dev->flags);
3507                 }
3508                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3509                         struct md_rdev *rdev2 = rcu_dereference(
3510                                 conf->disks[i].replacement);
3511                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3512                                 s->handle_bad_blocks = 1;
3513                                 atomic_inc(&rdev2->nr_pending);
3514                         } else
3515                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3516                 }
3517                 if (!test_bit(R5_Insync, &dev->flags)) {
3518                         /* The ReadError flag will just be confusing now */
3519                         clear_bit(R5_ReadError, &dev->flags);
3520                         clear_bit(R5_ReWrite, &dev->flags);
3521                 }
3522                 if (test_bit(R5_ReadError, &dev->flags))
3523                         clear_bit(R5_Insync, &dev->flags);
3524                 if (!test_bit(R5_Insync, &dev->flags)) {
3525                         if (s->failed < 2)
3526                                 s->failed_num[s->failed] = i;
3527                         s->failed++;
3528                         if (rdev && !test_bit(Faulty, &rdev->flags))
3529                                 do_recovery = 1;
3530                 }
3531         }
3532         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3533                 /* If there is a failed device being replaced,
3534                  *     we must be recovering.
3535                  * else if we are after recovery_cp, we must be syncing
3536                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3537                  * else we can only be replacing
3538                  * sync and recovery both need to read all devices, and so
3539                  * use the same flag.
3540                  */
3541                 if (do_recovery ||
3542                     sh->sector >= conf->mddev->recovery_cp ||
3543                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3544                         s->syncing = 1;
3545                 else
3546                         s->replacing = 1;
3547         }
3548         rcu_read_unlock();
3549 }
3550
3551 static void handle_stripe(struct stripe_head *sh)
3552 {
3553         struct stripe_head_state s;
3554         struct r5conf *conf = sh->raid_conf;
3555         int i;
3556         int prexor;
3557         int disks = sh->disks;
3558         struct r5dev *pdev, *qdev;
3559
3560         clear_bit(STRIPE_HANDLE, &sh->state);
3561         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3562                 /* already being handled, ensure it gets handled
3563                  * again when current action finishes */
3564                 set_bit(STRIPE_HANDLE, &sh->state);
3565                 return;
3566         }
3567
3568         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3569                 spin_lock(&sh->stripe_lock);
3570                 /* Cannot process 'sync' concurrently with 'discard' */
3571                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3572                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3573                         set_bit(STRIPE_SYNCING, &sh->state);
3574                         clear_bit(STRIPE_INSYNC, &sh->state);
3575                         clear_bit(STRIPE_REPLACED, &sh->state);
3576                 }
3577                 spin_unlock(&sh->stripe_lock);
3578         }
3579         clear_bit(STRIPE_DELAYED, &sh->state);
3580
3581         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3582                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3583                (unsigned long long)sh->sector, sh->state,
3584                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3585                sh->check_state, sh->reconstruct_state);
3586
3587         analyse_stripe(sh, &s);
3588
3589         if (s.handle_bad_blocks) {
3590                 set_bit(STRIPE_HANDLE, &sh->state);
3591                 goto finish;
3592         }
3593
3594         if (unlikely(s.blocked_rdev)) {
3595                 if (s.syncing || s.expanding || s.expanded ||
3596                     s.replacing || s.to_write || s.written) {
3597                         set_bit(STRIPE_HANDLE, &sh->state);
3598                         goto finish;
3599                 }
3600                 /* There is nothing for the blocked_rdev to block */
3601                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3602                 s.blocked_rdev = NULL;
3603         }
3604
3605         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3606                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3607                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3608         }
3609
3610         pr_debug("locked=%d uptodate=%d to_read=%d"
3611                " to_write=%d failed=%d failed_num=%d,%d\n",
3612                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3613                s.failed_num[0], s.failed_num[1]);
3614         /* check if the array has lost more than max_degraded devices and,
3615          * if so, some requests might need to be failed.
3616          */
3617         if (s.failed > conf->max_degraded) {
3618                 sh->check_state = 0;
3619                 sh->reconstruct_state = 0;
3620                 if (s.to_read+s.to_write+s.written)
3621                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3622                 if (s.syncing + s.replacing)
3623                         handle_failed_sync(conf, sh, &s);
3624         }
3625
3626         /* Now we check to see if any write operations have recently
3627          * completed
3628          */
3629         prexor = 0;
3630         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3631                 prexor = 1;
3632         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3633             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3634                 sh->reconstruct_state = reconstruct_state_idle;
3635
3636                 /* All the 'written' buffers and the parity block are ready to
3637                  * be written back to disk
3638                  */
3639                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3640                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3641                 BUG_ON(sh->qd_idx >= 0 &&
3642                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3643                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3644                 for (i = disks; i--; ) {
3645                         struct r5dev *dev = &sh->dev[i];
3646                         if (test_bit(R5_LOCKED, &dev->flags) &&
3647                                 (i == sh->pd_idx || i == sh->qd_idx ||
3648                                  dev->written)) {
3649                                 pr_debug("Writing block %d\n", i);
3650                                 set_bit(R5_Wantwrite, &dev->flags);
3651                                 if (prexor)
3652                                         continue;
3653                                 if (!test_bit(R5_Insync, &dev->flags) ||
3654                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3655                                      s.failed == 0))
3656                                         set_bit(STRIPE_INSYNC, &sh->state);
3657                         }
3658                 }
3659                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3660                         s.dec_preread_active = 1;
3661         }
3662
3663         /*
3664          * might be able to return some write requests if the parity blocks
3665          * are safe, or on a failed drive
3666          */
3667         pdev = &sh->dev[sh->pd_idx];
3668         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3669                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3670         qdev = &sh->dev[sh->qd_idx];
3671         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3672                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3673                 || conf->level < 6;
3674
3675         if (s.written &&
3676             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3677                              && !test_bit(R5_LOCKED, &pdev->flags)
3678                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3679                                  test_bit(R5_Discard, &pdev->flags))))) &&
3680             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3681                              && !test_bit(R5_LOCKED, &qdev->flags)
3682                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3683                                  test_bit(R5_Discard, &qdev->flags))))))
3684                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3685
3686         /* Now we might consider reading some blocks, either to check/generate
3687          * parity, or to satisfy requests
3688          * or to load a block that is being partially written.
3689          */
3690         if (s.to_read || s.non_overwrite
3691             || (conf->level == 6 && s.to_write && s.failed)
3692             || (s.syncing && (s.uptodate + s.compute < disks))
3693             || s.replacing
3694             || s.expanding)
3695                 handle_stripe_fill(sh, &s, disks);
3696
3697         /* Now to consider new write requests and what else, if anything
3698          * should be read.  We do not handle new writes when:
3699          * 1/ A 'write' operation (copy+xor) is already in flight.
3700          * 2/ A 'check' operation is in flight, as it may clobber the parity
3701          *    block.
3702          */
3703         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3704                 handle_stripe_dirtying(conf, sh, &s, disks);
3705
3706         /* maybe we need to check and possibly fix the parity for this stripe
3707          * Any reads will already have been scheduled, so we just see if enough
3708          * data is available.  The parity check is held off while parity
3709          * dependent operations are in flight.
3710          */
3711         if (sh->check_state ||
3712             (s.syncing && s.locked == 0 &&
3713              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3714              !test_bit(STRIPE_INSYNC, &sh->state))) {
3715                 if (conf->level == 6)
3716                         handle_parity_checks6(conf, sh, &s, disks);
3717                 else
3718                         handle_parity_checks5(conf, sh, &s, disks);
3719         }
3720
3721         if ((s.replacing || s.syncing) && s.locked == 0
3722             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3723             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3724                 /* Write out to replacement devices where possible */
3725                 for (i = 0; i < conf->raid_disks; i++)
3726                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3727                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3728                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3729                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3730                                 s.locked++;
3731                         }
3732                 if (s.replacing)
3733                         set_bit(STRIPE_INSYNC, &sh->state);
3734                 set_bit(STRIPE_REPLACED, &sh->state);
3735         }
3736         if ((s.syncing || s.replacing) && s.locked == 0 &&
3737             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3738             test_bit(STRIPE_INSYNC, &sh->state)) {
3739                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3740                 clear_bit(STRIPE_SYNCING, &sh->state);
3741                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3742                         wake_up(&conf->wait_for_overlap);
3743         }
3744
3745         /* If the failed drives are just a ReadError, then we might need
3746          * to progress the repair/check process
3747          */
3748         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3749                 for (i = 0; i < s.failed; i++) {
3750                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3751                         if (test_bit(R5_ReadError, &dev->flags)
3752                             && !test_bit(R5_LOCKED, &dev->flags)
3753                             && test_bit(R5_UPTODATE, &dev->flags)
3754                                 ) {
3755                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3756                                         set_bit(R5_Wantwrite, &dev->flags);
3757                                         set_bit(R5_ReWrite, &dev->flags);
3758                                         set_bit(R5_LOCKED, &dev->flags);
3759                                         s.locked++;
3760                                 } else {
3761                                         /* let's read it back */
3762                                         set_bit(R5_Wantread, &dev->flags);
3763                                         set_bit(R5_LOCKED, &dev->flags);
3764                                         s.locked++;
3765                                 }
3766                         }
3767                 }
3768
3769
3770         /* Finish reconstruct operations initiated by the expansion process */
3771         if (sh->reconstruct_state == reconstruct_state_result) {
3772                 struct stripe_head *sh_src
3773                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3774                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3775                         /* sh cannot be written until sh_src has been read.
3776                          * so arrange for sh to be delayed a little
3777                          */
3778                         set_bit(STRIPE_DELAYED, &sh->state);
3779                         set_bit(STRIPE_HANDLE, &sh->state);
3780                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3781                                               &sh_src->state))
3782                                 atomic_inc(&conf->preread_active_stripes);
3783                         release_stripe(sh_src);
3784                         goto finish;
3785                 }
3786                 if (sh_src)
3787                         release_stripe(sh_src);
3788
3789                 sh->reconstruct_state = reconstruct_state_idle;
3790                 clear_bit(STRIPE_EXPANDING, &sh->state);
3791                 for (i = conf->raid_disks; i--; ) {
3792                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3793                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3794                         s.locked++;
3795                 }
3796         }
3797
3798         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3799             !sh->reconstruct_state) {
3800                 /* Need to write out all blocks after computing parity */
3801                 sh->disks = conf->raid_disks;
3802                 stripe_set_idx(sh->sector, conf, 0, sh);
3803                 schedule_reconstruction(sh, &s, 1, 1);
3804         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3805                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3806                 atomic_dec(&conf->reshape_stripes);
3807                 wake_up(&conf->wait_for_overlap);
3808                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3809         }
3810
3811         if (s.expanding && s.locked == 0 &&
3812             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3813                 handle_stripe_expansion(conf, sh);
3814
3815 finish:
3816         /* wait for this device to become unblocked */
3817         if (unlikely(s.blocked_rdev)) {
3818                 if (conf->mddev->external)
3819                         md_wait_for_blocked_rdev(s.blocked_rdev,
3820                                                  conf->mddev);
3821                 else
3822                         /* Internal metadata will immediately
3823                          * be written by raid5d, so we don't
3824                          * need to wait here.
3825                          */
3826                         rdev_dec_pending(s.blocked_rdev,
3827                                          conf->mddev);
3828         }
3829
3830         if (s.handle_bad_blocks)
3831                 for (i = disks; i--; ) {
3832                         struct md_rdev *rdev;
3833                         struct r5dev *dev = &sh->dev[i];
3834                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3835                                 /* We own a safe reference to the rdev */
3836                                 rdev = conf->disks[i].rdev;
3837                                 if (!rdev_set_badblocks(rdev, sh->sector,
3838                                                         STRIPE_SECTORS, 0))
3839                                         md_error(conf->mddev, rdev);
3840                                 rdev_dec_pending(rdev, conf->mddev);
3841                         }
3842                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3843                                 rdev = conf->disks[i].rdev;
3844                                 rdev_clear_badblocks(rdev, sh->sector,
3845                                                      STRIPE_SECTORS, 0);
3846                                 rdev_dec_pending(rdev, conf->mddev);
3847                         }
3848                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3849                                 rdev = conf->disks[i].replacement;
3850                                 if (!rdev)
3851                                         /* rdev have been moved down */
3852                                         rdev = conf->disks[i].rdev;
3853                                 rdev_clear_badblocks(rdev, sh->sector,
3854                                                      STRIPE_SECTORS, 0);
3855                                 rdev_dec_pending(rdev, conf->mddev);
3856                         }
3857                 }
3858
3859         if (s.ops_request)
3860                 raid_run_ops(sh, s.ops_request);
3861
3862         ops_run_io(sh, &s);
3863
3864         if (s.dec_preread_active) {
3865                 /* We delay this until after ops_run_io so that if make_request
3866                  * is waiting on a flush, it won't continue until the writes
3867                  * have actually been submitted.
3868                  */
3869                 atomic_dec(&conf->preread_active_stripes);
3870                 if (atomic_read(&conf->preread_active_stripes) <
3871                     IO_THRESHOLD)
3872                         md_wakeup_thread(conf->mddev->thread);
3873         }
3874
3875         return_io(s.return_bi);
3876
3877         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3878 }
3879
3880 static void raid5_activate_delayed(struct r5conf *conf)
3881 {
3882         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3883                 while (!list_empty(&conf->delayed_list)) {
3884                         struct list_head *l = conf->delayed_list.next;
3885                         struct stripe_head *sh;
3886                         sh = list_entry(l, struct stripe_head, lru);
3887                         list_del_init(l);
3888                         clear_bit(STRIPE_DELAYED, &sh->state);
3889                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3890                                 atomic_inc(&conf->preread_active_stripes);
3891                         list_add_tail(&sh->lru, &conf->hold_list);
3892                         raid5_wakeup_stripe_thread(sh);
3893                 }
3894         }
3895 }
3896
3897 static void activate_bit_delay(struct r5conf *conf)
3898 {
3899         /* device_lock is held */
3900         struct list_head head;
3901         list_add(&head, &conf->bitmap_list);
3902         list_del_init(&conf->bitmap_list);
3903         while (!list_empty(&head)) {
3904                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3905                 list_del_init(&sh->lru);
3906                 atomic_inc(&sh->count);
3907                 __release_stripe(conf, sh);
3908         }
3909 }
3910
3911 int md_raid5_congested(struct mddev *mddev, int bits)
3912 {
3913         struct r5conf *conf = mddev->private;
3914
3915         /* No difference between reads and writes.  Just check
3916          * how busy the stripe_cache is
3917          */
3918
3919         if (conf->inactive_blocked)
3920                 return 1;
3921         if (conf->quiesce)
3922                 return 1;
3923         if (list_empty_careful(&conf->inactive_list))
3924                 return 1;
3925
3926         return 0;
3927 }
3928 EXPORT_SYMBOL_GPL(md_raid5_congested);
3929
3930 static int raid5_congested(void *data, int bits)
3931 {
3932         struct mddev *mddev = data;
3933
3934         return mddev_congested(mddev, bits) ||
3935                 md_raid5_congested(mddev, bits);
3936 }
3937
3938 /* We want read requests to align with chunks where possible,
3939  * but write requests don't need to.
3940  */
3941 static int raid5_mergeable_bvec(struct request_queue *q,
3942                                 struct bvec_merge_data *bvm,
3943                                 struct bio_vec *biovec)
3944 {
3945         struct mddev *mddev = q->queuedata;
3946         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3947         int max;
3948         unsigned int chunk_sectors = mddev->chunk_sectors;
3949         unsigned int bio_sectors = bvm->bi_size >> 9;
3950
3951         if ((bvm->bi_rw & 1) == WRITE)
3952                 return biovec->bv_len; /* always allow writes to be mergeable */
3953
3954         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3955                 chunk_sectors = mddev->new_chunk_sectors;
3956         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3957         if (max < 0) max = 0;
3958         if (max <= biovec->bv_len && bio_sectors == 0)
3959                 return biovec->bv_len;
3960         else
3961                 return max;
3962 }
3963
3964
3965 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3966 {
3967         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3968         unsigned int chunk_sectors = mddev->chunk_sectors;
3969         unsigned int bio_sectors = bio_sectors(bio);
3970
3971         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3972                 chunk_sectors = mddev->new_chunk_sectors;
3973         return  chunk_sectors >=
3974                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3975 }
3976
3977 /*
3978  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3979  *  later sampled by raid5d.
3980  */
3981 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3982 {
3983         unsigned long flags;
3984
3985         spin_lock_irqsave(&conf->device_lock, flags);
3986
3987         bi->bi_next = conf->retry_read_aligned_list;
3988         conf->retry_read_aligned_list = bi;
3989
3990         spin_unlock_irqrestore(&conf->device_lock, flags);
3991         md_wakeup_thread(conf->mddev->thread);
3992 }
3993
3994
3995 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3996 {
3997         struct bio *bi;
3998
3999         bi = conf->retry_read_aligned;
4000         if (bi) {
4001                 conf->retry_read_aligned = NULL;
4002                 return bi;
4003         }
4004         bi = conf->retry_read_aligned_list;
4005         if(bi) {
4006                 conf->retry_read_aligned_list = bi->bi_next;
4007                 bi->bi_next = NULL;
4008                 /*
4009                  * this sets the active strip count to 1 and the processed
4010                  * strip count to zero (upper 8 bits)
4011                  */
4012                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4013         }
4014
4015         return bi;
4016 }
4017
4018
4019 /*
4020  *  The "raid5_align_endio" should check if the read succeeded and if it
4021  *  did, call bio_endio on the original bio (having bio_put the new bio
4022  *  first).
4023  *  If the read failed..
4024  */
4025 static void raid5_align_endio(struct bio *bi, int error)
4026 {
4027         struct bio* raid_bi  = bi->bi_private;
4028         struct mddev *mddev;
4029         struct r5conf *conf;
4030         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4031         struct md_rdev *rdev;
4032
4033         bio_put(bi);
4034
4035         rdev = (void*)raid_bi->bi_next;
4036         raid_bi->bi_next = NULL;
4037         mddev = rdev->mddev;
4038         conf = mddev->private;
4039
4040         rdev_dec_pending(rdev, conf->mddev);
4041
4042         if (!error && uptodate) {
4043                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4044                                          raid_bi, 0);
4045                 bio_endio(raid_bi, 0);
4046                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4047                         wake_up(&conf->wait_for_stripe);
4048                 return;
4049         }
4050
4051
4052         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4053
4054         add_bio_to_retry(raid_bi, conf);
4055 }
4056
4057 static int bio_fits_rdev(struct bio *bi)
4058 {
4059         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4060
4061         if (bio_sectors(bi) > queue_max_sectors(q))
4062                 return 0;
4063         blk_recount_segments(q, bi);
4064         if (bi->bi_phys_segments > queue_max_segments(q))
4065                 return 0;
4066
4067         if (q->merge_bvec_fn)
4068                 /* it's too hard to apply the merge_bvec_fn at this stage,
4069                  * just just give up
4070                  */
4071                 return 0;
4072
4073         return 1;
4074 }
4075
4076
4077 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4078 {
4079         struct r5conf *conf = mddev->private;
4080         int dd_idx;
4081         struct bio* align_bi;
4082         struct md_rdev *rdev;
4083         sector_t end_sector;
4084
4085         if (!in_chunk_boundary(mddev, raid_bio)) {
4086                 pr_debug("chunk_aligned_read : non aligned\n");
4087                 return 0;
4088         }
4089         /*
4090          * use bio_clone_mddev to make a copy of the bio
4091          */
4092         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4093         if (!align_bi)
4094                 return 0;
4095         /*
4096          *   set bi_end_io to a new function, and set bi_private to the
4097          *     original bio.
4098          */
4099         align_bi->bi_end_io  = raid5_align_endio;
4100         align_bi->bi_private = raid_bio;
4101         /*
4102          *      compute position
4103          */
4104         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
4105                                                     0,
4106                                                     &dd_idx, NULL);
4107
4108         end_sector = bio_end_sector(align_bi);
4109         rcu_read_lock();
4110         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4111         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4112             rdev->recovery_offset < end_sector) {
4113                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4114                 if (rdev &&
4115                     (test_bit(Faulty, &rdev->flags) ||
4116                     !(test_bit(In_sync, &rdev->flags) ||
4117                       rdev->recovery_offset >= end_sector)))
4118                         rdev = NULL;
4119         }
4120         if (rdev) {
4121                 sector_t first_bad;
4122                 int bad_sectors;
4123
4124                 atomic_inc(&rdev->nr_pending);
4125                 rcu_read_unlock();
4126                 raid_bio->bi_next = (void*)rdev;
4127                 align_bi->bi_bdev =  rdev->bdev;
4128                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4129
4130                 if (!bio_fits_rdev(align_bi) ||
4131                     is_badblock(rdev, align_bi->bi_sector, bio_sectors(align_bi),
4132                                 &first_bad, &bad_sectors)) {
4133                         /* too big in some way, or has a known bad block */
4134                         bio_put(align_bi);
4135                         rdev_dec_pending(rdev, mddev);
4136                         return 0;
4137                 }
4138
4139                 /* No reshape active, so we can trust rdev->data_offset */
4140                 align_bi->bi_sector += rdev->data_offset;
4141
4142                 spin_lock_irq(&conf->device_lock);
4143                 wait_event_lock_irq(conf->wait_for_stripe,
4144                                     conf->quiesce == 0,
4145                                     conf->device_lock);
4146                 atomic_inc(&conf->active_aligned_reads);
4147                 spin_unlock_irq(&conf->device_lock);
4148
4149                 if (mddev->gendisk)
4150                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4151                                               align_bi, disk_devt(mddev->gendisk),
4152                                               raid_bio->bi_sector);
4153                 generic_make_request(align_bi);
4154                 return 1;
4155         } else {
4156                 rcu_read_unlock();
4157                 bio_put(align_bi);
4158                 return 0;
4159         }
4160 }
4161
4162 /* __get_priority_stripe - get the next stripe to process
4163  *
4164  * Full stripe writes are allowed to pass preread active stripes up until
4165  * the bypass_threshold is exceeded.  In general the bypass_count
4166  * increments when the handle_list is handled before the hold_list; however, it
4167  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4168  * stripe with in flight i/o.  The bypass_count will be reset when the
4169  * head of the hold_list has changed, i.e. the head was promoted to the
4170  * handle_list.
4171  */
4172 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4173 {
4174         struct stripe_head *sh = NULL, *tmp;
4175         struct list_head *handle_list = NULL;
4176         struct r5worker_group *wg = NULL;
4177
4178         if (conf->worker_cnt_per_group == 0) {
4179                 handle_list = &conf->handle_list;
4180         } else if (group != ANY_GROUP) {
4181                 handle_list = &conf->worker_groups[group].handle_list;
4182                 wg = &conf->worker_groups[group];
4183         } else {
4184                 int i;
4185                 for (i = 0; i < conf->group_cnt; i++) {
4186                         handle_list = &conf->worker_groups[i].handle_list;
4187                         wg = &conf->worker_groups[i];
4188                         if (!list_empty(handle_list))
4189                                 break;
4190                 }
4191         }
4192
4193         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4194                   __func__,
4195                   list_empty(handle_list) ? "empty" : "busy",
4196                   list_empty(&conf->hold_list) ? "empty" : "busy",
4197                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4198
4199         if (!list_empty(handle_list)) {
4200                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4201
4202                 if (list_empty(&conf->hold_list))
4203                         conf->bypass_count = 0;
4204                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4205                         if (conf->hold_list.next == conf->last_hold)
4206                                 conf->bypass_count++;
4207                         else {
4208                                 conf->last_hold = conf->hold_list.next;
4209                                 conf->bypass_count -= conf->bypass_threshold;
4210                                 if (conf->bypass_count < 0)
4211                                         conf->bypass_count = 0;
4212                         }
4213                 }
4214         } else if (!list_empty(&conf->hold_list) &&
4215                    ((conf->bypass_threshold &&
4216                      conf->bypass_count > conf->bypass_threshold) ||
4217                     atomic_read(&conf->pending_full_writes) == 0)) {
4218
4219                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4220                         if (conf->worker_cnt_per_group == 0 ||
4221                             group == ANY_GROUP ||
4222                             !cpu_online(tmp->cpu) ||
4223                             cpu_to_group(tmp->cpu) == group) {
4224                                 sh = tmp;
4225                                 break;
4226                         }
4227                 }
4228
4229                 if (sh) {
4230                         conf->bypass_count -= conf->bypass_threshold;
4231                         if (conf->bypass_count < 0)
4232                                 conf->bypass_count = 0;
4233                 }
4234                 wg = NULL;
4235         }
4236
4237         if (!sh)
4238                 return NULL;
4239
4240         if (wg) {
4241                 wg->stripes_cnt--;
4242                 sh->group = NULL;
4243         }
4244         list_del_init(&sh->lru);
4245         atomic_inc(&sh->count);
4246         BUG_ON(atomic_read(&sh->count) != 1);
4247         return sh;
4248 }
4249
4250 struct raid5_plug_cb {
4251         struct blk_plug_cb      cb;
4252         struct list_head        list;
4253 };
4254
4255 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4256 {
4257         struct raid5_plug_cb *cb = container_of(
4258                 blk_cb, struct raid5_plug_cb, cb);
4259         struct stripe_head *sh;
4260         struct mddev *mddev = cb->cb.data;
4261         struct r5conf *conf = mddev->private;
4262         int cnt = 0;
4263
4264         if (cb->list.next && !list_empty(&cb->list)) {
4265                 spin_lock_irq(&conf->device_lock);
4266                 while (!list_empty(&cb->list)) {
4267                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4268                         list_del_init(&sh->lru);
4269                         /*
4270                          * avoid race release_stripe_plug() sees
4271                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4272                          * is still in our list
4273                          */
4274                         smp_mb__before_clear_bit();
4275                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4276                         /*
4277                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4278                          * case, the count is always > 1 here
4279                          */
4280                         __release_stripe(conf, sh);
4281                         cnt++;
4282                 }
4283                 spin_unlock_irq(&conf->device_lock);
4284         }
4285         if (mddev->queue)
4286                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4287         kfree(cb);
4288 }
4289
4290 static void release_stripe_plug(struct mddev *mddev,
4291                                 struct stripe_head *sh)
4292 {
4293         struct blk_plug_cb *blk_cb = blk_check_plugged(
4294                 raid5_unplug, mddev,
4295                 sizeof(struct raid5_plug_cb));
4296         struct raid5_plug_cb *cb;
4297
4298         if (!blk_cb) {
4299                 release_stripe(sh);
4300                 return;
4301         }
4302
4303         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4304
4305         if (cb->list.next == NULL)
4306                 INIT_LIST_HEAD(&cb->list);
4307
4308         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4309                 list_add_tail(&sh->lru, &cb->list);
4310         else
4311                 release_stripe(sh);
4312 }
4313
4314 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4315 {
4316         struct r5conf *conf = mddev->private;
4317         sector_t logical_sector, last_sector;
4318         struct stripe_head *sh;
4319         int remaining;
4320         int stripe_sectors;
4321
4322         if (mddev->reshape_position != MaxSector)
4323                 /* Skip discard while reshape is happening */
4324                 return;
4325
4326         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4327         last_sector = bi->bi_sector + (bi->bi_size>>9);
4328
4329         bi->bi_next = NULL;
4330         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4331
4332         stripe_sectors = conf->chunk_sectors *
4333                 (conf->raid_disks - conf->max_degraded);
4334         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4335                                                stripe_sectors);
4336         sector_div(last_sector, stripe_sectors);
4337
4338         logical_sector *= conf->chunk_sectors;
4339         last_sector *= conf->chunk_sectors;
4340
4341         for (; logical_sector < last_sector;
4342              logical_sector += STRIPE_SECTORS) {
4343                 DEFINE_WAIT(w);
4344                 int d;
4345         again:
4346                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4347                 prepare_to_wait(&conf->wait_for_overlap, &w,
4348                                 TASK_UNINTERRUPTIBLE);
4349                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4350                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4351                         release_stripe(sh);
4352                         schedule();
4353                         goto again;
4354                 }
4355                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4356                 spin_lock_irq(&sh->stripe_lock);
4357                 for (d = 0; d < conf->raid_disks; d++) {
4358                         if (d == sh->pd_idx || d == sh->qd_idx)
4359                                 continue;
4360                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4361                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4362                                 spin_unlock_irq(&sh->stripe_lock);
4363                                 release_stripe(sh);
4364                                 schedule();
4365                                 goto again;
4366                         }
4367                 }
4368                 set_bit(STRIPE_DISCARD, &sh->state);
4369                 finish_wait(&conf->wait_for_overlap, &w);
4370                 for (d = 0; d < conf->raid_disks; d++) {
4371                         if (d == sh->pd_idx || d == sh->qd_idx)
4372                                 continue;
4373                         sh->dev[d].towrite = bi;
4374                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4375                         raid5_inc_bi_active_stripes(bi);
4376                 }
4377                 spin_unlock_irq(&sh->stripe_lock);
4378                 if (conf->mddev->bitmap) {
4379                         for (d = 0;
4380                              d < conf->raid_disks - conf->max_degraded;
4381                              d++)
4382                                 bitmap_startwrite(mddev->bitmap,
4383                                                   sh->sector,
4384                                                   STRIPE_SECTORS,
4385                                                   0);
4386                         sh->bm_seq = conf->seq_flush + 1;
4387                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4388                 }
4389
4390                 set_bit(STRIPE_HANDLE, &sh->state);
4391                 clear_bit(STRIPE_DELAYED, &sh->state);
4392                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4393                         atomic_inc(&conf->preread_active_stripes);
4394                 release_stripe_plug(mddev, sh);
4395         }
4396
4397         remaining = raid5_dec_bi_active_stripes(bi);
4398         if (remaining == 0) {
4399                 md_write_end(mddev);
4400                 bio_endio(bi, 0);
4401         }
4402 }
4403
4404 static void make_request(struct mddev *mddev, struct bio * bi)
4405 {
4406         struct r5conf *conf = mddev->private;
4407         int dd_idx;
4408         sector_t new_sector;
4409         sector_t logical_sector, last_sector;
4410         struct stripe_head *sh;
4411         const int rw = bio_data_dir(bi);
4412         int remaining;
4413
4414         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4415                 md_flush_request(mddev, bi);
4416                 return;
4417         }
4418
4419         md_write_start(mddev, bi);
4420
4421         if (rw == READ &&
4422              mddev->reshape_position == MaxSector &&
4423              chunk_aligned_read(mddev,bi))
4424                 return;
4425
4426         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4427                 make_discard_request(mddev, bi);
4428                 return;
4429         }
4430
4431         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4432         last_sector = bio_end_sector(bi);
4433         bi->bi_next = NULL;
4434         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4435
4436         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4437                 DEFINE_WAIT(w);
4438                 int previous;
4439                 int seq;
4440
4441         retry:
4442                 seq = read_seqcount_begin(&conf->gen_lock);
4443                 previous = 0;
4444                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4445                 if (unlikely(conf->reshape_progress != MaxSector)) {
4446                         /* spinlock is needed as reshape_progress may be
4447                          * 64bit on a 32bit platform, and so it might be
4448                          * possible to see a half-updated value
4449                          * Of course reshape_progress could change after
4450                          * the lock is dropped, so once we get a reference
4451                          * to the stripe that we think it is, we will have
4452                          * to check again.
4453                          */
4454                         spin_lock_irq(&conf->device_lock);
4455                         if (mddev->reshape_backwards
4456                             ? logical_sector < conf->reshape_progress
4457                             : logical_sector >= conf->reshape_progress) {
4458                                 previous = 1;
4459                         } else {
4460                                 if (mddev->reshape_backwards
4461                                     ? logical_sector < conf->reshape_safe
4462                                     : logical_sector >= conf->reshape_safe) {
4463                                         spin_unlock_irq(&conf->device_lock);
4464                                         schedule();
4465                                         goto retry;
4466                                 }
4467                         }
4468                         spin_unlock_irq(&conf->device_lock);
4469                 }
4470
4471                 new_sector = raid5_compute_sector(conf, logical_sector,
4472                                                   previous,
4473                                                   &dd_idx, NULL);
4474                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4475                         (unsigned long long)new_sector,
4476                         (unsigned long long)logical_sector);
4477
4478                 sh = get_active_stripe(conf, new_sector, previous,
4479                                        (bi->bi_rw&RWA_MASK), 0);
4480                 if (sh) {
4481                         if (unlikely(previous)) {
4482                                 /* expansion might have moved on while waiting for a
4483                                  * stripe, so we must do the range check again.
4484                                  * Expansion could still move past after this
4485                                  * test, but as we are holding a reference to
4486                                  * 'sh', we know that if that happens,
4487                                  *  STRIPE_EXPANDING will get set and the expansion
4488                                  * won't proceed until we finish with the stripe.
4489                                  */
4490                                 int must_retry = 0;
4491                                 spin_lock_irq(&conf->device_lock);
4492                                 if (mddev->reshape_backwards
4493                                     ? logical_sector >= conf->reshape_progress
4494                                     : logical_sector < conf->reshape_progress)
4495                                         /* mismatch, need to try again */
4496                                         must_retry = 1;
4497                                 spin_unlock_irq(&conf->device_lock);
4498                                 if (must_retry) {
4499                                         release_stripe(sh);
4500                                         schedule();
4501                                         goto retry;
4502                                 }
4503                         }
4504                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4505                                 /* Might have got the wrong stripe_head
4506                                  * by accident
4507                                  */
4508                                 release_stripe(sh);
4509                                 goto retry;
4510                         }
4511
4512                         if (rw == WRITE &&
4513                             logical_sector >= mddev->suspend_lo &&
4514                             logical_sector < mddev->suspend_hi) {
4515                                 release_stripe(sh);
4516                                 /* As the suspend_* range is controlled by
4517                                  * userspace, we want an interruptible
4518                                  * wait.
4519                                  */
4520                                 flush_signals(current);
4521                                 prepare_to_wait(&conf->wait_for_overlap,
4522                                                 &w, TASK_INTERRUPTIBLE);
4523                                 if (logical_sector >= mddev->suspend_lo &&
4524                                     logical_sector < mddev->suspend_hi)
4525                                         schedule();
4526                                 goto retry;
4527                         }
4528
4529                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4530                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4531                                 /* Stripe is busy expanding or
4532                                  * add failed due to overlap.  Flush everything
4533                                  * and wait a while
4534                                  */
4535                                 md_wakeup_thread(mddev->thread);
4536                                 release_stripe(sh);
4537                                 schedule();
4538                                 goto retry;
4539                         }
4540                         finish_wait(&conf->wait_for_overlap, &w);
4541                         set_bit(STRIPE_HANDLE, &sh->state);
4542                         clear_bit(STRIPE_DELAYED, &sh->state);
4543                         if ((bi->bi_rw & REQ_SYNC) &&
4544                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4545                                 atomic_inc(&conf->preread_active_stripes);
4546                         release_stripe_plug(mddev, sh);
4547                 } else {
4548                         /* cannot get stripe for read-ahead, just give-up */
4549                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4550                         finish_wait(&conf->wait_for_overlap, &w);
4551                         break;
4552                 }
4553         }
4554
4555         remaining = raid5_dec_bi_active_stripes(bi);
4556         if (remaining == 0) {
4557
4558                 if ( rw == WRITE )
4559                         md_write_end(mddev);
4560
4561                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4562                                          bi, 0);
4563                 bio_endio(bi, 0);
4564         }
4565 }
4566
4567 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4568
4569 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4570 {
4571         /* reshaping is quite different to recovery/resync so it is
4572          * handled quite separately ... here.
4573          *
4574          * On each call to sync_request, we gather one chunk worth of
4575          * destination stripes and flag them as expanding.
4576          * Then we find all the source stripes and request reads.
4577          * As the reads complete, handle_stripe will copy the data
4578          * into the destination stripe and release that stripe.
4579          */
4580         struct r5conf *conf = mddev->private;
4581         struct stripe_head *sh;
4582         sector_t first_sector, last_sector;
4583         int raid_disks = conf->previous_raid_disks;
4584         int data_disks = raid_disks - conf->max_degraded;
4585         int new_data_disks = conf->raid_disks - conf->max_degraded;
4586         int i;
4587         int dd_idx;
4588         sector_t writepos, readpos, safepos;
4589         sector_t stripe_addr;
4590         int reshape_sectors;
4591         struct list_head stripes;
4592
4593         if (sector_nr == 0) {
4594                 /* If restarting in the middle, skip the initial sectors */
4595                 if (mddev->reshape_backwards &&
4596                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4597                         sector_nr = raid5_size(mddev, 0, 0)
4598                                 - conf->reshape_progress;
4599                 } else if (!mddev->reshape_backwards &&
4600                            conf->reshape_progress > 0)
4601                         sector_nr = conf->reshape_progress;
4602                 sector_div(sector_nr, new_data_disks);
4603                 if (sector_nr) {
4604                         mddev->curr_resync_completed = sector_nr;
4605                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4606                         *skipped = 1;
4607                         return sector_nr;
4608                 }
4609         }
4610
4611         /* We need to process a full chunk at a time.
4612          * If old and new chunk sizes differ, we need to process the
4613          * largest of these
4614          */
4615         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4616                 reshape_sectors = mddev->new_chunk_sectors;
4617         else
4618                 reshape_sectors = mddev->chunk_sectors;
4619
4620         /* We update the metadata at least every 10 seconds, or when
4621          * the data about to be copied would over-write the source of
4622          * the data at the front of the range.  i.e. one new_stripe
4623          * along from reshape_progress new_maps to after where
4624          * reshape_safe old_maps to
4625          */
4626         writepos = conf->reshape_progress;
4627         sector_div(writepos, new_data_disks);
4628         readpos = conf->reshape_progress;
4629         sector_div(readpos, data_disks);
4630         safepos = conf->reshape_safe;
4631         sector_div(safepos, data_disks);
4632         if (mddev->reshape_backwards) {
4633                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4634                 readpos += reshape_sectors;
4635                 safepos += reshape_sectors;
4636         } else {
4637                 writepos += reshape_sectors;
4638                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4639                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4640         }
4641
4642         /* Having calculated the 'writepos' possibly use it
4643          * to set 'stripe_addr' which is where we will write to.
4644          */
4645         if (mddev->reshape_backwards) {
4646                 BUG_ON(conf->reshape_progress == 0);
4647                 stripe_addr = writepos;
4648                 BUG_ON((mddev->dev_sectors &
4649                         ~((sector_t)reshape_sectors - 1))
4650                        - reshape_sectors - stripe_addr
4651                        != sector_nr);
4652         } else {
4653                 BUG_ON(writepos != sector_nr + reshape_sectors);
4654                 stripe_addr = sector_nr;
4655         }
4656
4657         /* 'writepos' is the most advanced device address we might write.
4658          * 'readpos' is the least advanced device address we might read.
4659          * 'safepos' is the least address recorded in the metadata as having
4660          *     been reshaped.
4661          * If there is a min_offset_diff, these are adjusted either by
4662          * increasing the safepos/readpos if diff is negative, or
4663          * increasing writepos if diff is positive.
4664          * If 'readpos' is then behind 'writepos', there is no way that we can
4665          * ensure safety in the face of a crash - that must be done by userspace
4666          * making a backup of the data.  So in that case there is no particular
4667          * rush to update metadata.
4668          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4669          * update the metadata to advance 'safepos' to match 'readpos' so that
4670          * we can be safe in the event of a crash.
4671          * So we insist on updating metadata if safepos is behind writepos and
4672          * readpos is beyond writepos.
4673          * In any case, update the metadata every 10 seconds.
4674          * Maybe that number should be configurable, but I'm not sure it is
4675          * worth it.... maybe it could be a multiple of safemode_delay???
4676          */
4677         if (conf->min_offset_diff < 0) {
4678                 safepos += -conf->min_offset_diff;
4679                 readpos += -conf->min_offset_diff;
4680         } else
4681                 writepos += conf->min_offset_diff;
4682
4683         if ((mddev->reshape_backwards
4684              ? (safepos > writepos && readpos < writepos)
4685              : (safepos < writepos && readpos > writepos)) ||
4686             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4687                 /* Cannot proceed until we've updated the superblock... */
4688                 wait_event(conf->wait_for_overlap,
4689                            atomic_read(&conf->reshape_stripes)==0);
4690                 mddev->reshape_position = conf->reshape_progress;
4691                 mddev->curr_resync_completed = sector_nr;
4692                 conf->reshape_checkpoint = jiffies;
4693                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4694                 md_wakeup_thread(mddev->thread);
4695                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4696                            kthread_should_stop());
4697                 spin_lock_irq(&conf->device_lock);
4698                 conf->reshape_safe = mddev->reshape_position;
4699                 spin_unlock_irq(&conf->device_lock);
4700                 wake_up(&conf->wait_for_overlap);
4701                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4702         }
4703
4704         INIT_LIST_HEAD(&stripes);
4705         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4706                 int j;
4707                 int skipped_disk = 0;
4708                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4709                 set_bit(STRIPE_EXPANDING, &sh->state);
4710                 atomic_inc(&conf->reshape_stripes);
4711                 /* If any of this stripe is beyond the end of the old
4712                  * array, then we need to zero those blocks
4713                  */
4714                 for (j=sh->disks; j--;) {
4715                         sector_t s;
4716                         if (j == sh->pd_idx)
4717                                 continue;
4718                         if (conf->level == 6 &&
4719                             j == sh->qd_idx)
4720                                 continue;
4721                         s = compute_blocknr(sh, j, 0);
4722                         if (s < raid5_size(mddev, 0, 0)) {
4723                                 skipped_disk = 1;
4724                                 continue;
4725                         }
4726                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4727                         set_bit(R5_Expanded, &sh->dev[j].flags);
4728                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4729                 }
4730                 if (!skipped_disk) {
4731                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4732                         set_bit(STRIPE_HANDLE, &sh->state);
4733                 }
4734                 list_add(&sh->lru, &stripes);
4735         }
4736         spin_lock_irq(&conf->device_lock);
4737         if (mddev->reshape_backwards)
4738                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4739         else
4740                 conf->reshape_progress += reshape_sectors * new_data_disks;
4741         spin_unlock_irq(&conf->device_lock);
4742         /* Ok, those stripe are ready. We can start scheduling
4743          * reads on the source stripes.
4744          * The source stripes are determined by mapping the first and last
4745          * block on the destination stripes.
4746          */
4747         first_sector =
4748                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4749                                      1, &dd_idx, NULL);
4750         last_sector =
4751                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4752                                             * new_data_disks - 1),
4753                                      1, &dd_idx, NULL);
4754         if (last_sector >= mddev->dev_sectors)
4755                 last_sector = mddev->dev_sectors - 1;
4756         while (first_sector <= last_sector) {
4757                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4758                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4759                 set_bit(STRIPE_HANDLE, &sh->state);
4760                 release_stripe(sh);
4761                 first_sector += STRIPE_SECTORS;
4762         }
4763         /* Now that the sources are clearly marked, we can release
4764          * the destination stripes
4765          */
4766         while (!list_empty(&stripes)) {
4767                 sh = list_entry(stripes.next, struct stripe_head, lru);
4768                 list_del_init(&sh->lru);
4769                 release_stripe(sh);
4770         }
4771         /* If this takes us to the resync_max point where we have to pause,
4772          * then we need to write out the superblock.
4773          */
4774         sector_nr += reshape_sectors;
4775         if ((sector_nr - mddev->curr_resync_completed) * 2
4776             >= mddev->resync_max - mddev->curr_resync_completed) {
4777                 /* Cannot proceed until we've updated the superblock... */
4778                 wait_event(conf->wait_for_overlap,
4779                            atomic_read(&conf->reshape_stripes) == 0);
4780                 mddev->reshape_position = conf->reshape_progress;
4781                 mddev->curr_resync_completed = sector_nr;
4782                 conf->reshape_checkpoint = jiffies;
4783                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4784                 md_wakeup_thread(mddev->thread);
4785                 wait_event(mddev->sb_wait,
4786                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4787                            || kthread_should_stop());
4788                 spin_lock_irq(&conf->device_lock);
4789                 conf->reshape_safe = mddev->reshape_position;
4790                 spin_unlock_irq(&conf->device_lock);
4791                 wake_up(&conf->wait_for_overlap);
4792                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4793         }
4794         return reshape_sectors;
4795 }
4796
4797 /* FIXME go_faster isn't used */
4798 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4799 {
4800         struct r5conf *conf = mddev->private;
4801         struct stripe_head *sh;
4802         sector_t max_sector = mddev->dev_sectors;
4803         sector_t sync_blocks;
4804         int still_degraded = 0;
4805         int i;
4806
4807         if (sector_nr >= max_sector) {
4808                 /* just being told to finish up .. nothing much to do */
4809
4810                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4811                         end_reshape(conf);
4812                         return 0;
4813                 }
4814
4815                 if (mddev->curr_resync < max_sector) /* aborted */
4816                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4817                                         &sync_blocks, 1);
4818                 else /* completed sync */
4819                         conf->fullsync = 0;
4820                 bitmap_close_sync(mddev->bitmap);
4821
4822                 return 0;
4823         }
4824
4825         /* Allow raid5_quiesce to complete */
4826         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4827
4828         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4829                 return reshape_request(mddev, sector_nr, skipped);
4830
4831         /* No need to check resync_max as we never do more than one
4832          * stripe, and as resync_max will always be on a chunk boundary,
4833          * if the check in md_do_sync didn't fire, there is no chance
4834          * of overstepping resync_max here
4835          */
4836
4837         /* if there is too many failed drives and we are trying
4838          * to resync, then assert that we are finished, because there is
4839          * nothing we can do.
4840          */
4841         if (mddev->degraded >= conf->max_degraded &&
4842             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4843                 sector_t rv = mddev->dev_sectors - sector_nr;
4844                 *skipped = 1;
4845                 return rv;
4846         }
4847         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4848             !conf->fullsync &&
4849             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4850             sync_blocks >= STRIPE_SECTORS) {
4851                 /* we can skip this block, and probably more */
4852                 sync_blocks /= STRIPE_SECTORS;
4853                 *skipped = 1;
4854                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4855         }
4856
4857         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4858
4859         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4860         if (sh == NULL) {
4861                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4862                 /* make sure we don't swamp the stripe cache if someone else
4863                  * is trying to get access
4864                  */
4865                 schedule_timeout_uninterruptible(1);
4866         }
4867         /* Need to check if array will still be degraded after recovery/resync
4868          * We don't need to check the 'failed' flag as when that gets set,
4869          * recovery aborts.
4870          */
4871         for (i = 0; i < conf->raid_disks; i++)
4872                 if (conf->disks[i].rdev == NULL)
4873                         still_degraded = 1;
4874
4875         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4876
4877         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4878
4879         handle_stripe(sh);
4880         release_stripe(sh);
4881
4882         return STRIPE_SECTORS;
4883 }
4884
4885 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4886 {
4887         /* We may not be able to submit a whole bio at once as there
4888          * may not be enough stripe_heads available.
4889          * We cannot pre-allocate enough stripe_heads as we may need
4890          * more than exist in the cache (if we allow ever large chunks).
4891          * So we do one stripe head at a time and record in
4892          * ->bi_hw_segments how many have been done.
4893          *
4894          * We *know* that this entire raid_bio is in one chunk, so
4895          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4896          */
4897         struct stripe_head *sh;
4898         int dd_idx;
4899         sector_t sector, logical_sector, last_sector;
4900         int scnt = 0;
4901         int remaining;
4902         int handled = 0;
4903
4904         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4905         sector = raid5_compute_sector(conf, logical_sector,
4906                                       0, &dd_idx, NULL);
4907         last_sector = bio_end_sector(raid_bio);
4908
4909         for (; logical_sector < last_sector;
4910              logical_sector += STRIPE_SECTORS,
4911                      sector += STRIPE_SECTORS,
4912                      scnt++) {
4913
4914                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4915                         /* already done this stripe */
4916                         continue;
4917
4918                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4919
4920                 if (!sh) {
4921                         /* failed to get a stripe - must wait */
4922                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4923                         conf->retry_read_aligned = raid_bio;
4924                         return handled;
4925                 }
4926
4927                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4928                         release_stripe(sh);
4929                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4930                         conf->retry_read_aligned = raid_bio;
4931                         return handled;
4932                 }
4933
4934                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4935                 handle_stripe(sh);
4936                 release_stripe(sh);
4937                 handled++;
4938         }
4939         remaining = raid5_dec_bi_active_stripes(raid_bio);
4940         if (remaining == 0) {
4941                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4942                                          raid_bio, 0);
4943                 bio_endio(raid_bio, 0);
4944         }
4945         if (atomic_dec_and_test(&conf->active_aligned_reads))
4946                 wake_up(&conf->wait_for_stripe);
4947         return handled;
4948 }
4949
4950 static int handle_active_stripes(struct r5conf *conf, int group,
4951                                  struct r5worker *worker)
4952 {
4953         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4954         int i, batch_size = 0;
4955
4956         while (batch_size < MAX_STRIPE_BATCH &&
4957                         (sh = __get_priority_stripe(conf, group)) != NULL)
4958                 batch[batch_size++] = sh;
4959
4960         if (batch_size == 0)
4961                 return batch_size;
4962         spin_unlock_irq(&conf->device_lock);
4963
4964         for (i = 0; i < batch_size; i++)
4965                 handle_stripe(batch[i]);
4966
4967         cond_resched();
4968
4969         spin_lock_irq(&conf->device_lock);
4970         for (i = 0; i < batch_size; i++)
4971                 __release_stripe(conf, batch[i]);
4972         return batch_size;
4973 }
4974
4975 static void raid5_do_work(struct work_struct *work)
4976 {
4977         struct r5worker *worker = container_of(work, struct r5worker, work);
4978         struct r5worker_group *group = worker->group;
4979         struct r5conf *conf = group->conf;
4980         int group_id = group - conf->worker_groups;
4981         int handled;
4982         struct blk_plug plug;
4983
4984         pr_debug("+++ raid5worker active\n");
4985
4986         blk_start_plug(&plug);
4987         handled = 0;
4988         spin_lock_irq(&conf->device_lock);
4989         while (1) {
4990                 int batch_size, released;
4991
4992                 released = release_stripe_list(conf);
4993
4994                 batch_size = handle_active_stripes(conf, group_id, worker);
4995                 worker->working = false;
4996                 if (!batch_size && !released)
4997                         break;
4998                 handled += batch_size;
4999         }
5000         pr_debug("%d stripes handled\n", handled);
5001
5002         spin_unlock_irq(&conf->device_lock);
5003         blk_finish_plug(&plug);
5004
5005         pr_debug("--- raid5worker inactive\n");
5006 }
5007
5008 /*
5009  * This is our raid5 kernel thread.
5010  *
5011  * We scan the hash table for stripes which can be handled now.
5012  * During the scan, completed stripes are saved for us by the interrupt
5013  * handler, so that they will not have to wait for our next wakeup.
5014  */
5015 static void raid5d(struct md_thread *thread)
5016 {
5017         struct mddev *mddev = thread->mddev;
5018         struct r5conf *conf = mddev->private;
5019         int handled;
5020         struct blk_plug plug;
5021
5022         pr_debug("+++ raid5d active\n");
5023
5024         md_check_recovery(mddev);
5025
5026         blk_start_plug(&plug);
5027         handled = 0;
5028         spin_lock_irq(&conf->device_lock);
5029         while (1) {
5030                 struct bio *bio;
5031                 int batch_size, released;
5032
5033                 released = release_stripe_list(conf);
5034
5035                 if (
5036                     !list_empty(&conf->bitmap_list)) {
5037                         /* Now is a good time to flush some bitmap updates */
5038                         conf->seq_flush++;
5039                         spin_unlock_irq(&conf->device_lock);
5040                         bitmap_unplug(mddev->bitmap);
5041                         spin_lock_irq(&conf->device_lock);
5042                         conf->seq_write = conf->seq_flush;
5043                         activate_bit_delay(conf);
5044                 }
5045                 raid5_activate_delayed(conf);
5046
5047                 while ((bio = remove_bio_from_retry(conf))) {
5048                         int ok;
5049                         spin_unlock_irq(&conf->device_lock);
5050                         ok = retry_aligned_read(conf, bio);
5051                         spin_lock_irq(&conf->device_lock);
5052                         if (!ok)
5053                                 break;
5054                         handled++;
5055                 }
5056
5057                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL);
5058                 if (!batch_size && !released)
5059                         break;
5060                 handled += batch_size;
5061
5062                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5063                         spin_unlock_irq(&conf->device_lock);
5064                         md_check_recovery(mddev);
5065                         spin_lock_irq(&conf->device_lock);
5066                 }
5067         }
5068         pr_debug("%d stripes handled\n", handled);
5069
5070         spin_unlock_irq(&conf->device_lock);
5071
5072         async_tx_issue_pending_all();
5073         blk_finish_plug(&plug);
5074
5075         pr_debug("--- raid5d inactive\n");
5076 }
5077
5078 static ssize_t
5079 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5080 {
5081         struct r5conf *conf = mddev->private;
5082         if (conf)
5083                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5084         else
5085                 return 0;
5086 }
5087
5088 int
5089 raid5_set_cache_size(struct mddev *mddev, int size)
5090 {
5091         struct r5conf *conf = mddev->private;
5092         int err;
5093
5094         if (size <= 16 || size > 32768)
5095                 return -EINVAL;
5096         while (size < conf->max_nr_stripes) {
5097                 if (drop_one_stripe(conf))
5098                         conf->max_nr_stripes--;
5099                 else
5100                         break;
5101         }
5102         err = md_allow_write(mddev);
5103         if (err)
5104                 return err;
5105         while (size > conf->max_nr_stripes) {
5106                 if (grow_one_stripe(conf))
5107                         conf->max_nr_stripes++;
5108                 else break;
5109         }
5110         return 0;
5111 }
5112 EXPORT_SYMBOL(raid5_set_cache_size);
5113
5114 static ssize_t
5115 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5116 {
5117         struct r5conf *conf = mddev->private;
5118         unsigned long new;
5119         int err;
5120
5121         if (len >= PAGE_SIZE)
5122                 return -EINVAL;
5123         if (!conf)
5124                 return -ENODEV;
5125
5126         if (kstrtoul(page, 10, &new))
5127                 return -EINVAL;
5128         err = raid5_set_cache_size(mddev, new);
5129         if (err)
5130                 return err;
5131         return len;
5132 }
5133
5134 static struct md_sysfs_entry
5135 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5136                                 raid5_show_stripe_cache_size,
5137                                 raid5_store_stripe_cache_size);
5138
5139 static ssize_t
5140 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5141 {
5142         struct r5conf *conf = mddev->private;
5143         if (conf)
5144                 return sprintf(page, "%d\n", conf->bypass_threshold);
5145         else
5146                 return 0;
5147 }
5148
5149 static ssize_t
5150 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5151 {
5152         struct r5conf *conf = mddev->private;
5153         unsigned long new;
5154         if (len >= PAGE_SIZE)
5155                 return -EINVAL;
5156         if (!conf)
5157                 return -ENODEV;
5158
5159         if (kstrtoul(page, 10, &new))
5160                 return -EINVAL;
5161         if (new > conf->max_nr_stripes)
5162                 return -EINVAL;
5163         conf->bypass_threshold = new;
5164         return len;
5165 }
5166
5167 static struct md_sysfs_entry
5168 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5169                                         S_IRUGO | S_IWUSR,
5170                                         raid5_show_preread_threshold,
5171                                         raid5_store_preread_threshold);
5172
5173 static ssize_t
5174 stripe_cache_active_show(struct mddev *mddev, char *page)
5175 {
5176         struct r5conf *conf = mddev->private;
5177         if (conf)
5178                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5179         else
5180                 return 0;
5181 }
5182
5183 static struct md_sysfs_entry
5184 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5185
5186 static ssize_t
5187 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5188 {
5189         struct r5conf *conf = mddev->private;
5190         if (conf)
5191                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5192         else
5193                 return 0;
5194 }
5195
5196 static int alloc_thread_groups(struct r5conf *conf, int cnt);
5197 static ssize_t
5198 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5199 {
5200         struct r5conf *conf = mddev->private;
5201         unsigned long new;
5202         int err;
5203         struct r5worker_group *old_groups;
5204         int old_group_cnt;
5205
5206         if (len >= PAGE_SIZE)
5207                 return -EINVAL;
5208         if (!conf)
5209                 return -ENODEV;
5210
5211         if (kstrtoul(page, 10, &new))
5212                 return -EINVAL;
5213
5214         if (new == conf->worker_cnt_per_group)
5215                 return len;
5216
5217         mddev_suspend(mddev);
5218
5219         old_groups = conf->worker_groups;
5220         old_group_cnt = conf->worker_cnt_per_group;
5221
5222         conf->worker_groups = NULL;
5223         err = alloc_thread_groups(conf, new);
5224         if (err) {
5225                 conf->worker_groups = old_groups;
5226                 conf->worker_cnt_per_group = old_group_cnt;
5227         } else {
5228                 if (old_groups)
5229                         kfree(old_groups[0].workers);
5230                 kfree(old_groups);
5231         }
5232
5233         mddev_resume(mddev);
5234
5235         if (err)
5236                 return err;
5237         return len;
5238 }
5239
5240 static struct md_sysfs_entry
5241 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5242                                 raid5_show_group_thread_cnt,
5243                                 raid5_store_group_thread_cnt);
5244
5245 static struct attribute *raid5_attrs[] =  {
5246         &raid5_stripecache_size.attr,
5247         &raid5_stripecache_active.attr,
5248         &raid5_preread_bypass_threshold.attr,
5249         &raid5_group_thread_cnt.attr,
5250         NULL,
5251 };
5252 static struct attribute_group raid5_attrs_group = {
5253         .name = NULL,
5254         .attrs = raid5_attrs,
5255 };
5256
5257 static int alloc_thread_groups(struct r5conf *conf, int cnt)
5258 {
5259         int i, j;
5260         ssize_t size;
5261         struct r5worker *workers;
5262
5263         conf->worker_cnt_per_group = cnt;
5264         if (cnt == 0) {
5265                 conf->worker_groups = NULL;
5266                 return 0;
5267         }
5268         conf->group_cnt = num_possible_nodes();
5269         size = sizeof(struct r5worker) * cnt;
5270         workers = kzalloc(size * conf->group_cnt, GFP_NOIO);
5271         conf->worker_groups = kzalloc(sizeof(struct r5worker_group) *
5272                                 conf->group_cnt, GFP_NOIO);
5273         if (!conf->worker_groups || !workers) {
5274                 kfree(workers);
5275                 kfree(conf->worker_groups);
5276                 conf->worker_groups = NULL;
5277                 return -ENOMEM;
5278         }
5279
5280         for (i = 0; i < conf->group_cnt; i++) {
5281                 struct r5worker_group *group;
5282
5283                 group = &conf->worker_groups[i];
5284                 INIT_LIST_HEAD(&group->handle_list);
5285                 group->conf = conf;
5286                 group->workers = workers + i * cnt;
5287
5288                 for (j = 0; j < cnt; j++) {
5289                         group->workers[j].group = group;
5290                         INIT_WORK(&group->workers[j].work, raid5_do_work);
5291                 }
5292         }
5293
5294         return 0;
5295 }
5296
5297 static void free_thread_groups(struct r5conf *conf)
5298 {
5299         if (conf->worker_groups)
5300                 kfree(conf->worker_groups[0].workers);
5301         kfree(conf->worker_groups);
5302         conf->worker_groups = NULL;
5303 }
5304
5305 static sector_t
5306 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5307 {
5308         struct r5conf *conf = mddev->private;
5309
5310         if (!sectors)
5311                 sectors = mddev->dev_sectors;
5312         if (!raid_disks)
5313                 /* size is defined by the smallest of previous and new size */
5314                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5315
5316         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5317         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5318         return sectors * (raid_disks - conf->max_degraded);
5319 }
5320
5321 static void raid5_free_percpu(struct r5conf *conf)
5322 {
5323         struct raid5_percpu *percpu;
5324         unsigned long cpu;
5325
5326         if (!conf->percpu)
5327                 return;
5328
5329         get_online_cpus();
5330         for_each_possible_cpu(cpu) {
5331                 percpu = per_cpu_ptr(conf->percpu, cpu);
5332                 safe_put_page(percpu->spare_page);
5333                 kfree(percpu->scribble);
5334         }
5335 #ifdef CONFIG_HOTPLUG_CPU
5336         unregister_cpu_notifier(&conf->cpu_notify);
5337 #endif
5338         put_online_cpus();
5339
5340         free_percpu(conf->percpu);
5341 }
5342
5343 static void free_conf(struct r5conf *conf)
5344 {
5345         free_thread_groups(conf);
5346         shrink_stripes(conf);
5347         raid5_free_percpu(conf);
5348         kfree(conf->disks);
5349         kfree(conf->stripe_hashtbl);
5350         kfree(conf);
5351 }
5352
5353 #ifdef CONFIG_HOTPLUG_CPU
5354 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5355                               void *hcpu)
5356 {
5357         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5358         long cpu = (long)hcpu;
5359         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5360
5361         switch (action) {
5362         case CPU_UP_PREPARE:
5363         case CPU_UP_PREPARE_FROZEN:
5364                 if (conf->level == 6 && !percpu->spare_page)
5365                         percpu->spare_page = alloc_page(GFP_KERNEL);
5366                 if (!percpu->scribble)
5367                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5368
5369                 if (!percpu->scribble ||
5370                     (conf->level == 6 && !percpu->spare_page)) {
5371                         safe_put_page(percpu->spare_page);
5372                         kfree(percpu->scribble);
5373                         pr_err("%s: failed memory allocation for cpu%ld\n",
5374                                __func__, cpu);
5375                         return notifier_from_errno(-ENOMEM);
5376                 }
5377                 break;
5378         case CPU_DEAD:
5379         case CPU_DEAD_FROZEN:
5380                 safe_put_page(percpu->spare_page);
5381                 kfree(percpu->scribble);
5382                 percpu->spare_page = NULL;
5383                 percpu->scribble = NULL;
5384                 break;
5385         default:
5386                 break;
5387         }
5388         return NOTIFY_OK;
5389 }
5390 #endif
5391
5392 static int raid5_alloc_percpu(struct r5conf *conf)
5393 {
5394         unsigned long cpu;
5395         struct page *spare_page;
5396         struct raid5_percpu __percpu *allcpus;
5397         void *scribble;
5398         int err;
5399
5400         allcpus = alloc_percpu(struct raid5_percpu);
5401         if (!allcpus)
5402                 return -ENOMEM;
5403         conf->percpu = allcpus;
5404
5405         get_online_cpus();
5406         err = 0;
5407         for_each_present_cpu(cpu) {
5408                 if (conf->level == 6) {
5409                         spare_page = alloc_page(GFP_KERNEL);
5410                         if (!spare_page) {
5411                                 err = -ENOMEM;
5412                                 break;
5413                         }
5414                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5415                 }
5416                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5417                 if (!scribble) {
5418                         err = -ENOMEM;
5419                         break;
5420                 }
5421                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5422         }
5423 #ifdef CONFIG_HOTPLUG_CPU
5424         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5425         conf->cpu_notify.priority = 0;
5426         if (err == 0)
5427                 err = register_cpu_notifier(&conf->cpu_notify);
5428 #endif
5429         put_online_cpus();
5430
5431         return err;
5432 }
5433
5434 static struct r5conf *setup_conf(struct mddev *mddev)
5435 {
5436         struct r5conf *conf;
5437         int raid_disk, memory, max_disks;
5438         struct md_rdev *rdev;
5439         struct disk_info *disk;
5440         char pers_name[6];
5441
5442         if (mddev->new_level != 5
5443             && mddev->new_level != 4
5444             && mddev->new_level != 6) {
5445                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5446                        mdname(mddev), mddev->new_level);
5447                 return ERR_PTR(-EIO);
5448         }
5449         if ((mddev->new_level == 5
5450              && !algorithm_valid_raid5(mddev->new_layout)) ||
5451             (mddev->new_level == 6
5452              && !algorithm_valid_raid6(mddev->new_layout))) {
5453                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5454                        mdname(mddev), mddev->new_layout);
5455                 return ERR_PTR(-EIO);
5456         }
5457         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5458                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5459                        mdname(mddev), mddev->raid_disks);
5460                 return ERR_PTR(-EINVAL);
5461         }
5462
5463         if (!mddev->new_chunk_sectors ||
5464             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5465             !is_power_of_2(mddev->new_chunk_sectors)) {
5466                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5467                        mdname(mddev), mddev->new_chunk_sectors << 9);
5468                 return ERR_PTR(-EINVAL);
5469         }
5470
5471         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5472         if (conf == NULL)
5473                 goto abort;
5474         /* Don't enable multi-threading by default*/
5475         if (alloc_thread_groups(conf, 0))
5476                 goto abort;
5477         spin_lock_init(&conf->device_lock);
5478         seqcount_init(&conf->gen_lock);
5479         init_waitqueue_head(&conf->wait_for_stripe);
5480         init_waitqueue_head(&conf->wait_for_overlap);
5481         INIT_LIST_HEAD(&conf->handle_list);
5482         INIT_LIST_HEAD(&conf->hold_list);
5483         INIT_LIST_HEAD(&conf->delayed_list);
5484         INIT_LIST_HEAD(&conf->bitmap_list);
5485         INIT_LIST_HEAD(&conf->inactive_list);
5486         init_llist_head(&conf->released_stripes);
5487         atomic_set(&conf->active_stripes, 0);
5488         atomic_set(&conf->preread_active_stripes, 0);
5489         atomic_set(&conf->active_aligned_reads, 0);
5490         conf->bypass_threshold = BYPASS_THRESHOLD;
5491         conf->recovery_disabled = mddev->recovery_disabled - 1;
5492
5493         conf->raid_disks = mddev->raid_disks;
5494         if (mddev->reshape_position == MaxSector)
5495                 conf->previous_raid_disks = mddev->raid_disks;
5496         else
5497                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5498         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5499         conf->scribble_len = scribble_len(max_disks);
5500
5501         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5502                               GFP_KERNEL);
5503         if (!conf->disks)
5504                 goto abort;
5505
5506         conf->mddev = mddev;
5507
5508         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5509                 goto abort;
5510
5511         conf->level = mddev->new_level;
5512         if (raid5_alloc_percpu(conf) != 0)
5513                 goto abort;
5514
5515         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5516
5517         rdev_for_each(rdev, mddev) {
5518                 raid_disk = rdev->raid_disk;
5519                 if (raid_disk >= max_disks
5520                     || raid_disk < 0)
5521                         continue;
5522                 disk = conf->disks + raid_disk;
5523
5524                 if (test_bit(Replacement, &rdev->flags)) {
5525                         if (disk->replacement)
5526                                 goto abort;
5527                         disk->replacement = rdev;
5528                 } else {
5529                         if (disk->rdev)
5530                                 goto abort;
5531                         disk->rdev = rdev;
5532                 }
5533
5534                 if (test_bit(In_sync, &rdev->flags)) {
5535                         char b[BDEVNAME_SIZE];
5536                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5537                                " disk %d\n",
5538                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5539                 } else if (rdev->saved_raid_disk != raid_disk)
5540                         /* Cannot rely on bitmap to complete recovery */
5541                         conf->fullsync = 1;
5542         }
5543
5544         conf->chunk_sectors = mddev->new_chunk_sectors;
5545         conf->level = mddev->new_level;
5546         if (conf->level == 6)
5547                 conf->max_degraded = 2;
5548         else
5549                 conf->max_degraded = 1;
5550         conf->algorithm = mddev->new_layout;
5551         conf->max_nr_stripes = NR_STRIPES;
5552         conf->reshape_progress = mddev->reshape_position;
5553         if (conf->reshape_progress != MaxSector) {
5554                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5555                 conf->prev_algo = mddev->layout;
5556         }
5557
5558         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5559                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5560         if (grow_stripes(conf, conf->max_nr_stripes)) {
5561                 printk(KERN_ERR
5562                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5563                        mdname(mddev), memory);
5564                 goto abort;
5565         } else
5566                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5567                        mdname(mddev), memory);
5568
5569         sprintf(pers_name, "raid%d", mddev->new_level);
5570         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5571         if (!conf->thread) {
5572                 printk(KERN_ERR
5573                        "md/raid:%s: couldn't allocate thread.\n",
5574                        mdname(mddev));
5575                 goto abort;
5576         }
5577
5578         return conf;
5579
5580  abort:
5581         if (conf) {
5582                 free_conf(conf);
5583                 return ERR_PTR(-EIO);
5584         } else
5585                 return ERR_PTR(-ENOMEM);
5586 }
5587
5588
5589 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5590 {
5591         switch (algo) {
5592         case ALGORITHM_PARITY_0:
5593                 if (raid_disk < max_degraded)
5594                         return 1;
5595                 break;
5596         case ALGORITHM_PARITY_N:
5597                 if (raid_disk >= raid_disks - max_degraded)
5598                         return 1;
5599                 break;
5600         case ALGORITHM_PARITY_0_6:
5601                 if (raid_disk == 0 || 
5602                     raid_disk == raid_disks - 1)
5603                         return 1;
5604                 break;
5605         case ALGORITHM_LEFT_ASYMMETRIC_6:
5606         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5607         case ALGORITHM_LEFT_SYMMETRIC_6:
5608         case ALGORITHM_RIGHT_SYMMETRIC_6:
5609                 if (raid_disk == raid_disks - 1)
5610                         return 1;
5611         }
5612         return 0;
5613 }
5614
5615 static int run(struct mddev *mddev)
5616 {
5617         struct r5conf *conf;
5618         int working_disks = 0;
5619         int dirty_parity_disks = 0;
5620         struct md_rdev *rdev;
5621         sector_t reshape_offset = 0;
5622         int i;
5623         long long min_offset_diff = 0;
5624         int first = 1;
5625
5626         if (mddev->recovery_cp != MaxSector)
5627                 printk(KERN_NOTICE "md/raid:%s: not clean"
5628                        " -- starting background reconstruction\n",
5629                        mdname(mddev));
5630
5631         rdev_for_each(rdev, mddev) {
5632                 long long diff;
5633                 if (rdev->raid_disk < 0)
5634                         continue;
5635                 diff = (rdev->new_data_offset - rdev->data_offset);
5636                 if (first) {
5637                         min_offset_diff = diff;
5638                         first = 0;
5639                 } else if (mddev->reshape_backwards &&
5640                          diff < min_offset_diff)
5641                         min_offset_diff = diff;
5642                 else if (!mddev->reshape_backwards &&
5643                          diff > min_offset_diff)
5644                         min_offset_diff = diff;
5645         }
5646
5647         if (mddev->reshape_position != MaxSector) {
5648                 /* Check that we can continue the reshape.
5649                  * Difficulties arise if the stripe we would write to
5650                  * next is at or after the stripe we would read from next.
5651                  * For a reshape that changes the number of devices, this
5652                  * is only possible for a very short time, and mdadm makes
5653                  * sure that time appears to have past before assembling
5654                  * the array.  So we fail if that time hasn't passed.
5655                  * For a reshape that keeps the number of devices the same
5656                  * mdadm must be monitoring the reshape can keeping the
5657                  * critical areas read-only and backed up.  It will start
5658                  * the array in read-only mode, so we check for that.
5659                  */
5660                 sector_t here_new, here_old;
5661                 int old_disks;
5662                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5663
5664                 if (mddev->new_level != mddev->level) {
5665                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5666                                "required - aborting.\n",
5667                                mdname(mddev));
5668                         return -EINVAL;
5669                 }
5670                 old_disks = mddev->raid_disks - mddev->delta_disks;
5671                 /* reshape_position must be on a new-stripe boundary, and one
5672                  * further up in new geometry must map after here in old
5673                  * geometry.
5674                  */
5675                 here_new = mddev->reshape_position;
5676                 if (sector_div(here_new, mddev->new_chunk_sectors *
5677                                (mddev->raid_disks - max_degraded))) {
5678                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5679                                "on a stripe boundary\n", mdname(mddev));
5680                         return -EINVAL;
5681                 }
5682                 reshape_offset = here_new * mddev->new_chunk_sectors;
5683                 /* here_new is the stripe we will write to */
5684                 here_old = mddev->reshape_position;
5685                 sector_div(here_old, mddev->chunk_sectors *
5686                            (old_disks-max_degraded));
5687                 /* here_old is the first stripe that we might need to read
5688                  * from */
5689                 if (mddev->delta_disks == 0) {
5690                         if ((here_new * mddev->new_chunk_sectors !=
5691                              here_old * mddev->chunk_sectors)) {
5692                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5693                                        " confused - aborting\n", mdname(mddev));
5694                                 return -EINVAL;
5695                         }
5696                         /* We cannot be sure it is safe to start an in-place
5697                          * reshape.  It is only safe if user-space is monitoring
5698                          * and taking constant backups.
5699                          * mdadm always starts a situation like this in
5700                          * readonly mode so it can take control before
5701                          * allowing any writes.  So just check for that.
5702                          */
5703                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5704                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5705                                 /* not really in-place - so OK */;
5706                         else if (mddev->ro == 0) {
5707                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5708                                        "must be started in read-only mode "
5709                                        "- aborting\n",
5710                                        mdname(mddev));
5711                                 return -EINVAL;
5712                         }
5713                 } else if (mddev->reshape_backwards
5714                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5715                        here_old * mddev->chunk_sectors)
5716                     : (here_new * mddev->new_chunk_sectors >=
5717                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5718                         /* Reading from the same stripe as writing to - bad */
5719                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5720                                "auto-recovery - aborting.\n",
5721                                mdname(mddev));
5722                         return -EINVAL;
5723                 }
5724                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5725                        mdname(mddev));
5726                 /* OK, we should be able to continue; */
5727         } else {
5728                 BUG_ON(mddev->level != mddev->new_level);
5729                 BUG_ON(mddev->layout != mddev->new_layout);
5730                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5731                 BUG_ON(mddev->delta_disks != 0);
5732         }
5733
5734         if (mddev->private == NULL)
5735                 conf = setup_conf(mddev);
5736         else
5737                 conf = mddev->private;
5738
5739         if (IS_ERR(conf))
5740                 return PTR_ERR(conf);
5741
5742         conf->min_offset_diff = min_offset_diff;
5743         mddev->thread = conf->thread;
5744         conf->thread = NULL;
5745         mddev->private = conf;
5746
5747         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5748              i++) {
5749                 rdev = conf->disks[i].rdev;
5750                 if (!rdev && conf->disks[i].replacement) {
5751                         /* The replacement is all we have yet */
5752                         rdev = conf->disks[i].replacement;
5753                         conf->disks[i].replacement = NULL;
5754                         clear_bit(Replacement, &rdev->flags);
5755                         conf->disks[i].rdev = rdev;
5756                 }
5757                 if (!rdev)
5758                         continue;
5759                 if (conf->disks[i].replacement &&
5760                     conf->reshape_progress != MaxSector) {
5761                         /* replacements and reshape simply do not mix. */
5762                         printk(KERN_ERR "md: cannot handle concurrent "
5763                                "replacement and reshape.\n");
5764                         goto abort;
5765                 }
5766                 if (test_bit(In_sync, &rdev->flags)) {
5767                         working_disks++;
5768                         continue;
5769                 }
5770                 /* This disc is not fully in-sync.  However if it
5771                  * just stored parity (beyond the recovery_offset),
5772                  * when we don't need to be concerned about the
5773                  * array being dirty.
5774                  * When reshape goes 'backwards', we never have
5775                  * partially completed devices, so we only need
5776                  * to worry about reshape going forwards.
5777                  */
5778                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5779                 if (mddev->major_version == 0 &&
5780                     mddev->minor_version > 90)
5781                         rdev->recovery_offset = reshape_offset;
5782
5783                 if (rdev->recovery_offset < reshape_offset) {
5784                         /* We need to check old and new layout */
5785                         if (!only_parity(rdev->raid_disk,
5786                                          conf->algorithm,
5787                                          conf->raid_disks,
5788                                          conf->max_degraded))
5789                                 continue;
5790                 }
5791                 if (!only_parity(rdev->raid_disk,
5792                                  conf->prev_algo,
5793                                  conf->previous_raid_disks,
5794                                  conf->max_degraded))
5795                         continue;
5796                 dirty_parity_disks++;
5797         }
5798
5799         /*
5800          * 0 for a fully functional array, 1 or 2 for a degraded array.
5801          */
5802         mddev->degraded = calc_degraded(conf);
5803
5804         if (has_failed(conf)) {
5805                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5806                         " (%d/%d failed)\n",
5807                         mdname(mddev), mddev->degraded, conf->raid_disks);
5808                 goto abort;
5809         }
5810
5811         /* device size must be a multiple of chunk size */
5812         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5813         mddev->resync_max_sectors = mddev->dev_sectors;
5814
5815         if (mddev->degraded > dirty_parity_disks &&
5816             mddev->recovery_cp != MaxSector) {
5817                 if (mddev->ok_start_degraded)
5818                         printk(KERN_WARNING
5819                                "md/raid:%s: starting dirty degraded array"
5820                                " - data corruption possible.\n",
5821                                mdname(mddev));
5822                 else {
5823                         printk(KERN_ERR
5824                                "md/raid:%s: cannot start dirty degraded array.\n",
5825                                mdname(mddev));
5826                         goto abort;
5827                 }
5828         }
5829
5830         if (mddev->degraded == 0)
5831                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5832                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5833                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5834                        mddev->new_layout);
5835         else
5836                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5837                        " out of %d devices, algorithm %d\n",
5838                        mdname(mddev), conf->level,
5839                        mddev->raid_disks - mddev->degraded,
5840                        mddev->raid_disks, mddev->new_layout);
5841
5842         print_raid5_conf(conf);
5843
5844         if (conf->reshape_progress != MaxSector) {
5845                 conf->reshape_safe = conf->reshape_progress;
5846                 atomic_set(&conf->reshape_stripes, 0);
5847                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5848                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5849                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5850                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5851                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5852                                                         "reshape");
5853         }
5854
5855
5856         /* Ok, everything is just fine now */
5857         if (mddev->to_remove == &raid5_attrs_group)
5858                 mddev->to_remove = NULL;
5859         else if (mddev->kobj.sd &&
5860             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5861                 printk(KERN_WARNING
5862                        "raid5: failed to create sysfs attributes for %s\n",
5863                        mdname(mddev));
5864         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5865
5866         if (mddev->queue) {
5867                 int chunk_size;
5868                 bool discard_supported = true;
5869                 /* read-ahead size must cover two whole stripes, which
5870                  * is 2 * (datadisks) * chunksize where 'n' is the
5871                  * number of raid devices
5872                  */
5873                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5874                 int stripe = data_disks *
5875                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5876                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5877                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5878
5879                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5880
5881                 mddev->queue->backing_dev_info.congested_data = mddev;
5882                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5883
5884                 chunk_size = mddev->chunk_sectors << 9;
5885                 blk_queue_io_min(mddev->queue, chunk_size);
5886                 blk_queue_io_opt(mddev->queue, chunk_size *
5887                                  (conf->raid_disks - conf->max_degraded));
5888                 /*
5889                  * We can only discard a whole stripe. It doesn't make sense to
5890                  * discard data disk but write parity disk
5891                  */
5892                 stripe = stripe * PAGE_SIZE;
5893                 /* Round up to power of 2, as discard handling
5894                  * currently assumes that */
5895                 while ((stripe-1) & stripe)
5896                         stripe = (stripe | (stripe-1)) + 1;
5897                 mddev->queue->limits.discard_alignment = stripe;
5898                 mddev->queue->limits.discard_granularity = stripe;
5899                 /*
5900                  * unaligned part of discard request will be ignored, so can't
5901                  * guarantee discard_zerors_data
5902                  */
5903                 mddev->queue->limits.discard_zeroes_data = 0;
5904
5905                 blk_queue_max_write_same_sectors(mddev->queue, 0);
5906
5907                 rdev_for_each(rdev, mddev) {
5908                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5909                                           rdev->data_offset << 9);
5910                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5911                                           rdev->new_data_offset << 9);
5912                         /*
5913                          * discard_zeroes_data is required, otherwise data
5914                          * could be lost. Consider a scenario: discard a stripe
5915                          * (the stripe could be inconsistent if
5916                          * discard_zeroes_data is 0); write one disk of the
5917                          * stripe (the stripe could be inconsistent again
5918                          * depending on which disks are used to calculate
5919                          * parity); the disk is broken; The stripe data of this
5920                          * disk is lost.
5921                          */
5922                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5923                             !bdev_get_queue(rdev->bdev)->
5924                                                 limits.discard_zeroes_data)
5925                                 discard_supported = false;
5926                 }
5927
5928                 if (discard_supported &&
5929                    mddev->queue->limits.max_discard_sectors >= stripe &&
5930                    mddev->queue->limits.discard_granularity >= stripe)
5931                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5932                                                 mddev->queue);
5933                 else
5934                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5935                                                 mddev->queue);
5936         }
5937
5938         return 0;
5939 abort:
5940         md_unregister_thread(&mddev->thread);
5941         print_raid5_conf(conf);
5942         free_conf(conf);
5943         mddev->private = NULL;
5944         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5945         return -EIO;
5946 }
5947
5948 static int stop(struct mddev *mddev)
5949 {
5950         struct r5conf *conf = mddev->private;
5951
5952         md_unregister_thread(&mddev->thread);
5953         if (mddev->queue)
5954                 mddev->queue->backing_dev_info.congested_fn = NULL;
5955         free_conf(conf);
5956         mddev->private = NULL;
5957         mddev->to_remove = &raid5_attrs_group;
5958         return 0;
5959 }
5960
5961 static void status(struct seq_file *seq, struct mddev *mddev)
5962 {
5963         struct r5conf *conf = mddev->private;
5964         int i;
5965
5966         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5967                 mddev->chunk_sectors / 2, mddev->layout);
5968         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5969         for (i = 0; i < conf->raid_disks; i++)
5970                 seq_printf (seq, "%s",
5971                                conf->disks[i].rdev &&
5972                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5973         seq_printf (seq, "]");
5974 }
5975
5976 static void print_raid5_conf (struct r5conf *conf)
5977 {
5978         int i;
5979         struct disk_info *tmp;
5980
5981         printk(KERN_DEBUG "RAID conf printout:\n");
5982         if (!conf) {
5983                 printk("(conf==NULL)\n");
5984                 return;
5985         }
5986         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5987                conf->raid_disks,
5988                conf->raid_disks - conf->mddev->degraded);
5989
5990         for (i = 0; i < conf->raid_disks; i++) {
5991                 char b[BDEVNAME_SIZE];
5992                 tmp = conf->disks + i;
5993                 if (tmp->rdev)
5994                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5995                                i, !test_bit(Faulty, &tmp->rdev->flags),
5996                                bdevname(tmp->rdev->bdev, b));
5997         }
5998 }
5999
6000 static int raid5_spare_active(struct mddev *mddev)
6001 {
6002         int i;
6003         struct r5conf *conf = mddev->private;
6004         struct disk_info *tmp;
6005         int count = 0;
6006         unsigned long flags;
6007
6008         for (i = 0; i < conf->raid_disks; i++) {
6009                 tmp = conf->disks + i;
6010                 if (tmp->replacement
6011                     && tmp->replacement->recovery_offset == MaxSector
6012                     && !test_bit(Faulty, &tmp->replacement->flags)
6013                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6014                         /* Replacement has just become active. */
6015                         if (!tmp->rdev
6016                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6017                                 count++;
6018                         if (tmp->rdev) {
6019                                 /* Replaced device not technically faulty,
6020                                  * but we need to be sure it gets removed
6021                                  * and never re-added.
6022                                  */
6023                                 set_bit(Faulty, &tmp->rdev->flags);
6024                                 sysfs_notify_dirent_safe(
6025                                         tmp->rdev->sysfs_state);
6026                         }
6027                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6028                 } else if (tmp->rdev
6029                     && tmp->rdev->recovery_offset == MaxSector
6030                     && !test_bit(Faulty, &tmp->rdev->flags)
6031                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6032                         count++;
6033                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6034                 }
6035         }
6036         spin_lock_irqsave(&conf->device_lock, flags);
6037         mddev->degraded = calc_degraded(conf);
6038         spin_unlock_irqrestore(&conf->device_lock, flags);
6039         print_raid5_conf(conf);
6040         return count;
6041 }
6042
6043 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6044 {
6045         struct r5conf *conf = mddev->private;
6046         int err = 0;
6047         int number = rdev->raid_disk;
6048         struct md_rdev **rdevp;
6049         struct disk_info *p = conf->disks + number;
6050
6051         print_raid5_conf(conf);
6052         if (rdev == p->rdev)
6053                 rdevp = &p->rdev;
6054         else if (rdev == p->replacement)
6055                 rdevp = &p->replacement;
6056         else
6057                 return 0;
6058
6059         if (number >= conf->raid_disks &&
6060             conf->reshape_progress == MaxSector)
6061                 clear_bit(In_sync, &rdev->flags);
6062
6063         if (test_bit(In_sync, &rdev->flags) ||
6064             atomic_read(&rdev->nr_pending)) {
6065                 err = -EBUSY;
6066                 goto abort;
6067         }
6068         /* Only remove non-faulty devices if recovery
6069          * isn't possible.
6070          */
6071         if (!test_bit(Faulty, &rdev->flags) &&
6072             mddev->recovery_disabled != conf->recovery_disabled &&
6073             !has_failed(conf) &&
6074             (!p->replacement || p->replacement == rdev) &&
6075             number < conf->raid_disks) {
6076                 err = -EBUSY;
6077                 goto abort;
6078         }
6079         *rdevp = NULL;
6080         synchronize_rcu();
6081         if (atomic_read(&rdev->nr_pending)) {
6082                 /* lost the race, try later */
6083                 err = -EBUSY;
6084                 *rdevp = rdev;
6085         } else if (p->replacement) {
6086                 /* We must have just cleared 'rdev' */
6087                 p->rdev = p->replacement;
6088                 clear_bit(Replacement, &p->replacement->flags);
6089                 smp_mb(); /* Make sure other CPUs may see both as identical
6090                            * but will never see neither - if they are careful
6091                            */
6092                 p->replacement = NULL;
6093                 clear_bit(WantReplacement, &rdev->flags);
6094         } else
6095                 /* We might have just removed the Replacement as faulty-
6096                  * clear the bit just in case
6097                  */
6098                 clear_bit(WantReplacement, &rdev->flags);
6099 abort:
6100
6101         print_raid5_conf(conf);
6102         return err;
6103 }
6104
6105 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6106 {
6107         struct r5conf *conf = mddev->private;
6108         int err = -EEXIST;
6109         int disk;
6110         struct disk_info *p;
6111         int first = 0;
6112         int last = conf->raid_disks - 1;
6113
6114         if (mddev->recovery_disabled == conf->recovery_disabled)
6115                 return -EBUSY;
6116
6117         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6118                 /* no point adding a device */
6119                 return -EINVAL;
6120
6121         if (rdev->raid_disk >= 0)
6122                 first = last = rdev->raid_disk;
6123
6124         /*
6125          * find the disk ... but prefer rdev->saved_raid_disk
6126          * if possible.
6127          */
6128         if (rdev->saved_raid_disk >= 0 &&
6129             rdev->saved_raid_disk >= first &&
6130             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6131                 first = rdev->saved_raid_disk;
6132
6133         for (disk = first; disk <= last; disk++) {
6134                 p = conf->disks + disk;
6135                 if (p->rdev == NULL) {
6136                         clear_bit(In_sync, &rdev->flags);
6137                         rdev->raid_disk = disk;
6138                         err = 0;
6139                         if (rdev->saved_raid_disk != disk)
6140                                 conf->fullsync = 1;
6141                         rcu_assign_pointer(p->rdev, rdev);
6142                         goto out;
6143                 }
6144         }
6145         for (disk = first; disk <= last; disk++) {
6146                 p = conf->disks + disk;
6147                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6148                     p->replacement == NULL) {
6149                         clear_bit(In_sync, &rdev->flags);
6150                         set_bit(Replacement, &rdev->flags);
6151                         rdev->raid_disk = disk;
6152                         err = 0;
6153                         conf->fullsync = 1;
6154                         rcu_assign_pointer(p->replacement, rdev);
6155                         break;
6156                 }
6157         }
6158 out:
6159         print_raid5_conf(conf);
6160         return err;
6161 }
6162
6163 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6164 {
6165         /* no resync is happening, and there is enough space
6166          * on all devices, so we can resize.
6167          * We need to make sure resync covers any new space.
6168          * If the array is shrinking we should possibly wait until
6169          * any io in the removed space completes, but it hardly seems
6170          * worth it.
6171          */
6172         sector_t newsize;
6173         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6174         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6175         if (mddev->external_size &&
6176             mddev->array_sectors > newsize)
6177                 return -EINVAL;
6178         if (mddev->bitmap) {
6179                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6180                 if (ret)
6181                         return ret;
6182         }
6183         md_set_array_sectors(mddev, newsize);
6184         set_capacity(mddev->gendisk, mddev->array_sectors);
6185         revalidate_disk(mddev->gendisk);
6186         if (sectors > mddev->dev_sectors &&
6187             mddev->recovery_cp > mddev->dev_sectors) {
6188                 mddev->recovery_cp = mddev->dev_sectors;
6189                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6190         }
6191         mddev->dev_sectors = sectors;
6192         mddev->resync_max_sectors = sectors;
6193         return 0;
6194 }
6195
6196 static int check_stripe_cache(struct mddev *mddev)
6197 {
6198         /* Can only proceed if there are plenty of stripe_heads.
6199          * We need a minimum of one full stripe,, and for sensible progress
6200          * it is best to have about 4 times that.
6201          * If we require 4 times, then the default 256 4K stripe_heads will
6202          * allow for chunk sizes up to 256K, which is probably OK.
6203          * If the chunk size is greater, user-space should request more
6204          * stripe_heads first.
6205          */
6206         struct r5conf *conf = mddev->private;
6207         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6208             > conf->max_nr_stripes ||
6209             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6210             > conf->max_nr_stripes) {
6211                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6212                        mdname(mddev),
6213                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6214                         / STRIPE_SIZE)*4);
6215                 return 0;
6216         }
6217         return 1;
6218 }
6219
6220 static int check_reshape(struct mddev *mddev)
6221 {
6222         struct r5conf *conf = mddev->private;
6223
6224         if (mddev->delta_disks == 0 &&
6225             mddev->new_layout == mddev->layout &&
6226             mddev->new_chunk_sectors == mddev->chunk_sectors)
6227                 return 0; /* nothing to do */
6228         if (has_failed(conf))
6229                 return -EINVAL;
6230         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6231                 /* We might be able to shrink, but the devices must
6232                  * be made bigger first.
6233                  * For raid6, 4 is the minimum size.
6234                  * Otherwise 2 is the minimum
6235                  */
6236                 int min = 2;
6237                 if (mddev->level == 6)
6238                         min = 4;
6239                 if (mddev->raid_disks + mddev->delta_disks < min)
6240                         return -EINVAL;
6241         }
6242
6243         if (!check_stripe_cache(mddev))
6244                 return -ENOSPC;
6245
6246         return resize_stripes(conf, (conf->previous_raid_disks
6247                                      + mddev->delta_disks));
6248 }
6249
6250 static int raid5_start_reshape(struct mddev *mddev)
6251 {
6252         struct r5conf *conf = mddev->private;
6253         struct md_rdev *rdev;
6254         int spares = 0;
6255         unsigned long flags;
6256
6257         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6258                 return -EBUSY;
6259
6260         if (!check_stripe_cache(mddev))
6261                 return -ENOSPC;
6262
6263         if (has_failed(conf))
6264                 return -EINVAL;
6265
6266         rdev_for_each(rdev, mddev) {
6267                 if (!test_bit(In_sync, &rdev->flags)
6268                     && !test_bit(Faulty, &rdev->flags))
6269                         spares++;
6270         }
6271
6272         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6273                 /* Not enough devices even to make a degraded array
6274                  * of that size
6275                  */
6276                 return -EINVAL;
6277
6278         /* Refuse to reduce size of the array.  Any reductions in
6279          * array size must be through explicit setting of array_size
6280          * attribute.
6281          */
6282         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6283             < mddev->array_sectors) {
6284                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6285                        "before number of disks\n", mdname(mddev));
6286                 return -EINVAL;
6287         }
6288
6289         atomic_set(&conf->reshape_stripes, 0);
6290         spin_lock_irq(&conf->device_lock);
6291         write_seqcount_begin(&conf->gen_lock);
6292         conf->previous_raid_disks = conf->raid_disks;
6293         conf->raid_disks += mddev->delta_disks;
6294         conf->prev_chunk_sectors = conf->chunk_sectors;
6295         conf->chunk_sectors = mddev->new_chunk_sectors;
6296         conf->prev_algo = conf->algorithm;
6297         conf->algorithm = mddev->new_layout;
6298         conf->generation++;
6299         /* Code that selects data_offset needs to see the generation update
6300          * if reshape_progress has been set - so a memory barrier needed.
6301          */
6302         smp_mb();
6303         if (mddev->reshape_backwards)
6304                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6305         else
6306                 conf->reshape_progress = 0;
6307         conf->reshape_safe = conf->reshape_progress;
6308         write_seqcount_end(&conf->gen_lock);
6309         spin_unlock_irq(&conf->device_lock);
6310
6311         /* Now make sure any requests that proceeded on the assumption
6312          * the reshape wasn't running - like Discard or Read - have
6313          * completed.
6314          */
6315         mddev_suspend(mddev);
6316         mddev_resume(mddev);
6317
6318         /* Add some new drives, as many as will fit.
6319          * We know there are enough to make the newly sized array work.
6320          * Don't add devices if we are reducing the number of
6321          * devices in the array.  This is because it is not possible
6322          * to correctly record the "partially reconstructed" state of
6323          * such devices during the reshape and confusion could result.
6324          */
6325         if (mddev->delta_disks >= 0) {
6326                 rdev_for_each(rdev, mddev)
6327                         if (rdev->raid_disk < 0 &&
6328                             !test_bit(Faulty, &rdev->flags)) {
6329                                 if (raid5_add_disk(mddev, rdev) == 0) {
6330                                         if (rdev->raid_disk
6331                                             >= conf->previous_raid_disks)
6332                                                 set_bit(In_sync, &rdev->flags);
6333                                         else
6334                                                 rdev->recovery_offset = 0;
6335
6336                                         if (sysfs_link_rdev(mddev, rdev))
6337                                                 /* Failure here is OK */;
6338                                 }
6339                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6340                                    && !test_bit(Faulty, &rdev->flags)) {
6341                                 /* This is a spare that was manually added */
6342                                 set_bit(In_sync, &rdev->flags);
6343                         }
6344
6345                 /* When a reshape changes the number of devices,
6346                  * ->degraded is measured against the larger of the
6347                  * pre and post number of devices.
6348                  */
6349                 spin_lock_irqsave(&conf->device_lock, flags);
6350                 mddev->degraded = calc_degraded(conf);
6351                 spin_unlock_irqrestore(&conf->device_lock, flags);
6352         }
6353         mddev->raid_disks = conf->raid_disks;
6354         mddev->reshape_position = conf->reshape_progress;
6355         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6356
6357         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6358         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6359         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6360         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6361         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6362                                                 "reshape");
6363         if (!mddev->sync_thread) {
6364                 mddev->recovery = 0;
6365                 spin_lock_irq(&conf->device_lock);
6366                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6367                 rdev_for_each(rdev, mddev)
6368                         rdev->new_data_offset = rdev->data_offset;
6369                 smp_wmb();
6370                 conf->reshape_progress = MaxSector;
6371                 mddev->reshape_position = MaxSector;
6372                 spin_unlock_irq(&conf->device_lock);
6373                 return -EAGAIN;
6374         }
6375         conf->reshape_checkpoint = jiffies;
6376         md_wakeup_thread(mddev->sync_thread);
6377         md_new_event(mddev);
6378         return 0;
6379 }
6380
6381 /* This is called from the reshape thread and should make any
6382  * changes needed in 'conf'
6383  */
6384 static void end_reshape(struct r5conf *conf)
6385 {
6386
6387         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6388                 struct md_rdev *rdev;
6389
6390                 spin_lock_irq(&conf->device_lock);
6391                 conf->previous_raid_disks = conf->raid_disks;
6392                 rdev_for_each(rdev, conf->mddev)
6393                         rdev->data_offset = rdev->new_data_offset;
6394                 smp_wmb();
6395                 conf->reshape_progress = MaxSector;
6396                 spin_unlock_irq(&conf->device_lock);
6397                 wake_up(&conf->wait_for_overlap);
6398
6399                 /* read-ahead size must cover two whole stripes, which is
6400                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6401                  */
6402                 if (conf->mddev->queue) {
6403                         int data_disks = conf->raid_disks - conf->max_degraded;
6404                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6405                                                    / PAGE_SIZE);
6406                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6407                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6408                 }
6409         }
6410 }
6411
6412 /* This is called from the raid5d thread with mddev_lock held.
6413  * It makes config changes to the device.
6414  */
6415 static void raid5_finish_reshape(struct mddev *mddev)
6416 {
6417         struct r5conf *conf = mddev->private;
6418
6419         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6420
6421                 if (mddev->delta_disks > 0) {
6422                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6423                         set_capacity(mddev->gendisk, mddev->array_sectors);
6424                         revalidate_disk(mddev->gendisk);
6425                 } else {
6426                         int d;
6427                         spin_lock_irq(&conf->device_lock);
6428                         mddev->degraded = calc_degraded(conf);
6429                         spin_unlock_irq(&conf->device_lock);
6430                         for (d = conf->raid_disks ;
6431                              d < conf->raid_disks - mddev->delta_disks;
6432                              d++) {
6433                                 struct md_rdev *rdev = conf->disks[d].rdev;
6434                                 if (rdev)
6435                                         clear_bit(In_sync, &rdev->flags);
6436                                 rdev = conf->disks[d].replacement;
6437                                 if (rdev)
6438                                         clear_bit(In_sync, &rdev->flags);
6439                         }
6440                 }
6441                 mddev->layout = conf->algorithm;
6442                 mddev->chunk_sectors = conf->chunk_sectors;
6443                 mddev->reshape_position = MaxSector;
6444                 mddev->delta_disks = 0;
6445                 mddev->reshape_backwards = 0;
6446         }
6447 }
6448
6449 static void raid5_quiesce(struct mddev *mddev, int state)
6450 {
6451         struct r5conf *conf = mddev->private;
6452
6453         switch(state) {
6454         case 2: /* resume for a suspend */
6455                 wake_up(&conf->wait_for_overlap);
6456                 break;
6457
6458         case 1: /* stop all writes */
6459                 spin_lock_irq(&conf->device_lock);
6460                 /* '2' tells resync/reshape to pause so that all
6461                  * active stripes can drain
6462                  */
6463                 conf->quiesce = 2;
6464                 wait_event_lock_irq(conf->wait_for_stripe,
6465                                     atomic_read(&conf->active_stripes) == 0 &&
6466                                     atomic_read(&conf->active_aligned_reads) == 0,
6467                                     conf->device_lock);
6468                 conf->quiesce = 1;
6469                 spin_unlock_irq(&conf->device_lock);
6470                 /* allow reshape to continue */
6471                 wake_up(&conf->wait_for_overlap);
6472                 break;
6473
6474         case 0: /* re-enable writes */
6475                 spin_lock_irq(&conf->device_lock);
6476                 conf->quiesce = 0;
6477                 wake_up(&conf->wait_for_stripe);
6478                 wake_up(&conf->wait_for_overlap);
6479                 spin_unlock_irq(&conf->device_lock);
6480                 break;
6481         }
6482 }
6483
6484
6485 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6486 {
6487         struct r0conf *raid0_conf = mddev->private;
6488         sector_t sectors;
6489
6490         /* for raid0 takeover only one zone is supported */
6491         if (raid0_conf->nr_strip_zones > 1) {
6492                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6493                        mdname(mddev));
6494                 return ERR_PTR(-EINVAL);
6495         }
6496
6497         sectors = raid0_conf->strip_zone[0].zone_end;
6498         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6499         mddev->dev_sectors = sectors;
6500         mddev->new_level = level;
6501         mddev->new_layout = ALGORITHM_PARITY_N;
6502         mddev->new_chunk_sectors = mddev->chunk_sectors;
6503         mddev->raid_disks += 1;
6504         mddev->delta_disks = 1;
6505         /* make sure it will be not marked as dirty */
6506         mddev->recovery_cp = MaxSector;
6507
6508         return setup_conf(mddev);
6509 }
6510
6511
6512 static void *raid5_takeover_raid1(struct mddev *mddev)
6513 {
6514         int chunksect;
6515
6516         if (mddev->raid_disks != 2 ||
6517             mddev->degraded > 1)
6518                 return ERR_PTR(-EINVAL);
6519
6520         /* Should check if there are write-behind devices? */
6521
6522         chunksect = 64*2; /* 64K by default */
6523
6524         /* The array must be an exact multiple of chunksize */
6525         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6526                 chunksect >>= 1;
6527
6528         if ((chunksect<<9) < STRIPE_SIZE)
6529                 /* array size does not allow a suitable chunk size */
6530                 return ERR_PTR(-EINVAL);
6531
6532         mddev->new_level = 5;
6533         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6534         mddev->new_chunk_sectors = chunksect;
6535
6536         return setup_conf(mddev);
6537 }
6538
6539 static void *raid5_takeover_raid6(struct mddev *mddev)
6540 {
6541         int new_layout;
6542
6543         switch (mddev->layout) {
6544         case ALGORITHM_LEFT_ASYMMETRIC_6:
6545                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6546                 break;
6547         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6548                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6549                 break;
6550         case ALGORITHM_LEFT_SYMMETRIC_6:
6551                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6552                 break;
6553         case ALGORITHM_RIGHT_SYMMETRIC_6:
6554                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6555                 break;
6556         case ALGORITHM_PARITY_0_6:
6557                 new_layout = ALGORITHM_PARITY_0;
6558                 break;
6559         case ALGORITHM_PARITY_N:
6560                 new_layout = ALGORITHM_PARITY_N;
6561                 break;
6562         default:
6563                 return ERR_PTR(-EINVAL);
6564         }
6565         mddev->new_level = 5;
6566         mddev->new_layout = new_layout;
6567         mddev->delta_disks = -1;
6568         mddev->raid_disks -= 1;
6569         return setup_conf(mddev);
6570 }
6571
6572
6573 static int raid5_check_reshape(struct mddev *mddev)
6574 {
6575         /* For a 2-drive array, the layout and chunk size can be changed
6576          * immediately as not restriping is needed.
6577          * For larger arrays we record the new value - after validation
6578          * to be used by a reshape pass.
6579          */
6580         struct r5conf *conf = mddev->private;
6581         int new_chunk = mddev->new_chunk_sectors;
6582
6583         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6584                 return -EINVAL;
6585         if (new_chunk > 0) {
6586                 if (!is_power_of_2(new_chunk))
6587                         return -EINVAL;
6588                 if (new_chunk < (PAGE_SIZE>>9))
6589                         return -EINVAL;
6590                 if (mddev->array_sectors & (new_chunk-1))
6591                         /* not factor of array size */
6592                         return -EINVAL;
6593         }
6594
6595         /* They look valid */
6596
6597         if (mddev->raid_disks == 2) {
6598                 /* can make the change immediately */
6599                 if (mddev->new_layout >= 0) {
6600                         conf->algorithm = mddev->new_layout;
6601                         mddev->layout = mddev->new_layout;
6602                 }
6603                 if (new_chunk > 0) {
6604                         conf->chunk_sectors = new_chunk ;
6605                         mddev->chunk_sectors = new_chunk;
6606                 }
6607                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6608                 md_wakeup_thread(mddev->thread);
6609         }
6610         return check_reshape(mddev);
6611 }
6612
6613 static int raid6_check_reshape(struct mddev *mddev)
6614 {
6615         int new_chunk = mddev->new_chunk_sectors;
6616
6617         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6618                 return -EINVAL;
6619         if (new_chunk > 0) {
6620                 if (!is_power_of_2(new_chunk))
6621                         return -EINVAL;
6622                 if (new_chunk < (PAGE_SIZE >> 9))
6623                         return -EINVAL;
6624                 if (mddev->array_sectors & (new_chunk-1))
6625                         /* not factor of array size */
6626                         return -EINVAL;
6627         }
6628
6629         /* They look valid */
6630         return check_reshape(mddev);
6631 }
6632
6633 static void *raid5_takeover(struct mddev *mddev)
6634 {
6635         /* raid5 can take over:
6636          *  raid0 - if there is only one strip zone - make it a raid4 layout
6637          *  raid1 - if there are two drives.  We need to know the chunk size
6638          *  raid4 - trivial - just use a raid4 layout.
6639          *  raid6 - Providing it is a *_6 layout
6640          */
6641         if (mddev->level == 0)
6642                 return raid45_takeover_raid0(mddev, 5);
6643         if (mddev->level == 1)
6644                 return raid5_takeover_raid1(mddev);
6645         if (mddev->level == 4) {
6646                 mddev->new_layout = ALGORITHM_PARITY_N;
6647                 mddev->new_level = 5;
6648                 return setup_conf(mddev);
6649         }
6650         if (mddev->level == 6)
6651                 return raid5_takeover_raid6(mddev);
6652
6653         return ERR_PTR(-EINVAL);
6654 }
6655
6656 static void *raid4_takeover(struct mddev *mddev)
6657 {
6658         /* raid4 can take over:
6659          *  raid0 - if there is only one strip zone
6660          *  raid5 - if layout is right
6661          */
6662         if (mddev->level == 0)
6663                 return raid45_takeover_raid0(mddev, 4);
6664         if (mddev->level == 5 &&
6665             mddev->layout == ALGORITHM_PARITY_N) {
6666                 mddev->new_layout = 0;
6667                 mddev->new_level = 4;
6668                 return setup_conf(mddev);
6669         }
6670         return ERR_PTR(-EINVAL);
6671 }
6672
6673 static struct md_personality raid5_personality;
6674
6675 static void *raid6_takeover(struct mddev *mddev)
6676 {
6677         /* Currently can only take over a raid5.  We map the
6678          * personality to an equivalent raid6 personality
6679          * with the Q block at the end.
6680          */
6681         int new_layout;
6682
6683         if (mddev->pers != &raid5_personality)
6684                 return ERR_PTR(-EINVAL);
6685         if (mddev->degraded > 1)
6686                 return ERR_PTR(-EINVAL);
6687         if (mddev->raid_disks > 253)
6688                 return ERR_PTR(-EINVAL);
6689         if (mddev->raid_disks < 3)
6690                 return ERR_PTR(-EINVAL);
6691
6692         switch (mddev->layout) {
6693         case ALGORITHM_LEFT_ASYMMETRIC:
6694                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6695                 break;
6696         case ALGORITHM_RIGHT_ASYMMETRIC:
6697                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6698                 break;
6699         case ALGORITHM_LEFT_SYMMETRIC:
6700                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6701                 break;
6702         case ALGORITHM_RIGHT_SYMMETRIC:
6703                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6704                 break;
6705         case ALGORITHM_PARITY_0:
6706                 new_layout = ALGORITHM_PARITY_0_6;
6707                 break;
6708         case ALGORITHM_PARITY_N:
6709                 new_layout = ALGORITHM_PARITY_N;
6710                 break;
6711         default:
6712                 return ERR_PTR(-EINVAL);
6713         }
6714         mddev->new_level = 6;
6715         mddev->new_layout = new_layout;
6716         mddev->delta_disks = 1;
6717         mddev->raid_disks += 1;
6718         return setup_conf(mddev);
6719 }
6720
6721
6722 static struct md_personality raid6_personality =
6723 {
6724         .name           = "raid6",
6725         .level          = 6,
6726         .owner          = THIS_MODULE,
6727         .make_request   = make_request,
6728         .run            = run,
6729         .stop           = stop,
6730         .status         = status,
6731         .error_handler  = error,
6732         .hot_add_disk   = raid5_add_disk,
6733         .hot_remove_disk= raid5_remove_disk,
6734         .spare_active   = raid5_spare_active,
6735         .sync_request   = sync_request,
6736         .resize         = raid5_resize,
6737         .size           = raid5_size,
6738         .check_reshape  = raid6_check_reshape,
6739         .start_reshape  = raid5_start_reshape,
6740         .finish_reshape = raid5_finish_reshape,
6741         .quiesce        = raid5_quiesce,
6742         .takeover       = raid6_takeover,
6743 };
6744 static struct md_personality raid5_personality =
6745 {
6746         .name           = "raid5",
6747         .level          = 5,
6748         .owner          = THIS_MODULE,
6749         .make_request   = make_request,
6750         .run            = run,
6751         .stop           = stop,
6752         .status         = status,
6753         .error_handler  = error,
6754         .hot_add_disk   = raid5_add_disk,
6755         .hot_remove_disk= raid5_remove_disk,
6756         .spare_active   = raid5_spare_active,
6757         .sync_request   = sync_request,
6758         .resize         = raid5_resize,
6759         .size           = raid5_size,
6760         .check_reshape  = raid5_check_reshape,
6761         .start_reshape  = raid5_start_reshape,
6762         .finish_reshape = raid5_finish_reshape,
6763         .quiesce        = raid5_quiesce,
6764         .takeover       = raid5_takeover,
6765 };
6766
6767 static struct md_personality raid4_personality =
6768 {
6769         .name           = "raid4",
6770         .level          = 4,
6771         .owner          = THIS_MODULE,
6772         .make_request   = make_request,
6773         .run            = run,
6774         .stop           = stop,
6775         .status         = status,
6776         .error_handler  = error,
6777         .hot_add_disk   = raid5_add_disk,
6778         .hot_remove_disk= raid5_remove_disk,
6779         .spare_active   = raid5_spare_active,
6780         .sync_request   = sync_request,
6781         .resize         = raid5_resize,
6782         .size           = raid5_size,
6783         .check_reshape  = raid5_check_reshape,
6784         .start_reshape  = raid5_start_reshape,
6785         .finish_reshape = raid5_finish_reshape,
6786         .quiesce        = raid5_quiesce,
6787         .takeover       = raid4_takeover,
6788 };
6789
6790 static int __init raid5_init(void)
6791 {
6792         raid5_wq = alloc_workqueue("raid5wq",
6793                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
6794         if (!raid5_wq)
6795                 return -ENOMEM;
6796         register_md_personality(&raid6_personality);
6797         register_md_personality(&raid5_personality);
6798         register_md_personality(&raid4_personality);
6799         return 0;
6800 }
6801
6802 static void raid5_exit(void)
6803 {
6804         unregister_md_personality(&raid6_personality);
6805         unregister_md_personality(&raid5_personality);
6806         unregister_md_personality(&raid4_personality);
6807         destroy_workqueue(raid5_wq);
6808 }
6809
6810 module_init(raid5_init);
6811 module_exit(raid5_exit);
6812 MODULE_LICENSE("GPL");
6813 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6814 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6815 MODULE_ALIAS("md-raid5");
6816 MODULE_ALIAS("md-raid4");
6817 MODULE_ALIAS("md-level-5");
6818 MODULE_ALIAS("md-level-4");
6819 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6820 MODULE_ALIAS("md-raid6");
6821 MODULE_ALIAS("md-level-6");
6822
6823 /* This used to be two separate modules, they were: */
6824 MODULE_ALIAS("raid5");
6825 MODULE_ALIAS("raid6");