]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/onenand/onenand_base.c
i2o: convert bus code to use dev_groups
[karo-tx-linux.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright © 2005-2009 Samsung Electronics
5  *  Copyright © 2007 Nokia Corporation
6  *
7  *  Kyungmin Park <kyungmin.park@samsung.com>
8  *
9  *  Credits:
10  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
11  *      auto-placement support, read-while load support, various fixes
12  *
13  *      Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14  *      Flex-OneNAND support
15  *      Amul Kumar Saha <amul.saha at samsung.com>
16  *      OTP support
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2 as
20  * published by the Free Software Foundation.
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
35
36 #include <asm/io.h>
37
38 /*
39  * Multiblock erase if number of blocks to erase is 2 or more.
40  * Maximum number of blocks for simultaneous erase is 64.
41  */
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
44
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
47
48 module_param_array(flex_bdry, int, NULL, 0400);
49 MODULE_PARM_DESC(flex_bdry,     "SLC Boundary information for Flex-OneNAND"
50                                 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51                                 "DIE_BDRY: SLC boundary of the die"
52                                 "LOCK: Locking information for SLC boundary"
53                                 "    : 0->Set boundary in unlocked status"
54                                 "    : 1->Set boundary in locked status");
55
56 /* Default OneNAND/Flex-OneNAND OTP options*/
57 static int otp;
58
59 module_param(otp, int, 0400);
60 MODULE_PARM_DESC(otp,   "Corresponding behaviour of OneNAND in OTP"
61                         "Syntax : otp=LOCK_TYPE"
62                         "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63                         "          : 0 -> Default (No Blocks Locked)"
64                         "          : 1 -> OTP Block lock"
65                         "          : 2 -> 1st Block lock"
66                         "          : 3 -> BOTH OTP Block and 1st Block lock");
67
68 /*
69  * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
70  * For now, we expose only 64 out of 80 ecc bytes
71  */
72 static struct nand_ecclayout flexonenand_oob_128 = {
73         .eccbytes       = 64,
74         .eccpos         = {
75                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
81                 102, 103, 104, 105
82                 },
83         .oobfree        = {
84                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
86         }
87 };
88
89 /*
90  * onenand_oob_128 - oob info for OneNAND with 4KB page
91  *
92  * Based on specification:
93  * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
94  *
95  * For eccpos we expose only 64 bytes out of 72 (see struct nand_ecclayout)
96  *
97  * oobfree uses the spare area fields marked as
98  * "Managed by internal ECC logic for Logical Sector Number area"
99  */
100 static struct nand_ecclayout onenand_oob_128 = {
101         .eccbytes       = 64,
102         .eccpos         = {
103                 7, 8, 9, 10, 11, 12, 13, 14, 15,
104                 23, 24, 25, 26, 27, 28, 29, 30, 31,
105                 39, 40, 41, 42, 43, 44, 45, 46, 47,
106                 55, 56, 57, 58, 59, 60, 61, 62, 63,
107                 71, 72, 73, 74, 75, 76, 77, 78, 79,
108                 87, 88, 89, 90, 91, 92, 93, 94, 95,
109                 103, 104, 105, 106, 107, 108, 109, 110, 111,
110                 119
111         },
112         .oobfree        = {
113                 {2, 3}, {18, 3}, {34, 3}, {50, 3},
114                 {66, 3}, {82, 3}, {98, 3}, {114, 3}
115         }
116 };
117
118 /**
119  * onenand_oob_64 - oob info for large (2KB) page
120  */
121 static struct nand_ecclayout onenand_oob_64 = {
122         .eccbytes       = 20,
123         .eccpos         = {
124                 8, 9, 10, 11, 12,
125                 24, 25, 26, 27, 28,
126                 40, 41, 42, 43, 44,
127                 56, 57, 58, 59, 60,
128                 },
129         .oobfree        = {
130                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
131                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
132         }
133 };
134
135 /**
136  * onenand_oob_32 - oob info for middle (1KB) page
137  */
138 static struct nand_ecclayout onenand_oob_32 = {
139         .eccbytes       = 10,
140         .eccpos         = {
141                 8, 9, 10, 11, 12,
142                 24, 25, 26, 27, 28,
143                 },
144         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
145 };
146
147 static const unsigned char ffchars[] = {
148         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
149         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
150         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
151         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
152         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
153         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
154         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
155         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
156         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
157         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
158         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
159         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
160         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
161         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
162         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
163         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
164 };
165
166 /**
167  * onenand_readw - [OneNAND Interface] Read OneNAND register
168  * @param addr          address to read
169  *
170  * Read OneNAND register
171  */
172 static unsigned short onenand_readw(void __iomem *addr)
173 {
174         return readw(addr);
175 }
176
177 /**
178  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
179  * @param value         value to write
180  * @param addr          address to write
181  *
182  * Write OneNAND register with value
183  */
184 static void onenand_writew(unsigned short value, void __iomem *addr)
185 {
186         writew(value, addr);
187 }
188
189 /**
190  * onenand_block_address - [DEFAULT] Get block address
191  * @param this          onenand chip data structure
192  * @param block         the block
193  * @return              translated block address if DDP, otherwise same
194  *
195  * Setup Start Address 1 Register (F100h)
196  */
197 static int onenand_block_address(struct onenand_chip *this, int block)
198 {
199         /* Device Flash Core select, NAND Flash Block Address */
200         if (block & this->density_mask)
201                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
202
203         return block;
204 }
205
206 /**
207  * onenand_bufferram_address - [DEFAULT] Get bufferram address
208  * @param this          onenand chip data structure
209  * @param block         the block
210  * @return              set DBS value if DDP, otherwise 0
211  *
212  * Setup Start Address 2 Register (F101h) for DDP
213  */
214 static int onenand_bufferram_address(struct onenand_chip *this, int block)
215 {
216         /* Device BufferRAM Select */
217         if (block & this->density_mask)
218                 return ONENAND_DDP_CHIP1;
219
220         return ONENAND_DDP_CHIP0;
221 }
222
223 /**
224  * onenand_page_address - [DEFAULT] Get page address
225  * @param page          the page address
226  * @param sector        the sector address
227  * @return              combined page and sector address
228  *
229  * Setup Start Address 8 Register (F107h)
230  */
231 static int onenand_page_address(int page, int sector)
232 {
233         /* Flash Page Address, Flash Sector Address */
234         int fpa, fsa;
235
236         fpa = page & ONENAND_FPA_MASK;
237         fsa = sector & ONENAND_FSA_MASK;
238
239         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
240 }
241
242 /**
243  * onenand_buffer_address - [DEFAULT] Get buffer address
244  * @param dataram1      DataRAM index
245  * @param sectors       the sector address
246  * @param count         the number of sectors
247  * @return              the start buffer value
248  *
249  * Setup Start Buffer Register (F200h)
250  */
251 static int onenand_buffer_address(int dataram1, int sectors, int count)
252 {
253         int bsa, bsc;
254
255         /* BufferRAM Sector Address */
256         bsa = sectors & ONENAND_BSA_MASK;
257
258         if (dataram1)
259                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
260         else
261                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
262
263         /* BufferRAM Sector Count */
264         bsc = count & ONENAND_BSC_MASK;
265
266         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
267 }
268
269 /**
270  * flexonenand_block- For given address return block number
271  * @param this         - OneNAND device structure
272  * @param addr          - Address for which block number is needed
273  */
274 static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
275 {
276         unsigned boundary, blk, die = 0;
277
278         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
279                 die = 1;
280                 addr -= this->diesize[0];
281         }
282
283         boundary = this->boundary[die];
284
285         blk = addr >> (this->erase_shift - 1);
286         if (blk > boundary)
287                 blk = (blk + boundary + 1) >> 1;
288
289         blk += die ? this->density_mask : 0;
290         return blk;
291 }
292
293 inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
294 {
295         if (!FLEXONENAND(this))
296                 return addr >> this->erase_shift;
297         return flexonenand_block(this, addr);
298 }
299
300 /**
301  * flexonenand_addr - Return address of the block
302  * @this:               OneNAND device structure
303  * @block:              Block number on Flex-OneNAND
304  *
305  * Return address of the block
306  */
307 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
308 {
309         loff_t ofs = 0;
310         int die = 0, boundary;
311
312         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
313                 block -= this->density_mask;
314                 die = 1;
315                 ofs = this->diesize[0];
316         }
317
318         boundary = this->boundary[die];
319         ofs += (loff_t)block << (this->erase_shift - 1);
320         if (block > (boundary + 1))
321                 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
322         return ofs;
323 }
324
325 loff_t onenand_addr(struct onenand_chip *this, int block)
326 {
327         if (!FLEXONENAND(this))
328                 return (loff_t)block << this->erase_shift;
329         return flexonenand_addr(this, block);
330 }
331 EXPORT_SYMBOL(onenand_addr);
332
333 /**
334  * onenand_get_density - [DEFAULT] Get OneNAND density
335  * @param dev_id        OneNAND device ID
336  *
337  * Get OneNAND density from device ID
338  */
339 static inline int onenand_get_density(int dev_id)
340 {
341         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
342         return (density & ONENAND_DEVICE_DENSITY_MASK);
343 }
344
345 /**
346  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
347  * @param mtd           MTD device structure
348  * @param addr          address whose erase region needs to be identified
349  */
350 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
351 {
352         int i;
353
354         for (i = 0; i < mtd->numeraseregions; i++)
355                 if (addr < mtd->eraseregions[i].offset)
356                         break;
357         return i - 1;
358 }
359 EXPORT_SYMBOL(flexonenand_region);
360
361 /**
362  * onenand_command - [DEFAULT] Send command to OneNAND device
363  * @param mtd           MTD device structure
364  * @param cmd           the command to be sent
365  * @param addr          offset to read from or write to
366  * @param len           number of bytes to read or write
367  *
368  * Send command to OneNAND device. This function is used for middle/large page
369  * devices (1KB/2KB Bytes per page)
370  */
371 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
372 {
373         struct onenand_chip *this = mtd->priv;
374         int value, block, page;
375
376         /* Address translation */
377         switch (cmd) {
378         case ONENAND_CMD_UNLOCK:
379         case ONENAND_CMD_LOCK:
380         case ONENAND_CMD_LOCK_TIGHT:
381         case ONENAND_CMD_UNLOCK_ALL:
382                 block = -1;
383                 page = -1;
384                 break;
385
386         case FLEXONENAND_CMD_PI_ACCESS:
387                 /* addr contains die index */
388                 block = addr * this->density_mask;
389                 page = -1;
390                 break;
391
392         case ONENAND_CMD_ERASE:
393         case ONENAND_CMD_MULTIBLOCK_ERASE:
394         case ONENAND_CMD_ERASE_VERIFY:
395         case ONENAND_CMD_BUFFERRAM:
396         case ONENAND_CMD_OTP_ACCESS:
397                 block = onenand_block(this, addr);
398                 page = -1;
399                 break;
400
401         case FLEXONENAND_CMD_READ_PI:
402                 cmd = ONENAND_CMD_READ;
403                 block = addr * this->density_mask;
404                 page = 0;
405                 break;
406
407         default:
408                 block = onenand_block(this, addr);
409                 if (FLEXONENAND(this))
410                         page = (int) (addr - onenand_addr(this, block))>>\
411                                 this->page_shift;
412                 else
413                         page = (int) (addr >> this->page_shift);
414                 if (ONENAND_IS_2PLANE(this)) {
415                         /* Make the even block number */
416                         block &= ~1;
417                         /* Is it the odd plane? */
418                         if (addr & this->writesize)
419                                 block++;
420                         page >>= 1;
421                 }
422                 page &= this->page_mask;
423                 break;
424         }
425
426         /* NOTE: The setting order of the registers is very important! */
427         if (cmd == ONENAND_CMD_BUFFERRAM) {
428                 /* Select DataRAM for DDP */
429                 value = onenand_bufferram_address(this, block);
430                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
431
432                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
433                         /* It is always BufferRAM0 */
434                         ONENAND_SET_BUFFERRAM0(this);
435                 else
436                         /* Switch to the next data buffer */
437                         ONENAND_SET_NEXT_BUFFERRAM(this);
438
439                 return 0;
440         }
441
442         if (block != -1) {
443                 /* Write 'DFS, FBA' of Flash */
444                 value = onenand_block_address(this, block);
445                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
446
447                 /* Select DataRAM for DDP */
448                 value = onenand_bufferram_address(this, block);
449                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
450         }
451
452         if (page != -1) {
453                 /* Now we use page size operation */
454                 int sectors = 0, count = 0;
455                 int dataram;
456
457                 switch (cmd) {
458                 case FLEXONENAND_CMD_RECOVER_LSB:
459                 case ONENAND_CMD_READ:
460                 case ONENAND_CMD_READOOB:
461                         if (ONENAND_IS_4KB_PAGE(this))
462                                 /* It is always BufferRAM0 */
463                                 dataram = ONENAND_SET_BUFFERRAM0(this);
464                         else
465                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
466                         break;
467
468                 default:
469                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
470                                 cmd = ONENAND_CMD_2X_PROG;
471                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
472                         break;
473                 }
474
475                 /* Write 'FPA, FSA' of Flash */
476                 value = onenand_page_address(page, sectors);
477                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
478
479                 /* Write 'BSA, BSC' of DataRAM */
480                 value = onenand_buffer_address(dataram, sectors, count);
481                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
482         }
483
484         /* Interrupt clear */
485         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
486
487         /* Write command */
488         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
489
490         return 0;
491 }
492
493 /**
494  * onenand_read_ecc - return ecc status
495  * @param this          onenand chip structure
496  */
497 static inline int onenand_read_ecc(struct onenand_chip *this)
498 {
499         int ecc, i, result = 0;
500
501         if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
502                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
503
504         for (i = 0; i < 4; i++) {
505                 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
506                 if (likely(!ecc))
507                         continue;
508                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
509                         return ONENAND_ECC_2BIT_ALL;
510                 else
511                         result = ONENAND_ECC_1BIT_ALL;
512         }
513
514         return result;
515 }
516
517 /**
518  * onenand_wait - [DEFAULT] wait until the command is done
519  * @param mtd           MTD device structure
520  * @param state         state to select the max. timeout value
521  *
522  * Wait for command done. This applies to all OneNAND command
523  * Read can take up to 30us, erase up to 2ms and program up to 350us
524  * according to general OneNAND specs
525  */
526 static int onenand_wait(struct mtd_info *mtd, int state)
527 {
528         struct onenand_chip * this = mtd->priv;
529         unsigned long timeout;
530         unsigned int flags = ONENAND_INT_MASTER;
531         unsigned int interrupt = 0;
532         unsigned int ctrl;
533
534         /* The 20 msec is enough */
535         timeout = jiffies + msecs_to_jiffies(20);
536         while (time_before(jiffies, timeout)) {
537                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
538
539                 if (interrupt & flags)
540                         break;
541
542                 if (state != FL_READING && state != FL_PREPARING_ERASE)
543                         cond_resched();
544         }
545         /* To get correct interrupt status in timeout case */
546         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
547
548         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
549
550         /*
551          * In the Spec. it checks the controller status first
552          * However if you get the correct information in case of
553          * power off recovery (POR) test, it should read ECC status first
554          */
555         if (interrupt & ONENAND_INT_READ) {
556                 int ecc = onenand_read_ecc(this);
557                 if (ecc) {
558                         if (ecc & ONENAND_ECC_2BIT_ALL) {
559                                 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
560                                         __func__, ecc);
561                                 mtd->ecc_stats.failed++;
562                                 return -EBADMSG;
563                         } else if (ecc & ONENAND_ECC_1BIT_ALL) {
564                                 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
565                                         __func__, ecc);
566                                 mtd->ecc_stats.corrected++;
567                         }
568                 }
569         } else if (state == FL_READING) {
570                 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
571                         __func__, ctrl, interrupt);
572                 return -EIO;
573         }
574
575         if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
576                 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
577                        __func__, ctrl, interrupt);
578                 return -EIO;
579         }
580
581         if (!(interrupt & ONENAND_INT_MASTER)) {
582                 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
583                        __func__, ctrl, interrupt);
584                 return -EIO;
585         }
586
587         /* If there's controller error, it's a real error */
588         if (ctrl & ONENAND_CTRL_ERROR) {
589                 printk(KERN_ERR "%s: controller error = 0x%04x\n",
590                         __func__, ctrl);
591                 if (ctrl & ONENAND_CTRL_LOCK)
592                         printk(KERN_ERR "%s: it's locked error.\n", __func__);
593                 return -EIO;
594         }
595
596         return 0;
597 }
598
599 /*
600  * onenand_interrupt - [DEFAULT] onenand interrupt handler
601  * @param irq           onenand interrupt number
602  * @param dev_id        interrupt data
603  *
604  * complete the work
605  */
606 static irqreturn_t onenand_interrupt(int irq, void *data)
607 {
608         struct onenand_chip *this = data;
609
610         /* To handle shared interrupt */
611         if (!this->complete.done)
612                 complete(&this->complete);
613
614         return IRQ_HANDLED;
615 }
616
617 /*
618  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
619  * @param mtd           MTD device structure
620  * @param state         state to select the max. timeout value
621  *
622  * Wait for command done.
623  */
624 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
625 {
626         struct onenand_chip *this = mtd->priv;
627
628         wait_for_completion(&this->complete);
629
630         return onenand_wait(mtd, state);
631 }
632
633 /*
634  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
635  * @param mtd           MTD device structure
636  * @param state         state to select the max. timeout value
637  *
638  * Try interrupt based wait (It is used one-time)
639  */
640 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
641 {
642         struct onenand_chip *this = mtd->priv;
643         unsigned long remain, timeout;
644
645         /* We use interrupt wait first */
646         this->wait = onenand_interrupt_wait;
647
648         timeout = msecs_to_jiffies(100);
649         remain = wait_for_completion_timeout(&this->complete, timeout);
650         if (!remain) {
651                 printk(KERN_INFO "OneNAND: There's no interrupt. "
652                                 "We use the normal wait\n");
653
654                 /* Release the irq */
655                 free_irq(this->irq, this);
656
657                 this->wait = onenand_wait;
658         }
659
660         return onenand_wait(mtd, state);
661 }
662
663 /*
664  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
665  * @param mtd           MTD device structure
666  *
667  * There's two method to wait onenand work
668  * 1. polling - read interrupt status register
669  * 2. interrupt - use the kernel interrupt method
670  */
671 static void onenand_setup_wait(struct mtd_info *mtd)
672 {
673         struct onenand_chip *this = mtd->priv;
674         int syscfg;
675
676         init_completion(&this->complete);
677
678         if (this->irq <= 0) {
679                 this->wait = onenand_wait;
680                 return;
681         }
682
683         if (request_irq(this->irq, &onenand_interrupt,
684                                 IRQF_SHARED, "onenand", this)) {
685                 /* If we can't get irq, use the normal wait */
686                 this->wait = onenand_wait;
687                 return;
688         }
689
690         /* Enable interrupt */
691         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
692         syscfg |= ONENAND_SYS_CFG1_IOBE;
693         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
694
695         this->wait = onenand_try_interrupt_wait;
696 }
697
698 /**
699  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
700  * @param mtd           MTD data structure
701  * @param area          BufferRAM area
702  * @return              offset given area
703  *
704  * Return BufferRAM offset given area
705  */
706 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
707 {
708         struct onenand_chip *this = mtd->priv;
709
710         if (ONENAND_CURRENT_BUFFERRAM(this)) {
711                 /* Note: the 'this->writesize' is a real page size */
712                 if (area == ONENAND_DATARAM)
713                         return this->writesize;
714                 if (area == ONENAND_SPARERAM)
715                         return mtd->oobsize;
716         }
717
718         return 0;
719 }
720
721 /**
722  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
723  * @param mtd           MTD data structure
724  * @param area          BufferRAM area
725  * @param buffer        the databuffer to put/get data
726  * @param offset        offset to read from or write to
727  * @param count         number of bytes to read/write
728  *
729  * Read the BufferRAM area
730  */
731 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
732                 unsigned char *buffer, int offset, size_t count)
733 {
734         struct onenand_chip *this = mtd->priv;
735         void __iomem *bufferram;
736
737         bufferram = this->base + area;
738
739         bufferram += onenand_bufferram_offset(mtd, area);
740
741         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
742                 unsigned short word;
743
744                 /* Align with word(16-bit) size */
745                 count--;
746
747                 /* Read word and save byte */
748                 word = this->read_word(bufferram + offset + count);
749                 buffer[count] = (word & 0xff);
750         }
751
752         memcpy(buffer, bufferram + offset, count);
753
754         return 0;
755 }
756
757 /**
758  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
759  * @param mtd           MTD data structure
760  * @param area          BufferRAM area
761  * @param buffer        the databuffer to put/get data
762  * @param offset        offset to read from or write to
763  * @param count         number of bytes to read/write
764  *
765  * Read the BufferRAM area with Sync. Burst Mode
766  */
767 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
768                 unsigned char *buffer, int offset, size_t count)
769 {
770         struct onenand_chip *this = mtd->priv;
771         void __iomem *bufferram;
772
773         bufferram = this->base + area;
774
775         bufferram += onenand_bufferram_offset(mtd, area);
776
777         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
778
779         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
780                 unsigned short word;
781
782                 /* Align with word(16-bit) size */
783                 count--;
784
785                 /* Read word and save byte */
786                 word = this->read_word(bufferram + offset + count);
787                 buffer[count] = (word & 0xff);
788         }
789
790         memcpy(buffer, bufferram + offset, count);
791
792         this->mmcontrol(mtd, 0);
793
794         return 0;
795 }
796
797 /**
798  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
799  * @param mtd           MTD data structure
800  * @param area          BufferRAM area
801  * @param buffer        the databuffer to put/get data
802  * @param offset        offset to read from or write to
803  * @param count         number of bytes to read/write
804  *
805  * Write the BufferRAM area
806  */
807 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
808                 const unsigned char *buffer, int offset, size_t count)
809 {
810         struct onenand_chip *this = mtd->priv;
811         void __iomem *bufferram;
812
813         bufferram = this->base + area;
814
815         bufferram += onenand_bufferram_offset(mtd, area);
816
817         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
818                 unsigned short word;
819                 int byte_offset;
820
821                 /* Align with word(16-bit) size */
822                 count--;
823
824                 /* Calculate byte access offset */
825                 byte_offset = offset + count;
826
827                 /* Read word and save byte */
828                 word = this->read_word(bufferram + byte_offset);
829                 word = (word & ~0xff) | buffer[count];
830                 this->write_word(word, bufferram + byte_offset);
831         }
832
833         memcpy(bufferram + offset, buffer, count);
834
835         return 0;
836 }
837
838 /**
839  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
840  * @param mtd           MTD data structure
841  * @param addr          address to check
842  * @return              blockpage address
843  *
844  * Get blockpage address at 2x program mode
845  */
846 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
847 {
848         struct onenand_chip *this = mtd->priv;
849         int blockpage, block, page;
850
851         /* Calculate the even block number */
852         block = (int) (addr >> this->erase_shift) & ~1;
853         /* Is it the odd plane? */
854         if (addr & this->writesize)
855                 block++;
856         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
857         blockpage = (block << 7) | page;
858
859         return blockpage;
860 }
861
862 /**
863  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
864  * @param mtd           MTD data structure
865  * @param addr          address to check
866  * @return              1 if there are valid data, otherwise 0
867  *
868  * Check bufferram if there is data we required
869  */
870 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
871 {
872         struct onenand_chip *this = mtd->priv;
873         int blockpage, found = 0;
874         unsigned int i;
875
876         if (ONENAND_IS_2PLANE(this))
877                 blockpage = onenand_get_2x_blockpage(mtd, addr);
878         else
879                 blockpage = (int) (addr >> this->page_shift);
880
881         /* Is there valid data? */
882         i = ONENAND_CURRENT_BUFFERRAM(this);
883         if (this->bufferram[i].blockpage == blockpage)
884                 found = 1;
885         else {
886                 /* Check another BufferRAM */
887                 i = ONENAND_NEXT_BUFFERRAM(this);
888                 if (this->bufferram[i].blockpage == blockpage) {
889                         ONENAND_SET_NEXT_BUFFERRAM(this);
890                         found = 1;
891                 }
892         }
893
894         if (found && ONENAND_IS_DDP(this)) {
895                 /* Select DataRAM for DDP */
896                 int block = onenand_block(this, addr);
897                 int value = onenand_bufferram_address(this, block);
898                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
899         }
900
901         return found;
902 }
903
904 /**
905  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
906  * @param mtd           MTD data structure
907  * @param addr          address to update
908  * @param valid         valid flag
909  *
910  * Update BufferRAM information
911  */
912 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
913                 int valid)
914 {
915         struct onenand_chip *this = mtd->priv;
916         int blockpage;
917         unsigned int i;
918
919         if (ONENAND_IS_2PLANE(this))
920                 blockpage = onenand_get_2x_blockpage(mtd, addr);
921         else
922                 blockpage = (int) (addr >> this->page_shift);
923
924         /* Invalidate another BufferRAM */
925         i = ONENAND_NEXT_BUFFERRAM(this);
926         if (this->bufferram[i].blockpage == blockpage)
927                 this->bufferram[i].blockpage = -1;
928
929         /* Update BufferRAM */
930         i = ONENAND_CURRENT_BUFFERRAM(this);
931         if (valid)
932                 this->bufferram[i].blockpage = blockpage;
933         else
934                 this->bufferram[i].blockpage = -1;
935 }
936
937 /**
938  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
939  * @param mtd           MTD data structure
940  * @param addr          start address to invalidate
941  * @param len           length to invalidate
942  *
943  * Invalidate BufferRAM information
944  */
945 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
946                 unsigned int len)
947 {
948         struct onenand_chip *this = mtd->priv;
949         int i;
950         loff_t end_addr = addr + len;
951
952         /* Invalidate BufferRAM */
953         for (i = 0; i < MAX_BUFFERRAM; i++) {
954                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
955                 if (buf_addr >= addr && buf_addr < end_addr)
956                         this->bufferram[i].blockpage = -1;
957         }
958 }
959
960 /**
961  * onenand_get_device - [GENERIC] Get chip for selected access
962  * @param mtd           MTD device structure
963  * @param new_state     the state which is requested
964  *
965  * Get the device and lock it for exclusive access
966  */
967 static int onenand_get_device(struct mtd_info *mtd, int new_state)
968 {
969         struct onenand_chip *this = mtd->priv;
970         DECLARE_WAITQUEUE(wait, current);
971
972         /*
973          * Grab the lock and see if the device is available
974          */
975         while (1) {
976                 spin_lock(&this->chip_lock);
977                 if (this->state == FL_READY) {
978                         this->state = new_state;
979                         spin_unlock(&this->chip_lock);
980                         if (new_state != FL_PM_SUSPENDED && this->enable)
981                                 this->enable(mtd);
982                         break;
983                 }
984                 if (new_state == FL_PM_SUSPENDED) {
985                         spin_unlock(&this->chip_lock);
986                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
987                 }
988                 set_current_state(TASK_UNINTERRUPTIBLE);
989                 add_wait_queue(&this->wq, &wait);
990                 spin_unlock(&this->chip_lock);
991                 schedule();
992                 remove_wait_queue(&this->wq, &wait);
993         }
994
995         return 0;
996 }
997
998 /**
999  * onenand_release_device - [GENERIC] release chip
1000  * @param mtd           MTD device structure
1001  *
1002  * Deselect, release chip lock and wake up anyone waiting on the device
1003  */
1004 static void onenand_release_device(struct mtd_info *mtd)
1005 {
1006         struct onenand_chip *this = mtd->priv;
1007
1008         if (this->state != FL_PM_SUSPENDED && this->disable)
1009                 this->disable(mtd);
1010         /* Release the chip */
1011         spin_lock(&this->chip_lock);
1012         this->state = FL_READY;
1013         wake_up(&this->wq);
1014         spin_unlock(&this->chip_lock);
1015 }
1016
1017 /**
1018  * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1019  * @param mtd           MTD device structure
1020  * @param buf           destination address
1021  * @param column        oob offset to read from
1022  * @param thislen       oob length to read
1023  */
1024 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1025                                 int thislen)
1026 {
1027         struct onenand_chip *this = mtd->priv;
1028         struct nand_oobfree *free;
1029         int readcol = column;
1030         int readend = column + thislen;
1031         int lastgap = 0;
1032         unsigned int i;
1033         uint8_t *oob_buf = this->oob_buf;
1034
1035         free = this->ecclayout->oobfree;
1036         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1037                 if (readcol >= lastgap)
1038                         readcol += free->offset - lastgap;
1039                 if (readend >= lastgap)
1040                         readend += free->offset - lastgap;
1041                 lastgap = free->offset + free->length;
1042         }
1043         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1044         free = this->ecclayout->oobfree;
1045         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1046                 int free_end = free->offset + free->length;
1047                 if (free->offset < readend && free_end > readcol) {
1048                         int st = max_t(int,free->offset,readcol);
1049                         int ed = min_t(int,free_end,readend);
1050                         int n = ed - st;
1051                         memcpy(buf, oob_buf + st, n);
1052                         buf += n;
1053                 } else if (column == 0)
1054                         break;
1055         }
1056         return 0;
1057 }
1058
1059 /**
1060  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1061  * @param mtd           MTD device structure
1062  * @param addr          address to recover
1063  * @param status        return value from onenand_wait / onenand_bbt_wait
1064  *
1065  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1066  * lower page address and MSB page has higher page address in paired pages.
1067  * If power off occurs during MSB page program, the paired LSB page data can
1068  * become corrupt. LSB page recovery read is a way to read LSB page though page
1069  * data are corrupted. When uncorrectable error occurs as a result of LSB page
1070  * read after power up, issue LSB page recovery read.
1071  */
1072 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1073 {
1074         struct onenand_chip *this = mtd->priv;
1075         int i;
1076
1077         /* Recovery is only for Flex-OneNAND */
1078         if (!FLEXONENAND(this))
1079                 return status;
1080
1081         /* check if we failed due to uncorrectable error */
1082         if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1083                 return status;
1084
1085         /* check if address lies in MLC region */
1086         i = flexonenand_region(mtd, addr);
1087         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1088                 return status;
1089
1090         /* We are attempting to reread, so decrement stats.failed
1091          * which was incremented by onenand_wait due to read failure
1092          */
1093         printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1094                 __func__);
1095         mtd->ecc_stats.failed--;
1096
1097         /* Issue the LSB page recovery command */
1098         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1099         return this->wait(mtd, FL_READING);
1100 }
1101
1102 /**
1103  * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1104  * @param mtd           MTD device structure
1105  * @param from          offset to read from
1106  * @param ops:          oob operation description structure
1107  *
1108  * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1109  * So, read-while-load is not present.
1110  */
1111 static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1112                                 struct mtd_oob_ops *ops)
1113 {
1114         struct onenand_chip *this = mtd->priv;
1115         struct mtd_ecc_stats stats;
1116         size_t len = ops->len;
1117         size_t ooblen = ops->ooblen;
1118         u_char *buf = ops->datbuf;
1119         u_char *oobbuf = ops->oobbuf;
1120         int read = 0, column, thislen;
1121         int oobread = 0, oobcolumn, thisooblen, oobsize;
1122         int ret = 0;
1123         int writesize = this->writesize;
1124
1125         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1126                         (int)len);
1127
1128         if (ops->mode == MTD_OPS_AUTO_OOB)
1129                 oobsize = this->ecclayout->oobavail;
1130         else
1131                 oobsize = mtd->oobsize;
1132
1133         oobcolumn = from & (mtd->oobsize - 1);
1134
1135         /* Do not allow reads past end of device */
1136         if (from + len > mtd->size) {
1137                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1138                         __func__);
1139                 ops->retlen = 0;
1140                 ops->oobretlen = 0;
1141                 return -EINVAL;
1142         }
1143
1144         stats = mtd->ecc_stats;
1145
1146         while (read < len) {
1147                 cond_resched();
1148
1149                 thislen = min_t(int, writesize, len - read);
1150
1151                 column = from & (writesize - 1);
1152                 if (column + thislen > writesize)
1153                         thislen = writesize - column;
1154
1155                 if (!onenand_check_bufferram(mtd, from)) {
1156                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1157
1158                         ret = this->wait(mtd, FL_READING);
1159                         if (unlikely(ret))
1160                                 ret = onenand_recover_lsb(mtd, from, ret);
1161                         onenand_update_bufferram(mtd, from, !ret);
1162                         if (mtd_is_eccerr(ret))
1163                                 ret = 0;
1164                         if (ret)
1165                                 break;
1166                 }
1167
1168                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1169                 if (oobbuf) {
1170                         thisooblen = oobsize - oobcolumn;
1171                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1172
1173                         if (ops->mode == MTD_OPS_AUTO_OOB)
1174                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1175                         else
1176                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1177                         oobread += thisooblen;
1178                         oobbuf += thisooblen;
1179                         oobcolumn = 0;
1180                 }
1181
1182                 read += thislen;
1183                 if (read == len)
1184                         break;
1185
1186                 from += thislen;
1187                 buf += thislen;
1188         }
1189
1190         /*
1191          * Return success, if no ECC failures, else -EBADMSG
1192          * fs driver will take care of that, because
1193          * retlen == desired len and result == -EBADMSG
1194          */
1195         ops->retlen = read;
1196         ops->oobretlen = oobread;
1197
1198         if (ret)
1199                 return ret;
1200
1201         if (mtd->ecc_stats.failed - stats.failed)
1202                 return -EBADMSG;
1203
1204         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1205         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1206 }
1207
1208 /**
1209  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1210  * @param mtd           MTD device structure
1211  * @param from          offset to read from
1212  * @param ops:          oob operation description structure
1213  *
1214  * OneNAND read main and/or out-of-band data
1215  */
1216 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1217                                 struct mtd_oob_ops *ops)
1218 {
1219         struct onenand_chip *this = mtd->priv;
1220         struct mtd_ecc_stats stats;
1221         size_t len = ops->len;
1222         size_t ooblen = ops->ooblen;
1223         u_char *buf = ops->datbuf;
1224         u_char *oobbuf = ops->oobbuf;
1225         int read = 0, column, thislen;
1226         int oobread = 0, oobcolumn, thisooblen, oobsize;
1227         int ret = 0, boundary = 0;
1228         int writesize = this->writesize;
1229
1230         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1231                         (int)len);
1232
1233         if (ops->mode == MTD_OPS_AUTO_OOB)
1234                 oobsize = this->ecclayout->oobavail;
1235         else
1236                 oobsize = mtd->oobsize;
1237
1238         oobcolumn = from & (mtd->oobsize - 1);
1239
1240         /* Do not allow reads past end of device */
1241         if ((from + len) > mtd->size) {
1242                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1243                         __func__);
1244                 ops->retlen = 0;
1245                 ops->oobretlen = 0;
1246                 return -EINVAL;
1247         }
1248
1249         stats = mtd->ecc_stats;
1250
1251         /* Read-while-load method */
1252
1253         /* Do first load to bufferRAM */
1254         if (read < len) {
1255                 if (!onenand_check_bufferram(mtd, from)) {
1256                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1257                         ret = this->wait(mtd, FL_READING);
1258                         onenand_update_bufferram(mtd, from, !ret);
1259                         if (mtd_is_eccerr(ret))
1260                                 ret = 0;
1261                 }
1262         }
1263
1264         thislen = min_t(int, writesize, len - read);
1265         column = from & (writesize - 1);
1266         if (column + thislen > writesize)
1267                 thislen = writesize - column;
1268
1269         while (!ret) {
1270                 /* If there is more to load then start next load */
1271                 from += thislen;
1272                 if (read + thislen < len) {
1273                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
1274                         /*
1275                          * Chip boundary handling in DDP
1276                          * Now we issued chip 1 read and pointed chip 1
1277                          * bufferram so we have to point chip 0 bufferram.
1278                          */
1279                         if (ONENAND_IS_DDP(this) &&
1280                             unlikely(from == (this->chipsize >> 1))) {
1281                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1282                                 boundary = 1;
1283                         } else
1284                                 boundary = 0;
1285                         ONENAND_SET_PREV_BUFFERRAM(this);
1286                 }
1287                 /* While load is going, read from last bufferRAM */
1288                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1289
1290                 /* Read oob area if needed */
1291                 if (oobbuf) {
1292                         thisooblen = oobsize - oobcolumn;
1293                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
1294
1295                         if (ops->mode == MTD_OPS_AUTO_OOB)
1296                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1297                         else
1298                                 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1299                         oobread += thisooblen;
1300                         oobbuf += thisooblen;
1301                         oobcolumn = 0;
1302                 }
1303
1304                 /* See if we are done */
1305                 read += thislen;
1306                 if (read == len)
1307                         break;
1308                 /* Set up for next read from bufferRAM */
1309                 if (unlikely(boundary))
1310                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1311                 ONENAND_SET_NEXT_BUFFERRAM(this);
1312                 buf += thislen;
1313                 thislen = min_t(int, writesize, len - read);
1314                 column = 0;
1315                 cond_resched();
1316                 /* Now wait for load */
1317                 ret = this->wait(mtd, FL_READING);
1318                 onenand_update_bufferram(mtd, from, !ret);
1319                 if (mtd_is_eccerr(ret))
1320                         ret = 0;
1321         }
1322
1323         /*
1324          * Return success, if no ECC failures, else -EBADMSG
1325          * fs driver will take care of that, because
1326          * retlen == desired len and result == -EBADMSG
1327          */
1328         ops->retlen = read;
1329         ops->oobretlen = oobread;
1330
1331         if (ret)
1332                 return ret;
1333
1334         if (mtd->ecc_stats.failed - stats.failed)
1335                 return -EBADMSG;
1336
1337         /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1338         return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1339 }
1340
1341 /**
1342  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1343  * @param mtd           MTD device structure
1344  * @param from          offset to read from
1345  * @param ops:          oob operation description structure
1346  *
1347  * OneNAND read out-of-band data from the spare area
1348  */
1349 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1350                         struct mtd_oob_ops *ops)
1351 {
1352         struct onenand_chip *this = mtd->priv;
1353         struct mtd_ecc_stats stats;
1354         int read = 0, thislen, column, oobsize;
1355         size_t len = ops->ooblen;
1356         unsigned int mode = ops->mode;
1357         u_char *buf = ops->oobbuf;
1358         int ret = 0, readcmd;
1359
1360         from += ops->ooboffs;
1361
1362         pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1363                         (int)len);
1364
1365         /* Initialize return length value */
1366         ops->oobretlen = 0;
1367
1368         if (mode == MTD_OPS_AUTO_OOB)
1369                 oobsize = this->ecclayout->oobavail;
1370         else
1371                 oobsize = mtd->oobsize;
1372
1373         column = from & (mtd->oobsize - 1);
1374
1375         if (unlikely(column >= oobsize)) {
1376                 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1377                         __func__);
1378                 return -EINVAL;
1379         }
1380
1381         /* Do not allow reads past end of device */
1382         if (unlikely(from >= mtd->size ||
1383                      column + len > ((mtd->size >> this->page_shift) -
1384                                      (from >> this->page_shift)) * oobsize)) {
1385                 printk(KERN_ERR "%s: Attempted to read beyond end of device\n",
1386                         __func__);
1387                 return -EINVAL;
1388         }
1389
1390         stats = mtd->ecc_stats;
1391
1392         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1393
1394         while (read < len) {
1395                 cond_resched();
1396
1397                 thislen = oobsize - column;
1398                 thislen = min_t(int, thislen, len);
1399
1400                 this->command(mtd, readcmd, from, mtd->oobsize);
1401
1402                 onenand_update_bufferram(mtd, from, 0);
1403
1404                 ret = this->wait(mtd, FL_READING);
1405                 if (unlikely(ret))
1406                         ret = onenand_recover_lsb(mtd, from, ret);
1407
1408                 if (ret && !mtd_is_eccerr(ret)) {
1409                         printk(KERN_ERR "%s: read failed = 0x%x\n",
1410                                 __func__, ret);
1411                         break;
1412                 }
1413
1414                 if (mode == MTD_OPS_AUTO_OOB)
1415                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1416                 else
1417                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1418
1419                 read += thislen;
1420
1421                 if (read == len)
1422                         break;
1423
1424                 buf += thislen;
1425
1426                 /* Read more? */
1427                 if (read < len) {
1428                         /* Page size */
1429                         from += mtd->writesize;
1430                         column = 0;
1431                 }
1432         }
1433
1434         ops->oobretlen = read;
1435
1436         if (ret)
1437                 return ret;
1438
1439         if (mtd->ecc_stats.failed - stats.failed)
1440                 return -EBADMSG;
1441
1442         return 0;
1443 }
1444
1445 /**
1446  * onenand_read - [MTD Interface] Read data from flash
1447  * @param mtd           MTD device structure
1448  * @param from          offset to read from
1449  * @param len           number of bytes to read
1450  * @param retlen        pointer to variable to store the number of read bytes
1451  * @param buf           the databuffer to put data
1452  *
1453  * Read with ecc
1454 */
1455 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1456         size_t *retlen, u_char *buf)
1457 {
1458         struct onenand_chip *this = mtd->priv;
1459         struct mtd_oob_ops ops = {
1460                 .len    = len,
1461                 .ooblen = 0,
1462                 .datbuf = buf,
1463                 .oobbuf = NULL,
1464         };
1465         int ret;
1466
1467         onenand_get_device(mtd, FL_READING);
1468         ret = ONENAND_IS_4KB_PAGE(this) ?
1469                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
1470                 onenand_read_ops_nolock(mtd, from, &ops);
1471         onenand_release_device(mtd);
1472
1473         *retlen = ops.retlen;
1474         return ret;
1475 }
1476
1477 /**
1478  * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1479  * @param mtd:          MTD device structure
1480  * @param from:         offset to read from
1481  * @param ops:          oob operation description structure
1482
1483  * Read main and/or out-of-band
1484  */
1485 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1486                             struct mtd_oob_ops *ops)
1487 {
1488         struct onenand_chip *this = mtd->priv;
1489         int ret;
1490
1491         switch (ops->mode) {
1492         case MTD_OPS_PLACE_OOB:
1493         case MTD_OPS_AUTO_OOB:
1494                 break;
1495         case MTD_OPS_RAW:
1496                 /* Not implemented yet */
1497         default:
1498                 return -EINVAL;
1499         }
1500
1501         onenand_get_device(mtd, FL_READING);
1502         if (ops->datbuf)
1503                 ret = ONENAND_IS_4KB_PAGE(this) ?
1504                         onenand_mlc_read_ops_nolock(mtd, from, ops) :
1505                         onenand_read_ops_nolock(mtd, from, ops);
1506         else
1507                 ret = onenand_read_oob_nolock(mtd, from, ops);
1508         onenand_release_device(mtd);
1509
1510         return ret;
1511 }
1512
1513 /**
1514  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1515  * @param mtd           MTD device structure
1516  * @param state         state to select the max. timeout value
1517  *
1518  * Wait for command done.
1519  */
1520 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1521 {
1522         struct onenand_chip *this = mtd->priv;
1523         unsigned long timeout;
1524         unsigned int interrupt, ctrl, ecc, addr1, addr8;
1525
1526         /* The 20 msec is enough */
1527         timeout = jiffies + msecs_to_jiffies(20);
1528         while (time_before(jiffies, timeout)) {
1529                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1530                 if (interrupt & ONENAND_INT_MASTER)
1531                         break;
1532         }
1533         /* To get correct interrupt status in timeout case */
1534         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1535         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1536         addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1537         addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1538
1539         if (interrupt & ONENAND_INT_READ) {
1540                 ecc = onenand_read_ecc(this);
1541                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1542                         printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1543                                "intr 0x%04x addr1 %#x addr8 %#x\n",
1544                                __func__, ecc, ctrl, interrupt, addr1, addr8);
1545                         return ONENAND_BBT_READ_ECC_ERROR;
1546                 }
1547         } else {
1548                 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1549                        "intr 0x%04x addr1 %#x addr8 %#x\n",
1550                        __func__, ctrl, interrupt, addr1, addr8);
1551                 return ONENAND_BBT_READ_FATAL_ERROR;
1552         }
1553
1554         /* Initial bad block case: 0x2400 or 0x0400 */
1555         if (ctrl & ONENAND_CTRL_ERROR) {
1556                 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1557                        "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1558                 return ONENAND_BBT_READ_ERROR;
1559         }
1560
1561         return 0;
1562 }
1563
1564 /**
1565  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1566  * @param mtd           MTD device structure
1567  * @param from          offset to read from
1568  * @param ops           oob operation description structure
1569  *
1570  * OneNAND read out-of-band data from the spare area for bbt scan
1571  */
1572 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1573                             struct mtd_oob_ops *ops)
1574 {
1575         struct onenand_chip *this = mtd->priv;
1576         int read = 0, thislen, column;
1577         int ret = 0, readcmd;
1578         size_t len = ops->ooblen;
1579         u_char *buf = ops->oobbuf;
1580
1581         pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1582                         len);
1583
1584         /* Initialize return value */
1585         ops->oobretlen = 0;
1586
1587         /* Do not allow reads past end of device */
1588         if (unlikely((from + len) > mtd->size)) {
1589                 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1590                         __func__);
1591                 return ONENAND_BBT_READ_FATAL_ERROR;
1592         }
1593
1594         /* Grab the lock and see if the device is available */
1595         onenand_get_device(mtd, FL_READING);
1596
1597         column = from & (mtd->oobsize - 1);
1598
1599         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1600
1601         while (read < len) {
1602                 cond_resched();
1603
1604                 thislen = mtd->oobsize - column;
1605                 thislen = min_t(int, thislen, len);
1606
1607                 this->command(mtd, readcmd, from, mtd->oobsize);
1608
1609                 onenand_update_bufferram(mtd, from, 0);
1610
1611                 ret = this->bbt_wait(mtd, FL_READING);
1612                 if (unlikely(ret))
1613                         ret = onenand_recover_lsb(mtd, from, ret);
1614
1615                 if (ret)
1616                         break;
1617
1618                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1619                 read += thislen;
1620                 if (read == len)
1621                         break;
1622
1623                 buf += thislen;
1624
1625                 /* Read more? */
1626                 if (read < len) {
1627                         /* Update Page size */
1628                         from += this->writesize;
1629                         column = 0;
1630                 }
1631         }
1632
1633         /* Deselect and wake up anyone waiting on the device */
1634         onenand_release_device(mtd);
1635
1636         ops->oobretlen = read;
1637         return ret;
1638 }
1639
1640 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1641 /**
1642  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1643  * @param mtd           MTD device structure
1644  * @param buf           the databuffer to verify
1645  * @param to            offset to read from
1646  */
1647 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1648 {
1649         struct onenand_chip *this = mtd->priv;
1650         u_char *oob_buf = this->oob_buf;
1651         int status, i, readcmd;
1652
1653         readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1654
1655         this->command(mtd, readcmd, to, mtd->oobsize);
1656         onenand_update_bufferram(mtd, to, 0);
1657         status = this->wait(mtd, FL_READING);
1658         if (status)
1659                 return status;
1660
1661         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1662         for (i = 0; i < mtd->oobsize; i++)
1663                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1664                         return -EBADMSG;
1665
1666         return 0;
1667 }
1668
1669 /**
1670  * onenand_verify - [GENERIC] verify the chip contents after a write
1671  * @param mtd          MTD device structure
1672  * @param buf          the databuffer to verify
1673  * @param addr         offset to read from
1674  * @param len          number of bytes to read and compare
1675  */
1676 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1677 {
1678         struct onenand_chip *this = mtd->priv;
1679         int ret = 0;
1680         int thislen, column;
1681
1682         column = addr & (this->writesize - 1);
1683
1684         while (len != 0) {
1685                 thislen = min_t(int, this->writesize - column, len);
1686
1687                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1688
1689                 onenand_update_bufferram(mtd, addr, 0);
1690
1691                 ret = this->wait(mtd, FL_READING);
1692                 if (ret)
1693                         return ret;
1694
1695                 onenand_update_bufferram(mtd, addr, 1);
1696
1697                 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1698
1699                 if (memcmp(buf, this->verify_buf + column, thislen))
1700                         return -EBADMSG;
1701
1702                 len -= thislen;
1703                 buf += thislen;
1704                 addr += thislen;
1705                 column = 0;
1706         }
1707
1708         return 0;
1709 }
1710 #else
1711 #define onenand_verify(...)             (0)
1712 #define onenand_verify_oob(...)         (0)
1713 #endif
1714
1715 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1716
1717 static void onenand_panic_wait(struct mtd_info *mtd)
1718 {
1719         struct onenand_chip *this = mtd->priv;
1720         unsigned int interrupt;
1721         int i;
1722         
1723         for (i = 0; i < 2000; i++) {
1724                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1725                 if (interrupt & ONENAND_INT_MASTER)
1726                         break;
1727                 udelay(10);
1728         }
1729 }
1730
1731 /**
1732  * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1733  * @param mtd           MTD device structure
1734  * @param to            offset to write to
1735  * @param len           number of bytes to write
1736  * @param retlen        pointer to variable to store the number of written bytes
1737  * @param buf           the data to write
1738  *
1739  * Write with ECC
1740  */
1741 static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1742                          size_t *retlen, const u_char *buf)
1743 {
1744         struct onenand_chip *this = mtd->priv;
1745         int column, subpage;
1746         int written = 0;
1747         int ret = 0;
1748
1749         if (this->state == FL_PM_SUSPENDED)
1750                 return -EBUSY;
1751
1752         /* Wait for any existing operation to clear */
1753         onenand_panic_wait(mtd);
1754
1755         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1756                         (int)len);
1757
1758         /* Reject writes, which are not page aligned */
1759         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1760                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1761                         __func__);
1762                 return -EINVAL;
1763         }
1764
1765         column = to & (mtd->writesize - 1);
1766
1767         /* Loop until all data write */
1768         while (written < len) {
1769                 int thislen = min_t(int, mtd->writesize - column, len - written);
1770                 u_char *wbuf = (u_char *) buf;
1771
1772                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1773
1774                 /* Partial page write */
1775                 subpage = thislen < mtd->writesize;
1776                 if (subpage) {
1777                         memset(this->page_buf, 0xff, mtd->writesize);
1778                         memcpy(this->page_buf + column, buf, thislen);
1779                         wbuf = this->page_buf;
1780                 }
1781
1782                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1783                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1784
1785                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1786
1787                 onenand_panic_wait(mtd);
1788
1789                 /* In partial page write we don't update bufferram */
1790                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1791                 if (ONENAND_IS_2PLANE(this)) {
1792                         ONENAND_SET_BUFFERRAM1(this);
1793                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1794                 }
1795
1796                 if (ret) {
1797                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
1798                         break;
1799                 }
1800
1801                 written += thislen;
1802
1803                 if (written == len)
1804                         break;
1805
1806                 column = 0;
1807                 to += thislen;
1808                 buf += thislen;
1809         }
1810
1811         *retlen = written;
1812         return ret;
1813 }
1814
1815 /**
1816  * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1817  * @param mtd           MTD device structure
1818  * @param oob_buf       oob buffer
1819  * @param buf           source address
1820  * @param column        oob offset to write to
1821  * @param thislen       oob length to write
1822  */
1823 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1824                                   const u_char *buf, int column, int thislen)
1825 {
1826         struct onenand_chip *this = mtd->priv;
1827         struct nand_oobfree *free;
1828         int writecol = column;
1829         int writeend = column + thislen;
1830         int lastgap = 0;
1831         unsigned int i;
1832
1833         free = this->ecclayout->oobfree;
1834         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1835                 if (writecol >= lastgap)
1836                         writecol += free->offset - lastgap;
1837                 if (writeend >= lastgap)
1838                         writeend += free->offset - lastgap;
1839                 lastgap = free->offset + free->length;
1840         }
1841         free = this->ecclayout->oobfree;
1842         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1843                 int free_end = free->offset + free->length;
1844                 if (free->offset < writeend && free_end > writecol) {
1845                         int st = max_t(int,free->offset,writecol);
1846                         int ed = min_t(int,free_end,writeend);
1847                         int n = ed - st;
1848                         memcpy(oob_buf + st, buf, n);
1849                         buf += n;
1850                 } else if (column == 0)
1851                         break;
1852         }
1853         return 0;
1854 }
1855
1856 /**
1857  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1858  * @param mtd           MTD device structure
1859  * @param to            offset to write to
1860  * @param ops           oob operation description structure
1861  *
1862  * Write main and/or oob with ECC
1863  */
1864 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1865                                 struct mtd_oob_ops *ops)
1866 {
1867         struct onenand_chip *this = mtd->priv;
1868         int written = 0, column, thislen = 0, subpage = 0;
1869         int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1870         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1871         size_t len = ops->len;
1872         size_t ooblen = ops->ooblen;
1873         const u_char *buf = ops->datbuf;
1874         const u_char *oob = ops->oobbuf;
1875         u_char *oobbuf;
1876         int ret = 0, cmd;
1877
1878         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1879                         (int)len);
1880
1881         /* Initialize retlen, in case of early exit */
1882         ops->retlen = 0;
1883         ops->oobretlen = 0;
1884
1885         /* Reject writes, which are not page aligned */
1886         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1887                 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1888                         __func__);
1889                 return -EINVAL;
1890         }
1891
1892         /* Check zero length */
1893         if (!len)
1894                 return 0;
1895
1896         if (ops->mode == MTD_OPS_AUTO_OOB)
1897                 oobsize = this->ecclayout->oobavail;
1898         else
1899                 oobsize = mtd->oobsize;
1900
1901         oobcolumn = to & (mtd->oobsize - 1);
1902
1903         column = to & (mtd->writesize - 1);
1904
1905         /* Loop until all data write */
1906         while (1) {
1907                 if (written < len) {
1908                         u_char *wbuf = (u_char *) buf;
1909
1910                         thislen = min_t(int, mtd->writesize - column, len - written);
1911                         thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1912
1913                         cond_resched();
1914
1915                         this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1916
1917                         /* Partial page write */
1918                         subpage = thislen < mtd->writesize;
1919                         if (subpage) {
1920                                 memset(this->page_buf, 0xff, mtd->writesize);
1921                                 memcpy(this->page_buf + column, buf, thislen);
1922                                 wbuf = this->page_buf;
1923                         }
1924
1925                         this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1926
1927                         if (oob) {
1928                                 oobbuf = this->oob_buf;
1929
1930                                 /* We send data to spare ram with oobsize
1931                                  * to prevent byte access */
1932                                 memset(oobbuf, 0xff, mtd->oobsize);
1933                                 if (ops->mode == MTD_OPS_AUTO_OOB)
1934                                         onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1935                                 else
1936                                         memcpy(oobbuf + oobcolumn, oob, thisooblen);
1937
1938                                 oobwritten += thisooblen;
1939                                 oob += thisooblen;
1940                                 oobcolumn = 0;
1941                         } else
1942                                 oobbuf = (u_char *) ffchars;
1943
1944                         this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1945                 } else
1946                         ONENAND_SET_NEXT_BUFFERRAM(this);
1947
1948                 /*
1949                  * 2 PLANE, MLC, and Flex-OneNAND do not support
1950                  * write-while-program feature.
1951                  */
1952                 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1953                         ONENAND_SET_PREV_BUFFERRAM(this);
1954
1955                         ret = this->wait(mtd, FL_WRITING);
1956
1957                         /* In partial page write we don't update bufferram */
1958                         onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1959                         if (ret) {
1960                                 written -= prevlen;
1961                                 printk(KERN_ERR "%s: write failed %d\n",
1962                                         __func__, ret);
1963                                 break;
1964                         }
1965
1966                         if (written == len) {
1967                                 /* Only check verify write turn on */
1968                                 ret = onenand_verify(mtd, buf - len, to - len, len);
1969                                 if (ret)
1970                                         printk(KERN_ERR "%s: verify failed %d\n",
1971                                                 __func__, ret);
1972                                 break;
1973                         }
1974
1975                         ONENAND_SET_NEXT_BUFFERRAM(this);
1976                 }
1977
1978                 this->ongoing = 0;
1979                 cmd = ONENAND_CMD_PROG;
1980
1981                 /* Exclude 1st OTP and OTP blocks for cache program feature */
1982                 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1983                     likely(onenand_block(this, to) != 0) &&
1984                     ONENAND_IS_4KB_PAGE(this) &&
1985                     ((written + thislen) < len)) {
1986                         cmd = ONENAND_CMD_2X_CACHE_PROG;
1987                         this->ongoing = 1;
1988                 }
1989
1990                 this->command(mtd, cmd, to, mtd->writesize);
1991
1992                 /*
1993                  * 2 PLANE, MLC, and Flex-OneNAND wait here
1994                  */
1995                 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1996                         ret = this->wait(mtd, FL_WRITING);
1997
1998                         /* In partial page write we don't update bufferram */
1999                         onenand_update_bufferram(mtd, to, !ret && !subpage);
2000                         if (ret) {
2001                                 printk(KERN_ERR "%s: write failed %d\n",
2002                                         __func__, ret);
2003                                 break;
2004                         }
2005
2006                         /* Only check verify write turn on */
2007                         ret = onenand_verify(mtd, buf, to, thislen);
2008                         if (ret) {
2009                                 printk(KERN_ERR "%s: verify failed %d\n",
2010                                         __func__, ret);
2011                                 break;
2012                         }
2013
2014                         written += thislen;
2015
2016                         if (written == len)
2017                                 break;
2018
2019                 } else
2020                         written += thislen;
2021
2022                 column = 0;
2023                 prev_subpage = subpage;
2024                 prev = to;
2025                 prevlen = thislen;
2026                 to += thislen;
2027                 buf += thislen;
2028                 first = 0;
2029         }
2030
2031         /* In error case, clear all bufferrams */
2032         if (written != len)
2033                 onenand_invalidate_bufferram(mtd, 0, -1);
2034
2035         ops->retlen = written;
2036         ops->oobretlen = oobwritten;
2037
2038         return ret;
2039 }
2040
2041
2042 /**
2043  * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2044  * @param mtd           MTD device structure
2045  * @param to            offset to write to
2046  * @param len           number of bytes to write
2047  * @param retlen        pointer to variable to store the number of written bytes
2048  * @param buf           the data to write
2049  * @param mode          operation mode
2050  *
2051  * OneNAND write out-of-band
2052  */
2053 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2054                                     struct mtd_oob_ops *ops)
2055 {
2056         struct onenand_chip *this = mtd->priv;
2057         int column, ret = 0, oobsize;
2058         int written = 0, oobcmd;
2059         u_char *oobbuf;
2060         size_t len = ops->ooblen;
2061         const u_char *buf = ops->oobbuf;
2062         unsigned int mode = ops->mode;
2063
2064         to += ops->ooboffs;
2065
2066         pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
2067                         (int)len);
2068
2069         /* Initialize retlen, in case of early exit */
2070         ops->oobretlen = 0;
2071
2072         if (mode == MTD_OPS_AUTO_OOB)
2073                 oobsize = this->ecclayout->oobavail;
2074         else
2075                 oobsize = mtd->oobsize;
2076
2077         column = to & (mtd->oobsize - 1);
2078
2079         if (unlikely(column >= oobsize)) {
2080                 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2081                         __func__);
2082                 return -EINVAL;
2083         }
2084
2085         /* For compatibility with NAND: Do not allow write past end of page */
2086         if (unlikely(column + len > oobsize)) {
2087                 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2088                         __func__);
2089                 return -EINVAL;
2090         }
2091
2092         /* Do not allow reads past end of device */
2093         if (unlikely(to >= mtd->size ||
2094                      column + len > ((mtd->size >> this->page_shift) -
2095                                      (to >> this->page_shift)) * oobsize)) {
2096                 printk(KERN_ERR "%s: Attempted to write past end of device\n",
2097                        __func__);
2098                 return -EINVAL;
2099         }
2100
2101         oobbuf = this->oob_buf;
2102
2103         oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2104
2105         /* Loop until all data write */
2106         while (written < len) {
2107                 int thislen = min_t(int, oobsize, len - written);
2108
2109                 cond_resched();
2110
2111                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2112
2113                 /* We send data to spare ram with oobsize
2114                  * to prevent byte access */
2115                 memset(oobbuf, 0xff, mtd->oobsize);
2116                 if (mode == MTD_OPS_AUTO_OOB)
2117                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2118                 else
2119                         memcpy(oobbuf + column, buf, thislen);
2120                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2121
2122                 if (ONENAND_IS_4KB_PAGE(this)) {
2123                         /* Set main area of DataRAM to 0xff*/
2124                         memset(this->page_buf, 0xff, mtd->writesize);
2125                         this->write_bufferram(mtd, ONENAND_DATARAM,
2126                                          this->page_buf, 0, mtd->writesize);
2127                 }
2128
2129                 this->command(mtd, oobcmd, to, mtd->oobsize);
2130
2131                 onenand_update_bufferram(mtd, to, 0);
2132                 if (ONENAND_IS_2PLANE(this)) {
2133                         ONENAND_SET_BUFFERRAM1(this);
2134                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2135                 }
2136
2137                 ret = this->wait(mtd, FL_WRITING);
2138                 if (ret) {
2139                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2140                         break;
2141                 }
2142
2143                 ret = onenand_verify_oob(mtd, oobbuf, to);
2144                 if (ret) {
2145                         printk(KERN_ERR "%s: verify failed %d\n",
2146                                 __func__, ret);
2147                         break;
2148                 }
2149
2150                 written += thislen;
2151                 if (written == len)
2152                         break;
2153
2154                 to += mtd->writesize;
2155                 buf += thislen;
2156                 column = 0;
2157         }
2158
2159         ops->oobretlen = written;
2160
2161         return ret;
2162 }
2163
2164 /**
2165  * onenand_write - [MTD Interface] write buffer to FLASH
2166  * @param mtd           MTD device structure
2167  * @param to            offset to write to
2168  * @param len           number of bytes to write
2169  * @param retlen        pointer to variable to store the number of written bytes
2170  * @param buf           the data to write
2171  *
2172  * Write with ECC
2173  */
2174 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
2175         size_t *retlen, const u_char *buf)
2176 {
2177         struct mtd_oob_ops ops = {
2178                 .len    = len,
2179                 .ooblen = 0,
2180                 .datbuf = (u_char *) buf,
2181                 .oobbuf = NULL,
2182         };
2183         int ret;
2184
2185         onenand_get_device(mtd, FL_WRITING);
2186         ret = onenand_write_ops_nolock(mtd, to, &ops);
2187         onenand_release_device(mtd);
2188
2189         *retlen = ops.retlen;
2190         return ret;
2191 }
2192
2193 /**
2194  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2195  * @param mtd:          MTD device structure
2196  * @param to:           offset to write
2197  * @param ops:          oob operation description structure
2198  */
2199 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2200                              struct mtd_oob_ops *ops)
2201 {
2202         int ret;
2203
2204         switch (ops->mode) {
2205         case MTD_OPS_PLACE_OOB:
2206         case MTD_OPS_AUTO_OOB:
2207                 break;
2208         case MTD_OPS_RAW:
2209                 /* Not implemented yet */
2210         default:
2211                 return -EINVAL;
2212         }
2213
2214         onenand_get_device(mtd, FL_WRITING);
2215         if (ops->datbuf)
2216                 ret = onenand_write_ops_nolock(mtd, to, ops);
2217         else
2218                 ret = onenand_write_oob_nolock(mtd, to, ops);
2219         onenand_release_device(mtd);
2220
2221         return ret;
2222 }
2223
2224 /**
2225  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2226  * @param mtd           MTD device structure
2227  * @param ofs           offset from device start
2228  * @param allowbbt      1, if its allowed to access the bbt area
2229  *
2230  * Check, if the block is bad. Either by reading the bad block table or
2231  * calling of the scan function.
2232  */
2233 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2234 {
2235         struct onenand_chip *this = mtd->priv;
2236         struct bbm_info *bbm = this->bbm;
2237
2238         /* Return info from the table */
2239         return bbm->isbad_bbt(mtd, ofs, allowbbt);
2240 }
2241
2242
2243 static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2244                                            struct erase_info *instr)
2245 {
2246         struct onenand_chip *this = mtd->priv;
2247         loff_t addr = instr->addr;
2248         int len = instr->len;
2249         unsigned int block_size = (1 << this->erase_shift);
2250         int ret = 0;
2251
2252         while (len) {
2253                 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2254                 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2255                 if (ret) {
2256                         printk(KERN_ERR "%s: Failed verify, block %d\n",
2257                                __func__, onenand_block(this, addr));
2258                         instr->state = MTD_ERASE_FAILED;
2259                         instr->fail_addr = addr;
2260                         return -1;
2261                 }
2262                 len -= block_size;
2263                 addr += block_size;
2264         }
2265         return 0;
2266 }
2267
2268 /**
2269  * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2270  * @param mtd           MTD device structure
2271  * @param instr         erase instruction
2272  * @param region        erase region
2273  *
2274  * Erase one or more blocks up to 64 block at a time
2275  */
2276 static int onenand_multiblock_erase(struct mtd_info *mtd,
2277                                     struct erase_info *instr,
2278                                     unsigned int block_size)
2279 {
2280         struct onenand_chip *this = mtd->priv;
2281         loff_t addr = instr->addr;
2282         int len = instr->len;
2283         int eb_count = 0;
2284         int ret = 0;
2285         int bdry_block = 0;
2286
2287         instr->state = MTD_ERASING;
2288
2289         if (ONENAND_IS_DDP(this)) {
2290                 loff_t bdry_addr = this->chipsize >> 1;
2291                 if (addr < bdry_addr && (addr + len) > bdry_addr)
2292                         bdry_block = bdry_addr >> this->erase_shift;
2293         }
2294
2295         /* Pre-check bbs */
2296         while (len) {
2297                 /* Check if we have a bad block, we do not erase bad blocks */
2298                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2299                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2300                                "at addr 0x%012llx\n",
2301                                __func__, (unsigned long long) addr);
2302                         instr->state = MTD_ERASE_FAILED;
2303                         return -EIO;
2304                 }
2305                 len -= block_size;
2306                 addr += block_size;
2307         }
2308
2309         len = instr->len;
2310         addr = instr->addr;
2311
2312         /* loop over 64 eb batches */
2313         while (len) {
2314                 struct erase_info verify_instr = *instr;
2315                 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2316
2317                 verify_instr.addr = addr;
2318                 verify_instr.len = 0;
2319
2320                 /* do not cross chip boundary */
2321                 if (bdry_block) {
2322                         int this_block = (addr >> this->erase_shift);
2323
2324                         if (this_block < bdry_block) {
2325                                 max_eb_count = min(max_eb_count,
2326                                                    (bdry_block - this_block));
2327                         }
2328                 }
2329
2330                 eb_count = 0;
2331
2332                 while (len > block_size && eb_count < (max_eb_count - 1)) {
2333                         this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2334                                       addr, block_size);
2335                         onenand_invalidate_bufferram(mtd, addr, block_size);
2336
2337                         ret = this->wait(mtd, FL_PREPARING_ERASE);
2338                         if (ret) {
2339                                 printk(KERN_ERR "%s: Failed multiblock erase, "
2340                                        "block %d\n", __func__,
2341                                        onenand_block(this, addr));
2342                                 instr->state = MTD_ERASE_FAILED;
2343                                 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2344                                 return -EIO;
2345                         }
2346
2347                         len -= block_size;
2348                         addr += block_size;
2349                         eb_count++;
2350                 }
2351
2352                 /* last block of 64-eb series */
2353                 cond_resched();
2354                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2355                 onenand_invalidate_bufferram(mtd, addr, block_size);
2356
2357                 ret = this->wait(mtd, FL_ERASING);
2358                 /* Check if it is write protected */
2359                 if (ret) {
2360                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2361                                __func__, onenand_block(this, addr));
2362                         instr->state = MTD_ERASE_FAILED;
2363                         instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2364                         return -EIO;
2365                 }
2366
2367                 len -= block_size;
2368                 addr += block_size;
2369                 eb_count++;
2370
2371                 /* verify */
2372                 verify_instr.len = eb_count * block_size;
2373                 if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2374                         instr->state = verify_instr.state;
2375                         instr->fail_addr = verify_instr.fail_addr;
2376                         return -EIO;
2377                 }
2378
2379         }
2380         return 0;
2381 }
2382
2383
2384 /**
2385  * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2386  * @param mtd           MTD device structure
2387  * @param instr         erase instruction
2388  * @param region        erase region
2389  * @param block_size    erase block size
2390  *
2391  * Erase one or more blocks one block at a time
2392  */
2393 static int onenand_block_by_block_erase(struct mtd_info *mtd,
2394                                         struct erase_info *instr,
2395                                         struct mtd_erase_region_info *region,
2396                                         unsigned int block_size)
2397 {
2398         struct onenand_chip *this = mtd->priv;
2399         loff_t addr = instr->addr;
2400         int len = instr->len;
2401         loff_t region_end = 0;
2402         int ret = 0;
2403
2404         if (region) {
2405                 /* region is set for Flex-OneNAND */
2406                 region_end = region->offset + region->erasesize * region->numblocks;
2407         }
2408
2409         instr->state = MTD_ERASING;
2410
2411         /* Loop through the blocks */
2412         while (len) {
2413                 cond_resched();
2414
2415                 /* Check if we have a bad block, we do not erase bad blocks */
2416                 if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2417                         printk(KERN_WARNING "%s: attempt to erase a bad block "
2418                                         "at addr 0x%012llx\n",
2419                                         __func__, (unsigned long long) addr);
2420                         instr->state = MTD_ERASE_FAILED;
2421                         return -EIO;
2422                 }
2423
2424                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2425
2426                 onenand_invalidate_bufferram(mtd, addr, block_size);
2427
2428                 ret = this->wait(mtd, FL_ERASING);
2429                 /* Check, if it is write protected */
2430                 if (ret) {
2431                         printk(KERN_ERR "%s: Failed erase, block %d\n",
2432                                 __func__, onenand_block(this, addr));
2433                         instr->state = MTD_ERASE_FAILED;
2434                         instr->fail_addr = addr;
2435                         return -EIO;
2436                 }
2437
2438                 len -= block_size;
2439                 addr += block_size;
2440
2441                 if (region && addr == region_end) {
2442                         if (!len)
2443                                 break;
2444                         region++;
2445
2446                         block_size = region->erasesize;
2447                         region_end = region->offset + region->erasesize * region->numblocks;
2448
2449                         if (len & (block_size - 1)) {
2450                                 /* FIXME: This should be handled at MTD partitioning level. */
2451                                 printk(KERN_ERR "%s: Unaligned address\n",
2452                                         __func__);
2453                                 return -EIO;
2454                         }
2455                 }
2456         }
2457         return 0;
2458 }
2459
2460 /**
2461  * onenand_erase - [MTD Interface] erase block(s)
2462  * @param mtd           MTD device structure
2463  * @param instr         erase instruction
2464  *
2465  * Erase one or more blocks
2466  */
2467 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2468 {
2469         struct onenand_chip *this = mtd->priv;
2470         unsigned int block_size;
2471         loff_t addr = instr->addr;
2472         loff_t len = instr->len;
2473         int ret = 0;
2474         struct mtd_erase_region_info *region = NULL;
2475         loff_t region_offset = 0;
2476
2477         pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2478                         (unsigned long long)instr->addr,
2479                         (unsigned long long)instr->len);
2480
2481         if (FLEXONENAND(this)) {
2482                 /* Find the eraseregion of this address */
2483                 int i = flexonenand_region(mtd, addr);
2484
2485                 region = &mtd->eraseregions[i];
2486                 block_size = region->erasesize;
2487
2488                 /* Start address within region must align on block boundary.
2489                  * Erase region's start offset is always block start address.
2490                  */
2491                 region_offset = region->offset;
2492         } else
2493                 block_size = 1 << this->erase_shift;
2494
2495         /* Start address must align on block boundary */
2496         if (unlikely((addr - region_offset) & (block_size - 1))) {
2497                 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2498                 return -EINVAL;
2499         }
2500
2501         /* Length must align on block boundary */
2502         if (unlikely(len & (block_size - 1))) {
2503                 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2504                 return -EINVAL;
2505         }
2506
2507         /* Grab the lock and see if the device is available */
2508         onenand_get_device(mtd, FL_ERASING);
2509
2510         if (ONENAND_IS_4KB_PAGE(this) || region ||
2511             instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2512                 /* region is set for Flex-OneNAND (no mb erase) */
2513                 ret = onenand_block_by_block_erase(mtd, instr,
2514                                                    region, block_size);
2515         } else {
2516                 ret = onenand_multiblock_erase(mtd, instr, block_size);
2517         }
2518
2519         /* Deselect and wake up anyone waiting on the device */
2520         onenand_release_device(mtd);
2521
2522         /* Do call back function */
2523         if (!ret) {
2524                 instr->state = MTD_ERASE_DONE;
2525                 mtd_erase_callback(instr);
2526         }
2527
2528         return ret;
2529 }
2530
2531 /**
2532  * onenand_sync - [MTD Interface] sync
2533  * @param mtd           MTD device structure
2534  *
2535  * Sync is actually a wait for chip ready function
2536  */
2537 static void onenand_sync(struct mtd_info *mtd)
2538 {
2539         pr_debug("%s: called\n", __func__);
2540
2541         /* Grab the lock and see if the device is available */
2542         onenand_get_device(mtd, FL_SYNCING);
2543
2544         /* Release it and go back */
2545         onenand_release_device(mtd);
2546 }
2547
2548 /**
2549  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2550  * @param mtd           MTD device structure
2551  * @param ofs           offset relative to mtd start
2552  *
2553  * Check whether the block is bad
2554  */
2555 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2556 {
2557         int ret;
2558
2559         /* Check for invalid offset */
2560         if (ofs > mtd->size)
2561                 return -EINVAL;
2562
2563         onenand_get_device(mtd, FL_READING);
2564         ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2565         onenand_release_device(mtd);
2566         return ret;
2567 }
2568
2569 /**
2570  * onenand_default_block_markbad - [DEFAULT] mark a block bad
2571  * @param mtd           MTD device structure
2572  * @param ofs           offset from device start
2573  *
2574  * This is the default implementation, which can be overridden by
2575  * a hardware specific driver.
2576  */
2577 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2578 {
2579         struct onenand_chip *this = mtd->priv;
2580         struct bbm_info *bbm = this->bbm;
2581         u_char buf[2] = {0, 0};
2582         struct mtd_oob_ops ops = {
2583                 .mode = MTD_OPS_PLACE_OOB,
2584                 .ooblen = 2,
2585                 .oobbuf = buf,
2586                 .ooboffs = 0,
2587         };
2588         int block;
2589
2590         /* Get block number */
2591         block = onenand_block(this, ofs);
2592         if (bbm->bbt)
2593                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2594
2595         /* We write two bytes, so we don't have to mess with 16-bit access */
2596         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
2597         /* FIXME : What to do when marking SLC block in partition
2598          *         with MLC erasesize? For now, it is not advisable to
2599          *         create partitions containing both SLC and MLC regions.
2600          */
2601         return onenand_write_oob_nolock(mtd, ofs, &ops);
2602 }
2603
2604 /**
2605  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2606  * @param mtd           MTD device structure
2607  * @param ofs           offset relative to mtd start
2608  *
2609  * Mark the block as bad
2610  */
2611 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2612 {
2613         int ret;
2614
2615         ret = onenand_block_isbad(mtd, ofs);
2616         if (ret) {
2617                 /* If it was bad already, return success and do nothing */
2618                 if (ret > 0)
2619                         return 0;
2620                 return ret;
2621         }
2622
2623         onenand_get_device(mtd, FL_WRITING);
2624         ret = mtd_block_markbad(mtd, ofs);
2625         onenand_release_device(mtd);
2626         return ret;
2627 }
2628
2629 /**
2630  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2631  * @param mtd           MTD device structure
2632  * @param ofs           offset relative to mtd start
2633  * @param len           number of bytes to lock or unlock
2634  * @param cmd           lock or unlock command
2635  *
2636  * Lock or unlock one or more blocks
2637  */
2638 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2639 {
2640         struct onenand_chip *this = mtd->priv;
2641         int start, end, block, value, status;
2642         int wp_status_mask;
2643
2644         start = onenand_block(this, ofs);
2645         end = onenand_block(this, ofs + len) - 1;
2646
2647         if (cmd == ONENAND_CMD_LOCK)
2648                 wp_status_mask = ONENAND_WP_LS;
2649         else
2650                 wp_status_mask = ONENAND_WP_US;
2651
2652         /* Continuous lock scheme */
2653         if (this->options & ONENAND_HAS_CONT_LOCK) {
2654                 /* Set start block address */
2655                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2656                 /* Set end block address */
2657                 this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2658                 /* Write lock command */
2659                 this->command(mtd, cmd, 0, 0);
2660
2661                 /* There's no return value */
2662                 this->wait(mtd, FL_LOCKING);
2663
2664                 /* Sanity check */
2665                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2666                     & ONENAND_CTRL_ONGO)
2667                         continue;
2668
2669                 /* Check lock status */
2670                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2671                 if (!(status & wp_status_mask))
2672                         printk(KERN_ERR "%s: wp status = 0x%x\n",
2673                                 __func__, status);
2674
2675                 return 0;
2676         }
2677
2678         /* Block lock scheme */
2679         for (block = start; block < end + 1; block++) {
2680                 /* Set block address */
2681                 value = onenand_block_address(this, block);
2682                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2683                 /* Select DataRAM for DDP */
2684                 value = onenand_bufferram_address(this, block);
2685                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2686                 /* Set start block address */
2687                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2688                 /* Write lock command */
2689                 this->command(mtd, cmd, 0, 0);
2690
2691                 /* There's no return value */
2692                 this->wait(mtd, FL_LOCKING);
2693
2694                 /* Sanity check */
2695                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2696                     & ONENAND_CTRL_ONGO)
2697                         continue;
2698
2699                 /* Check lock status */
2700                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2701                 if (!(status & wp_status_mask))
2702                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2703                                 __func__, block, status);
2704         }
2705
2706         return 0;
2707 }
2708
2709 /**
2710  * onenand_lock - [MTD Interface] Lock block(s)
2711  * @param mtd           MTD device structure
2712  * @param ofs           offset relative to mtd start
2713  * @param len           number of bytes to unlock
2714  *
2715  * Lock one or more blocks
2716  */
2717 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2718 {
2719         int ret;
2720
2721         onenand_get_device(mtd, FL_LOCKING);
2722         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2723         onenand_release_device(mtd);
2724         return ret;
2725 }
2726
2727 /**
2728  * onenand_unlock - [MTD Interface] Unlock block(s)
2729  * @param mtd           MTD device structure
2730  * @param ofs           offset relative to mtd start
2731  * @param len           number of bytes to unlock
2732  *
2733  * Unlock one or more blocks
2734  */
2735 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2736 {
2737         int ret;
2738
2739         onenand_get_device(mtd, FL_LOCKING);
2740         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2741         onenand_release_device(mtd);
2742         return ret;
2743 }
2744
2745 /**
2746  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2747  * @param this          onenand chip data structure
2748  *
2749  * Check lock status
2750  */
2751 static int onenand_check_lock_status(struct onenand_chip *this)
2752 {
2753         unsigned int value, block, status;
2754         unsigned int end;
2755
2756         end = this->chipsize >> this->erase_shift;
2757         for (block = 0; block < end; block++) {
2758                 /* Set block address */
2759                 value = onenand_block_address(this, block);
2760                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2761                 /* Select DataRAM for DDP */
2762                 value = onenand_bufferram_address(this, block);
2763                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2764                 /* Set start block address */
2765                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2766
2767                 /* Check lock status */
2768                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2769                 if (!(status & ONENAND_WP_US)) {
2770                         printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2771                                 __func__, block, status);
2772                         return 0;
2773                 }
2774         }
2775
2776         return 1;
2777 }
2778
2779 /**
2780  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2781  * @param mtd           MTD device structure
2782  *
2783  * Unlock all blocks
2784  */
2785 static void onenand_unlock_all(struct mtd_info *mtd)
2786 {
2787         struct onenand_chip *this = mtd->priv;
2788         loff_t ofs = 0;
2789         loff_t len = mtd->size;
2790
2791         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2792                 /* Set start block address */
2793                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2794                 /* Write unlock command */
2795                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2796
2797                 /* There's no return value */
2798                 this->wait(mtd, FL_LOCKING);
2799
2800                 /* Sanity check */
2801                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2802                     & ONENAND_CTRL_ONGO)
2803                         continue;
2804
2805                 /* Don't check lock status */
2806                 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2807                         return;
2808
2809                 /* Check lock status */
2810                 if (onenand_check_lock_status(this))
2811                         return;
2812
2813                 /* Workaround for all block unlock in DDP */
2814                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2815                         /* All blocks on another chip */
2816                         ofs = this->chipsize >> 1;
2817                         len = this->chipsize >> 1;
2818                 }
2819         }
2820
2821         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2822 }
2823
2824 #ifdef CONFIG_MTD_ONENAND_OTP
2825
2826 /**
2827  * onenand_otp_command - Send OTP specific command to OneNAND device
2828  * @param mtd    MTD device structure
2829  * @param cmd    the command to be sent
2830  * @param addr   offset to read from or write to
2831  * @param len    number of bytes to read or write
2832  */
2833 static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2834                                 size_t len)
2835 {
2836         struct onenand_chip *this = mtd->priv;
2837         int value, block, page;
2838
2839         /* Address translation */
2840         switch (cmd) {
2841         case ONENAND_CMD_OTP_ACCESS:
2842                 block = (int) (addr >> this->erase_shift);
2843                 page = -1;
2844                 break;
2845
2846         default:
2847                 block = (int) (addr >> this->erase_shift);
2848                 page = (int) (addr >> this->page_shift);
2849
2850                 if (ONENAND_IS_2PLANE(this)) {
2851                         /* Make the even block number */
2852                         block &= ~1;
2853                         /* Is it the odd plane? */
2854                         if (addr & this->writesize)
2855                                 block++;
2856                         page >>= 1;
2857                 }
2858                 page &= this->page_mask;
2859                 break;
2860         }
2861
2862         if (block != -1) {
2863                 /* Write 'DFS, FBA' of Flash */
2864                 value = onenand_block_address(this, block);
2865                 this->write_word(value, this->base +
2866                                 ONENAND_REG_START_ADDRESS1);
2867         }
2868
2869         if (page != -1) {
2870                 /* Now we use page size operation */
2871                 int sectors = 4, count = 4;
2872                 int dataram;
2873
2874                 switch (cmd) {
2875                 default:
2876                         if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2877                                 cmd = ONENAND_CMD_2X_PROG;
2878                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
2879                         break;
2880                 }
2881
2882                 /* Write 'FPA, FSA' of Flash */
2883                 value = onenand_page_address(page, sectors);
2884                 this->write_word(value, this->base +
2885                                 ONENAND_REG_START_ADDRESS8);
2886
2887                 /* Write 'BSA, BSC' of DataRAM */
2888                 value = onenand_buffer_address(dataram, sectors, count);
2889                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2890         }
2891
2892         /* Interrupt clear */
2893         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2894
2895         /* Write command */
2896         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2897
2898         return 0;
2899 }
2900
2901 /**
2902  * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2903  * @param mtd           MTD device structure
2904  * @param to            offset to write to
2905  * @param len           number of bytes to write
2906  * @param retlen        pointer to variable to store the number of written bytes
2907  * @param buf           the data to write
2908  *
2909  * OneNAND write out-of-band only for OTP
2910  */
2911 static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2912                                     struct mtd_oob_ops *ops)
2913 {
2914         struct onenand_chip *this = mtd->priv;
2915         int column, ret = 0, oobsize;
2916         int written = 0;
2917         u_char *oobbuf;
2918         size_t len = ops->ooblen;
2919         const u_char *buf = ops->oobbuf;
2920         int block, value, status;
2921
2922         to += ops->ooboffs;
2923
2924         /* Initialize retlen, in case of early exit */
2925         ops->oobretlen = 0;
2926
2927         oobsize = mtd->oobsize;
2928
2929         column = to & (mtd->oobsize - 1);
2930
2931         oobbuf = this->oob_buf;
2932
2933         /* Loop until all data write */
2934         while (written < len) {
2935                 int thislen = min_t(int, oobsize, len - written);
2936
2937                 cond_resched();
2938
2939                 block = (int) (to >> this->erase_shift);
2940                 /*
2941                  * Write 'DFS, FBA' of Flash
2942                  * Add: F100h DQ=DFS, FBA
2943                  */
2944
2945                 value = onenand_block_address(this, block);
2946                 this->write_word(value, this->base +
2947                                 ONENAND_REG_START_ADDRESS1);
2948
2949                 /*
2950                  * Select DataRAM for DDP
2951                  * Add: F101h DQ=DBS
2952                  */
2953
2954                 value = onenand_bufferram_address(this, block);
2955                 this->write_word(value, this->base +
2956                                 ONENAND_REG_START_ADDRESS2);
2957                 ONENAND_SET_NEXT_BUFFERRAM(this);
2958
2959                 /*
2960                  * Enter OTP access mode
2961                  */
2962                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2963                 this->wait(mtd, FL_OTPING);
2964
2965                 /* We send data to spare ram with oobsize
2966                  * to prevent byte access */
2967                 memcpy(oobbuf + column, buf, thislen);
2968
2969                 /*
2970                  * Write Data into DataRAM
2971                  * Add: 8th Word
2972                  * in sector0/spare/page0
2973                  * DQ=XXFCh
2974                  */
2975                 this->write_bufferram(mtd, ONENAND_SPARERAM,
2976                                         oobbuf, 0, mtd->oobsize);
2977
2978                 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2979                 onenand_update_bufferram(mtd, to, 0);
2980                 if (ONENAND_IS_2PLANE(this)) {
2981                         ONENAND_SET_BUFFERRAM1(this);
2982                         onenand_update_bufferram(mtd, to + this->writesize, 0);
2983                 }
2984
2985                 ret = this->wait(mtd, FL_WRITING);
2986                 if (ret) {
2987                         printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2988                         break;
2989                 }
2990
2991                 /* Exit OTP access mode */
2992                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2993                 this->wait(mtd, FL_RESETING);
2994
2995                 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2996                 status &= 0x60;
2997
2998                 if (status == 0x60) {
2999                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3000                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
3001                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3002                 } else if (status == 0x20) {
3003                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3004                         printk(KERN_DEBUG "1st Block\tLOCKED\n");
3005                         printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
3006                 } else if (status == 0x40) {
3007                         printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
3008                         printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
3009                         printk(KERN_DEBUG "OTP Block\tLOCKED\n");
3010                 } else {
3011                         printk(KERN_DEBUG "Reboot to check\n");
3012                 }
3013
3014                 written += thislen;
3015                 if (written == len)
3016                         break;
3017
3018                 to += mtd->writesize;
3019                 buf += thislen;
3020                 column = 0;
3021         }
3022
3023         ops->oobretlen = written;
3024
3025         return ret;
3026 }
3027
3028 /* Internal OTP operation */
3029 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
3030                 size_t *retlen, u_char *buf);
3031
3032 /**
3033  * do_otp_read - [DEFAULT] Read OTP block area
3034  * @param mtd           MTD device structure
3035  * @param from          The offset to read
3036  * @param len           number of bytes to read
3037  * @param retlen        pointer to variable to store the number of readbytes
3038  * @param buf           the databuffer to put/get data
3039  *
3040  * Read OTP block area.
3041  */
3042 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
3043                 size_t *retlen, u_char *buf)
3044 {
3045         struct onenand_chip *this = mtd->priv;
3046         struct mtd_oob_ops ops = {
3047                 .len    = len,
3048                 .ooblen = 0,
3049                 .datbuf = buf,
3050                 .oobbuf = NULL,
3051         };
3052         int ret;
3053
3054         /* Enter OTP access mode */
3055         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3056         this->wait(mtd, FL_OTPING);
3057
3058         ret = ONENAND_IS_4KB_PAGE(this) ?
3059                 onenand_mlc_read_ops_nolock(mtd, from, &ops) :
3060                 onenand_read_ops_nolock(mtd, from, &ops);
3061
3062         /* Exit OTP access mode */
3063         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3064         this->wait(mtd, FL_RESETING);
3065
3066         return ret;
3067 }
3068
3069 /**
3070  * do_otp_write - [DEFAULT] Write OTP block area
3071  * @param mtd           MTD device structure
3072  * @param to            The offset to write
3073  * @param len           number of bytes to write
3074  * @param retlen        pointer to variable to store the number of write bytes
3075  * @param buf           the databuffer to put/get data
3076  *
3077  * Write OTP block area.
3078  */
3079 static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
3080                 size_t *retlen, u_char *buf)
3081 {
3082         struct onenand_chip *this = mtd->priv;
3083         unsigned char *pbuf = buf;
3084         int ret;
3085         struct mtd_oob_ops ops;
3086
3087         /* Force buffer page aligned */
3088         if (len < mtd->writesize) {
3089                 memcpy(this->page_buf, buf, len);
3090                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
3091                 pbuf = this->page_buf;
3092                 len = mtd->writesize;
3093         }
3094
3095         /* Enter OTP access mode */
3096         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3097         this->wait(mtd, FL_OTPING);
3098
3099         ops.len = len;
3100         ops.ooblen = 0;
3101         ops.datbuf = pbuf;
3102         ops.oobbuf = NULL;
3103         ret = onenand_write_ops_nolock(mtd, to, &ops);
3104         *retlen = ops.retlen;
3105
3106         /* Exit OTP access mode */
3107         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3108         this->wait(mtd, FL_RESETING);
3109
3110         return ret;
3111 }
3112
3113 /**
3114  * do_otp_lock - [DEFAULT] Lock OTP block area
3115  * @param mtd           MTD device structure
3116  * @param from          The offset to lock
3117  * @param len           number of bytes to lock
3118  * @param retlen        pointer to variable to store the number of lock bytes
3119  * @param buf           the databuffer to put/get data
3120  *
3121  * Lock OTP block area.
3122  */
3123 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
3124                 size_t *retlen, u_char *buf)
3125 {
3126         struct onenand_chip *this = mtd->priv;
3127         struct mtd_oob_ops ops;
3128         int ret;
3129
3130         if (FLEXONENAND(this)) {
3131
3132                 /* Enter OTP access mode */
3133                 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
3134                 this->wait(mtd, FL_OTPING);
3135                 /*
3136                  * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3137                  * main area of page 49.
3138                  */
3139                 ops.len = mtd->writesize;
3140                 ops.ooblen = 0;
3141                 ops.datbuf = buf;
3142                 ops.oobbuf = NULL;
3143                 ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3144                 *retlen = ops.retlen;
3145
3146                 /* Exit OTP access mode */
3147                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3148                 this->wait(mtd, FL_RESETING);
3149         } else {
3150                 ops.mode = MTD_OPS_PLACE_OOB;
3151                 ops.ooblen = len;
3152                 ops.oobbuf = buf;
3153                 ops.ooboffs = 0;
3154                 ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3155                 *retlen = ops.oobretlen;
3156         }
3157
3158         return ret;
3159 }
3160
3161 /**
3162  * onenand_otp_walk - [DEFAULT] Handle OTP operation
3163  * @param mtd           MTD device structure
3164  * @param from          The offset to read/write
3165  * @param len           number of bytes to read/write
3166  * @param retlen        pointer to variable to store the number of read bytes
3167  * @param buf           the databuffer to put/get data
3168  * @param action        do given action
3169  * @param mode          specify user and factory
3170  *
3171  * Handle OTP operation.
3172  */
3173 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3174                         size_t *retlen, u_char *buf,
3175                         otp_op_t action, int mode)
3176 {
3177         struct onenand_chip *this = mtd->priv;
3178         int otp_pages;
3179         int density;
3180         int ret = 0;
3181
3182         *retlen = 0;
3183
3184         density = onenand_get_density(this->device_id);
3185         if (density < ONENAND_DEVICE_DENSITY_512Mb)
3186                 otp_pages = 20;
3187         else
3188                 otp_pages = 50;
3189
3190         if (mode == MTD_OTP_FACTORY) {
3191                 from += mtd->writesize * otp_pages;
3192                 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3193         }
3194
3195         /* Check User/Factory boundary */
3196         if (mode == MTD_OTP_USER) {
3197                 if (mtd->writesize * otp_pages < from + len)
3198                         return 0;
3199         } else {
3200                 if (mtd->writesize * otp_pages <  len)
3201                         return 0;
3202         }
3203
3204         onenand_get_device(mtd, FL_OTPING);
3205         while (len > 0 && otp_pages > 0) {
3206                 if (!action) {  /* OTP Info functions */
3207                         struct otp_info *otpinfo;
3208
3209                         len -= sizeof(struct otp_info);
3210                         if (len <= 0) {
3211                                 ret = -ENOSPC;
3212                                 break;
3213                         }
3214
3215                         otpinfo = (struct otp_info *) buf;
3216                         otpinfo->start = from;
3217                         otpinfo->length = mtd->writesize;
3218                         otpinfo->locked = 0;
3219
3220                         from += mtd->writesize;
3221                         buf += sizeof(struct otp_info);
3222                         *retlen += sizeof(struct otp_info);
3223                 } else {
3224                         size_t tmp_retlen;
3225
3226                         ret = action(mtd, from, len, &tmp_retlen, buf);
3227
3228                         buf += tmp_retlen;
3229                         len -= tmp_retlen;
3230                         *retlen += tmp_retlen;
3231
3232                         if (ret)
3233                                 break;
3234                 }
3235                 otp_pages--;
3236         }
3237         onenand_release_device(mtd);
3238
3239         return ret;
3240 }
3241
3242 /**
3243  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3244  * @param mtd           MTD device structure
3245  * @param buf           the databuffer to put/get data
3246  * @param len           number of bytes to read
3247  *
3248  * Read factory OTP info.
3249  */
3250 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
3251                         struct otp_info *buf, size_t len)
3252 {
3253         size_t retlen;
3254         int ret;
3255
3256         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
3257
3258         return ret ? : retlen;
3259 }
3260
3261 /**
3262  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3263  * @param mtd           MTD device structure
3264  * @param from          The offset to read
3265  * @param len           number of bytes to read
3266  * @param retlen        pointer to variable to store the number of read bytes
3267  * @param buf           the databuffer to put/get data
3268  *
3269  * Read factory OTP area.
3270  */
3271 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3272                         size_t len, size_t *retlen, u_char *buf)
3273 {
3274         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3275 }
3276
3277 /**
3278  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3279  * @param mtd           MTD device structure
3280  * @param buf           the databuffer to put/get data
3281  * @param len           number of bytes to read
3282  *
3283  * Read user OTP info.
3284  */
3285 static int onenand_get_user_prot_info(struct mtd_info *mtd,
3286                         struct otp_info *buf, size_t len)
3287 {
3288         size_t retlen;
3289         int ret;
3290
3291         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
3292
3293         return ret ? : retlen;
3294 }
3295
3296 /**
3297  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3298  * @param mtd           MTD device structure
3299  * @param from          The offset to read
3300  * @param len           number of bytes to read
3301  * @param retlen        pointer to variable to store the number of read bytes
3302  * @param buf           the databuffer to put/get data
3303  *
3304  * Read user OTP area.
3305  */
3306 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3307                         size_t len, size_t *retlen, u_char *buf)
3308 {
3309         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3310 }
3311
3312 /**
3313  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3314  * @param mtd           MTD device structure
3315  * @param from          The offset to write
3316  * @param len           number of bytes to write
3317  * @param retlen        pointer to variable to store the number of write bytes
3318  * @param buf           the databuffer to put/get data
3319  *
3320  * Write user OTP area.
3321  */
3322 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3323                         size_t len, size_t *retlen, u_char *buf)
3324 {
3325         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
3326 }
3327
3328 /**
3329  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3330  * @param mtd           MTD device structure
3331  * @param from          The offset to lock
3332  * @param len           number of bytes to unlock
3333  *
3334  * Write lock mark on spare area in page 0 in OTP block
3335  */
3336 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3337                         size_t len)
3338 {
3339         struct onenand_chip *this = mtd->priv;
3340         u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3341         size_t retlen;
3342         int ret;
3343         unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3344
3345         memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3346                                                  : mtd->oobsize);
3347         /*
3348          * Write lock mark to 8th word of sector0 of page0 of the spare0.
3349          * We write 16 bytes spare area instead of 2 bytes.
3350          * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3351          * main area of page 49.
3352          */
3353
3354         from = 0;
3355         len = FLEXONENAND(this) ? mtd->writesize : 16;
3356
3357         /*
3358          * Note: OTP lock operation
3359          *       OTP block : 0xXXFC                     XX 1111 1100
3360          *       1st block : 0xXXF3 (If chip support)   XX 1111 0011
3361          *       Both      : 0xXXF0 (If chip support)   XX 1111 0000
3362          */
3363         if (FLEXONENAND(this))
3364                 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3365
3366         /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3367         if (otp == 1)
3368                 buf[otp_lock_offset] = 0xFC;
3369         else if (otp == 2)
3370                 buf[otp_lock_offset] = 0xF3;
3371         else if (otp == 3)
3372                 buf[otp_lock_offset] = 0xF0;
3373         else if (otp != 0)
3374                 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3375
3376         ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3377
3378         return ret ? : retlen;
3379 }
3380
3381 #endif  /* CONFIG_MTD_ONENAND_OTP */
3382
3383 /**
3384  * onenand_check_features - Check and set OneNAND features
3385  * @param mtd           MTD data structure
3386  *
3387  * Check and set OneNAND features
3388  * - lock scheme
3389  * - two plane
3390  */
3391 static void onenand_check_features(struct mtd_info *mtd)
3392 {
3393         struct onenand_chip *this = mtd->priv;
3394         unsigned int density, process, numbufs;
3395
3396         /* Lock scheme depends on density and process */
3397         density = onenand_get_density(this->device_id);
3398         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3399         numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3400
3401         /* Lock scheme */
3402         switch (density) {
3403         case ONENAND_DEVICE_DENSITY_4Gb:
3404                 if (ONENAND_IS_DDP(this))
3405                         this->options |= ONENAND_HAS_2PLANE;
3406                 else if (numbufs == 1) {
3407                         this->options |= ONENAND_HAS_4KB_PAGE;
3408                         this->options |= ONENAND_HAS_CACHE_PROGRAM;
3409                         /*
3410                          * There are two different 4KiB pagesize chips
3411                          * and no way to detect it by H/W config values.
3412                          *
3413                          * To detect the correct NOP for each chips,
3414                          * It should check the version ID as workaround.
3415                          *
3416                          * Now it has as following
3417                          * KFM4G16Q4M has NOP 4 with version ID 0x0131
3418                          * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3419                          */
3420                         if ((this->version_id & 0xf) == 0xe)
3421                                 this->options |= ONENAND_HAS_NOP_1;
3422                 }
3423
3424         case ONENAND_DEVICE_DENSITY_2Gb:
3425                 /* 2Gb DDP does not have 2 plane */
3426                 if (!ONENAND_IS_DDP(this))
3427                         this->options |= ONENAND_HAS_2PLANE;
3428                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3429
3430         case ONENAND_DEVICE_DENSITY_1Gb:
3431                 /* A-Die has all block unlock */
3432                 if (process)
3433                         this->options |= ONENAND_HAS_UNLOCK_ALL;
3434                 break;
3435
3436         default:
3437                 /* Some OneNAND has continuous lock scheme */
3438                 if (!process)
3439                         this->options |= ONENAND_HAS_CONT_LOCK;
3440                 break;
3441         }
3442
3443         /* The MLC has 4KiB pagesize. */
3444         if (ONENAND_IS_MLC(this))
3445                 this->options |= ONENAND_HAS_4KB_PAGE;
3446
3447         if (ONENAND_IS_4KB_PAGE(this))
3448                 this->options &= ~ONENAND_HAS_2PLANE;
3449
3450         if (FLEXONENAND(this)) {
3451                 this->options &= ~ONENAND_HAS_CONT_LOCK;
3452                 this->options |= ONENAND_HAS_UNLOCK_ALL;
3453         }
3454
3455         if (this->options & ONENAND_HAS_CONT_LOCK)
3456                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3457         if (this->options & ONENAND_HAS_UNLOCK_ALL)
3458                 printk(KERN_DEBUG "Chip support all block unlock\n");
3459         if (this->options & ONENAND_HAS_2PLANE)
3460                 printk(KERN_DEBUG "Chip has 2 plane\n");
3461         if (this->options & ONENAND_HAS_4KB_PAGE)
3462                 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3463         if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3464                 printk(KERN_DEBUG "Chip has cache program feature\n");
3465 }
3466
3467 /**
3468  * onenand_print_device_info - Print device & version ID
3469  * @param device        device ID
3470  * @param version       version ID
3471  *
3472  * Print device & version ID
3473  */
3474 static void onenand_print_device_info(int device, int version)
3475 {
3476         int vcc, demuxed, ddp, density, flexonenand;
3477
3478         vcc = device & ONENAND_DEVICE_VCC_MASK;
3479         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3480         ddp = device & ONENAND_DEVICE_IS_DDP;
3481         density = onenand_get_density(device);
3482         flexonenand = device & DEVICE_IS_FLEXONENAND;
3483         printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3484                 demuxed ? "" : "Muxed ",
3485                 flexonenand ? "Flex-" : "",
3486                 ddp ? "(DDP)" : "",
3487                 (16 << density),
3488                 vcc ? "2.65/3.3" : "1.8",
3489                 device);
3490         printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3491 }
3492
3493 static const struct onenand_manufacturers onenand_manuf_ids[] = {
3494         {ONENAND_MFR_SAMSUNG, "Samsung"},
3495         {ONENAND_MFR_NUMONYX, "Numonyx"},
3496 };
3497
3498 /**
3499  * onenand_check_maf - Check manufacturer ID
3500  * @param manuf         manufacturer ID
3501  *
3502  * Check manufacturer ID
3503  */
3504 static int onenand_check_maf(int manuf)
3505 {
3506         int size = ARRAY_SIZE(onenand_manuf_ids);
3507         char *name;
3508         int i;
3509
3510         for (i = 0; i < size; i++)
3511                 if (manuf == onenand_manuf_ids[i].id)
3512                         break;
3513
3514         if (i < size)
3515                 name = onenand_manuf_ids[i].name;
3516         else
3517                 name = "Unknown";
3518
3519         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3520
3521         return (i == size);
3522 }
3523
3524 /**
3525 * flexonenand_get_boundary      - Reads the SLC boundary
3526 * @param onenand_info           - onenand info structure
3527 **/
3528 static int flexonenand_get_boundary(struct mtd_info *mtd)
3529 {
3530         struct onenand_chip *this = mtd->priv;
3531         unsigned die, bdry;
3532         int ret, syscfg, locked;
3533
3534         /* Disable ECC */
3535         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3536         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3537
3538         for (die = 0; die < this->dies; die++) {
3539                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3540                 this->wait(mtd, FL_SYNCING);
3541
3542                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3543                 ret = this->wait(mtd, FL_READING);
3544
3545                 bdry = this->read_word(this->base + ONENAND_DATARAM);
3546                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3547                         locked = 0;
3548                 else
3549                         locked = 1;
3550                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3551
3552                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3553                 ret = this->wait(mtd, FL_RESETING);
3554
3555                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3556                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3557         }
3558
3559         /* Enable ECC */
3560         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3561         return 0;
3562 }
3563
3564 /**
3565  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3566  *                        boundary[], diesize[], mtd->size, mtd->erasesize
3567  * @param mtd           - MTD device structure
3568  */
3569 static void flexonenand_get_size(struct mtd_info *mtd)
3570 {
3571         struct onenand_chip *this = mtd->priv;
3572         int die, i, eraseshift, density;
3573         int blksperdie, maxbdry;
3574         loff_t ofs;
3575
3576         density = onenand_get_density(this->device_id);
3577         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3578         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3579         maxbdry = blksperdie - 1;
3580         eraseshift = this->erase_shift - 1;
3581
3582         mtd->numeraseregions = this->dies << 1;
3583
3584         /* This fills up the device boundary */
3585         flexonenand_get_boundary(mtd);
3586         die = ofs = 0;
3587         i = -1;
3588         for (; die < this->dies; die++) {
3589                 if (!die || this->boundary[die-1] != maxbdry) {
3590                         i++;
3591                         mtd->eraseregions[i].offset = ofs;
3592                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3593                         mtd->eraseregions[i].numblocks =
3594                                                         this->boundary[die] + 1;
3595                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3596                         eraseshift++;
3597                 } else {
3598                         mtd->numeraseregions -= 1;
3599                         mtd->eraseregions[i].numblocks +=
3600                                                         this->boundary[die] + 1;
3601                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3602                 }
3603                 if (this->boundary[die] != maxbdry) {
3604                         i++;
3605                         mtd->eraseregions[i].offset = ofs;
3606                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
3607                         mtd->eraseregions[i].numblocks = maxbdry ^
3608                                                          this->boundary[die];
3609                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
3610                         eraseshift--;
3611                 } else
3612                         mtd->numeraseregions -= 1;
3613         }
3614
3615         /* Expose MLC erase size except when all blocks are SLC */
3616         mtd->erasesize = 1 << this->erase_shift;
3617         if (mtd->numeraseregions == 1)
3618                 mtd->erasesize >>= 1;
3619
3620         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3621         for (i = 0; i < mtd->numeraseregions; i++)
3622                 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3623                         " numblocks: %04u]\n",
3624                         (unsigned int) mtd->eraseregions[i].offset,
3625                         mtd->eraseregions[i].erasesize,
3626                         mtd->eraseregions[i].numblocks);
3627
3628         for (die = 0, mtd->size = 0; die < this->dies; die++) {
3629                 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3630                 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3631                                                  << (this->erase_shift - 1);
3632                 mtd->size += this->diesize[die];
3633         }
3634 }
3635
3636 /**
3637  * flexonenand_check_blocks_erased - Check if blocks are erased
3638  * @param mtd_info      - mtd info structure
3639  * @param start         - first erase block to check
3640  * @param end           - last erase block to check
3641  *
3642  * Converting an unerased block from MLC to SLC
3643  * causes byte values to change. Since both data and its ECC
3644  * have changed, reads on the block give uncorrectable error.
3645  * This might lead to the block being detected as bad.
3646  *
3647  * Avoid this by ensuring that the block to be converted is
3648  * erased.
3649  */
3650 static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3651 {
3652         struct onenand_chip *this = mtd->priv;
3653         int i, ret;
3654         int block;
3655         struct mtd_oob_ops ops = {
3656                 .mode = MTD_OPS_PLACE_OOB,
3657                 .ooboffs = 0,
3658                 .ooblen = mtd->oobsize,
3659                 .datbuf = NULL,
3660                 .oobbuf = this->oob_buf,
3661         };
3662         loff_t addr;
3663
3664         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3665
3666         for (block = start; block <= end; block++) {
3667                 addr = flexonenand_addr(this, block);
3668                 if (onenand_block_isbad_nolock(mtd, addr, 0))
3669                         continue;
3670
3671                 /*
3672                  * Since main area write results in ECC write to spare,
3673                  * it is sufficient to check only ECC bytes for change.
3674                  */
3675                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
3676                 if (ret)
3677                         return ret;
3678
3679                 for (i = 0; i < mtd->oobsize; i++)
3680                         if (this->oob_buf[i] != 0xff)
3681                                 break;
3682
3683                 if (i != mtd->oobsize) {
3684                         printk(KERN_WARNING "%s: Block %d not erased.\n",
3685                                 __func__, block);
3686                         return 1;
3687                 }
3688         }
3689
3690         return 0;
3691 }
3692
3693 /**
3694  * flexonenand_set_boundary     - Writes the SLC boundary
3695  * @param mtd                   - mtd info structure
3696  */
3697 static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3698                                     int boundary, int lock)
3699 {
3700         struct onenand_chip *this = mtd->priv;
3701         int ret, density, blksperdie, old, new, thisboundary;
3702         loff_t addr;
3703
3704         /* Change only once for SDP Flex-OneNAND */
3705         if (die && (!ONENAND_IS_DDP(this)))
3706                 return 0;
3707
3708         /* boundary value of -1 indicates no required change */
3709         if (boundary < 0 || boundary == this->boundary[die])
3710                 return 0;
3711
3712         density = onenand_get_density(this->device_id);
3713         blksperdie = ((16 << density) << 20) >> this->erase_shift;
3714         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3715
3716         if (boundary >= blksperdie) {
3717                 printk(KERN_ERR "%s: Invalid boundary value. "
3718                                 "Boundary not changed.\n", __func__);
3719                 return -EINVAL;
3720         }
3721
3722         /* Check if converting blocks are erased */
3723         old = this->boundary[die] + (die * this->density_mask);
3724         new = boundary + (die * this->density_mask);
3725         ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3726         if (ret) {
3727                 printk(KERN_ERR "%s: Please erase blocks "
3728                                 "before boundary change\n", __func__);
3729                 return ret;
3730         }
3731
3732         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3733         this->wait(mtd, FL_SYNCING);
3734
3735         /* Check is boundary is locked */
3736         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3737         ret = this->wait(mtd, FL_READING);
3738
3739         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3740         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3741                 printk(KERN_ERR "%s: boundary locked\n", __func__);
3742                 ret = 1;
3743                 goto out;
3744         }
3745
3746         printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3747                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
3748
3749         addr = die ? this->diesize[0] : 0;
3750
3751         boundary &= FLEXONENAND_PI_MASK;
3752         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3753
3754         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3755         ret = this->wait(mtd, FL_ERASING);
3756         if (ret) {
3757                 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3758                        __func__, die);
3759                 goto out;
3760         }
3761
3762         this->write_word(boundary, this->base + ONENAND_DATARAM);
3763         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3764         ret = this->wait(mtd, FL_WRITING);
3765         if (ret) {
3766                 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3767                         __func__, die);
3768                 goto out;
3769         }
3770
3771         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3772         ret = this->wait(mtd, FL_WRITING);
3773 out:
3774         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3775         this->wait(mtd, FL_RESETING);
3776         if (!ret)
3777                 /* Recalculate device size on boundary change*/
3778                 flexonenand_get_size(mtd);
3779
3780         return ret;
3781 }
3782
3783 /**
3784  * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3785  * @param mtd           MTD device structure
3786  *
3787  * OneNAND detection method:
3788  *   Compare the values from command with ones from register
3789  */
3790 static int onenand_chip_probe(struct mtd_info *mtd)
3791 {
3792         struct onenand_chip *this = mtd->priv;
3793         int bram_maf_id, bram_dev_id, maf_id, dev_id;
3794         int syscfg;
3795
3796         /* Save system configuration 1 */
3797         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3798         /* Clear Sync. Burst Read mode to read BootRAM */
3799         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3800
3801         /* Send the command for reading device ID from BootRAM */
3802         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3803
3804         /* Read manufacturer and device IDs from BootRAM */
3805         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3806         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3807
3808         /* Reset OneNAND to read default register values */
3809         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3810         /* Wait reset */
3811         this->wait(mtd, FL_RESETING);
3812
3813         /* Restore system configuration 1 */
3814         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3815
3816         /* Check manufacturer ID */
3817         if (onenand_check_maf(bram_maf_id))
3818                 return -ENXIO;
3819
3820         /* Read manufacturer and device IDs from Register */
3821         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3822         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3823
3824         /* Check OneNAND device */
3825         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3826                 return -ENXIO;
3827
3828         return 0;
3829 }
3830
3831 /**
3832  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3833  * @param mtd           MTD device structure
3834  */
3835 static int onenand_probe(struct mtd_info *mtd)
3836 {
3837         struct onenand_chip *this = mtd->priv;
3838         int maf_id, dev_id, ver_id;
3839         int density;
3840         int ret;
3841
3842         ret = this->chip_probe(mtd);
3843         if (ret)
3844                 return ret;
3845
3846         /* Read manufacturer and device IDs from Register */
3847         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3848         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3849         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3850         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3851
3852         /* Flash device information */
3853         onenand_print_device_info(dev_id, ver_id);
3854         this->device_id = dev_id;
3855         this->version_id = ver_id;
3856
3857         /* Check OneNAND features */
3858         onenand_check_features(mtd);
3859
3860         density = onenand_get_density(dev_id);
3861         if (FLEXONENAND(this)) {
3862                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3863                 /* Maximum possible erase regions */
3864                 mtd->numeraseregions = this->dies << 1;
3865                 mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info)
3866                                         * (this->dies << 1), GFP_KERNEL);
3867                 if (!mtd->eraseregions)
3868                         return -ENOMEM;
3869         }
3870
3871         /*
3872          * For Flex-OneNAND, chipsize represents maximum possible device size.
3873          * mtd->size represents the actual device size.
3874          */
3875         this->chipsize = (16 << density) << 20;
3876
3877         /* OneNAND page size & block size */
3878         /* The data buffer size is equal to page size */
3879         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3880         /* We use the full BufferRAM */
3881         if (ONENAND_IS_4KB_PAGE(this))
3882                 mtd->writesize <<= 1;
3883
3884         mtd->oobsize = mtd->writesize >> 5;
3885         /* Pages per a block are always 64 in OneNAND */
3886         mtd->erasesize = mtd->writesize << 6;
3887         /*
3888          * Flex-OneNAND SLC area has 64 pages per block.
3889          * Flex-OneNAND MLC area has 128 pages per block.
3890          * Expose MLC erase size to find erase_shift and page_mask.
3891          */
3892         if (FLEXONENAND(this))
3893                 mtd->erasesize <<= 1;
3894
3895         this->erase_shift = ffs(mtd->erasesize) - 1;
3896         this->page_shift = ffs(mtd->writesize) - 1;
3897         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3898         /* Set density mask. it is used for DDP */
3899         if (ONENAND_IS_DDP(this))
3900                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3901         /* It's real page size */
3902         this->writesize = mtd->writesize;
3903
3904         /* REVISIT: Multichip handling */
3905
3906         if (FLEXONENAND(this))
3907                 flexonenand_get_size(mtd);
3908         else
3909                 mtd->size = this->chipsize;
3910
3911         /*
3912          * We emulate the 4KiB page and 256KiB erase block size
3913          * But oobsize is still 64 bytes.
3914          * It is only valid if you turn on 2X program support,
3915          * Otherwise it will be ignored by compiler.
3916          */
3917         if (ONENAND_IS_2PLANE(this)) {
3918                 mtd->writesize <<= 1;
3919                 mtd->erasesize <<= 1;
3920         }
3921
3922         return 0;
3923 }
3924
3925 /**
3926  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3927  * @param mtd           MTD device structure
3928  */
3929 static int onenand_suspend(struct mtd_info *mtd)
3930 {
3931         return onenand_get_device(mtd, FL_PM_SUSPENDED);
3932 }
3933
3934 /**
3935  * onenand_resume - [MTD Interface] Resume the OneNAND flash
3936  * @param mtd           MTD device structure
3937  */
3938 static void onenand_resume(struct mtd_info *mtd)
3939 {
3940         struct onenand_chip *this = mtd->priv;
3941
3942         if (this->state == FL_PM_SUSPENDED)
3943                 onenand_release_device(mtd);
3944         else
3945                 printk(KERN_ERR "%s: resume() called for the chip which is not "
3946                                 "in suspended state\n", __func__);
3947 }
3948
3949 /**
3950  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3951  * @param mtd           MTD device structure
3952  * @param maxchips      Number of chips to scan for
3953  *
3954  * This fills out all the not initialized function pointers
3955  * with the defaults.
3956  * The flash ID is read and the mtd/chip structures are
3957  * filled with the appropriate values.
3958  */
3959 int onenand_scan(struct mtd_info *mtd, int maxchips)
3960 {
3961         int i, ret;
3962         struct onenand_chip *this = mtd->priv;
3963
3964         if (!this->read_word)
3965                 this->read_word = onenand_readw;
3966         if (!this->write_word)
3967                 this->write_word = onenand_writew;
3968
3969         if (!this->command)
3970                 this->command = onenand_command;
3971         if (!this->wait)
3972                 onenand_setup_wait(mtd);
3973         if (!this->bbt_wait)
3974                 this->bbt_wait = onenand_bbt_wait;
3975         if (!this->unlock_all)
3976                 this->unlock_all = onenand_unlock_all;
3977
3978         if (!this->chip_probe)
3979                 this->chip_probe = onenand_chip_probe;
3980
3981         if (!this->read_bufferram)
3982                 this->read_bufferram = onenand_read_bufferram;
3983         if (!this->write_bufferram)
3984                 this->write_bufferram = onenand_write_bufferram;
3985
3986         if (!this->block_markbad)
3987                 this->block_markbad = onenand_default_block_markbad;
3988         if (!this->scan_bbt)
3989                 this->scan_bbt = onenand_default_bbt;
3990
3991         if (onenand_probe(mtd))
3992                 return -ENXIO;
3993
3994         /* Set Sync. Burst Read after probing */
3995         if (this->mmcontrol) {
3996                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3997                 this->read_bufferram = onenand_sync_read_bufferram;
3998         }
3999
4000         /* Allocate buffers, if necessary */
4001         if (!this->page_buf) {
4002                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4003                 if (!this->page_buf) {
4004                         printk(KERN_ERR "%s: Can't allocate page_buf\n",
4005                                 __func__);
4006                         return -ENOMEM;
4007                 }
4008 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4009                 this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
4010                 if (!this->verify_buf) {
4011                         kfree(this->page_buf);
4012                         return -ENOMEM;
4013                 }
4014 #endif
4015                 this->options |= ONENAND_PAGEBUF_ALLOC;
4016         }
4017         if (!this->oob_buf) {
4018                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
4019                 if (!this->oob_buf) {
4020                         printk(KERN_ERR "%s: Can't allocate oob_buf\n",
4021                                 __func__);
4022                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4023                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
4024                                 kfree(this->page_buf);
4025                         }
4026                         return -ENOMEM;
4027                 }
4028                 this->options |= ONENAND_OOBBUF_ALLOC;
4029         }
4030
4031         this->state = FL_READY;
4032         init_waitqueue_head(&this->wq);
4033         spin_lock_init(&this->chip_lock);
4034
4035         /*
4036          * Allow subpage writes up to oobsize.
4037          */
4038         switch (mtd->oobsize) {
4039         case 128:
4040                 if (FLEXONENAND(this)) {
4041                         this->ecclayout = &flexonenand_oob_128;
4042                         mtd->subpage_sft = 0;
4043                 } else {
4044                         this->ecclayout = &onenand_oob_128;
4045                         mtd->subpage_sft = 2;
4046                 }
4047                 if (ONENAND_IS_NOP_1(this))
4048                         mtd->subpage_sft = 0;
4049                 break;
4050         case 64:
4051                 this->ecclayout = &onenand_oob_64;
4052                 mtd->subpage_sft = 2;
4053                 break;
4054
4055         case 32:
4056                 this->ecclayout = &onenand_oob_32;
4057                 mtd->subpage_sft = 1;
4058                 break;
4059
4060         default:
4061                 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
4062                         __func__, mtd->oobsize);
4063                 mtd->subpage_sft = 0;
4064                 /* To prevent kernel oops */
4065                 this->ecclayout = &onenand_oob_32;
4066                 break;
4067         }
4068
4069         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
4070
4071         /*
4072          * The number of bytes available for a client to place data into
4073          * the out of band area
4074          */
4075         this->ecclayout->oobavail = 0;
4076         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
4077             this->ecclayout->oobfree[i].length; i++)
4078                 this->ecclayout->oobavail +=
4079                         this->ecclayout->oobfree[i].length;
4080         mtd->oobavail = this->ecclayout->oobavail;
4081
4082         mtd->ecclayout = this->ecclayout;
4083         mtd->ecc_strength = 1;
4084
4085         /* Fill in remaining MTD driver data */
4086         mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
4087         mtd->flags = MTD_CAP_NANDFLASH;
4088         mtd->_erase = onenand_erase;
4089         mtd->_point = NULL;
4090         mtd->_unpoint = NULL;
4091         mtd->_read = onenand_read;
4092         mtd->_write = onenand_write;
4093         mtd->_read_oob = onenand_read_oob;
4094         mtd->_write_oob = onenand_write_oob;
4095         mtd->_panic_write = onenand_panic_write;
4096 #ifdef CONFIG_MTD_ONENAND_OTP
4097         mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
4098         mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
4099         mtd->_get_user_prot_info = onenand_get_user_prot_info;
4100         mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
4101         mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
4102         mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
4103 #endif
4104         mtd->_sync = onenand_sync;
4105         mtd->_lock = onenand_lock;
4106         mtd->_unlock = onenand_unlock;
4107         mtd->_suspend = onenand_suspend;
4108         mtd->_resume = onenand_resume;
4109         mtd->_block_isbad = onenand_block_isbad;
4110         mtd->_block_markbad = onenand_block_markbad;
4111         mtd->owner = THIS_MODULE;
4112         mtd->writebufsize = mtd->writesize;
4113
4114         /* Unlock whole block */
4115         if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
4116                 this->unlock_all(mtd);
4117
4118         ret = this->scan_bbt(mtd);
4119         if ((!FLEXONENAND(this)) || ret)
4120                 return ret;
4121
4122         /* Change Flex-OneNAND boundaries if required */
4123         for (i = 0; i < MAX_DIES; i++)
4124                 flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
4125                                                  flex_bdry[(2 * i) + 1]);
4126
4127         return 0;
4128 }
4129
4130 /**
4131  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4132  * @param mtd           MTD device structure
4133  */
4134 void onenand_release(struct mtd_info *mtd)
4135 {
4136         struct onenand_chip *this = mtd->priv;
4137
4138         /* Deregister partitions */
4139         mtd_device_unregister(mtd);
4140
4141         /* Free bad block table memory, if allocated */
4142         if (this->bbm) {
4143                 struct bbm_info *bbm = this->bbm;
4144                 kfree(bbm->bbt);
4145                 kfree(this->bbm);
4146         }
4147         /* Buffers allocated by onenand_scan */
4148         if (this->options & ONENAND_PAGEBUF_ALLOC) {
4149                 kfree(this->page_buf);
4150 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4151                 kfree(this->verify_buf);
4152 #endif
4153         }
4154         if (this->options & ONENAND_OOBBUF_ALLOC)
4155                 kfree(this->oob_buf);
4156         kfree(mtd->eraseregions);
4157 }
4158
4159 EXPORT_SYMBOL_GPL(onenand_scan);
4160 EXPORT_SYMBOL_GPL(onenand_release);
4161
4162 MODULE_LICENSE("GPL");
4163 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4164 MODULE_DESCRIPTION("Generic OneNAND flash driver code");