]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/net/e1000e/netdev.c
IB/ipath: Fix receiving UD messages with immediate data
[karo-tx-linux.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46
47 #include "e1000.h"
48
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
52
53 static const struct e1000_info *e1000_info_tbl[] = {
54         [board_82571]           = &e1000_82571_info,
55         [board_82572]           = &e1000_82572_info,
56         [board_82573]           = &e1000_82573_info,
57         [board_80003es2lan]     = &e1000_es2_info,
58         [board_ich8lan]         = &e1000_ich8_info,
59         [board_ich9lan]         = &e1000_ich9_info,
60 };
61
62 #ifdef DEBUG
63 /**
64  * e1000_get_hw_dev_name - return device name string
65  * used by hardware layer to print debugging information
66  **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68 {
69         return hw->adapter->netdev->name;
70 }
71 #endif
72
73 /**
74  * e1000_desc_unused - calculate if we have unused descriptors
75  **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
77 {
78         if (ring->next_to_clean > ring->next_to_use)
79                 return ring->next_to_clean - ring->next_to_use - 1;
80
81         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82 }
83
84 /**
85  * e1000_receive_skb - helper function to handle rx indications
86  * @adapter: board private structure
87  * @status: descriptor status field as written by hardware
88  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89  * @skb: pointer to sk_buff to be indicated to stack
90  **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92                               struct net_device *netdev,
93                               struct sk_buff *skb,
94                               u8 status, u16 vlan)
95 {
96         skb->protocol = eth_type_trans(skb, netdev);
97
98         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100                                          le16_to_cpu(vlan) &
101                                          E1000_RXD_SPC_VLAN_MASK);
102         else
103                 netif_receive_skb(skb);
104
105         netdev->last_rx = jiffies;
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /* IP fragment with UDP payload */
142                 /* Hardware complements the payload checksum, so we undo it
143                  * and then put the value in host order for further stack use.
144                  */
145                 csum = ntohl(csum ^ 0xFFFF);
146                 skb->csum = csum;
147                 skb->ip_summed = CHECKSUM_COMPLETE;
148         }
149         adapter->hw_csum_good++;
150 }
151
152 /**
153  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154  * @adapter: address of board private structure
155  **/
156 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157                                    int cleaned_count)
158 {
159         struct net_device *netdev = adapter->netdev;
160         struct pci_dev *pdev = adapter->pdev;
161         struct e1000_ring *rx_ring = adapter->rx_ring;
162         struct e1000_rx_desc *rx_desc;
163         struct e1000_buffer *buffer_info;
164         struct sk_buff *skb;
165         unsigned int i;
166         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168         i = rx_ring->next_to_use;
169         buffer_info = &rx_ring->buffer_info[i];
170
171         while (cleaned_count--) {
172                 skb = buffer_info->skb;
173                 if (skb) {
174                         skb_trim(skb, 0);
175                         goto map_skb;
176                 }
177
178                 skb = netdev_alloc_skb(netdev, bufsz);
179                 if (!skb) {
180                         /* Better luck next round */
181                         adapter->alloc_rx_buff_failed++;
182                         break;
183                 }
184
185                 /* Make buffer alignment 2 beyond a 16 byte boundary
186                  * this will result in a 16 byte aligned IP header after
187                  * the 14 byte MAC header is removed
188                  */
189                 skb_reserve(skb, NET_IP_ALIGN);
190
191                 buffer_info->skb = skb;
192 map_skb:
193                 buffer_info->dma = pci_map_single(pdev, skb->data,
194                                                   adapter->rx_buffer_len,
195                                                   PCI_DMA_FROMDEVICE);
196                 if (pci_dma_mapping_error(buffer_info->dma)) {
197                         dev_err(&pdev->dev, "RX DMA map failed\n");
198                         adapter->rx_dma_failed++;
199                         break;
200                 }
201
202                 rx_desc = E1000_RX_DESC(*rx_ring, i);
203                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205                 i++;
206                 if (i == rx_ring->count)
207                         i = 0;
208                 buffer_info = &rx_ring->buffer_info[i];
209         }
210
211         if (rx_ring->next_to_use != i) {
212                 rx_ring->next_to_use = i;
213                 if (i-- == 0)
214                         i = (rx_ring->count - 1);
215
216                 /* Force memory writes to complete before letting h/w
217                  * know there are new descriptors to fetch.  (Only
218                  * applicable for weak-ordered memory model archs,
219                  * such as IA-64). */
220                 wmb();
221                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222         }
223 }
224
225 /**
226  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227  * @adapter: address of board private structure
228  **/
229 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230                                       int cleaned_count)
231 {
232         struct net_device *netdev = adapter->netdev;
233         struct pci_dev *pdev = adapter->pdev;
234         union e1000_rx_desc_packet_split *rx_desc;
235         struct e1000_ring *rx_ring = adapter->rx_ring;
236         struct e1000_buffer *buffer_info;
237         struct e1000_ps_page *ps_page;
238         struct sk_buff *skb;
239         unsigned int i, j;
240
241         i = rx_ring->next_to_use;
242         buffer_info = &rx_ring->buffer_info[i];
243
244         while (cleaned_count--) {
245                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
248                         ps_page = &buffer_info->ps_pages[j];
249                         if (j >= adapter->rx_ps_pages) {
250                                 /* all unused desc entries get hw null ptr */
251                                 rx_desc->read.buffer_addr[j+1] = ~0;
252                                 continue;
253                         }
254                         if (!ps_page->page) {
255                                 ps_page->page = alloc_page(GFP_ATOMIC);
256                                 if (!ps_page->page) {
257                                         adapter->alloc_rx_buff_failed++;
258                                         goto no_buffers;
259                                 }
260                                 ps_page->dma = pci_map_page(pdev,
261                                                    ps_page->page,
262                                                    0, PAGE_SIZE,
263                                                    PCI_DMA_FROMDEVICE);
264                                 if (pci_dma_mapping_error(ps_page->dma)) {
265                                         dev_err(&adapter->pdev->dev,
266                                           "RX DMA page map failed\n");
267                                         adapter->rx_dma_failed++;
268                                         goto no_buffers;
269                                 }
270                         }
271                         /*
272                          * Refresh the desc even if buffer_addrs
273                          * didn't change because each write-back
274                          * erases this info.
275                          */
276                         rx_desc->read.buffer_addr[j+1] =
277                              cpu_to_le64(ps_page->dma);
278                 }
279
280                 skb = netdev_alloc_skb(netdev,
281                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283                 if (!skb) {
284                         adapter->alloc_rx_buff_failed++;
285                         break;
286                 }
287
288                 /* Make buffer alignment 2 beyond a 16 byte boundary
289                  * this will result in a 16 byte aligned IP header after
290                  * the 14 byte MAC header is removed
291                  */
292                 skb_reserve(skb, NET_IP_ALIGN);
293
294                 buffer_info->skb = skb;
295                 buffer_info->dma = pci_map_single(pdev, skb->data,
296                                                   adapter->rx_ps_bsize0,
297                                                   PCI_DMA_FROMDEVICE);
298                 if (pci_dma_mapping_error(buffer_info->dma)) {
299                         dev_err(&pdev->dev, "RX DMA map failed\n");
300                         adapter->rx_dma_failed++;
301                         /* cleanup skb */
302                         dev_kfree_skb_any(skb);
303                         buffer_info->skb = NULL;
304                         break;
305                 }
306
307                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309                 i++;
310                 if (i == rx_ring->count)
311                         i = 0;
312                 buffer_info = &rx_ring->buffer_info[i];
313         }
314
315 no_buffers:
316         if (rx_ring->next_to_use != i) {
317                 rx_ring->next_to_use = i;
318
319                 if (!(i--))
320                         i = (rx_ring->count - 1);
321
322                 /* Force memory writes to complete before letting h/w
323                  * know there are new descriptors to fetch.  (Only
324                  * applicable for weak-ordered memory model archs,
325                  * such as IA-64). */
326                 wmb();
327                 /* Hardware increments by 16 bytes, but packet split
328                  * descriptors are 32 bytes...so we increment tail
329                  * twice as much.
330                  */
331                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332         }
333 }
334
335 /**
336  * e1000_clean_rx_irq - Send received data up the network stack; legacy
337  * @adapter: board private structure
338  *
339  * the return value indicates whether actual cleaning was done, there
340  * is no guarantee that everything was cleaned
341  **/
342 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343                                int *work_done, int work_to_do)
344 {
345         struct net_device *netdev = adapter->netdev;
346         struct pci_dev *pdev = adapter->pdev;
347         struct e1000_ring *rx_ring = adapter->rx_ring;
348         struct e1000_rx_desc *rx_desc, *next_rxd;
349         struct e1000_buffer *buffer_info, *next_buffer;
350         u32 length;
351         unsigned int i;
352         int cleaned_count = 0;
353         bool cleaned = 0;
354         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356         i = rx_ring->next_to_clean;
357         rx_desc = E1000_RX_DESC(*rx_ring, i);
358         buffer_info = &rx_ring->buffer_info[i];
359
360         while (rx_desc->status & E1000_RXD_STAT_DD) {
361                 struct sk_buff *skb;
362                 u8 status;
363
364                 if (*work_done >= work_to_do)
365                         break;
366                 (*work_done)++;
367
368                 status = rx_desc->status;
369                 skb = buffer_info->skb;
370                 buffer_info->skb = NULL;
371
372                 prefetch(skb->data - NET_IP_ALIGN);
373
374                 i++;
375                 if (i == rx_ring->count)
376                         i = 0;
377                 next_rxd = E1000_RX_DESC(*rx_ring, i);
378                 prefetch(next_rxd);
379
380                 next_buffer = &rx_ring->buffer_info[i];
381
382                 cleaned = 1;
383                 cleaned_count++;
384                 pci_unmap_single(pdev,
385                                  buffer_info->dma,
386                                  adapter->rx_buffer_len,
387                                  PCI_DMA_FROMDEVICE);
388                 buffer_info->dma = 0;
389
390                 length = le16_to_cpu(rx_desc->length);
391
392                 /* !EOP means multiple descriptors were used to store a single
393                  * packet, also make sure the frame isn't just CRC only */
394                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395                         /* All receives must fit into a single buffer */
396                         ndev_dbg(netdev, "%s: Receive packet consumed "
397                                  "multiple buffers\n", netdev->name);
398                         /* recycle */
399                         buffer_info->skb = skb;
400                         goto next_desc;
401                 }
402
403                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404                         /* recycle */
405                         buffer_info->skb = skb;
406                         goto next_desc;
407                 }
408
409                 total_rx_bytes += length;
410                 total_rx_packets++;
411
412                 /* code added for copybreak, this should improve
413                  * performance for small packets with large amounts
414                  * of reassembly being done in the stack */
415                 if (length < copybreak) {
416                         struct sk_buff *new_skb =
417                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418                         if (new_skb) {
419                                 skb_reserve(new_skb, NET_IP_ALIGN);
420                                 memcpy(new_skb->data - NET_IP_ALIGN,
421                                        skb->data - NET_IP_ALIGN,
422                                        length + NET_IP_ALIGN);
423                                 /* save the skb in buffer_info as good */
424                                 buffer_info->skb = skb;
425                                 skb = new_skb;
426                         }
427                         /* else just continue with the old one */
428                 }
429                 /* end copybreak code */
430                 skb_put(skb, length);
431
432                 /* Receive Checksum Offload */
433                 e1000_rx_checksum(adapter,
434                                   (u32)(status) |
435                                   ((u32)(rx_desc->errors) << 24),
436                                   le16_to_cpu(rx_desc->csum), skb);
437
438                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440 next_desc:
441                 rx_desc->status = 0;
442
443                 /* return some buffers to hardware, one at a time is too slow */
444                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445                         adapter->alloc_rx_buf(adapter, cleaned_count);
446                         cleaned_count = 0;
447                 }
448
449                 /* use prefetched values */
450                 rx_desc = next_rxd;
451                 buffer_info = next_buffer;
452         }
453         rx_ring->next_to_clean = i;
454
455         cleaned_count = e1000_desc_unused(rx_ring);
456         if (cleaned_count)
457                 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459         adapter->total_rx_packets += total_rx_packets;
460         adapter->total_rx_bytes += total_rx_bytes;
461         return cleaned;
462 }
463
464 static void e1000_put_txbuf(struct e1000_adapter *adapter,
465                              struct e1000_buffer *buffer_info)
466 {
467         if (buffer_info->dma) {
468                 pci_unmap_page(adapter->pdev, buffer_info->dma,
469                                buffer_info->length, PCI_DMA_TODEVICE);
470                 buffer_info->dma = 0;
471         }
472         if (buffer_info->skb) {
473                 dev_kfree_skb_any(buffer_info->skb);
474                 buffer_info->skb = NULL;
475         }
476 }
477
478 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
479 {
480         struct e1000_ring *tx_ring = adapter->tx_ring;
481         unsigned int i = tx_ring->next_to_clean;
482         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
483         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
484         struct net_device *netdev = adapter->netdev;
485
486         /* detected Tx unit hang */
487         ndev_err(netdev,
488                  "Detected Tx Unit Hang:\n"
489                  "  TDH                  <%x>\n"
490                  "  TDT                  <%x>\n"
491                  "  next_to_use          <%x>\n"
492                  "  next_to_clean        <%x>\n"
493                  "buffer_info[next_to_clean]:\n"
494                  "  time_stamp           <%lx>\n"
495                  "  next_to_watch        <%x>\n"
496                  "  jiffies              <%lx>\n"
497                  "  next_to_watch.status <%x>\n",
498                  readl(adapter->hw.hw_addr + tx_ring->head),
499                  readl(adapter->hw.hw_addr + tx_ring->tail),
500                  tx_ring->next_to_use,
501                  tx_ring->next_to_clean,
502                  tx_ring->buffer_info[eop].time_stamp,
503                  eop,
504                  jiffies,
505                  eop_desc->upper.fields.status);
506 }
507
508 /**
509  * e1000_clean_tx_irq - Reclaim resources after transmit completes
510  * @adapter: board private structure
511  *
512  * the return value indicates whether actual cleaning was done, there
513  * is no guarantee that everything was cleaned
514  **/
515 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
516 {
517         struct net_device *netdev = adapter->netdev;
518         struct e1000_hw *hw = &adapter->hw;
519         struct e1000_ring *tx_ring = adapter->tx_ring;
520         struct e1000_tx_desc *tx_desc, *eop_desc;
521         struct e1000_buffer *buffer_info;
522         unsigned int i, eop;
523         unsigned int count = 0;
524         bool cleaned = 0;
525         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
526
527         i = tx_ring->next_to_clean;
528         eop = tx_ring->buffer_info[i].next_to_watch;
529         eop_desc = E1000_TX_DESC(*tx_ring, eop);
530
531         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
532                 for (cleaned = 0; !cleaned; ) {
533                         tx_desc = E1000_TX_DESC(*tx_ring, i);
534                         buffer_info = &tx_ring->buffer_info[i];
535                         cleaned = (i == eop);
536
537                         if (cleaned) {
538                                 struct sk_buff *skb = buffer_info->skb;
539                                 unsigned int segs, bytecount;
540                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
541                                 /* multiply data chunks by size of headers */
542                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
543                                             skb->len;
544                                 total_tx_packets += segs;
545                                 total_tx_bytes += bytecount;
546                         }
547
548                         e1000_put_txbuf(adapter, buffer_info);
549                         tx_desc->upper.data = 0;
550
551                         i++;
552                         if (i == tx_ring->count)
553                                 i = 0;
554                 }
555
556                 eop = tx_ring->buffer_info[i].next_to_watch;
557                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
558 #define E1000_TX_WEIGHT 64
559                 /* weight of a sort for tx, to avoid endless transmit cleanup */
560                 if (count++ == E1000_TX_WEIGHT)
561                         break;
562         }
563
564         tx_ring->next_to_clean = i;
565
566 #define TX_WAKE_THRESHOLD 32
567         if (cleaned && netif_carrier_ok(netdev) &&
568                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
569                 /* Make sure that anybody stopping the queue after this
570                  * sees the new next_to_clean.
571                  */
572                 smp_mb();
573
574                 if (netif_queue_stopped(netdev) &&
575                     !(test_bit(__E1000_DOWN, &adapter->state))) {
576                         netif_wake_queue(netdev);
577                         ++adapter->restart_queue;
578                 }
579         }
580
581         if (adapter->detect_tx_hung) {
582                 /* Detect a transmit hang in hardware, this serializes the
583                  * check with the clearing of time_stamp and movement of i */
584                 adapter->detect_tx_hung = 0;
585                 if (tx_ring->buffer_info[eop].dma &&
586                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
587                                + (adapter->tx_timeout_factor * HZ))
588                     && !(er32(STATUS) &
589                          E1000_STATUS_TXOFF)) {
590                         e1000_print_tx_hang(adapter);
591                         netif_stop_queue(netdev);
592                 }
593         }
594         adapter->total_tx_bytes += total_tx_bytes;
595         adapter->total_tx_packets += total_tx_packets;
596         return cleaned;
597 }
598
599 /**
600  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
601  * @adapter: board private structure
602  *
603  * the return value indicates whether actual cleaning was done, there
604  * is no guarantee that everything was cleaned
605  **/
606 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
607                                   int *work_done, int work_to_do)
608 {
609         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
610         struct net_device *netdev = adapter->netdev;
611         struct pci_dev *pdev = adapter->pdev;
612         struct e1000_ring *rx_ring = adapter->rx_ring;
613         struct e1000_buffer *buffer_info, *next_buffer;
614         struct e1000_ps_page *ps_page;
615         struct sk_buff *skb;
616         unsigned int i, j;
617         u32 length, staterr;
618         int cleaned_count = 0;
619         bool cleaned = 0;
620         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
621
622         i = rx_ring->next_to_clean;
623         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
624         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
625         buffer_info = &rx_ring->buffer_info[i];
626
627         while (staterr & E1000_RXD_STAT_DD) {
628                 if (*work_done >= work_to_do)
629                         break;
630                 (*work_done)++;
631                 skb = buffer_info->skb;
632
633                 /* in the packet split case this is header only */
634                 prefetch(skb->data - NET_IP_ALIGN);
635
636                 i++;
637                 if (i == rx_ring->count)
638                         i = 0;
639                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
640                 prefetch(next_rxd);
641
642                 next_buffer = &rx_ring->buffer_info[i];
643
644                 cleaned = 1;
645                 cleaned_count++;
646                 pci_unmap_single(pdev, buffer_info->dma,
647                                  adapter->rx_ps_bsize0,
648                                  PCI_DMA_FROMDEVICE);
649                 buffer_info->dma = 0;
650
651                 if (!(staterr & E1000_RXD_STAT_EOP)) {
652                         ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
653                                  "up the full packet\n", netdev->name);
654                         dev_kfree_skb_irq(skb);
655                         goto next_desc;
656                 }
657
658                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
659                         dev_kfree_skb_irq(skb);
660                         goto next_desc;
661                 }
662
663                 length = le16_to_cpu(rx_desc->wb.middle.length0);
664
665                 if (!length) {
666                         ndev_dbg(netdev, "%s: Last part of the packet spanning"
667                                  " multiple descriptors\n", netdev->name);
668                         dev_kfree_skb_irq(skb);
669                         goto next_desc;
670                 }
671
672                 /* Good Receive */
673                 skb_put(skb, length);
674
675                 {
676                 /* this looks ugly, but it seems compiler issues make it
677                    more efficient than reusing j */
678                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
679
680                 /* page alloc/put takes too long and effects small packet
681                  * throughput, so unsplit small packets and save the alloc/put*/
682                 if (l1 && (l1 <= copybreak) &&
683                     ((length + l1) <= adapter->rx_ps_bsize0)) {
684                         u8 *vaddr;
685
686                         ps_page = &buffer_info->ps_pages[0];
687
688                         /* there is no documentation about how to call
689                          * kmap_atomic, so we can't hold the mapping
690                          * very long */
691                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
692                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
693                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
694                         memcpy(skb_tail_pointer(skb), vaddr, l1);
695                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
696                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
697                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
698
699                         skb_put(skb, l1);
700                         goto copydone;
701                 } /* if */
702                 }
703
704                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
705                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
706                         if (!length)
707                                 break;
708
709                         ps_page = &buffer_info->ps_pages[j];
710                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
711                                        PCI_DMA_FROMDEVICE);
712                         ps_page->dma = 0;
713                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
714                         ps_page->page = NULL;
715                         skb->len += length;
716                         skb->data_len += length;
717                         skb->truesize += length;
718                 }
719
720 copydone:
721                 total_rx_bytes += skb->len;
722                 total_rx_packets++;
723
724                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
725                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
726
727                 if (rx_desc->wb.upper.header_status &
728                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
729                         adapter->rx_hdr_split++;
730
731                 e1000_receive_skb(adapter, netdev, skb,
732                                   staterr, rx_desc->wb.middle.vlan);
733
734 next_desc:
735                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
736                 buffer_info->skb = NULL;
737
738                 /* return some buffers to hardware, one at a time is too slow */
739                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
740                         adapter->alloc_rx_buf(adapter, cleaned_count);
741                         cleaned_count = 0;
742                 }
743
744                 /* use prefetched values */
745                 rx_desc = next_rxd;
746                 buffer_info = next_buffer;
747
748                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
749         }
750         rx_ring->next_to_clean = i;
751
752         cleaned_count = e1000_desc_unused(rx_ring);
753         if (cleaned_count)
754                 adapter->alloc_rx_buf(adapter, cleaned_count);
755
756         adapter->total_rx_packets += total_rx_packets;
757         adapter->total_rx_bytes += total_rx_bytes;
758         return cleaned;
759 }
760
761 /**
762  * e1000_clean_rx_ring - Free Rx Buffers per Queue
763  * @adapter: board private structure
764  **/
765 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
766 {
767         struct e1000_ring *rx_ring = adapter->rx_ring;
768         struct e1000_buffer *buffer_info;
769         struct e1000_ps_page *ps_page;
770         struct pci_dev *pdev = adapter->pdev;
771         unsigned int i, j;
772
773         /* Free all the Rx ring sk_buffs */
774         for (i = 0; i < rx_ring->count; i++) {
775                 buffer_info = &rx_ring->buffer_info[i];
776                 if (buffer_info->dma) {
777                         if (adapter->clean_rx == e1000_clean_rx_irq)
778                                 pci_unmap_single(pdev, buffer_info->dma,
779                                                  adapter->rx_buffer_len,
780                                                  PCI_DMA_FROMDEVICE);
781                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
782                                 pci_unmap_single(pdev, buffer_info->dma,
783                                                  adapter->rx_ps_bsize0,
784                                                  PCI_DMA_FROMDEVICE);
785                         buffer_info->dma = 0;
786                 }
787
788                 if (buffer_info->skb) {
789                         dev_kfree_skb(buffer_info->skb);
790                         buffer_info->skb = NULL;
791                 }
792
793                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
794                         ps_page = &buffer_info->ps_pages[j];
795                         if (!ps_page->page)
796                                 break;
797                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
798                                        PCI_DMA_FROMDEVICE);
799                         ps_page->dma = 0;
800                         put_page(ps_page->page);
801                         ps_page->page = NULL;
802                 }
803         }
804
805         /* there also may be some cached data from a chained receive */
806         if (rx_ring->rx_skb_top) {
807                 dev_kfree_skb(rx_ring->rx_skb_top);
808                 rx_ring->rx_skb_top = NULL;
809         }
810
811         /* Zero out the descriptor ring */
812         memset(rx_ring->desc, 0, rx_ring->size);
813
814         rx_ring->next_to_clean = 0;
815         rx_ring->next_to_use = 0;
816
817         writel(0, adapter->hw.hw_addr + rx_ring->head);
818         writel(0, adapter->hw.hw_addr + rx_ring->tail);
819 }
820
821 /**
822  * e1000_intr_msi - Interrupt Handler
823  * @irq: interrupt number
824  * @data: pointer to a network interface device structure
825  **/
826 static irqreturn_t e1000_intr_msi(int irq, void *data)
827 {
828         struct net_device *netdev = data;
829         struct e1000_adapter *adapter = netdev_priv(netdev);
830         struct e1000_hw *hw = &adapter->hw;
831         u32 icr = er32(ICR);
832
833         /* read ICR disables interrupts using IAM, so keep up with our
834          * enable/disable accounting */
835         atomic_inc(&adapter->irq_sem);
836
837         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
838                 hw->mac.get_link_status = 1;
839                 /* ICH8 workaround-- Call gig speed drop workaround on cable
840                  * disconnect (LSC) before accessing any PHY registers */
841                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
842                     (!(er32(STATUS) & E1000_STATUS_LU)))
843                         e1000e_gig_downshift_workaround_ich8lan(hw);
844
845                 /* 80003ES2LAN workaround-- For packet buffer work-around on
846                  * link down event; disable receives here in the ISR and reset
847                  * adapter in watchdog */
848                 if (netif_carrier_ok(netdev) &&
849                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
850                         /* disable receives */
851                         u32 rctl = er32(RCTL);
852                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
853                 }
854                 /* guard against interrupt when we're going down */
855                 if (!test_bit(__E1000_DOWN, &adapter->state))
856                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
857         }
858
859         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
860                 adapter->total_tx_bytes = 0;
861                 adapter->total_tx_packets = 0;
862                 adapter->total_rx_bytes = 0;
863                 adapter->total_rx_packets = 0;
864                 __netif_rx_schedule(netdev, &adapter->napi);
865         } else {
866                 atomic_dec(&adapter->irq_sem);
867         }
868
869         return IRQ_HANDLED;
870 }
871
872 /**
873  * e1000_intr - Interrupt Handler
874  * @irq: interrupt number
875  * @data: pointer to a network interface device structure
876  **/
877 static irqreturn_t e1000_intr(int irq, void *data)
878 {
879         struct net_device *netdev = data;
880         struct e1000_adapter *adapter = netdev_priv(netdev);
881         struct e1000_hw *hw = &adapter->hw;
882
883         u32 rctl, icr = er32(ICR);
884         if (!icr)
885                 return IRQ_NONE;  /* Not our interrupt */
886
887         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
888          * not set, then the adapter didn't send an interrupt */
889         if (!(icr & E1000_ICR_INT_ASSERTED))
890                 return IRQ_NONE;
891
892         /* Interrupt Auto-Mask...upon reading ICR,
893          * interrupts are masked.  No need for the
894          * IMC write, but it does mean we should
895          * account for it ASAP. */
896         atomic_inc(&adapter->irq_sem);
897
898         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
899                 hw->mac.get_link_status = 1;
900                 /* ICH8 workaround-- Call gig speed drop workaround on cable
901                  * disconnect (LSC) before accessing any PHY registers */
902                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
903                     (!(er32(STATUS) & E1000_STATUS_LU)))
904                         e1000e_gig_downshift_workaround_ich8lan(hw);
905
906                 /* 80003ES2LAN workaround--
907                  * For packet buffer work-around on link down event;
908                  * disable receives here in the ISR and
909                  * reset adapter in watchdog
910                  */
911                 if (netif_carrier_ok(netdev) &&
912                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
913                         /* disable receives */
914                         rctl = er32(RCTL);
915                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
916                 }
917                 /* guard against interrupt when we're going down */
918                 if (!test_bit(__E1000_DOWN, &adapter->state))
919                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
920         }
921
922         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
923                 adapter->total_tx_bytes = 0;
924                 adapter->total_tx_packets = 0;
925                 adapter->total_rx_bytes = 0;
926                 adapter->total_rx_packets = 0;
927                 __netif_rx_schedule(netdev, &adapter->napi);
928         } else {
929                 atomic_dec(&adapter->irq_sem);
930         }
931
932         return IRQ_HANDLED;
933 }
934
935 static int e1000_request_irq(struct e1000_adapter *adapter)
936 {
937         struct net_device *netdev = adapter->netdev;
938         void (*handler) = &e1000_intr;
939         int irq_flags = IRQF_SHARED;
940         int err;
941
942         err = pci_enable_msi(adapter->pdev);
943         if (err) {
944                 ndev_warn(netdev,
945                  "Unable to allocate MSI interrupt Error: %d\n", err);
946         } else {
947                 adapter->flags |= FLAG_MSI_ENABLED;
948                 handler = &e1000_intr_msi;
949                 irq_flags = 0;
950         }
951
952         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
953                           netdev);
954         if (err) {
955                 if (adapter->flags & FLAG_MSI_ENABLED)
956                         pci_disable_msi(adapter->pdev);
957                 ndev_err(netdev,
958                        "Unable to allocate interrupt Error: %d\n", err);
959         }
960
961         return err;
962 }
963
964 static void e1000_free_irq(struct e1000_adapter *adapter)
965 {
966         struct net_device *netdev = adapter->netdev;
967
968         free_irq(adapter->pdev->irq, netdev);
969         if (adapter->flags & FLAG_MSI_ENABLED) {
970                 pci_disable_msi(adapter->pdev);
971                 adapter->flags &= ~FLAG_MSI_ENABLED;
972         }
973 }
974
975 /**
976  * e1000_irq_disable - Mask off interrupt generation on the NIC
977  **/
978 static void e1000_irq_disable(struct e1000_adapter *adapter)
979 {
980         struct e1000_hw *hw = &adapter->hw;
981
982         atomic_inc(&adapter->irq_sem);
983         ew32(IMC, ~0);
984         e1e_flush();
985         synchronize_irq(adapter->pdev->irq);
986 }
987
988 /**
989  * e1000_irq_enable - Enable default interrupt generation settings
990  **/
991 static void e1000_irq_enable(struct e1000_adapter *adapter)
992 {
993         struct e1000_hw *hw = &adapter->hw;
994
995         if (atomic_dec_and_test(&adapter->irq_sem)) {
996                 ew32(IMS, IMS_ENABLE_MASK);
997                 e1e_flush();
998         }
999 }
1000
1001 /**
1002  * e1000_get_hw_control - get control of the h/w from f/w
1003  * @adapter: address of board private structure
1004  *
1005  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1006  * For ASF and Pass Through versions of f/w this means that
1007  * the driver is loaded. For AMT version (only with 82573)
1008  * of the f/w this means that the network i/f is open.
1009  **/
1010 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1011 {
1012         struct e1000_hw *hw = &adapter->hw;
1013         u32 ctrl_ext;
1014         u32 swsm;
1015
1016         /* Let firmware know the driver has taken over */
1017         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1018                 swsm = er32(SWSM);
1019                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1020         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1021                 ctrl_ext = er32(CTRL_EXT);
1022                 ew32(CTRL_EXT,
1023                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1024         }
1025 }
1026
1027 /**
1028  * e1000_release_hw_control - release control of the h/w to f/w
1029  * @adapter: address of board private structure
1030  *
1031  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1032  * For ASF and Pass Through versions of f/w this means that the
1033  * driver is no longer loaded. For AMT version (only with 82573) i
1034  * of the f/w this means that the network i/f is closed.
1035  *
1036  **/
1037 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1038 {
1039         struct e1000_hw *hw = &adapter->hw;
1040         u32 ctrl_ext;
1041         u32 swsm;
1042
1043         /* Let firmware taken over control of h/w */
1044         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1045                 swsm = er32(SWSM);
1046                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1047         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1048                 ctrl_ext = er32(CTRL_EXT);
1049                 ew32(CTRL_EXT,
1050                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1051         }
1052 }
1053
1054 static void e1000_release_manageability(struct e1000_adapter *adapter)
1055 {
1056         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
1057                 struct e1000_hw *hw = &adapter->hw;
1058
1059                 u32 manc = er32(MANC);
1060
1061                 /* re-enable hardware interception of ARP */
1062                 manc |= E1000_MANC_ARP_EN;
1063                 manc &= ~E1000_MANC_EN_MNG2HOST;
1064
1065                 /* don't explicitly have to mess with MANC2H since
1066                  * MANC has an enable disable that gates MANC2H */
1067                 ew32(MANC, manc);
1068         }
1069 }
1070
1071 /**
1072  * @e1000_alloc_ring - allocate memory for a ring structure
1073  **/
1074 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1075                                 struct e1000_ring *ring)
1076 {
1077         struct pci_dev *pdev = adapter->pdev;
1078
1079         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1080                                         GFP_KERNEL);
1081         if (!ring->desc)
1082                 return -ENOMEM;
1083
1084         return 0;
1085 }
1086
1087 /**
1088  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1089  * @adapter: board private structure
1090  *
1091  * Return 0 on success, negative on failure
1092  **/
1093 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1094 {
1095         struct e1000_ring *tx_ring = adapter->tx_ring;
1096         int err = -ENOMEM, size;
1097
1098         size = sizeof(struct e1000_buffer) * tx_ring->count;
1099         tx_ring->buffer_info = vmalloc(size);
1100         if (!tx_ring->buffer_info)
1101                 goto err;
1102         memset(tx_ring->buffer_info, 0, size);
1103
1104         /* round up to nearest 4K */
1105         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1106         tx_ring->size = ALIGN(tx_ring->size, 4096);
1107
1108         err = e1000_alloc_ring_dma(adapter, tx_ring);
1109         if (err)
1110                 goto err;
1111
1112         tx_ring->next_to_use = 0;
1113         tx_ring->next_to_clean = 0;
1114         spin_lock_init(&adapter->tx_queue_lock);
1115
1116         return 0;
1117 err:
1118         vfree(tx_ring->buffer_info);
1119         ndev_err(adapter->netdev,
1120         "Unable to allocate memory for the transmit descriptor ring\n");
1121         return err;
1122 }
1123
1124 /**
1125  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1126  * @adapter: board private structure
1127  *
1128  * Returns 0 on success, negative on failure
1129  **/
1130 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1131 {
1132         struct e1000_ring *rx_ring = adapter->rx_ring;
1133         struct e1000_buffer *buffer_info;
1134         int i, size, desc_len, err = -ENOMEM;
1135
1136         size = sizeof(struct e1000_buffer) * rx_ring->count;
1137         rx_ring->buffer_info = vmalloc(size);
1138         if (!rx_ring->buffer_info)
1139                 goto err;
1140         memset(rx_ring->buffer_info, 0, size);
1141
1142         for (i = 0; i < rx_ring->count; i++) {
1143                 buffer_info = &rx_ring->buffer_info[i];
1144                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1145                                                 sizeof(struct e1000_ps_page),
1146                                                 GFP_KERNEL);
1147                 if (!buffer_info->ps_pages)
1148                         goto err_pages;
1149         }
1150
1151         desc_len = sizeof(union e1000_rx_desc_packet_split);
1152
1153         /* Round up to nearest 4K */
1154         rx_ring->size = rx_ring->count * desc_len;
1155         rx_ring->size = ALIGN(rx_ring->size, 4096);
1156
1157         err = e1000_alloc_ring_dma(adapter, rx_ring);
1158         if (err)
1159                 goto err_pages;
1160
1161         rx_ring->next_to_clean = 0;
1162         rx_ring->next_to_use = 0;
1163         rx_ring->rx_skb_top = NULL;
1164
1165         return 0;
1166
1167 err_pages:
1168         for (i = 0; i < rx_ring->count; i++) {
1169                 buffer_info = &rx_ring->buffer_info[i];
1170                 kfree(buffer_info->ps_pages);
1171         }
1172 err:
1173         vfree(rx_ring->buffer_info);
1174         ndev_err(adapter->netdev,
1175         "Unable to allocate memory for the transmit descriptor ring\n");
1176         return err;
1177 }
1178
1179 /**
1180  * e1000_clean_tx_ring - Free Tx Buffers
1181  * @adapter: board private structure
1182  **/
1183 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1184 {
1185         struct e1000_ring *tx_ring = adapter->tx_ring;
1186         struct e1000_buffer *buffer_info;
1187         unsigned long size;
1188         unsigned int i;
1189
1190         for (i = 0; i < tx_ring->count; i++) {
1191                 buffer_info = &tx_ring->buffer_info[i];
1192                 e1000_put_txbuf(adapter, buffer_info);
1193         }
1194
1195         size = sizeof(struct e1000_buffer) * tx_ring->count;
1196         memset(tx_ring->buffer_info, 0, size);
1197
1198         memset(tx_ring->desc, 0, tx_ring->size);
1199
1200         tx_ring->next_to_use = 0;
1201         tx_ring->next_to_clean = 0;
1202
1203         writel(0, adapter->hw.hw_addr + tx_ring->head);
1204         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1205 }
1206
1207 /**
1208  * e1000e_free_tx_resources - Free Tx Resources per Queue
1209  * @adapter: board private structure
1210  *
1211  * Free all transmit software resources
1212  **/
1213 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1214 {
1215         struct pci_dev *pdev = adapter->pdev;
1216         struct e1000_ring *tx_ring = adapter->tx_ring;
1217
1218         e1000_clean_tx_ring(adapter);
1219
1220         vfree(tx_ring->buffer_info);
1221         tx_ring->buffer_info = NULL;
1222
1223         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1224                           tx_ring->dma);
1225         tx_ring->desc = NULL;
1226 }
1227
1228 /**
1229  * e1000e_free_rx_resources - Free Rx Resources
1230  * @adapter: board private structure
1231  *
1232  * Free all receive software resources
1233  **/
1234
1235 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1236 {
1237         struct pci_dev *pdev = adapter->pdev;
1238         struct e1000_ring *rx_ring = adapter->rx_ring;
1239         int i;
1240
1241         e1000_clean_rx_ring(adapter);
1242
1243         for (i = 0; i < rx_ring->count; i++) {
1244                 kfree(rx_ring->buffer_info[i].ps_pages);
1245         }
1246
1247         vfree(rx_ring->buffer_info);
1248         rx_ring->buffer_info = NULL;
1249
1250         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1251                           rx_ring->dma);
1252         rx_ring->desc = NULL;
1253 }
1254
1255 /**
1256  * e1000_update_itr - update the dynamic ITR value based on statistics
1257  *      Stores a new ITR value based on packets and byte
1258  *      counts during the last interrupt.  The advantage of per interrupt
1259  *      computation is faster updates and more accurate ITR for the current
1260  *      traffic pattern.  Constants in this function were computed
1261  *      based on theoretical maximum wire speed and thresholds were set based
1262  *      on testing data as well as attempting to minimize response time
1263  *      while increasing bulk throughput.
1264  *      this functionality is controlled by the InterruptThrottleRate module
1265  *      parameter (see e1000_param.c)
1266  * @adapter: pointer to adapter
1267  * @itr_setting: current adapter->itr
1268  * @packets: the number of packets during this measurement interval
1269  * @bytes: the number of bytes during this measurement interval
1270  **/
1271 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1272                                      u16 itr_setting, int packets,
1273                                      int bytes)
1274 {
1275         unsigned int retval = itr_setting;
1276
1277         if (packets == 0)
1278                 goto update_itr_done;
1279
1280         switch (itr_setting) {
1281         case lowest_latency:
1282                 /* handle TSO and jumbo frames */
1283                 if (bytes/packets > 8000)
1284                         retval = bulk_latency;
1285                 else if ((packets < 5) && (bytes > 512)) {
1286                         retval = low_latency;
1287                 }
1288                 break;
1289         case low_latency:  /* 50 usec aka 20000 ints/s */
1290                 if (bytes > 10000) {
1291                         /* this if handles the TSO accounting */
1292                         if (bytes/packets > 8000) {
1293                                 retval = bulk_latency;
1294                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1295                                 retval = bulk_latency;
1296                         } else if ((packets > 35)) {
1297                                 retval = lowest_latency;
1298                         }
1299                 } else if (bytes/packets > 2000) {
1300                         retval = bulk_latency;
1301                 } else if (packets <= 2 && bytes < 512) {
1302                         retval = lowest_latency;
1303                 }
1304                 break;
1305         case bulk_latency: /* 250 usec aka 4000 ints/s */
1306                 if (bytes > 25000) {
1307                         if (packets > 35) {
1308                                 retval = low_latency;
1309                         }
1310                 } else if (bytes < 6000) {
1311                         retval = low_latency;
1312                 }
1313                 break;
1314         }
1315
1316 update_itr_done:
1317         return retval;
1318 }
1319
1320 static void e1000_set_itr(struct e1000_adapter *adapter)
1321 {
1322         struct e1000_hw *hw = &adapter->hw;
1323         u16 current_itr;
1324         u32 new_itr = adapter->itr;
1325
1326         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1327         if (adapter->link_speed != SPEED_1000) {
1328                 current_itr = 0;
1329                 new_itr = 4000;
1330                 goto set_itr_now;
1331         }
1332
1333         adapter->tx_itr = e1000_update_itr(adapter,
1334                                     adapter->tx_itr,
1335                                     adapter->total_tx_packets,
1336                                     adapter->total_tx_bytes);
1337         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1338         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1339                 adapter->tx_itr = low_latency;
1340
1341         adapter->rx_itr = e1000_update_itr(adapter,
1342                                     adapter->rx_itr,
1343                                     adapter->total_rx_packets,
1344                                     adapter->total_rx_bytes);
1345         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1347                 adapter->rx_itr = low_latency;
1348
1349         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1350
1351         switch (current_itr) {
1352         /* counts and packets in update_itr are dependent on these numbers */
1353         case lowest_latency:
1354                 new_itr = 70000;
1355                 break;
1356         case low_latency:
1357                 new_itr = 20000; /* aka hwitr = ~200 */
1358                 break;
1359         case bulk_latency:
1360                 new_itr = 4000;
1361                 break;
1362         default:
1363                 break;
1364         }
1365
1366 set_itr_now:
1367         if (new_itr != adapter->itr) {
1368                 /* this attempts to bias the interrupt rate towards Bulk
1369                  * by adding intermediate steps when interrupt rate is
1370                  * increasing */
1371                 new_itr = new_itr > adapter->itr ?
1372                              min(adapter->itr + (new_itr >> 2), new_itr) :
1373                              new_itr;
1374                 adapter->itr = new_itr;
1375                 ew32(ITR, 1000000000 / (new_itr * 256));
1376         }
1377 }
1378
1379 /**
1380  * e1000_clean - NAPI Rx polling callback
1381  * @adapter: board private structure
1382  **/
1383 static int e1000_clean(struct napi_struct *napi, int budget)
1384 {
1385         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1386         struct net_device *poll_dev = adapter->netdev;
1387         int tx_cleaned = 0, work_done = 0;
1388
1389         /* Must NOT use netdev_priv macro here. */
1390         adapter = poll_dev->priv;
1391
1392         /* Keep link state information with original netdev */
1393         if (!netif_carrier_ok(poll_dev))
1394                 goto quit_polling;
1395
1396         /* e1000_clean is called per-cpu.  This lock protects
1397          * tx_ring from being cleaned by multiple cpus
1398          * simultaneously.  A failure obtaining the lock means
1399          * tx_ring is currently being cleaned anyway. */
1400         if (spin_trylock(&adapter->tx_queue_lock)) {
1401                 tx_cleaned = e1000_clean_tx_irq(adapter);
1402                 spin_unlock(&adapter->tx_queue_lock);
1403         }
1404
1405         adapter->clean_rx(adapter, &work_done, budget);
1406
1407         /* If no Tx and not enough Rx work done, exit the polling mode */
1408         if ((!tx_cleaned && (work_done < budget)) ||
1409            !netif_running(poll_dev)) {
1410 quit_polling:
1411                 if (adapter->itr_setting & 3)
1412                         e1000_set_itr(adapter);
1413                 netif_rx_complete(poll_dev, napi);
1414                 e1000_irq_enable(adapter);
1415         }
1416
1417         return work_done;
1418 }
1419
1420 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1421 {
1422         struct e1000_adapter *adapter = netdev_priv(netdev);
1423         struct e1000_hw *hw = &adapter->hw;
1424         u32 vfta, index;
1425
1426         /* don't update vlan cookie if already programmed */
1427         if ((adapter->hw.mng_cookie.status &
1428              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1429             (vid == adapter->mng_vlan_id))
1430                 return;
1431         /* add VID to filter table */
1432         index = (vid >> 5) & 0x7F;
1433         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1434         vfta |= (1 << (vid & 0x1F));
1435         e1000e_write_vfta(hw, index, vfta);
1436 }
1437
1438 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1439 {
1440         struct e1000_adapter *adapter = netdev_priv(netdev);
1441         struct e1000_hw *hw = &adapter->hw;
1442         u32 vfta, index;
1443
1444         e1000_irq_disable(adapter);
1445         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1446         e1000_irq_enable(adapter);
1447
1448         if ((adapter->hw.mng_cookie.status &
1449              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1450             (vid == adapter->mng_vlan_id)) {
1451                 /* release control to f/w */
1452                 e1000_release_hw_control(adapter);
1453                 return;
1454         }
1455
1456         /* remove VID from filter table */
1457         index = (vid >> 5) & 0x7F;
1458         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1459         vfta &= ~(1 << (vid & 0x1F));
1460         e1000e_write_vfta(hw, index, vfta);
1461 }
1462
1463 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1464 {
1465         struct net_device *netdev = adapter->netdev;
1466         u16 vid = adapter->hw.mng_cookie.vlan_id;
1467         u16 old_vid = adapter->mng_vlan_id;
1468
1469         if (!adapter->vlgrp)
1470                 return;
1471
1472         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1473                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1474                 if (adapter->hw.mng_cookie.status &
1475                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1476                         e1000_vlan_rx_add_vid(netdev, vid);
1477                         adapter->mng_vlan_id = vid;
1478                 }
1479
1480                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1481                                 (vid != old_vid) &&
1482                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1483                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1484         } else {
1485                 adapter->mng_vlan_id = vid;
1486         }
1487 }
1488
1489
1490 static void e1000_vlan_rx_register(struct net_device *netdev,
1491                                    struct vlan_group *grp)
1492 {
1493         struct e1000_adapter *adapter = netdev_priv(netdev);
1494         struct e1000_hw *hw = &adapter->hw;
1495         u32 ctrl, rctl;
1496
1497         e1000_irq_disable(adapter);
1498         adapter->vlgrp = grp;
1499
1500         if (grp) {
1501                 /* enable VLAN tag insert/strip */
1502                 ctrl = er32(CTRL);
1503                 ctrl |= E1000_CTRL_VME;
1504                 ew32(CTRL, ctrl);
1505
1506                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1507                         /* enable VLAN receive filtering */
1508                         rctl = er32(RCTL);
1509                         rctl |= E1000_RCTL_VFE;
1510                         rctl &= ~E1000_RCTL_CFIEN;
1511                         ew32(RCTL, rctl);
1512                         e1000_update_mng_vlan(adapter);
1513                 }
1514         } else {
1515                 /* disable VLAN tag insert/strip */
1516                 ctrl = er32(CTRL);
1517                 ctrl &= ~E1000_CTRL_VME;
1518                 ew32(CTRL, ctrl);
1519
1520                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1521                         /* disable VLAN filtering */
1522                         rctl = er32(RCTL);
1523                         rctl &= ~E1000_RCTL_VFE;
1524                         ew32(RCTL, rctl);
1525                         if (adapter->mng_vlan_id !=
1526                             (u16)E1000_MNG_VLAN_NONE) {
1527                                 e1000_vlan_rx_kill_vid(netdev,
1528                                                        adapter->mng_vlan_id);
1529                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1530                         }
1531                 }
1532         }
1533
1534         e1000_irq_enable(adapter);
1535 }
1536
1537 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1538 {
1539         u16 vid;
1540
1541         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1542
1543         if (!adapter->vlgrp)
1544                 return;
1545
1546         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1547                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1548                         continue;
1549                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1550         }
1551 }
1552
1553 static void e1000_init_manageability(struct e1000_adapter *adapter)
1554 {
1555         struct e1000_hw *hw = &adapter->hw;
1556         u32 manc, manc2h;
1557
1558         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1559                 return;
1560
1561         manc = er32(MANC);
1562
1563         /* disable hardware interception of ARP */
1564         manc &= ~(E1000_MANC_ARP_EN);
1565
1566         /* enable receiving management packets to the host. this will probably
1567          * generate destination unreachable messages from the host OS, but
1568          * the packets will be handled on SMBUS */
1569         manc |= E1000_MANC_EN_MNG2HOST;
1570         manc2h = er32(MANC2H);
1571 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1572 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1573         manc2h |= E1000_MNG2HOST_PORT_623;
1574         manc2h |= E1000_MNG2HOST_PORT_664;
1575         ew32(MANC2H, manc2h);
1576         ew32(MANC, manc);
1577 }
1578
1579 /**
1580  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1581  * @adapter: board private structure
1582  *
1583  * Configure the Tx unit of the MAC after a reset.
1584  **/
1585 static void e1000_configure_tx(struct e1000_adapter *adapter)
1586 {
1587         struct e1000_hw *hw = &adapter->hw;
1588         struct e1000_ring *tx_ring = adapter->tx_ring;
1589         u64 tdba;
1590         u32 tdlen, tctl, tipg, tarc;
1591         u32 ipgr1, ipgr2;
1592
1593         /* Setup the HW Tx Head and Tail descriptor pointers */
1594         tdba = tx_ring->dma;
1595         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1596         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1597         ew32(TDBAH, (tdba >> 32));
1598         ew32(TDLEN, tdlen);
1599         ew32(TDH, 0);
1600         ew32(TDT, 0);
1601         tx_ring->head = E1000_TDH;
1602         tx_ring->tail = E1000_TDT;
1603
1604         /* Set the default values for the Tx Inter Packet Gap timer */
1605         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1606         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1607         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1608
1609         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1610                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1611
1612         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1613         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1614         ew32(TIPG, tipg);
1615
1616         /* Set the Tx Interrupt Delay register */
1617         ew32(TIDV, adapter->tx_int_delay);
1618         /* tx irq moderation */
1619         ew32(TADV, adapter->tx_abs_int_delay);
1620
1621         /* Program the Transmit Control Register */
1622         tctl = er32(TCTL);
1623         tctl &= ~E1000_TCTL_CT;
1624         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1625                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1626
1627         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1628                 tarc = er32(TARC0);
1629                 /* set the speed mode bit, we'll clear it if we're not at
1630                  * gigabit link later */
1631 #define SPEED_MODE_BIT (1 << 21)
1632                 tarc |= SPEED_MODE_BIT;
1633                 ew32(TARC0, tarc);
1634         }
1635
1636         /* errata: program both queues to unweighted RR */
1637         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1638                 tarc = er32(TARC0);
1639                 tarc |= 1;
1640                 ew32(TARC0, tarc);
1641                 tarc = er32(TARC1);
1642                 tarc |= 1;
1643                 ew32(TARC1, tarc);
1644         }
1645
1646         e1000e_config_collision_dist(hw);
1647
1648         /* Setup Transmit Descriptor Settings for eop descriptor */
1649         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1650
1651         /* only set IDE if we are delaying interrupts using the timers */
1652         if (adapter->tx_int_delay)
1653                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1654
1655         /* enable Report Status bit */
1656         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1657
1658         ew32(TCTL, tctl);
1659
1660         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1661 }
1662
1663 /**
1664  * e1000_setup_rctl - configure the receive control registers
1665  * @adapter: Board private structure
1666  **/
1667 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1668                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1669 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1670 {
1671         struct e1000_hw *hw = &adapter->hw;
1672         u32 rctl, rfctl;
1673         u32 psrctl = 0;
1674         u32 pages = 0;
1675
1676         /* Program MC offset vector base */
1677         rctl = er32(RCTL);
1678         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1679         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1680                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1681                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1682
1683         /* Do not Store bad packets */
1684         rctl &= ~E1000_RCTL_SBP;
1685
1686         /* Enable Long Packet receive */
1687         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1688                 rctl &= ~E1000_RCTL_LPE;
1689         else
1690                 rctl |= E1000_RCTL_LPE;
1691
1692         /* Setup buffer sizes */
1693         rctl &= ~E1000_RCTL_SZ_4096;
1694         rctl |= E1000_RCTL_BSEX;
1695         switch (adapter->rx_buffer_len) {
1696         case 256:
1697                 rctl |= E1000_RCTL_SZ_256;
1698                 rctl &= ~E1000_RCTL_BSEX;
1699                 break;
1700         case 512:
1701                 rctl |= E1000_RCTL_SZ_512;
1702                 rctl &= ~E1000_RCTL_BSEX;
1703                 break;
1704         case 1024:
1705                 rctl |= E1000_RCTL_SZ_1024;
1706                 rctl &= ~E1000_RCTL_BSEX;
1707                 break;
1708         case 2048:
1709         default:
1710                 rctl |= E1000_RCTL_SZ_2048;
1711                 rctl &= ~E1000_RCTL_BSEX;
1712                 break;
1713         case 4096:
1714                 rctl |= E1000_RCTL_SZ_4096;
1715                 break;
1716         case 8192:
1717                 rctl |= E1000_RCTL_SZ_8192;
1718                 break;
1719         case 16384:
1720                 rctl |= E1000_RCTL_SZ_16384;
1721                 break;
1722         }
1723
1724         /*
1725          * 82571 and greater support packet-split where the protocol
1726          * header is placed in skb->data and the packet data is
1727          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1728          * In the case of a non-split, skb->data is linearly filled,
1729          * followed by the page buffers.  Therefore, skb->data is
1730          * sized to hold the largest protocol header.
1731          *
1732          * allocations using alloc_page take too long for regular MTU
1733          * so only enable packet split for jumbo frames
1734          *
1735          * Using pages when the page size is greater than 16k wastes
1736          * a lot of memory, since we allocate 3 pages at all times
1737          * per packet.
1738          */
1739         adapter->rx_ps_pages = 0;
1740         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1741         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1742                 adapter->rx_ps_pages = pages;
1743
1744         if (adapter->rx_ps_pages) {
1745                 /* Configure extra packet-split registers */
1746                 rfctl = er32(RFCTL);
1747                 rfctl |= E1000_RFCTL_EXTEN;
1748                 /* disable packet split support for IPv6 extension headers,
1749                  * because some malformed IPv6 headers can hang the RX */
1750                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1751                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1752
1753                 ew32(RFCTL, rfctl);
1754
1755                 /* Enable Packet split descriptors */
1756                 rctl |= E1000_RCTL_DTYP_PS;
1757                 
1758                 /* Enable hardware CRC frame stripping */
1759                 rctl |= E1000_RCTL_SECRC;
1760
1761                 psrctl |= adapter->rx_ps_bsize0 >>
1762                         E1000_PSRCTL_BSIZE0_SHIFT;
1763
1764                 switch (adapter->rx_ps_pages) {
1765                 case 3:
1766                         psrctl |= PAGE_SIZE <<
1767                                 E1000_PSRCTL_BSIZE3_SHIFT;
1768                 case 2:
1769                         psrctl |= PAGE_SIZE <<
1770                                 E1000_PSRCTL_BSIZE2_SHIFT;
1771                 case 1:
1772                         psrctl |= PAGE_SIZE >>
1773                                 E1000_PSRCTL_BSIZE1_SHIFT;
1774                         break;
1775                 }
1776
1777                 ew32(PSRCTL, psrctl);
1778         }
1779
1780         ew32(RCTL, rctl);
1781 }
1782
1783 /**
1784  * e1000_configure_rx - Configure Receive Unit after Reset
1785  * @adapter: board private structure
1786  *
1787  * Configure the Rx unit of the MAC after a reset.
1788  **/
1789 static void e1000_configure_rx(struct e1000_adapter *adapter)
1790 {
1791         struct e1000_hw *hw = &adapter->hw;
1792         struct e1000_ring *rx_ring = adapter->rx_ring;
1793         u64 rdba;
1794         u32 rdlen, rctl, rxcsum, ctrl_ext;
1795
1796         if (adapter->rx_ps_pages) {
1797                 /* this is a 32 byte descriptor */
1798                 rdlen = rx_ring->count *
1799                         sizeof(union e1000_rx_desc_packet_split);
1800                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1801                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1802         } else {
1803                 rdlen = rx_ring->count *
1804                         sizeof(struct e1000_rx_desc);
1805                 adapter->clean_rx = e1000_clean_rx_irq;
1806                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1807         }
1808
1809         /* disable receives while setting up the descriptors */
1810         rctl = er32(RCTL);
1811         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1812         e1e_flush();
1813         msleep(10);
1814
1815         /* set the Receive Delay Timer Register */
1816         ew32(RDTR, adapter->rx_int_delay);
1817
1818         /* irq moderation */
1819         ew32(RADV, adapter->rx_abs_int_delay);
1820         if (adapter->itr_setting != 0)
1821                 ew32(ITR,
1822                         1000000000 / (adapter->itr * 256));
1823
1824         ctrl_ext = er32(CTRL_EXT);
1825         /* Reset delay timers after every interrupt */
1826         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1827         /* Auto-Mask interrupts upon ICR access */
1828         ctrl_ext |= E1000_CTRL_EXT_IAME;
1829         ew32(IAM, 0xffffffff);
1830         ew32(CTRL_EXT, ctrl_ext);
1831         e1e_flush();
1832
1833         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1834          * the Base and Length of the Rx Descriptor Ring */
1835         rdba = rx_ring->dma;
1836         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1837         ew32(RDBAH, (rdba >> 32));
1838         ew32(RDLEN, rdlen);
1839         ew32(RDH, 0);
1840         ew32(RDT, 0);
1841         rx_ring->head = E1000_RDH;
1842         rx_ring->tail = E1000_RDT;
1843
1844         /* Enable Receive Checksum Offload for TCP and UDP */
1845         rxcsum = er32(RXCSUM);
1846         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1847                 rxcsum |= E1000_RXCSUM_TUOFL;
1848
1849                 /* IPv4 payload checksum for UDP fragments must be
1850                  * used in conjunction with packet-split. */
1851                 if (adapter->rx_ps_pages)
1852                         rxcsum |= E1000_RXCSUM_IPPCSE;
1853         } else {
1854                 rxcsum &= ~E1000_RXCSUM_TUOFL;
1855                 /* no need to clear IPPCSE as it defaults to 0 */
1856         }
1857         ew32(RXCSUM, rxcsum);
1858
1859         /* Enable early receives on supported devices, only takes effect when
1860          * packet size is equal or larger than the specified value (in 8 byte
1861          * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1862         if ((adapter->flags & FLAG_HAS_ERT) &&
1863             (adapter->netdev->mtu > ETH_DATA_LEN))
1864                 ew32(ERT, E1000_ERT_2048);
1865
1866         /* Enable Receives */
1867         ew32(RCTL, rctl);
1868 }
1869
1870 /**
1871  *  e1000_mc_addr_list_update - Update Multicast addresses
1872  *  @hw: pointer to the HW structure
1873  *  @mc_addr_list: array of multicast addresses to program
1874  *  @mc_addr_count: number of multicast addresses to program
1875  *  @rar_used_count: the first RAR register free to program
1876  *  @rar_count: total number of supported Receive Address Registers
1877  *
1878  *  Updates the Receive Address Registers and Multicast Table Array.
1879  *  The caller must have a packed mc_addr_list of multicast addresses.
1880  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1881  *  unless there are workarounds that change this.  Currently no func pointer
1882  *  exists and all implementations are handled in the generic version of this
1883  *  function.
1884  **/
1885 static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1886                                u32 mc_addr_count, u32 rar_used_count,
1887                                u32 rar_count)
1888 {
1889         hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1890                                         rar_used_count, rar_count);
1891 }
1892
1893 /**
1894  * e1000_set_multi - Multicast and Promiscuous mode set
1895  * @netdev: network interface device structure
1896  *
1897  * The set_multi entry point is called whenever the multicast address
1898  * list or the network interface flags are updated.  This routine is
1899  * responsible for configuring the hardware for proper multicast,
1900  * promiscuous mode, and all-multi behavior.
1901  **/
1902 static void e1000_set_multi(struct net_device *netdev)
1903 {
1904         struct e1000_adapter *adapter = netdev_priv(netdev);
1905         struct e1000_hw *hw = &adapter->hw;
1906         struct e1000_mac_info *mac = &hw->mac;
1907         struct dev_mc_list *mc_ptr;
1908         u8  *mta_list;
1909         u32 rctl;
1910         int i;
1911
1912         /* Check for Promiscuous and All Multicast modes */
1913
1914         rctl = er32(RCTL);
1915
1916         if (netdev->flags & IFF_PROMISC) {
1917                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1918         } else if (netdev->flags & IFF_ALLMULTI) {
1919                 rctl |= E1000_RCTL_MPE;
1920                 rctl &= ~E1000_RCTL_UPE;
1921         } else {
1922                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1923         }
1924
1925         ew32(RCTL, rctl);
1926
1927         if (netdev->mc_count) {
1928                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1929                 if (!mta_list)
1930                         return;
1931
1932                 /* prepare a packed array of only addresses. */
1933                 mc_ptr = netdev->mc_list;
1934
1935                 for (i = 0; i < netdev->mc_count; i++) {
1936                         if (!mc_ptr)
1937                                 break;
1938                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1939                                ETH_ALEN);
1940                         mc_ptr = mc_ptr->next;
1941                 }
1942
1943                 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1944                                           mac->rar_entry_count);
1945                 kfree(mta_list);
1946         } else {
1947                 /*
1948                  * if we're called from probe, we might not have
1949                  * anything to do here, so clear out the list
1950                  */
1951                 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1952                                           mac->rar_entry_count);
1953         }
1954 }
1955
1956 /**
1957  * e1000_configure - configure the hardware for RX and TX
1958  * @adapter: private board structure
1959  **/
1960 static void e1000_configure(struct e1000_adapter *adapter)
1961 {
1962         e1000_set_multi(adapter->netdev);
1963
1964         e1000_restore_vlan(adapter);
1965         e1000_init_manageability(adapter);
1966
1967         e1000_configure_tx(adapter);
1968         e1000_setup_rctl(adapter);
1969         e1000_configure_rx(adapter);
1970         adapter->alloc_rx_buf(adapter,
1971                               e1000_desc_unused(adapter->rx_ring));
1972 }
1973
1974 /**
1975  * e1000e_power_up_phy - restore link in case the phy was powered down
1976  * @adapter: address of board private structure
1977  *
1978  * The phy may be powered down to save power and turn off link when the
1979  * driver is unloaded and wake on lan is not enabled (among others)
1980  * *** this routine MUST be followed by a call to e1000e_reset ***
1981  **/
1982 void e1000e_power_up_phy(struct e1000_adapter *adapter)
1983 {
1984         u16 mii_reg = 0;
1985
1986         /* Just clear the power down bit to wake the phy back up */
1987         if (adapter->hw.media_type == e1000_media_type_copper) {
1988                 /* according to the manual, the phy will retain its
1989                  * settings across a power-down/up cycle */
1990                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1991                 mii_reg &= ~MII_CR_POWER_DOWN;
1992                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1993         }
1994
1995         adapter->hw.mac.ops.setup_link(&adapter->hw);
1996 }
1997
1998 /**
1999  * e1000_power_down_phy - Power down the PHY
2000  *
2001  * Power down the PHY so no link is implied when interface is down
2002  * The PHY cannot be powered down is management or WoL is active
2003  */
2004 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2005 {
2006         struct e1000_hw *hw = &adapter->hw;
2007         u16 mii_reg;
2008
2009         /* WoL is enabled */
2010         if (!adapter->wol)
2011                 return;
2012
2013         /* non-copper PHY? */
2014         if (adapter->hw.media_type != e1000_media_type_copper)
2015                 return;
2016
2017         /* reset is blocked because of a SoL/IDER session */
2018         if (e1000e_check_mng_mode(hw) ||
2019             e1000_check_reset_block(hw))
2020                 return;
2021
2022         /* managebility (AMT) is enabled */
2023         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2024                 return;
2025
2026         /* power down the PHY */
2027         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2028         mii_reg |= MII_CR_POWER_DOWN;
2029         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2030         mdelay(1);
2031 }
2032
2033 /**
2034  * e1000e_reset - bring the hardware into a known good state
2035  *
2036  * This function boots the hardware and enables some settings that
2037  * require a configuration cycle of the hardware - those cannot be
2038  * set/changed during runtime. After reset the device needs to be
2039  * properly configured for rx, tx etc.
2040  */
2041 void e1000e_reset(struct e1000_adapter *adapter)
2042 {
2043         struct e1000_mac_info *mac = &adapter->hw.mac;
2044         struct e1000_hw *hw = &adapter->hw;
2045         u32 tx_space, min_tx_space, min_rx_space;
2046         u32 pba;
2047         u16 hwm;
2048
2049         ew32(PBA, adapter->pba);
2050
2051         if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2052                 /* To maintain wire speed transmits, the Tx FIFO should be
2053                  * large enough to accommodate two full transmit packets,
2054                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2055                  * the Rx FIFO should be large enough to accommodate at least
2056                  * one full receive packet and is similarly rounded up and
2057                  * expressed in KB. */
2058                 pba = er32(PBA);
2059                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2060                 tx_space = pba >> 16;
2061                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2062                 pba &= 0xffff;
2063                 /* the tx fifo also stores 16 bytes of information about the tx
2064                  * but don't include ethernet FCS because hardware appends it */
2065                 min_tx_space = (mac->max_frame_size +
2066                                 sizeof(struct e1000_tx_desc) -
2067                                 ETH_FCS_LEN) * 2;
2068                 min_tx_space = ALIGN(min_tx_space, 1024);
2069                 min_tx_space >>= 10;
2070                 /* software strips receive CRC, so leave room for it */
2071                 min_rx_space = mac->max_frame_size;
2072                 min_rx_space = ALIGN(min_rx_space, 1024);
2073                 min_rx_space >>= 10;
2074
2075                 /* If current Tx allocation is less than the min Tx FIFO size,
2076                  * and the min Tx FIFO size is less than the current Rx FIFO
2077                  * allocation, take space away from current Rx allocation */
2078                 if ((tx_space < min_tx_space) &&
2079                     ((min_tx_space - tx_space) < pba)) {
2080                         pba -= min_tx_space - tx_space;
2081
2082                         /* if short on rx space, rx wins and must trump tx
2083                          * adjustment or use Early Receive if available */
2084                         if ((pba < min_rx_space) &&
2085                             (!(adapter->flags & FLAG_HAS_ERT)))
2086                                 /* ERT enabled in e1000_configure_rx */
2087                                 pba = min_rx_space;
2088                 }
2089
2090                 ew32(PBA, pba);
2091         }
2092
2093
2094         /* flow control settings */
2095         /* The high water mark must be low enough to fit one full frame
2096          * (or the size used for early receive) above it in the Rx FIFO.
2097          * Set it to the lower of:
2098          * - 90% of the Rx FIFO size, and
2099          * - the full Rx FIFO size minus the early receive size (for parts
2100          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2101          * - the full Rx FIFO size minus one full frame */
2102         if (adapter->flags & FLAG_HAS_ERT)
2103                 hwm = min(((adapter->pba << 10) * 9 / 10),
2104                           ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2105         else
2106                 hwm = min(((adapter->pba << 10) * 9 / 10),
2107                           ((adapter->pba << 10) - mac->max_frame_size));
2108
2109         mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2110         mac->fc_low_water = mac->fc_high_water - 8;
2111
2112         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2113                 mac->fc_pause_time = 0xFFFF;
2114         else
2115                 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2116         mac->fc = mac->original_fc;
2117
2118         /* Allow time for pending master requests to run */
2119         mac->ops.reset_hw(hw);
2120         ew32(WUC, 0);
2121
2122         if (mac->ops.init_hw(hw))
2123                 ndev_err(adapter->netdev, "Hardware Error\n");
2124
2125         e1000_update_mng_vlan(adapter);
2126
2127         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2128         ew32(VET, ETH_P_8021Q);
2129
2130         e1000e_reset_adaptive(hw);
2131         e1000_get_phy_info(hw);
2132
2133         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2134                 u16 phy_data = 0;
2135                 /* speed up time to link by disabling smart power down, ignore
2136                  * the return value of this function because there is nothing
2137                  * different we would do if it failed */
2138                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2139                 phy_data &= ~IGP02E1000_PM_SPD;
2140                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2141         }
2142
2143         e1000_release_manageability(adapter);
2144 }
2145
2146 int e1000e_up(struct e1000_adapter *adapter)
2147 {
2148         struct e1000_hw *hw = &adapter->hw;
2149
2150         /* hardware has been reset, we need to reload some things */
2151         e1000_configure(adapter);
2152
2153         clear_bit(__E1000_DOWN, &adapter->state);
2154
2155         napi_enable(&adapter->napi);
2156         e1000_irq_enable(adapter);
2157
2158         /* fire a link change interrupt to start the watchdog */
2159         ew32(ICS, E1000_ICS_LSC);
2160         return 0;
2161 }
2162
2163 void e1000e_down(struct e1000_adapter *adapter)
2164 {
2165         struct net_device *netdev = adapter->netdev;
2166         struct e1000_hw *hw = &adapter->hw;
2167         u32 tctl, rctl;
2168
2169         /* signal that we're down so the interrupt handler does not
2170          * reschedule our watchdog timer */
2171         set_bit(__E1000_DOWN, &adapter->state);
2172
2173         /* disable receives in the hardware */
2174         rctl = er32(RCTL);
2175         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2176         /* flush and sleep below */
2177
2178         netif_stop_queue(netdev);
2179
2180         /* disable transmits in the hardware */
2181         tctl = er32(TCTL);
2182         tctl &= ~E1000_TCTL_EN;
2183         ew32(TCTL, tctl);
2184         /* flush both disables and wait for them to finish */
2185         e1e_flush();
2186         msleep(10);
2187
2188         napi_disable(&adapter->napi);
2189         e1000_irq_disable(adapter);
2190
2191         del_timer_sync(&adapter->watchdog_timer);
2192         del_timer_sync(&adapter->phy_info_timer);
2193
2194         netdev->tx_queue_len = adapter->tx_queue_len;
2195         netif_carrier_off(netdev);
2196         adapter->link_speed = 0;
2197         adapter->link_duplex = 0;
2198
2199         e1000e_reset(adapter);
2200         e1000_clean_tx_ring(adapter);
2201         e1000_clean_rx_ring(adapter);
2202
2203         /*
2204          * TODO: for power management, we could drop the link and
2205          * pci_disable_device here.
2206          */
2207 }
2208
2209 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2210 {
2211         might_sleep();
2212         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2213                 msleep(1);
2214         e1000e_down(adapter);
2215         e1000e_up(adapter);
2216         clear_bit(__E1000_RESETTING, &adapter->state);
2217 }
2218
2219 /**
2220  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2221  * @adapter: board private structure to initialize
2222  *
2223  * e1000_sw_init initializes the Adapter private data structure.
2224  * Fields are initialized based on PCI device information and
2225  * OS network device settings (MTU size).
2226  **/
2227 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2228 {
2229         struct e1000_hw *hw = &adapter->hw;
2230         struct net_device *netdev = adapter->netdev;
2231
2232         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2233         adapter->rx_ps_bsize0 = 128;
2234         hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2235         hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2236
2237         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2238         if (!adapter->tx_ring)
2239                 goto err;
2240
2241         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2242         if (!adapter->rx_ring)
2243                 goto err;
2244
2245         spin_lock_init(&adapter->tx_queue_lock);
2246
2247         /* Explicitly disable IRQ since the NIC can be in any state. */
2248         atomic_set(&adapter->irq_sem, 0);
2249         e1000_irq_disable(adapter);
2250
2251         spin_lock_init(&adapter->stats_lock);
2252
2253         set_bit(__E1000_DOWN, &adapter->state);
2254         return 0;
2255
2256 err:
2257         ndev_err(netdev, "Unable to allocate memory for queues\n");
2258         kfree(adapter->rx_ring);
2259         kfree(adapter->tx_ring);
2260         return -ENOMEM;
2261 }
2262
2263 /**
2264  * e1000_open - Called when a network interface is made active
2265  * @netdev: network interface device structure
2266  *
2267  * Returns 0 on success, negative value on failure
2268  *
2269  * The open entry point is called when a network interface is made
2270  * active by the system (IFF_UP).  At this point all resources needed
2271  * for transmit and receive operations are allocated, the interrupt
2272  * handler is registered with the OS, the watchdog timer is started,
2273  * and the stack is notified that the interface is ready.
2274  **/
2275 static int e1000_open(struct net_device *netdev)
2276 {
2277         struct e1000_adapter *adapter = netdev_priv(netdev);
2278         struct e1000_hw *hw = &adapter->hw;
2279         int err;
2280
2281         /* disallow open during test */
2282         if (test_bit(__E1000_TESTING, &adapter->state))
2283                 return -EBUSY;
2284
2285         /* allocate transmit descriptors */
2286         err = e1000e_setup_tx_resources(adapter);
2287         if (err)
2288                 goto err_setup_tx;
2289
2290         /* allocate receive descriptors */
2291         err = e1000e_setup_rx_resources(adapter);
2292         if (err)
2293                 goto err_setup_rx;
2294
2295         e1000e_power_up_phy(adapter);
2296
2297         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2298         if ((adapter->hw.mng_cookie.status &
2299              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2300                 e1000_update_mng_vlan(adapter);
2301
2302         /* If AMT is enabled, let the firmware know that the network
2303          * interface is now open */
2304         if ((adapter->flags & FLAG_HAS_AMT) &&
2305             e1000e_check_mng_mode(&adapter->hw))
2306                 e1000_get_hw_control(adapter);
2307
2308         /* before we allocate an interrupt, we must be ready to handle it.
2309          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2310          * as soon as we call pci_request_irq, so we have to setup our
2311          * clean_rx handler before we do so.  */
2312         e1000_configure(adapter);
2313
2314         err = e1000_request_irq(adapter);
2315         if (err)
2316                 goto err_req_irq;
2317
2318         /* From here on the code is the same as e1000e_up() */
2319         clear_bit(__E1000_DOWN, &adapter->state);
2320
2321         napi_enable(&adapter->napi);
2322
2323         e1000_irq_enable(adapter);
2324
2325         /* fire a link status change interrupt to start the watchdog */
2326         ew32(ICS, E1000_ICS_LSC);
2327
2328         return 0;
2329
2330 err_req_irq:
2331         e1000_release_hw_control(adapter);
2332         e1000_power_down_phy(adapter);
2333         e1000e_free_rx_resources(adapter);
2334 err_setup_rx:
2335         e1000e_free_tx_resources(adapter);
2336 err_setup_tx:
2337         e1000e_reset(adapter);
2338
2339         return err;
2340 }
2341
2342 /**
2343  * e1000_close - Disables a network interface
2344  * @netdev: network interface device structure
2345  *
2346  * Returns 0, this is not allowed to fail
2347  *
2348  * The close entry point is called when an interface is de-activated
2349  * by the OS.  The hardware is still under the drivers control, but
2350  * needs to be disabled.  A global MAC reset is issued to stop the
2351  * hardware, and all transmit and receive resources are freed.
2352  **/
2353 static int e1000_close(struct net_device *netdev)
2354 {
2355         struct e1000_adapter *adapter = netdev_priv(netdev);
2356
2357         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2358         e1000e_down(adapter);
2359         e1000_power_down_phy(adapter);
2360         e1000_free_irq(adapter);
2361
2362         e1000e_free_tx_resources(adapter);
2363         e1000e_free_rx_resources(adapter);
2364
2365         /* kill manageability vlan ID if supported, but not if a vlan with
2366          * the same ID is registered on the host OS (let 8021q kill it) */
2367         if ((adapter->hw.mng_cookie.status &
2368                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2369              !(adapter->vlgrp &&
2370                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2371                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2372
2373         /* If AMT is enabled, let the firmware know that the network
2374          * interface is now closed */
2375         if ((adapter->flags & FLAG_HAS_AMT) &&
2376             e1000e_check_mng_mode(&adapter->hw))
2377                 e1000_release_hw_control(adapter);
2378
2379         return 0;
2380 }
2381 /**
2382  * e1000_set_mac - Change the Ethernet Address of the NIC
2383  * @netdev: network interface device structure
2384  * @p: pointer to an address structure
2385  *
2386  * Returns 0 on success, negative on failure
2387  **/
2388 static int e1000_set_mac(struct net_device *netdev, void *p)
2389 {
2390         struct e1000_adapter *adapter = netdev_priv(netdev);
2391         struct sockaddr *addr = p;
2392
2393         if (!is_valid_ether_addr(addr->sa_data))
2394                 return -EADDRNOTAVAIL;
2395
2396         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2397         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2398
2399         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2400
2401         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2402                 /* activate the work around */
2403                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2404
2405                 /* Hold a copy of the LAA in RAR[14] This is done so that
2406                  * between the time RAR[0] gets clobbered  and the time it
2407                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2408                  * of the RARs and no incoming packets directed to this port
2409                  * are dropped. Eventually the LAA will be in RAR[0] and
2410                  * RAR[14] */
2411                 e1000e_rar_set(&adapter->hw,
2412                               adapter->hw.mac.addr,
2413                               adapter->hw.mac.rar_entry_count - 1);
2414         }
2415
2416         return 0;
2417 }
2418
2419 /* Need to wait a few seconds after link up to get diagnostic information from
2420  * the phy */
2421 static void e1000_update_phy_info(unsigned long data)
2422 {
2423         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2424         e1000_get_phy_info(&adapter->hw);
2425 }
2426
2427 /**
2428  * e1000e_update_stats - Update the board statistics counters
2429  * @adapter: board private structure
2430  **/
2431 void e1000e_update_stats(struct e1000_adapter *adapter)
2432 {
2433         struct e1000_hw *hw = &adapter->hw;
2434         struct pci_dev *pdev = adapter->pdev;
2435         unsigned long irq_flags;
2436         u16 phy_tmp;
2437
2438 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2439
2440         /*
2441          * Prevent stats update while adapter is being reset, or if the pci
2442          * connection is down.
2443          */
2444         if (adapter->link_speed == 0)
2445                 return;
2446         if (pci_channel_offline(pdev))
2447                 return;
2448
2449         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2450
2451         /* these counters are modified from e1000_adjust_tbi_stats,
2452          * called from the interrupt context, so they must only
2453          * be written while holding adapter->stats_lock
2454          */
2455
2456         adapter->stats.crcerrs += er32(CRCERRS);
2457         adapter->stats.gprc += er32(GPRC);
2458         adapter->stats.gorcl += er32(GORCL);
2459         adapter->stats.gorch += er32(GORCH);
2460         adapter->stats.bprc += er32(BPRC);
2461         adapter->stats.mprc += er32(MPRC);
2462         adapter->stats.roc += er32(ROC);
2463
2464         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2465                 adapter->stats.prc64 += er32(PRC64);
2466                 adapter->stats.prc127 += er32(PRC127);
2467                 adapter->stats.prc255 += er32(PRC255);
2468                 adapter->stats.prc511 += er32(PRC511);
2469                 adapter->stats.prc1023 += er32(PRC1023);
2470                 adapter->stats.prc1522 += er32(PRC1522);
2471                 adapter->stats.symerrs += er32(SYMERRS);
2472                 adapter->stats.sec += er32(SEC);
2473         }
2474
2475         adapter->stats.mpc += er32(MPC);
2476         adapter->stats.scc += er32(SCC);
2477         adapter->stats.ecol += er32(ECOL);
2478         adapter->stats.mcc += er32(MCC);
2479         adapter->stats.latecol += er32(LATECOL);
2480         adapter->stats.dc += er32(DC);
2481         adapter->stats.rlec += er32(RLEC);
2482         adapter->stats.xonrxc += er32(XONRXC);
2483         adapter->stats.xontxc += er32(XONTXC);
2484         adapter->stats.xoffrxc += er32(XOFFRXC);
2485         adapter->stats.xofftxc += er32(XOFFTXC);
2486         adapter->stats.fcruc += er32(FCRUC);
2487         adapter->stats.gptc += er32(GPTC);
2488         adapter->stats.gotcl += er32(GOTCL);
2489         adapter->stats.gotch += er32(GOTCH);
2490         adapter->stats.rnbc += er32(RNBC);
2491         adapter->stats.ruc += er32(RUC);
2492         adapter->stats.rfc += er32(RFC);
2493         adapter->stats.rjc += er32(RJC);
2494         adapter->stats.torl += er32(TORL);
2495         adapter->stats.torh += er32(TORH);
2496         adapter->stats.totl += er32(TOTL);
2497         adapter->stats.toth += er32(TOTH);
2498         adapter->stats.tpr += er32(TPR);
2499
2500         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2501                 adapter->stats.ptc64 += er32(PTC64);
2502                 adapter->stats.ptc127 += er32(PTC127);
2503                 adapter->stats.ptc255 += er32(PTC255);
2504                 adapter->stats.ptc511 += er32(PTC511);
2505                 adapter->stats.ptc1023 += er32(PTC1023);
2506                 adapter->stats.ptc1522 += er32(PTC1522);
2507         }
2508
2509         adapter->stats.mptc += er32(MPTC);
2510         adapter->stats.bptc += er32(BPTC);
2511
2512         /* used for adaptive IFS */
2513
2514         hw->mac.tx_packet_delta = er32(TPT);
2515         adapter->stats.tpt += hw->mac.tx_packet_delta;
2516         hw->mac.collision_delta = er32(COLC);
2517         adapter->stats.colc += hw->mac.collision_delta;
2518
2519         adapter->stats.algnerrc += er32(ALGNERRC);
2520         adapter->stats.rxerrc += er32(RXERRC);
2521         adapter->stats.tncrs += er32(TNCRS);
2522         adapter->stats.cexterr += er32(CEXTERR);
2523         adapter->stats.tsctc += er32(TSCTC);
2524         adapter->stats.tsctfc += er32(TSCTFC);
2525
2526         adapter->stats.iac += er32(IAC);
2527
2528         if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2529                 adapter->stats.icrxoc += er32(ICRXOC);
2530                 adapter->stats.icrxptc += er32(ICRXPTC);
2531                 adapter->stats.icrxatc += er32(ICRXATC);
2532                 adapter->stats.ictxptc += er32(ICTXPTC);
2533                 adapter->stats.ictxatc += er32(ICTXATC);
2534                 adapter->stats.ictxqec += er32(ICTXQEC);
2535                 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2536                 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2537         }
2538
2539         /* Fill out the OS statistics structure */
2540         adapter->net_stats.rx_packets = adapter->stats.gprc;
2541         adapter->net_stats.tx_packets = adapter->stats.gptc;
2542         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
2543         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
2544         adapter->net_stats.multicast = adapter->stats.mprc;
2545         adapter->net_stats.collisions = adapter->stats.colc;
2546
2547         /* Rx Errors */
2548
2549         /* RLEC on some newer hardware can be incorrect so build
2550         * our own version based on RUC and ROC */
2551         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2552                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2553                 adapter->stats.ruc + adapter->stats.roc +
2554                 adapter->stats.cexterr;
2555         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2556                                               adapter->stats.roc;
2557         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2558         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2559         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2560
2561         /* Tx Errors */
2562         adapter->net_stats.tx_errors = adapter->stats.ecol +
2563                                        adapter->stats.latecol;
2564         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2565         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2566         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2567
2568         /* Tx Dropped needs to be maintained elsewhere */
2569
2570         /* Phy Stats */
2571         if (hw->media_type == e1000_media_type_copper) {
2572                 if ((adapter->link_speed == SPEED_1000) &&
2573                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2574                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2575                         adapter->phy_stats.idle_errors += phy_tmp;
2576                 }
2577         }
2578
2579         /* Management Stats */
2580         adapter->stats.mgptc += er32(MGTPTC);
2581         adapter->stats.mgprc += er32(MGTPRC);
2582         adapter->stats.mgpdc += er32(MGTPDC);
2583
2584         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2585 }
2586
2587 static void e1000_print_link_info(struct e1000_adapter *adapter)
2588 {
2589         struct net_device *netdev = adapter->netdev;
2590         struct e1000_hw *hw = &adapter->hw;
2591         u32 ctrl = er32(CTRL);
2592
2593         ndev_info(netdev,
2594                 "Link is Up %d Mbps %s, Flow Control: %s\n",
2595                 adapter->link_speed,
2596                 (adapter->link_duplex == FULL_DUPLEX) ?
2597                                 "Full Duplex" : "Half Duplex",
2598                 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2599                                 "RX/TX" :
2600                 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2601                 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2602 }
2603
2604 /**
2605  * e1000_watchdog - Timer Call-back
2606  * @data: pointer to adapter cast into an unsigned long
2607  **/
2608 static void e1000_watchdog(unsigned long data)
2609 {
2610         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2611
2612         /* Do the rest outside of interrupt context */
2613         schedule_work(&adapter->watchdog_task);
2614
2615         /* TODO: make this use queue_delayed_work() */
2616 }
2617
2618 static void e1000_watchdog_task(struct work_struct *work)
2619 {
2620         struct e1000_adapter *adapter = container_of(work,
2621                                         struct e1000_adapter, watchdog_task);
2622
2623         struct net_device *netdev = adapter->netdev;
2624         struct e1000_mac_info *mac = &adapter->hw.mac;
2625         struct e1000_ring *tx_ring = adapter->tx_ring;
2626         struct e1000_hw *hw = &adapter->hw;
2627         u32 link, tctl;
2628         s32 ret_val;
2629         int tx_pending = 0;
2630
2631         if ((netif_carrier_ok(netdev)) &&
2632             (er32(STATUS) & E1000_STATUS_LU))
2633                 goto link_up;
2634
2635         ret_val = mac->ops.check_for_link(hw);
2636         if ((ret_val == E1000_ERR_PHY) &&
2637             (adapter->hw.phy.type == e1000_phy_igp_3) &&
2638             (er32(CTRL) &
2639              E1000_PHY_CTRL_GBE_DISABLE)) {
2640                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2641                 ndev_info(netdev,
2642                         "Gigabit has been disabled, downgrading speed\n");
2643         }
2644
2645         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2646             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2647                 e1000_update_mng_vlan(adapter);
2648
2649         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2650            !(er32(TXCW) & E1000_TXCW_ANE))
2651                 link = adapter->hw.mac.serdes_has_link;
2652         else
2653                 link = er32(STATUS) & E1000_STATUS_LU;
2654
2655         if (link) {
2656                 if (!netif_carrier_ok(netdev)) {
2657                         bool txb2b = 1;
2658                         mac->ops.get_link_up_info(&adapter->hw,
2659                                                    &adapter->link_speed,
2660                                                    &adapter->link_duplex);
2661                         e1000_print_link_info(adapter);
2662                         /* tweak tx_queue_len according to speed/duplex
2663                          * and adjust the timeout factor */
2664                         netdev->tx_queue_len = adapter->tx_queue_len;
2665                         adapter->tx_timeout_factor = 1;
2666                         switch (adapter->link_speed) {
2667                         case SPEED_10:
2668                                 txb2b = 0;
2669                                 netdev->tx_queue_len = 10;
2670                                 adapter->tx_timeout_factor = 14;
2671                                 break;
2672                         case SPEED_100:
2673                                 txb2b = 0;
2674                                 netdev->tx_queue_len = 100;
2675                                 /* maybe add some timeout factor ? */
2676                                 break;
2677                         }
2678
2679                         /* workaround: re-program speed mode bit after
2680                          * link-up event */
2681                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2682                             !txb2b) {
2683                                 u32 tarc0;
2684                                 tarc0 = er32(TARC0);
2685                                 tarc0 &= ~SPEED_MODE_BIT;
2686                                 ew32(TARC0, tarc0);
2687                         }
2688
2689                         /* disable TSO for pcie and 10/100 speeds, to avoid
2690                          * some hardware issues */
2691                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
2692                                 switch (adapter->link_speed) {
2693                                 case SPEED_10:
2694                                 case SPEED_100:
2695                                         ndev_info(netdev,
2696                                         "10/100 speed: disabling TSO\n");
2697                                         netdev->features &= ~NETIF_F_TSO;
2698                                         netdev->features &= ~NETIF_F_TSO6;
2699                                         break;
2700                                 case SPEED_1000:
2701                                         netdev->features |= NETIF_F_TSO;
2702                                         netdev->features |= NETIF_F_TSO6;
2703                                         break;
2704                                 default:
2705                                         /* oops */
2706                                         break;
2707                                 }
2708                         }
2709
2710                         /* enable transmits in the hardware, need to do this
2711                          * after setting TARC0 */
2712                         tctl = er32(TCTL);
2713                         tctl |= E1000_TCTL_EN;
2714                         ew32(TCTL, tctl);
2715
2716                         netif_carrier_on(netdev);
2717                         netif_wake_queue(netdev);
2718
2719                         if (!test_bit(__E1000_DOWN, &adapter->state))
2720                                 mod_timer(&adapter->phy_info_timer,
2721                                           round_jiffies(jiffies + 2 * HZ));
2722                 } else {
2723                         /* make sure the receive unit is started */
2724                         if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2725                                 u32 rctl = er32(RCTL);
2726                                 ew32(RCTL, rctl |
2727                                                 E1000_RCTL_EN);
2728                         }
2729                 }
2730         } else {
2731                 if (netif_carrier_ok(netdev)) {
2732                         adapter->link_speed = 0;
2733                         adapter->link_duplex = 0;
2734                         ndev_info(netdev, "Link is Down\n");
2735                         netif_carrier_off(netdev);
2736                         netif_stop_queue(netdev);
2737                         if (!test_bit(__E1000_DOWN, &adapter->state))
2738                                 mod_timer(&adapter->phy_info_timer,
2739                                           round_jiffies(jiffies + 2 * HZ));
2740
2741                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2742                                 schedule_work(&adapter->reset_task);
2743                 }
2744         }
2745
2746 link_up:
2747         e1000e_update_stats(adapter);
2748
2749         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2750         adapter->tpt_old = adapter->stats.tpt;
2751         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2752         adapter->colc_old = adapter->stats.colc;
2753
2754         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2755         adapter->gorcl_old = adapter->stats.gorcl;
2756         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2757         adapter->gotcl_old = adapter->stats.gotcl;
2758
2759         e1000e_update_adaptive(&adapter->hw);
2760
2761         if (!netif_carrier_ok(netdev)) {
2762                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2763                                tx_ring->count);
2764                 if (tx_pending) {
2765                         /* We've lost link, so the controller stops DMA,
2766                          * but we've got queued Tx work that's never going
2767                          * to get done, so reset controller to flush Tx.
2768                          * (Do the reset outside of interrupt context). */
2769                         adapter->tx_timeout_count++;
2770                         schedule_work(&adapter->reset_task);
2771                 }
2772         }
2773
2774         /* Cause software interrupt to ensure rx ring is cleaned */
2775         ew32(ICS, E1000_ICS_RXDMT0);
2776
2777         /* Force detection of hung controller every watchdog period */
2778         adapter->detect_tx_hung = 1;
2779
2780         /* With 82571 controllers, LAA may be overwritten due to controller
2781          * reset from the other port. Set the appropriate LAA in RAR[0] */
2782         if (e1000e_get_laa_state_82571(hw))
2783                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2784
2785         /* Reset the timer */
2786         if (!test_bit(__E1000_DOWN, &adapter->state))
2787                 mod_timer(&adapter->watchdog_timer,
2788                           round_jiffies(jiffies + 2 * HZ));
2789 }
2790
2791 #define E1000_TX_FLAGS_CSUM             0x00000001
2792 #define E1000_TX_FLAGS_VLAN             0x00000002
2793 #define E1000_TX_FLAGS_TSO              0x00000004
2794 #define E1000_TX_FLAGS_IPV4             0x00000008
2795 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2796 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2797
2798 static int e1000_tso(struct e1000_adapter *adapter,
2799                      struct sk_buff *skb)
2800 {
2801         struct e1000_ring *tx_ring = adapter->tx_ring;
2802         struct e1000_context_desc *context_desc;
2803         struct e1000_buffer *buffer_info;
2804         unsigned int i;
2805         u32 cmd_length = 0;
2806         u16 ipcse = 0, tucse, mss;
2807         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2808         int err;
2809
2810         if (skb_is_gso(skb)) {
2811                 if (skb_header_cloned(skb)) {
2812                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2813                         if (err)
2814                                 return err;
2815                 }
2816
2817                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2818                 mss = skb_shinfo(skb)->gso_size;
2819                 if (skb->protocol == htons(ETH_P_IP)) {
2820                         struct iphdr *iph = ip_hdr(skb);
2821                         iph->tot_len = 0;
2822                         iph->check = 0;
2823                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2824                                                                  iph->daddr, 0,
2825                                                                  IPPROTO_TCP,
2826                                                                  0);
2827                         cmd_length = E1000_TXD_CMD_IP;
2828                         ipcse = skb_transport_offset(skb) - 1;
2829                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2830                         ipv6_hdr(skb)->payload_len = 0;
2831                         tcp_hdr(skb)->check =
2832                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2833                                                  &ipv6_hdr(skb)->daddr,
2834                                                  0, IPPROTO_TCP, 0);
2835                         ipcse = 0;
2836                 }
2837                 ipcss = skb_network_offset(skb);
2838                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2839                 tucss = skb_transport_offset(skb);
2840                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2841                 tucse = 0;
2842
2843                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2844                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2845
2846                 i = tx_ring->next_to_use;
2847                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2848                 buffer_info = &tx_ring->buffer_info[i];
2849
2850                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2851                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2852                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2853                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2854                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2855                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2856                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2857                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2858                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2859
2860                 buffer_info->time_stamp = jiffies;
2861                 buffer_info->next_to_watch = i;
2862
2863                 i++;
2864                 if (i == tx_ring->count)
2865                         i = 0;
2866                 tx_ring->next_to_use = i;
2867
2868                 return 1;
2869         }
2870
2871         return 0;
2872 }
2873
2874 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2875 {
2876         struct e1000_ring *tx_ring = adapter->tx_ring;
2877         struct e1000_context_desc *context_desc;
2878         struct e1000_buffer *buffer_info;
2879         unsigned int i;
2880         u8 css;
2881
2882         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2883                 css = skb_transport_offset(skb);
2884
2885                 i = tx_ring->next_to_use;
2886                 buffer_info = &tx_ring->buffer_info[i];
2887                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2888
2889                 context_desc->lower_setup.ip_config = 0;
2890                 context_desc->upper_setup.tcp_fields.tucss = css;
2891                 context_desc->upper_setup.tcp_fields.tucso =
2892                                         css + skb->csum_offset;
2893                 context_desc->upper_setup.tcp_fields.tucse = 0;
2894                 context_desc->tcp_seg_setup.data = 0;
2895                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2896
2897                 buffer_info->time_stamp = jiffies;
2898                 buffer_info->next_to_watch = i;
2899
2900                 i++;
2901                 if (i == tx_ring->count)
2902                         i = 0;
2903                 tx_ring->next_to_use = i;
2904
2905                 return 1;
2906         }
2907
2908         return 0;
2909 }
2910
2911 #define E1000_MAX_PER_TXD       8192
2912 #define E1000_MAX_TXD_PWR       12
2913
2914 static int e1000_tx_map(struct e1000_adapter *adapter,
2915                         struct sk_buff *skb, unsigned int first,
2916                         unsigned int max_per_txd, unsigned int nr_frags,
2917                         unsigned int mss)
2918 {
2919         struct e1000_ring *tx_ring = adapter->tx_ring;
2920         struct e1000_buffer *buffer_info;
2921         unsigned int len = skb->len - skb->data_len;
2922         unsigned int offset = 0, size, count = 0, i;
2923         unsigned int f;
2924
2925         i = tx_ring->next_to_use;
2926
2927         while (len) {
2928                 buffer_info = &tx_ring->buffer_info[i];
2929                 size = min(len, max_per_txd);
2930
2931                 /* Workaround for premature desc write-backs
2932                  * in TSO mode.  Append 4-byte sentinel desc */
2933                 if (mss && !nr_frags && size == len && size > 8)
2934                         size -= 4;
2935
2936                 buffer_info->length = size;
2937                 /* set time_stamp *before* dma to help avoid a possible race */
2938                 buffer_info->time_stamp = jiffies;
2939                 buffer_info->dma =
2940                         pci_map_single(adapter->pdev,
2941                                 skb->data + offset,
2942                                 size,
2943                                 PCI_DMA_TODEVICE);
2944                 if (pci_dma_mapping_error(buffer_info->dma)) {
2945                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2946                         adapter->tx_dma_failed++;
2947                         return -1;
2948                 }
2949                 buffer_info->next_to_watch = i;
2950
2951                 len -= size;
2952                 offset += size;
2953                 count++;
2954                 i++;
2955                 if (i == tx_ring->count)
2956                         i = 0;
2957         }
2958
2959         for (f = 0; f < nr_frags; f++) {
2960                 struct skb_frag_struct *frag;
2961
2962                 frag = &skb_shinfo(skb)->frags[f];
2963                 len = frag->size;
2964                 offset = frag->page_offset;
2965
2966                 while (len) {
2967                         buffer_info = &tx_ring->buffer_info[i];
2968                         size = min(len, max_per_txd);
2969                         /* Workaround for premature desc write-backs
2970                          * in TSO mode.  Append 4-byte sentinel desc */
2971                         if (mss && f == (nr_frags-1) && size == len && size > 8)
2972                                 size -= 4;
2973
2974                         buffer_info->length = size;
2975                         buffer_info->time_stamp = jiffies;
2976                         buffer_info->dma =
2977                                 pci_map_page(adapter->pdev,
2978                                         frag->page,
2979                                         offset,
2980                                         size,
2981                                         PCI_DMA_TODEVICE);
2982                         if (pci_dma_mapping_error(buffer_info->dma)) {
2983                                 dev_err(&adapter->pdev->dev,
2984                                         "TX DMA page map failed\n");
2985                                 adapter->tx_dma_failed++;
2986                                 return -1;
2987                         }
2988
2989                         buffer_info->next_to_watch = i;
2990
2991                         len -= size;
2992                         offset += size;
2993                         count++;
2994
2995                         i++;
2996                         if (i == tx_ring->count)
2997                                 i = 0;
2998                 }
2999         }
3000
3001         if (i == 0)
3002                 i = tx_ring->count - 1;
3003         else
3004                 i--;
3005
3006         tx_ring->buffer_info[i].skb = skb;
3007         tx_ring->buffer_info[first].next_to_watch = i;
3008
3009         return count;
3010 }
3011
3012 static void e1000_tx_queue(struct e1000_adapter *adapter,
3013                            int tx_flags, int count)
3014 {
3015         struct e1000_ring *tx_ring = adapter->tx_ring;
3016         struct e1000_tx_desc *tx_desc = NULL;
3017         struct e1000_buffer *buffer_info;
3018         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3019         unsigned int i;
3020
3021         if (tx_flags & E1000_TX_FLAGS_TSO) {
3022                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3023                              E1000_TXD_CMD_TSE;
3024                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3025
3026                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3027                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3028         }
3029
3030         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3031                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3032                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3033         }
3034
3035         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3036                 txd_lower |= E1000_TXD_CMD_VLE;
3037                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3038         }
3039
3040         i = tx_ring->next_to_use;
3041
3042         while (count--) {
3043                 buffer_info = &tx_ring->buffer_info[i];
3044                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3045                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3046                 tx_desc->lower.data =
3047                         cpu_to_le32(txd_lower | buffer_info->length);
3048                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3049
3050                 i++;
3051                 if (i == tx_ring->count)
3052                         i = 0;
3053         }
3054
3055         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3056
3057         /* Force memory writes to complete before letting h/w
3058          * know there are new descriptors to fetch.  (Only
3059          * applicable for weak-ordered memory model archs,
3060          * such as IA-64). */
3061         wmb();
3062
3063         tx_ring->next_to_use = i;
3064         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3065         /* we need this if more than one processor can write to our tail
3066          * at a time, it synchronizes IO on IA64/Altix systems */
3067         mmiowb();
3068 }
3069
3070 #define MINIMUM_DHCP_PACKET_SIZE 282
3071 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3072                                     struct sk_buff *skb)
3073 {
3074         struct e1000_hw *hw =  &adapter->hw;
3075         u16 length, offset;
3076
3077         if (vlan_tx_tag_present(skb)) {
3078                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3079                     && (adapter->hw.mng_cookie.status &
3080                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3081                         return 0;
3082         }
3083
3084         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3085                 return 0;
3086
3087         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3088                 return 0;
3089
3090         {
3091                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3092                 struct udphdr *udp;
3093
3094                 if (ip->protocol != IPPROTO_UDP)
3095                         return 0;
3096
3097                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3098                 if (ntohs(udp->dest) != 67)
3099                         return 0;
3100
3101                 offset = (u8 *)udp + 8 - skb->data;
3102                 length = skb->len - offset;
3103                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3104         }
3105
3106         return 0;
3107 }
3108
3109 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3110 {
3111         struct e1000_adapter *adapter = netdev_priv(netdev);
3112
3113         netif_stop_queue(netdev);
3114         /* Herbert's original patch had:
3115          *  smp_mb__after_netif_stop_queue();
3116          * but since that doesn't exist yet, just open code it. */
3117         smp_mb();
3118
3119         /* We need to check again in a case another CPU has just
3120          * made room available. */
3121         if (e1000_desc_unused(adapter->tx_ring) < size)
3122                 return -EBUSY;
3123
3124         /* A reprieve! */
3125         netif_start_queue(netdev);
3126         ++adapter->restart_queue;
3127         return 0;
3128 }
3129
3130 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3131 {
3132         struct e1000_adapter *adapter = netdev_priv(netdev);
3133
3134         if (e1000_desc_unused(adapter->tx_ring) >= size)
3135                 return 0;
3136         return __e1000_maybe_stop_tx(netdev, size);
3137 }
3138
3139 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3140 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3141 {
3142         struct e1000_adapter *adapter = netdev_priv(netdev);
3143         struct e1000_ring *tx_ring = adapter->tx_ring;
3144         unsigned int first;
3145         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3146         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3147         unsigned int tx_flags = 0;
3148         unsigned int len = skb->len - skb->data_len;
3149         unsigned long irq_flags;
3150         unsigned int nr_frags;
3151         unsigned int mss;
3152         int count = 0;
3153         int tso;
3154         unsigned int f;
3155
3156         if (test_bit(__E1000_DOWN, &adapter->state)) {
3157                 dev_kfree_skb_any(skb);
3158                 return NETDEV_TX_OK;
3159         }
3160
3161         if (skb->len <= 0) {
3162                 dev_kfree_skb_any(skb);
3163                 return NETDEV_TX_OK;
3164         }
3165
3166         mss = skb_shinfo(skb)->gso_size;
3167         /* The controller does a simple calculation to
3168          * make sure there is enough room in the FIFO before
3169          * initiating the DMA for each buffer.  The calc is:
3170          * 4 = ceil(buffer len/mss).  To make sure we don't
3171          * overrun the FIFO, adjust the max buffer len if mss
3172          * drops. */
3173         if (mss) {
3174                 u8 hdr_len;
3175                 max_per_txd = min(mss << 2, max_per_txd);
3176                 max_txd_pwr = fls(max_per_txd) - 1;
3177
3178                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3179                 * points to just header, pull a few bytes of payload from
3180                 * frags into skb->data */
3181                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3182                 if (skb->data_len && (hdr_len == len)) {
3183                         unsigned int pull_size;
3184
3185                         pull_size = min((unsigned int)4, skb->data_len);
3186                         if (!__pskb_pull_tail(skb, pull_size)) {
3187                                 ndev_err(netdev,
3188                                          "__pskb_pull_tail failed.\n");
3189                                 dev_kfree_skb_any(skb);
3190                                 return NETDEV_TX_OK;
3191                         }
3192                         len = skb->len - skb->data_len;
3193                 }
3194         }
3195
3196         /* reserve a descriptor for the offload context */
3197         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3198                 count++;
3199         count++;
3200
3201         count += TXD_USE_COUNT(len, max_txd_pwr);
3202
3203         nr_frags = skb_shinfo(skb)->nr_frags;
3204         for (f = 0; f < nr_frags; f++)
3205                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3206                                        max_txd_pwr);
3207
3208         if (adapter->hw.mac.tx_pkt_filtering)
3209                 e1000_transfer_dhcp_info(adapter, skb);
3210
3211         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3212                 /* Collision - tell upper layer to requeue */
3213                 return NETDEV_TX_LOCKED;
3214
3215         /* need: count + 2 desc gap to keep tail from touching
3216          * head, otherwise try next time */
3217         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3218                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3219                 return NETDEV_TX_BUSY;
3220         }
3221
3222         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3223                 tx_flags |= E1000_TX_FLAGS_VLAN;
3224                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3225         }
3226
3227         first = tx_ring->next_to_use;
3228
3229         tso = e1000_tso(adapter, skb);
3230         if (tso < 0) {
3231                 dev_kfree_skb_any(skb);
3232                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3233                 return NETDEV_TX_OK;
3234         }
3235
3236         if (tso)
3237                 tx_flags |= E1000_TX_FLAGS_TSO;
3238         else if (e1000_tx_csum(adapter, skb))
3239                 tx_flags |= E1000_TX_FLAGS_CSUM;
3240
3241         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3242          * 82571 hardware supports TSO capabilities for IPv6 as well...
3243          * no longer assume, we must. */
3244         if (skb->protocol == htons(ETH_P_IP))
3245                 tx_flags |= E1000_TX_FLAGS_IPV4;
3246
3247         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3248         if (count < 0) {
3249                 /* handle pci_map_single() error in e1000_tx_map */
3250                 dev_kfree_skb_any(skb);
3251                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3252                 return NETDEV_TX_OK;
3253         }
3254
3255         e1000_tx_queue(adapter, tx_flags, count);
3256
3257         netdev->trans_start = jiffies;
3258
3259         /* Make sure there is space in the ring for the next send. */
3260         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3261
3262         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3263         return NETDEV_TX_OK;
3264 }
3265
3266 /**
3267  * e1000_tx_timeout - Respond to a Tx Hang
3268  * @netdev: network interface device structure
3269  **/
3270 static void e1000_tx_timeout(struct net_device *netdev)
3271 {
3272         struct e1000_adapter *adapter = netdev_priv(netdev);
3273
3274         /* Do the reset outside of interrupt context */
3275         adapter->tx_timeout_count++;
3276         schedule_work(&adapter->reset_task);
3277 }
3278
3279 static void e1000_reset_task(struct work_struct *work)
3280 {
3281         struct e1000_adapter *adapter;
3282         adapter = container_of(work, struct e1000_adapter, reset_task);
3283
3284         e1000e_reinit_locked(adapter);
3285 }
3286
3287 /**
3288  * e1000_get_stats - Get System Network Statistics
3289  * @netdev: network interface device structure
3290  *
3291  * Returns the address of the device statistics structure.
3292  * The statistics are actually updated from the timer callback.
3293  **/
3294 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3295 {
3296         struct e1000_adapter *adapter = netdev_priv(netdev);
3297
3298         /* only return the current stats */
3299         return &adapter->net_stats;
3300 }
3301
3302 /**
3303  * e1000_change_mtu - Change the Maximum Transfer Unit
3304  * @netdev: network interface device structure
3305  * @new_mtu: new value for maximum frame size
3306  *
3307  * Returns 0 on success, negative on failure
3308  **/
3309 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3310 {
3311         struct e1000_adapter *adapter = netdev_priv(netdev);
3312         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3313
3314         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3315             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3316                 ndev_err(netdev, "Invalid MTU setting\n");
3317                 return -EINVAL;
3318         }
3319
3320         /* Jumbo frame size limits */
3321         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3322                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3323                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3324                         return -EINVAL;
3325                 }
3326                 if (adapter->hw.phy.type == e1000_phy_ife) {
3327                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3328                         return -EINVAL;
3329                 }
3330         }
3331
3332 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3333         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3334                 ndev_err(netdev, "MTU > 9216 not supported.\n");
3335                 return -EINVAL;
3336         }
3337
3338         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3339                 msleep(1);
3340         /* e1000e_down has a dependency on max_frame_size */
3341         adapter->hw.mac.max_frame_size = max_frame;
3342         if (netif_running(netdev))
3343                 e1000e_down(adapter);
3344
3345         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3346          * means we reserve 2 more, this pushes us to allocate from the next
3347          * larger slab size.
3348          * i.e. RXBUFFER_2048 --> size-4096 slab */
3349
3350         if (max_frame <= 256)
3351                 adapter->rx_buffer_len = 256;
3352         else if (max_frame <= 512)
3353                 adapter->rx_buffer_len = 512;
3354         else if (max_frame <= 1024)
3355                 adapter->rx_buffer_len = 1024;
3356         else if (max_frame <= 2048)
3357                 adapter->rx_buffer_len = 2048;
3358         else
3359                 adapter->rx_buffer_len = 4096;
3360
3361         /* adjust allocation if LPE protects us, and we aren't using SBP */
3362         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3363              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3364                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3365                                          + ETH_FCS_LEN ;
3366
3367         ndev_info(netdev, "changing MTU from %d to %d\n",
3368                 netdev->mtu, new_mtu);
3369         netdev->mtu = new_mtu;
3370
3371         if (netif_running(netdev))
3372                 e1000e_up(adapter);
3373         else
3374                 e1000e_reset(adapter);
3375
3376         clear_bit(__E1000_RESETTING, &adapter->state);
3377
3378         return 0;
3379 }
3380
3381 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3382                            int cmd)
3383 {
3384         struct e1000_adapter *adapter = netdev_priv(netdev);
3385         struct mii_ioctl_data *data = if_mii(ifr);
3386         unsigned long irq_flags;
3387
3388         if (adapter->hw.media_type != e1000_media_type_copper)
3389                 return -EOPNOTSUPP;
3390
3391         switch (cmd) {
3392         case SIOCGMIIPHY:
3393                 data->phy_id = adapter->hw.phy.addr;
3394                 break;
3395         case SIOCGMIIREG:
3396                 if (!capable(CAP_NET_ADMIN))
3397                         return -EPERM;
3398                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3399                 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3400                                    &data->val_out)) {
3401                         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3402                         return -EIO;
3403                 }
3404                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3405                 break;
3406         case SIOCSMIIREG:
3407         default:
3408                 return -EOPNOTSUPP;
3409         }
3410         return 0;
3411 }
3412
3413 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3414 {
3415         switch (cmd) {
3416         case SIOCGMIIPHY:
3417         case SIOCGMIIREG:
3418         case SIOCSMIIREG:
3419                 return e1000_mii_ioctl(netdev, ifr, cmd);
3420         default:
3421                 return -EOPNOTSUPP;
3422         }
3423 }
3424
3425 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3426 {
3427         struct net_device *netdev = pci_get_drvdata(pdev);
3428         struct e1000_adapter *adapter = netdev_priv(netdev);
3429         struct e1000_hw *hw = &adapter->hw;
3430         u32 ctrl, ctrl_ext, rctl, status;
3431         u32 wufc = adapter->wol;
3432         int retval = 0;
3433
3434         netif_device_detach(netdev);
3435
3436         if (netif_running(netdev)) {
3437                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3438                 e1000e_down(adapter);
3439                 e1000_free_irq(adapter);
3440         }
3441
3442         retval = pci_save_state(pdev);
3443         if (retval)
3444                 return retval;
3445
3446         status = er32(STATUS);
3447         if (status & E1000_STATUS_LU)
3448                 wufc &= ~E1000_WUFC_LNKC;
3449
3450         if (wufc) {
3451                 e1000_setup_rctl(adapter);
3452                 e1000_set_multi(netdev);
3453
3454                 /* turn on all-multi mode if wake on multicast is enabled */
3455                 if (wufc & E1000_WUFC_MC) {
3456                         rctl = er32(RCTL);
3457                         rctl |= E1000_RCTL_MPE;
3458                         ew32(RCTL, rctl);
3459                 }
3460
3461                 ctrl = er32(CTRL);
3462                 /* advertise wake from D3Cold */
3463                 #define E1000_CTRL_ADVD3WUC 0x00100000
3464                 /* phy power management enable */
3465                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3466                 ctrl |= E1000_CTRL_ADVD3WUC |
3467                         E1000_CTRL_EN_PHY_PWR_MGMT;
3468                 ew32(CTRL, ctrl);
3469
3470                 if (adapter->hw.media_type == e1000_media_type_fiber ||
3471                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
3472                         /* keep the laser running in D3 */
3473                         ctrl_ext = er32(CTRL_EXT);
3474                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3475                         ew32(CTRL_EXT, ctrl_ext);
3476                 }
3477
3478                 /* Allow time for pending master requests to run */
3479                 e1000e_disable_pcie_master(&adapter->hw);
3480
3481                 ew32(WUC, E1000_WUC_PME_EN);
3482                 ew32(WUFC, wufc);
3483                 pci_enable_wake(pdev, PCI_D3hot, 1);
3484                 pci_enable_wake(pdev, PCI_D3cold, 1);
3485         } else {
3486                 ew32(WUC, 0);
3487                 ew32(WUFC, 0);
3488                 pci_enable_wake(pdev, PCI_D3hot, 0);
3489                 pci_enable_wake(pdev, PCI_D3cold, 0);
3490         }
3491
3492         e1000_release_manageability(adapter);
3493
3494         /* make sure adapter isn't asleep if manageability is enabled */
3495         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3496                 pci_enable_wake(pdev, PCI_D3hot, 1);
3497                 pci_enable_wake(pdev, PCI_D3cold, 1);
3498         }
3499
3500         if (adapter->hw.phy.type == e1000_phy_igp_3)
3501                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3502
3503         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3504          * would have already happened in close and is redundant. */
3505         e1000_release_hw_control(adapter);
3506
3507         pci_disable_device(pdev);
3508
3509         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3510
3511         return 0;
3512 }
3513
3514 #ifdef CONFIG_PM
3515 static int e1000_resume(struct pci_dev *pdev)
3516 {
3517         struct net_device *netdev = pci_get_drvdata(pdev);
3518         struct e1000_adapter *adapter = netdev_priv(netdev);
3519         struct e1000_hw *hw = &adapter->hw;
3520         u32 err;
3521
3522         pci_set_power_state(pdev, PCI_D0);
3523         pci_restore_state(pdev);
3524         err = pci_enable_device(pdev);
3525         if (err) {
3526                 dev_err(&pdev->dev,
3527                         "Cannot enable PCI device from suspend\n");
3528                 return err;
3529         }
3530
3531         pci_set_master(pdev);
3532
3533         pci_enable_wake(pdev, PCI_D3hot, 0);
3534         pci_enable_wake(pdev, PCI_D3cold, 0);
3535
3536         if (netif_running(netdev)) {
3537                 err = e1000_request_irq(adapter);
3538                 if (err)
3539                         return err;
3540         }
3541
3542         e1000e_power_up_phy(adapter);
3543         e1000e_reset(adapter);
3544         ew32(WUS, ~0);
3545
3546         e1000_init_manageability(adapter);
3547
3548         if (netif_running(netdev))
3549                 e1000e_up(adapter);
3550
3551         netif_device_attach(netdev);
3552
3553         /* If the controller has AMT, do not set DRV_LOAD until the interface
3554          * is up.  For all other cases, let the f/w know that the h/w is now
3555          * under the control of the driver. */
3556         if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3557                 e1000_get_hw_control(adapter);
3558
3559         return 0;
3560 }
3561 #endif
3562
3563 static void e1000_shutdown(struct pci_dev *pdev)
3564 {
3565         e1000_suspend(pdev, PMSG_SUSPEND);
3566 }
3567
3568 #ifdef CONFIG_NET_POLL_CONTROLLER
3569 /*
3570  * Polling 'interrupt' - used by things like netconsole to send skbs
3571  * without having to re-enable interrupts. It's not called while
3572  * the interrupt routine is executing.
3573  */
3574 static void e1000_netpoll(struct net_device *netdev)
3575 {
3576         struct e1000_adapter *adapter = netdev_priv(netdev);
3577
3578         disable_irq(adapter->pdev->irq);
3579         e1000_intr(adapter->pdev->irq, netdev);
3580
3581         e1000_clean_tx_irq(adapter);
3582
3583         enable_irq(adapter->pdev->irq);
3584 }
3585 #endif
3586
3587 /**
3588  * e1000_io_error_detected - called when PCI error is detected
3589  * @pdev: Pointer to PCI device
3590  * @state: The current pci connection state
3591  *
3592  * This function is called after a PCI bus error affecting
3593  * this device has been detected.
3594  */
3595 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3596                                                 pci_channel_state_t state)
3597 {
3598         struct net_device *netdev = pci_get_drvdata(pdev);
3599         struct e1000_adapter *adapter = netdev_priv(netdev);
3600
3601         netif_device_detach(netdev);
3602
3603         if (netif_running(netdev))
3604                 e1000e_down(adapter);
3605         pci_disable_device(pdev);
3606
3607         /* Request a slot slot reset. */
3608         return PCI_ERS_RESULT_NEED_RESET;
3609 }
3610
3611 /**
3612  * e1000_io_slot_reset - called after the pci bus has been reset.
3613  * @pdev: Pointer to PCI device
3614  *
3615  * Restart the card from scratch, as if from a cold-boot. Implementation
3616  * resembles the first-half of the e1000_resume routine.
3617  */
3618 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3619 {
3620         struct net_device *netdev = pci_get_drvdata(pdev);
3621         struct e1000_adapter *adapter = netdev_priv(netdev);
3622         struct e1000_hw *hw = &adapter->hw;
3623
3624         if (pci_enable_device(pdev)) {
3625                 dev_err(&pdev->dev,
3626                         "Cannot re-enable PCI device after reset.\n");
3627                 return PCI_ERS_RESULT_DISCONNECT;
3628         }
3629         pci_set_master(pdev);
3630
3631         pci_enable_wake(pdev, PCI_D3hot, 0);
3632         pci_enable_wake(pdev, PCI_D3cold, 0);
3633
3634         e1000e_reset(adapter);
3635         ew32(WUS, ~0);
3636
3637         return PCI_ERS_RESULT_RECOVERED;
3638 }
3639
3640 /**
3641  * e1000_io_resume - called when traffic can start flowing again.
3642  * @pdev: Pointer to PCI device
3643  *
3644  * This callback is called when the error recovery driver tells us that
3645  * its OK to resume normal operation. Implementation resembles the
3646  * second-half of the e1000_resume routine.
3647  */
3648 static void e1000_io_resume(struct pci_dev *pdev)
3649 {
3650         struct net_device *netdev = pci_get_drvdata(pdev);
3651         struct e1000_adapter *adapter = netdev_priv(netdev);
3652
3653         e1000_init_manageability(adapter);
3654
3655         if (netif_running(netdev)) {
3656                 if (e1000e_up(adapter)) {
3657                         dev_err(&pdev->dev,
3658                                 "can't bring device back up after reset\n");
3659                         return;
3660                 }
3661         }
3662
3663         netif_device_attach(netdev);
3664
3665         /* If the controller has AMT, do not set DRV_LOAD until the interface
3666          * is up.  For all other cases, let the f/w know that the h/w is now
3667          * under the control of the driver. */
3668         if (!(adapter->flags & FLAG_HAS_AMT) ||
3669             !e1000e_check_mng_mode(&adapter->hw))
3670                 e1000_get_hw_control(adapter);
3671
3672 }
3673
3674 static void e1000_print_device_info(struct e1000_adapter *adapter)
3675 {
3676         struct e1000_hw *hw = &adapter->hw;
3677         struct net_device *netdev = adapter->netdev;
3678         u32 part_num;
3679
3680         /* print bus type/speed/width info */
3681         ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3682                   "%02x:%02x:%02x:%02x:%02x:%02x\n",
3683                   /* bus width */
3684                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3685                   "Width x1"),
3686                   /* MAC address */
3687                   netdev->dev_addr[0], netdev->dev_addr[1],
3688                   netdev->dev_addr[2], netdev->dev_addr[3],
3689                   netdev->dev_addr[4], netdev->dev_addr[5]);
3690         ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3691                   (hw->phy.type == e1000_phy_ife)
3692                    ? "10/100" : "1000");
3693         e1000e_read_part_num(hw, &part_num);
3694         ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3695                   hw->mac.type, hw->phy.type,
3696                   (part_num >> 8), (part_num & 0xff));
3697 }
3698
3699 /**
3700  * e1000_probe - Device Initialization Routine
3701  * @pdev: PCI device information struct
3702  * @ent: entry in e1000_pci_tbl
3703  *
3704  * Returns 0 on success, negative on failure
3705  *
3706  * e1000_probe initializes an adapter identified by a pci_dev structure.
3707  * The OS initialization, configuring of the adapter private structure,
3708  * and a hardware reset occur.
3709  **/
3710 static int __devinit e1000_probe(struct pci_dev *pdev,
3711                                  const struct pci_device_id *ent)
3712 {
3713         struct net_device *netdev;
3714         struct e1000_adapter *adapter;
3715         struct e1000_hw *hw;
3716         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3717         unsigned long mmio_start, mmio_len;
3718         unsigned long flash_start, flash_len;
3719
3720         static int cards_found;
3721         int i, err, pci_using_dac;
3722         u16 eeprom_data = 0;
3723         u16 eeprom_apme_mask = E1000_EEPROM_APME;
3724
3725         err = pci_enable_device(pdev);
3726         if (err)
3727                 return err;
3728
3729         pci_using_dac = 0;
3730         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3731         if (!err) {
3732                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3733                 if (!err)
3734                         pci_using_dac = 1;
3735         } else {
3736                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3737                 if (err) {
3738                         err = pci_set_consistent_dma_mask(pdev,
3739                                                           DMA_32BIT_MASK);
3740                         if (err) {
3741                                 dev_err(&pdev->dev, "No usable DMA "
3742                                         "configuration, aborting\n");
3743                                 goto err_dma;
3744                         }
3745                 }
3746         }
3747
3748         err = pci_request_regions(pdev, e1000e_driver_name);
3749         if (err)
3750                 goto err_pci_reg;
3751
3752         pci_set_master(pdev);
3753
3754         err = -ENOMEM;
3755         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3756         if (!netdev)
3757                 goto err_alloc_etherdev;
3758
3759         SET_NETDEV_DEV(netdev, &pdev->dev);
3760
3761         pci_set_drvdata(pdev, netdev);
3762         adapter = netdev_priv(netdev);
3763         hw = &adapter->hw;
3764         adapter->netdev = netdev;
3765         adapter->pdev = pdev;
3766         adapter->ei = ei;
3767         adapter->pba = ei->pba;
3768         adapter->flags = ei->flags;
3769         adapter->hw.adapter = adapter;
3770         adapter->hw.mac.type = ei->mac;
3771         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3772
3773         mmio_start = pci_resource_start(pdev, 0);
3774         mmio_len = pci_resource_len(pdev, 0);
3775
3776         err = -EIO;
3777         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3778         if (!adapter->hw.hw_addr)
3779                 goto err_ioremap;
3780
3781         if ((adapter->flags & FLAG_HAS_FLASH) &&
3782             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3783                 flash_start = pci_resource_start(pdev, 1);
3784                 flash_len = pci_resource_len(pdev, 1);
3785                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3786                 if (!adapter->hw.flash_address)
3787                         goto err_flashmap;
3788         }
3789
3790         /* construct the net_device struct */
3791         netdev->open                    = &e1000_open;
3792         netdev->stop                    = &e1000_close;
3793         netdev->hard_start_xmit         = &e1000_xmit_frame;
3794         netdev->get_stats               = &e1000_get_stats;
3795         netdev->set_multicast_list      = &e1000_set_multi;
3796         netdev->set_mac_address         = &e1000_set_mac;
3797         netdev->change_mtu              = &e1000_change_mtu;
3798         netdev->do_ioctl                = &e1000_ioctl;
3799         e1000e_set_ethtool_ops(netdev);
3800         netdev->tx_timeout              = &e1000_tx_timeout;
3801         netdev->watchdog_timeo          = 5 * HZ;
3802         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3803         netdev->vlan_rx_register        = e1000_vlan_rx_register;
3804         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
3805         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
3806 #ifdef CONFIG_NET_POLL_CONTROLLER
3807         netdev->poll_controller         = e1000_netpoll;
3808 #endif
3809         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3810
3811         netdev->mem_start = mmio_start;
3812         netdev->mem_end = mmio_start + mmio_len;
3813
3814         adapter->bd_number = cards_found++;
3815
3816         /* setup adapter struct */
3817         err = e1000_sw_init(adapter);
3818         if (err)
3819                 goto err_sw_init;
3820
3821         err = -EIO;
3822
3823         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3824         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3825         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3826
3827         err = ei->get_invariants(adapter);
3828         if (err)
3829                 goto err_hw_init;
3830
3831         hw->mac.ops.get_bus_info(&adapter->hw);
3832
3833         adapter->hw.phy.wait_for_link = 0;
3834
3835         /* Copper options */
3836         if (adapter->hw.media_type == e1000_media_type_copper) {
3837                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3838                 adapter->hw.phy.disable_polarity_correction = 0;
3839                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3840         }
3841
3842         if (e1000_check_reset_block(&adapter->hw))
3843                 ndev_info(netdev,
3844                           "PHY reset is blocked due to SOL/IDER session.\n");
3845
3846         netdev->features = NETIF_F_SG |
3847                            NETIF_F_HW_CSUM |
3848                            NETIF_F_HW_VLAN_TX |
3849                            NETIF_F_HW_VLAN_RX;
3850
3851         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3852                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3853
3854         netdev->features |= NETIF_F_TSO;
3855         netdev->features |= NETIF_F_TSO6;
3856
3857         if (pci_using_dac)
3858                 netdev->features |= NETIF_F_HIGHDMA;
3859
3860         /* We should not be using LLTX anymore, but we are still TX faster with
3861          * it. */
3862         netdev->features |= NETIF_F_LLTX;
3863
3864         if (e1000e_enable_mng_pass_thru(&adapter->hw))
3865                 adapter->flags |= FLAG_MNG_PT_ENABLED;
3866
3867         /* before reading the NVM, reset the controller to
3868          * put the device in a known good starting state */
3869         adapter->hw.mac.ops.reset_hw(&adapter->hw);
3870
3871         /*
3872          * systems with ASPM and others may see the checksum fail on the first
3873          * attempt. Let's give it a few tries
3874          */
3875         for (i = 0;; i++) {
3876                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3877                         break;
3878                 if (i == 2) {
3879                         ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3880                         err = -EIO;
3881                         goto err_eeprom;
3882                 }
3883         }
3884
3885         /* copy the MAC address out of the NVM */
3886         if (e1000e_read_mac_addr(&adapter->hw))
3887                 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3888
3889         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3890         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3891
3892         if (!is_valid_ether_addr(netdev->perm_addr)) {
3893                 ndev_err(netdev, "Invalid MAC Address: "
3894                          "%02x:%02x:%02x:%02x:%02x:%02x\n",
3895                          netdev->perm_addr[0], netdev->perm_addr[1],
3896                          netdev->perm_addr[2], netdev->perm_addr[3],
3897                          netdev->perm_addr[4], netdev->perm_addr[5]);
3898                 err = -EIO;
3899                 goto err_eeprom;
3900         }
3901
3902         init_timer(&adapter->watchdog_timer);
3903         adapter->watchdog_timer.function = &e1000_watchdog;
3904         adapter->watchdog_timer.data = (unsigned long) adapter;
3905
3906         init_timer(&adapter->phy_info_timer);
3907         adapter->phy_info_timer.function = &e1000_update_phy_info;
3908         adapter->phy_info_timer.data = (unsigned long) adapter;
3909
3910         INIT_WORK(&adapter->reset_task, e1000_reset_task);
3911         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3912
3913         e1000e_check_options(adapter);
3914
3915         /* Initialize link parameters. User can change them with ethtool */
3916         adapter->hw.mac.autoneg = 1;
3917         adapter->fc_autoneg = 1;
3918         adapter->hw.mac.original_fc = e1000_fc_default;
3919         adapter->hw.mac.fc = e1000_fc_default;
3920         adapter->hw.phy.autoneg_advertised = 0x2f;
3921
3922         /* ring size defaults */
3923         adapter->rx_ring->count = 256;
3924         adapter->tx_ring->count = 256;
3925
3926         /*
3927          * Initial Wake on LAN setting - If APM wake is enabled in
3928          * the EEPROM, enable the ACPI Magic Packet filter
3929          */
3930         if (adapter->flags & FLAG_APME_IN_WUC) {
3931                 /* APME bit in EEPROM is mapped to WUC.APME */
3932                 eeprom_data = er32(WUC);
3933                 eeprom_apme_mask = E1000_WUC_APME;
3934         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3935                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3936                     (adapter->hw.bus.func == 1))
3937                         e1000_read_nvm(&adapter->hw,
3938                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3939                 else
3940                         e1000_read_nvm(&adapter->hw,
3941                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3942         }
3943
3944         /* fetch WoL from EEPROM */
3945         if (eeprom_data & eeprom_apme_mask)
3946                 adapter->eeprom_wol |= E1000_WUFC_MAG;
3947
3948         /*
3949          * now that we have the eeprom settings, apply the special cases
3950          * where the eeprom may be wrong or the board simply won't support
3951          * wake on lan on a particular port
3952          */
3953         if (!(adapter->flags & FLAG_HAS_WOL))
3954                 adapter->eeprom_wol = 0;
3955
3956         /* initialize the wol settings based on the eeprom settings */
3957         adapter->wol = adapter->eeprom_wol;
3958
3959         /* reset the hardware with the new settings */
3960         e1000e_reset(adapter);
3961
3962         /* If the controller has AMT, do not set DRV_LOAD until the interface
3963          * is up.  For all other cases, let the f/w know that the h/w is now
3964          * under the control of the driver. */
3965         if (!(adapter->flags & FLAG_HAS_AMT) ||
3966             !e1000e_check_mng_mode(&adapter->hw))
3967                 e1000_get_hw_control(adapter);
3968
3969         /* tell the stack to leave us alone until e1000_open() is called */
3970         netif_carrier_off(netdev);
3971         netif_stop_queue(netdev);
3972
3973         strcpy(netdev->name, "eth%d");
3974         err = register_netdev(netdev);
3975         if (err)
3976                 goto err_register;
3977
3978         e1000_print_device_info(adapter);
3979
3980         return 0;
3981
3982 err_register:
3983 err_hw_init:
3984         e1000_release_hw_control(adapter);
3985 err_eeprom:
3986         if (!e1000_check_reset_block(&adapter->hw))
3987                 e1000_phy_hw_reset(&adapter->hw);
3988
3989         if (adapter->hw.flash_address)
3990                 iounmap(adapter->hw.flash_address);
3991
3992 err_flashmap:
3993         kfree(adapter->tx_ring);
3994         kfree(adapter->rx_ring);
3995 err_sw_init:
3996         iounmap(adapter->hw.hw_addr);
3997 err_ioremap:
3998         free_netdev(netdev);
3999 err_alloc_etherdev:
4000         pci_release_regions(pdev);
4001 err_pci_reg:
4002 err_dma:
4003         pci_disable_device(pdev);
4004         return err;
4005 }
4006
4007 /**
4008  * e1000_remove - Device Removal Routine
4009  * @pdev: PCI device information struct
4010  *
4011  * e1000_remove is called by the PCI subsystem to alert the driver
4012  * that it should release a PCI device.  The could be caused by a
4013  * Hot-Plug event, or because the driver is going to be removed from
4014  * memory.
4015  **/
4016 static void __devexit e1000_remove(struct pci_dev *pdev)
4017 {
4018         struct net_device *netdev = pci_get_drvdata(pdev);
4019         struct e1000_adapter *adapter = netdev_priv(netdev);
4020
4021         /* flush_scheduled work may reschedule our watchdog task, so
4022          * explicitly disable watchdog tasks from being rescheduled  */
4023         set_bit(__E1000_DOWN, &adapter->state);
4024         del_timer_sync(&adapter->watchdog_timer);
4025         del_timer_sync(&adapter->phy_info_timer);
4026
4027         flush_scheduled_work();
4028
4029         e1000_release_manageability(adapter);
4030
4031         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4032          * would have already happened in close and is redundant. */
4033         e1000_release_hw_control(adapter);
4034
4035         unregister_netdev(netdev);
4036
4037         if (!e1000_check_reset_block(&adapter->hw))
4038                 e1000_phy_hw_reset(&adapter->hw);
4039
4040         kfree(adapter->tx_ring);
4041         kfree(adapter->rx_ring);
4042
4043         iounmap(adapter->hw.hw_addr);
4044         if (adapter->hw.flash_address)
4045                 iounmap(adapter->hw.flash_address);
4046         pci_release_regions(pdev);
4047
4048         free_netdev(netdev);
4049
4050         pci_disable_device(pdev);
4051 }
4052
4053 /* PCI Error Recovery (ERS) */
4054 static struct pci_error_handlers e1000_err_handler = {
4055         .error_detected = e1000_io_error_detected,
4056         .slot_reset = e1000_io_slot_reset,
4057         .resume = e1000_io_resume,
4058 };
4059
4060 static struct pci_device_id e1000_pci_tbl[] = {
4061         /*
4062          * Support for 82571/2/3, es2lan and ich8 will be phased in
4063          * stepwise.
4064
4065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4066         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4067         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4068         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4069         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4070         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4071         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4072         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4073         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4075         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4076         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4079           board_80003es2lan },
4080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4081           board_80003es2lan },
4082         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4083           board_80003es2lan },
4084         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4085           board_80003es2lan },
4086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4093         */
4094
4095         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4098         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4099         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4100
4101         { }     /* terminate list */
4102 };
4103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4104
4105 /* PCI Device API Driver */
4106 static struct pci_driver e1000_driver = {
4107         .name     = e1000e_driver_name,
4108         .id_table = e1000_pci_tbl,
4109         .probe    = e1000_probe,
4110         .remove   = __devexit_p(e1000_remove),
4111 #ifdef CONFIG_PM
4112         /* Power Managment Hooks */
4113         .suspend  = e1000_suspend,
4114         .resume   = e1000_resume,
4115 #endif
4116         .shutdown = e1000_shutdown,
4117         .err_handler = &e1000_err_handler
4118 };
4119
4120 /**
4121  * e1000_init_module - Driver Registration Routine
4122  *
4123  * e1000_init_module is the first routine called when the driver is
4124  * loaded. All it does is register with the PCI subsystem.
4125  **/
4126 static int __init e1000_init_module(void)
4127 {
4128         int ret;
4129         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4130                e1000e_driver_name, e1000e_driver_version);
4131         printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4132                e1000e_driver_name);
4133         ret = pci_register_driver(&e1000_driver);
4134
4135         return ret;
4136 }
4137 module_init(e1000_init_module);
4138
4139 /**
4140  * e1000_exit_module - Driver Exit Cleanup Routine
4141  *
4142  * e1000_exit_module is called just before the driver is removed
4143  * from memory.
4144  **/
4145 static void __exit e1000_exit_module(void)
4146 {
4147         pci_unregister_driver(&e1000_driver);
4148 }
4149 module_exit(e1000_exit_module);
4150
4151
4152 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4153 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4154 MODULE_LICENSE("GPL");
4155 MODULE_VERSION(DRV_VERSION);
4156
4157 /* e1000_main.c */