]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/mtd/ubi/wl.c
Merge branch 'for-linville' of git://github.com/kvalo/ath
[karo-tx-linux.git] / drivers / mtd / ubi / wl.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106
107 /* Number of physical eraseblocks reserved for wear-leveling purposes */
108 #define WL_RESERVED_PEBS 1
109
110 /*
111  * Maximum difference between two erase counters. If this threshold is
112  * exceeded, the WL sub-system starts moving data from used physical
113  * eraseblocks with low erase counter to free physical eraseblocks with high
114  * erase counter.
115  */
116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
117
118 /*
119  * When a physical eraseblock is moved, the WL sub-system has to pick the target
120  * physical eraseblock to move to. The simplest way would be just to pick the
121  * one with the highest erase counter. But in certain workloads this could lead
122  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
123  * situation when the picked physical eraseblock is constantly erased after the
124  * data is written to it. So, we have a constant which limits the highest erase
125  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
126  * does not pick eraseblocks with erase counter greater than the lowest erase
127  * counter plus %WL_FREE_MAX_DIFF.
128  */
129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
130
131 /*
132  * Maximum number of consecutive background thread failures which is enough to
133  * switch to read-only mode.
134  */
135 #define WL_MAX_FAILURES 32
136
137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
138 static int self_check_in_wl_tree(const struct ubi_device *ubi,
139                                  struct ubi_wl_entry *e, struct rb_root *root);
140 static int self_check_in_pq(const struct ubi_device *ubi,
141                             struct ubi_wl_entry *e);
142
143 #ifdef CONFIG_MTD_UBI_FASTMAP
144 /**
145  * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
146  * @wrk: the work description object
147  */
148 static void update_fastmap_work_fn(struct work_struct *wrk)
149 {
150         struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
151         ubi_update_fastmap(ubi);
152 }
153
154 /**
155  *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
156  *  @ubi: UBI device description object
157  *  @pnum: the to be checked PEB
158  */
159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
160 {
161         int i;
162
163         if (!ubi->fm)
164                 return 0;
165
166         for (i = 0; i < ubi->fm->used_blocks; i++)
167                 if (ubi->fm->e[i]->pnum == pnum)
168                         return 1;
169
170         return 0;
171 }
172 #else
173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
174 {
175         return 0;
176 }
177 #endif
178
179 /**
180  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
181  * @e: the wear-leveling entry to add
182  * @root: the root of the tree
183  *
184  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
185  * the @ubi->used and @ubi->free RB-trees.
186  */
187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
188 {
189         struct rb_node **p, *parent = NULL;
190
191         p = &root->rb_node;
192         while (*p) {
193                 struct ubi_wl_entry *e1;
194
195                 parent = *p;
196                 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
197
198                 if (e->ec < e1->ec)
199                         p = &(*p)->rb_left;
200                 else if (e->ec > e1->ec)
201                         p = &(*p)->rb_right;
202                 else {
203                         ubi_assert(e->pnum != e1->pnum);
204                         if (e->pnum < e1->pnum)
205                                 p = &(*p)->rb_left;
206                         else
207                                 p = &(*p)->rb_right;
208                 }
209         }
210
211         rb_link_node(&e->u.rb, parent, p);
212         rb_insert_color(&e->u.rb, root);
213 }
214
215 /**
216  * do_work - do one pending work.
217  * @ubi: UBI device description object
218  *
219  * This function returns zero in case of success and a negative error code in
220  * case of failure.
221  */
222 static int do_work(struct ubi_device *ubi)
223 {
224         int err;
225         struct ubi_work *wrk;
226
227         cond_resched();
228
229         /*
230          * @ubi->work_sem is used to synchronize with the workers. Workers take
231          * it in read mode, so many of them may be doing works at a time. But
232          * the queue flush code has to be sure the whole queue of works is
233          * done, and it takes the mutex in write mode.
234          */
235         down_read(&ubi->work_sem);
236         spin_lock(&ubi->wl_lock);
237         if (list_empty(&ubi->works)) {
238                 spin_unlock(&ubi->wl_lock);
239                 up_read(&ubi->work_sem);
240                 return 0;
241         }
242
243         wrk = list_entry(ubi->works.next, struct ubi_work, list);
244         list_del(&wrk->list);
245         ubi->works_count -= 1;
246         ubi_assert(ubi->works_count >= 0);
247         spin_unlock(&ubi->wl_lock);
248
249         /*
250          * Call the worker function. Do not touch the work structure
251          * after this call as it will have been freed or reused by that
252          * time by the worker function.
253          */
254         err = wrk->func(ubi, wrk, 0);
255         if (err)
256                 ubi_err("work failed with error code %d", err);
257         up_read(&ubi->work_sem);
258
259         return err;
260 }
261
262 /**
263  * produce_free_peb - produce a free physical eraseblock.
264  * @ubi: UBI device description object
265  *
266  * This function tries to make a free PEB by means of synchronous execution of
267  * pending works. This may be needed if, for example the background thread is
268  * disabled. Returns zero in case of success and a negative error code in case
269  * of failure.
270  */
271 static int produce_free_peb(struct ubi_device *ubi)
272 {
273         int err;
274
275         while (!ubi->free.rb_node) {
276                 spin_unlock(&ubi->wl_lock);
277
278                 dbg_wl("do one work synchronously");
279                 err = do_work(ubi);
280
281                 spin_lock(&ubi->wl_lock);
282                 if (err)
283                         return err;
284         }
285
286         return 0;
287 }
288
289 /**
290  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
291  * @e: the wear-leveling entry to check
292  * @root: the root of the tree
293  *
294  * This function returns non-zero if @e is in the @root RB-tree and zero if it
295  * is not.
296  */
297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
298 {
299         struct rb_node *p;
300
301         p = root->rb_node;
302         while (p) {
303                 struct ubi_wl_entry *e1;
304
305                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
306
307                 if (e->pnum == e1->pnum) {
308                         ubi_assert(e == e1);
309                         return 1;
310                 }
311
312                 if (e->ec < e1->ec)
313                         p = p->rb_left;
314                 else if (e->ec > e1->ec)
315                         p = p->rb_right;
316                 else {
317                         ubi_assert(e->pnum != e1->pnum);
318                         if (e->pnum < e1->pnum)
319                                 p = p->rb_left;
320                         else
321                                 p = p->rb_right;
322                 }
323         }
324
325         return 0;
326 }
327
328 /**
329  * prot_queue_add - add physical eraseblock to the protection queue.
330  * @ubi: UBI device description object
331  * @e: the physical eraseblock to add
332  *
333  * This function adds @e to the tail of the protection queue @ubi->pq, where
334  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
335  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336  * be locked.
337  */
338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
339 {
340         int pq_tail = ubi->pq_head - 1;
341
342         if (pq_tail < 0)
343                 pq_tail = UBI_PROT_QUEUE_LEN - 1;
344         ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
345         list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
346         dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
347 }
348
349 /**
350  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
351  * @ubi: UBI device description object
352  * @root: the RB-tree where to look for
353  * @diff: maximum possible difference from the smallest erase counter
354  *
355  * This function looks for a wear leveling entry with erase counter closest to
356  * min + @diff, where min is the smallest erase counter.
357  */
358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
359                                           struct rb_root *root, int diff)
360 {
361         struct rb_node *p;
362         struct ubi_wl_entry *e, *prev_e = NULL;
363         int max;
364
365         e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
366         max = e->ec + diff;
367
368         p = root->rb_node;
369         while (p) {
370                 struct ubi_wl_entry *e1;
371
372                 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
373                 if (e1->ec >= max)
374                         p = p->rb_left;
375                 else {
376                         p = p->rb_right;
377                         prev_e = e;
378                         e = e1;
379                 }
380         }
381
382         /* If no fastmap has been written and this WL entry can be used
383          * as anchor PEB, hold it back and return the second best WL entry
384          * such that fastmap can use the anchor PEB later. */
385         if (prev_e && !ubi->fm_disabled &&
386             !ubi->fm && e->pnum < UBI_FM_MAX_START)
387                 return prev_e;
388
389         return e;
390 }
391
392 /**
393  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
394  * @ubi: UBI device description object
395  * @root: the RB-tree where to look for
396  *
397  * This function looks for a wear leveling entry with medium erase counter,
398  * but not greater or equivalent than the lowest erase counter plus
399  * %WL_FREE_MAX_DIFF/2.
400  */
401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
402                                                struct rb_root *root)
403 {
404         struct ubi_wl_entry *e, *first, *last;
405
406         first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
407         last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
408
409         if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
410                 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
411
412 #ifdef CONFIG_MTD_UBI_FASTMAP
413                 /* If no fastmap has been written and this WL entry can be used
414                  * as anchor PEB, hold it back and return the second best
415                  * WL entry such that fastmap can use the anchor PEB later. */
416                 if (e && !ubi->fm_disabled && !ubi->fm &&
417                     e->pnum < UBI_FM_MAX_START)
418                         e = rb_entry(rb_next(root->rb_node),
419                                      struct ubi_wl_entry, u.rb);
420 #endif
421         } else
422                 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
423
424         return e;
425 }
426
427 #ifdef CONFIG_MTD_UBI_FASTMAP
428 /**
429  * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
430  * @root: the RB-tree where to look for
431  */
432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
433 {
434         struct rb_node *p;
435         struct ubi_wl_entry *e, *victim = NULL;
436         int max_ec = UBI_MAX_ERASECOUNTER;
437
438         ubi_rb_for_each_entry(p, e, root, u.rb) {
439                 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
440                         victim = e;
441                         max_ec = e->ec;
442                 }
443         }
444
445         return victim;
446 }
447
448 static int anchor_pebs_avalible(struct rb_root *root)
449 {
450         struct rb_node *p;
451         struct ubi_wl_entry *e;
452
453         ubi_rb_for_each_entry(p, e, root, u.rb)
454                 if (e->pnum < UBI_FM_MAX_START)
455                         return 1;
456
457         return 0;
458 }
459
460 /**
461  * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
462  * @ubi: UBI device description object
463  * @anchor: This PEB will be used as anchor PEB by fastmap
464  *
465  * The function returns a physical erase block with a given maximal number
466  * and removes it from the wl subsystem.
467  * Must be called with wl_lock held!
468  */
469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
470 {
471         struct ubi_wl_entry *e = NULL;
472
473         if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
474                 goto out;
475
476         if (anchor)
477                 e = find_anchor_wl_entry(&ubi->free);
478         else
479                 e = find_mean_wl_entry(ubi, &ubi->free);
480
481         if (!e)
482                 goto out;
483
484         self_check_in_wl_tree(ubi, e, &ubi->free);
485
486         /* remove it from the free list,
487          * the wl subsystem does no longer know this erase block */
488         rb_erase(&e->u.rb, &ubi->free);
489         ubi->free_count--;
490 out:
491         return e;
492 }
493 #endif
494
495 /**
496  * __wl_get_peb - get a physical eraseblock.
497  * @ubi: UBI device description object
498  *
499  * This function returns a physical eraseblock in case of success and a
500  * negative error code in case of failure.
501  */
502 static int __wl_get_peb(struct ubi_device *ubi)
503 {
504         int err;
505         struct ubi_wl_entry *e;
506
507 retry:
508         if (!ubi->free.rb_node) {
509                 if (ubi->works_count == 0) {
510                         ubi_err("no free eraseblocks");
511                         ubi_assert(list_empty(&ubi->works));
512                         return -ENOSPC;
513                 }
514
515                 err = produce_free_peb(ubi);
516                 if (err < 0)
517                         return err;
518                 goto retry;
519         }
520
521         e = find_mean_wl_entry(ubi, &ubi->free);
522         if (!e) {
523                 ubi_err("no free eraseblocks");
524                 return -ENOSPC;
525         }
526
527         self_check_in_wl_tree(ubi, e, &ubi->free);
528
529         /*
530          * Move the physical eraseblock to the protection queue where it will
531          * be protected from being moved for some time.
532          */
533         rb_erase(&e->u.rb, &ubi->free);
534         ubi->free_count--;
535         dbg_wl("PEB %d EC %d", e->pnum, e->ec);
536 #ifndef CONFIG_MTD_UBI_FASTMAP
537         /* We have to enqueue e only if fastmap is disabled,
538          * is fastmap enabled prot_queue_add() will be called by
539          * ubi_wl_get_peb() after removing e from the pool. */
540         prot_queue_add(ubi, e);
541 #endif
542         return e->pnum;
543 }
544
545 #ifdef CONFIG_MTD_UBI_FASTMAP
546 /**
547  * return_unused_pool_pebs - returns unused PEB to the free tree.
548  * @ubi: UBI device description object
549  * @pool: fastmap pool description object
550  */
551 static void return_unused_pool_pebs(struct ubi_device *ubi,
552                                     struct ubi_fm_pool *pool)
553 {
554         int i;
555         struct ubi_wl_entry *e;
556
557         for (i = pool->used; i < pool->size; i++) {
558                 e = ubi->lookuptbl[pool->pebs[i]];
559                 wl_tree_add(e, &ubi->free);
560                 ubi->free_count++;
561         }
562 }
563
564 /**
565  * refill_wl_pool - refills all the fastmap pool used by the
566  * WL sub-system.
567  * @ubi: UBI device description object
568  */
569 static void refill_wl_pool(struct ubi_device *ubi)
570 {
571         struct ubi_wl_entry *e;
572         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
573
574         return_unused_pool_pebs(ubi, pool);
575
576         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
577                 if (!ubi->free.rb_node ||
578                    (ubi->free_count - ubi->beb_rsvd_pebs < 5))
579                         break;
580
581                 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
582                 self_check_in_wl_tree(ubi, e, &ubi->free);
583                 rb_erase(&e->u.rb, &ubi->free);
584                 ubi->free_count--;
585
586                 pool->pebs[pool->size] = e->pnum;
587         }
588         pool->used = 0;
589 }
590
591 /**
592  * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
593  * @ubi: UBI device description object
594  */
595 static void refill_wl_user_pool(struct ubi_device *ubi)
596 {
597         struct ubi_fm_pool *pool = &ubi->fm_pool;
598
599         return_unused_pool_pebs(ubi, pool);
600
601         for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
602                 pool->pebs[pool->size] = __wl_get_peb(ubi);
603                 if (pool->pebs[pool->size] < 0)
604                         break;
605         }
606         pool->used = 0;
607 }
608
609 /**
610  * ubi_refill_pools - refills all fastmap PEB pools.
611  * @ubi: UBI device description object
612  */
613 void ubi_refill_pools(struct ubi_device *ubi)
614 {
615         spin_lock(&ubi->wl_lock);
616         refill_wl_pool(ubi);
617         refill_wl_user_pool(ubi);
618         spin_unlock(&ubi->wl_lock);
619 }
620
621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
622  * the fastmap pool.
623  */
624 int ubi_wl_get_peb(struct ubi_device *ubi)
625 {
626         int ret;
627         struct ubi_fm_pool *pool = &ubi->fm_pool;
628         struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
629
630         if (!pool->size || !wl_pool->size || pool->used == pool->size ||
631             wl_pool->used == wl_pool->size)
632                 ubi_update_fastmap(ubi);
633
634         /* we got not a single free PEB */
635         if (!pool->size)
636                 ret = -ENOSPC;
637         else {
638                 spin_lock(&ubi->wl_lock);
639                 ret = pool->pebs[pool->used++];
640                 prot_queue_add(ubi, ubi->lookuptbl[ret]);
641                 spin_unlock(&ubi->wl_lock);
642         }
643
644         return ret;
645 }
646
647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
648  *
649  * @ubi: UBI device description object
650  */
651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
652 {
653         struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
654         int pnum;
655
656         if (pool->used == pool->size || !pool->size) {
657                 /* We cannot update the fastmap here because this
658                  * function is called in atomic context.
659                  * Let's fail here and refill/update it as soon as possible. */
660                 schedule_work(&ubi->fm_work);
661                 return NULL;
662         } else {
663                 pnum = pool->pebs[pool->used++];
664                 return ubi->lookuptbl[pnum];
665         }
666 }
667 #else
668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
669 {
670         struct ubi_wl_entry *e;
671
672         e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
673         self_check_in_wl_tree(ubi, e, &ubi->free);
674         rb_erase(&e->u.rb, &ubi->free);
675
676         return e;
677 }
678
679 int ubi_wl_get_peb(struct ubi_device *ubi)
680 {
681         int peb, err;
682
683         spin_lock(&ubi->wl_lock);
684         peb = __wl_get_peb(ubi);
685         spin_unlock(&ubi->wl_lock);
686
687         err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
688                                     ubi->peb_size - ubi->vid_hdr_aloffset);
689         if (err) {
690                 ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
691                 return err;
692         }
693
694         return peb;
695 }
696 #endif
697
698 /**
699  * prot_queue_del - remove a physical eraseblock from the protection queue.
700  * @ubi: UBI device description object
701  * @pnum: the physical eraseblock to remove
702  *
703  * This function deletes PEB @pnum from the protection queue and returns zero
704  * in case of success and %-ENODEV if the PEB was not found.
705  */
706 static int prot_queue_del(struct ubi_device *ubi, int pnum)
707 {
708         struct ubi_wl_entry *e;
709
710         e = ubi->lookuptbl[pnum];
711         if (!e)
712                 return -ENODEV;
713
714         if (self_check_in_pq(ubi, e))
715                 return -ENODEV;
716
717         list_del(&e->u.list);
718         dbg_wl("deleted PEB %d from the protection queue", e->pnum);
719         return 0;
720 }
721
722 /**
723  * sync_erase - synchronously erase a physical eraseblock.
724  * @ubi: UBI device description object
725  * @e: the the physical eraseblock to erase
726  * @torture: if the physical eraseblock has to be tortured
727  *
728  * This function returns zero in case of success and a negative error code in
729  * case of failure.
730  */
731 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
732                       int torture)
733 {
734         int err;
735         struct ubi_ec_hdr *ec_hdr;
736         unsigned long long ec = e->ec;
737
738         dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
739
740         err = self_check_ec(ubi, e->pnum, e->ec);
741         if (err)
742                 return -EINVAL;
743
744         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
745         if (!ec_hdr)
746                 return -ENOMEM;
747
748         err = ubi_io_sync_erase(ubi, e->pnum, torture);
749         if (err < 0)
750                 goto out_free;
751
752         ec += err;
753         if (ec > UBI_MAX_ERASECOUNTER) {
754                 /*
755                  * Erase counter overflow. Upgrade UBI and use 64-bit
756                  * erase counters internally.
757                  */
758                 ubi_err("erase counter overflow at PEB %d, EC %llu",
759                         e->pnum, ec);
760                 err = -EINVAL;
761                 goto out_free;
762         }
763
764         dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
765
766         ec_hdr->ec = cpu_to_be64(ec);
767
768         err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
769         if (err)
770                 goto out_free;
771
772         e->ec = ec;
773         spin_lock(&ubi->wl_lock);
774         if (e->ec > ubi->max_ec)
775                 ubi->max_ec = e->ec;
776         spin_unlock(&ubi->wl_lock);
777
778 out_free:
779         kfree(ec_hdr);
780         return err;
781 }
782
783 /**
784  * serve_prot_queue - check if it is time to stop protecting PEBs.
785  * @ubi: UBI device description object
786  *
787  * This function is called after each erase operation and removes PEBs from the
788  * tail of the protection queue. These PEBs have been protected for long enough
789  * and should be moved to the used tree.
790  */
791 static void serve_prot_queue(struct ubi_device *ubi)
792 {
793         struct ubi_wl_entry *e, *tmp;
794         int count;
795
796         /*
797          * There may be several protected physical eraseblock to remove,
798          * process them all.
799          */
800 repeat:
801         count = 0;
802         spin_lock(&ubi->wl_lock);
803         list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
804                 dbg_wl("PEB %d EC %d protection over, move to used tree",
805                         e->pnum, e->ec);
806
807                 list_del(&e->u.list);
808                 wl_tree_add(e, &ubi->used);
809                 if (count++ > 32) {
810                         /*
811                          * Let's be nice and avoid holding the spinlock for
812                          * too long.
813                          */
814                         spin_unlock(&ubi->wl_lock);
815                         cond_resched();
816                         goto repeat;
817                 }
818         }
819
820         ubi->pq_head += 1;
821         if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
822                 ubi->pq_head = 0;
823         ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
824         spin_unlock(&ubi->wl_lock);
825 }
826
827 /**
828  * __schedule_ubi_work - schedule a work.
829  * @ubi: UBI device description object
830  * @wrk: the work to schedule
831  *
832  * This function adds a work defined by @wrk to the tail of the pending works
833  * list. Can only be used of ubi->work_sem is already held in read mode!
834  */
835 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
836 {
837         spin_lock(&ubi->wl_lock);
838         list_add_tail(&wrk->list, &ubi->works);
839         ubi_assert(ubi->works_count >= 0);
840         ubi->works_count += 1;
841         if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
842                 wake_up_process(ubi->bgt_thread);
843         spin_unlock(&ubi->wl_lock);
844 }
845
846 /**
847  * schedule_ubi_work - schedule a work.
848  * @ubi: UBI device description object
849  * @wrk: the work to schedule
850  *
851  * This function adds a work defined by @wrk to the tail of the pending works
852  * list.
853  */
854 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
855 {
856         down_read(&ubi->work_sem);
857         __schedule_ubi_work(ubi, wrk);
858         up_read(&ubi->work_sem);
859 }
860
861 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
862                         int cancel);
863
864 #ifdef CONFIG_MTD_UBI_FASTMAP
865 /**
866  * ubi_is_erase_work - checks whether a work is erase work.
867  * @wrk: The work object to be checked
868  */
869 int ubi_is_erase_work(struct ubi_work *wrk)
870 {
871         return wrk->func == erase_worker;
872 }
873 #endif
874
875 /**
876  * schedule_erase - schedule an erase work.
877  * @ubi: UBI device description object
878  * @e: the WL entry of the physical eraseblock to erase
879  * @vol_id: the volume ID that last used this PEB
880  * @lnum: the last used logical eraseblock number for the PEB
881  * @torture: if the physical eraseblock has to be tortured
882  *
883  * This function returns zero in case of success and a %-ENOMEM in case of
884  * failure.
885  */
886 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
887                           int vol_id, int lnum, int torture)
888 {
889         struct ubi_work *wl_wrk;
890
891         ubi_assert(e);
892         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
893
894         dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
895                e->pnum, e->ec, torture);
896
897         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
898         if (!wl_wrk)
899                 return -ENOMEM;
900
901         wl_wrk->func = &erase_worker;
902         wl_wrk->e = e;
903         wl_wrk->vol_id = vol_id;
904         wl_wrk->lnum = lnum;
905         wl_wrk->torture = torture;
906
907         schedule_ubi_work(ubi, wl_wrk);
908         return 0;
909 }
910
911 /**
912  * do_sync_erase - run the erase worker synchronously.
913  * @ubi: UBI device description object
914  * @e: the WL entry of the physical eraseblock to erase
915  * @vol_id: the volume ID that last used this PEB
916  * @lnum: the last used logical eraseblock number for the PEB
917  * @torture: if the physical eraseblock has to be tortured
918  *
919  */
920 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
921                          int vol_id, int lnum, int torture)
922 {
923         struct ubi_work *wl_wrk;
924
925         dbg_wl("sync erase of PEB %i", e->pnum);
926
927         wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
928         if (!wl_wrk)
929                 return -ENOMEM;
930
931         wl_wrk->e = e;
932         wl_wrk->vol_id = vol_id;
933         wl_wrk->lnum = lnum;
934         wl_wrk->torture = torture;
935
936         return erase_worker(ubi, wl_wrk, 0);
937 }
938
939 #ifdef CONFIG_MTD_UBI_FASTMAP
940 /**
941  * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
942  * sub-system.
943  * see: ubi_wl_put_peb()
944  *
945  * @ubi: UBI device description object
946  * @fm_e: physical eraseblock to return
947  * @lnum: the last used logical eraseblock number for the PEB
948  * @torture: if this physical eraseblock has to be tortured
949  */
950 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
951                       int lnum, int torture)
952 {
953         struct ubi_wl_entry *e;
954         int vol_id, pnum = fm_e->pnum;
955
956         dbg_wl("PEB %d", pnum);
957
958         ubi_assert(pnum >= 0);
959         ubi_assert(pnum < ubi->peb_count);
960
961         spin_lock(&ubi->wl_lock);
962         e = ubi->lookuptbl[pnum];
963
964         /* This can happen if we recovered from a fastmap the very
965          * first time and writing now a new one. In this case the wl system
966          * has never seen any PEB used by the original fastmap.
967          */
968         if (!e) {
969                 e = fm_e;
970                 ubi_assert(e->ec >= 0);
971                 ubi->lookuptbl[pnum] = e;
972         } else {
973                 e->ec = fm_e->ec;
974                 kfree(fm_e);
975         }
976
977         spin_unlock(&ubi->wl_lock);
978
979         vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
980         return schedule_erase(ubi, e, vol_id, lnum, torture);
981 }
982 #endif
983
984 /**
985  * wear_leveling_worker - wear-leveling worker function.
986  * @ubi: UBI device description object
987  * @wrk: the work object
988  * @cancel: non-zero if the worker has to free memory and exit
989  *
990  * This function copies a more worn out physical eraseblock to a less worn out
991  * one. Returns zero in case of success and a negative error code in case of
992  * failure.
993  */
994 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
995                                 int cancel)
996 {
997         int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
998         int vol_id = -1, uninitialized_var(lnum);
999 #ifdef CONFIG_MTD_UBI_FASTMAP
1000         int anchor = wrk->anchor;
1001 #endif
1002         struct ubi_wl_entry *e1, *e2;
1003         struct ubi_vid_hdr *vid_hdr;
1004
1005         kfree(wrk);
1006         if (cancel)
1007                 return 0;
1008
1009         vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1010         if (!vid_hdr)
1011                 return -ENOMEM;
1012
1013         mutex_lock(&ubi->move_mutex);
1014         spin_lock(&ubi->wl_lock);
1015         ubi_assert(!ubi->move_from && !ubi->move_to);
1016         ubi_assert(!ubi->move_to_put);
1017
1018         if (!ubi->free.rb_node ||
1019             (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1020                 /*
1021                  * No free physical eraseblocks? Well, they must be waiting in
1022                  * the queue to be erased. Cancel movement - it will be
1023                  * triggered again when a free physical eraseblock appears.
1024                  *
1025                  * No used physical eraseblocks? They must be temporarily
1026                  * protected from being moved. They will be moved to the
1027                  * @ubi->used tree later and the wear-leveling will be
1028                  * triggered again.
1029                  */
1030                 dbg_wl("cancel WL, a list is empty: free %d, used %d",
1031                        !ubi->free.rb_node, !ubi->used.rb_node);
1032                 goto out_cancel;
1033         }
1034
1035 #ifdef CONFIG_MTD_UBI_FASTMAP
1036         /* Check whether we need to produce an anchor PEB */
1037         if (!anchor)
1038                 anchor = !anchor_pebs_avalible(&ubi->free);
1039
1040         if (anchor) {
1041                 e1 = find_anchor_wl_entry(&ubi->used);
1042                 if (!e1)
1043                         goto out_cancel;
1044                 e2 = get_peb_for_wl(ubi);
1045                 if (!e2)
1046                         goto out_cancel;
1047
1048                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1049                 rb_erase(&e1->u.rb, &ubi->used);
1050                 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1051         } else if (!ubi->scrub.rb_node) {
1052 #else
1053         if (!ubi->scrub.rb_node) {
1054 #endif
1055                 /*
1056                  * Now pick the least worn-out used physical eraseblock and a
1057                  * highly worn-out free physical eraseblock. If the erase
1058                  * counters differ much enough, start wear-leveling.
1059                  */
1060                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1061                 e2 = get_peb_for_wl(ubi);
1062                 if (!e2)
1063                         goto out_cancel;
1064
1065                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1066                         dbg_wl("no WL needed: min used EC %d, max free EC %d",
1067                                e1->ec, e2->ec);
1068
1069                         /* Give the unused PEB back */
1070                         wl_tree_add(e2, &ubi->free);
1071                         goto out_cancel;
1072                 }
1073                 self_check_in_wl_tree(ubi, e1, &ubi->used);
1074                 rb_erase(&e1->u.rb, &ubi->used);
1075                 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1076                        e1->pnum, e1->ec, e2->pnum, e2->ec);
1077         } else {
1078                 /* Perform scrubbing */
1079                 scrubbing = 1;
1080                 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1081                 e2 = get_peb_for_wl(ubi);
1082                 if (!e2)
1083                         goto out_cancel;
1084
1085                 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1086                 rb_erase(&e1->u.rb, &ubi->scrub);
1087                 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1088         }
1089
1090         ubi->move_from = e1;
1091         ubi->move_to = e2;
1092         spin_unlock(&ubi->wl_lock);
1093
1094         /*
1095          * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1096          * We so far do not know which logical eraseblock our physical
1097          * eraseblock (@e1) belongs to. We have to read the volume identifier
1098          * header first.
1099          *
1100          * Note, we are protected from this PEB being unmapped and erased. The
1101          * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1102          * which is being moved was unmapped.
1103          */
1104
1105         err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1106         if (err && err != UBI_IO_BITFLIPS) {
1107                 if (err == UBI_IO_FF) {
1108                         /*
1109                          * We are trying to move PEB without a VID header. UBI
1110                          * always write VID headers shortly after the PEB was
1111                          * given, so we have a situation when it has not yet
1112                          * had a chance to write it, because it was preempted.
1113                          * So add this PEB to the protection queue so far,
1114                          * because presumably more data will be written there
1115                          * (including the missing VID header), and then we'll
1116                          * move it.
1117                          */
1118                         dbg_wl("PEB %d has no VID header", e1->pnum);
1119                         protect = 1;
1120                         goto out_not_moved;
1121                 } else if (err == UBI_IO_FF_BITFLIPS) {
1122                         /*
1123                          * The same situation as %UBI_IO_FF, but bit-flips were
1124                          * detected. It is better to schedule this PEB for
1125                          * scrubbing.
1126                          */
1127                         dbg_wl("PEB %d has no VID header but has bit-flips",
1128                                e1->pnum);
1129                         scrubbing = 1;
1130                         goto out_not_moved;
1131                 }
1132
1133                 ubi_err("error %d while reading VID header from PEB %d",
1134                         err, e1->pnum);
1135                 goto out_error;
1136         }
1137
1138         vol_id = be32_to_cpu(vid_hdr->vol_id);
1139         lnum = be32_to_cpu(vid_hdr->lnum);
1140
1141         err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1142         if (err) {
1143                 if (err == MOVE_CANCEL_RACE) {
1144                         /*
1145                          * The LEB has not been moved because the volume is
1146                          * being deleted or the PEB has been put meanwhile. We
1147                          * should prevent this PEB from being selected for
1148                          * wear-leveling movement again, so put it to the
1149                          * protection queue.
1150                          */
1151                         protect = 1;
1152                         goto out_not_moved;
1153                 }
1154                 if (err == MOVE_RETRY) {
1155                         scrubbing = 1;
1156                         goto out_not_moved;
1157                 }
1158                 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1159                     err == MOVE_TARGET_RD_ERR) {
1160                         /*
1161                          * Target PEB had bit-flips or write error - torture it.
1162                          */
1163                         torture = 1;
1164                         goto out_not_moved;
1165                 }
1166
1167                 if (err == MOVE_SOURCE_RD_ERR) {
1168                         /*
1169                          * An error happened while reading the source PEB. Do
1170                          * not switch to R/O mode in this case, and give the
1171                          * upper layers a possibility to recover from this,
1172                          * e.g. by unmapping corresponding LEB. Instead, just
1173                          * put this PEB to the @ubi->erroneous list to prevent
1174                          * UBI from trying to move it over and over again.
1175                          */
1176                         if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1177                                 ubi_err("too many erroneous eraseblocks (%d)",
1178                                         ubi->erroneous_peb_count);
1179                                 goto out_error;
1180                         }
1181                         erroneous = 1;
1182                         goto out_not_moved;
1183                 }
1184
1185                 if (err < 0)
1186                         goto out_error;
1187
1188                 ubi_assert(0);
1189         }
1190
1191         /* The PEB has been successfully moved */
1192         if (scrubbing)
1193                 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1194                         e1->pnum, vol_id, lnum, e2->pnum);
1195         ubi_free_vid_hdr(ubi, vid_hdr);
1196
1197         spin_lock(&ubi->wl_lock);
1198         if (!ubi->move_to_put) {
1199                 wl_tree_add(e2, &ubi->used);
1200                 e2 = NULL;
1201         }
1202         ubi->move_from = ubi->move_to = NULL;
1203         ubi->move_to_put = ubi->wl_scheduled = 0;
1204         spin_unlock(&ubi->wl_lock);
1205
1206         err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1207         if (err) {
1208                 kmem_cache_free(ubi_wl_entry_slab, e1);
1209                 if (e2)
1210                         kmem_cache_free(ubi_wl_entry_slab, e2);
1211                 goto out_ro;
1212         }
1213
1214         if (e2) {
1215                 /*
1216                  * Well, the target PEB was put meanwhile, schedule it for
1217                  * erasure.
1218                  */
1219                 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1220                        e2->pnum, vol_id, lnum);
1221                 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1222                 if (err) {
1223                         kmem_cache_free(ubi_wl_entry_slab, e2);
1224                         goto out_ro;
1225                 }
1226         }
1227
1228         dbg_wl("done");
1229         mutex_unlock(&ubi->move_mutex);
1230         return 0;
1231
1232         /*
1233          * For some reasons the LEB was not moved, might be an error, might be
1234          * something else. @e1 was not changed, so return it back. @e2 might
1235          * have been changed, schedule it for erasure.
1236          */
1237 out_not_moved:
1238         if (vol_id != -1)
1239                 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1240                        e1->pnum, vol_id, lnum, e2->pnum, err);
1241         else
1242                 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1243                        e1->pnum, e2->pnum, err);
1244         spin_lock(&ubi->wl_lock);
1245         if (protect)
1246                 prot_queue_add(ubi, e1);
1247         else if (erroneous) {
1248                 wl_tree_add(e1, &ubi->erroneous);
1249                 ubi->erroneous_peb_count += 1;
1250         } else if (scrubbing)
1251                 wl_tree_add(e1, &ubi->scrub);
1252         else
1253                 wl_tree_add(e1, &ubi->used);
1254         ubi_assert(!ubi->move_to_put);
1255         ubi->move_from = ubi->move_to = NULL;
1256         ubi->wl_scheduled = 0;
1257         spin_unlock(&ubi->wl_lock);
1258
1259         ubi_free_vid_hdr(ubi, vid_hdr);
1260         err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1261         if (err) {
1262                 kmem_cache_free(ubi_wl_entry_slab, e2);
1263                 goto out_ro;
1264         }
1265         mutex_unlock(&ubi->move_mutex);
1266         return 0;
1267
1268 out_error:
1269         if (vol_id != -1)
1270                 ubi_err("error %d while moving PEB %d to PEB %d",
1271                         err, e1->pnum, e2->pnum);
1272         else
1273                 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1274                         err, e1->pnum, vol_id, lnum, e2->pnum);
1275         spin_lock(&ubi->wl_lock);
1276         ubi->move_from = ubi->move_to = NULL;
1277         ubi->move_to_put = ubi->wl_scheduled = 0;
1278         spin_unlock(&ubi->wl_lock);
1279
1280         ubi_free_vid_hdr(ubi, vid_hdr);
1281         kmem_cache_free(ubi_wl_entry_slab, e1);
1282         kmem_cache_free(ubi_wl_entry_slab, e2);
1283
1284 out_ro:
1285         ubi_ro_mode(ubi);
1286         mutex_unlock(&ubi->move_mutex);
1287         ubi_assert(err != 0);
1288         return err < 0 ? err : -EIO;
1289
1290 out_cancel:
1291         ubi->wl_scheduled = 0;
1292         spin_unlock(&ubi->wl_lock);
1293         mutex_unlock(&ubi->move_mutex);
1294         ubi_free_vid_hdr(ubi, vid_hdr);
1295         return 0;
1296 }
1297
1298 /**
1299  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1300  * @ubi: UBI device description object
1301  * @nested: set to non-zero if this function is called from UBI worker
1302  *
1303  * This function checks if it is time to start wear-leveling and schedules it
1304  * if yes. This function returns zero in case of success and a negative error
1305  * code in case of failure.
1306  */
1307 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1308 {
1309         int err = 0;
1310         struct ubi_wl_entry *e1;
1311         struct ubi_wl_entry *e2;
1312         struct ubi_work *wrk;
1313
1314         spin_lock(&ubi->wl_lock);
1315         if (ubi->wl_scheduled)
1316                 /* Wear-leveling is already in the work queue */
1317                 goto out_unlock;
1318
1319         /*
1320          * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1321          * the WL worker has to be scheduled anyway.
1322          */
1323         if (!ubi->scrub.rb_node) {
1324                 if (!ubi->used.rb_node || !ubi->free.rb_node)
1325                         /* No physical eraseblocks - no deal */
1326                         goto out_unlock;
1327
1328                 /*
1329                  * We schedule wear-leveling only if the difference between the
1330                  * lowest erase counter of used physical eraseblocks and a high
1331                  * erase counter of free physical eraseblocks is greater than
1332                  * %UBI_WL_THRESHOLD.
1333                  */
1334                 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1335                 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1336
1337                 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1338                         goto out_unlock;
1339                 dbg_wl("schedule wear-leveling");
1340         } else
1341                 dbg_wl("schedule scrubbing");
1342
1343         ubi->wl_scheduled = 1;
1344         spin_unlock(&ubi->wl_lock);
1345
1346         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1347         if (!wrk) {
1348                 err = -ENOMEM;
1349                 goto out_cancel;
1350         }
1351
1352         wrk->anchor = 0;
1353         wrk->func = &wear_leveling_worker;
1354         if (nested)
1355                 __schedule_ubi_work(ubi, wrk);
1356         else
1357                 schedule_ubi_work(ubi, wrk);
1358         return err;
1359
1360 out_cancel:
1361         spin_lock(&ubi->wl_lock);
1362         ubi->wl_scheduled = 0;
1363 out_unlock:
1364         spin_unlock(&ubi->wl_lock);
1365         return err;
1366 }
1367
1368 #ifdef CONFIG_MTD_UBI_FASTMAP
1369 /**
1370  * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1371  * @ubi: UBI device description object
1372  */
1373 int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1374 {
1375         struct ubi_work *wrk;
1376
1377         spin_lock(&ubi->wl_lock);
1378         if (ubi->wl_scheduled) {
1379                 spin_unlock(&ubi->wl_lock);
1380                 return 0;
1381         }
1382         ubi->wl_scheduled = 1;
1383         spin_unlock(&ubi->wl_lock);
1384
1385         wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1386         if (!wrk) {
1387                 spin_lock(&ubi->wl_lock);
1388                 ubi->wl_scheduled = 0;
1389                 spin_unlock(&ubi->wl_lock);
1390                 return -ENOMEM;
1391         }
1392
1393         wrk->anchor = 1;
1394         wrk->func = &wear_leveling_worker;
1395         schedule_ubi_work(ubi, wrk);
1396         return 0;
1397 }
1398 #endif
1399
1400 /**
1401  * erase_worker - physical eraseblock erase worker function.
1402  * @ubi: UBI device description object
1403  * @wl_wrk: the work object
1404  * @cancel: non-zero if the worker has to free memory and exit
1405  *
1406  * This function erases a physical eraseblock and perform torture testing if
1407  * needed. It also takes care about marking the physical eraseblock bad if
1408  * needed. Returns zero in case of success and a negative error code in case of
1409  * failure.
1410  */
1411 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1412                         int cancel)
1413 {
1414         struct ubi_wl_entry *e = wl_wrk->e;
1415         int pnum = e->pnum;
1416         int vol_id = wl_wrk->vol_id;
1417         int lnum = wl_wrk->lnum;
1418         int err, available_consumed = 0;
1419
1420         if (cancel) {
1421                 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1422                 kfree(wl_wrk);
1423                 kmem_cache_free(ubi_wl_entry_slab, e);
1424                 return 0;
1425         }
1426
1427         dbg_wl("erase PEB %d EC %d LEB %d:%d",
1428                pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1429
1430         ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1431
1432         err = sync_erase(ubi, e, wl_wrk->torture);
1433         if (!err) {
1434                 /* Fine, we've erased it successfully */
1435                 kfree(wl_wrk);
1436
1437                 spin_lock(&ubi->wl_lock);
1438                 wl_tree_add(e, &ubi->free);
1439                 ubi->free_count++;
1440                 spin_unlock(&ubi->wl_lock);
1441
1442                 /*
1443                  * One more erase operation has happened, take care about
1444                  * protected physical eraseblocks.
1445                  */
1446                 serve_prot_queue(ubi);
1447
1448                 /* And take care about wear-leveling */
1449                 err = ensure_wear_leveling(ubi, 1);
1450                 return err;
1451         }
1452
1453         ubi_err("failed to erase PEB %d, error %d", pnum, err);
1454         kfree(wl_wrk);
1455
1456         if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1457             err == -EBUSY) {
1458                 int err1;
1459
1460                 /* Re-schedule the LEB for erasure */
1461                 err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1462                 if (err1) {
1463                         err = err1;
1464                         goto out_ro;
1465                 }
1466                 return err;
1467         }
1468
1469         kmem_cache_free(ubi_wl_entry_slab, e);
1470         if (err != -EIO)
1471                 /*
1472                  * If this is not %-EIO, we have no idea what to do. Scheduling
1473                  * this physical eraseblock for erasure again would cause
1474                  * errors again and again. Well, lets switch to R/O mode.
1475                  */
1476                 goto out_ro;
1477
1478         /* It is %-EIO, the PEB went bad */
1479
1480         if (!ubi->bad_allowed) {
1481                 ubi_err("bad physical eraseblock %d detected", pnum);
1482                 goto out_ro;
1483         }
1484
1485         spin_lock(&ubi->volumes_lock);
1486         if (ubi->beb_rsvd_pebs == 0) {
1487                 if (ubi->avail_pebs == 0) {
1488                         spin_unlock(&ubi->volumes_lock);
1489                         ubi_err("no reserved/available physical eraseblocks");
1490                         goto out_ro;
1491                 }
1492                 ubi->avail_pebs -= 1;
1493                 available_consumed = 1;
1494         }
1495         spin_unlock(&ubi->volumes_lock);
1496
1497         ubi_msg("mark PEB %d as bad", pnum);
1498         err = ubi_io_mark_bad(ubi, pnum);
1499         if (err)
1500                 goto out_ro;
1501
1502         spin_lock(&ubi->volumes_lock);
1503         if (ubi->beb_rsvd_pebs > 0) {
1504                 if (available_consumed) {
1505                         /*
1506                          * The amount of reserved PEBs increased since we last
1507                          * checked.
1508                          */
1509                         ubi->avail_pebs += 1;
1510                         available_consumed = 0;
1511                 }
1512                 ubi->beb_rsvd_pebs -= 1;
1513         }
1514         ubi->bad_peb_count += 1;
1515         ubi->good_peb_count -= 1;
1516         ubi_calculate_reserved(ubi);
1517         if (available_consumed)
1518                 ubi_warn("no PEBs in the reserved pool, used an available PEB");
1519         else if (ubi->beb_rsvd_pebs)
1520                 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1521         else
1522                 ubi_warn("last PEB from the reserve was used");
1523         spin_unlock(&ubi->volumes_lock);
1524
1525         return err;
1526
1527 out_ro:
1528         if (available_consumed) {
1529                 spin_lock(&ubi->volumes_lock);
1530                 ubi->avail_pebs += 1;
1531                 spin_unlock(&ubi->volumes_lock);
1532         }
1533         ubi_ro_mode(ubi);
1534         return err;
1535 }
1536
1537 /**
1538  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1539  * @ubi: UBI device description object
1540  * @vol_id: the volume ID that last used this PEB
1541  * @lnum: the last used logical eraseblock number for the PEB
1542  * @pnum: physical eraseblock to return
1543  * @torture: if this physical eraseblock has to be tortured
1544  *
1545  * This function is called to return physical eraseblock @pnum to the pool of
1546  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1547  * occurred to this @pnum and it has to be tested. This function returns zero
1548  * in case of success, and a negative error code in case of failure.
1549  */
1550 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1551                    int pnum, int torture)
1552 {
1553         int err;
1554         struct ubi_wl_entry *e;
1555
1556         dbg_wl("PEB %d", pnum);
1557         ubi_assert(pnum >= 0);
1558         ubi_assert(pnum < ubi->peb_count);
1559
1560 retry:
1561         spin_lock(&ubi->wl_lock);
1562         e = ubi->lookuptbl[pnum];
1563         if (e == ubi->move_from) {
1564                 /*
1565                  * User is putting the physical eraseblock which was selected to
1566                  * be moved. It will be scheduled for erasure in the
1567                  * wear-leveling worker.
1568                  */
1569                 dbg_wl("PEB %d is being moved, wait", pnum);
1570                 spin_unlock(&ubi->wl_lock);
1571
1572                 /* Wait for the WL worker by taking the @ubi->move_mutex */
1573                 mutex_lock(&ubi->move_mutex);
1574                 mutex_unlock(&ubi->move_mutex);
1575                 goto retry;
1576         } else if (e == ubi->move_to) {
1577                 /*
1578                  * User is putting the physical eraseblock which was selected
1579                  * as the target the data is moved to. It may happen if the EBA
1580                  * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1581                  * but the WL sub-system has not put the PEB to the "used" tree
1582                  * yet, but it is about to do this. So we just set a flag which
1583                  * will tell the WL worker that the PEB is not needed anymore
1584                  * and should be scheduled for erasure.
1585                  */
1586                 dbg_wl("PEB %d is the target of data moving", pnum);
1587                 ubi_assert(!ubi->move_to_put);
1588                 ubi->move_to_put = 1;
1589                 spin_unlock(&ubi->wl_lock);
1590                 return 0;
1591         } else {
1592                 if (in_wl_tree(e, &ubi->used)) {
1593                         self_check_in_wl_tree(ubi, e, &ubi->used);
1594                         rb_erase(&e->u.rb, &ubi->used);
1595                 } else if (in_wl_tree(e, &ubi->scrub)) {
1596                         self_check_in_wl_tree(ubi, e, &ubi->scrub);
1597                         rb_erase(&e->u.rb, &ubi->scrub);
1598                 } else if (in_wl_tree(e, &ubi->erroneous)) {
1599                         self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1600                         rb_erase(&e->u.rb, &ubi->erroneous);
1601                         ubi->erroneous_peb_count -= 1;
1602                         ubi_assert(ubi->erroneous_peb_count >= 0);
1603                         /* Erroneous PEBs should be tortured */
1604                         torture = 1;
1605                 } else {
1606                         err = prot_queue_del(ubi, e->pnum);
1607                         if (err) {
1608                                 ubi_err("PEB %d not found", pnum);
1609                                 ubi_ro_mode(ubi);
1610                                 spin_unlock(&ubi->wl_lock);
1611                                 return err;
1612                         }
1613                 }
1614         }
1615         spin_unlock(&ubi->wl_lock);
1616
1617         err = schedule_erase(ubi, e, vol_id, lnum, torture);
1618         if (err) {
1619                 spin_lock(&ubi->wl_lock);
1620                 wl_tree_add(e, &ubi->used);
1621                 spin_unlock(&ubi->wl_lock);
1622         }
1623
1624         return err;
1625 }
1626
1627 /**
1628  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1629  * @ubi: UBI device description object
1630  * @pnum: the physical eraseblock to schedule
1631  *
1632  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1633  * needs scrubbing. This function schedules a physical eraseblock for
1634  * scrubbing which is done in background. This function returns zero in case of
1635  * success and a negative error code in case of failure.
1636  */
1637 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1638 {
1639         struct ubi_wl_entry *e;
1640
1641         ubi_msg("schedule PEB %d for scrubbing", pnum);
1642
1643 retry:
1644         spin_lock(&ubi->wl_lock);
1645         e = ubi->lookuptbl[pnum];
1646         if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1647                                    in_wl_tree(e, &ubi->erroneous)) {
1648                 spin_unlock(&ubi->wl_lock);
1649                 return 0;
1650         }
1651
1652         if (e == ubi->move_to) {
1653                 /*
1654                  * This physical eraseblock was used to move data to. The data
1655                  * was moved but the PEB was not yet inserted to the proper
1656                  * tree. We should just wait a little and let the WL worker
1657                  * proceed.
1658                  */
1659                 spin_unlock(&ubi->wl_lock);
1660                 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1661                 yield();
1662                 goto retry;
1663         }
1664
1665         if (in_wl_tree(e, &ubi->used)) {
1666                 self_check_in_wl_tree(ubi, e, &ubi->used);
1667                 rb_erase(&e->u.rb, &ubi->used);
1668         } else {
1669                 int err;
1670
1671                 err = prot_queue_del(ubi, e->pnum);
1672                 if (err) {
1673                         ubi_err("PEB %d not found", pnum);
1674                         ubi_ro_mode(ubi);
1675                         spin_unlock(&ubi->wl_lock);
1676                         return err;
1677                 }
1678         }
1679
1680         wl_tree_add(e, &ubi->scrub);
1681         spin_unlock(&ubi->wl_lock);
1682
1683         /*
1684          * Technically scrubbing is the same as wear-leveling, so it is done
1685          * by the WL worker.
1686          */
1687         return ensure_wear_leveling(ubi, 0);
1688 }
1689
1690 /**
1691  * ubi_wl_flush - flush all pending works.
1692  * @ubi: UBI device description object
1693  * @vol_id: the volume id to flush for
1694  * @lnum: the logical eraseblock number to flush for
1695  *
1696  * This function executes all pending works for a particular volume id /
1697  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1698  * acts as a wildcard for all of the corresponding volume numbers or logical
1699  * eraseblock numbers. It returns zero in case of success and a negative error
1700  * code in case of failure.
1701  */
1702 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1703 {
1704         int err = 0;
1705         int found = 1;
1706
1707         /*
1708          * Erase while the pending works queue is not empty, but not more than
1709          * the number of currently pending works.
1710          */
1711         dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1712                vol_id, lnum, ubi->works_count);
1713
1714         while (found) {
1715                 struct ubi_work *wrk;
1716                 found = 0;
1717
1718                 down_read(&ubi->work_sem);
1719                 spin_lock(&ubi->wl_lock);
1720                 list_for_each_entry(wrk, &ubi->works, list) {
1721                         if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1722                             (lnum == UBI_ALL || wrk->lnum == lnum)) {
1723                                 list_del(&wrk->list);
1724                                 ubi->works_count -= 1;
1725                                 ubi_assert(ubi->works_count >= 0);
1726                                 spin_unlock(&ubi->wl_lock);
1727
1728                                 err = wrk->func(ubi, wrk, 0);
1729                                 if (err) {
1730                                         up_read(&ubi->work_sem);
1731                                         return err;
1732                                 }
1733
1734                                 spin_lock(&ubi->wl_lock);
1735                                 found = 1;
1736                                 break;
1737                         }
1738                 }
1739                 spin_unlock(&ubi->wl_lock);
1740                 up_read(&ubi->work_sem);
1741         }
1742
1743         /*
1744          * Make sure all the works which have been done in parallel are
1745          * finished.
1746          */
1747         down_write(&ubi->work_sem);
1748         up_write(&ubi->work_sem);
1749
1750         return err;
1751 }
1752
1753 /**
1754  * tree_destroy - destroy an RB-tree.
1755  * @root: the root of the tree to destroy
1756  */
1757 static void tree_destroy(struct rb_root *root)
1758 {
1759         struct rb_node *rb;
1760         struct ubi_wl_entry *e;
1761
1762         rb = root->rb_node;
1763         while (rb) {
1764                 if (rb->rb_left)
1765                         rb = rb->rb_left;
1766                 else if (rb->rb_right)
1767                         rb = rb->rb_right;
1768                 else {
1769                         e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1770
1771                         rb = rb_parent(rb);
1772                         if (rb) {
1773                                 if (rb->rb_left == &e->u.rb)
1774                                         rb->rb_left = NULL;
1775                                 else
1776                                         rb->rb_right = NULL;
1777                         }
1778
1779                         kmem_cache_free(ubi_wl_entry_slab, e);
1780                 }
1781         }
1782 }
1783
1784 /**
1785  * ubi_thread - UBI background thread.
1786  * @u: the UBI device description object pointer
1787  */
1788 int ubi_thread(void *u)
1789 {
1790         int failures = 0;
1791         struct ubi_device *ubi = u;
1792
1793         ubi_msg("background thread \"%s\" started, PID %d",
1794                 ubi->bgt_name, task_pid_nr(current));
1795
1796         set_freezable();
1797         for (;;) {
1798                 int err;
1799
1800                 if (kthread_should_stop())
1801                         break;
1802
1803                 if (try_to_freeze())
1804                         continue;
1805
1806                 spin_lock(&ubi->wl_lock);
1807                 if (list_empty(&ubi->works) || ubi->ro_mode ||
1808                     !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1809                         set_current_state(TASK_INTERRUPTIBLE);
1810                         spin_unlock(&ubi->wl_lock);
1811                         schedule();
1812                         continue;
1813                 }
1814                 spin_unlock(&ubi->wl_lock);
1815
1816                 err = do_work(ubi);
1817                 if (err) {
1818                         ubi_err("%s: work failed with error code %d",
1819                                 ubi->bgt_name, err);
1820                         if (failures++ > WL_MAX_FAILURES) {
1821                                 /*
1822                                  * Too many failures, disable the thread and
1823                                  * switch to read-only mode.
1824                                  */
1825                                 ubi_msg("%s: %d consecutive failures",
1826                                         ubi->bgt_name, WL_MAX_FAILURES);
1827                                 ubi_ro_mode(ubi);
1828                                 ubi->thread_enabled = 0;
1829                                 continue;
1830                         }
1831                 } else
1832                         failures = 0;
1833
1834                 cond_resched();
1835         }
1836
1837         dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1838         return 0;
1839 }
1840
1841 /**
1842  * cancel_pending - cancel all pending works.
1843  * @ubi: UBI device description object
1844  */
1845 static void cancel_pending(struct ubi_device *ubi)
1846 {
1847         while (!list_empty(&ubi->works)) {
1848                 struct ubi_work *wrk;
1849
1850                 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1851                 list_del(&wrk->list);
1852                 wrk->func(ubi, wrk, 1);
1853                 ubi->works_count -= 1;
1854                 ubi_assert(ubi->works_count >= 0);
1855         }
1856 }
1857
1858 /**
1859  * ubi_wl_init - initialize the WL sub-system using attaching information.
1860  * @ubi: UBI device description object
1861  * @ai: attaching information
1862  *
1863  * This function returns zero in case of success, and a negative error code in
1864  * case of failure.
1865  */
1866 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1867 {
1868         int err, i, reserved_pebs, found_pebs = 0;
1869         struct rb_node *rb1, *rb2;
1870         struct ubi_ainf_volume *av;
1871         struct ubi_ainf_peb *aeb, *tmp;
1872         struct ubi_wl_entry *e;
1873
1874         ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1875         spin_lock_init(&ubi->wl_lock);
1876         mutex_init(&ubi->move_mutex);
1877         init_rwsem(&ubi->work_sem);
1878         ubi->max_ec = ai->max_ec;
1879         INIT_LIST_HEAD(&ubi->works);
1880 #ifdef CONFIG_MTD_UBI_FASTMAP
1881         INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1882 #endif
1883
1884         sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1885
1886         err = -ENOMEM;
1887         ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1888         if (!ubi->lookuptbl)
1889                 return err;
1890
1891         for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1892                 INIT_LIST_HEAD(&ubi->pq[i]);
1893         ubi->pq_head = 0;
1894
1895         list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1896                 cond_resched();
1897
1898                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1899                 if (!e)
1900                         goto out_free;
1901
1902                 e->pnum = aeb->pnum;
1903                 e->ec = aeb->ec;
1904                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1905                 ubi->lookuptbl[e->pnum] = e;
1906                 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1907                         kmem_cache_free(ubi_wl_entry_slab, e);
1908                         goto out_free;
1909                 }
1910
1911                 found_pebs++;
1912         }
1913
1914         ubi->free_count = 0;
1915         list_for_each_entry(aeb, &ai->free, u.list) {
1916                 cond_resched();
1917
1918                 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1919                 if (!e)
1920                         goto out_free;
1921
1922                 e->pnum = aeb->pnum;
1923                 e->ec = aeb->ec;
1924                 ubi_assert(e->ec >= 0);
1925                 ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1926
1927                 wl_tree_add(e, &ubi->free);
1928                 ubi->free_count++;
1929
1930                 ubi->lookuptbl[e->pnum] = e;
1931
1932                 found_pebs++;
1933         }
1934
1935         ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1936                 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1937                         cond_resched();
1938
1939                         e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1940                         if (!e)
1941                                 goto out_free;
1942
1943                         e->pnum = aeb->pnum;
1944                         e->ec = aeb->ec;
1945                         ubi->lookuptbl[e->pnum] = e;
1946
1947                         if (!aeb->scrub) {
1948                                 dbg_wl("add PEB %d EC %d to the used tree",
1949                                        e->pnum, e->ec);
1950                                 wl_tree_add(e, &ubi->used);
1951                         } else {
1952                                 dbg_wl("add PEB %d EC %d to the scrub tree",
1953                                        e->pnum, e->ec);
1954                                 wl_tree_add(e, &ubi->scrub);
1955                         }
1956
1957                         found_pebs++;
1958                 }
1959         }
1960
1961         dbg_wl("found %i PEBs", found_pebs);
1962
1963         if (ubi->fm)
1964                 ubi_assert(ubi->good_peb_count == \
1965                            found_pebs + ubi->fm->used_blocks);
1966         else
1967                 ubi_assert(ubi->good_peb_count == found_pebs);
1968
1969         reserved_pebs = WL_RESERVED_PEBS;
1970 #ifdef CONFIG_MTD_UBI_FASTMAP
1971         /* Reserve enough LEBs to store two fastmaps. */
1972         reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1973 #endif
1974
1975         if (ubi->avail_pebs < reserved_pebs) {
1976                 ubi_err("no enough physical eraseblocks (%d, need %d)",
1977                         ubi->avail_pebs, reserved_pebs);
1978                 if (ubi->corr_peb_count)
1979                         ubi_err("%d PEBs are corrupted and not used",
1980                                 ubi->corr_peb_count);
1981                 goto out_free;
1982         }
1983         ubi->avail_pebs -= reserved_pebs;
1984         ubi->rsvd_pebs += reserved_pebs;
1985
1986         /* Schedule wear-leveling if needed */
1987         err = ensure_wear_leveling(ubi, 0);
1988         if (err)
1989                 goto out_free;
1990
1991         return 0;
1992
1993 out_free:
1994         cancel_pending(ubi);
1995         tree_destroy(&ubi->used);
1996         tree_destroy(&ubi->free);
1997         tree_destroy(&ubi->scrub);
1998         kfree(ubi->lookuptbl);
1999         return err;
2000 }
2001
2002 /**
2003  * protection_queue_destroy - destroy the protection queue.
2004  * @ubi: UBI device description object
2005  */
2006 static void protection_queue_destroy(struct ubi_device *ubi)
2007 {
2008         int i;
2009         struct ubi_wl_entry *e, *tmp;
2010
2011         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2012                 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2013                         list_del(&e->u.list);
2014                         kmem_cache_free(ubi_wl_entry_slab, e);
2015                 }
2016         }
2017 }
2018
2019 /**
2020  * ubi_wl_close - close the wear-leveling sub-system.
2021  * @ubi: UBI device description object
2022  */
2023 void ubi_wl_close(struct ubi_device *ubi)
2024 {
2025         dbg_wl("close the WL sub-system");
2026         cancel_pending(ubi);
2027         protection_queue_destroy(ubi);
2028         tree_destroy(&ubi->used);
2029         tree_destroy(&ubi->erroneous);
2030         tree_destroy(&ubi->free);
2031         tree_destroy(&ubi->scrub);
2032         kfree(ubi->lookuptbl);
2033 }
2034
2035 /**
2036  * self_check_ec - make sure that the erase counter of a PEB is correct.
2037  * @ubi: UBI device description object
2038  * @pnum: the physical eraseblock number to check
2039  * @ec: the erase counter to check
2040  *
2041  * This function returns zero if the erase counter of physical eraseblock @pnum
2042  * is equivalent to @ec, and a negative error code if not or if an error
2043  * occurred.
2044  */
2045 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2046 {
2047         int err;
2048         long long read_ec;
2049         struct ubi_ec_hdr *ec_hdr;
2050
2051         if (!ubi_dbg_chk_gen(ubi))
2052                 return 0;
2053
2054         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2055         if (!ec_hdr)
2056                 return -ENOMEM;
2057
2058         err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2059         if (err && err != UBI_IO_BITFLIPS) {
2060                 /* The header does not have to exist */
2061                 err = 0;
2062                 goto out_free;
2063         }
2064
2065         read_ec = be64_to_cpu(ec_hdr->ec);
2066         if (ec != read_ec && read_ec - ec > 1) {
2067                 ubi_err("self-check failed for PEB %d", pnum);
2068                 ubi_err("read EC is %lld, should be %d", read_ec, ec);
2069                 dump_stack();
2070                 err = 1;
2071         } else
2072                 err = 0;
2073
2074 out_free:
2075         kfree(ec_hdr);
2076         return err;
2077 }
2078
2079 /**
2080  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2081  * @ubi: UBI device description object
2082  * @e: the wear-leveling entry to check
2083  * @root: the root of the tree
2084  *
2085  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2086  * is not.
2087  */
2088 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2089                                  struct ubi_wl_entry *e, struct rb_root *root)
2090 {
2091         if (!ubi_dbg_chk_gen(ubi))
2092                 return 0;
2093
2094         if (in_wl_tree(e, root))
2095                 return 0;
2096
2097         ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2098                 e->pnum, e->ec, root);
2099         dump_stack();
2100         return -EINVAL;
2101 }
2102
2103 /**
2104  * self_check_in_pq - check if wear-leveling entry is in the protection
2105  *                        queue.
2106  * @ubi: UBI device description object
2107  * @e: the wear-leveling entry to check
2108  *
2109  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2110  */
2111 static int self_check_in_pq(const struct ubi_device *ubi,
2112                             struct ubi_wl_entry *e)
2113 {
2114         struct ubi_wl_entry *p;
2115         int i;
2116
2117         if (!ubi_dbg_chk_gen(ubi))
2118                 return 0;
2119
2120         for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2121                 list_for_each_entry(p, &ubi->pq[i], u.list)
2122                         if (p == e)
2123                                 return 0;
2124
2125         ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2126                 e->pnum, e->ec);
2127         dump_stack();
2128         return -EINVAL;
2129 }