]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/nand/atmel_nand.c
Merge remote-tracking branch 'pinctrl/for-next'
[karo-tx-linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2  *  Copyright © 2003 Rick Bronson
3  *
4  *  Derived from drivers/mtd/nand/autcpu12.c
5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6  *
7  *  Derived from drivers/mtd/spia.c
8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9  *
10  *
11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13  *
14  *     Derived from Das U-Boot source code
15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17  *
18  *  Add Programmable Multibit ECC support for various AT91 SoC
19  *     © Copyright 2012 ATMEL, Hong Xu
20  *
21  * This program is free software; you can redistribute it and/or modify
22  * it under the terms of the GNU General Public License version 2 as
23  * published by the Free Software Foundation.
24  *
25  */
26
27 #include <linux/dma-mapping.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/platform_device.h>
32 #include <linux/of.h>
33 #include <linux/of_device.h>
34 #include <linux/of_gpio.h>
35 #include <linux/of_mtd.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39
40 #include <linux/dmaengine.h>
41 #include <linux/gpio.h>
42 #include <linux/io.h>
43 #include <linux/platform_data/atmel.h>
44 #include <linux/pinctrl/consumer.h>
45
46 #include <mach/cpu.h>
47
48 static int use_dma = 1;
49 module_param(use_dma, int, 0);
50
51 static int on_flash_bbt = 0;
52 module_param(on_flash_bbt, int, 0);
53
54 /* Register access macros */
55 #define ecc_readl(add, reg)                             \
56         __raw_readl(add + ATMEL_ECC_##reg)
57 #define ecc_writel(add, reg, value)                     \
58         __raw_writel((value), add + ATMEL_ECC_##reg)
59
60 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
61
62 /* oob layout for large page size
63  * bad block info is on bytes 0 and 1
64  * the bytes have to be consecutives to avoid
65  * several NAND_CMD_RNDOUT during read
66  */
67 static struct nand_ecclayout atmel_oobinfo_large = {
68         .eccbytes = 4,
69         .eccpos = {60, 61, 62, 63},
70         .oobfree = {
71                 {2, 58}
72         },
73 };
74
75 /* oob layout for small page size
76  * bad block info is on bytes 4 and 5
77  * the bytes have to be consecutives to avoid
78  * several NAND_CMD_RNDOUT during read
79  */
80 static struct nand_ecclayout atmel_oobinfo_small = {
81         .eccbytes = 4,
82         .eccpos = {0, 1, 2, 3},
83         .oobfree = {
84                 {6, 10}
85         },
86 };
87
88 struct atmel_nand_host {
89         struct nand_chip        nand_chip;
90         struct mtd_info         mtd;
91         void __iomem            *io_base;
92         dma_addr_t              io_phys;
93         struct atmel_nand_data  board;
94         struct device           *dev;
95         void __iomem            *ecc;
96
97         struct completion       comp;
98         struct dma_chan         *dma_chan;
99
100         bool                    has_pmecc;
101         u8                      pmecc_corr_cap;
102         u16                     pmecc_sector_size;
103         u32                     pmecc_lookup_table_offset;
104
105         int                     pmecc_bytes_per_sector;
106         int                     pmecc_sector_number;
107         int                     pmecc_degree;   /* Degree of remainders */
108         int                     pmecc_cw_len;   /* Length of codeword */
109
110         void __iomem            *pmerrloc_base;
111         void __iomem            *pmecc_rom_base;
112
113         /* lookup table for alpha_to and index_of */
114         void __iomem            *pmecc_alpha_to;
115         void __iomem            *pmecc_index_of;
116
117         /* data for pmecc computation */
118         int16_t                 *pmecc_partial_syn;
119         int16_t                 *pmecc_si;
120         int16_t                 *pmecc_smu;     /* Sigma table */
121         int16_t                 *pmecc_lmu;     /* polynomal order */
122         int                     *pmecc_mu;
123         int                     *pmecc_dmu;
124         int                     *pmecc_delta;
125 };
126
127 static struct nand_ecclayout atmel_pmecc_oobinfo;
128
129 static int cpu_has_dma(void)
130 {
131         return cpu_is_at91sam9rl() || cpu_is_at91sam9g45();
132 }
133
134 /*
135  * Enable NAND.
136  */
137 static void atmel_nand_enable(struct atmel_nand_host *host)
138 {
139         if (gpio_is_valid(host->board.enable_pin))
140                 gpio_set_value(host->board.enable_pin, 0);
141 }
142
143 /*
144  * Disable NAND.
145  */
146 static void atmel_nand_disable(struct atmel_nand_host *host)
147 {
148         if (gpio_is_valid(host->board.enable_pin))
149                 gpio_set_value(host->board.enable_pin, 1);
150 }
151
152 /*
153  * Hardware specific access to control-lines
154  */
155 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
156 {
157         struct nand_chip *nand_chip = mtd->priv;
158         struct atmel_nand_host *host = nand_chip->priv;
159
160         if (ctrl & NAND_CTRL_CHANGE) {
161                 if (ctrl & NAND_NCE)
162                         atmel_nand_enable(host);
163                 else
164                         atmel_nand_disable(host);
165         }
166         if (cmd == NAND_CMD_NONE)
167                 return;
168
169         if (ctrl & NAND_CLE)
170                 writeb(cmd, host->io_base + (1 << host->board.cle));
171         else
172                 writeb(cmd, host->io_base + (1 << host->board.ale));
173 }
174
175 /*
176  * Read the Device Ready pin.
177  */
178 static int atmel_nand_device_ready(struct mtd_info *mtd)
179 {
180         struct nand_chip *nand_chip = mtd->priv;
181         struct atmel_nand_host *host = nand_chip->priv;
182
183         return gpio_get_value(host->board.rdy_pin) ^
184                 !!host->board.rdy_pin_active_low;
185 }
186
187 /*
188  * Minimal-overhead PIO for data access.
189  */
190 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
191 {
192         struct nand_chip        *nand_chip = mtd->priv;
193
194         __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
195 }
196
197 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
198 {
199         struct nand_chip        *nand_chip = mtd->priv;
200
201         __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
202 }
203
204 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
205 {
206         struct nand_chip        *nand_chip = mtd->priv;
207
208         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
209 }
210
211 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
212 {
213         struct nand_chip        *nand_chip = mtd->priv;
214
215         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
216 }
217
218 static void dma_complete_func(void *completion)
219 {
220         complete(completion);
221 }
222
223 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
224                                int is_read)
225 {
226         struct dma_device *dma_dev;
227         enum dma_ctrl_flags flags;
228         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
229         struct dma_async_tx_descriptor *tx = NULL;
230         dma_cookie_t cookie;
231         struct nand_chip *chip = mtd->priv;
232         struct atmel_nand_host *host = chip->priv;
233         void *p = buf;
234         int err = -EIO;
235         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
236
237         if (buf >= high_memory)
238                 goto err_buf;
239
240         dma_dev = host->dma_chan->device;
241
242         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
243                 DMA_COMPL_SKIP_DEST_UNMAP;
244
245         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
246         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
247                 dev_err(host->dev, "Failed to dma_map_single\n");
248                 goto err_buf;
249         }
250
251         if (is_read) {
252                 dma_src_addr = host->io_phys;
253                 dma_dst_addr = phys_addr;
254         } else {
255                 dma_src_addr = phys_addr;
256                 dma_dst_addr = host->io_phys;
257         }
258
259         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
260                                              dma_src_addr, len, flags);
261         if (!tx) {
262                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
263                 goto err_dma;
264         }
265
266         init_completion(&host->comp);
267         tx->callback = dma_complete_func;
268         tx->callback_param = &host->comp;
269
270         cookie = tx->tx_submit(tx);
271         if (dma_submit_error(cookie)) {
272                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
273                 goto err_dma;
274         }
275
276         dma_async_issue_pending(host->dma_chan);
277         wait_for_completion(&host->comp);
278
279         err = 0;
280
281 err_dma:
282         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
283 err_buf:
284         if (err != 0)
285                 dev_warn(host->dev, "Fall back to CPU I/O\n");
286         return err;
287 }
288
289 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
290 {
291         struct nand_chip *chip = mtd->priv;
292         struct atmel_nand_host *host = chip->priv;
293
294         if (use_dma && len > mtd->oobsize)
295                 /* only use DMA for bigger than oob size: better performances */
296                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
297                         return;
298
299         if (host->board.bus_width_16)
300                 atmel_read_buf16(mtd, buf, len);
301         else
302                 atmel_read_buf8(mtd, buf, len);
303 }
304
305 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
306 {
307         struct nand_chip *chip = mtd->priv;
308         struct atmel_nand_host *host = chip->priv;
309
310         if (use_dma && len > mtd->oobsize)
311                 /* only use DMA for bigger than oob size: better performances */
312                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
313                         return;
314
315         if (host->board.bus_width_16)
316                 atmel_write_buf16(mtd, buf, len);
317         else
318                 atmel_write_buf8(mtd, buf, len);
319 }
320
321 /*
322  * Return number of ecc bytes per sector according to sector size and
323  * correction capability
324  *
325  * Following table shows what at91 PMECC supported:
326  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
327  * =====================        ================        =================
328  *                2-bits                 4-bytes                  4-bytes
329  *                4-bits                 7-bytes                  7-bytes
330  *                8-bits                13-bytes                 14-bytes
331  *               12-bits                20-bytes                 21-bytes
332  *               24-bits                39-bytes                 42-bytes
333  */
334 static int __devinit pmecc_get_ecc_bytes(int cap, int sector_size)
335 {
336         int m = 12 + sector_size / 512;
337         return (m * cap + 7) / 8;
338 }
339
340 static void __devinit pmecc_config_ecc_layout(struct nand_ecclayout *layout,
341         int oobsize, int ecc_len)
342 {
343         int i;
344
345         layout->eccbytes = ecc_len;
346
347         /* ECC will occupy the last ecc_len bytes continuously */
348         for (i = 0; i < ecc_len; i++)
349                 layout->eccpos[i] = oobsize - ecc_len + i;
350
351         layout->oobfree[0].offset = 2;
352         layout->oobfree[0].length =
353                 oobsize - ecc_len - layout->oobfree[0].offset;
354 }
355
356 static void __devinit __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
357 {
358         int table_size;
359
360         table_size = host->pmecc_sector_size == 512 ?
361                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
362
363         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
364                         table_size * sizeof(int16_t);
365 }
366
367 static void pmecc_data_free(struct atmel_nand_host *host)
368 {
369         kfree(host->pmecc_partial_syn);
370         kfree(host->pmecc_si);
371         kfree(host->pmecc_lmu);
372         kfree(host->pmecc_smu);
373         kfree(host->pmecc_mu);
374         kfree(host->pmecc_dmu);
375         kfree(host->pmecc_delta);
376 }
377
378 static int __devinit pmecc_data_alloc(struct atmel_nand_host *host)
379 {
380         const int cap = host->pmecc_corr_cap;
381
382         host->pmecc_partial_syn = kzalloc((2 * cap + 1) * sizeof(int16_t),
383                                         GFP_KERNEL);
384         host->pmecc_si = kzalloc((2 * cap + 1) * sizeof(int16_t), GFP_KERNEL);
385         host->pmecc_lmu = kzalloc((cap + 1) * sizeof(int16_t), GFP_KERNEL);
386         host->pmecc_smu = kzalloc((cap + 2) * (2 * cap + 1) * sizeof(int16_t),
387                                         GFP_KERNEL);
388         host->pmecc_mu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
389         host->pmecc_dmu = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
390         host->pmecc_delta = kzalloc((cap + 1) * sizeof(int), GFP_KERNEL);
391
392         if (host->pmecc_partial_syn &&
393                         host->pmecc_si &&
394                         host->pmecc_lmu &&
395                         host->pmecc_smu &&
396                         host->pmecc_mu &&
397                         host->pmecc_dmu &&
398                         host->pmecc_delta)
399                 return 0;
400
401         /* error happened */
402         pmecc_data_free(host);
403         return -ENOMEM;
404 }
405
406 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
407 {
408         struct nand_chip *nand_chip = mtd->priv;
409         struct atmel_nand_host *host = nand_chip->priv;
410         int i;
411         uint32_t value;
412
413         /* Fill odd syndromes */
414         for (i = 0; i < host->pmecc_corr_cap; i++) {
415                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
416                 if (i & 1)
417                         value >>= 16;
418                 value &= 0xffff;
419                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
420         }
421 }
422
423 static void pmecc_substitute(struct mtd_info *mtd)
424 {
425         struct nand_chip *nand_chip = mtd->priv;
426         struct atmel_nand_host *host = nand_chip->priv;
427         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
428         int16_t __iomem *index_of = host->pmecc_index_of;
429         int16_t *partial_syn = host->pmecc_partial_syn;
430         const int cap = host->pmecc_corr_cap;
431         int16_t *si;
432         int i, j;
433
434         /* si[] is a table that holds the current syndrome value,
435          * an element of that table belongs to the field
436          */
437         si = host->pmecc_si;
438
439         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
440
441         /* Computation 2t syndromes based on S(x) */
442         /* Odd syndromes */
443         for (i = 1; i < 2 * cap; i += 2) {
444                 for (j = 0; j < host->pmecc_degree; j++) {
445                         if (partial_syn[i] & ((unsigned short)0x1 << j))
446                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
447                 }
448         }
449         /* Even syndrome = (Odd syndrome) ** 2 */
450         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
451                 if (si[j] == 0) {
452                         si[i] = 0;
453                 } else {
454                         int16_t tmp;
455
456                         tmp = readw_relaxed(index_of + si[j]);
457                         tmp = (tmp * 2) % host->pmecc_cw_len;
458                         si[i] = readw_relaxed(alpha_to + tmp);
459                 }
460         }
461
462         return;
463 }
464
465 static void pmecc_get_sigma(struct mtd_info *mtd)
466 {
467         struct nand_chip *nand_chip = mtd->priv;
468         struct atmel_nand_host *host = nand_chip->priv;
469
470         int16_t *lmu = host->pmecc_lmu;
471         int16_t *si = host->pmecc_si;
472         int *mu = host->pmecc_mu;
473         int *dmu = host->pmecc_dmu;     /* Discrepancy */
474         int *delta = host->pmecc_delta; /* Delta order */
475         int cw_len = host->pmecc_cw_len;
476         const int16_t cap = host->pmecc_corr_cap;
477         const int num = 2 * cap + 1;
478         int16_t __iomem *index_of = host->pmecc_index_of;
479         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
480         int i, j, k;
481         uint32_t dmu_0_count, tmp;
482         int16_t *smu = host->pmecc_smu;
483
484         /* index of largest delta */
485         int ro;
486         int largest;
487         int diff;
488
489         dmu_0_count = 0;
490
491         /* First Row */
492
493         /* Mu */
494         mu[0] = -1;
495
496         memset(smu, 0, sizeof(int16_t) * num);
497         smu[0] = 1;
498
499         /* discrepancy set to 1 */
500         dmu[0] = 1;
501         /* polynom order set to 0 */
502         lmu[0] = 0;
503         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
504
505         /* Second Row */
506
507         /* Mu */
508         mu[1] = 0;
509         /* Sigma(x) set to 1 */
510         memset(&smu[num], 0, sizeof(int16_t) * num);
511         smu[num] = 1;
512
513         /* discrepancy set to S1 */
514         dmu[1] = si[1];
515
516         /* polynom order set to 0 */
517         lmu[1] = 0;
518
519         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
520
521         /* Init the Sigma(x) last row */
522         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
523
524         for (i = 1; i <= cap; i++) {
525                 mu[i + 1] = i << 1;
526                 /* Begin Computing Sigma (Mu+1) and L(mu) */
527                 /* check if discrepancy is set to 0 */
528                 if (dmu[i] == 0) {
529                         dmu_0_count++;
530
531                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
532                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
533                                 tmp += 2;
534                         else
535                                 tmp += 1;
536
537                         if (dmu_0_count == tmp) {
538                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
539                                         smu[(cap + 1) * num + j] =
540                                                         smu[i * num + j];
541
542                                 lmu[cap + 1] = lmu[i];
543                                 return;
544                         }
545
546                         /* copy polynom */
547                         for (j = 0; j <= lmu[i] >> 1; j++)
548                                 smu[(i + 1) * num + j] = smu[i * num + j];
549
550                         /* copy previous polynom order to the next */
551                         lmu[i + 1] = lmu[i];
552                 } else {
553                         ro = 0;
554                         largest = -1;
555                         /* find largest delta with dmu != 0 */
556                         for (j = 0; j < i; j++) {
557                                 if ((dmu[j]) && (delta[j] > largest)) {
558                                         largest = delta[j];
559                                         ro = j;
560                                 }
561                         }
562
563                         /* compute difference */
564                         diff = (mu[i] - mu[ro]);
565
566                         /* Compute degree of the new smu polynomial */
567                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
568                                 lmu[i + 1] = lmu[i];
569                         else
570                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
571
572                         /* Init smu[i+1] with 0 */
573                         for (k = 0; k < num; k++)
574                                 smu[(i + 1) * num + k] = 0;
575
576                         /* Compute smu[i+1] */
577                         for (k = 0; k <= lmu[ro] >> 1; k++) {
578                                 int16_t a, b, c;
579
580                                 if (!(smu[ro * num + k] && dmu[i]))
581                                         continue;
582                                 a = readw_relaxed(index_of + dmu[i]);
583                                 b = readw_relaxed(index_of + dmu[ro]);
584                                 c = readw_relaxed(index_of + smu[ro * num + k]);
585                                 tmp = a + (cw_len - b) + c;
586                                 a = readw_relaxed(alpha_to + tmp % cw_len);
587                                 smu[(i + 1) * num + (k + diff)] = a;
588                         }
589
590                         for (k = 0; k <= lmu[i] >> 1; k++)
591                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
592                 }
593
594                 /* End Computing Sigma (Mu+1) and L(mu) */
595                 /* In either case compute delta */
596                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
597
598                 /* Do not compute discrepancy for the last iteration */
599                 if (i >= cap)
600                         continue;
601
602                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
603                         tmp = 2 * (i - 1);
604                         if (k == 0) {
605                                 dmu[i + 1] = si[tmp + 3];
606                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
607                                 int16_t a, b, c;
608                                 a = readw_relaxed(index_of +
609                                                 smu[(i + 1) * num + k]);
610                                 b = si[2 * (i - 1) + 3 - k];
611                                 c = readw_relaxed(index_of + b);
612                                 tmp = a + c;
613                                 tmp %= cw_len;
614                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
615                                         dmu[i + 1];
616                         }
617                 }
618         }
619
620         return;
621 }
622
623 static int pmecc_err_location(struct mtd_info *mtd)
624 {
625         struct nand_chip *nand_chip = mtd->priv;
626         struct atmel_nand_host *host = nand_chip->priv;
627         unsigned long end_time;
628         const int cap = host->pmecc_corr_cap;
629         const int num = 2 * cap + 1;
630         int sector_size = host->pmecc_sector_size;
631         int err_nbr = 0;        /* number of error */
632         int roots_nbr;          /* number of roots */
633         int i;
634         uint32_t val;
635         int16_t *smu = host->pmecc_smu;
636
637         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
638
639         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
640                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
641                                       smu[(cap + 1) * num + i]);
642                 err_nbr++;
643         }
644
645         val = (err_nbr - 1) << 16;
646         if (sector_size == 1024)
647                 val |= 1;
648
649         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
650         pmerrloc_writel(host->pmerrloc_base, ELEN,
651                         sector_size * 8 + host->pmecc_degree * cap);
652
653         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
654         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
655                  & PMERRLOC_CALC_DONE)) {
656                 if (unlikely(time_after(jiffies, end_time))) {
657                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
658                         return -1;
659                 }
660                 cpu_relax();
661         }
662
663         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
664                 & PMERRLOC_ERR_NUM_MASK) >> 8;
665         /* Number of roots == degree of smu hence <= cap */
666         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
667                 return err_nbr - 1;
668
669         /* Number of roots does not match the degree of smu
670          * unable to correct error */
671         return -1;
672 }
673
674 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
675                 int sector_num, int extra_bytes, int err_nbr)
676 {
677         struct nand_chip *nand_chip = mtd->priv;
678         struct atmel_nand_host *host = nand_chip->priv;
679         int i = 0;
680         int byte_pos, bit_pos, sector_size, pos;
681         uint32_t tmp;
682         uint8_t err_byte;
683
684         sector_size = host->pmecc_sector_size;
685
686         while (err_nbr) {
687                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
688                 byte_pos = tmp / 8;
689                 bit_pos  = tmp % 8;
690
691                 if (byte_pos >= (sector_size + extra_bytes))
692                         BUG();  /* should never happen */
693
694                 if (byte_pos < sector_size) {
695                         err_byte = *(buf + byte_pos);
696                         *(buf + byte_pos) ^= (1 << bit_pos);
697
698                         pos = sector_num * host->pmecc_sector_size + byte_pos;
699                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
700                                 pos, bit_pos, err_byte, *(buf + byte_pos));
701                 } else {
702                         /* Bit flip in OOB area */
703                         tmp = sector_num * host->pmecc_bytes_per_sector
704                                         + (byte_pos - sector_size);
705                         err_byte = ecc[tmp];
706                         ecc[tmp] ^= (1 << bit_pos);
707
708                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
709                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
710                                 pos, bit_pos, err_byte, ecc[tmp]);
711                 }
712
713                 i++;
714                 err_nbr--;
715         }
716
717         return;
718 }
719
720 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
721         u8 *ecc)
722 {
723         struct nand_chip *nand_chip = mtd->priv;
724         struct atmel_nand_host *host = nand_chip->priv;
725         int i, err_nbr, eccbytes;
726         uint8_t *buf_pos;
727
728         eccbytes = nand_chip->ecc.bytes;
729         for (i = 0; i < eccbytes; i++)
730                 if (ecc[i] != 0xff)
731                         goto normal_check;
732         /* Erased page, return OK */
733         return 0;
734
735 normal_check:
736         for (i = 0; i < host->pmecc_sector_number; i++) {
737                 err_nbr = 0;
738                 if (pmecc_stat & 0x1) {
739                         buf_pos = buf + i * host->pmecc_sector_size;
740
741                         pmecc_gen_syndrome(mtd, i);
742                         pmecc_substitute(mtd);
743                         pmecc_get_sigma(mtd);
744
745                         err_nbr = pmecc_err_location(mtd);
746                         if (err_nbr == -1) {
747                                 dev_err(host->dev, "PMECC: Too many errors\n");
748                                 mtd->ecc_stats.failed++;
749                                 return -EIO;
750                         } else {
751                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
752                                         host->pmecc_bytes_per_sector, err_nbr);
753                                 mtd->ecc_stats.corrected += err_nbr;
754                         }
755                 }
756                 pmecc_stat >>= 1;
757         }
758
759         return 0;
760 }
761
762 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
763         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
764 {
765         struct atmel_nand_host *host = chip->priv;
766         int eccsize = chip->ecc.size;
767         uint8_t *oob = chip->oob_poi;
768         uint32_t *eccpos = chip->ecc.layout->eccpos;
769         uint32_t stat;
770         unsigned long end_time;
771
772         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
773         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
774         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG)
775                 & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
776
777         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
778         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
779
780         chip->read_buf(mtd, buf, eccsize);
781         chip->read_buf(mtd, oob, mtd->oobsize);
782
783         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
784         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
785                 if (unlikely(time_after(jiffies, end_time))) {
786                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
787                         return -EIO;
788                 }
789                 cpu_relax();
790         }
791
792         stat = pmecc_readl_relaxed(host->ecc, ISR);
793         if (stat != 0)
794                 if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
795                         return -EIO;
796
797         return 0;
798 }
799
800 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
801                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
802 {
803         struct atmel_nand_host *host = chip->priv;
804         uint32_t *eccpos = chip->ecc.layout->eccpos;
805         int i, j;
806         unsigned long end_time;
807
808         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
809         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
810
811         pmecc_writel(host->ecc, CFG, (pmecc_readl_relaxed(host->ecc, CFG) |
812                 PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
813
814         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
815         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
816
817         chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
818
819         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
820         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
821                 if (unlikely(time_after(jiffies, end_time))) {
822                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
823                         return -EIO;
824                 }
825                 cpu_relax();
826         }
827
828         for (i = 0; i < host->pmecc_sector_number; i++) {
829                 for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
830                         int pos;
831
832                         pos = i * host->pmecc_bytes_per_sector + j;
833                         chip->oob_poi[eccpos[pos]] =
834                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
835                 }
836         }
837         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
838
839         return 0;
840 }
841
842 static void atmel_pmecc_core_init(struct mtd_info *mtd)
843 {
844         struct nand_chip *nand_chip = mtd->priv;
845         struct atmel_nand_host *host = nand_chip->priv;
846         uint32_t val = 0;
847         struct nand_ecclayout *ecc_layout;
848
849         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
850         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
851
852         switch (host->pmecc_corr_cap) {
853         case 2:
854                 val = PMECC_CFG_BCH_ERR2;
855                 break;
856         case 4:
857                 val = PMECC_CFG_BCH_ERR4;
858                 break;
859         case 8:
860                 val = PMECC_CFG_BCH_ERR8;
861                 break;
862         case 12:
863                 val = PMECC_CFG_BCH_ERR12;
864                 break;
865         case 24:
866                 val = PMECC_CFG_BCH_ERR24;
867                 break;
868         }
869
870         if (host->pmecc_sector_size == 512)
871                 val |= PMECC_CFG_SECTOR512;
872         else if (host->pmecc_sector_size == 1024)
873                 val |= PMECC_CFG_SECTOR1024;
874
875         switch (host->pmecc_sector_number) {
876         case 1:
877                 val |= PMECC_CFG_PAGE_1SECTOR;
878                 break;
879         case 2:
880                 val |= PMECC_CFG_PAGE_2SECTORS;
881                 break;
882         case 4:
883                 val |= PMECC_CFG_PAGE_4SECTORS;
884                 break;
885         case 8:
886                 val |= PMECC_CFG_PAGE_8SECTORS;
887                 break;
888         }
889
890         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
891                 | PMECC_CFG_AUTO_DISABLE);
892         pmecc_writel(host->ecc, CFG, val);
893
894         ecc_layout = nand_chip->ecc.layout;
895         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
896         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
897         pmecc_writel(host->ecc, EADDR,
898                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
899         /* See datasheet about PMECC Clock Control Register */
900         pmecc_writel(host->ecc, CLK, 2);
901         pmecc_writel(host->ecc, IDR, 0xff);
902         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
903 }
904
905 static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
906                                          struct atmel_nand_host *host)
907 {
908         struct mtd_info *mtd = &host->mtd;
909         struct nand_chip *nand_chip = &host->nand_chip;
910         struct resource *regs, *regs_pmerr, *regs_rom;
911         int cap, sector_size, err_no;
912
913         cap = host->pmecc_corr_cap;
914         sector_size = host->pmecc_sector_size;
915         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
916                  cap, sector_size);
917
918         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
919         if (!regs) {
920                 dev_warn(host->dev,
921                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
922                 nand_chip->ecc.mode = NAND_ECC_SOFT;
923                 return 0;
924         }
925
926         host->ecc = ioremap(regs->start, resource_size(regs));
927         if (host->ecc == NULL) {
928                 dev_err(host->dev, "ioremap failed\n");
929                 err_no = -EIO;
930                 goto err_pmecc_ioremap;
931         }
932
933         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
934         regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
935         if (regs_pmerr && regs_rom) {
936                 host->pmerrloc_base = ioremap(regs_pmerr->start,
937                         resource_size(regs_pmerr));
938                 host->pmecc_rom_base = ioremap(regs_rom->start,
939                         resource_size(regs_rom));
940         }
941
942         if (!host->pmerrloc_base || !host->pmecc_rom_base) {
943                 dev_err(host->dev,
944                         "Can not get I/O resource for PMECC ERRLOC controller or ROM!\n");
945                 err_no = -EIO;
946                 goto err_pmloc_ioremap;
947         }
948
949         /* ECC is calculated for the whole page (1 step) */
950         nand_chip->ecc.size = mtd->writesize;
951
952         /* set ECC page size and oob layout */
953         switch (mtd->writesize) {
954         case 2048:
955                 host->pmecc_degree = PMECC_GF_DIMENSION_13;
956                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
957                 host->pmecc_sector_number = mtd->writesize / sector_size;
958                 host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
959                         cap, sector_size);
960                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
961                 host->pmecc_index_of = host->pmecc_rom_base +
962                         host->pmecc_lookup_table_offset;
963
964                 nand_chip->ecc.steps = 1;
965                 nand_chip->ecc.strength = cap;
966                 nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
967                                        host->pmecc_sector_number;
968                 if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
969                         dev_err(host->dev, "No room for ECC bytes\n");
970                         err_no = -EINVAL;
971                         goto err_no_ecc_room;
972                 }
973                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
974                                         mtd->oobsize,
975                                         nand_chip->ecc.bytes);
976                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
977                 break;
978         case 512:
979         case 1024:
980         case 4096:
981                 /* TODO */
982                 dev_warn(host->dev,
983                         "Unsupported page size for PMECC, use Software ECC\n");
984         default:
985                 /* page size not handled by HW ECC */
986                 /* switching back to soft ECC */
987                 nand_chip->ecc.mode = NAND_ECC_SOFT;
988                 return 0;
989         }
990
991         /* Allocate data for PMECC computation */
992         err_no = pmecc_data_alloc(host);
993         if (err_no) {
994                 dev_err(host->dev,
995                                 "Cannot allocate memory for PMECC computation!\n");
996                 goto err_pmecc_data_alloc;
997         }
998
999         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1000         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1001
1002         atmel_pmecc_core_init(mtd);
1003
1004         return 0;
1005
1006 err_pmecc_data_alloc:
1007 err_no_ecc_room:
1008 err_pmloc_ioremap:
1009         iounmap(host->ecc);
1010         if (host->pmerrloc_base)
1011                 iounmap(host->pmerrloc_base);
1012         if (host->pmecc_rom_base)
1013                 iounmap(host->pmecc_rom_base);
1014 err_pmecc_ioremap:
1015         return err_no;
1016 }
1017
1018 /*
1019  * Calculate HW ECC
1020  *
1021  * function called after a write
1022  *
1023  * mtd:        MTD block structure
1024  * dat:        raw data (unused)
1025  * ecc_code:   buffer for ECC
1026  */
1027 static int atmel_nand_calculate(struct mtd_info *mtd,
1028                 const u_char *dat, unsigned char *ecc_code)
1029 {
1030         struct nand_chip *nand_chip = mtd->priv;
1031         struct atmel_nand_host *host = nand_chip->priv;
1032         unsigned int ecc_value;
1033
1034         /* get the first 2 ECC bytes */
1035         ecc_value = ecc_readl(host->ecc, PR);
1036
1037         ecc_code[0] = ecc_value & 0xFF;
1038         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1039
1040         /* get the last 2 ECC bytes */
1041         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1042
1043         ecc_code[2] = ecc_value & 0xFF;
1044         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1045
1046         return 0;
1047 }
1048
1049 /*
1050  * HW ECC read page function
1051  *
1052  * mtd:        mtd info structure
1053  * chip:       nand chip info structure
1054  * buf:        buffer to store read data
1055  * oob_required:    caller expects OOB data read to chip->oob_poi
1056  */
1057 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1058                                 uint8_t *buf, int oob_required, int page)
1059 {
1060         int eccsize = chip->ecc.size;
1061         int eccbytes = chip->ecc.bytes;
1062         uint32_t *eccpos = chip->ecc.layout->eccpos;
1063         uint8_t *p = buf;
1064         uint8_t *oob = chip->oob_poi;
1065         uint8_t *ecc_pos;
1066         int stat;
1067         unsigned int max_bitflips = 0;
1068
1069         /*
1070          * Errata: ALE is incorrectly wired up to the ECC controller
1071          * on the AP7000, so it will include the address cycles in the
1072          * ECC calculation.
1073          *
1074          * Workaround: Reset the parity registers before reading the
1075          * actual data.
1076          */
1077         if (cpu_is_at32ap7000()) {
1078                 struct atmel_nand_host *host = chip->priv;
1079                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1080         }
1081
1082         /* read the page */
1083         chip->read_buf(mtd, p, eccsize);
1084
1085         /* move to ECC position if needed */
1086         if (eccpos[0] != 0) {
1087                 /* This only works on large pages
1088                  * because the ECC controller waits for
1089                  * NAND_CMD_RNDOUTSTART after the
1090                  * NAND_CMD_RNDOUT.
1091                  * anyway, for small pages, the eccpos[0] == 0
1092                  */
1093                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1094                                 mtd->writesize + eccpos[0], -1);
1095         }
1096
1097         /* the ECC controller needs to read the ECC just after the data */
1098         ecc_pos = oob + eccpos[0];
1099         chip->read_buf(mtd, ecc_pos, eccbytes);
1100
1101         /* check if there's an error */
1102         stat = chip->ecc.correct(mtd, p, oob, NULL);
1103
1104         if (stat < 0) {
1105                 mtd->ecc_stats.failed++;
1106         } else {
1107                 mtd->ecc_stats.corrected += stat;
1108                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1109         }
1110
1111         /* get back to oob start (end of page) */
1112         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1113
1114         /* read the oob */
1115         chip->read_buf(mtd, oob, mtd->oobsize);
1116
1117         return max_bitflips;
1118 }
1119
1120 /*
1121  * HW ECC Correction
1122  *
1123  * function called after a read
1124  *
1125  * mtd:        MTD block structure
1126  * dat:        raw data read from the chip
1127  * read_ecc:   ECC from the chip (unused)
1128  * isnull:     unused
1129  *
1130  * Detect and correct a 1 bit error for a page
1131  */
1132 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1133                 u_char *read_ecc, u_char *isnull)
1134 {
1135         struct nand_chip *nand_chip = mtd->priv;
1136         struct atmel_nand_host *host = nand_chip->priv;
1137         unsigned int ecc_status;
1138         unsigned int ecc_word, ecc_bit;
1139
1140         /* get the status from the Status Register */
1141         ecc_status = ecc_readl(host->ecc, SR);
1142
1143         /* if there's no error */
1144         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1145                 return 0;
1146
1147         /* get error bit offset (4 bits) */
1148         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1149         /* get word address (12 bits) */
1150         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1151         ecc_word >>= 4;
1152
1153         /* if there are multiple errors */
1154         if (ecc_status & ATMEL_ECC_MULERR) {
1155                 /* check if it is a freshly erased block
1156                  * (filled with 0xff) */
1157                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1158                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1159                         /* the block has just been erased, return OK */
1160                         return 0;
1161                 }
1162                 /* it doesn't seems to be a freshly
1163                  * erased block.
1164                  * We can't correct so many errors */
1165                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1166                                 " Unable to correct.\n");
1167                 return -EIO;
1168         }
1169
1170         /* if there's a single bit error : we can correct it */
1171         if (ecc_status & ATMEL_ECC_ECCERR) {
1172                 /* there's nothing much to do here.
1173                  * the bit error is on the ECC itself.
1174                  */
1175                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1176                                 " Nothing to correct\n");
1177                 return 0;
1178         }
1179
1180         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1181                         " (word offset in the page :"
1182                         " 0x%x bit offset : 0x%x)\n",
1183                         ecc_word, ecc_bit);
1184         /* correct the error */
1185         if (nand_chip->options & NAND_BUSWIDTH_16) {
1186                 /* 16 bits words */
1187                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1188         } else {
1189                 /* 8 bits words */
1190                 dat[ecc_word] ^= (1 << ecc_bit);
1191         }
1192         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1193         return 1;
1194 }
1195
1196 /*
1197  * Enable HW ECC : unused on most chips
1198  */
1199 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1200 {
1201         if (cpu_is_at32ap7000()) {
1202                 struct nand_chip *nand_chip = mtd->priv;
1203                 struct atmel_nand_host *host = nand_chip->priv;
1204                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1205         }
1206 }
1207
1208 #if defined(CONFIG_OF)
1209 static int __devinit atmel_of_init_port(struct atmel_nand_host *host,
1210                                          struct device_node *np)
1211 {
1212         u32 val, table_offset;
1213         u32 offset[2];
1214         int ecc_mode;
1215         struct atmel_nand_data *board = &host->board;
1216         enum of_gpio_flags flags;
1217
1218         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1219                 if (val >= 32) {
1220                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1221                         return -EINVAL;
1222                 }
1223                 board->ale = val;
1224         }
1225
1226         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1227                 if (val >= 32) {
1228                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1229                         return -EINVAL;
1230                 }
1231                 board->cle = val;
1232         }
1233
1234         ecc_mode = of_get_nand_ecc_mode(np);
1235
1236         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1237
1238         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1239
1240         if (of_get_nand_bus_width(np) == 16)
1241                 board->bus_width_16 = 1;
1242
1243         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1244         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1245
1246         board->enable_pin = of_get_gpio(np, 1);
1247         board->det_pin = of_get_gpio(np, 2);
1248
1249         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1250
1251         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1252                 return 0;       /* Not using PMECC */
1253
1254         /* use PMECC, get correction capability, sector size and lookup
1255          * table offset.
1256          */
1257         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) != 0) {
1258                 dev_err(host->dev, "Cannot decide PMECC Capability\n");
1259                 return -EINVAL;
1260         } else if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1261             (val != 24)) {
1262                 dev_err(host->dev,
1263                         "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1264                         val);
1265                 return -EINVAL;
1266         }
1267         host->pmecc_corr_cap = (u8)val;
1268
1269         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) != 0) {
1270                 dev_err(host->dev, "Cannot decide PMECC Sector Size\n");
1271                 return -EINVAL;
1272         } else if ((val != 512) && (val != 1024)) {
1273                 dev_err(host->dev,
1274                         "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1275                         val);
1276                 return -EINVAL;
1277         }
1278         host->pmecc_sector_size = (u16)val;
1279
1280         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1281                         offset, 2) != 0) {
1282                 dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
1283                 return -EINVAL;
1284         }
1285         table_offset = host->pmecc_sector_size == 512 ? offset[0] : offset[1];
1286
1287         if (!table_offset) {
1288                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1289                 return -EINVAL;
1290         }
1291         host->pmecc_lookup_table_offset = table_offset;
1292
1293         return 0;
1294 }
1295 #else
1296 static int __devinit atmel_of_init_port(struct atmel_nand_host *host,
1297                                          struct device_node *np)
1298 {
1299         return -EINVAL;
1300 }
1301 #endif
1302
1303 static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
1304                                          struct atmel_nand_host *host)
1305 {
1306         struct mtd_info *mtd = &host->mtd;
1307         struct nand_chip *nand_chip = &host->nand_chip;
1308         struct resource         *regs;
1309
1310         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1311         if (!regs) {
1312                 dev_err(host->dev,
1313                         "Can't get I/O resource regs, use software ECC\n");
1314                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1315                 return 0;
1316         }
1317
1318         host->ecc = ioremap(regs->start, resource_size(regs));
1319         if (host->ecc == NULL) {
1320                 dev_err(host->dev, "ioremap failed\n");
1321                 return -EIO;
1322         }
1323
1324         /* ECC is calculated for the whole page (1 step) */
1325         nand_chip->ecc.size = mtd->writesize;
1326
1327         /* set ECC page size and oob layout */
1328         switch (mtd->writesize) {
1329         case 512:
1330                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1331                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1332                 break;
1333         case 1024:
1334                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1335                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1336                 break;
1337         case 2048:
1338                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1339                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1340                 break;
1341         case 4096:
1342                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1343                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1344                 break;
1345         default:
1346                 /* page size not handled by HW ECC */
1347                 /* switching back to soft ECC */
1348                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1349                 return 0;
1350         }
1351
1352         /* set up for HW ECC */
1353         nand_chip->ecc.calculate = atmel_nand_calculate;
1354         nand_chip->ecc.correct = atmel_nand_correct;
1355         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1356         nand_chip->ecc.read_page = atmel_nand_read_page;
1357         nand_chip->ecc.bytes = 4;
1358         nand_chip->ecc.strength = 1;
1359
1360         return 0;
1361 }
1362
1363 /*
1364  * Probe for the NAND device.
1365  */
1366 static int __init atmel_nand_probe(struct platform_device *pdev)
1367 {
1368         struct atmel_nand_host *host;
1369         struct mtd_info *mtd;
1370         struct nand_chip *nand_chip;
1371         struct resource *mem;
1372         struct mtd_part_parser_data ppdata = {};
1373         int res;
1374         struct pinctrl *pinctrl;
1375
1376         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1377         if (!mem) {
1378                 printk(KERN_ERR "atmel_nand: can't get I/O resource mem\n");
1379                 return -ENXIO;
1380         }
1381
1382         /* Allocate memory for the device structure (and zero it) */
1383         host = kzalloc(sizeof(struct atmel_nand_host), GFP_KERNEL);
1384         if (!host) {
1385                 printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
1386                 return -ENOMEM;
1387         }
1388
1389         host->io_phys = (dma_addr_t)mem->start;
1390
1391         host->io_base = ioremap(mem->start, resource_size(mem));
1392         if (host->io_base == NULL) {
1393                 printk(KERN_ERR "atmel_nand: ioremap failed\n");
1394                 res = -EIO;
1395                 goto err_nand_ioremap;
1396         }
1397
1398         mtd = &host->mtd;
1399         nand_chip = &host->nand_chip;
1400         host->dev = &pdev->dev;
1401         if (pdev->dev.of_node) {
1402                 res = atmel_of_init_port(host, pdev->dev.of_node);
1403                 if (res)
1404                         goto err_ecc_ioremap;
1405         } else {
1406                 memcpy(&host->board, pdev->dev.platform_data,
1407                        sizeof(struct atmel_nand_data));
1408         }
1409
1410         nand_chip->priv = host;         /* link the private data structures */
1411         mtd->priv = nand_chip;
1412         mtd->owner = THIS_MODULE;
1413
1414         /* Set address of NAND IO lines */
1415         nand_chip->IO_ADDR_R = host->io_base;
1416         nand_chip->IO_ADDR_W = host->io_base;
1417         nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
1418
1419         pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1420         if (IS_ERR(pinctrl)) {
1421                 dev_err(host->dev, "Failed to request pinctrl\n");
1422                 res = PTR_ERR(pinctrl);
1423                 goto err_ecc_ioremap;
1424         }
1425
1426         if (gpio_is_valid(host->board.rdy_pin)) {
1427                 res = gpio_request(host->board.rdy_pin, "nand_rdy");
1428                 if (res < 0) {
1429                         dev_err(&pdev->dev,
1430                                 "can't request rdy gpio %d\n",
1431                                 host->board.rdy_pin);
1432                         goto err_ecc_ioremap;
1433                 }
1434
1435                 res = gpio_direction_input(host->board.rdy_pin);
1436                 if (res < 0) {
1437                         dev_err(&pdev->dev,
1438                                 "can't request input direction rdy gpio %d\n",
1439                                 host->board.rdy_pin);
1440                         goto err_ecc_ioremap;
1441                 }
1442
1443                 nand_chip->dev_ready = atmel_nand_device_ready;
1444         }
1445
1446         if (gpio_is_valid(host->board.enable_pin)) {
1447                 res = gpio_request(host->board.enable_pin, "nand_enable");
1448                 if (res < 0) {
1449                         dev_err(&pdev->dev,
1450                                 "can't request enable gpio %d\n",
1451                                 host->board.enable_pin);
1452                         goto err_ecc_ioremap;
1453                 }
1454
1455                 res = gpio_direction_output(host->board.enable_pin, 1);
1456                 if (res < 0) {
1457                         dev_err(&pdev->dev,
1458                                 "can't request output direction enable gpio %d\n",
1459                                 host->board.enable_pin);
1460                         goto err_ecc_ioremap;
1461                 }
1462         }
1463
1464         nand_chip->ecc.mode = host->board.ecc_mode;
1465         nand_chip->chip_delay = 20;             /* 20us command delay time */
1466
1467         if (host->board.bus_width_16)   /* 16-bit bus width */
1468                 nand_chip->options |= NAND_BUSWIDTH_16;
1469
1470         nand_chip->read_buf = atmel_read_buf;
1471         nand_chip->write_buf = atmel_write_buf;
1472
1473         platform_set_drvdata(pdev, host);
1474         atmel_nand_enable(host);
1475
1476         if (gpio_is_valid(host->board.det_pin)) {
1477                 res = gpio_request(host->board.det_pin, "nand_det");
1478                 if (res < 0) {
1479                         dev_err(&pdev->dev,
1480                                 "can't request det gpio %d\n",
1481                                 host->board.det_pin);
1482                         goto err_no_card;
1483                 }
1484
1485                 res = gpio_direction_input(host->board.det_pin);
1486                 if (res < 0) {
1487                         dev_err(&pdev->dev,
1488                                 "can't request input direction det gpio %d\n",
1489                                 host->board.det_pin);
1490                         goto err_no_card;
1491                 }
1492
1493                 if (gpio_get_value(host->board.det_pin)) {
1494                         printk(KERN_INFO "No SmartMedia card inserted.\n");
1495                         res = -ENXIO;
1496                         goto err_no_card;
1497                 }
1498         }
1499
1500         if (host->board.on_flash_bbt || on_flash_bbt) {
1501                 printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
1502                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
1503         }
1504
1505         if (!cpu_has_dma())
1506                 use_dma = 0;
1507
1508         if (use_dma) {
1509                 dma_cap_mask_t mask;
1510
1511                 dma_cap_zero(mask);
1512                 dma_cap_set(DMA_MEMCPY, mask);
1513                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
1514                 if (!host->dma_chan) {
1515                         dev_err(host->dev, "Failed to request DMA channel\n");
1516                         use_dma = 0;
1517                 }
1518         }
1519         if (use_dma)
1520                 dev_info(host->dev, "Using %s for DMA transfers.\n",
1521                                         dma_chan_name(host->dma_chan));
1522         else
1523                 dev_info(host->dev, "No DMA support for NAND access.\n");
1524
1525         /* first scan to find the device and get the page size */
1526         if (nand_scan_ident(mtd, 1, NULL)) {
1527                 res = -ENXIO;
1528                 goto err_scan_ident;
1529         }
1530
1531         if (nand_chip->ecc.mode == NAND_ECC_HW) {
1532                 if (host->has_pmecc)
1533                         res = atmel_pmecc_nand_init_params(pdev, host);
1534                 else
1535                         res = atmel_hw_nand_init_params(pdev, host);
1536
1537                 if (res != 0)
1538                         goto err_hw_ecc;
1539         }
1540
1541         /* second phase scan */
1542         if (nand_scan_tail(mtd)) {
1543                 res = -ENXIO;
1544                 goto err_scan_tail;
1545         }
1546
1547         mtd->name = "atmel_nand";
1548         ppdata.of_node = pdev->dev.of_node;
1549         res = mtd_device_parse_register(mtd, NULL, &ppdata,
1550                         host->board.parts, host->board.num_parts);
1551         if (!res)
1552                 return res;
1553
1554 err_scan_tail:
1555         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1556                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1557                 pmecc_data_free(host);
1558         }
1559         if (host->ecc)
1560                 iounmap(host->ecc);
1561         if (host->pmerrloc_base)
1562                 iounmap(host->pmerrloc_base);
1563         if (host->pmecc_rom_base)
1564                 iounmap(host->pmecc_rom_base);
1565 err_hw_ecc:
1566 err_scan_ident:
1567 err_no_card:
1568         atmel_nand_disable(host);
1569         platform_set_drvdata(pdev, NULL);
1570         if (host->dma_chan)
1571                 dma_release_channel(host->dma_chan);
1572 err_ecc_ioremap:
1573         iounmap(host->io_base);
1574 err_nand_ioremap:
1575         kfree(host);
1576         return res;
1577 }
1578
1579 /*
1580  * Remove a NAND device.
1581  */
1582 static int __exit atmel_nand_remove(struct platform_device *pdev)
1583 {
1584         struct atmel_nand_host *host = platform_get_drvdata(pdev);
1585         struct mtd_info *mtd = &host->mtd;
1586
1587         nand_release(mtd);
1588
1589         atmel_nand_disable(host);
1590
1591         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
1592                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1593                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
1594                                 PMERRLOC_DISABLE);
1595                 pmecc_data_free(host);
1596         }
1597
1598         if (gpio_is_valid(host->board.det_pin))
1599                 gpio_free(host->board.det_pin);
1600
1601         if (gpio_is_valid(host->board.enable_pin))
1602                 gpio_free(host->board.enable_pin);
1603
1604         if (gpio_is_valid(host->board.rdy_pin))
1605                 gpio_free(host->board.rdy_pin);
1606
1607         if (host->ecc)
1608                 iounmap(host->ecc);
1609         if (host->pmecc_rom_base)
1610                 iounmap(host->pmecc_rom_base);
1611         if (host->pmerrloc_base)
1612                 iounmap(host->pmerrloc_base);
1613
1614         if (host->dma_chan)
1615                 dma_release_channel(host->dma_chan);
1616
1617         iounmap(host->io_base);
1618         kfree(host);
1619
1620         return 0;
1621 }
1622
1623 #if defined(CONFIG_OF)
1624 static const struct of_device_id atmel_nand_dt_ids[] = {
1625         { .compatible = "atmel,at91rm9200-nand" },
1626         { /* sentinel */ }
1627 };
1628
1629 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
1630 #endif
1631
1632 static struct platform_driver atmel_nand_driver = {
1633         .remove         = __exit_p(atmel_nand_remove),
1634         .driver         = {
1635                 .name   = "atmel_nand",
1636                 .owner  = THIS_MODULE,
1637                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
1638         },
1639 };
1640
1641 static int __init atmel_nand_init(void)
1642 {
1643         return platform_driver_probe(&atmel_nand_driver, atmel_nand_probe);
1644 }
1645
1646
1647 static void __exit atmel_nand_exit(void)
1648 {
1649         platform_driver_unregister(&atmel_nand_driver);
1650 }
1651
1652
1653 module_init(atmel_nand_init);
1654 module_exit(atmel_nand_exit);
1655
1656 MODULE_LICENSE("GPL");
1657 MODULE_AUTHOR("Rick Bronson");
1658 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
1659 MODULE_ALIAS("platform:atmel_nand");