]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mmc/host/sh_mmcif.c
Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[karo-tx-linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_qos.h>
60 #include <linux/pm_runtime.h>
61 #include <linux/spinlock.h>
62 #include <linux/module.h>
63
64 #define DRIVER_NAME     "sh_mmcif"
65 #define DRIVER_VERSION  "2010-04-28"
66
67 /* CE_CMD_SET */
68 #define CMD_MASK                0x3f000000
69 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
70 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
71 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
72 #define CMD_SET_RBSY            (1 << 21) /* R1b */
73 #define CMD_SET_CCSEN           (1 << 20)
74 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
75 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
76 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
77 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
78 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
79 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
80 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
81 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
82 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
83 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
84 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
85 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
86 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
87 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
88 #define CMD_SET_CCSH            (1 << 5)
89 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
90 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
91 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
92
93 /* CE_CMD_CTRL */
94 #define CMD_CTRL_BREAK          (1 << 0)
95
96 /* CE_BLOCK_SET */
97 #define BLOCK_SIZE_MASK         0x0000ffff
98
99 /* CE_INT */
100 #define INT_CCSDE               (1 << 29)
101 #define INT_CMD12DRE            (1 << 26)
102 #define INT_CMD12RBE            (1 << 25)
103 #define INT_CMD12CRE            (1 << 24)
104 #define INT_DTRANE              (1 << 23)
105 #define INT_BUFRE               (1 << 22)
106 #define INT_BUFWEN              (1 << 21)
107 #define INT_BUFREN              (1 << 20)
108 #define INT_CCSRCV              (1 << 19)
109 #define INT_RBSYE               (1 << 17)
110 #define INT_CRSPE               (1 << 16)
111 #define INT_CMDVIO              (1 << 15)
112 #define INT_BUFVIO              (1 << 14)
113 #define INT_WDATERR             (1 << 11)
114 #define INT_RDATERR             (1 << 10)
115 #define INT_RIDXERR             (1 << 9)
116 #define INT_RSPERR              (1 << 8)
117 #define INT_CCSTO               (1 << 5)
118 #define INT_CRCSTO              (1 << 4)
119 #define INT_WDATTO              (1 << 3)
120 #define INT_RDATTO              (1 << 2)
121 #define INT_RBSYTO              (1 << 1)
122 #define INT_RSPTO               (1 << 0)
123 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
124                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
125                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
126                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
127
128 /* CE_INT_MASK */
129 #define MASK_ALL                0x00000000
130 #define MASK_MCCSDE             (1 << 29)
131 #define MASK_MCMD12DRE          (1 << 26)
132 #define MASK_MCMD12RBE          (1 << 25)
133 #define MASK_MCMD12CRE          (1 << 24)
134 #define MASK_MDTRANE            (1 << 23)
135 #define MASK_MBUFRE             (1 << 22)
136 #define MASK_MBUFWEN            (1 << 21)
137 #define MASK_MBUFREN            (1 << 20)
138 #define MASK_MCCSRCV            (1 << 19)
139 #define MASK_MRBSYE             (1 << 17)
140 #define MASK_MCRSPE             (1 << 16)
141 #define MASK_MCMDVIO            (1 << 15)
142 #define MASK_MBUFVIO            (1 << 14)
143 #define MASK_MWDATERR           (1 << 11)
144 #define MASK_MRDATERR           (1 << 10)
145 #define MASK_MRIDXERR           (1 << 9)
146 #define MASK_MRSPERR            (1 << 8)
147 #define MASK_MCCSTO             (1 << 5)
148 #define MASK_MCRCSTO            (1 << 4)
149 #define MASK_MWDATTO            (1 << 3)
150 #define MASK_MRDATTO            (1 << 2)
151 #define MASK_MRBSYTO            (1 << 1)
152 #define MASK_MRSPTO             (1 << 0)
153
154 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
157                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159 /* CE_HOST_STS1 */
160 #define STS1_CMDSEQ             (1 << 31)
161
162 /* CE_HOST_STS2 */
163 #define STS2_CRCSTE             (1 << 31)
164 #define STS2_CRC16E             (1 << 30)
165 #define STS2_AC12CRCE           (1 << 29)
166 #define STS2_RSPCRC7E           (1 << 28)
167 #define STS2_CRCSTEBE           (1 << 27)
168 #define STS2_RDATEBE            (1 << 26)
169 #define STS2_AC12REBE           (1 << 25)
170 #define STS2_RSPEBE             (1 << 24)
171 #define STS2_AC12IDXE           (1 << 23)
172 #define STS2_RSPIDXE            (1 << 22)
173 #define STS2_CCSTO              (1 << 15)
174 #define STS2_RDATTO             (1 << 14)
175 #define STS2_DATBSYTO           (1 << 13)
176 #define STS2_CRCSTTO            (1 << 12)
177 #define STS2_AC12BSYTO          (1 << 11)
178 #define STS2_RSPBSYTO           (1 << 10)
179 #define STS2_AC12RSPTO          (1 << 9)
180 #define STS2_RSPTO              (1 << 8)
181 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
182                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
183 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
184                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
185                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
186                                  STS2_AC12RSPTO | STS2_RSPTO)
187
188 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
189 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
190 #define CLKDEV_INIT             400000   /* 400 KHz */
191
192 enum mmcif_state {
193         STATE_IDLE,
194         STATE_REQUEST,
195         STATE_IOS,
196 };
197
198 enum mmcif_wait_for {
199         MMCIF_WAIT_FOR_REQUEST,
200         MMCIF_WAIT_FOR_CMD,
201         MMCIF_WAIT_FOR_MREAD,
202         MMCIF_WAIT_FOR_MWRITE,
203         MMCIF_WAIT_FOR_READ,
204         MMCIF_WAIT_FOR_WRITE,
205         MMCIF_WAIT_FOR_READ_END,
206         MMCIF_WAIT_FOR_WRITE_END,
207         MMCIF_WAIT_FOR_STOP,
208 };
209
210 struct sh_mmcif_host {
211         struct mmc_host *mmc;
212         struct mmc_request *mrq;
213         struct platform_device *pd;
214         struct sh_dmae_slave dma_slave_tx;
215         struct sh_dmae_slave dma_slave_rx;
216         struct clk *hclk;
217         unsigned int clk;
218         int bus_width;
219         bool sd_error;
220         bool dying;
221         long timeout;
222         void __iomem *addr;
223         u32 *pio_ptr;
224         spinlock_t lock;                /* protect sh_mmcif_host::state */
225         enum mmcif_state state;
226         enum mmcif_wait_for wait_for;
227         struct delayed_work timeout_work;
228         size_t blocksize;
229         int sg_idx;
230         int sg_blkidx;
231         bool power;
232         bool card_present;
233
234         /* DMA support */
235         struct dma_chan         *chan_rx;
236         struct dma_chan         *chan_tx;
237         struct completion       dma_complete;
238         bool                    dma_active;
239 };
240
241 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
242                                         unsigned int reg, u32 val)
243 {
244         writel(val | readl(host->addr + reg), host->addr + reg);
245 }
246
247 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
248                                         unsigned int reg, u32 val)
249 {
250         writel(~val & readl(host->addr + reg), host->addr + reg);
251 }
252
253 static void mmcif_dma_complete(void *arg)
254 {
255         struct sh_mmcif_host *host = arg;
256         struct mmc_data *data = host->mrq->data;
257
258         dev_dbg(&host->pd->dev, "Command completed\n");
259
260         if (WARN(!data, "%s: NULL data in DMA completion!\n",
261                  dev_name(&host->pd->dev)))
262                 return;
263
264         if (data->flags & MMC_DATA_READ)
265                 dma_unmap_sg(host->chan_rx->device->dev,
266                              data->sg, data->sg_len,
267                              DMA_FROM_DEVICE);
268         else
269                 dma_unmap_sg(host->chan_tx->device->dev,
270                              data->sg, data->sg_len,
271                              DMA_TO_DEVICE);
272
273         complete(&host->dma_complete);
274 }
275
276 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
277 {
278         struct mmc_data *data = host->mrq->data;
279         struct scatterlist *sg = data->sg;
280         struct dma_async_tx_descriptor *desc = NULL;
281         struct dma_chan *chan = host->chan_rx;
282         dma_cookie_t cookie = -EINVAL;
283         int ret;
284
285         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
286                          DMA_FROM_DEVICE);
287         if (ret > 0) {
288                 host->dma_active = true;
289                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
290                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
291         }
292
293         if (desc) {
294                 desc->callback = mmcif_dma_complete;
295                 desc->callback_param = host;
296                 cookie = dmaengine_submit(desc);
297                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
298                 dma_async_issue_pending(chan);
299         }
300         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
301                 __func__, data->sg_len, ret, cookie);
302
303         if (!desc) {
304                 /* DMA failed, fall back to PIO */
305                 if (ret >= 0)
306                         ret = -EIO;
307                 host->chan_rx = NULL;
308                 host->dma_active = false;
309                 dma_release_channel(chan);
310                 /* Free the Tx channel too */
311                 chan = host->chan_tx;
312                 if (chan) {
313                         host->chan_tx = NULL;
314                         dma_release_channel(chan);
315                 }
316                 dev_warn(&host->pd->dev,
317                          "DMA failed: %d, falling back to PIO\n", ret);
318                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
319         }
320
321         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
322                 desc, cookie, data->sg_len);
323 }
324
325 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
326 {
327         struct mmc_data *data = host->mrq->data;
328         struct scatterlist *sg = data->sg;
329         struct dma_async_tx_descriptor *desc = NULL;
330         struct dma_chan *chan = host->chan_tx;
331         dma_cookie_t cookie = -EINVAL;
332         int ret;
333
334         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
335                          DMA_TO_DEVICE);
336         if (ret > 0) {
337                 host->dma_active = true;
338                 desc = dmaengine_prep_slave_sg(chan, sg, ret,
339                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
340         }
341
342         if (desc) {
343                 desc->callback = mmcif_dma_complete;
344                 desc->callback_param = host;
345                 cookie = dmaengine_submit(desc);
346                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
347                 dma_async_issue_pending(chan);
348         }
349         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
350                 __func__, data->sg_len, ret, cookie);
351
352         if (!desc) {
353                 /* DMA failed, fall back to PIO */
354                 if (ret >= 0)
355                         ret = -EIO;
356                 host->chan_tx = NULL;
357                 host->dma_active = false;
358                 dma_release_channel(chan);
359                 /* Free the Rx channel too */
360                 chan = host->chan_rx;
361                 if (chan) {
362                         host->chan_rx = NULL;
363                         dma_release_channel(chan);
364                 }
365                 dev_warn(&host->pd->dev,
366                          "DMA failed: %d, falling back to PIO\n", ret);
367                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
368         }
369
370         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
371                 desc, cookie);
372 }
373
374 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
375 {
376         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
377         chan->private = arg;
378         return true;
379 }
380
381 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
382                                  struct sh_mmcif_plat_data *pdata)
383 {
384         struct sh_dmae_slave *tx, *rx;
385         host->dma_active = false;
386
387         /* We can only either use DMA for both Tx and Rx or not use it at all */
388         if (pdata->dma) {
389                 dev_warn(&host->pd->dev,
390                          "Update your platform to use embedded DMA slave IDs\n");
391                 tx = &pdata->dma->chan_priv_tx;
392                 rx = &pdata->dma->chan_priv_rx;
393         } else {
394                 tx = &host->dma_slave_tx;
395                 tx->slave_id = pdata->slave_id_tx;
396                 rx = &host->dma_slave_rx;
397                 rx->slave_id = pdata->slave_id_rx;
398         }
399         if (tx->slave_id > 0 && rx->slave_id > 0) {
400                 dma_cap_mask_t mask;
401
402                 dma_cap_zero(mask);
403                 dma_cap_set(DMA_SLAVE, mask);
404
405                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
406                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
407                         host->chan_tx);
408
409                 if (!host->chan_tx)
410                         return;
411
412                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
413                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
414                         host->chan_rx);
415
416                 if (!host->chan_rx) {
417                         dma_release_channel(host->chan_tx);
418                         host->chan_tx = NULL;
419                         return;
420                 }
421
422                 init_completion(&host->dma_complete);
423         }
424 }
425
426 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
427 {
428         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
429         /* Descriptors are freed automatically */
430         if (host->chan_tx) {
431                 struct dma_chan *chan = host->chan_tx;
432                 host->chan_tx = NULL;
433                 dma_release_channel(chan);
434         }
435         if (host->chan_rx) {
436                 struct dma_chan *chan = host->chan_rx;
437                 host->chan_rx = NULL;
438                 dma_release_channel(chan);
439         }
440
441         host->dma_active = false;
442 }
443
444 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
445 {
446         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
447
448         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
449         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
450
451         if (!clk)
452                 return;
453         if (p->sup_pclk && clk == host->clk)
454                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
455         else
456                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
457                                 ((fls(host->clk / clk) - 1) << 16));
458
459         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
460 }
461
462 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
463 {
464         u32 tmp;
465
466         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
467
468         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
469         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
470         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
471                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
472         /* byte swap on */
473         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
474 }
475
476 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
477 {
478         u32 state1, state2;
479         int ret, timeout;
480
481         host->sd_error = false;
482
483         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
484         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
485         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
486         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
487
488         if (state1 & STS1_CMDSEQ) {
489                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
490                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
491                 for (timeout = 10000000; timeout; timeout--) {
492                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
493                               & STS1_CMDSEQ))
494                                 break;
495                         mdelay(1);
496                 }
497                 if (!timeout) {
498                         dev_err(&host->pd->dev,
499                                 "Forced end of command sequence timeout err\n");
500                         return -EIO;
501                 }
502                 sh_mmcif_sync_reset(host);
503                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
504                 return -EIO;
505         }
506
507         if (state2 & STS2_CRC_ERR) {
508                 dev_dbg(&host->pd->dev, ": CRC error\n");
509                 ret = -EIO;
510         } else if (state2 & STS2_TIMEOUT_ERR) {
511                 dev_dbg(&host->pd->dev, ": Timeout\n");
512                 ret = -ETIMEDOUT;
513         } else {
514                 dev_dbg(&host->pd->dev, ": End/Index error\n");
515                 ret = -EIO;
516         }
517         return ret;
518 }
519
520 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
521 {
522         struct mmc_data *data = host->mrq->data;
523
524         host->sg_blkidx += host->blocksize;
525
526         /* data->sg->length must be a multiple of host->blocksize? */
527         BUG_ON(host->sg_blkidx > data->sg->length);
528
529         if (host->sg_blkidx == data->sg->length) {
530                 host->sg_blkidx = 0;
531                 if (++host->sg_idx < data->sg_len)
532                         host->pio_ptr = sg_virt(++data->sg);
533         } else {
534                 host->pio_ptr = p;
535         }
536
537         if (host->sg_idx == data->sg_len)
538                 return false;
539
540         return true;
541 }
542
543 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
544                                  struct mmc_request *mrq)
545 {
546         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
547                            BLOCK_SIZE_MASK) + 3;
548
549         host->wait_for = MMCIF_WAIT_FOR_READ;
550         schedule_delayed_work(&host->timeout_work, host->timeout);
551
552         /* buf read enable */
553         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
554 }
555
556 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
557 {
558         struct mmc_data *data = host->mrq->data;
559         u32 *p = sg_virt(data->sg);
560         int i;
561
562         if (host->sd_error) {
563                 data->error = sh_mmcif_error_manage(host);
564                 return false;
565         }
566
567         for (i = 0; i < host->blocksize / 4; i++)
568                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
569
570         /* buffer read end */
571         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
572         host->wait_for = MMCIF_WAIT_FOR_READ_END;
573
574         return true;
575 }
576
577 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
578                                 struct mmc_request *mrq)
579 {
580         struct mmc_data *data = mrq->data;
581
582         if (!data->sg_len || !data->sg->length)
583                 return;
584
585         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586                 BLOCK_SIZE_MASK;
587
588         host->wait_for = MMCIF_WAIT_FOR_MREAD;
589         host->sg_idx = 0;
590         host->sg_blkidx = 0;
591         host->pio_ptr = sg_virt(data->sg);
592         schedule_delayed_work(&host->timeout_work, host->timeout);
593         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
594 }
595
596 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
597 {
598         struct mmc_data *data = host->mrq->data;
599         u32 *p = host->pio_ptr;
600         int i;
601
602         if (host->sd_error) {
603                 data->error = sh_mmcif_error_manage(host);
604                 return false;
605         }
606
607         BUG_ON(!data->sg->length);
608
609         for (i = 0; i < host->blocksize / 4; i++)
610                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
611
612         if (!sh_mmcif_next_block(host, p))
613                 return false;
614
615         schedule_delayed_work(&host->timeout_work, host->timeout);
616         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
617
618         return true;
619 }
620
621 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
622                                         struct mmc_request *mrq)
623 {
624         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625                            BLOCK_SIZE_MASK) + 3;
626
627         host->wait_for = MMCIF_WAIT_FOR_WRITE;
628         schedule_delayed_work(&host->timeout_work, host->timeout);
629
630         /* buf write enable */
631         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
632 }
633
634 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
635 {
636         struct mmc_data *data = host->mrq->data;
637         u32 *p = sg_virt(data->sg);
638         int i;
639
640         if (host->sd_error) {
641                 data->error = sh_mmcif_error_manage(host);
642                 return false;
643         }
644
645         for (i = 0; i < host->blocksize / 4; i++)
646                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
647
648         /* buffer write end */
649         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
650         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
651
652         return true;
653 }
654
655 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
656                                 struct mmc_request *mrq)
657 {
658         struct mmc_data *data = mrq->data;
659
660         if (!data->sg_len || !data->sg->length)
661                 return;
662
663         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664                 BLOCK_SIZE_MASK;
665
666         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
667         host->sg_idx = 0;
668         host->sg_blkidx = 0;
669         host->pio_ptr = sg_virt(data->sg);
670         schedule_delayed_work(&host->timeout_work, host->timeout);
671         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
672 }
673
674 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
675 {
676         struct mmc_data *data = host->mrq->data;
677         u32 *p = host->pio_ptr;
678         int i;
679
680         if (host->sd_error) {
681                 data->error = sh_mmcif_error_manage(host);
682                 return false;
683         }
684
685         BUG_ON(!data->sg->length);
686
687         for (i = 0; i < host->blocksize / 4; i++)
688                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
689
690         if (!sh_mmcif_next_block(host, p))
691                 return false;
692
693         schedule_delayed_work(&host->timeout_work, host->timeout);
694         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
695
696         return true;
697 }
698
699 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
700                                                 struct mmc_command *cmd)
701 {
702         if (cmd->flags & MMC_RSP_136) {
703                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
704                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
705                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
706                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
707         } else
708                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
709 }
710
711 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
712                                                 struct mmc_command *cmd)
713 {
714         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
715 }
716
717 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
718                             struct mmc_request *mrq)
719 {
720         struct mmc_data *data = mrq->data;
721         struct mmc_command *cmd = mrq->cmd;
722         u32 opc = cmd->opcode;
723         u32 tmp = 0;
724
725         /* Response Type check */
726         switch (mmc_resp_type(cmd)) {
727         case MMC_RSP_NONE:
728                 tmp |= CMD_SET_RTYP_NO;
729                 break;
730         case MMC_RSP_R1:
731         case MMC_RSP_R1B:
732         case MMC_RSP_R3:
733                 tmp |= CMD_SET_RTYP_6B;
734                 break;
735         case MMC_RSP_R2:
736                 tmp |= CMD_SET_RTYP_17B;
737                 break;
738         default:
739                 dev_err(&host->pd->dev, "Unsupported response type.\n");
740                 break;
741         }
742         switch (opc) {
743         /* RBSY */
744         case MMC_SWITCH:
745         case MMC_STOP_TRANSMISSION:
746         case MMC_SET_WRITE_PROT:
747         case MMC_CLR_WRITE_PROT:
748         case MMC_ERASE:
749                 tmp |= CMD_SET_RBSY;
750                 break;
751         }
752         /* WDAT / DATW */
753         if (data) {
754                 tmp |= CMD_SET_WDAT;
755                 switch (host->bus_width) {
756                 case MMC_BUS_WIDTH_1:
757                         tmp |= CMD_SET_DATW_1;
758                         break;
759                 case MMC_BUS_WIDTH_4:
760                         tmp |= CMD_SET_DATW_4;
761                         break;
762                 case MMC_BUS_WIDTH_8:
763                         tmp |= CMD_SET_DATW_8;
764                         break;
765                 default:
766                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
767                         break;
768                 }
769         }
770         /* DWEN */
771         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
772                 tmp |= CMD_SET_DWEN;
773         /* CMLTE/CMD12EN */
774         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
775                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
776                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
777                                 data->blocks << 16);
778         }
779         /* RIDXC[1:0] check bits */
780         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
781             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
782                 tmp |= CMD_SET_RIDXC_BITS;
783         /* RCRC7C[1:0] check bits */
784         if (opc == MMC_SEND_OP_COND)
785                 tmp |= CMD_SET_CRC7C_BITS;
786         /* RCRC7C[1:0] internal CRC7 */
787         if (opc == MMC_ALL_SEND_CID ||
788                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
789                 tmp |= CMD_SET_CRC7C_INTERNAL;
790
791         return (opc << 24) | tmp;
792 }
793
794 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
795                                struct mmc_request *mrq, u32 opc)
796 {
797         switch (opc) {
798         case MMC_READ_MULTIPLE_BLOCK:
799                 sh_mmcif_multi_read(host, mrq);
800                 return 0;
801         case MMC_WRITE_MULTIPLE_BLOCK:
802                 sh_mmcif_multi_write(host, mrq);
803                 return 0;
804         case MMC_WRITE_BLOCK:
805                 sh_mmcif_single_write(host, mrq);
806                 return 0;
807         case MMC_READ_SINGLE_BLOCK:
808         case MMC_SEND_EXT_CSD:
809                 sh_mmcif_single_read(host, mrq);
810                 return 0;
811         default:
812                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
813                 return -EINVAL;
814         }
815 }
816
817 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
818                                struct mmc_request *mrq)
819 {
820         struct mmc_command *cmd = mrq->cmd;
821         u32 opc = cmd->opcode;
822         u32 mask;
823
824         switch (opc) {
825         /* response busy check */
826         case MMC_SWITCH:
827         case MMC_STOP_TRANSMISSION:
828         case MMC_SET_WRITE_PROT:
829         case MMC_CLR_WRITE_PROT:
830         case MMC_ERASE:
831                 mask = MASK_START_CMD | MASK_MRBSYE;
832                 break;
833         default:
834                 mask = MASK_START_CMD | MASK_MCRSPE;
835                 break;
836         }
837
838         if (mrq->data) {
839                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
840                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
841                                 mrq->data->blksz);
842         }
843         opc = sh_mmcif_set_cmd(host, mrq);
844
845         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
846         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
847         /* set arg */
848         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
849         /* set cmd */
850         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
851
852         host->wait_for = MMCIF_WAIT_FOR_CMD;
853         schedule_delayed_work(&host->timeout_work, host->timeout);
854 }
855
856 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
857                               struct mmc_request *mrq)
858 {
859         switch (mrq->cmd->opcode) {
860         case MMC_READ_MULTIPLE_BLOCK:
861                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
862                 break;
863         case MMC_WRITE_MULTIPLE_BLOCK:
864                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
865                 break;
866         default:
867                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
868                 mrq->stop->error = sh_mmcif_error_manage(host);
869                 return;
870         }
871
872         host->wait_for = MMCIF_WAIT_FOR_STOP;
873         schedule_delayed_work(&host->timeout_work, host->timeout);
874 }
875
876 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
877 {
878         struct sh_mmcif_host *host = mmc_priv(mmc);
879         unsigned long flags;
880
881         spin_lock_irqsave(&host->lock, flags);
882         if (host->state != STATE_IDLE) {
883                 spin_unlock_irqrestore(&host->lock, flags);
884                 mrq->cmd->error = -EAGAIN;
885                 mmc_request_done(mmc, mrq);
886                 return;
887         }
888
889         host->state = STATE_REQUEST;
890         spin_unlock_irqrestore(&host->lock, flags);
891
892         switch (mrq->cmd->opcode) {
893         /* MMCIF does not support SD/SDIO command */
894         case SD_IO_SEND_OP_COND:
895         case MMC_APP_CMD:
896                 host->state = STATE_IDLE;
897                 mrq->cmd->error = -ETIMEDOUT;
898                 mmc_request_done(mmc, mrq);
899                 return;
900         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
901                 if (!mrq->data) {
902                         /* send_if_cond cmd (not support) */
903                         host->state = STATE_IDLE;
904                         mrq->cmd->error = -ETIMEDOUT;
905                         mmc_request_done(mmc, mrq);
906                         return;
907                 }
908                 break;
909         default:
910                 break;
911         }
912
913         host->mrq = mrq;
914
915         sh_mmcif_start_cmd(host, mrq);
916 }
917
918 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
919 {
920         struct sh_mmcif_host *host = mmc_priv(mmc);
921         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
922         unsigned long flags;
923
924         spin_lock_irqsave(&host->lock, flags);
925         if (host->state != STATE_IDLE) {
926                 spin_unlock_irqrestore(&host->lock, flags);
927                 return;
928         }
929
930         host->state = STATE_IOS;
931         spin_unlock_irqrestore(&host->lock, flags);
932
933         if (ios->power_mode == MMC_POWER_UP) {
934                 if (!host->card_present) {
935                         /* See if we also get DMA */
936                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
937                         host->card_present = true;
938                 }
939         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
940                 /* clock stop */
941                 sh_mmcif_clock_control(host, 0);
942                 if (ios->power_mode == MMC_POWER_OFF) {
943                         if (host->card_present) {
944                                 sh_mmcif_release_dma(host);
945                                 host->card_present = false;
946                         }
947                 }
948                 if (host->power) {
949                         pm_runtime_put(&host->pd->dev);
950                         host->power = false;
951                         if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
952                                 p->down_pwr(host->pd);
953                 }
954                 host->state = STATE_IDLE;
955                 return;
956         }
957
958         if (ios->clock) {
959                 if (!host->power) {
960                         if (p->set_pwr)
961                                 p->set_pwr(host->pd, ios->power_mode);
962                         pm_runtime_get_sync(&host->pd->dev);
963                         host->power = true;
964                         sh_mmcif_sync_reset(host);
965                 }
966                 sh_mmcif_clock_control(host, ios->clock);
967         }
968
969         host->bus_width = ios->bus_width;
970         host->state = STATE_IDLE;
971 }
972
973 static int sh_mmcif_get_cd(struct mmc_host *mmc)
974 {
975         struct sh_mmcif_host *host = mmc_priv(mmc);
976         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
977
978         if (!p->get_cd)
979                 return -ENOSYS;
980         else
981                 return p->get_cd(host->pd);
982 }
983
984 static struct mmc_host_ops sh_mmcif_ops = {
985         .request        = sh_mmcif_request,
986         .set_ios        = sh_mmcif_set_ios,
987         .get_cd         = sh_mmcif_get_cd,
988 };
989
990 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
991 {
992         struct mmc_command *cmd = host->mrq->cmd;
993         struct mmc_data *data = host->mrq->data;
994         long time;
995
996         if (host->sd_error) {
997                 switch (cmd->opcode) {
998                 case MMC_ALL_SEND_CID:
999                 case MMC_SELECT_CARD:
1000                 case MMC_APP_CMD:
1001                         cmd->error = -ETIMEDOUT;
1002                         host->sd_error = false;
1003                         break;
1004                 default:
1005                         cmd->error = sh_mmcif_error_manage(host);
1006                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1007                                 cmd->opcode, cmd->error);
1008                         break;
1009                 }
1010                 return false;
1011         }
1012         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1013                 cmd->error = 0;
1014                 return false;
1015         }
1016
1017         sh_mmcif_get_response(host, cmd);
1018
1019         if (!data)
1020                 return false;
1021
1022         if (data->flags & MMC_DATA_READ) {
1023                 if (host->chan_rx)
1024                         sh_mmcif_start_dma_rx(host);
1025         } else {
1026                 if (host->chan_tx)
1027                         sh_mmcif_start_dma_tx(host);
1028         }
1029
1030         if (!host->dma_active) {
1031                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1032                 if (!data->error)
1033                         return true;
1034                 return false;
1035         }
1036
1037         /* Running in the IRQ thread, can sleep */
1038         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1039                                                          host->timeout);
1040         if (host->sd_error) {
1041                 dev_err(host->mmc->parent,
1042                         "Error IRQ while waiting for DMA completion!\n");
1043                 /* Woken up by an error IRQ: abort DMA */
1044                 if (data->flags & MMC_DATA_READ)
1045                         dmaengine_terminate_all(host->chan_rx);
1046                 else
1047                         dmaengine_terminate_all(host->chan_tx);
1048                 data->error = sh_mmcif_error_manage(host);
1049         } else if (!time) {
1050                 data->error = -ETIMEDOUT;
1051         } else if (time < 0) {
1052                 data->error = time;
1053         }
1054         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1055                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1056         host->dma_active = false;
1057
1058         if (data->error)
1059                 data->bytes_xfered = 0;
1060
1061         return false;
1062 }
1063
1064 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1065 {
1066         struct sh_mmcif_host *host = dev_id;
1067         struct mmc_request *mrq = host->mrq;
1068         struct mmc_data *data = mrq->data;
1069
1070         cancel_delayed_work_sync(&host->timeout_work);
1071
1072         /*
1073          * All handlers return true, if processing continues, and false, if the
1074          * request has to be completed - successfully or not
1075          */
1076         switch (host->wait_for) {
1077         case MMCIF_WAIT_FOR_REQUEST:
1078                 /* We're too late, the timeout has already kicked in */
1079                 return IRQ_HANDLED;
1080         case MMCIF_WAIT_FOR_CMD:
1081                 if (sh_mmcif_end_cmd(host))
1082                         /* Wait for data */
1083                         return IRQ_HANDLED;
1084                 break;
1085         case MMCIF_WAIT_FOR_MREAD:
1086                 if (sh_mmcif_mread_block(host))
1087                         /* Wait for more data */
1088                         return IRQ_HANDLED;
1089                 break;
1090         case MMCIF_WAIT_FOR_READ:
1091                 if (sh_mmcif_read_block(host))
1092                         /* Wait for data end */
1093                         return IRQ_HANDLED;
1094                 break;
1095         case MMCIF_WAIT_FOR_MWRITE:
1096                 if (sh_mmcif_mwrite_block(host))
1097                         /* Wait data to write */
1098                         return IRQ_HANDLED;
1099                 break;
1100         case MMCIF_WAIT_FOR_WRITE:
1101                 if (sh_mmcif_write_block(host))
1102                         /* Wait for data end */
1103                         return IRQ_HANDLED;
1104                 break;
1105         case MMCIF_WAIT_FOR_STOP:
1106                 if (host->sd_error) {
1107                         mrq->stop->error = sh_mmcif_error_manage(host);
1108                         break;
1109                 }
1110                 sh_mmcif_get_cmd12response(host, mrq->stop);
1111                 mrq->stop->error = 0;
1112                 break;
1113         case MMCIF_WAIT_FOR_READ_END:
1114         case MMCIF_WAIT_FOR_WRITE_END:
1115                 if (host->sd_error)
1116                         data->error = sh_mmcif_error_manage(host);
1117                 break;
1118         default:
1119                 BUG();
1120         }
1121
1122         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1123                 if (!mrq->cmd->error && data && !data->error)
1124                         data->bytes_xfered =
1125                                 data->blocks * data->blksz;
1126
1127                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1128                         sh_mmcif_stop_cmd(host, mrq);
1129                         if (!mrq->stop->error)
1130                                 return IRQ_HANDLED;
1131                 }
1132         }
1133
1134         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1135         host->state = STATE_IDLE;
1136         host->mrq = NULL;
1137         mmc_request_done(host->mmc, mrq);
1138
1139         return IRQ_HANDLED;
1140 }
1141
1142 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1143 {
1144         struct sh_mmcif_host *host = dev_id;
1145         u32 state;
1146         int err = 0;
1147
1148         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1149
1150         if (state & INT_ERR_STS) {
1151                 /* error interrupts - process first */
1152                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1153                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1154                 err = 1;
1155         } else if (state & INT_RBSYE) {
1156                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1157                                 ~(INT_RBSYE | INT_CRSPE));
1158                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1159         } else if (state & INT_CRSPE) {
1160                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1161                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1162         } else if (state & INT_BUFREN) {
1163                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1164                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1165         } else if (state & INT_BUFWEN) {
1166                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1167                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1168         } else if (state & INT_CMD12DRE) {
1169                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1170                         ~(INT_CMD12DRE | INT_CMD12RBE |
1171                           INT_CMD12CRE | INT_BUFRE));
1172                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1173         } else if (state & INT_BUFRE) {
1174                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1175                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1176         } else if (state & INT_DTRANE) {
1177                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1178                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1179         } else if (state & INT_CMD12RBE) {
1180                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1181                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1182                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1183         } else {
1184                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1185                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1186                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1187                 err = 1;
1188         }
1189         if (err) {
1190                 host->sd_error = true;
1191                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1192         }
1193         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1194                 if (!host->dma_active)
1195                         return IRQ_WAKE_THREAD;
1196                 else if (host->sd_error)
1197                         mmcif_dma_complete(host);
1198         } else {
1199                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1200         }
1201
1202         return IRQ_HANDLED;
1203 }
1204
1205 static void mmcif_timeout_work(struct work_struct *work)
1206 {
1207         struct delayed_work *d = container_of(work, struct delayed_work, work);
1208         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1209         struct mmc_request *mrq = host->mrq;
1210
1211         if (host->dying)
1212                 /* Don't run after mmc_remove_host() */
1213                 return;
1214
1215         /*
1216          * Handle races with cancel_delayed_work(), unless
1217          * cancel_delayed_work_sync() is used
1218          */
1219         switch (host->wait_for) {
1220         case MMCIF_WAIT_FOR_CMD:
1221                 mrq->cmd->error = sh_mmcif_error_manage(host);
1222                 break;
1223         case MMCIF_WAIT_FOR_STOP:
1224                 mrq->stop->error = sh_mmcif_error_manage(host);
1225                 break;
1226         case MMCIF_WAIT_FOR_MREAD:
1227         case MMCIF_WAIT_FOR_MWRITE:
1228         case MMCIF_WAIT_FOR_READ:
1229         case MMCIF_WAIT_FOR_WRITE:
1230         case MMCIF_WAIT_FOR_READ_END:
1231         case MMCIF_WAIT_FOR_WRITE_END:
1232                 mrq->data->error = sh_mmcif_error_manage(host);
1233                 break;
1234         default:
1235                 BUG();
1236         }
1237
1238         host->state = STATE_IDLE;
1239         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1240         host->mrq = NULL;
1241         mmc_request_done(host->mmc, mrq);
1242 }
1243
1244 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1245 {
1246         int ret = 0, irq[2];
1247         struct mmc_host *mmc;
1248         struct sh_mmcif_host *host;
1249         struct sh_mmcif_plat_data *pd;
1250         struct resource *res;
1251         void __iomem *reg;
1252         char clk_name[8];
1253
1254         irq[0] = platform_get_irq(pdev, 0);
1255         irq[1] = platform_get_irq(pdev, 1);
1256         if (irq[0] < 0 || irq[1] < 0) {
1257                 dev_err(&pdev->dev, "Get irq error\n");
1258                 return -ENXIO;
1259         }
1260         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1261         if (!res) {
1262                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1263                 return -ENXIO;
1264         }
1265         reg = ioremap(res->start, resource_size(res));
1266         if (!reg) {
1267                 dev_err(&pdev->dev, "ioremap error.\n");
1268                 return -ENOMEM;
1269         }
1270         pd = pdev->dev.platform_data;
1271         if (!pd) {
1272                 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1273                 ret = -ENXIO;
1274                 goto clean_up;
1275         }
1276         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1277         if (!mmc) {
1278                 ret = -ENOMEM;
1279                 goto clean_up;
1280         }
1281         host            = mmc_priv(mmc);
1282         host->mmc       = mmc;
1283         host->addr      = reg;
1284         host->timeout   = 1000;
1285
1286         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1287         host->hclk = clk_get(&pdev->dev, clk_name);
1288         if (IS_ERR(host->hclk)) {
1289                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1290                 ret = PTR_ERR(host->hclk);
1291                 goto clean_up1;
1292         }
1293         clk_enable(host->hclk);
1294         host->clk = clk_get_rate(host->hclk);
1295         host->pd = pdev;
1296
1297         spin_lock_init(&host->lock);
1298
1299         mmc->ops = &sh_mmcif_ops;
1300         mmc->f_max = host->clk;
1301         /* close to 400KHz */
1302         if (mmc->f_max < 51200000)
1303                 mmc->f_min = mmc->f_max / 128;
1304         else if (mmc->f_max < 102400000)
1305                 mmc->f_min = mmc->f_max / 256;
1306         else
1307                 mmc->f_min = mmc->f_max / 512;
1308         if (pd->ocr)
1309                 mmc->ocr_avail = pd->ocr;
1310         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1311         if (pd->caps)
1312                 mmc->caps |= pd->caps;
1313         mmc->max_segs = 32;
1314         mmc->max_blk_size = 512;
1315         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1316         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1317         mmc->max_seg_size = mmc->max_req_size;
1318
1319         sh_mmcif_sync_reset(host);
1320         platform_set_drvdata(pdev, host);
1321
1322         pm_runtime_enable(&pdev->dev);
1323         host->power = false;
1324
1325         ret = pm_runtime_resume(&pdev->dev);
1326         if (ret < 0)
1327                 goto clean_up2;
1328
1329         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1330
1331         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1332
1333         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1334         if (ret) {
1335                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1336                 goto clean_up3;
1337         }
1338         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1339         if (ret) {
1340                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1341                 goto clean_up4;
1342         }
1343
1344         ret = mmc_add_host(mmc);
1345         if (ret < 0)
1346                 goto clean_up5;
1347
1348         dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1349
1350         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1351         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1352                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1353         return ret;
1354
1355 clean_up5:
1356         free_irq(irq[1], host);
1357 clean_up4:
1358         free_irq(irq[0], host);
1359 clean_up3:
1360         pm_runtime_suspend(&pdev->dev);
1361 clean_up2:
1362         pm_runtime_disable(&pdev->dev);
1363         clk_disable(host->hclk);
1364 clean_up1:
1365         mmc_free_host(mmc);
1366 clean_up:
1367         if (reg)
1368                 iounmap(reg);
1369         return ret;
1370 }
1371
1372 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1373 {
1374         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1375         int irq[2];
1376
1377         host->dying = true;
1378         pm_runtime_get_sync(&pdev->dev);
1379
1380         dev_pm_qos_hide_latency_limit(&pdev->dev);
1381
1382         mmc_remove_host(host->mmc);
1383         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1384
1385         /*
1386          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1387          * mmc_remove_host() call above. But swapping order doesn't help either
1388          * (a query on the linux-mmc mailing list didn't bring any replies).
1389          */
1390         cancel_delayed_work_sync(&host->timeout_work);
1391
1392         if (host->addr)
1393                 iounmap(host->addr);
1394
1395         irq[0] = platform_get_irq(pdev, 0);
1396         irq[1] = platform_get_irq(pdev, 1);
1397
1398         free_irq(irq[0], host);
1399         free_irq(irq[1], host);
1400
1401         platform_set_drvdata(pdev, NULL);
1402
1403         clk_disable(host->hclk);
1404         mmc_free_host(host->mmc);
1405         pm_runtime_put_sync(&pdev->dev);
1406         pm_runtime_disable(&pdev->dev);
1407
1408         return 0;
1409 }
1410
1411 #ifdef CONFIG_PM
1412 static int sh_mmcif_suspend(struct device *dev)
1413 {
1414         struct platform_device *pdev = to_platform_device(dev);
1415         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1416         int ret = mmc_suspend_host(host->mmc);
1417
1418         if (!ret) {
1419                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1420                 clk_disable(host->hclk);
1421         }
1422
1423         return ret;
1424 }
1425
1426 static int sh_mmcif_resume(struct device *dev)
1427 {
1428         struct platform_device *pdev = to_platform_device(dev);
1429         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1430
1431         clk_enable(host->hclk);
1432
1433         return mmc_resume_host(host->mmc);
1434 }
1435 #else
1436 #define sh_mmcif_suspend        NULL
1437 #define sh_mmcif_resume         NULL
1438 #endif  /* CONFIG_PM */
1439
1440 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1441         .suspend = sh_mmcif_suspend,
1442         .resume = sh_mmcif_resume,
1443 };
1444
1445 static struct platform_driver sh_mmcif_driver = {
1446         .probe          = sh_mmcif_probe,
1447         .remove         = sh_mmcif_remove,
1448         .driver         = {
1449                 .name   = DRIVER_NAME,
1450                 .pm     = &sh_mmcif_dev_pm_ops,
1451         },
1452 };
1453
1454 module_platform_driver(sh_mmcif_driver);
1455
1456 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1457 MODULE_LICENSE("GPL");
1458 MODULE_ALIAS("platform:" DRIVER_NAME);
1459 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");