]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/media/platform/omap/omap_vout_vrfb.c
Merge branches 'for-4.10/upstream-fixes', 'for-4.11/intel-ish', 'for-4.11/mayflash...
[karo-tx-linux.git] / drivers / media / platform / omap / omap_vout_vrfb.c
1 /*
2  * omap_vout_vrfb.c
3  *
4  * Copyright (C) 2010 Texas Instruments.
5  *
6  * This file is licensed under the terms of the GNU General Public License
7  * version 2. This program is licensed "as is" without any warranty of any
8  * kind, whether express or implied.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/platform_device.h>
14 #include <linux/videodev2.h>
15
16 #include <media/videobuf-dma-contig.h>
17 #include <media/v4l2-device.h>
18
19 #include <linux/omap-dma.h>
20 #include <video/omapvrfb.h>
21
22 #include "omap_voutdef.h"
23 #include "omap_voutlib.h"
24 #include "omap_vout_vrfb.h"
25
26 #define OMAP_DMA_NO_DEVICE      0
27
28 /*
29  * Function for allocating video buffers
30  */
31 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
32                 unsigned int *count, int startindex)
33 {
34         int i, j;
35
36         for (i = 0; i < *count; i++) {
37                 if (!vout->smsshado_virt_addr[i]) {
38                         vout->smsshado_virt_addr[i] =
39                                 omap_vout_alloc_buffer(vout->smsshado_size,
40                                                 &vout->smsshado_phy_addr[i]);
41                 }
42                 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
43                         if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
44                                 break;
45                 }
46                 if (!vout->smsshado_virt_addr[i]) {
47                         for (j = 0; j < i; j++) {
48                                 omap_vout_free_buffer(
49                                                 vout->smsshado_virt_addr[j],
50                                                 vout->smsshado_size);
51                                 vout->smsshado_virt_addr[j] = 0;
52                                 vout->smsshado_phy_addr[j] = 0;
53                         }
54                         *count = 0;
55                         return -ENOMEM;
56                 }
57                 memset((void *) vout->smsshado_virt_addr[i], 0,
58                                 vout->smsshado_size);
59         }
60         return 0;
61 }
62
63 /*
64  * Wakes up the application once the DMA transfer to VRFB space is completed.
65  */
66 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
67 {
68         struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
69
70         t->tx_status = 1;
71         wake_up_interruptible(&t->wait);
72 }
73
74 /*
75  * Free VRFB buffers
76  */
77 void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
78 {
79         int j;
80
81         for (j = 0; j < VRFB_NUM_BUFS; j++) {
82                 if (vout->smsshado_virt_addr[j]) {
83                         omap_vout_free_buffer(vout->smsshado_virt_addr[j],
84                                               vout->smsshado_size);
85                         vout->smsshado_virt_addr[j] = 0;
86                         vout->smsshado_phy_addr[j] = 0;
87                 }
88         }
89 }
90
91 int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num,
92                               bool static_vrfb_allocation)
93 {
94         int ret = 0, i, j;
95         struct omap_vout_device *vout;
96         struct video_device *vfd;
97         int image_width, image_height;
98         int vrfb_num_bufs = VRFB_NUM_BUFS;
99         struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
100         struct omap2video_device *vid_dev =
101                 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
102
103         vout = vid_dev->vouts[vid_num];
104         vfd = vout->vfd;
105
106         for (i = 0; i < VRFB_NUM_BUFS; i++) {
107                 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
108                         dev_info(&pdev->dev, ": VRFB allocation failed\n");
109                         for (j = 0; j < i; j++)
110                                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
111                         ret = -ENOMEM;
112                         goto free_buffers;
113                 }
114         }
115
116         /* Calculate VRFB memory size */
117         /* allocate for worst case size */
118         image_width = VID_MAX_WIDTH / TILE_SIZE;
119         if (VID_MAX_WIDTH % TILE_SIZE)
120                 image_width++;
121
122         image_width = image_width * TILE_SIZE;
123         image_height = VID_MAX_HEIGHT / TILE_SIZE;
124
125         if (VID_MAX_HEIGHT % TILE_SIZE)
126                 image_height++;
127
128         image_height = image_height * TILE_SIZE;
129         vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
130
131         /*
132          * Request and Initialize DMA, for DMA based VRFB transfer
133          */
134         vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
135         vout->vrfb_dma_tx.dma_ch = -1;
136         vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
137         ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
138                         omap_vout_vrfb_dma_tx_callback,
139                         (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
140         if (ret < 0) {
141                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
142                 dev_info(&pdev->dev,
143                          ": failed to allocate DMA Channel for video%d\n",
144                          vfd->minor);
145         }
146         init_waitqueue_head(&vout->vrfb_dma_tx.wait);
147
148         /* statically allocated the VRFB buffer is done through
149            commands line aruments */
150         if (static_vrfb_allocation) {
151                 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
152                         ret =  -ENOMEM;
153                         goto release_vrfb_ctx;
154                 }
155                 vout->vrfb_static_allocation = true;
156         }
157         return 0;
158
159 release_vrfb_ctx:
160         for (j = 0; j < VRFB_NUM_BUFS; j++)
161                 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
162 free_buffers:
163         omap_vout_free_buffers(vout);
164
165         return ret;
166 }
167
168 /*
169  * Release the VRFB context once the module exits
170  */
171 void omap_vout_release_vrfb(struct omap_vout_device *vout)
172 {
173         int i;
174
175         for (i = 0; i < VRFB_NUM_BUFS; i++)
176                 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
177
178         if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
179                 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
180                 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
181         }
182 }
183
184 /*
185  * Allocate the buffers for the VRFB space.  Data is copied from V4L2
186  * buffers to the VRFB buffers using the DMA engine.
187  */
188 int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
189                           unsigned int *count, unsigned int startindex)
190 {
191         int i;
192         bool yuv_mode;
193
194         if (!is_rotation_enabled(vout))
195                 return 0;
196
197         /* If rotation is enabled, allocate memory for VRFB space also */
198         *count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count;
199
200         /* Allocate the VRFB buffers only if the buffers are not
201          * allocated during init time.
202          */
203         if (!vout->vrfb_static_allocation)
204                 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
205                         return -ENOMEM;
206
207         if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
208                         vout->dss_mode == OMAP_DSS_COLOR_UYVY)
209                 yuv_mode = true;
210         else
211                 yuv_mode = false;
212
213         for (i = 0; i < *count; i++)
214                 omap_vrfb_setup(&vout->vrfb_context[i],
215                                 vout->smsshado_phy_addr[i], vout->pix.width,
216                                 vout->pix.height, vout->bpp, yuv_mode);
217
218         return 0;
219 }
220
221 int omap_vout_prepare_vrfb(struct omap_vout_device *vout,
222                                 struct videobuf_buffer *vb)
223 {
224         dma_addr_t dmabuf;
225         struct vid_vrfb_dma *tx;
226         enum dss_rotation rotation;
227         u32 dest_frame_index = 0, src_element_index = 0;
228         u32 dest_element_index = 0, src_frame_index = 0;
229         u32 elem_count = 0, frame_count = 0, pixsize = 2;
230
231         if (!is_rotation_enabled(vout))
232                 return 0;
233
234         dmabuf = vout->buf_phy_addr[vb->i];
235         /* If rotation is enabled, copy input buffer into VRFB
236          * memory space using DMA. We are copying input buffer
237          * into VRFB memory space of desired angle and DSS will
238          * read image VRFB memory for 0 degree angle
239          */
240         pixsize = vout->bpp * vout->vrfb_bpp;
241         /*
242          * DMA transfer in double index mode
243          */
244
245         /* Frame index */
246         dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
247                         (vout->pix.width * vout->bpp)) + 1;
248
249         /* Source and destination parameters */
250         src_element_index = 0;
251         src_frame_index = 0;
252         dest_element_index = 1;
253         /* Number of elements per frame */
254         elem_count = vout->pix.width * vout->bpp;
255         frame_count = vout->pix.height;
256         tx = &vout->vrfb_dma_tx;
257         tx->tx_status = 0;
258         omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
259                         (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
260                         tx->dev_id, 0x0);
261         /* src_port required only for OMAP1 */
262         omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
263                         dmabuf, src_element_index, src_frame_index);
264         /*set dma source burst mode for VRFB */
265         omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
266         rotation = calc_rotation(vout);
267
268         /* dest_port required only for OMAP1 */
269         omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
270                         vout->vrfb_context[vb->i].paddr[0], dest_element_index,
271                         dest_frame_index);
272         /*set dma dest burst mode for VRFB */
273         omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
274         omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
275
276         omap_start_dma(tx->dma_ch);
277         wait_event_interruptible_timeout(tx->wait, tx->tx_status == 1,
278                                          VRFB_TX_TIMEOUT);
279
280         if (tx->tx_status == 0) {
281                 omap_stop_dma(tx->dma_ch);
282                 return -EINVAL;
283         }
284         /* Store buffers physical address into an array. Addresses
285          * from this array will be used to configure DSS */
286         vout->queued_buf_addr[vb->i] = (u8 *)
287                 vout->vrfb_context[vb->i].paddr[rotation];
288         return 0;
289 }
290
291 /*
292  * Calculate the buffer offsets from which the streaming should
293  * start. This offset calculation is mainly required because of
294  * the VRFB 32 pixels alignment with rotation.
295  */
296 void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout)
297 {
298         enum dss_rotation rotation;
299         bool mirroring = vout->mirror;
300         struct v4l2_rect *crop = &vout->crop;
301         struct v4l2_pix_format *pix = &vout->pix;
302         int *cropped_offset = &vout->cropped_offset;
303         int vr_ps = 1, ps = 2, temp_ps = 2;
304         int offset = 0, ctop = 0, cleft = 0, line_length = 0;
305
306         rotation = calc_rotation(vout);
307
308         if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
309                         V4L2_PIX_FMT_UYVY == pix->pixelformat) {
310                 if (is_rotation_enabled(vout)) {
311                         /*
312                          * ps    - Actual pixel size for YUYV/UYVY for
313                          *         VRFB/Mirroring is 4 bytes
314                          * vr_ps - Virtually pixel size for YUYV/UYVY is
315                          *         2 bytes
316                          */
317                         ps = 4;
318                         vr_ps = 2;
319                 } else {
320                         ps = 2; /* otherwise the pixel size is 2 byte */
321                 }
322         } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
323                 ps = 4;
324         } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
325                 ps = 3;
326         }
327         vout->ps = ps;
328         vout->vr_ps = vr_ps;
329
330         if (is_rotation_enabled(vout)) {
331                 line_length = MAX_PIXELS_PER_LINE;
332                 ctop = (pix->height - crop->height) - crop->top;
333                 cleft = (pix->width - crop->width) - crop->left;
334         } else {
335                 line_length = pix->width;
336         }
337         vout->line_length = line_length;
338         switch (rotation) {
339         case dss_rotation_90_degree:
340                 offset = vout->vrfb_context[0].yoffset *
341                         vout->vrfb_context[0].bytespp;
342                 temp_ps = ps / vr_ps;
343                 if (!mirroring) {
344                         *cropped_offset = offset + line_length *
345                                 temp_ps * cleft + crop->top * temp_ps;
346                 } else {
347                         *cropped_offset = offset + line_length * temp_ps *
348                                 cleft + crop->top * temp_ps + (line_length *
349                                 ((crop->width / (vr_ps)) - 1) * ps);
350                 }
351                 break;
352         case dss_rotation_180_degree:
353                 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
354                         vout->vrfb_context[0].bytespp) +
355                         (vout->vrfb_context[0].xoffset *
356                         vout->vrfb_context[0].bytespp));
357                 if (!mirroring) {
358                         *cropped_offset = offset + (line_length * ps * ctop) +
359                                 (cleft / vr_ps) * ps;
360
361                 } else {
362                         *cropped_offset = offset + (line_length * ps * ctop) +
363                                 (cleft / vr_ps) * ps + (line_length *
364                                 (crop->height - 1) * ps);
365                 }
366                 break;
367         case dss_rotation_270_degree:
368                 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
369                         vout->vrfb_context[0].bytespp;
370                 temp_ps = ps / vr_ps;
371                 if (!mirroring) {
372                         *cropped_offset = offset + line_length *
373                             temp_ps * crop->left + ctop * ps;
374                 } else {
375                         *cropped_offset = offset + line_length *
376                                 temp_ps * crop->left + ctop * ps +
377                                 (line_length * ((crop->width / vr_ps) - 1) *
378                                  ps);
379                 }
380                 break;
381         case dss_rotation_0_degree:
382                 if (!mirroring) {
383                         *cropped_offset = (line_length * ps) *
384                                 crop->top + (crop->left / vr_ps) * ps;
385                 } else {
386                         *cropped_offset = (line_length * ps) *
387                                 crop->top + (crop->left / vr_ps) * ps +
388                                 (line_length * (crop->height - 1) * ps);
389                 }
390                 break;
391         default:
392                 *cropped_offset = (line_length * ps * crop->top) /
393                         vr_ps + (crop->left * ps) / vr_ps +
394                         ((crop->width / vr_ps) - 1) * ps;
395                 break;
396         }
397 }